
To Biali, Shaní, and Vandari.





Preface

The purpose of this book is to collect the most recent advances from renowned schol-
ars in the field of districting, territory design, and zone design. This book provides
knowledge and insights on recent advances in problems where districting decisions
are considered. The aim is to present contributions on models, theory, algorithms
(exact or heuristic), and applications that would bring an up-to-date on the state-
of-art of districting systems. The book also capture the diverse nature of districting
applications as the chapters are written by leading experts on political, sales, lo-
cation/routing, and healthcare applications, to name a few. The target audience of
this book are professionals, researchers, and graduate students from diverse fields
such as Operations Research, Management Science, Computer Science, Discrete
Mathematics, and Regional Science.

Each chapter was written by leading experts on some area of districting and
was peer-reviewed by two or more anonymous independent reviewers to ensure a
high-quality volume. I am very grateful to the authors of the chapters in this book
for agreeing to participate and collaborate in this project with great dedication and
enthusiasm. It was a pleasure workingwith all of them along the process. I also would
like to thank all our anonymous reviewers for their critical remarks and timely reports
that helped improve the quality of each chapter. Their contribution to significantly
improve the quality of this volume is very much appreciated. Unfortunately, their
names can not be listed due to the blind nature of the review process.

I also would like to thank the editorial team at Springer, particularly, Matthew
Amboy, former Senior Editor, Business & Economics: Operations Reserach &Man-
agement InformationSystems,Neil Levine, PublishingEditor, andFaith Su,Assistant
Editor, for providing guidance and support throughout the entire editorial process.
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Part I
Introduction and Literature Reviews





Chapter 1
Research Trends in Optimization of Districting
Systems

Roger Z. Ríos-Mercado

1.1 Motivation

The intent of this book is to present recent developments and insights on optimal
territory design problems. In the literature, territory design can also be referred
as districting or zone design. In particular emphasis is given to modeling aspects,
theory, and algorithmic development of recent complex developments on district-
ing and territory design by leading experts in the field. The book includes some
literature surveys on particular areas of districting such as police patroling, health
care districting, and computational geometry methods, and successful case studies
in political and sales force deployment districting.

The area of districting or territory design can be seen as a subfield of discrete
optimization related to partitioning decisions. In a typical districting problem, a
collection of basic or geographic units must be divided into districts or territories.
This partition is not arbitrary but must meet a series of planning requirements
depending on the specific application or context.

Although there is not such thing as “the Districting Problem” because each
problem is different and has its own particular requirements that make it unique,
there are certainly some criteria or requirements that are common to an important
class of districting problems. For instance, criteria such as compactness, unique
assignment, and balance are common to many districting problems. Other criteria
such as contiguity, similarity with existing plan often appear as well. Territory
compactness has to do with having territories formed by basic units that are close
as possible from each other. This is typically achieved by minimizing a dispersion
function. In application such as political districting, dispersion functions that take
into account the actual shape of the units are often used. Unique assignment means
that each basic unit must be assigned to a single district. In other words, this feature

Roger Z. Ríos-Mercado
Universidad Autónoma de Nuevo León (UANL), Graduate Program in Systems Engineering, De-
partment of Mechanical and Electrical Engineering, San Nicolás de los Garza, Mexico
e-mail: roger.rios@uanl.edu.mx
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4 R. Z. Ríos-Mercado

assures a partition of the set of basic units. Exceptions to this rule can be found, for
instance, in Fernández et al. [2] or Ríos-Mercado and Bard [10]. Territory balance
implies that the total amount of “work” must be fairly distributed among districts. By
“work”wemeanwhatever particular attribute or attributes aremeasured in each basic
unit. Examples of this are population size, product demand, number of customers,
workload, and so on. Territory contiguity or connectivity appears when there is an
underlying graph representing adjacency between basic units, and assures that each
territory must induce a connected subgraph. One example of this arises in political
districting applications. Similarity with existing plan has to do with redistricting a
current partition in such a way that is as similar as possible as the existing one. In
commercial or distribution districting, for instance, keeping existing customer-driver
relationships are often deemed as very important. Naturally, there is not a unique
way of representing or modeling each of these aspects, thus a significant amount of
research has been done studying differnt ways of dealing with these issues. Just to
give an example, there are different ways of modeling territory connectivity. Some
models are based on polinomial flow-based formulations [12], others are based on
exponential amount of explicit connectivity constraints, handled by cut-generation
algorithms [11]. Naturally, there are trade-offs that would depend on the particular
districting application.

During the 1960–1980s, the main ares of work were dominated by mainly po-
litical districting and sales territory design. In the past 30 years or so, aside from
these applications we have seen more studies on service-related districting, distri-
bution/commercial territory design, and, more recently, districting in health care
applications such as designing districts for location of emergency medical service
(Chapter 3) or designing districts for efficient organ transplantation [3].

Now, in terms of solution methodologies, given the inherent computational com-
plexity of most problems, it is not suprising that most of the research done for
solving districting problems has been on heuristic and metaheuristic approaches.
There is a clear practical impact that requires quick solutions implemented in prac-
tice. Nevertheless, some problems have special structure and properties that make
them attractive for exact optimization schemes.

The reader can find a number of excellent surveys discussing many aspects of
modeling, assumptions, solution methodologies, and applications of territory design
and districting. For instance, Zoltners andSinha [13] present a survey ofmodels, solu-
tion approaches, and managerial insights fo sales districting problems (1974–2004).
They pay special attention to the economical impact that good territory alignment
practices and processes have had over the years. Kalcsics et al. [5] present the first
extensive literature review on models, methods, and applications for general district-
ing problems. They discuss common features to a large class of districting problems
and present a basic territory desig model. They discuss in detail two approaches for
this basic model: a classical location-allocation approach combined with optimal
split resolution techniques and a new method based on computational geometry.
They discuss extensions to the basic model and its integration into Geographic In-
formation Systems. Duque et al. [1] review almost four decades (1960s–2000s) of
contributions on districting or supervised regionalization methods with main fo-
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cus on spatially contiguous districts. The authors present a taxonomic scheme that
classifies a wide range of regionalization methods into eight groups, based on the
strategy applied for satisfying the spatial contiguity constraint. The paper includes a
qualitative comparison of these groups in terms of a set of certain features, and a dis-
cussion of future lines of research for extending and improving these methods. Ricca
et al. [9] present a complete literature survey on political districting highlighting
modeling aspects from classical to current approaches. More recently, Kalcsics and
Ríos-Mercado [6] present a wide overview and detailed discussion of typical criteria
and requirements arising in territory design and how these have been modeled. The
discussion includes an overview of many different application areas and the most
relevant solution methodogies. Finally, in this book, Chapter 2 and Chapter 3 present
up-to-date literature reviews in two very hot areas such as police patroling and
health care districting, respectively, and Chapter 4 reviews computational geometry
approaches for continuous-based districting.

1.2 Research Contributions

1.2.1 Part 1: Introduction and literature reviews

The first part of this book contains a literature review and discussion on two very
important areas of districting, namely police districting and healthcare districting.
In Chapter 2, Liberatore, Camacho-Collados, and Vitoriano present a systematic
literature review on police districting problems. They classify the main contributions
in terms of model attributes and solution techniques employed. The chapter includes
an annotated bibliography discussing the most relevant works on this area.

Chapter 3, by Yanık and Bozkaya, presents a review of literature of districting
problems arising in health care. The health care districting problems are classi-
fied into three main areas: home care services, primary and secondary health care
services, and emergency health care services. The chapter highlights modeling ap-
proaches, assumptions, and solution methods for each problem. The chapter ends
with a discussion of several avenues of opportunity for future research areas.

Chapter 4, by Behroozi and Carlsson, presents a review of districting algorithms
based on computational geometry. These algorithms contrast with other algorithms
that are based on discrete network-based models. The chapter includes a discussion
on how and when these type of algorithms can be applied and be more useful.

1.2.2 Part 2: Theory, models, and algorithms

The second part of the book highlights recent advances on theory, modeling, and
algorithms including mathematical programming and heuristic approaches. Chap-
ter 5, by Díaz, Luna, and Sandoval, presents lower and upper bound procedures for
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a class of territory design problems that consider the minimization of a p-median
problem dispersion function subject to planning requirements such as connectivity
and balance with respect to one or more activity measures. The chapter also presents
exact methods that use different linear programming relaxations.

Chapter 6, by Ricca and Scozzari, addresses political districting problems. The
main focus of this chapter is on particular modeling aspects arising on several classes
of political districting problems. Special care is given to the district connectivity
requirement, which is essential in political districting applications. The chapter
includes a discussion of the main contributions in the literature addressing this
feature.

In Chapter 7, by Bender and Kalcsics, a multi-period service districting problem
is addressed. This considers an important, but not commonly studied feature of
many service districting applications consisting of customers requiring service under
different frequencies. A consequence of this is that, in addition to the districting
decisions, visiting schedules within the planning horizon must be decided as well.
These decisions must take into account a fair workload balance for each service
provider across all time periods, and territory compactness. The chapter presents a
MILPmodel, a discussion of its properties, and a development of a branch-and-price
framework for solving the problem.

In Chapter 8, by Enayati, Özaltın, and Mayorga, an ambulance service districting
subject to uncertainty is addressed. A two-stage stochastic mixed-integer program-
ming model is presented. The proposed model suggests how to locate ambulances
to the waiting sites in the service area, and how to assign a set of demand zones to
each ambulance at different backup levels. The proposed Stochastic Service District
Design (SSDD) model enables quick response times by jointly addressing the loca-
tion and dispatching policies in a stochastic and dynamic environment. The model
maximizes the expected number of covered calls while restricting the workload of
each ambulance. An interesting feature is that the proposed model can be opti-
mized offline. The chapter includes an empirical assessment of the model trhough
a discrete-event simulation and comparison with two baseline policies. The results
indicate significant improvements in many related metrics.

1.2.3 Part 3: Applications and case studies

The third part of the book contains successful applications in real-world districting
cases. Chapter 9, by Kim and Kim, highlights the need of determining the location of
polling facilities and polling stations tailored to the regulations of the voting process
of South Korea by means of a spatial optimization approach. In the spatial model, an
utility cost function that captures the effects of distance and preference, such as that
based on pre-knowledge of or experience with existing facilities, is formulated. The
chapter includes a case study with real-world data in Seoul, Korea. The numerical
results indicate the need to relocate the existing polling facilities, merge certain
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precincts, and adjust existing boundaries of precincts to enhance the efficiency of
administration of the voting process.

Chapter 10, by Moya-García and Salazar-Aguilar, focuses on a sales territory
design application. In this particular problem, a sales force team is in charge of
performing recurring visits to customers, where each territory is assigned to a sales
representative with the aim of establishing long-term personal relationship with
the customers. At the strategic level, the decision maker must partition the set of
customers into sales territories and at the tactical level, the daily routes (schedule
of visits) of the sales representatives must be planned. Balanced territories allow
better customer coverage and balanced workload. Additionally, efficient routes allow
to perform more visits and to reduce travel time. The chapter presents a heuristic
approach for this problem. The method is applied and assessed in two case studies
arising in a Mexican firm. Computational findings indicate show the effectiveness
of the proposed heuristic, producing high-quality solutions.

1.3 Closing Remarks

Although the models and techniques presented in this book are applied to specific
situations, it is evident that many of these techniques and ideas can be applied or
adapted to other more complex problems.

Just as an example, there are a few works that consider districting under uncer-
tainty [4, 7, 8]. Many of the scenario-based and/or decomposition approaches rely
on knowing how to efficiently solve or handle deterministic subproblems. The ideas
exposed in this volume can certainly be of very high value when devising such
approaches.

There are also applications where districting decisions (which are essentially tac-
tical decisions) must be taken along with operational decisions (such as scheduling,
routing, and so forth). Chapter 7 is a good examples of this. Again, efficient de-
composition approaches that rely on effective districting solution algorithms can be
studied under these ideas.
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Chapter 2
Police Districting Problem: Literature Review
and Annotated Bibliography

Federico Liberatore, Miguel Camacho-Collados, and Begoña Vitoriano

Abstract The Police Districting Problem concerns the efficient and effective design
of patrol sectors in terms of performance attributes. Effectiveness is particularly
important as it directly influences the ability of police agencies to stop and prevent
crime. However, in this problem, a homogeneous distribution of workload is also
desirable to guarantee fairness to the police agents and an increase in their satisfac-
tion. This chapter provides a systematic review of the literature related to the Police
Districting Problem, whose history dates back to almost 50 years ago. Contributions
are categorized in terms of attributes and solution methodology adopted. Also, an
annotated bibliography that presents the most relevant elements of each research is
given.

2.1 Introduction

We are the lucky witnesses of a revolution taking place in the way police agencies
work. In the last decade, we have seen the rise of Predictive Policing, i.e., the use of
mathematical and statistical methods in law enforcement to predict future criminal
activity based on past data. Its importance has been even recognized by TIME
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Magazine that in November 2011 named predictive policing as one of the 50 best
inventions of 2011 [15].

Apart from crime forecasting, mathematics still have a major role to play in
policing and its various disciplines can help by giving police agency a new edge in
the fight against crime. This is also recognized by the RAND corporation and the
National Institute of Justice of the United States (NIJ). In fact, both these prestigious
institutions acknowledge the need for taking a step forward and developing explicit
methodologies and tools to take advantage of the information provided by Predictive
Policing models to support decision makers in law enforcement agencies [24].

Districting models are a natural way to make use of crime forecasts to design
police districts tailored to the criminal behavior of an area. During most of the
20th century, police districts were drawn by police officers on a road map with a
marker, just by following the major streets in the area, or according to neighborhood
perimeters, without considering workload efficiency or balance [3]. The first model
for the design of police district was formulated by Mitchell [23], almost 50 years
ago. Since then, a number of mathematical optimization models have been proposed
and the Police Districting Problem (PDP) was born. The objective of the PDP is
to partition the territory under the jurisdiction of a Police Department in the “best
possible way.” PDP models normally consider several attributes, such as time, cost,
performance, and other topological characteristics.

Geographic Information Systems (GIS), thanks to their ability to represent and
manipulate geographical data using a reasonable amount of computational time,
gained popularity among both academics and practitioners which started to con-
template the possibility of adopting automatic methodologies for the definition of
police districts [28]. However, studies integrating GIS and sophisticated mathemat-
ical modeling for police districting remain a rarity [3], and the design of police
districts is often based on the experience and intuition of few experts. Nevertheless,
the importance of a balanced definition of the police districts is unquestioned and
the implementation of decision-aid tools for the allocation of police resources has
proven to be extremely beneficial, as shown by the numerous papers presented in
the academic literature in the last decades [13]. In fact, all the researches report
a dramatic improvement in workload distribution compared to hand-made districts
which, in turn, results in enhanced performance and efficiency.

In this chapter we provide a general definition for the PDP and analyze in detail
the literature related to this topic. The PDP is formally presented in Section 2.2. In
Section 2.3, previous contributions in this line of research are categorized in terms
of attributes considered and methodologies and approaches adopted for the problem
solution. Next, an annotated bibliography is provided, where a brief description of
the most salient points of each research is given (see Section 2.4). Conclusions are
given in Section 2.5.
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2.2 The Police Districting Problem

In the United States, the territory under the jurisdiction of a police department is
partitioned according to a hierarchical structure constituted by command districts (or
precincts), patrol sectors (or beats), and reporting districts (or r-districts, or blocks).
Command districts host the headquarters where the commanding officer supervises
the operations and are fractioned into patrol sectors. Patrol sectors have one or more
cars assigned which patrol the area and attend to the calls for service that originate in
the sector. R-districts represent the smallest geographical unit for which statistics are
kept and are, de facto, the atomic element in the hierarchy. Sarac et al. [26] explain
that r-districts can coincide with census block groups as it is convenient to do so for
administrative reasons. The territorial structure in Europe is not as homogeneous as
in the United States, as it depends on the country or the region considered. However,
a hierarchal structure similar to the one adopted in United States is predominant.

The PDP concerns the optimal grouping of blocks into “homogeneous” patrol
sectors in such a way that all the territory is partitioned and that no sector is empty.
It is desirable for the patrol sectors to be connected and topologically efficient (e.g.,
compact). In fact, the car(s) assigned to the patrol sector should respond to all the
incidents taking place in the area and, therefore, topologically efficient sectors would
result in a diminished travel time and, in turns, in a higher operational effectiveness.
Normally, if all the cars in a sector are busy responding calls, a car from a neighboring
sector has to attend the incoming calls. This generally leads to a domino effect where
cars are pulled from their area to another, leaving the patrol sector unattended and,
therefore, more susceptible to criminal incidents (as pointed out by Mayer [21]). In
the light of this scenario, balanced workload among the districts and enforcement of
a maximal response time become of primary importance.

Figure 2.1 shows a crime heat-map for a Saturday night shift in the Central District
of Madrid, Spain, and the corresponding PDP solution.The borders of the census
districts have been plotted in black, the streets in gray and each patrol sector is
represented by a different color. It can be observed that the sector design is adjustes
to provide an equitable territory partition among the beats.

A generic formulation for the PDP is given in the following.

min ob j
(
P
)

(2.1a)
subject to /0 /∈ P (2.1b)⋃

A∈P

A = N (2.1c)

A∩B = /0 A,B ∈ P |A 6= B (2.1d)
|P|= p (2.1e)
Conn

(
A
)
= 1 A ∈ P (2.1f)

The model optimizes a certain objective function evaluated on a partition P.
Constraints (2.1b)-(2.1d) represent the conditions held by a partition P defined on
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Fig. 2.1: Crime heat-map for a Saturday night shift in the Central District of Madrid,
Spain (left), and sample solution obtained by a PDP model. The borders of the

census districts have been plotted in black, the streets in gray and each patrol sector
is represented by a different color. Source: Liberatore and Camacho-Collados [20].

the set of blocks N: P should not contain the empty set /0 (2.1b), the partition
covers entirely N (2.1c) and the sectors are pairwise disjoint (2.1d). The restriction
(2.1e) concerns the partition cardinality and enforces the number of patrol sectors
to be exactly p. Finally, condition (2.1f) regards the geometry of the patrol sectors.
Conn

(
A
)
is an indicator function that equals 1 when A is connected and zero

otherwise. Therefore, this constraint establishes that only connected partition blocks
are feasible. This condition implies that an agent cannot be assigned to a patrol
sectors spanning two or more separate areas of the city.

In its most basic form, the PDP is not different from any districting problem. Of
course, the basic formulation can be enrichedwith specific constraints and conditions.
In particular, the different PDP presented in the literature include attributes and
parameters that represent the idiosyncrasies of the policing context, as explained in
the following section.

2.3 Literature Review

This section is devoted to an analysis and categorization of the attributes andmethod-
ologies adopted in the literature on the PDP. A summary of the findings is illustrated
in Table 2.1, where themost salient characteristics of each contribution are presented.



2 Police Districting Problem: Literature Review and Annotated Bibliography 13

Table 2.1: Mapping of attributes considered and methodology adopted, by article.

Reference Attributes MethodologyWorkload Response
Time

Geometry Other

Mitchell
[23] (1972)

Expected
service time,
expected
travel time

Expected
travel time

Modified
clustering
heuristic

Bodily [2]
(1978)

Fraction of
time spent

servicing calls

Average travel
time

Utility theory

Benveniste
[1] (1985)

Probability of
a server being
found busy

Total expected
station-alarm

distance

Stochastic
optimization

Sarac et
al. [26]
(1999)

Homogeneity
in terms of

population and
call volume

Area,
compactness,
contiguity

Easy access to
demographic
data, suitable
for use by

other agencies,
and respect of

existing
district

boundaries

Redefinition
according to
census blocks

D’Amico et
al. [13]
(2002)

Utilization of
servers

Queuing
response time
and travel time

Size,
compactness,
contiguity,
convexity

Queuing
model and
simulated
annealing

Curtin et
al. [12]
(2005)

Maximum
incident load
per sector

Maximum
service
distance

GIS and
mathematical
programming
optimization

Kistler [18]
(2009)

Total hours
worked,
number of

calls,
population

Average travel
time

Area, total
length of
streets,

compactness

Boundaries of
gang

territories, city
council wards,
neighborhood
associations,
and Air Force

Base

GIS

Curtin et
al. [11]
(2010)

Maximum
incident load
per sector

Maximum
service
distance

Backup
coverage

GIS and
mathematical
programming
optimization

Zhang and
Brown [29]
(2013)

Homogeneity
in terms of

average travel
time and

response time

Average travel
time

GIS and
agent-based
simulation



14 F. Liberatore, M. Camacho-Collados, B. Vitoriano

Table 2.1: (continued)

Reference Attributes MethodologyWorkload Response
Time

Geometry Other

Zhang and
Brown [30]
(2014)

Homogeneity
in terms of

average travel
time and

response time

Average travel
time

Simulated
annealing and
discrete-event
simulation

Zhang and
Brown [31]
(2014)

Homogeneity
in terms of

average travel
time and

response time

Average travel
time

GIS,
experimental
design
methods,
agent-based
simulation and
discrete-event
simulation

Bucarey et
al. [4]
(2015)

Homogeneity
in terms of

sector demand

Sector
boundaries

Prevention
demand

component

Mathematical
programming
optimization

Camacho-
Collados et
al. [6]
(2015)

Homogeneity
in terms of
area, risk,

isolation and
diameter

Diameter.
Sectors must
be connected
and convex.

Isolation, i.e.,
how far the

sector is from
other sectors

Mathematical
programming
optimization

Cheung et
al. [9]
(2015)

Mathematical
programming
optimization

Chow et
al. [10]
(2015)

Mathematical
programming
optimization

Liberatore
and
Camacho-
Collados
[20] (2016)

Homogeneity
in terms of
area, risk,

isolation and
diameter

Diameter.
Sectors must
be connected
and convex.

Isolation, i.e.,
how far the

sector is from
other sectors

Mathematical
programming
optimization

Piyadasun et
al. [25]
(2017)

Crime-
severity
weighted
distance.

Homogeneity
measured
using Gini
index.

Rectangular
area needed to

cover the
whole sector.
Isoperimetric

quotient

Clustering
heuristic
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2.3.1 Attributes

While analyzing the existing literature on the PDP, certain basic features common to
all contributions emerged. In fact, all the applications considered include measures
for workload, response time, and geometrical properties of the districts. Neverthe-
less, the implementation shows significant variations. Differently from Kalcsics and
Schröeder [17], the denomination “attributes” has been adopted instead of “criteria”
with the aim to provide a more generic framework that classifies all the relevant
characteristics of a PDP solution, regardless of whether they are optimized in the
objective function, or expressed as constraints.

2.3.1.1 Workload

Given the complex nature of police procedures and operations, and the great vari-
ability of tasks that an agent can undertake, defining workload could be complicated.
Bruce [3] poses a number of questions that can help to clarify what to consider as
part of the workload. Albeit difficult, an accurate definition of workload is desirable
as it ensures homogeneity in terms of quality and speed of service, and equalizes the
burden on police officers [2].

In the literature on the PDP, different definitions of workload have been adopted.
Mitchell [23] computes theworkload as the sumof the total expected service time and
the total expected travel time. Curtin et al. [11,12] use the number (or frequency) of
calls (or incidents) occurring at each district as a proxy for the workload. As different
calls can have different service time, some authors reckon that this measure is too
naïve as it might produce unbalanced patrol districts. For Bodily [2] and D’Amico
et al. [13] workload is defined as the fraction of working time that an agent spends
attending to calls. An equivalent measure is proposed by Benveniste [1]. Given the
stochastic nature of her model, workload is measured in terms of probability of a
patrol car being busy. Once the probability is known, the time spent attending and
answering calls can be easily calculated. More recently, workload has been defined
as a combination of different characteristics. Sarac et al. [26] aggregate population
and call volume. Kistler [18] makes use of the convex combination of total hours
worked (i.e., from dispatch to call clearance), number of calls, and population. Zhang
and Brown [29–31] consider both average travel time and response time. Camacho-
Collados et al. [6] and Liberatore and Camacho-Collados [20] define workload as
the weighted combination of multiple attributes: area, risk, isolation and diameter.
Finally, Piyadasun et al. [25] define the workload as the sum of the distance of the
district center to its crime points, weighted by the severity of the crime. Interestingly,
equality in the distribution of the workload among patrol sectors is measured using
the Gini coefficient.
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2.3.1.2 Response time

Response time is an important performance measure representing the time between
the arrival of a call for service and the arrival of a unit at the incident location.
According to Bodily [2], the reduction of the response time results in a number of
beneficial effects such as:

• Increased likelihood of intercepting a crime in progress.
• Deterrent effect on criminals.
• Increased confidence of citizens in the police.

Generally speaking, most of the authors consider exclusively travel times [2, 18, 23,
29–31] or travel distances [1, 11, 12]. The only study considering queuing effect is
by D’Amico [13], where the authors apply an external model - PCAM [7, 8] - to
compute the total response time including calls queuing time and travel time to the
incident location.

2.3.1.3 Geometry

In 1812 Albright Gerry, the Governor of the State of Massachusetts at the time,
manipulated the division of his state and proposed a salamander-shaped district
to gain electoral advantage, leading to the expression “gerrymandering” (resulting
from merging “Gerry” and “salamander”). Since then, designing electoral districts
having certain geometric properties is of primary importance to ensure neutrality
and prevent political interference in the districting process.

In the context of the PDP, geometric attributes are still relevant for efficiency (e.g.,
establishing boundaries that would be easy to patrol and would not frustrate patrol
officers) and for administrative reasons (e.g., coordination with other agencies). A
number of researches explicitly include geometric properties in the design process,
as the properties of compactness [6, 13, 18, 20, 26], contiguity [6, 13, 20, 26], and
convexity [6,13,20] are generally obtained as a consequence of optimizing the travel
distance or the travel time. Also, the district area is considered in all the mentioned
works. Camacho-Collados et al. [6] and Liberatore and Camacho-Collados [20]
achieve compactness by minimization of the sectors’ diameter. Additionally, Kistler
[18], Camacho-Collados et al. [6] andLiberatore andCamacho-Collados [20] include
the total length of the streets in a patrol sector.

2.3.1.4 Other attributes

Recently, a number of attributes that do not fall into any of the previous categories
have been introduced by some works. These attributes generally try to capture
complex real-world requirements. The Buffalo Police Department needed to redesign
r-districts in such a way that the existing district boundaries would be respected,
and the access to demographic data as well as the use by other agencies would
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be easy [26]. The Tucson Police Department needed to consider the boundaries
of gang territories, city council wards, neighborhood associations, and the Davis-
Monthan Air Force Base [18]. Curtin et al. [11] introduce backup coverage (i.e.,
multiple coverage) of incident locations. Camacho-Collados et al. [6] and Liberatore
and Camacho-Collados [20] define an isolation attribute that expresses how far the
sector is with respect to the others. The rationale is that a more isolated sector can
receive less support than a more central one. Finally, Bucarey et al. [4] propose
a prevention demand component that represent the need for police resources used
for preventive patrols. This component is calculated as the maximum between three
factors, each multiplied by a scaling coefficient. The factors considered are: reported
crime, population, and total kilometers of roads in the sector.

2.3.2 Methodologies and approaches

Many districting approaches have appeared in the literature. In this subsection, the
contributions are categorized according to the methodology adopted and their main
characteristics are presented.

2.3.2.1 Optimization models

According to Kalcsics and Schröeder [17], the first mathematical program for the
Districting Problem was proposed by Hess et al. [16], and regarded the neutral defi-
nition of political district. Since then, a large number of models have been presented,
mostly in the context of Location Analysis. Mitchell [23] defines a Set Partitioning
model that considers minimizing the expected distance inside of each subset and
equalizing workload among all the subsets. Curtin et al. [11, 12], propose maximal
covering models. Cheung et al. [9] and Chow et al. [10] consider both the p-median
problem and the maximum coverage problem. Bucarey et al. [4] formulate their
problem as an enriched p-median model. Finally, Camacho-Collados et al. [6] and
Liberatore and Camacho-Collados [20] introduce a Multi-Criteria Police Districting
Problem that provides a balance between efficience and workload homogeneity, ac-
cording to the preferences of a decision maker. It is important to notice that all these
formulations, due to the size of the application context, are often solved heuristically.
This is also the case for Piyadasun et al. [25] that, despite not presenting any math-
ematical formulation for their problem, solve it by means of an ad-hoc clustering
heuristic.

A different perspective is adopted byBenveniste [1] andD’Amico et al. [13],where
patrol cars and agents are modeled as servers in a stochastic model. In particular,
Benveniste [1] proposes a Stochastic Optimization model, while D’Amico et al. [13]
include a queuing model inside of a simulated annealing algorithm to compute
response times that incorporate queuing effects.
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2.3.2.2 Geographic Information Systems (GIS)

The first application of geography to crime analysis dates back to 1829, when the
Italian geographer Adriano Balbi and the French lawyer André-Michel Guerry drew
three maps of crimes in France, highlighting geographic patterns of crime and their
relations [19]. Since then, the marriage between geography and criminology gave
birth to numerous methodologies. When the GIS were developed, their implementa-
tion in law enforcement agencies and crime research was only natural, and in the last
decade we are assisting to an extremely rapid growth of adoption, supported by the
promotion of the NIJ (United States National Institute of Justice). For a review of GIS
application to crime research the reader is referred to the overview by Wang [28].

According to this trend, the last works on the PDP are developed in the framework
of theGIS. Kistler [18] uses aGIS to redesign the Tucson PoliceDepartment districts.
Most commercial GIS can be extended to integrate optimization routines. Curtin et
al. [11, 12], use GIS in conjunction with a maximal covering model. Finally, Zhang
and Brown [29–31] implement agent-based simulation and discrete-event simulation
inside of a GIS.

2.3.2.3 Other methods

Two studies adopted approaches that do not fall into any of the other categories.
Bodily [2] devises a decision model based on utility theory to achieve the best
solution with respect to the surrogate utility of three interest groups. The work by
Sarac et al. [26] is an example of the idiomatic expression “simpler is better.” After
attempting to redesign r-districts by using a multi-criteria set partitioning model, the
authors realized that census blocks satisfied all the requirements. It is important to
notice that their approach is successful because of the specific requisites the Buffalo
PD had on the r-district configuration (e.g., easy access to demographic data, suitable
for use by other agencies).

2.4 Annotated Bibliography

In the following, an annotated bibliography providing a description of the most
salient points, achievements, and characteristics of the most relevant contributions
in the PDP is given. The contributions are presented in chronological order.

Mitchell [23] (1972)

In his seminal work, Mitchell presents a mathematical formulation for the prob-
lem of designing police patrol sectors. The model is based on the assumption that
incident distribution is known and that each call is serviced by the nearest available
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units. Multiple incident types are considered. Each type is characterized by a service
time and a vector of weights that define the importance of the incident being attended
by a specified number of units. The model minimizes the total expected weighted
distance. Also, the workload, defined as the sum of the expected service time and
the expected travel time, is equalized across the sectors. The problem is solved by
means of an adapted clustering heuristic and applied to incident data for Anaheim,
California. The solution improves the sector plan adopted at the time.

Bodily [2] (1978)

Bodily proposes a decision model based on utility theory, which makes use of the
preferences of three interest groups in the design process of police sectors: citizens
(minimize travel time, equalize travel time), administrators (minimize travel time,
equalize travel time, and equalize workload), and service personnel (equalize work-
load). The problem is solved by a local search algorithm that transfers one block
from one sector to another, so that the greatest improvement in terms of surrogate
utility is achieved. The algorithm stops when no improvement is possible.

Benveniste [1] (1985)

The author presents a stochastic optimization problem for the combined zoning
and location problem for several emergency units. Namely, the problem involves the
division of an area in sectors, the definition of location for the servers, and a set
of rules, assigning for service an alarm to a list of servers in order of preference.
The objective function considered minimizes the total expected distance between the
alarm and the first available server. Stochastic alarms rates, alarms spatial density
functions, and probabilities that the servers are busy are considered. The resulting
model is a non-linear program. The author proposes an approximation algorithm.
An equal workload case is also examined and solved.

Sarac et al. [26] (1999)

The authors describe a study undertaken to reconfigure the police reporting
districts used by the Buffalo Police Department. The following districting criteria
were considered:

• Homogeneity in terms of population, area and call volume.
• Geometrical properties such as compactness and contiguity.
• Feasibility with respect to existing boundaries of five police districts.
• Easy access to demographic data for each district.
• Suitability for use by other agencies.
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Initially, the authors formulated the problemas amulti-objective set partition problem
which proved incapable to solve the real-world size problem at hand. Subsequently,
a practical approach has been proposed: basically, the new districts were defined
according to the census block groups that intrinsically present most of the desired
characteristics (homogeneity in terms of population, compactness, contiguity, easy
access to demographic data, and suitable for use by other agencies). With minor
modifications, this solution proved to be very effective.

D’Amico et al. [13] (2002)

The authors solve a PDP subject to constraints of contiguity, compactness, con-
vexity, and equal size. The novelty of the model lies in the incorporation of queuing
measures to compute patrol offices workloads and response times to calls for ser-
vice, computed by external software, PCAM. PCAM optimizes a queuing model for
deployment of police resources, providing the optimal number of cars per district.
The authors solve the problem by means of a simulated annealing algorithm that
iteratively calls the PCAM routine. At each step, the neighborhood is determined by
a simple exchange procedure that takes into account the following constraints:

• The average response time per district is bounded from above.
• The ratio of the size of the largest and smallest districts is bounded from above.
• Sectors must be connected.
• The ratio of the longest Euclidean path and the square root of the area in each

sector is bounded from above to preserve compactness.
• Sectors must be convex.

The algorithm is applied to a real-world case for the Buffalo Police Department.
The following objectives were considered: minimization of the maximum workload
(by decremental bounding constraining) and minimization of the maximum average
response time.

Curtin et al. [12] (2005)

The authors apply a covering model to determine police patrol sectors. The cover-
ing model defines the centers of police patrol sectors in such a way that the maximum
number of (weighted) incidents is covered. An incident is considered to be covered
if it lies within an acceptable service distance from the center of a patrol sector. The
model is integrated in a GIS and applied to a case study on the City of Dallas, Texas.
In the final part of this chapter, the authors present a number of possible refinements
to their model, including a maximum workload restriction (in terms of number of
weighted incidents).

Scalisi et al. [27] (2009)
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The issue of Geography & Public Safety presents numerous articles by police
analysts describing their experiences with police redistricting within their police
department.

• Bruce [3] (2009): C. Bruce, President of the International Association of Crime
Analysts, poses some interesting questions that an analysts should answer to
determine how workload should be measured.

• Kistler [18] (2009): A. Kistler, from the Tucson Police Department, devises a dis-
trict evaluation measure built as the weighted sum of the following criteria: total
hours worked, number of call responses, average response time, total length of all
streets within the division, area of the division, and population. TPD staff used a
GIS in combination with a software program called Geobalance to manually de-
sign alternative districting configurations. Future evaluations of the implemented
plan showed that the projected workload ratios were reliable and realistic.

• Douglass [14] (2009): J. Douglass, from the Overland Park Police Department,
explains how the introduction of a new real-time deployment paradigm, based
on criminal hot-spots identification and treatment, had been implemented in the
department. Unfortunately, no long-term statistical analysis was available at the
time the article was written.

• Mayer [21] (2009): A. Mayer, from the East Orange Police Department, reports
a similar strategy. In fact, the East Orange Police Department implemented a
geographical technology called Tactical Automatic Vehicle Locator (TAC-AVL).
TAC-AVL allows for GPS tracking, visualization on a map, and recording of
information regarding patrol cars and incidents. This tool has been coupled with
a new deployment strategy that allows for the introduction of Impact, Resource,
Response, and Conditions cars to backup understaffed zones of the jurisdiction.

• Mielke [22] (2009): P.Mielke, fromRedlands Police Department, explains how to
use ESRI districting tool, a free extensions for ESRI ArcGIS that allows creating
new police districts in a city or region.

• Other successful applications of geographical technologies to police redistricting
have been reported from Austin PD and Charlotte-Mecklenburg PD.

Curtin et al. [11] (2010)

Following Curtin et al. [12], the authors extend the covering model to include
backup coverage (e.g., multiple coverage of high priority locations). The result-
ing model is bi-objective in nature. The authors propose a single objective model
that maximizes the priority weighted coverage (each time a location is covered is
accounted for separately), while ensuring a minimum covering level in terms of
priority weighted number of locations covered (each covered location is accounted
for only once). The model is tested with the police geography of Dallas, Texas, and
refinements on the model are proposed (e.g., maximum workload per patrol sector).
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Wang [28] (2012)

The author takes us on a journey across themain application areas of GIS in police
practices. Among the various applications, Wang mentions the possibility of using
GIS as a police force planning tool. Namely, he refers to hot-spot policing and police
districting. Concerning the latter, Wang identifies three main objectives: meeting a
response time threshold, minimizing the cost of operation, and balancing workload
across districts. The author mentions the work by Curtin et al. [11,12] and states that
future works in this area should explore other goals, such as minimizing total cost
(response time), minimizing the number of sectors (dispatch centers), maximizing
equal accessibility, or a combination of multiple goals.

Zhang and Brown [29] (2013)

In thiswork a parametrized redistricting procedure for police patrols sectors is pro-
posed. The methodology consists of a heuristic algorithm that generates alternative
districting configurations. Next, the configurations are evaluated in terms of average
response time and workload. With this aim, an agent-based simulation model was
implemented in a GIS. The location and times of the incidents taking place at each
sector are modeled by an empirical distribution based on real incident data. Finally,
the procedure identifies the set of non-dominated solutions. The methodology has
been tested on a case study based on theCharlottesville PoliceDepartment, VA,USA.

Zhang et al. [32] (2013)

The focus of this research is the evaluation of three different methods for scoring
police districting designs: a closed form probability based approach, a discrete-event
simulation based on hypercube models for spatial queuing systems, and an agent-
based simulation model. The scoring measures are evaluated on designs generated
using the methodology presented in Zhang and Brown [29]. According to the au-
thors, the three methods provide similar evaluations of the districting plans when
the emergency response system is not stressed. However, in the face of high system
stress, only the agent-based simulation model is capable of accurately represent the
significantly changes in the workload scores due to complex behaviors of the system
such as cross-boundary support, that is, when an agent assigned to a district services
a call for service in another district.

Zhang and Brown [30] (2014)

The research presented in this paper focuses on the definition of a simulated an-
nealing algorithm for the problem of finding optimal police patrol districting designs.
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The optimization procedure makes use of a discrete-event simulation to evaluate the
solutions according to multiple criteria, such as average response time and workload
variation among sectors. Districting designs are generated using a simulated anneal-
ing procedure. In this procedure two different neighborhoods are compared. In the
first one, only changes of one block are allowed. The second one consists of a cutting
and merging process that allows for more significant changes. The authors show
empirically that the second approach uses fewer iterations to reach good solutions
and is, therefore, preferable when used in conjunction with discrete-event simulation.

Zhang and Brown [31] (2014)

In this paper, Zhang and Brown extend their previous research in Zhang and
Brown [29]. The main changes with respect to the previous contribution are the
following. First, both discrete-event simulation and agent-based simulation are con-
sidered. The former is more computational efficient while the latter is more precise.
Second, an iterative searching procedure is used to optimize the parameters of the
districting algorithm, instead of adopting a completely randomized approach. The
authors propose using experimental design methods to explore the parameter space,
but classical metaheuristics, such as simulated annealing and genetic algorithms,
could be used as well. The methodology is tested on real data provided by the Char-
lottesville Police Department, VA, USA.

Bucarey et al. [4] (2015)

In this paper the authors define a variant of the classical p-median problem to
tackle the problem of defining balanced police sectors. The model is designed keep-
ing in mind the requirements of the Chilean National Police Force, but can be applied
to any country. The model proposed enriches the classical p-median in a number
of ways. First, it enforces bounds on the demand of each sector. The bounds can
be specified according to the acceptable percentage of deviation from the average
demand in order to ensure homogeneity. The objective function is defined as the
weighted sum of three terms. The first one is the sum of the blocks distances to the
associated median. The second term enforces compactness by considering the sum
of a measure of the sectors’ boundaries size. The function measuring the boundaries
is non-linear in nature and is approximated by a piece-wise linear function. Finally,
the third term represents the prevention demand component associated with a block.
This component is defined as the maximum of three factors: the length of roads in
the block, the amount of reported crime in the block, and the population of the block.
The model is solved on a realistic case study considering 1266 blocks and up to p
= 7 neighbors. Due to the size of the problem, the model is solved by means of a
location-allocation heuristic algorithm.



24 F. Liberatore, M. Camacho-Collados, B. Vitoriano

Camacho-Collados et al. [6] (2015)

This paper presents the Multi-Criteria Police Districting Problem (MC-PDP), a
multi-criteria optimization model for partitioning the territory under the jurisdiction
of a Police Department into sectors. The goal is the automatic definition of sectors
that adapts to a particular shift. Initially, the territory is divided into a square grid.
Each cell of the grid (which represent a block) is characterized by a crime risk,
representing the expected crime, and an area, representing the total street length. A
feasible design requires the sectors to be connected and convex. The workload for
each sector is computed as the weighted sum of different factors: area, risk, isolation
(i.e., how far the sector is from other sectors) and diameter. The objective function
minimizes the weighted combination of the total workload and of the maximum
workload. Assigning more weight to the first term results in solutions that are more
efficient, while favoring the second term provides solutions that are more equal in
terms of workload distribution. The model is solved by means of a multi-start ran-
domized local search algorithm. The algorithm is tested on a real dataset including
data from Central District of Madrid, Spain. A comparison with the configuration
currently adopted by the Spanish National Police shows how this is suboptimal com-
pared to the solutions found by the algorithm.

Camacho-Collados and Liberatore [5] (2015)

In this article, the authors embed the model and algorithm presented in Camacho-
Collados et al. [6] within a decision support system for predictive police patrolling.
The decision support system combines predictive policing features with theMC-PDP
for the automatic definition of police districts that are tailored to the requirements of
future shifts. The authors tackle the problem of adequately describing crime events in
which the time and the location of the incidents are indeterminate. Previous research
on the subject only contemplated temporally indetermined crimes.

Cheung et al. [9] (2015)

In this paper, a police force deployment optimization framework is proposed. The
framework is comprised of two optimization problems solved in sequence: a police
location problem and a patrolling area problem, respectively. The first problem is
tackled as a p-median problem where nodes represents centroids generating crime
and/or feasible locations for police facilities and the distances are weighted by the
crime rate associated to the node. In the second problem, given the locations of
police stations, the model determines the patrol area of the police force such that
the total covered area of the police force is maximised. This is obtained by means
of a maximum coverage problem. The framework is applied to a case study on the
Greater London Area.
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Chow et al. [10] (2015)

The authors apply classical Operational Research models - i.e., the p-median and
the maximum coverage problems - for the location of p police facilities. Travel costs
(distances) and crime generated at each location are considered. The solutions to
these problems provide a definition of police districts, that is crisp for the p-median
problem (i.e., a location is always assigned to the closest facility) and fuzzy for the
maximum coverage problems (i.e., a location is assigned to all the facilities that
“cover” it, that is, the distance between the location and the facility is inferior to a
predefined distance). The algorithms are tested on data representing the crime rate
in January 2014 for all wards (i.e., blocks) in Greater London.

Liberatore and Camacho-Collados [20] (2016)

The focus of this article is the extension of theMC-PDP [6] to general graph struc-
tures. This allows for increased versatility in terms of applicability of themodel.With
respect to the model, the same criteria (i.e., area, risk, isolation and diameter) and
objective function are considered. However, the authors defined an efficient and prac-
tical condition for set convexity derived from the classical definition of convexity in
graphs. In terms of solution methodologies, the authors propose three local search
algorithms for the MC-PDP on a graph: Simple Hill Climbing, Steepest Descent Hill
Climbing, and Tabu Search. Thanks to its ability to escape from local optima, the
Tabu Search algorithms finds solutions that are on average better than the other two
methodologies.

Piyadasun et al. [25] (2017)

Piyadasun et al. [25] propose a multi-step heuristic procedure that clusters census
blocks into sectors. Initially, crimes are assigned to census blocks and the crime-
weighted centroid of each census block is identified. Distances are determined using
actual road distance. Then, k non-contiguous centroids are chosen as the sector
seeds. Next, the sectors are grown by adding a census block to a single sector at each
iteration. The census block to be added is chosen in such a way that the resulting
sector is as compact and efficient as possible. This is achieved by considering both
the distance between the census block and the sector center (close census blocks are
preferred) and the increase in terms of minimum rectangular area needed to cover
the whole sector after the census block is added to it (small increases are preferred).
The algorithm has been applied to crime data for the San Francisco County, CA,
USA, corresponding to years from 2003 to 2015. The performance of the solutions
obtained has been evaluated considering workload distribution, compactness of the
districts, and patrol car response time. The workload definition used by the authors
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considers the number of calls for service in a district, as well as their severity and
the distance travelled to service them. Homogeneity in workload distribution is com-
puted using the Gini index. Concerning compactness, the measure adopted is the
Isoperimetric quotient (i.e. the ratio of the polygon area to the area of a circle with
same perimeter). Finally, efficiency is obtained by considering the average time taken
to travel to any point in the sector from the seed point (which is where the patrol car
is hypothetically located).

2.5 Conclusions

District design is the problem of grouping elementary units of a given territory into
larger districts, according to relevant attributes. Depending on the problem faced,
the attributes considered might belong to different contexts, including economical,
demographic, geographical, etc. In the last decades, the districting problems have
been applied to a broad number of fields. The application of this family of problems
to the policing context has given rise to the Police Districting Problem.

In this chapter, a comprehensive review of the Police Districting Problem is
given. Initially, a general definition of the problem is provided. Next, the literature
on the subject is analyzed in terms of attributes and methodology. Then an annotated
bibliography is presented, where the most salient points of each contribution are
summarized.

The results of the analysis show that the models proposed in the literature mostly
differ on the definitions adopted for the most relevant attributes. In fact, it can be
observed a great variability in terms of how sector workload is computed, or on
which geometric and topological characteristics should be considered. Also, there is
no common agreement on how homogeneity among sectors should be measured. It
is the authors’ opinion that the research community should work toward a standard
definition of the Police Districting Problem. This would allow us to focus most the
efforts on a single model, similar to what happened in other areas, such as Location
Analysis or Vehicle Routing. In particular, it would permit to take steps toward the
definition of exact solution approaches for the Police Districting Problem.
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Chapter 3
A Review of Districting Problems in Health Care

Seda Yanık and Burcin Bozkaya

Abstract In this chapter, we review the districting literature in the health care domain.
Our goal is to provide the reader with themost relevant studies in the literature as well
as a direction for future research.We classify the health care districting problems into
three main areas: home care services, primary and secondary health care services,
and emergency health care services. We first identify the special characteristics of
these different areas. Then we present the modeling approaches, assumptions and
solution methods for each of them. In general, we find that certain aspects and
dimensions of health care service delivery, which we highlight in this chapter, lend
themselves better to the design and implementation of districting-based approaches.
As such, we limit our review mostly to studies that include traditional districting
models and formulations as well as solution approaches. In closing, we discuss some
gaps in the literature and provide directions for future areas of research.

3.1 Introduction

Health care service operations management and health care management science
have long been active areas of research. Generally speaking, these areas address
both the high-level logistics of health care service delivery, that is the planning,
structuring and enabling of the facilities and resources rendering health care ser-
vices, as well as day-to-day operational planning and scheduling of health care
service units and individual resources. A common goal in all of the literature in this
domain is increasing the overall efficiency and effectiveness of systems while tar-
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geting equitable access to and delivery of health care services by and for the citizen
population.

Our goal in this chapter is to review districting-based modeling and solution
approaches used in the literature on health care management science. Districting,
also known or commonly referred to as re-districting, territory design and territory
alignment, is the process of dividing a geographical region into smaller areas, which
are districts, that represent units of service delivery and are typically collections of
smaller sub-areas known as basic units. Districting models and solution approaches
find a large variety of applications in such areas as political districting, salesman
districting, school districting, and police districting, to name a few. Our focus in this
chapter is on the districting-based models along with various relevant criteria within
the context of health care service delivery and logistics problems.

Aswe review the relevant literature, we find threemain areas where the underlying
health care planning problem is viewed and hence approached as a districting prob-
lem: home care services, primary and secondary health care, and emergency care
services. Home care services mainly involve caring of elderly people at home who
are unable or unfit to travel to fixed medical facilities such as clinics or hospitals. Due
to the type of service rendered and the corresponding demand, a natural modeling
approach is to group and assign patients or the areas where they reside to districts or
“centers” from which services are coordinated. There are various criteria relevant to
doing this, such as transportation time, visit time, workload balance and workload
limit for health care service personnel, and continuity of service. We present and
discuss these in Section 3.2.

The second area where districting models and approaches that are relevant is the
planning of primary and secondary health care. Primary care refers to the first point of
contact made by a patient with usually a general practitioner (GP) or family physician
(FP). After this first contact, the patient is likely referred to a different facility (e.g.
hospitals, clinics) with more capabilities, specialties, expertise, etc. depending on the
severity of his or her condition. Here, we find that a significant portion of the relevant
studies focus on the high-level planning that is needed to establish this hierarchical
network of fixed facilities (hospitals, GP’s and FP’s, clinics) and assigning population
centers or units to these facilities.

The third area is emergency health care operations, where health care services
must be quickly deployed and rendered due to the nature of the emergency, such as a
life-threatening situation for an individual or a disaster scenario where large popula-
tions are affected. In such cases, a districting approach might also be implemented to
identify areas and assign response teams to them that will be dispatched in the case
of emergency. The problem, in this case, has a more dynamic nature as the response
time must be quick to ensure survival and the time and location of the next request
for emergency response is usually treated with a stochastic variable.

In our review, we find that the first two of these three areas more readily lend
themselves to optimizationmodels where districts or service areas are created subject
to constraints that represent relevant context-related districting criteria. In other
words, districts or service areas are created around “centers” at different levels of
service hierarchy such as hospitals serving large areas vs. family physicians or GP’s
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serving smaller areas or neighborhoods. As we will see in Sections 3.2 and 3.3,
these models are either in the form of traditional districting formulations where
smaller areas are grouped into districts, or location-allocation formulations where
district “centers” are located and demand sets representing potential patients are
allocated to them. In the emergency health care planning literature, however, we see
less of traditional districting formulations and related solution approaches, but more
of maximal coverage and maximal survival models with stochastic demand, and in
many cases simulation- or queuing-based solution approaches. This is clearly due to
the dynamic nature of the problem where the nearest health care service resources
demanded (e.g. ambulances) may be in use or limited in number or capacity to
respond to some incident, and other units might be deployed from different locations.
Hence a fixed district-based solution approach may not always be suitable. As the
main topic of this chapter is districting in health care, we focus mainly on studies
with districting, location-allocation, or coverage-based approaches, and choose to
highlight only a small selected subset of such studies.

The rest of this chapter is organized into three main sections focusing on three
main applications of districting in healthcare: homehealth care services (Section 3.2),
primary and secondary health care services (Section 3.3) and emergency healthcare
services (Section 3.4). In each of these three sections, we first discuss the special
characteristics of the problem and themost important and relevant districting criteria,
then present alternative model formulations and finally review the literature along
with future research directions. In the last section (Section 3.5), we present the overall
concluding remarks of our study.

3.2 Districting of Home Health Care Services

Public health care services need to use effective methods in order to provide the
required level of service to the patients with a minimum cost. In today’s world, it is
known that the elderly population is continuously increasing around the world. This
means that the demand for routine and chronic health care services is increasing
steadily. In chronic cases, handling the patients at their home environment becomes
more efficient. In addition, most of the population in the world today lives in cities.
This makes home health care a more efficient option in urban areas. Since the
population is densely located in urban areas, the human resources in medical services
are more readily accessible. Thus, home health care is becoming a widely used
method to service routine patients or elderly people especially in urban areas.

Planning home health care services has many dimensions and associated prob-
lems. Two such noteworthy problems involve the districting (or zoning) of the demand
points at a tactical or strategic level and the routing and scheduling of the staff at
an operational level. The districting problem involves strategic (or tactical) deci-
sion making, which aims to identify the service areas that include demand points
(i.e. patients) to be served by health care service givers (e.g. nurses). The output
of districting is the collection of service areas, which is named as the district plan.
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There are specific features or criteria, which make a district plan a good one. The
most common of these are compactness and workload balance of the districts. The
compactness of the districts mainly affects the transportation within the district.
Workload balance on the other hand is related to ensuring equity among the staff
for fairness and to use the capacity effectively. Routing and scheduling problems
are lower level operational problems which specify in what sequence and by whom
the daily visits of the demand points (i.e. patients) will be conducted. Based on the
district plan generated as a result of the districting study, routing and scheduling
plans can be generated on an operational basis. The interplay between these two
problems are depicted in Figure 3.1.

Fig. 3.1: An overview of the multi-level planning of the home health care services.

In the following subsections,we examine the homehealth care districting problem.
First, we discuss the special characteristics of home health care services districting.
Then, we present the model formulations and finally we review the studies in the
literature in this domain.

3.2.1 Special characteristics and criteria

While partitioning an area into smaller service areas, decision makers or planners
must specify the districting criteria used with respect to the operational requirements
of home health care services. Similar to the general districting problem, compact-
ness is a common criterion used in home health care in order to ensure that the
transportation time is small within the districts. Compactness is a criterion that typ-
ically refers to how regularly shaped districts are (e.g. similar to squares or circles),
and compactness measures can be formulated in many different ways such as those
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using the distances limits [5, 28] or routing cost approximations [4] or minimizing
the maximum distances [5].

In home health care operations, the means of transportation can be various. The
health care staff may move on foot, by public transit or by a fleet of vehicles. In
some studies, this problem characteristic is addressed in the mathematical models
by special measures such as mobility [6] or introducing staff sets related to the
transportation means they use [28].

The operations of home health care services can be divided into two main time
spanning processes; (i) transportation time and (ii) visit time. Thus, most of the
studies differentiate between these two types of time-consuming processes. Then,
they can be used separately while dealing with the workload balance criterion,
which refers to how equitable the workload is distributed amongst health care service
providers and is also common in districting studies [16, 18].

Another issue in modelling of the health care districting problem is the specifica-
tion of theworkload. The number of patients is an indicator of theworkload.However,
a visit to one patient may be significantly different to another patient in terms of
workload. Thus, a fine-tuning step may be introduced by categorizing the workloads
of patients including a workload balance criterion that considers patient categories.
Some examples of categorizing the patients are in terms of age, economic activity,
etc. This districting criterion is also known as population homogeneity [18].

In addition to the workload balance criterion, workload limits can also be intro-
duced in the home health care districting problems. For example, when there is a
specific team of staff to service an area, the district workload needs to be compatible
with the workload limit of the members of the staff [28].

A criterion which is used frequently in health care is the continuity of care, which
means a specific staff or a limited number of staff is assigned to visit a particular
patient during the episode of care. In health care studies, it is shown that continuity
of care increases patient satisfaction, and decreases hospitalization and emergency
room visits [4]. Continuity of care especially has positive effects for patients with
chronic conditions which is the main type of patients of home health care [4].

Since in most countries, home health care is a public service, co-extensiveness
with current local authorities (i.e. compatibility) may be required because the
regulations of the local authorities may be different. Thus, one of the commonly
used criteria in home health care districting forces the basic units of each district to
belong to the same administrative unit, in other words to respect the administrative
boundaries. This has also been named as compatibility [5, 6].

Some other criteria common to general districting problems are also respected in
home health care districting. These are namely the integrality (i.e. indivisibility of
the basic units) and the contiguity (i.e. connectivity) of the districts.
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3.2.2 Model formulations

There are two main modeling approaches in the home health care districting litera-
ture: (i) location-allocation and (ii) set partitioning. The choice of the mathematical
formulation also drives the solution techniques to be used. Each approach has its
advantages and disadvantages. Tackling certain side constraints, such as contiguity,
is difficult in location-allocation formulations. In set partitioning models, a set of
feasible districts are obtained in the first stage, and then the optimal district plan is
found. By the flexibility of the two-stage nature of this approach, many different prob-
lem components can be handled. However, as the number of basic units increase,
the number of feasible districts increases tremendously. Thus, the computational
complexity of the problem increases exponentially as the problem size increases.

First, we introduce a location-allocation formulation in Eq. (3.1a)-(3.1f). In
location-allocation models, the number of districts is generally predefined. How-
ever, we may either have a predefined set of district centers or have a potential set of
district centers which is the same as the set of basic units. We present the latter one
here since it is a generalization of the first one.

Let set I = {1, . . . ,n} denote the set of basic units, which are also used as potential
district centers. The demand of basic unit i is denoted by di and the cost (e.g. distance)
between the centroid of basic unit i and basic unit j by ci j. Let xi j be a binary decision
variable indicating whether basic unit i is included in a district centered at basic unit
j. Workload equity among districts is formulated using a target level of workload, d̄
with a percentage tolerance of τ . The target level of workload is commonly specified
as the average workload, which is d̄ = ∑

n
i=1 di/m, where m is the number of districts

to be generated.

minimize
n

∑
i=1

n

∑
j=1

ci jxi j (3.1a)

subject to d̄(1− τ)≤
n

∑
i=1

dixi j ≤ d̄(1+ τ) j = 1, . . . ,n (3.1b)

n

∑
j=1

xi j = 1 i = 1, . . . ,n (3.1c)

xi j ≤ x j j i, j = 1, . . . ,n (3.1d)
n

∑
j=1

x j j = m (3.1e)

xi j ∈ {0,1} i, j = 1, . . . ,n (3.1f)

Here (3.1a) is the cost minimization objective which also ensures the compactness
of the districts to be formed. Constraints (3.1b) guarantee that the workload equity
among districts by not allowing workloads to be less than or greater than a certain
percentage of the target workload. Constraints (3.1c) together with (3.1d) ensure that
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each basic unit is assigned to one and only one district, and constraint (3.1e) ensures
that only m districts are formed.

In some model formulations, workload equity can be exchanged as an objective
instead of the compactness objective. Workload equity is formulated as a min-max
equation as in (3.2) together with (3.3) below:

minimize max
j=1,...,n:x j j=1

|D j− d̄| (3.2)

D j = ∑
i

dixi j, for j = 1, . . . ,n (3.3)

where D j is introduced as a decision variable denoting the workload of district j.
In this case, compactness is included as a constraint in the model introducing a

distance bound in two ways: (i) between the basic unit and the district center or (ii)
between two basic units to be assigned to the same district. A formulation of the first
one is presented in (3.4) and the latter is given in (3.5).

ci jxi j ≤ cmax, for i, j = 1, . . . ,n (3.4)

where cmax is a bound on the distance between the basic unit and the district center.

xi j + xk j ≤ 1, for i,k ∈ Z, j = 1, . . . ,n (3.5)

where set Z includes basic unit pairs which have a greater pairwise distance than the
bound.

A similar formulation can also be employed to ensure the compatibility which
forces the basic units of each district to belong to the same administrative unit as
in (3.6).

xi j + xk j ≤ 1, for i,k ∈ T, j = 1, . . . ,n (3.6)

where set T includes basic unit pairs that do not belong to the same administrative
unit.

The second type ofmathematical programming approach used for districting in the
literature is set partitioning models. The first stage of this approach uses an auxiliary
method to generate feasible districts. In general, at this stage various conditions
such as connectivity, workload equity etc. are evaluated and the feasible districts
are identified as the ones that meet the imposed conditions. After this stage, the set
partitioningmodel is formulated to seek the optimal district planwith respect to some
cost minimization function. Equations (3.7a)-(3.7d) form a typical set partitioning
model. The notation of this model is as follows: J is the set of all feasible districts,
y j is a binary decision variable representing whether feasible district j is included
in the optimal district plan or not, c j is the cost of including district j in a district
plan, and αi j is a parameter that shows whether basic unit i is an area in the feasible
district j.
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minimize ∑
j∈J

c jy j (3.7a)

subject to ∑
j∈J

αi jy j = 1 i = 1, . . . ,n (3.7b)

∑
j∈J

y j = m (3.7c)

y j ∈ {0,1} j ∈ J (3.7d)

3.2.3 Literature review and future research directions

Districting of home health care services identifies service regions for the care givers.
District plans help with home health care planning and are used commonly together
with routing and scheduling tools. As a result of these planning efforts, cost improve-
ments in terms of transportation costs together with visit costs and improvements
in the level of health care service provided can be expected. The interested reader
may refer to the review studies of home health care services from the perspective of
operations research and logistics planning by [10, 33].

There have been many practical and academic studies related to home health care
planning. Here we make a review of the home health care districting studies over the
last 15 years. In Table 3.1, we present an overview of criteria, models and solution
methods used in the home health care districting literature.

Table 3.1: Home health care districting studies from the literature.
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Blais et al. [6] O O C C C X Tabu search heuristic
Hertz and Lahrichi [18] O O O X Tabu search heuristic
Bennett [4] O C C C X Optimization-based

heuristic
Benzarti et al. [5] O C C C X Optimal with gaps
Benzarti et al. [5] C C O C X Optimal with gaps
Gutiérrez and Vidal [16] O O C X Lexicographic algorithm
Lin et al. [28] O C C C C C X Greedy heuristic
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Blais et al. [6] obtain a near-optimal district plan for a home health care setting
in Ontario, Canada using multiple criteria. Together with other well-known criteria
such as workload equity, connectivity, etc., they specify a mobility criterion. This
criterion captures staff mobility using public transit and walking, which could be
possible in a home health care problem. To deal with this problem, they use a multi-
criteria clustering method instead of mathematical programming approaches. To find
the near-optimal clusters, tabu search heuristic is employed.

Hertz and Lahrichi [18] divide the workload of the home health care staff into
three components: travel load, visit load and the case load. Case load is specified by
the number of patients assigned to different patient categories which correspond to
different service requirements. Instead of basic units, they explicitly use locations of
patients for districting. Then the patient assignment model is formulated to balance
the three workload components in a weighted sum objective function. The solution
of the model is sought using a tabu search algorithm.

Bennett [4] proposes a set coveringmodel. District workload is used as a constraint
to generate feasible districts, and the costs of the feasible districts are defined as an
approximation of the routing costs within each district. An initial clustering heuristic
and local search improvement method are used to obtain and improve the initial
feasible districts. Then the set partitioning model is solved using ideas from column
generation and heuristic local search methods. First the linear relaxation of the set
partitioning model is solved. Then, a neighborhood search method is used to improve
columns to add to the set.

Benzarti et al. [5] present two location-allocation type districting models by
switching the most common criteria, namely, compactness and workload equity to
be in the first model objective and constraint respectively and vice versa in the
second model. They also include the implications of different patient requirements
on the workload. They implicitly consider the ease of access within the districts as
a compatibility criterion. Then the solution of the two models under four different
scenarios is obtained and duality between the two types of models is examined.

Gutiérrez and Vidal [16] provide a lexicographic multi-objective model formu-
lation of a districting problem in a rapid-growing city. The two objective function
components are the travel workload and total workload equity. They solve the multi-
objective model and evaluate the efficient frontier to identify trade-offs.

Lin et al. [28] propose a home health care related districting problem, which
is meal distribution service districting. They use a location-allocation modeling
approach with additional time windows, maximal travel duration and capacity issues.
They solve the problem using a greedy heuristic method. Then, a case study is
investigated and sensitivity analysis on some key parameters is conducted.

The above literature review summarizes the conducted studies that are formulated
with deterministic parameters. We also point out, as we reviewed in Section 3.2.1,
that many differences exist with respect to modeling approaches and the districting
criteria used in these studies. Clearly, the research community has not reached a
consensus on which criteria to consider and how to handle them (objective function
or constraint), which means future researchers will have to face trade-offs between
dealingwithmore complex yetmore flexiblemodels andmore simplisticmodelswith
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hard rules. One thing researchers have agreed upon, however, is the use of heuristic
approaches to solve the problems. The home health care problem does also involve
uncertainty elements and stochastic parameters such as visit times and travel times.
Thus, future research directions may include the investigation of stochastic/robust
optimization models in the context of home healthcare services.

Moreover, the continuity of care is an important measure in health care services,
which has been considered in many practical applications. Yet, this criterion has not
been considered in mathematical approaches. As well, the patient case forecasts may
also be modeled in dynamic or multi-period home health care districting problems.

The solution methods used to solve both location-allocation and set partitioning
models employ heuristics quite commonly. Developing different heuristic solution
methods and evaluating different metaheuristic approaches are also additional av-
enues for future research.

3.3 Districting of Primary and Secondary Health Care Services

In most countries, health care services are organized in a hierarchical manner. Com-
monly, there exists a widespread primary health care service network involving
general practitioners. Then the secondary health care services are mainly given in
hospitals, which have different levels of amenities and special services. Based on
this, the hospitals are categorized into different types such as community hospital,
research hospital, etc. The planning of the whole health care system in a certain
area involves decisions such as locating the health care service points, specifying
which area each point will serve, setting the capacities, allocating resources, schedul-
ing staff, etc. Effective planning of the health care services will help to minimize
costs, improve capacity utilization, increase patient satisfaction due to service level,
result in accessibility improvements and ensure equity within society in terms of
accessibility to health care services.

One of the most important planning dimensions of the health care services is
the designing of the health care service regions, that is the districting of health care
services. Below we discuss first the special characteristics of health care service
districting, then present different model formulations from the literature, and finally
review the related literature and provide future research directions for the districting
studies related to health care services.

3.3.1 Special characteristics and criteria

In health care service districting, parallel to the districting models in other domains,
spatial compactness is one of the major criteria to be honored in the district plan.
Spatial compactness may be employed as the total cost of the system, but another
important implication of spatial compactness in the setting of health care service



3 A Review of Districting Problems in Health Care 39

districting is that it affects the patients’ travel time. In health care service districting,
transportation is not maintained by the service giver, and the users of the system
commonly reach the centers using the available transportation means. Thus, acces-
sibility of patients can be represented within the compactness measure or a separate
constraint may also be included in the model. It may be specified in terms of travel
distance or travel time or both together [25].

In a health care system, there exist facility-related costs thus in some studies
the facility costs are also considered in the cost formulation. Facility costs may
include fixed and variable cost of the service capacity. Some additional costs are also
identified in the literature due to themismatch of the facility capacity and the demand.
Those include penalty cost of not meeting demand at a location, transportation cost
of rerouting of patients, and transport cost of lost or backordered demand [29].
Sometimes, instead of a penalty cost for mismatched demand, a capacity-demand
match criterion is explicitly included as a constraint.

In health care service districting, service quality is another major criterion since
the system is designed for the general welfare of the public and to achieve an
increase in the patient satisfaction levels. A minimum service level can be imposed
as a constraint [29]. Service quality can also be defined in multiple dimensions
of which the most common ones are related to the accessibility of patients to the
health centers and the performance related to medical procedures. The latter have
been explicitly included as separate criteria in some studies. Another health care
performance criterion used in the literature is the variety of medical procedures
offered. Using this criterion, it is aimed to ensure that each district has at least one
basic unitwith a large variety in the offeredmedical procedures, so that patientswould
not have to travel to other districts for many procedures [38]. A more comprehensive
criterion used is an aggregate measure named as health center attractiveness. Jia
et al. [25] formulate this criterion using the following parameters: the number of
key special departments, the number of physicians per thousand residents, and the
number of beds per thousand residents.

Similar to the home health care districting problems, population homogeneity is
a criterion used to generate district plans. Population homogeneity may be defined in
different terms. Some examples of these terms for achieving population homogeneity
in health care service districting are: (i) minimizing the deviation of the number of
inhabitants in each district from the target average number of inhabitants [9, 38] (ii)
minimizing the deviation of the value spent on health care of each district from
the average spending [9] (iii) minimizing the deviation of the size of the elderly
population of each district from the average elderly population.

A criterion specified as a constraint in health care service districting is not violat-
ing the range of basic units included in the districts [9, 38]. This criterion aims to
ensure that the number of basic units within each district should be within a defined
range.

Co-extensiveness with current local authorities (i.e. compatibility) is also an
issue considered as a districting criterion in the setting of health care service dis-
tricting. This criterion forces the basic units of each district to belong to the same
administrative unit, in other words to respect the administrative boundaries.
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Some other criteria used in health care service districting parallel to the general
districting problems are integrity [9,38], contiguity [9,38] and absence of complete
embedding in another district [38].

3.3.2 Model formulations

Parallel to districting literature, the health care services districting problem has
also been modeled using a location-allocation [9, 29, 38] and set partitioning [14]
approaches. The model formulations of these two approaches have been provided in
Section 3.2.2.

A new modeling approach has been presented as a modified p-median approach
in the literature of health care services districting [25]. A p-median model is given
in (3.8a)-(3.8e).

minimize
n

∑
i=1

m

∑
j=1

widi jxi j (3.8a)

subject to
m

∑
j=1

xi j = 1 i = 1, . . . ,n (3.8b)

xi j− y j ≤ 0 i = 1, . . . ,n; j = 1, . . . ,m (3.8c)
m

∑
j=1

y j = p (3.8d)

xi j,y j ∈ {0,1} i = 1, . . . ,n; j = 1, . . . ,m (3.8e)

where y j is a binary decision variable denoting if a facility (i.e. district center) j is
selected, wi is the weight value of basic unit i, p is the number of facilities (districts)
to be selected, and di j is the cost between basic unit i and facility j.

A p-medianmodel –different from a standard location-allocationmodel– does not
include the capacity limitations. Jia et al. [25] propose to handle the capacity issues
of a health care districting problem in the objective function of a p-median model. To
do this, they define a variable named shortageRatio for each facility in each district.
The shortageRatio is the fraction of the required capacity value (difference between
the value of the current capacity and allocated demands) over the current capacity
value. Then they include this parameter in the objective function as in (3.9). We
note that the inclusion of this additional parameter seems to make the formulation
non-linear, yet the authors make no discussion of this non-linearity aspect in their
paper nor do they formally include the parameter in their mathematical formulation.

minimize
m

∑
j=1

[(1+ shortageRatio j) ·
n

∑
i=1

(widi jxi j)] (3.9)
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They also include the compactness constraint in the objective function using a
variable named spatialCost. This variable is the product of the number of neigh-
boring demanding points with the same facility assignment and a weighting factor
γ .

minimize
m

∑
j=1

[(1+ shortageRatio j) ·
n

∑
i=1

(widi jxi j)+ spatialCost jγ] (3.10)

3.3.3 Literature review and future research directions

In what follows, we report on our review of the health care services districting
studies. First, we present a summary of these studies in Table 3.2 with an overview
of used criteria, models and solution methods.

Table 3.2: Health care services districting studies from the literature.
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Ghiggi et al. [14] O Backtracking program-
ming

Mahar et al. [29] O O O C C C X Optimal with gaps
Datta et al. [9] O O C O O C C X Multi-objective GA

(NSGA-II)
Jia et al. [25] O O O X Simulated Annealing
Steiner et al. [38] O O O O C C C C X Multi-objective GA

(NSGA-II)

Mahar et al. [29] propose a location-allocation model to determine how many
and which of a hospital network’s hospitals should be set up to deliver a specialized
service and to examine the benefits of pooling these specialized services such as
magnetic resonance imaging (MRI), transplants, or neonatal intensive care. Their
multi-objective model addresses issues related to capacity-demand match. In the
objective function, they include facility costs, the penalty cost of not meeting demand
and the transportation cost of rerouting the patients or backordered demand. They
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allow fractional demand allocation and solve the model to optimality with gaps. In
an application in Indiana, USA, they have examined the effects of customer service
level, percent flexible demand, diversion cost, and cost of unmet demand.

Datta et al. [9] deal with a districting problem of primary health care system given
by general practitioners. They propose a multi-objective model formulation with the
following five objectives: geographical compactness, co-extensiveness with current
local authorities, population homogeneity in terms of number of inhabitants, value
spent, age which drive morbidity or cost of service. To solve this model, they employ
a multi objective genetic algorithm approach known as NSGA-II. They present a
case study in East of England.

Jia et al. [25] use a p-median model formulation with an objective including the
capacity for the districting problem. The modified p-median cost objective is not
defined in terms of distance but travel time, which is obtained by taking the road
categories and speed limits into account. In the model, they also consider a health
care center attractiveness measure, which is calculated using three parameters; the
number of key special departments, the number of physicians per thousand residents,
and the number of beds per thousand residents. They propose a simulated-annealing
based solution methodology to solve the modified p-median model. A case study is
conducted in Henan Province of China.

Steiner et al. [38] present a location-allocation model for partitioning municipal-
ities into health districts where the number of districts to be generated is a given
range instead of a fixed number of districts. They formulate a three-objective model
as follows: (i) maximize the homogeneity of inhabitants in the districts, (ii) maximize
the variety of medical procedures offered in the districts and (iii) minimize inter-
district traveling distance. The model formulation involves many constraints such as
integrality, contiguity, absence of embedded districts, etc. To solve this model, they
employ a multi objective genetic algorithm approach based on NSGA-II. The health
care districting problem of the Parana State of Brazil is investigated in this study.

The literature on health care service districting is summarized above. As seen,
the studies on health care services districting are rather limited. Yet, researchers
seem to have agreed, contrary to home health care problems, on modeling these
problems with multi-objective approaches.We believe this is an important take-away
for future researchers, but at the same time is something that may limit modeling
perspectives as the problems at hand continue to evolve thanks to advances in health
care logistics and business models. Many extensions can be proposed, however, and
some possibilities are as follows: A multi-period or dynamic model would be an
interesting research avenue in this area, because making modifications in the health
care service system requires high investment costs. Thus, in developing cities, or
where the health care demand changes due to increasing elderly population, the
costs of the changes required in the system can also be considered in the models. In
addition, the hierarchical structure of the health care service system (e.g. primary
and secondary) and the interactions between them is also another component to be
investigated in the districting models. Finally, satisfaction of the staff of the health
care service centers is another issue to be considered as a districting criterion in the
models.
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3.4 Districting of Emergency Health Services

Emergency health care is the third and last areawewould like to address in the context
of districting and location-allocation based modeling. This area has in fact been
subject to an extensive research effort in various modeling and solution approaches,
some of which, as mentioned in the Introduction, are outside the scope of this
chapter. In what follows, we first describe the literature with the relevant modeling
approaches. We then reflect our view on future directions of research.

3.4.1 Literature review

Emergency health care services generally appear in the main context of ambulance or
other emergency response vehicle base station location selection, where the related
decisions include determining and evaluating coverage and response areas (districts)
and vehicle dispatch policies. Because of the highly dynamic and stochastic nature of
emergency calls, models that assume the nearest server (i.e. ambulance) will always
respond to an incident within its assigned service district are typically not realistic.
As a result, many probabilistic approaches with queuing and Markov models are
developed. The following literature we discuss mainly highlight such studies with
links to districting related issues.

When we consider districting and location-allocation related models only for
emergency health care services, the literature goes back as early as the 1960s and
70s where several studies mark the beginning of location and queuing-based mod-
els. Hakimi [17], Toregas et al. [39], Church and ReVelle [8] and Larson [26] are
the pioneering authors in this area who have developed the core models that at-
tempt to determine optimum locations for ambulance dispatching facilities with the
understanding that each facility location is also associated with a service area or
district around it. Hakimi [17] introduces the classical p-center problem on a graph
where each emergency facility has a coverage radius that corresponds to a “service
area” tracing the edges of the graph. Given p, the number of locations to determine,
the optimal set of locations is the one that minimize the maximum of all coverage
radii around the facilities. Each emergency response facility has then all demand or
incidents within its coverage radius allocated to it.

Similarly, Toregas et al. [39] considers locating emergency service facilities, but
with a set-covering approach. They use a coverage matrix that indicates which can-
didate location covers which potential demand point within an acceptable distance,
and the model seeks to find a minimum number of facility locations that cover all
demand points at least once. The selected locations and the covered demand points
around them would then constitute the service area for each emergency service
facility. Church and ReVelle [8] introduce a closely related formulation, the maxi-
mal coverage formulation, where the number of facilities to locate is fixed and the
goal is to maximize the coverage of total demand served. Another early study that
uses covering-based models is by Hogan and ReVelle [19]. These authors not only
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propose covering-based formulations to assign potential demand locations to ambu-
lance locations for maximal coverage, thus leading to implicit district definitions, but
also consider the case of backup coverage for improved performance on emergency
response.

These early studies (and similar others that followed) tackle the demand for
emergency health care services from a deterministic point of view, meaning that the
potential demand is represented either by the vertices and edges of a graph, or points
in 2-dimensional space. Larson [26] takes a different angle and considers the problem
from a queuing perspective. He proposes a spatially distributed queuingmodel which
he suggests can be useful as an aid to planners in designing emergency response
districts. His model involves a continuous-time Markov process with state transition
matrix, the state space of which corresponds to the vertices of an N-dimensional unit
hypercube. A computationally efficient algorithm then is used to tour the vertices of
the hypercube to reach a solution for the optimal number of dispatch units.

After these early works on emergency response location modeling, an extensive
number of other studies usingmaximal coverage location formulations (MCLP), spa-
tial queuing models (SQM), and simulation-based approaches have been conducted.
Since these are not directly related to districting-based modeling, we leave them
outside the scope of this chapter. In fact, even recently, we see a number of studies
based on these techniques [12, 13, 20, 22, 34, 37]. We refer the interested reader to
comprehensive reviews by [2, 7, 15, 21, 27] on these and many other studies.

While the majority of the literature is on the methods and approaches mentioned
above, several studies that use the notion of districting in combination with these
methods stand out. Iannoni et al. [23] consider the hypercube queuing model and in-
tegrate it with a genetic algorithm to determine the locations of emergency response
units on a highway network and the primary and secondary response areas (i.e. dis-
tricts) associated with these locations. Their genetic algorithm chromosome defines
a configuration of the ambulance base locations, which is then used to generate a new
travel time matrix that is fed into the hypercube model along with the corresponding
incident arrival rates. They consider three fitness (objective) functions, including
mean response time, fraction of calls not serviced, and the unbalance of servers.
The algorithm outputs the final configuration of the ambulance bases along with the
resulting primary and secondary service areas around them that are collection of
highway segments.

Iannoni et al. [24] further extend the previous study by modifying their hybrid
hypercube - genetic algorithm to include the districting decisions in conjunction
with location decisions. The implement a two-step version of their algorithm to
make location decisions in the first step, followed by districting decisions in the
second step, utilizing the algorithm in their earlier work. They apply their algorithm
in two case studies on Brazilian highways.

Another related study for locating and districting emergency response vehicles on
a network is by Geroliminis et al. [12] who address the three limitations of hypercube
models, the most important of which is pre-defining the server locations. They pro-
pose both heuristic and exact approaches, which combine the location decisions and
coverage variables simultaneously to determine (near-)optimal locations for server



3 A Review of Districting Problems in Health Care 45

bases while considering call response times. Their approach is applied to freeway
patrol service optimization; however, the approach and the solution technique is also
applicable to emergency health care cases. Recently, other studies have proposed
heuristic approaches to handle the complexity in the stochastic nature of the prob-
lem and extensive computation times, such as the studies by Toro-Diaz et al. [40]
and Enayati et al. [11]. The former study proposes a Tabu Search-based heuristic
for deciding on ambulance locations with a queuing sub-model, while the latter
uses a heuristic approach to generate effective lower bounds to a branch-and-bound
implementation.

One other recent study that attempts to locate ambulance stations based on re-
sponse time and create districts for priority coverage is by Ansari et al. [1]. These
authors propose a mixed integer linear programming model to determine station lo-
cations and the resulting districts. Different from studies with deterministic demand
and service times, they consider uncertainty in travel time as well as ambulance
availability, and aim to maximize the coverage level as a result of the location and
districting solution. Because of the uncertainty, each incident has a preference list
for ambulance locations, leading to a series of response districts that depend on
ambulance availability, and the model aims to balance workload among the servers
while maintaining contiguity of the first-priority response districts.

While most of the above studies use response time as the key performance
measure, several recent studies consider a different criterion, patient survival prob-
ability, in planning emergency health care. For instance, Bandara et al. [3], among
others, consider the emergency response problem as a Markov decision process
(MDP) to determine optimal dispatching policies, taking into account the degree of
call urgency. The resulting policy is the ordered list of ambulances to dispatch, which
is determined in terms of patient survivability, depending on the type of incident,
not a simple response time threshold. While this study does not have a districting
perspective per se, we include this study here to point out the computational results,
which are interesting in the sense that they indicate a fixed districting structure may
not be suitable. As shown in this study, the shortest response / closest dispatch policy,
hinting to the formation of compact districts, is not always optimal in responding to
incidents with different priorities.

Similarly, Mayorga et al. [30] propose integrated dispatching and districting poli-
cies for emergencymedical systems (EMS) and evaluate them from a patient survival
probability point of view. They compare different policies through a computer sim-
ulation model, evaluate different intra-district and inter-district dispatching policies
with respect to patient survivability. They propose a constructive heuristic for build-
ing response areas or districts based on expected coverage.

Patel et al. [36] also take into account patient survivability in the special case of
cardiac catheterization where they use GIS to evaluate and visualize areas (districts)
of accessibility within the province of Alberta, Canada. They consider variousmodes
of transportation in relation to census dissemination areas representing the population
centers for possible incidents. They identify zones where the use of one mode would
be faster than the others for reaching a treatment facility.
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An effective evaluation of the two performance measures mentioned above in
emergency medical service dispatching decisions is also provided by McLay and
Mayorga [31, 32]. We find other references in the EMS literature with similar ap-
proaches to modeling emergency medical response such asMDP, hypercube models,
and other queueing-basedmodels. Our conclusion is that while the literature on emer-
gency health care service modeling has started out with “static" or “deterministic"
modeling approaches, it has long shifted towards stochastic and queueing-based
models, which we choose not to report in this review.

To summarize, our literature review in the context of emergency health care
service districting reveals that almost all of the most recent studies make reference
to queuing or Markov based models where optimal locations for base ambulance
stations are decided and perhaps revised dynamically as necessary, but the associated
service or response districts are not fixed areas. This is due to the uncertainty involved
in the incident arrival processes and the fact that the nearest server (ambulance) may
not always be available or moreover, may not always be the best one to dispatch.
As a result, the districts around base locations also tend to be dynamic with many
incidents of ambulances dispatched outside their priority service area, entering into
service areas of other ambulance base stations. It seems the future models and
solution approaches will continue in the same direction.

3.4.2 Model formulation

In this section, we present models from earlier studies [8,19,39] in the literature that
have attempted to formulate the emergency health response problems in the form of
set-covering, location-allocation or maximal coverage models. More recent models
based on MDP, hyper-cube or queuing are not included here as they deviate from the
classical definition of districting models.

According to Toregas et al. [39], demand for emergency health care services occur
at a finite set of n points indicated by set I. The same set of points also represent where
potential service providers (e.g. ambulance stations) can be positioned. Assuming
a maximum threshold response time of s between a demand point i and a service
provider j, let Ni denote the set of points within distance s from which emergency
service can be provided to demand point i. Then let x j denote the binary decision
variable, which takes the value 1 if service provider is established at point j. The
set-covering based model formulation proposed by [39] is as follows:

minimize z =
n

∑
j=1

x j (3.11a)

subject to ∑
j∈Ni

x j ≥ 1 i = 1, . . . ,n (3.11b)

x j ∈ {0,1} j = 1, . . . ,n (3.11c)
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The objective here is to locate a minimum number of service providers so that all
demand points are covered at least once within a distance of s. Clearly, this model
is not meant to directly generate service districts where all demand located within
a district would receive dedicated service from the service provider located in that
district, but implicitly achieves a similar effect by forming an s-radius service area
around each service provider location established. The demand points, however, may
have more than one provider within a radius of s, hence possibly leading to multiple
coverage from various providers nearby.

The concept of multiple coverage has been explicitly treated by Hogan and ReV-
elle [19] in a bi-objective model as follows:

minimize z1 =
n

∑
j=1

x j (3.12a)

maximize z2 =
n

∑
i=1

Mi (3.12b)

subject to ∑
j∈Ni

x j−Mi ≥ 1 i = 1, . . . ,n (3.12c)

x j ∈ {0,1} j = 1, . . . ,n (3.12d)
Mi ∈ Z i = 1, . . . ,n (3.12e)

where Mi denotes the number of times demand point i is covered in excess of 1. This
is a bi-objective model with a trade-off between the number of service providers
located (the lower the better) and the total number of coverages provided to all
demand points (the higher the better). We note that with the addition of the second
objective regarding multiple coverage, the deviation from a classical districting
model is pronounced even further, as a demand point may receive service from a
number of provider locations located at varying distances, which means the concept
of a “district” is further blurred.

Finally, Church andReVelle [8] present themaximal coveragemodel where a fixed
number of (emergency) facilities with a given coverage radius are to be located, and
the goal is to locate them in such a way that the total demand coverage is maximized.
Using the same notation, the formulation for this model is as follows:

maximize z =
n

∑
i=1

aiyi (3.13a)

subject to ∑
j∈Ni

x j ≥ yi i = 1, . . . ,n (3.13b)

n

∑
j=1

x j = p (3.13c)

x j ∈ {0,1} j = 1, . . . ,n (3.13d)
yi ∈ {0,1} i = 1, . . . ,n (3.13e)



48 S. Yanık, B. Bozkaya

where yi is the additional decision variable that indicates whether a service demand
point i can be covered by any service provider located at i or elsewhere within a
response time of s; ai is the demand to be served at point i; and p is the total number
of emergency facilities to be located. As implied by the objective function, this
model further takes into account the “population" to be served, i.e. not just a demand
point being “covered". It can also be considered as a complementary model to that
of Toregas et al. [39] as there is a clear trade-off between the number of facilities to
be located (hence their cost) and the total coverage they provide.

3.4.3 Future research directions

In our review, we find that a significant portion of the recent and relevant literature on
emergency health care service districting is in fact related to queuing-basedmodels in
combination with optimization models. As in the case of hypercube queuing models
used together with genetic algorithms or tabu search, there are many complexities
in using queuing-based approaches in an optimization framework. As some of the
most recent studies suggest, we think that a continued and viable line of future
research would be the further exploration of heuristic methods such as adaptive
large neighborhood search, swarm optimization, matheuristics, etc. The use of such
heuristicsmight prove to bemore efficient, leading to improvements in computational
times and hence a better and more exhaustive search over solution alternatives.

We also think that other criteria for emergency health care planning might be
relevant. While incident response times and patient survivability rates are of utmost
importance for rendering emergency health care service, the cost of these systems
cannot be overlooked. In this regard, models that address the cost versus service
level tradeoff are still in need, as the emergency health care response problem is in
essence a queuing problem for scarce resources with high potential impact on saving
human life but at the same time very costly.

As the traditional districting approaches do not completely fit in the framework of
emergence response modeling, more dynamic versions of districting models in com-
bination with queuing approaches could also be worthwhile exploring. Districting
typically makes it much easier and comprehensible for decision makers and system
planners in conducting day to day operations. To take advantage of this, existing
districting models might be adapted to more dynamic or stochastic settings, where
district boundaries might be changing over time and districts might have overlapping
regions to account for possibilities of multiple coverage. This has been done only
very recently [11, 35], and the districting literature is yet to see more of these kinds
of variations applied to emergency care response modeling.

Finally, as we live in the age of Big Data and Machine Learning, we believe
there is great potential value in making predictions about emergency call incidents,
road conditions and travel times, and server utilization. As the EMS systems collect
massive amounts of data from day-to-day operations, these datasets may be analyzed
further to develop better models for the logistical infrastructure of emergency health
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care systems. While we recently started seeing some studies in this arena, this is yet
an area we believe has not taken off yet.

3.5 Conclusion

In this chapter, we took a closer look at districting problems arising in the health
care services context as well as districting and location-allocation based models
proposed to solve them. OperationsManagement andManagement Science literature
addressing health care service management issues and aimed at solving related
problems have been around for decades. Here we consider three main categorizations
of these problems: a) home health care services; b) primary and secondary health
care; and c) emergency health care services. A great variety of such services require
systematic effort and logistical organization; hence they readily lend themselves to
districting-based problem formulations.

With home health care services management, we find that as the population gets
older, more and more home care services are deployed, towards the aging population
who are unable or unfit to travel to fixed medical facilities. In this context, many
day-to-day operational activities of health care professionals, such as nurses and
doctors, to render these services are organized around service districts. Hence, we
see an extensive number of districting based-models and formulations under various
criteria for achieving the operational efficiency of these services. We deduct from the
reviewed literature that the modelling efforts mainly focus on achieving the equity
of workload among nurses/doctors as well as maintaining the geometry related
criteria such as connectivity, compactness and integrality, which in return affect
the cost and time of traveling of the home healthcare vehicles. Thus, we can say
that the home health care service design problems seem to best fit the traditional
districtingmodellingwhere typically location-allocation, set-covering and clustering
approaches are used. The employed solution techniques are generally heuristic-based
approaches since the NP-hard nature of the model does not allow to find optimal
solutions for the real-size problems.

Primary and secondary health care requires organization at a higher level, with
various types of medical facilities offering services with varying capacities and
specialties serving in different regions. This necessitate district-based modeling at
various level of hierarchy, and our literature survey seems to support it. The literature
related to primary and secondary health care design problems deals mainly with ac-
cessibility and demand-related issues such as variety of services, demand fulfillment
and service levels. Hence, the modelling approaches used are also traditional dis-
tricting and facility location techniques such as location-allocation, set-partitioning
and p-median, which are typically solved using heuristic approaches as well. We
further find that new studies and modeling approaches addressing the health care
demand and supply mismatch due to population movements or demography shifts
are needed.
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The emergency healthcare service aims to achieve mainly a certain response time
to reach the incidents. Thus, it is the main criterion used in this domain together
with demand fulfillment, patient/region priorities and balance of the servers. The
literature, however, has recently concentrated around spatial queuing models and
simulation approaches due to the highly probabilistic nature of emergency care
incidents and scarcity of servers (e.g. ambulances). This is clearly an improved line
of research over the districting and location-allocation based modeling approaches
for the problem developed in the 1970s and 1980s. Lately, heuristic optimization in
combination with these queuing-based modeling approaches seems to have picked
up trend. Some of the models we review have clear districting implications with
the emergency response units still having to operate within well-defined service
areas. Yet the link between districting-based formulations and queuing-basedmodels
is rather weak due to the dynamic nature of the problems involved and perhaps
stochastic or fuzzy districting modeling approaches might offer further contributions
in the future.

In conclusion, we note that we expect this line of research on health care oper-
ations management to continue in years to come, and that districting-based models
and solution approaches will further contribute to the literature. We hope that our
study sheds light to some of the recent work on districting and health care services
management and lead future researchers to take new angles and generate new ideas
in solving modern health care management problems.
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Chapter 4
Computational Geometric Approaches to
Equitable Districting: A Survey

Mehdi Behroozi and John Gunnar Carlsson

Abstract Dividing a piece of land into sub-regions is a natural problem that belongs
to many different domains within the world of operations research. There are many
different tools that one can use to solve such problems, such as infinite-dimensional
optimization, integer programming, or graph theoretic models. In this chapter, we
summarize previous methods for solving districting problems that use computational
geometry.

4.1 Introduction

Dividing a piece of land into sub-regions is a natural problem that belongs to
many different domains within the world of operations research, such as air traffic
control, congressional districting, vehicle routing, facility location, urban planning,
and supply chain management. Indeed, effective division of geographic territory has
been a fundamental societal problem since the times of antiquity [15]:

Homer, in describing the Phaiakian settlement in Scheria, speaks of a circuit wall for the
city.... Implicit in the foundation of new colonies was the notion of equality among the
members, exemplified in the division of their prime resource, the land. To achieve this,
accurate measurement and equitable division were from the outset essential, even when
gods or privileged men were to be honored with larger or better assignments.

Scientifically speaking, one of the major difficulties that problems of this type pose is
their intrinsically interdisciplinary nature; in order to determine an optimal partition
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of a territory, one must combine tools from a variety of disciplines. The purpose of
this chapter is to identify and summarize various algorithms for territory districting
that use computational geometry. This is distinct from, for example, explicitly dis-
crete network-based models, such as graph partitioning and multiway cuts [13]. The
key difficulty in such problems is the balancing of allocation objectives, such as some
measure of workload in the sub-regions or balanced consumption of a resource, with
geometric shape constraints. As examples of shape conditions, we may require that
all sub-regions be compact, convex, simply connected (not having holes), connected,
or merely measurable. Because of the extreme breadth of literature on the subject
of districting, we will focus this chapter only on approaches to districting problems
with the following attributes: the input region is a Euclidean domain R, usually R2

or a subset thereof (as opposed to a more abstract space, such as a graph). Second,
the objective is to divide R into districts while optimizing an objective function or
satisfying a criterion (or both). Third, the problems of interest have some practical
application to districting, as opposed to being computationally oriented (e.g. finding
a good mesh triangulation for numerical integration).

4.1.1 Notational conventions

The notational conventions for this problem are as follows: the input is a Euclidean
region R, possibly with additional information such as a probability density or a
set of points. We seek a partition of R into districts D1, . . . ,Dn, that is, a collection
of disjoint subsets such that

⋃n
i=1 Di =R and interior(Di)∩ interior(D j) = /0. The

boundary of a set S is written ∂S, the line segment between points a and b is written
ab, and ‖·‖ denotes the Euclidean norm unless otherwise stated.

4.1.2 Applications of geometric districting

As mentioned in the introduction, there are many natural operational problems for
which districting – from a geometric viewpoint – is a useful tool. One popular ap-
plication is in air traffic control, as can be found in [7,53]; here the goal is to balance
the workloads within districts, interpreted as the maximum number of airplanes con-
tained within a district at any time. The use of partitioning to balance workloads is a
pervasive theme in robotics and vehicle routing as well, as seen in [20,22–24,42,43].
One recurrent theme in many of these papers is the application of the foundational
results in geometric probability theory, the Beardwood-Halton-Hammersley Theo-
rem [8], which describes the length of the optimal travelling salesman tour of a set of
points sampled from a probability distribution. Specifically, if {Xi} is a sequence of
independent samples drawn from an absolutely continuous probability distribution
f (·) defined on a compact planar region R, then the length LN of the shortest tour
through points X1, . . . ,XN satisfies
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LN =
√

N
∫
R

√
f (x)dx+o(

√
N) with probability 1

as N → ∞. A consequence of this result is the fact that, if one partitions R into
districts D1, . . . ,Dn such that

∫
Di

√
f (x)dx is equal for all i, then we are guaranteed

that the TSP tours of the samples within each district are within o(
√

N) of each other
as N→ ∞; see Figure 4.1.

(a) (b)

(c) (d)

Fig. 4.1: The above diagram represents the stochastic multi-depot vehicle routing
problem formulated as a geometric districting problem; we begin with a set of
n = 13 vehicle “depots” pi with fixed locations and a probability density f (·)
defined on R (4.1a), which we then partition into n convex districts (4.1b). This

partition should be constructed so that, when a large collection of points is sampled
independently from f (·) as in 4.1c, the n TSP tours of all the points in each

sub-region plus the depot point are balanced, on average (4.1d). This is guaranteed
to happen within o(

√
N) if

∫
Di

√
f (x)dx is equal for all districts.

Districting problems can also be used to solve facility location problems. The
seminal paper [40] containsmany such examples, as do themore recent contributions
[25, 36]. One of the key concepts is the fact that one can use a particular districting
scheme – such as the Voronoi partition which we will describe in the following
section – to reduce the set of candidate placements of a facility to a finite set.

Not surprisingly, computational geometry has had a significant impact on con-
gressional districting (gerrymandering) and school district design [18, 26, 50, 51].
Here the complexity comes from the sheer multitude of factors that influence an
optimal decision, such as the number of students per district (of each demographic),
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the commute distance between students and their assigned school, and the quality of
the schools in each district.

4.2 The Voronoi Paradigm

Given a collection of landmark points P = {p1, . . . , pn} in a region R, the Voronoi
partition (or Voronoi diagram) ofR with respect to P is the partition defined by

Di = {x ∈R : ‖x− pi‖≤ ‖x− p j‖ ∀ j} .

Not surprisingly, Voronoi partitions are of fundamental importance in location theory
and spatial analysis [4, 39]. It is easy to see that the districts Di are always convex
when ‖·‖ is the Euclidean norm. WhenR=R2, Voronoi partitions can be computed
in O(n logn) running time [6, 27, 48]. The boundary segments of the districts Di
(as well as their endpoints) comprise a planar graph, whose dual is the Delaunay
triangulation of P; see Figures 4.2a and 4.2b.

4.2.1 Weighted Voronoi partitions

Aweighted Voronoi partition is a subdivision ofR into districts Di, taken simultane-
ously with respect to P and a weight vector w ∈ Rn that “discounts” or “surcharges”
the distances. Different weighting schemes give rise to districts with different shape
properties. In an additively weighted Voronoi partition, the districts are defined by

Di = {x ∈R : ‖x− pi‖−wi ≤ ‖x− p j‖−w j ∀ j} ;

it is easy to see that the boundaries between adjacent sub-regions are hyperbolic arcs
because

∂Di∩∂D j ⊂ {x ∈R : ‖x− pi‖−‖x− p j‖= wi−w j}

and a hyperbola is defined as the locus of points x such that the difference in distances
to two landmark points pi, p j is constant. It is also easy to verify that the districts
are connected (and in fact star-convex relative to the landmark points P) because if
x ∈ Di, then the line segment xpi also belongs to Di. See Figure 4.2c.

In a power Voronoi partition (often simply called a power diagram), the districts
are defined by

Di = {x ∈R : ‖x− pi‖2−wi ≤ ‖x− p j‖2−w j ∀ j} .

It is easy to see that the boundaries between adjacent sub-regions are line segments
and consequently that all districts are convex, although the situation can easily arise
that pi /∈ Di for some i. See Figure 4.2d.

In a multiplicatively weighted Voronoi diagram, the districts are defined by
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Di = {x ∈R : ‖x− pi‖/wi ≤ ‖x− p j‖2/w j ∀ j} ;

the Apollonius circle theorem says that the boundaries between adjacent sub-regions
are circular arcs [38]. See Figure 4.2e.

(a) Voronoi (b) Delaunay triangulation

(c) Additive Voronoi (d) Power Voronoi (e) Multiplicative Voronoi

Fig. 4.2: Voronoi partitions and related structures.

4.2.2 Complementary slackness and weighted Voronoi diagrams

The notion of complementary slackness provides an elegant relationship between
assignment problems and their counterparts in districting. This is best exemplified
in [5], which establishes a bijection between power Voronoi partitions and least-
squares assignments of points to landmarks. Suppose for simplicity thatR= R2 (or
indeed any Rd) and consider a set of landmark points P as before, as well as a set of
demand points Q = {q1, . . . ,qm} and a capacity vector c ∈ Zn

+ such that ∑
n
i=1 ci = m.

The least-squares problem of assigning demand points to landmark points, subject
to the constraint that pi is assigned to exactly ci demand points, is written as
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minimize
X

n

∑
i=1

m

∑
j=1

d2
i jxi j (4.1a)

subject to
m

∑
j=1

xi j = ci i = 1, . . . ,n (4.1b)

n

∑
i=1

xi j = 1 j = 1, . . . ,m (4.1c)

xi j ∈ {0,1} i = 1, . . . ,n; j = 1, . . . ,m (4.1d)

where di j = ‖pi−q j‖. Of course, the integer program above has no integrality gap
and can hence be relaxed to a linear program, whose dual is given by

maximize
λ ,ν

n

∑
i=1

ciλi +
m

∑
j=1

ν j (4.2a)

subject to λi +ν j ≤ d2
i j i = 1, . . . ,n; j = 1, . . . ,m (4.2b)

Note that, for any optimal solution (λ ∗,ν∗) to the above, it must also be the
case that (λ ∗+ t,ν∗− t) is also optimal for all scalar t. Therefore, we can assume
without loss of generality that ∑

n
i=1 ciλi = 0 which reduces (4.2) to the piecewise

linear concave maximization problem

maximize
λ

m

∑
j=1

min
i
{d2

i j−λi} (4.3a)

subject to
n

∑
i=1

ciλi = 0. (4.3b)

Complementary slackness between (4.3) and the linear relaxation of (4.1) establishes
the following bijections:

Theorem 4.1 LetX∗ and λ ∗ denote optimal primal-dual pairs between between (4.3)
and the linear relaxation of (4.1). For i ∈ {1, . . . ,n}, let Si = {q j : x∗i j = 1} denote
the set of demand points assigned to i. Then the power Voronoi partition with respect
to weight vector w = λ ∗, i.e.

Di = {x ∈R : ‖x− pi‖2−λ
∗
i ≤ ‖x− p j‖2−λ

∗
j ∀ j} ,

satisfies the property that Si ⊂ Di for all i.

Theorem 4.2 For any weight vector w that induces a power Voronoi partition
D1, . . . ,Dn, let Si = {q j : q j ∈ Di}, with ties broken arbitrarily if q j lies on a bound-
ary, and set ci = |Si|. Then the the solution X obtained by setting xi j = 1 if q j ∈ Di
and zero otherwise is optimal for (4.1).
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Corollary 4.1 For any P and Q in general position and any c ∈ Zn
+ such that

∑
n
i=1 ci = m, there exists a weight vector w whose induced power Voronoi partition

satisfies |Di∩Q|= ci for all i.

Figure 4.3 shows an example of the above results. In Corollary 4.1, the existence
of w is guaranteed by setting w = λ ∗.

(a) Least-squares input (b) Least-squares assignment (c) Least-squares assignment
and power Voronoi partition

Fig. 4.3: The equivalence established by [5]. Figure 4.3a shows an input with n = 8
and m = 80, Figure 4.3a shows the optimal assignment when ci = 5 for all i, and

Figure 4.3c shows the power Voronoi partition that induces the optimal assignment.

The preceding results are surprisingly general and have influenced many further
studies. For example, almost nothing changes if we consider a semi-infinite version
of (4.1) in which we replace the point set Q with a probability density f , and thereby
replace the summation with an integral; the assignment variable xi j now becomes an
“assignment function” Ii(x) that indicates if point x is assigned to landmark point i:

minimize
I1(·),...,In(·)

n

∑
i=1

∫
R
‖x− pi‖2 f (x)Ii(x)dx (4.4a)

subject to
∫
R

f (x)Ii(x)dx = ci i = 1, . . . ,n (4.4b)
n

∑
i=1
Ii(x) = 1 x ∈R (4.4c)

Ii(x) ∈ {0,1} i = 1, . . . ,n; x ∈R (4.4d)

This fact was also noted in [5]; as an example, if we set f (x) = 1 everywhere and
ci = Area(R)/n for all i, then the preceding results guarantee that one can always
find a power Voronoi partition in which all districts have equal area; see Figure
4.4. This analysis was taken even further in [17], which describes the family of all
weighted clusterings expressible as power diagrams via so-called gravity polytopes.
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Fig. 4.4: A power diagram that partitions the unit square, with all districts having
equal area.

Indeed, the basic principle remains unchanged if one replaces the squared distance
functions ‖x− pi‖2 with other cost functions φ(x− pi). For example, [3] and [24]
observe that if one uses the standard Euclidean distance φ(z) = ‖z‖ instead, then
one obtains an additively weighted Voronoi diagram with the same properties (Fig-
ure 4.5a). If one substitutes the Manhattan norm φ(z) = ‖z‖1, [22] shows that the
boundary components are line segments in the eight cardinal and ordinal directions,
and also gives extensions for the case where φ(z) is a distance metric imposed by
polygonal obstacles. Furthermore, [24] notes that if one uses φ(z) = log‖z‖, then
one obtains a multiplicatively weighted Voronoi diagram (Figure 4.5c) and gives
a Jacobi iterative algorithm for finding both diagrams quickly. With an application
towards electoral districting, [18] consider graph-based distance functions as well
as ellipsoidal distance functions, i.e. φi(z) = zT Miz (or the square root thereof) for
positive definite Mi, which they call anisotropic Voronoi diagrams. The boundary
curves are either conic sections or quartic curves depending on whether or not the
square root is used.

The paper [23] describes a related problem to (4.4)where one is given a probability
density f , but the constraints on the masses

∫
R f (x)Ii(x)dx = ci are dropped. Rather,

the objective is to minimize the maximum cost over all districts:

minimize
I1(·),...,In(·)

max
i

∫
R

φi(x) f (x)Ii(x)dx

subject to
n

∑
i=1
Ii(x) = 1 x ∈R

Ii(x) ∈ {0,1} i = 1, . . . ,n; x ∈R.
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(a) Euclidean distance (b) Manhattan distance (c) Logarithmic distance

Fig. 4.5: Equal-area weighted Voronoi diagrams with varying cost functions; in
(4.5b), the boundary components are line segments in the eight cardinal and ordinal

directions.

The authors conclude that the optimal boundary curves have the property that
φi(x)/φ j(x) is constant. For the case where φi(x) = ‖x− pi‖α for any scalar α ,
the Apollonius circle theorem [38] says that the boundary curves are circular arcs.

4.2.3 Further uses of the Voronoi paradigm

In addition to their complementary slackness properties, weighted Voronoi diagrams
have proven useful in many other ways. For instance, [42] builds power Voronoi
diagrams for mobile robots that partition a probability distribution f equitably, as
in [5]. However, rather than exploiting linear programming duality, their design a
decentralized control scheme that is globally convergent and depends only on single-
dimensional integrals. Convergence is established by a topological argument similar
to Brouwer’s fixed-point theorem.

The paper [29] usesmultiplicativelyweightedVoronoi diagrams for an application
in logistics. They seek a multiplicatively weighted Voronoi diagram in which the cost
function associated with each region is somewhat more complex because it involves
both the mass of each district

∫
Di

f (x)dx as well as additional terms that approximate
vehicular travel within each Di. They introduce an intuitive fitting process that they
prove is globally convergent.

The paper [44] uses multiplicative Voronoi diagrams for partitioning an abstract
information space, as opposed to a physical region. Specifically, the objective is
to find an effective representation of an information space, such as a set of docu-
ments, as a planar diagram that conveys relevant information. In this setting, each
document is represented as a region in the plane, and there are two major objectives
that should be considered in designing such a diagram effectively: first, documents
containing similar content should be placed in close geographic proximity to one
another. Second, documents with larger significance or relevance should be repre-
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sented by regions that are larger than those corresponding to documents with less
significance. The authors describe an iterative scheme that involves increasingly fine
discretizations of the input region.

In an application to discrete choice models, [2] use power Voronoi diagrams in
(possibly high) dimension to prove a remarkable bijection between two standard
models of demand for differentiated products. Specifically, let λ = (λ1, . . . ,λn) de-
note the prices of n variants of a differentiated product. An aggregate demand system
(ADS) F : Rn

+→ Rn
+ is a vector-valued function F(λ ) such that Fi(λ ) represents the

total demand for variant i from a given population of consumers when the variants
are priced according to λ .

An alternative model to the ADS is the address model, which is essentially a
power Voronoi diagram in high dimension. More precisely, each of the n product
variants is represented as a point pi in a “characteristics space” Rm, and there is a
continuum of consumers distributed in Rm according to a density function f . Each
consumer purchases one unit of the variant that offers the greatest utility, where the
utility of a consumer located at x ∈ Rm, purchasing variant i, is

ui(x) = αi−‖x− pi‖2−λi

where αi is a perceived “quality index” of variant i and λi is the price of variant i
as in the ADS. Under the address model, we see that the total demand for variant i,
written F̃i(λ ), is

F̃i(λ ) = Di f (x)dx ,

where Di is the power Voronoi cell of point pi with respect to the weight vector
λ −α .

The profound insight of [2] is that there exists an equivalence between the ADS
and the address models demand, under certain natural conditions, such as gross sub-
stitution, constant aggregate demand, and invariance under scalar addition. Many
standard discrete choice models satisfy these conditions, such as the logit, probit,
linear probability, and CES models. Moreover, the equivalence established is con-
structive: the authors give a closed-form expression for the placement of points pi
and the consumer density function f in terms of F .

It turns out that Theorem 4.1 through Corollary 4.1 admit even further generality
than that already described: we have already discussed generalizing the Euclidean
distance function to more general cost functions φ . In fact, [30] shows that essentially
the same result holds for extremely general cost functions φi, and that a proof can be
obtained using a direct and simple minimization of a quadratic objective function.

4.3 The Ham Sandwich Paradigm

The ham sandwich theorem is a famous measure-theoretic result that says that, given
d measurable “objects” in Rd , it is possible to divide all of them in half with a
single (d− 1)-dimensional hyperplane. The special case where d = 2 is called the
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pancake theorem and is easily proven by a bisection procedure involving a “rotating
knife” [35]. The case d = 3 can also be proven intuitively [52], although the case for
general d requires the Borsuk-Ulam theorem [12]. Figure 4.6 shows three examples
of ham sandwich cuts of different “objects” in the plane.

(a) Equal area (b) Equal points (c) Equal points and density

Fig. 4.6: Ham sandwich cuts of three different pairs of “objects”. In 4.6a, we are
given two shapes and the line cuts both simultaneously into pieces of equal area. In
4.6b, the line cuts the two point sets simultaneously into halves. In 4.6c, the line

simultaneously bisects the point set and a probability density.

Both from the theoretical and algorithmic sides, the ham sandwich theorem
admits many generalizations. One extension is the bisection of more than d objects
in Rd with more complex surfaces: given

(k+d
d

)
−1 measures in Rd , there exists an

algebraic surface of degree k that bisects them all [49]. The case where d = 2 and
both “objects” are sets of points (i.e. the case shown in 4.6b) is very well-studied,
algorithmically speaking, as we will describe in the next section.

In most districting applications, one is interested in partitioning a territory into
more than two pieces. Recursive application of the ham sandwich theorem guarantees
that, when n = 2k and k is an integer, it is always possible to partition d measurable
“objects” in Rd into n convex pieces, such that each piece contains 1/n of the mass
of all d objects, as shown in Figure 4.7. It is natural to ask if this statement holds for
general n (a similar statement was first conjectured in [33]), and in fact the answer is
affirmative, as proven in [11]. This influential result inspired a considerable amount
of further study, as we summarize here.

4.3.1 Red and blue points

The paper [11] gives a fast algorithm for the following problem: given gm red points
and gn blue points in the plane in general position, find a partition of the plane into
g convex districts, such that each district contains m red points and n blue points.
Figure 4.7d shows the output for the case where g = 8,m = 2,n = 3. Although one
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(a) (b) (c) (d)

Fig. 4.7: Given an initial collection of 16 “red” points and 24 “blue” points (4.7a),
we form a ham sandwich cut into two districts with 8 red and 12 blue (4.7b). Each
of these two pieces is further subdivided four districts containing 4 red and 6 blue
(4.7c), and finally, we subdivide those four into eight districts containing 2 red and

3 blue (4.7d).

can obtain such a partition by taking recursive ham sandwich cuts when g is a power
of 2 (precisely as is done in Figure 4.7), it turns out that such an approach does not
extend to general g, as is indicated in Figure 4.8. Their major insight is the following

(a) (b)

Fig. 4.8: Suppose that we have g = 3 with m = 5 and n = 2. It is easy to see that we
cannot obtain a partition into g = 3 pieces via recursive ham sandwich cuts because
the blue points are concentrated in the center. However, it is possible to partition

into 3 pieces, as shown in (4.8b).

theorem, which guarantees the existence of the desired partition for all g:

Theorem 4.3 For any gm red points (g ≥ 2) and gn blue points in the plane in
general position, there is a partition of the plane into 3 convex districts (one of which
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may be empty) such that the ith district contains gim red points and gin blue points,
with 0≤ g1,g2,g3 < g and g1 +g2 +g3 = g.

The papers [32, 45] also give essentially the same result, although [11] gives an
efficient algorithm (its running time is O(N4/3 log3 N logg), where N = g(m+n) is
the total number of points).

Considerable research has been done on related variations and extensions. The
paper [10] generalizes Theorem 4.3 to the case where the red and blue points are
enclosed within a simply connected polygonal region and the goal is to obtain an
equitable partition in which each district is relatively convex to the input region. A
district Di of a polygonal region R is said to be relatively convex to R if, for every
pair of points x,y∈Di, the shortest path between x and y with respect to the geodesic
induced by R is also contained in Di; see Figure 4.9. Another elegant variation

(a) (b)

Fig. 4.9: Given a simply connected polygonal region containing red and blue
points, it is always possible to find a relatively convex partition in the same sense as

Theorem 4.3. Note that the uppermost district turns out to be the union of two
triangles.

studied in [9] addresses a rectilinear version: given any configuration of red and
blue points as before, there exists an equitable partition consisting of at most g−1
horizontal segments and g−1 vertical segments, as shown in Figure 4.10.

4.3.2 General measures

Algorithms for partitioning more general measures than discrete and blue point
sets have also been considered. The papers [1, 21] give efficient algorithms for the
following problem: given a convex polygonR containing n points, partitionR into n
convex districts of equal area, such that each district contains one point. The proposed
application is multi-depot vehicle routing; here each of the n points represents the
“depot”, or start point, of a vehicle, and each vehicle is assigned to the district
containing it. The case whereR is simply connected is addressed in [20], where the
goal is to obtain relatively convex districts as in [10].
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(a)

Fig. 4.10

4.4 Other Recursive Schemes for Equitable Partitioning

The basic principle of the ham sandwich paradigm is recursion: one obtains an
equitable partition into districts by subdividing into 2 or 3 convex sub-regions,
then further subdividing those sub-regions. Not surprisingly, such techniques arises
frequently in geometric districting problems. For example, this is precisely the basis
for binary space partitioning in 3d computer graphics [46]. One particularly elegant
application arises in a recursive partitioning scheme in [41]: here we are given a
collection of polygonal objects in the plane, and the goal is to design as few convex
districts as possible such that each district contains only one object. When the
polygonal objects are disjoint line segments, it turns out – somewhat surprisingly –
that a simple randomized scheme results in a desired set of districts of sizeO(n logn),
where n is the number of line segments.

The paper [3] describes simple approximation algorithms for following problem:
given a convex region R containing n points, design districts Di of equal area so as
to minimize the average distance between a point uniformly sampled in R and the
facility that serves it. As an aside, the authors show how to divide R into convex
districts of equal area while maximizing the “fatness” of the resulting regions within
a constant factor. Their scheme consists of simply partitioning R recursively with
either vertical or horizontal lines into proportions as close to one-half as possible.

Recently, [19] has studied the weighted version of a family of problems closely
related to ham sandwich partitioning: given sets of p red and q blue points in the
plane with weights α > 0 assigned to each red point and β > 0 to each blue point,
the goal is to partition the plane into districts so that the total weight (from both
sets) is equal. It turns out that the special case where α = 2 and β = 1 is particularly
relevant, and in particular, the authors show that for any configuration with total
weight 2p+ q = nω for some odd ω , the plane can be subdivided into n convex
regions of weight ω if and only if q ≥ n. They then give a recursive subdivision
scheme for generating the desired partition.
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The paper [28] interprets recursive partitioning in a creative way: given a pair
of planar convex regions A ⊆ B (a pizza), a partition is defined as a succession of
double operations: a cut by a full straight line, followed by a Euclidean move of one
of the resulting pieces; then the procedure is repeated. We seek a partition into n
districts so that each district contains the same amount of A and of B. The authors
prove that an equitable partition exists if and only if n is even.

4.5 Cake Cutting

Cake cutting, also called fair partitioning, is an economic concept in which the ob-
jective is to divide a resource among a group of n agents, each of whom has their own
utility density function fi(·) defined on the resource [16]. The goal is usually to di-
vide the resource into n pieces in such a way that each agent i receives their “favorite”
piece R j, i.e. the piece that maximizes their utility, given by argmax j

∫
R j

fi(x)dx.
Such a division is said to be envy-free, in the sense that no agent desires any other
agent’s piece; see Figure 4.11 for an example.

(a) (b)

Fig. 4.11: An envy-free division of R2 among n = 4 agents. We have 4 utility
density functions fi, represented here as atomic densities for visual clarity. In 4.11b,

the leftmost piece contains two units of one density ( ) and each of the other
pieces contains only one unit of that density. Therefore, the agent corresponding to
density prefers the left piece to any of the others. In this partition, it turns out

that each agent’s preferred piece can be uniquely assigned to that agent.

Cake cutting is the subject of an enormous volume of literature, although the
underlying geometry of the resource being divided is not usually taken into account;
typically one assumes thatR is the unit interval and the goal is to obtain an envy-free
subdivision that breaksR into as few pieces as possible. One exception is [31], which
shows that it is possible to break a disputed territory into connected pieces among
several other countries sharing a border with it in a proportional way. Recently, [47]
study the problem of cake cutting a rectangle or square. They demonstrate that even
guaranteeing mere proportionality – requiring that each agent receives at least 1/n
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of their total utility – is not guaranteed to exist when all pieces have to be squares or
fat rectangles, although they also demonstrate that a constant-factor approximation
to a proportional division is usually guaranteed to exist.

4.6 Equal Boundary Partitioning

A deceptively difficult problem originally posed on a blog in 2006 [37] is the
following: given a convex planar shapeR and an integer n, find a partition ofR into
n convex pieces so that all pieces have equal area and equal perimeter, or determine
that none exists. The problem as stated is still open, although it was proven in [14]
that the statement is true when n is a prime power via equivariant obstruction theory
(which [54] likened to firing a cannon at a sparrow).Note thatwhenwemerely require
that each piece have the same amount of the boundary of R, we are guaranteed an
affirmative result by the ham sandwich theorem. The paper [34] extends this analysis
to convex shapes in Rd .

4.7 Conclusions

As we have seen, for many practical districting problems, it may be desirable to for-
mulate the problems geometrically and then use a computational geometric method
to solve it, as opposed to a discrete combinatorial approach. Formulating an instance
of such a problem requires an intrinsically interdisciplinary approach, combining ele-
ments from computational geometry, geometric probability theory, and optimization.
Indeed, despite the obvious connection between geometry and operations research,
it seems that many simple and fundamental problems remain that have yet to be fully
understood.
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Chapter 5
Bounding Procedures and Exact Solutions for a
Class of Territory Design Problems

Juan A. Díaz, Dolores E. Luna, and María G. Sandoval

Abstract In this chapter, we present and evaluate exact methods and lower and upper
bounding procedures for a class of territory design problems. Most territory design
problems, as the one studied in this chapter, consider requirements of compactness,
contiguity and balance with respect to one or more activity measures, for example,
number of customers and sales volume in the case of commercial territories, voting
potential equality in the case of political territories, workload balance when design-
ing service territories, etc. To obtain solutions with compact territories, a minisum
objective function equivalent to the objective function of the p-median problem is
used. The exact solution methods presented here use different relaxations of integer
linear programming formulations of the problem. Additionally, two methodologies
to obtain upper bounds (feasible solutions) are presented. The first one uses the
relaxation of an integer quadratic programming formulation. The second method-
ology obtains feasible solutions using a primal heuristic within the framework of a
subgradient optimization algorithm to solve a Lagrangean dual, that also provides
lower bounds for the optimal solution. Instances obtained from the literature are used
to evaluate and compare the different methodologies presented.
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5.1 A Class of Territory Design Problems

Territory design problems consist of grouping small geographic areas, which are
known as basic units, into groups that are normally called districts in such a way
that they comply with a set of planning criteria. Among the most common planning
criteria, it is desired to have districts that are compact, contiguous and balanced
with respect to one or several activities (D’Amico et al. [4]). It is said that a district
is compact if its shape is roughly round, does not have holes nor is distorted. It is
considered that a district is contiguous if it is possible to travel between all the basic
units that compose it without having to leave the district. Finally, it is said that the
districts are balanced with respect to a certain activity measure, if their sizes are
similar. The first two characteristics, compactness and contiguity, help reduce the
travel times of the people who serve each district.

This type of problem can be applied in practice inmany situations. Some examples
are the design of electoral districts (Hojati [11], Ricca and Simeone [16]), school
districts (Caro et al. [3], Ferland and Guénette [8]), sales and commercial territories
(Ríos-Mercado and López-Pérez [18]), police districts (D’Amico et al. [4]), electrical
power districts (Bergey et al. [1]), territories to offer garbage collection services or
snow removal in winter (Muyldermans et al. [14], Tavares-Pereira et al. [20]), etc.
In some applications, such as in political districting, the criterion of contiguity is
mandatory. Examples of balance criteria, when designing commercial territories,
are demand volume, number of costumers, workload, etc. In the case of political
districting, balance criteria are population equality, satisfy the neutrality condition,
etc. [13]

Different approaches have been proposed in the literature to model and to find up-
per and lower bounds for the territory design problem. Also, different mathematical
expressions have been used to model the compactness, contiguity and balance char-
acteristics. Kalcsics [12] gives a broad overview of typical criteria and restrictions
used in several districting studies and presents different approaches to quantify and
model these criteria. Surveys can be found in both Kalcsics et al. [13] and in Ricca et
al. [15]. D’Amico et al. [4] study a police districting problemwhere the objectives are
the effective use of patrol cars and the workload balance between officers in different
districts. They model this problem as a constrained graph-partitioning problem and
propose a simulated annealing heuristic to provide feasible solutions to the problem.
Bozkaya et al. [2] study the political districting problem. They propose a model that
assigns weights to a set of criteria and a tabu search and adaptive memory heuristic
to find feasible solutions for the studied problem. Among the criteria used in their
model are: population equality, compactness and socio-economic homogeneity. Fer-
nández et al. [9] study a districting problem motivated by the recycling directive
WEEE (Waste Electrical and Electronic Equipment) of the European Union. The
problem studied in this research is different from classical territory design because
the territories should be as geographically dispersed as possible. They identify an
appropriate measure for the dispersion of a territory. Then, they present a mathemati-
cal programming model for the problem and a solution method based on the GRASP
methodology. Their computational results exemplify the suitability of the model and
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assess the effectiveness of the heuristic. Ríos-Mercado and Fernández [17] model
the problem as a vertex p-center problem with multiple capacity constraints and
propose a reactive GRASP algorithm to obtain feasible solutions for the problem.
The purpose of model the objective function as a p-center problem is to measure
territory dispersion. Ríos-Mercado and López-Pérez [18] present a heuristic based
on the iterative solution of a relaxed mixed integer linear programming problem.
Elizondo-Amaya et al. [7] model the problem using a p-center objective function
and develop a dual bounding scheme for a commercial territory design problem con-
sidering balance and compactness requirements. Their algorithm performs a binary
search over a set of radii extracted from the distances matrix and solves each of them
using a Lagrangian dual problem based on a maximal demand covering problem.
Hasse and Müller [10] study the sales force deployment problem that involves the
concurrent resolution of four interrelated sub-problems: sizing of the sales force,
sales representatives’ locations, sales territory alignment, and sales resource allo-
cation. Their objective is to maximize the total profit. They use a concave sales
response function and propose a model formulation with an infinite number of bi-
nary variables. The linear relaxation of the model is solved using column generation.
For the optimal objective function value of the linear relaxation, an upper bound is
provided and to obtain a tight gap for the objective function value of the optimal
integer solution they use a Branch-and-Price approach.

Salazar-Aguilar et al. [19] study a territory design problem with balance con-
straints associated with two different activity measures (number of customers and
sales volume) and connectivity constraints. They consider two different objective
functions to model territory compactness: a minisum objective and a minimax ob-
jective. When the minisum objective is used, the problem can be viewed as a p-
median problem with balance and connectivity constraints. On the other hand, when
the minimax objective is used, the problem can be viewed as a p-center problem
with balance and connectivity constraints. They propose several formulations for the
studied problems. These formulations include linear integer programming models
and also, quadratic integer programming formulations that involve a smaller number
of variables than the linear ones. They also introduce an exact solution framework
for this problem, that is based on branch and bound and a cut generation strategy.
Their method is empirically evaluated using several instances.

Díaz and Luna [5] study a relaxation of the territory design problemwith the min-
isumobjective studied in [19],where connectivity constraints are dropped. Therefore,
the solution of the relaxation studied in that work provide good feasible balanced
clusters that can be useful as a starting point for heuristic methods for the terri-
tory design problem with connectivity constraints. They include balance constraints
for two activities as measures of equality as those presented in different situations.
These balance constraints are used to model different equity measures commonly
presented in territory design problems. Some examples are population equality and
impartiality for political districting problems, workload balance for service district-
ing problems, revenue balance for electrical power districting problems, number of
customers assigned to commercial districts, etc. A Lagrangean relaxation scheme is
proposed to obtain lower bounds and a primal heuristic is proposed to obtain upper
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bounds for the problem. The heuristic procedure first provides feasible allocations
given a set of medians, and then improves the solutions using a median exchange
procedure. In [7] a similar relaxation with the minimax problem is presented.

In this chapter, we present methods to obtain lower and upper bounds for a
territory design problem with the following characteristics. A minisum objective
function based on the p-median dispersion measure is used to ensure compactness
in the solution. This solution must also satisfy both, connectivity constraints and
balance constraints with respect to two activity measures. First, the procedures
for obtaining feasible bounds or optimal solutions proposed in [19] are presented.
These procedures use relaxations of an integer linear programming model and an
integer quadratic programming model for the problem studied here. The Lagrangean
relaxation proposed in [5] to obtain bounds for the problem is also presented. Then,
we propose a methodology to obtain feasible bounds or optimal solutions for the
problem. We assess the quality of the solutions obtained by all methods using a set
of problem instances from the literature. According to the computational experience,
the methods proposed in this chapter provide very good quality solutions in very
competitive CPU times.

The rest of the chapter is organized as follows. Section 5.2 describes the problem
and presents the models for the problem studied in this chapter. Section 5.3 describes
procedures to find upper and lower bounds as well as exact solution methods for
the problem. Section 5.4 presents the computational experience to evaluate the
performance of the different methods. Finally, section 5.5 provides some concluding
remarks.

5.2 Problem Description and Mathematical Models

In this section, we present different formulations from the literature to represent
the class of territory design problems studied in this work. We now describe two
formulations for the territory design problem with compactness, connectivity and
balance constraints studied in this chapter. These models are proposed in [19]. Let
G = (V,E) be a graph with V = {1, . . . ,n} a set of basic units (BUs) and E a set of
edges representing adjacency between BUs. Also, let p be the number of territories
in which we wish to divide the set of BUs, and it is required that each BU is assigned
to only one territory. For each edge {i, j} ∈ E, di j denotes the distance between basic
units i and j. Also, let A be the set of activity measures, such as population, demand,
area, etc. For each j ∈ V and a ∈ A, wa

j , denotes the value associated to activity a
in node j. As it is impossible to have perfectly balanced territories with respect to
each activity a ∈ A, to model balance, a tolerance parameter τa for activity a is used.
This parameter measures the relative deviation from the average territory size with
respect to activity a ∈ A. The average for activity a is given by

µ
a = ∑

j∈V
wa

j/p.
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The single allocation of each BU to one of the p medians selected is associated
with a partition of the set of nodes V into p balanced clusters with respect to each
activity measure. Therefore, an allocation of nodes to the selected median nodes will
be feasible if, for each activity a ∈ A, the size of each cluster is between (1− τa)µa

and (1+ τa)µa. It is also required that for each i ∈ V and j ∈ V assigned to the
same territory, there exists a path between them totally contained in the territory in
order to achieve connectivity. Finally, to measure territory compactness a minisum
objective function based on the p-median problem is used. Therefore, the problem
studied in this chapter is to find a partition ofV in p territories according to planning
requirements of balancing and connectivity that minimizes the total sum of distances
between the medians and the BUs allocated to them.

5.2.1 Integer linear programming model

Now, we describe the integer linear model for the problem introduced in [19]. Let us
define Ni as the set of nodes adjacent to node i, this is:

Ni = { j ∈V : {i, j} ∈ E}, i ∈V

and let us define the following decision variables:

xi j =

{
1, if basic unit j is allocated to median i,
0, otherwise.

for all i, j ∈V .
Therefore the mixed integer linear model can be formulated as:

(TDPIP) min ∑
i∈V

∑
j∈V

di jxi j (5.1a)

subject to ∑
i∈V

xii = p (5.1b)

∑
i∈V

xi j = 1 j ∈V (5.1c)

∑
j∈V

wa
j xi j ≥ (1− τ

a)µaxii ∈V, a ∈ A (5.1d)

∑
j∈V

wa
j xi j ≤ (1+ τ

a)µaxii i ∈V, a ∈ A (5.1e)

∑
j∈
⋃

v∈S
(
Nv\S

)xi j−∑
j∈S

xi j ≥ 1−|S| i ∈V, S⊂
(
V \
(
Ni∪{i}

))
(5.1f)

xi j ∈ {0,1} i, j ∈V (5.1g)

The objective function (5.1a) minimizes the sum of the distances between each
BU and the location of the median it is allocated to. This objective function tries
to minimize dispersion which is equivalent to maximizing compactness. Constraint
(5.1b) assures the creation of exactly p territories. Constraints (5.1c) ensure that
each node is assigned to only one territory. Constraints (5.1d) and (5.1e) represent
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territory balance with respect to each activity measure as they establish that the
size of each territory must lie within the specified lower and upper bound of that
activity (measured by the tolerance parameter τa) around its average size µa. These
also assure that no BU is assigned to node i if i is not a median. Constraints (5.1f)
guarantee territory connectivity. They ensure that for any given subset S of BUs
assigned to center i, not containing BU i, there must be an arc between S and the set
containing i. These constraints are similar to the subtour elimination constraints in
the Traveling Salesman Problem. It is important to note, that there is an exponential
number of such constraints so they cannot be explicitly written out.

5.2.2 Lagrangean relaxation

Díaz and Luna [5] study the vertex p-median problem with balance constraints, that
is a relaxation of the TDPIP model previously presented, where the connectivity
constraints have been dropped. To obtain lower bounds for that problem they relax
the assignment constraints (5.1c) in a Lagrangean fashion as follows. Let λ ∈ R|V |
be the vector of Lagrangean multipliers associated with the assignment constraints
(5.1c). Then, the Lagrangean relaxation can be stated as:

(LR(λ )) minimize zLR(λ ) = ∑
i∈V

∑
j∈V

di jxi j + ∑
j∈V

λ j

(
1−∑

i∈V
xi j

)
subject to (5.1b), (5.1d), (5.1e) and (5.1g)

By dualizing the assignment constraints in a Lagrangian fashion, the problem
decomposes into |V | subproblems, one for each potential median node i ∈V . In [5]
a procedure is proposed to compute the optimal solution for LR(λ ). Then, they use a
subgradient optimization algorithm to solve the Lagrangean dual to find the best dual
bound for the problem. Also, within the subgradient procedure a primal heuristic is
used to find upper bounds for the optimal solution of the problem.

5.2.3 Integer quadratic programming model

The integer quadratic programming model introduced in [19] reduces the number of
binary variables from n2 to 2np. Let Q = {1,2, . . . , p} be the set of territory indices
and let:

z jq =

{
1, if basic unit j is allocated to territory q,
0, otherwise.

for all j ∈V,q ∈ Q, and
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yiq =

{
1, if basic unit i is the median of territory q,
0, otherwise.

for all i ∈V,q ∈ Q.
Then, the equivalence between the variables in the linear model and the variables in
the quadratic model is given by:

xi j = ∑
q∈Q

z jqyiq

Therefore, the integer quadratic programming model can be formulated as:

(TDPQIP) min ∑
q∈Q

∑
i, j∈V

di jz jqyiq (5.2a)

subject to ∑
i∈V

yiq = 1 q ∈ Q (5.2b)

∑
q∈Q

z jq = 1 j ∈V (5.2c)

z jq ≥ y jq q ∈ Q, j ∈V (5.2d)

∑
j∈V

wa
j z jq ≥ (1− τ

a)µa q ∈ Q, a ∈ A (5.2e)

∑
j∈V

wa
j z jq ≤ (1+ τ

a)µa q ∈ Q, a ∈ A (5.2f)

∑
q∈Q

∑
j∈
⋃

v∈S
(
Nv\S

)z jqyiq

− ∑
q∈Q

∑
j∈S

z jqyiq ≥ 1−|S| q ∈ Q, S⊂
(
V \
(
Ni∪{i}

))
(5.2g)

z jq ∈ {0,1} q ∈ Q, j ∈V (5.2h)
yiq ∈ {0,1} q ∈ Q, i ∈V (5.2i)

The TDPQIP (territory design problem based on quadratic integer programming)
model uses an equivalent dispersion measure to that of TDPIP model (see (5.2a)).
Constraints (5.2b) guarantee that there is only one median for each territory. Con-
straints (5.2c) assure that each BU is assign to only one territory. Constraints (5.2d)
establish that BU j cannot be the median of q if j is not assigned to q. According to
Proposition 2 in Domínguez and Muñoz [6], constraints (5.2b) and (5.2c) guarantee
the assignment, and therefore constraints (5.2d) are not needed. However, as in [19],
these are shown for model completeness. The set of constraints (5.2e) and (5.2f)
assure territory balance, in a similar way as in the TDPIP model. The quadratic con-
straints (5.2g) assures connectivity. Again, there is an exponential number of these
constraints.
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5.3 Solution Methods and Bounding Procedures

In this section, we describe the algorithmic approaches to solve or to find upper
and lower bounds for the Territory Design Problem. All solution methods described
consider relaxed formulations with respect to the connectivity constraints. The diffi-
culty to solve the formulations proposed in the previous section lies in the existence
of an exponential number of these constraints. When these constraints are relaxed,
clusters of nodes that satisfy the rest of the constraints (single assignment, balance
with respect to activity measures, etc.) are obtained from the optimal solutions of
the relaxed problem. To find out if these solutions also satisfy the connectivity con-
straints, a separation problem can be solved to verify if the graph induced by the set
of nodes of each cluster, contains a single connected component. When it does, the
optimal solution of the relaxed problem is also optimal for the TDP. Otherwise, a cut
generation procedure can be used to incorporate violated connectivity constraints
to the relaxed formulations associated with connected components whose node set
does not contain the median of their cluster. All connected components of the graph
induced by a cluster of nodes can be easily obtained with a deep-first search (DFS)
procedure. Let G = (V,E) be an undirected graph. The pseudocodes depicted in
Algorithms 1 and 2 detail how all connected components of a graph can be found.
Algorithm 1 describes a function to obtain all connected components of a graph
and Algorithm 2 shows a recursive procedure to traverse all nodes of a connected
component.

Algorithm 1 Procedure to find all connected components of a graph.
function FindConnectedComponents(G = (V,E))

Let Visitedv,v ∈V , be a boolean value which indicates if a node has been traversed,
and CC the set of nodes subsets associated to connected components of G
for all (v ∈V ) do

Visitedv := false
end for
CC := /0
for all (v ∈V ) do

if (not Visitedv) then
S := /0
DFS(G,v,Visited,S)

end if
CC :=CC∪{S}

end for
return CC

end function

We first describe the algorithmic approaches proposed in [19] where the linear
integer programming formulation TDPIP and the quadratic integer programming for-
mulation TDPQIP are used. Since both formulations contain an exponential number
of connectivity constraints, for each formulation of the problem, a relaxed formula-
tion is used where the connectivity constraints are relaxed, and these formulations
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Algorithm 2 Recursive procedure to traverse all nodes of a connected component.
procedure DFS(G,v,Visited,S)

Visitedv := true
S := S∪{v}
for all (u ∈V : {u,v} ∈ E) do

if (not Visitedu) then
DFS(G,u,Visited,S)

end if
end for

end procedure

are coupled with a cut generation procedure to iteratively identify and add violated
connectivity constraints in the optimal solution of the relaxed problem, until an op-
timal solution (or a local optimal solution if the quadratic programming formulation
is used) is obtained.

In the case of the linear integer programming formulation TDPIP, the authors
consider a relaxed formulation that only includes the connectivity constraints as-
sociated to subsets of BUs of size one (see constraints (5.3)). Authors comment,
that according to empirical tests, a very large proportion of unconnected optimal
solutions of the relaxed model, are associated to subsets of cardinality one.

(TDPIPR1 ) min ∑
i, j∈V

di jxi j

subject to ∑
i∈V

xii = p

∑
i∈V

xi j = 1 j ∈V

∑
j∈V

wa
j xi j ≥ (1− τ

a)µaxii i ∈V, a ∈ A

∑
j∈V

wa
j xi j ≤ (1+ τ

a)µaxii i ∈V, a ∈ A

∑
l∈N j

xil ≥ xi j i ∈V, j ∈V \
(
{i}∪Ni) (5.3)

xi j ∈ {0,1} i, j ∈V

In [19] they also consider a relaxation of the quadratic integer program formulation
TDPQIP where the connectivity constraints are relaxed.

If in TDPQIP, we relax the set of constraints (5.2g), that guarantee the connectivity
of the solution, the model can be solved to obtain a lower bound for the model
TDPQIP. The relaxed model can be reinforced by adding restrictions that do not
allow territories of size 1. That is:

∑
i∈N j

ziq ≥ z jq q ∈ Q, j ∈V
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This condition is satisfied if and only if wa
j < (1− τa)µa for each j ∈ V,a ∈ A,

and is true in this particular case because the data instances used to test the methods
in this chapter, always satisfy it. Then, the relaxed model can be formulated as:

(TDPQIPR) min ∑
q∈Q

∑
i, j∈V

di jz jqyiq

subject to ∑
i∈V

yiq = 1 q ∈ Q

∑
q∈Q

z jq = 1 j ∈V

z jq ≥ y jq q ∈ Q, j ∈V

∑
j∈V

wa
jz jq ≥ (1− τ

a)µa q ∈ Q, a ∈ A

∑
j∈V

wa
jz jq ≤ (1+ τ

a)µa q ∈ Q, a ∈ A

∑
i∈N j

ziq ≥ z jq q ∈ Q, j ∈V (5.4)

z jq ∈ {0,1} q ∈ Q, j ∈V

yiq ∈ {0,1} q ∈ Q, i ∈V

The solution method proposed in [19] can use both of the relaxations of the
problem mentioned above. It is an iterative procedure. At each iteration, one of
the relaxed problems is solved and the set of p clusters (territories), associated
to the optimal solution of the relaxed problem is obtained. Then, all connected
components, in the graphs induced by the set of nodes of each cluster, are identified.
Let C1,C2, . . . ,Cp be the set of the p node clusters obtained in the optimal solution
of the relaxed formulation, where m1,m2, . . . ,mp are the corresponding medians
of each of the p node clusters (that is, for each k = 1, . . . , p, xmk, j = 1 for each
j ∈Ck.) For each k,k = 1, . . . , p, we obtain the connected components of its respective
induced graph, Gk = (Ck,E(Ck)), were E(Ck) = {{i, j} ∈ E : i, j ∈Ck} and E =⋃

j∈V
{
{ j,k} : k ∈ N j

}
. Let S1, . . . ,St be the collection of node subsets associated to

the connected components identified in the induced graphs of the node clusters. If
node subset Su does not contain the median of its cluster (that is, for all j ∈ Su,xr j = 1
but r 6∈ Su, where r is themedian of the nodes in Su), then Su is a node subset associated
to a violated connectivity constraint, and it is added to the set S?, where S? contains all
node subsets associated to violated connectivity constraints in the optimal solution
of the relaxation considered. If S? = /0 the iterative procedure terminates, and the
optimal solution of the relaxed formulation is also optimal for the Territory Design
Problem. Otherwise, the connectivity constraints corresponding to each node subset
in S? are added to the relaxed formulation and the iterative procedure is restarted.
This procedure is depicted in Algorithm 3

We propose a procedure, that is similar to the one proposed in [19], to solve the
Territory Design Problem that uses the integer programming formulation TPDIP2 .



5 Bounding Procedures and Exact Solutions for a Class of Territory Design Problems 83

Algorithm 3 Algorithm proposed in [19] based on IP formulation.
function SolveT DP1(type)

repeat
if (type = IP) then

Solve TDPIPR1
else

Solve TDPQIPR
end if
Let x? be the optimal solution of the relaxed formulation
S? := /0
nc := 0
for all (i ∈V : x?ii = 1) do

nc := nc+1
mnc := i
Cnc := /0
for all ( j ∈V : x?i j = 1) do

Cnc :=Cnc∪{ j}
end for
S :=FindConnectedComponents(Gnc = (Cnc,E(Cnc))
for (u = 1, ..., |S|) do

if mnc 6∈ Su then
S? := S?∪{Su}

end if
end for

end for
if (S? 6= /0) then

for all (S ∈ S?) do
Add connectivity constraint associated to node subset S
to the relaxed formulation

end for
end if

until S? = /0
return x?

end function

It is an iterative approach. At each iteration, a relaxed formulation is used to find a
feasible solution with respect to constraints (5.1b)-(5.1e), (5.1g), and (5.5),

(TDPIPR2) min ∑
i, j∈V

di jxi j

subject to ∑
i∈V

xii = p

∑
i∈V

xi j = 1 j ∈V

∑
j∈V

wa
jxi j ≥ (1− τ

a)µaxii i ∈V, a ∈ A

∑
j∈V

wa
jxi j ≤ (1+ τ

a)µaxii i ∈V, a ∈ A
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xi j ≤ xii i, j ∈V (5.5)
xi j ∈ {0,1} i, j ∈V

Although constraints (5.5) are redundant for the integer programming formulation of
the problem, they provide lower bounds of better quality for the linear programming
relaxation of the problem. A procedure is used to find a feasible assignment of
nodes to the p medians obtained in the optimal solution of TPIPR2 , that also satisfy
connectivity constraints. Let M be the set of medians in the optimal solution of the
TPIPR2 . For this purpose the following assignment problem (AP) is considered,

(AP) min ∑
i∈M

∑
j∈V

di jxi j (5.6a)

subject to ∑
i∈M

xi j = 1 j ∈V (5.6b)

∑
j∈V

wa
jxi j ≥ (1− τ

a)µa i ∈M, a ∈ A (5.6c)

∑
j∈V

wa
jxi j ≤ (1+ τ

a)µa i ∈M, a ∈ A (5.6d)

∑
j∈
⋃

v∈S
(
Nv\S

)xi j−∑
j∈S

xi j ≥ 1−|S| i ∈M,

S⊂V \
(
Ni∪{i}

)
(5.6e)

xi j ∈ {0,1} i ∈M, j ∈V (5.6f)

Since there is an exponential number of constraint (5.6e), we consider the follow-
ing relaxation for the assignment subproblem,

(AssignmentRel) min ∑
i∈M

∑
j∈V

di jxi j

subject to ∑
i∈M

xi j = 1 j ∈V

∑
j∈V

wa
jxi j ≥ (1− τ

a)µa i ∈V, a ∈ A

∑
j∈V

wa
jxi j ≤ (1+ τ

a)µa i ∈V, a ∈ A

xi j ∈ {0,1} i ∈M, j ∈V

where connectivity constraints (5.6e) are removed from the formulation. A similar
iterative approach as the one used in Algorithm 3 is used to solve the assignment
problem. In each iteration the relaxed assignment problem is solved, and all violated
connectivity constraints are identified and added to the relaxed formulation until an
optimal assignment that satisfies connectivity constraints is found. Then, all violated
connectivity constraints identified to solve the assignment problem are also added
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to TPDIPR2 . As can be observed, the optimal solution of the assignment problem is
feasible for the TDP and can be used as an initial incumbent solution for TPDIPR2 in
the next iteration of the procedure. The use of an incumbent solution might help to
reduce the enumerative effort when solving the relaxed problem. Algorithms 4 and
5 detail the procedure used to find the optimal solution with the proposed procedure.

Algorithm 4 Algorithm based on IP formulation TDPIPR2 .
function SolveT DP2

Solve TDPIPR2
repeat

Let x? be the optimal solution of the relaxed problem
Assignment(x?,S?,xbest )
if (S? 6= /0) then

for all (S ∈ S?) do
Add connectivity constraint associated to node subset S to TDPIPR2
Solve TDPIPR2 using xbest as an incumbent solution

end for
end if

until S? = /0
return x?

end function

Finally, we also propose a procedure to find feasible solutions to the TDP prob-
lem. To accomplish this, we incorporate a procedure to find feasible assignments
with respect to the connectivity constraints, to the Lagrangean relaxation approach
proposed in [5]. Asmentioned in the previous section of this chapter, in this work, the
proposed Lagrangean relaxation is used to find lower bounds for the optimal solution
of the integer programming relaxation of TDPIP where the connectivity constraints
are dropped and the assignment constraints are relaxed in a Lagrangean fashion.
Also, in [5] a subgrandient optimization algorithm is used to solve the Lagrangean
dual. In some iterations of this procedure (those in which the lower bound improves)
a primal heuristic is executed to obtain feasible solutions. Since in [5], connectivity
constraints are not considered in the problem formulation, we apply the assignment
procedure described in Algorithm 5 to the set of medians associated with the best
feasible solution found by the primal heuristic of the subgradient optimization algo-
rithm. This allows to find a feasible assignment to the problem that also satisfy the
connectivity constraints.

In the next section we will describe a series of computational experiments that
allow to evaluate and compare the different methods described in this section.
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Algorithm 5 Algorithm to find a feasible assignment of nodes to medians.
procedure Assignment(x?,S?,xbest )

S? := /0
repeat

T ? := /0
nc := 0
for all (i ∈V : x?ii = 1) do

nc := nc+1
mnc := i
Cnc := /0
for all ( j ∈V : x?i j = 1) do

Cnc :=Cnc∪{ j}
end for
S :=FindConnectedComponents(Gnc = (Cnc,E(Cnc))
for (u = 1, ..., |S|) do

if mnc 6∈ Su then
T ? := T ?∪{Su}

end if
end for

end for
if T ? 6= /0 then

for all T ∈ T ? do
Add connectivity constraint associated to node subset T to
AssignmentRel

end for
S? := S?∪T ?

Solve AssignmentRel
Let x? be the optimal solution of AssignmentRel

end if
until T = /0
xbest := x?

end procedure

5.4 Computational Results

The purpose of this section is to present the results obtained from the computational
tests carried out with the methods described in the previous section. These results
will allow to evaluate and compare the behavior of each one of them. In particular,
we provide results concerning the quality of the lower bounds obtained with different
relaxations of the problem, the quality of the upper bounds obtained with methods
that do not guarantee solution optimality, and the computational effort required by
the exactmethods described, for the territory design problem studied. The considered
methods are the following:

• The exact procedure using the TDPIP1 formulation of the problem proposed
in [19].

• The exact procedure using the TDPIP2 formulation of the problem proposed in
this work.
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• The procedure to find feasible solutions of the problem that uses the TDPQIP
formulation of the problem proposed in [19].

• The procedure to find feasible solutions proposed in this chapter that uses the
Lagrangean relaxation proposed in [5] and finds a feasible assignment of BUs to
medians by solving an assignment problem.

With the exception of the method based on the quadratic programming formula-
tion proposed in [19], all methodologies were coded in FICO XPRESS optimization
suite 8.2 and executed in a computer with an Intel Xeon processor with an E3-1220
@3.1 GHz CPU and with 8GB in RAM. The results of the method that uses the
quadratic formulation were taken from [19] and, therefore, the execution times of
this method can not be compared with the execution times of the remaining methods
since they correspond to a different computer. These formulations were solved by
DICOPT, which is a non-linear mixed integer program solver.

We use the same set of test instances of the Territory Design Problem used in [19]
and in [5]. These test instances were generated by [19] using the instance genera-
tor developed by Ríos-Mercado and Fernández in [17] and are publicly available
at http://yalma.fime.uanl.mx/~roger/ftp/tdp. This instance generator is
based on real-world data provided by industry and contains 80 test instances divided
into five subsets of instances according to their size (|V |, p):

• (60,4): contains 20 instances with 60 BUs and p = 4.
• (80,5): contains 20 instances with 80 BUs and p = 5.
• (100,6): contains 20 instances with 100 BUs and p = 6.
• (150,8): contains 10 instances with 150 BUs and p = 8.
• (200,11): contains 10 instances with 200 BUs and p = 11.

We first comment on the quality of the lower bounds obtained with the different
methods described in section 5.3. Tables 5.1 to 5.5 show the lower bounds obtained
with the linear programming relaxations of TDPIPR1 and TDPIPR2 , and the lower
bounds provided by the Lagrangean relaxation approach proposed by [5] for groups
(60,4) to (200, 11), respectively . The data in these tables are:

• Column 1: Data instance name (Instance name).
• Column 2: Optimal solution of the instance (Optimal Value).
• Column 3: Lower bound provided by the linear programming relaxation of TDPIP1

(LB LP TDPIPR1 ).
• Column 4: Lower bound provided by the linear programming relaxation of TDPIP2

(LB LP TDPIPR2 ).
• Column 5: Lower bound provided by the Lagrangean relaxation approach (LB

LR).
• Column 6: percentage deviation of the lower bound obtained with the linear

programming relaxation of TDPIPR1 with respect to the optimal solution (gap
TDPIPR1 ).

• Column 7: percentage deviation of the lower bound obtained with the linear
programming relaxation of TDPIPR2 with respect to the optimal solution (gap
TDPIPR2 ).
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• Column 8: percentage deviation of the lower bound obtained with the Lagrangean
relaxation with respect to the optimal solution (gap LR).

As can be observed in Tables 5.1 to 5.5, the method that provides the best
lower bounds is the Lagrangean relaxation proposed in [5], followed by the lower
bounds obtainedwith the linear programming relaxation of TDPIPR2 . However, lower
bounds provided by the linear relaxation of TDPIPR1 are weak, since on average, the
percentage gap of the linear programming relaxation of TDPIPR1 with respect to
the optimal solutions are 185.85%, 196.51%, 206.56%, 212.06%, and 204.00%
for instance groups (60,4), (80, 5), (100, 6), (150, 8), and (200,11), respectively.
On the contrary, the average percentage gap of the linear programming relaxation
of TDPIPR2 with respect to the optimal solution are, respectively, 1.07%, 1.64%,
0.93%, 1.02%, and 1.15% for instance groups (60,4), (80, 5), (100, 6), (150, 8), and
(200,11), and the average percentage gap of the Lagrangean relaxation with respect
to the optimal solution are, respectively, 0.12%, 0.8%, 0.53%, 0.58%, and 0.68% for
instance groups (60,4), (80, 5), (100, 6), (150, 8), and (200,11).

Table 5.1: Lower bounds for (60,4) instances.

Instance Optimal LB LP LB LP LB gap gap gap
name Value TDPIPR1 TDPIPR2 LR TDPIPR1 TDPIPR2 LR

2DU60-05-1 5305.6 2030.6 5272.0 5297.4 161.28% 0.64% 0.15%
2DU60-05-2 5451.7 1898.5 5370.1 5439.5 187.16% 1.52% 0.22%
2DU60-05-3 5507.9 1806.9 5437.0 5497.7 204.82% 1.30% 0.19%
2DU60-05-4 5935.7 1952.3 5857.7 5935.3 204.03% 1.33% 0.01%
2DU60-05-5 5303.2 1610.5 5255.3 5303.0 229.30% 0.91% 0.00%
2DU60-05-6 5253.9 1757.9 5163.9 5228.6 198.88% 1.74% 0.48%
2DU60-05-7 5460.2 1997.1 5414.8 5459.5 173.41% 0.84% 0.01%
2DU60-05-8 5310.0 2110.9 5260.9 5309.7 151.55% 0.93% 0.01%
2DU60-05-9 5224.5 2066.1 5178.1 5222.4 152.87% 0.90% 0.04%
2DU60-05-10 5350.2 2087.3 5313.8 5348.1 156.32% 0.68% 0.04%
2DU60-05-11 5150.9 1901.4 5114.3 5142.1 170.90% 0.72% 0.17%
2DU60-05-12 5597.5 2026.4 5527.2 5587.0 176.23% 1.27% 0.19%
2DU60-05-13 5732.0 2097.1 5662.6 5731.2 173.33% 1.23% 0.01%
2DU60-05-14 5463.0 2294.9 5403.1 5461.9 138.05% 1.11% 0.02%
2DU60-05-15 5332.8 1932.4 5266.8 5331.8 175.97% 1.25% 0.02%
2DU60-05-16 5399.5 1866.7 5330.5 5368.7 189.25% 1.29% 0.57%
2DU60-05-17 5602.9 2194.2 5546.2 5602.0 155.35% 1.02% 0.02%
2DU60-05-18 5774.0 1786.3 5743.5 5773.8 223.24% 0.53% 0.00%
2DU60-05-19 5543.5 1512.7 5464.7 5526.4 266.47% 1.44% 0.31%
2DU60-05-20 5767.5 1754.9 5727.2 5767.2 228.65% 0.70% 0.01%
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Table 5.2: Lower bounds for (80,5) instances.

Instance Optimal LB LP LB LP LB gap gap gap
name Value TDPIPR1 TDPIPR2 LR TDPIPR1 TDPIPR2 LR

2DU80-05-1 6600.6 2268.1 6366.1 6405.8 191.02% 3.68% 3.04%
2DU80-05-2 6408.8 2223.8 6347.4 6408.4 188.19% 0.97% 0.01%
2DU80-05-3 6958.1 2402.6 6903.3 6957.4 189.61% 0.79% 0.01%
2DU80-05-4 6900.2 2249.2 6698.8 6743.4 206.78% 3.01% 2.32%
2DU80-05-5 6280.6 2087.1 6155.6 6234.4 200.93% 2.03% 0.74%
2DU80-05-6 6521.1 2112.5 6385.7 6493.3 208.69% 2.12% 0.43%
2DU80-05-7 6456.0 2125.7 6356.2 6415.9 203.71% 1.57% 0.62%
2DU80-05-8 6680.3 2102.0 6545.7 6639.5 217.81% 2.06% 0.61%
2DU80-05-9 6650.2 2314.9 6497.6 6513.3 187.28% 2.35% 2.10%
2DU80-05-10 6534.8 2483.5 6366.5 6401.4 163.13% 2.64% 2.08%
2DU80-05-11 6539.6 2281.5 6451.9 6522.5 186.63% 1.36% 0.26%
2DU80-05-12 6704.0 2174.6 6640.1 6694.3 208.29% 0.96% 0.14%
2DU80-05-13 6285.7 2136.4 6232.3 6262.2 194.22% 0.86% 0.38%
2DU80-05-14 6615.8 2263.2 6501.4 6559.2 192.32% 1.76% 0.86%
2DU80-05-15 6990.4 2364.5 6930.9 6981.9 195.64% 0.86% 0.12%
2DU80-05-16 6391.7 2120.4 6319.5 6372.7 201.44% 1.14% 0.30%
2DU80-05-17 6766.0 2490.2 6740.9 6754.7 171.70% 0.37% 0.17%
2DU80-05-18 6808.5 2248.6 6721.0 6772.1 202.79% 1.30% 0.54%
2DU80-05-19 6643.2 2044.9 6528.8 6598.0 224.87% 1.75% 0.68%
2DU80-05-20 6873.6 2328.9 6784.7 6831.8 195.15% 1.31% 0.61%

Table 5.3: Lower bounds for (100,6) instances.

Instance Optimal LB LP LB LP LB gap gap gap
name Value TDPIPR1 TDPIPR2 LR TDPIPR1 TDPIPR2 LR

2DU100-05-1 7370.1 2341.7 7228.2 7291.2 214.74% 1.96% 1.08%
2DU100-05-2 7278.5 2355.6 7198.0 7216.2 208.98% 1.12% 0.86%
2DU100-05-3 7512.3 2354.6 7448.9 7465.1 219.05% 0.85% 0.63%
2DU100-05-4 7581.6 2510.0 7520.8 7571.3 202.05% 0.81% 0.14%
2DU100-05-5 7609.5 2481.8 7523.2 7549.8 206.61% 1.15% 0.79%
2DU100-05-6 7243.0 2429.0 7182.5 7205.5 198.18% 0.84% 0.52%
2DU100-05-7 7432.7 2456.4 7415.5 7432.2 202.59% 0.23% 0.01%
2DU100-05-8 7052.9 2123.6 7029.8 7051.5 232.12% 0.33% 0.02%
2DU100-05-9 7181.5 2471.1 7111.2 7151.6 190.62% 0.99% 0.42%
2DU100-05-10 7432.9 2428.6 7388.2 7400.3 206.05% 0.61% 0.44%
2DU100-05-11 6829.5 2552.4 6783.2 6827.8 167.57% 0.68% 0.02%
2DU100-05-12 7461.2 2211.0 7444.3 7449.4 237.46% 0.23% 0.16%
2DU100-05-13 7061.6 2601.4 7045.9 7058.8 171.45% 0.22% 0.04%
2DU100-05-14 7825.6 2373.6 7818.5 7824.3 229.69% 0.09% 0.02%
2DU100-05-15 7158.7 2353.2 7101.1 7124.2 204.21% 0.81% 0.49%
2DU100-05-16 7653.2 2462.0 7529.9 7550.8 210.85% 1.64% 1.36%
2DU100-05-17 6880.5 2045.4 6748.6 6765.4 236.40% 1.95% 1.70%
2DU100-05-18 7438.5 2546.7 7336.2 7388.0 192.09% 1.39% 0.68%
2DU100-05-19 7238.1 2369.9 7135.3 7210.0 205.42% 1.44% 0.39%
2DU100-05-20 7590.1 2573.0 7503.4 7534.1 194.99% 1.16% 0.74%
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Table 5.4: Lower bounds for (150, 8) instances.

Instance Optimal LB LP LB LP LB gap gap gap
name Value TDPIPR1 TDPIPR2 LR TDPIPR1 TDPIPR2 LR

DU150-05-1 9511.8 3076.7 9427.0 9460.8 209.15% 0.90% 0.54%
DU150-05-2 9400.5 2939.1 9265.0 9335.8 219.85% 1.46% 0.69%
DU150-05-3 9134.6 2888.6 9089.7 9113.6 216.23% 0.49% 0.23%
DU150-05-4 9359.0 3114.6 9319.9 9342.2 200.49% 0.42% 0.18%
DU150-05-5 9506.6 2959.3 9456.0 9484.4 221.25% 0.53% 0.23%
DU150-05-6 9039.1 2960.2 8972.3 9038.7 205.35% 0.74% 0.00%
DU150-05-7 9854.7 2997.4 9702.1 9745.0 228.77% 1.57% 1.13%
DU150-05-8 9199.3 3173.7 8960.9 9014.0 189.86% 2.66% 2.06%
DU150-05-9 9670.9 2862.9 9561.8 9617.4 237.80% 1.14% 0.56%
DU150-05-10 9570.6 3279.7 9540.8 9555.8 191.81% 0.31% 0.15%

Table 5.5: Lower bounds for (200, 11) instances.

Instance Optimal LB LP LB LP LB gap gap gap
name Value TDPIPR1 TDPIPR2 LR TDPIPR1 TDPIPR2 LR

DU200-05-1 10422.0 3571.9 10331.5 10391.1 191.77% 0.88% 0.30%
DU200-05-2 10639.8 3516.8 10528.8 10576.0 202.55% 1.05% 0.60%
DU200-05-3 10837.9 3633.6 10759.5 10807.1 198.27% 0.73% 0.28%
DU200-05-4 11124.9 3546.5 10970.0 11047.0 213.69% 1.41% 0.71%
DU200-05-5 10874.5 3478.9 10727.5 10766.5 212.59% 1.37% 1.00%
DU200-05-6 10492.2 3731.0 10343.1 10390.5 181.22% 1.44% 0.98%
DU200-05-7 11020.9 3525.6 10848.7 10889.2 212.60% 1.59% 1.21%
DU200-05-8 10650.7 3484.5 10531.9 10580.5 205.66% 1.13% 0.66%
DU200-05-9 11431.3 3583.7 11281.5 11342.7 218.98% 1.33% 0.78%
DU200-05-10 11039.5 3647.2 10973.0 11006.6 202.68% 0.61% 0.30%

To evaluate the exact methods, in Tables 5.6 to 5.10 we show the results obtained
with the methods described in section 5.3: the exact method which uses the linear
integer programming relaxation TDPIPR1 , and the exact method that uses the linear
integer programming relaxation TDPIPR2 . In these Tables, the first two columns show,
respectively, the instance name, and the value of the optimal solution. Then, the next
two columns show, respectively, the CPU times (in seconds) of the method that uses
TDPIPR1 , and the method that uses TDPIPR2 . As can be observed, the method that
uses the integer programming relaxation TDPIPR2 , in general, obtains the optimal
solution of the instances in less time than that required by the method that uses the
integer linear programming relaxation TDPIPR1 . The average times needed to solve,
respectively, the (60, 4), (80, 5), (100, 6), (150, 8), and (200, 11) instances are 4.32,
32.25, 51.26, 351.94, and 1548.59 for the method that uses TDPIPR1 , and 0.90, 8.34,
12.61, 34.31, and 170.72 for themethod that uses TDPIPR2 . These times can be clearly
appreciated in Figure 5.1. The observed difference in the CPU times required by the
method based on relaxation TDPIPR2 may be due to the combination of two factors.
First, the lower bound of linear programming relaxation of TDPIPR2 are much better
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than those obtained with the linear programming relaxation of TDPIPR1 . Second, in
the instances in which it is required to add cuts associated with violated connectivity
constraints, an incumbent solution is at handwhen re-optimizing TDPIPR2 , that might
help to reduce the enumerative effort.

Fig. 5.1: CPU time (in seconds) exact methods.

Table 5.6: CPU time (in seconds) of exact methods for (60, 4) instances.

Instance Optimal CPU time CPU time
name Value TDPIPR1 TDPIPR2

2DU60-05-1 5305.6 4.03 0.55
2DU60-05-2 5451.7 4.16 0.92
2DU60-05-3 5507.9 5.76 1.65
2DU60-05-4 5935.7 3.41 0.35
2DU60-05-5 5303.2 2.20 0.38
2DU60-05-6 5253.9 5.69 3.18
2DU60-05-7 5460.2 2.84 0.34
2DU60-05-8 5310.0 2.19 0.42
2DU60-05-9 5224.5 1.83 0.31
2DU60-05-10 5350.2 2.58 0.35
2DU60-05-11 5150.9 2.80 0.60
2DU60-05-12 5597.5 7.60 1.13
2DU60-05-13 5732.0 3.32 0.52
2DU60-05-14 5463.0 3.51 0.67
2DU60-05-15 5332.8 4.01 0.69
2DU60-05-16 5399.5 13.91 2.43
2DU60-05-17 5602.9 1.88 0.39
2DU60-05-18 5774.0 3.76 0.37
2DU60-05-19 5543.5 6.66 2.28
2DU60-05-20 5767.5 3.32 0.41
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Table 5.7: CPU time (in seconds) of exact methods for (80, 5) instances.

Instance Optimal CPU time CPU time
name Value TDPIPR1 TDPIPR2

2DU80-05-1 6600.6 87.13 20.50
2DU80-05-2 6408.8 6.87 0.59
2DU80-05-3 6958.1 12.76 1.98
2DU80-05-4 6900.2 108.77 22.98
2DU80-05-5 6280.6 25.35 7.32
2DU80-05-6 6521.1 23.95 6.31
2DU80-05-7 6456.0 33.17 17.27
2DU80-05-8 6680.3 28.82 6.30
2DU80-05-9 6650.2 53.94 13.78
2DU80-05-10 6534.8 68.00 14.67
2DU80-05-11 6539.6 8.60 2.75
2DU80-05-12 6704.0 9.72 1.40
2DU80-05-13 6285.7 16.79 1.78
2DU80-05-14 6615.8 39.62 8.80
2DU80-05-15 6990.4 15.19 2.08
2DU80-05-16 6391.7 14.97 4.07
2DU80-05-17 6766.0 19.10 2.94
2DU80-05-18 6808.5 17.50 13.85
2DU80-05-19 6643.2 22.57 6.43
2DU80-05-20 6873.6 36.04 11.00

Table 5.8: CPU time (in seconds) of exact methods for (100, 6) instances.

Instance Optimal CPU time CPU time
name Value TDPIPR1 TDPIPR2

2DU100-05-1 7370.1 118.51 24.70
2DU100-05-2 7278.5 57.98 21.85
2DU100-05-3 7512.3 41.21 9.58
2DU100-05-4 7581.6 13.48 2.02
2DU100-05-5 7609.5 146.36 14.10
2DU100-05-6 7243.0 65.58 7.79
2DU100-05-7 7432.7 12.92 0.78
2DU100-05-8 7052.9 11.49 1.72
2DU100-05-9 7181.5 44.89 9.37
2DU100-05-10 7432.9 34.29 8.58
2DU100-05-11 6829.5 18.22 1.10
2DU100-05-12 7461.2 16.87 0.97
2DU100-05-13 7061.6 11.04 0.77
2DU100-05-14 7825.6 14.44 0.74
2DU100-05-15 7158.7 61.98 17.75
2DU100-05-16 7653.2 94.82 59.07
2DU100-05-17 6880.5 124.40 30.70
2DU100-05-18 7438.5 62.72 9.34
2DU100-05-19 7238.1 22.84 13.72
2DU100-05-20 7590.1 79.02 17.56
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Table 5.9: CPU time (in seconds) of exact methods for (150, 8) instances.

Instance Optimal CPU time CPU time
name Value TDPIPR1 TDPIPR2

DU150-05-1 9511.8 170.60 43.84
DU150-05-2 9400.5 373.44 133.94
DU150-05-3 9134.6 93.58 12.99
DU150-05-4 9359.0 116.21 19.89
DU150-05-5 9506.6 120.94 7.74
DU150-05-6 9039.1 55.03 6.57
DU150-05-7 9854.7 1295.88 112.94
DU150-05-8 9199.3 3666.36 158.65
DU150-05-9 9670.9 288.51 33.41
DU150-05-10 9570.6 102.87 4.52

Table 5.10: CPU time (in seconds) of exact methods for (200, 11) instances.

Instance Optimal CPU time CPU time
name Value TDPIPR1 TDPIPR2

DU200-05-1 10422.0 534.02 41.35
DU200-05-2 10639.8 2075.07 313.51
DU200-05-3 10837.9 415.29 43.17
DU200-05-4 11124.9 4075.79 383.36
DU200-05-5 10874.5 1588.46 203.92
DU200-05-6 10492.2 5632.98 194.01
DU200-05-7 11020.9 4456.03 964.35
DU200-05-8 10650.7 532.78 107.08
DU200-05-9 11431.3 4513.34 563.21
DU200-05-10 11039.5 522.67 65.98

Finally, the results obtained with the methods that provide feasible solutions (not
necessarily optimal), are shown in Tables 5.11 to 5.15. Since in [19] only the results
associated with the relaxation of the integer quadratic formulation of the problem
TPDQIPR are reported for the sets of instances (60, 4), (150, 8) and (200, 11), Tables
5.12 and 5.13 show only the results of the Lagrangean relaxation-based approach for
the instance sets (80, 5) and (100, 6). The values reported in these Tables are: Column
(1) shows the instance name, Column(2) depicts the optimal solution value, Columns
(3), (4), and (5) display, respectively, the value of the best upper bound, the CPU
time in seconds, and the gap of the upper bound with respect to the optimal solution,
for the Lagrangean relaxation approach. Finally, Columns (6), (7), and (8) show,
respectively, the value of the best upper bound, the CPU time in seconds, and the gap
of the upper bound with respect to the optimal solution, to the method that uses the
relaxation for the quadratic integer programming formulation. We observed some
inconsistencies in the values reported in [19] for some instances of size (150,8) and
(200,11). For example, for instance DU150-05-3, the optimal solution of TDPIPR1
is 9134.6 and the optimal solution reported in Salazar is 9125.6 for TDPIP and 9130
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for TDPQIP. The values reported in the table with n.a. correspond to test instance
DU150-05-3 where the optimal solution reported is smaller than the optimum of the
instance. As can be observed, the Lagrangean relaxation provides good upper bounds
for the optimal solution of the problem. The average relative gaps for this method
are, 0.03%, 0.05%, 0.04%, 0.05%, and 0.09% for the (60, 4), (80, 5), (100, 6), (150,
8), and (200, 11) instances, respectively. Also, the optimal solution is obtained in 53
out of the 80 test instances. According to the result shown in Tables 5.11, 5.14, and
5.15, the procedure that uses TDPQIPR relaxation obtains the optimal solution 8 out
of the 40 test instances reported in [19]. Average relative gaps are 2.74%, 3.10%, and
5.07% for the (60, 4), (150, 8), and (200, 11) instances, respectively. In Figure 5.2,
it is observed that CPU times are very small for TDPQIPR relaxation for instances
up to 150 BUs an p = 8, but they have a significant increase for test instances with
200 BUs and p = 11. On the contrary, the growth of CPU time as the size of the
instances increases is much more moderate for Lagrangean relaxation.

Table 5.11: Methods to find feasible solutions for (60, 4) instances.

Instance Optimal Lagrangean Relaxation TDPQIPR
name Value UB CPU time gap UB CPU time gap

2DU60-05-1 5305.6 5305.6 41.80 0.00% 5305.6 2.00 0.00%
2DU60-05-2 5451.7 5463.4 61.54 0.22% 5463.0 2.00 0.21%
2DU60-05-3 5507.9 5507.9 106.75 0.00% 5553.0 2.00 0.82%
2DU60-05-4 5935.7 5935.7 5.54 0.00% 6114.0 6.00 3.00%
2DU60-05-5 5303.2 5303.2 3.54 0.00% 5303.2 2.00 0.00%
2DU60-05-6 5253.9 5257.9 48.33 0.08% 5280.0 3.00 0.50%
2DU60-05-7 5460.2 5460.2 10.99 0.00% 5855.0 3.00 7.23%
2DU60-05-8 5310.0 5310.0 33.59 0.00% 5314.0 2.00 0.08%
2DU60-05-9 5224.5 5224.5 13.52 0.00% 5224.5 3.00 0.00%
2DU60-05-10 5350.2 5350.2 16.70 0.00% 6140.0 2.00 14.76%
2DU60-05-11 5150.9 5150.9 54.84 0.00% 5152.0 2.00 0.02%
2DU60-05-12 5597.5 5597.5 89.30 0.00% 5705.0 2.00 1.92%
2DU60-05-13 5732.0 5732.0 24.38 0.00% 5732.0 3.00 0.00%
2DU60-05-14 5463.0 5463.0 41.71 0.00% 5869.0 2.00 7.43%
2DU60-05-15 5332.8 5332.8 78.26 0.00% 5759.0 2.00 7.99%
2DU60-05-16 5399.5 5399.5 75.94 0.00% 5499.0 2.00 1.84%
2DU60-05-17 5602.9 5602.9 8.90 0.00% 5602.9 2.00 0.00%
2DU60-05-18 5774.0 5774.0 11.83 0.00% 6299.0 4.00 9.09%
2DU60-05-19 5543.5 5564.0 42.52 0.37% 5543.5 2.00 0.00%
2DU60-05-20 5767.5 5767.5 6.07 0.00% 5767.5 2.00 0.00%
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Table 5.12: Methods to find feasible solutions for (80, 5) instances.

Instance Optimal Lagrangean Relaxation
name Value UB CPU time gap

2DU80-05-1 6600.6 6601.1 91.60 0.01%
2DU80-05-2 6408.8 6408.8 10.51 0.00%
2DU80-05-3 6958.1 6958.1 68.89 0.00%
2DU80-05-4 6900.2 6900.2 114.39 0.00%
2DU80-05-5 6280.6 6281.6 110.03 0.02%
2DU80-05-6 6521.1 6521.1 136.36 0.00%
2DU80-05-7 6456.0 6456.0 81.26 0.00%
2DU80-05-8 6680.3 6680.3 118.74 0.00%
2DU80-05-9 6650.2 6650.2 103.26 0.00%
2DU80-05-10 6534.8 6534.8 125.32 0.00%
2DU80-05-11 6539.6 6559.9 50.47 0.31%
2DU80-05-12 6704.0 6704.0 81.69 0.00%
2DU80-05-13 6285.7 6287.2 57.08 0.02%
2DU80-05-14 6615.8 6615.8 102.43 0.00%
2DU80-05-15 6990.4 6990.4 61.65 0.00%
2DU80-05-16 6391.7 6391.7 110.29 0.00%
2DU80-05-17 6766.0 6771.0 60.47 0.07%
2DU80-05-18 6808.5 6808.5 105.66 0.00%
2DU80-05-19 6643.2 6643.2 103.31 0.00%
2DU80-05-20 6873.6 6915.6 116.03 0.61%

Table 5.13: Methods to find feasible solutions for (100, 5) instances.

Instance Optimal Lagrangean Relaxation
name Value UB CPU time gap

2DU100-05-1 7370.1 7370.1 114.06 0.00%
2DU100-05-2 7278.5 7278.5 101.51 0.00%
2DU100-05-3 7512.3 7512.3 83.41 0.00%
2DU100-05-4 7581.6 7581.6 137.69 0.00%
2DU100-05-5 7609.5 7609.5 134.33 0.00%
2DU100-05-6 7243.0 7243.0 97.69 0.00%
2DU100-05-7 7432.7 7432.7 23.32 0.00%
2DU100-05-8 7052.9 7052.9 71.33 0.00%
2DU100-05-9 7181.5 7181.5 107.97 0.00%
2DU100-05-10 7432.9 7442.0 72.54 0.12%
2DU100-05-11 6829.5 6829.5 59.90 0.00%
2DU100-05-12 7461.2 7461.2 18.32 0.00%
2DU100-05-13 7061.6 7061.6 23.64 0.00%
2DU100-05-14 7825.6 7825.6 16.76 0.00%
2DU100-05-15 7158.7 7170.4 99.78 0.16%
2DU100-05-16 7653.2 7657.8 121.97 0.06%
2DU100-05-17 6880.5 6890.6 107.37 0.15%
2DU100-05-18 7438.5 7438.5 90.23 0.00%
2DU100-05-19 7238.1 7238.1 165.35 0.00%
2DU100-05-20 7590.1 7612.8 84.00 0.30%
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Table 5.14: Methods to find feasible solutions for (150, 8) instances.

Instance Optimal Lagrangean Relaxation TDPQIPR
name Value UB CPU time gap UB CPU time gap

DU150-05-1 9511.8 9511.8 177.35 0.00% 9979.0 9.00 4.91%
DU150-05-2 9400.5 9400.5 287.86 0.00% 9509.0 29.00 1.15%
DU150-05-3 9134.6 9135.6 182.41 0.01% n.a. n.a. n.a.%
DU150-05-4 9359.0 9385.2 134.22 0.28% 9646.0 30.00 3.07%
DU150-05-5 9506.6 9506.6 225.50 0.00% 10494.0 42.00 10.39%
DU150-05-6 9039.1 9039.1 88.17 0.00% 9088.0 25.00 0.54%
DU150-05-7 9854.7 9869.7 224.73 0.15% 10017.0 29.00 1.65%
DU150-05-8 9199.3 9199.4 225.95 0.00% 9550.0 34.00 3.81%
DU150-05-9 9670.9 9673.6 188.62 0.03% 9972.0 28.00 3.11%
DU150-05-10 9570.6 9570.6 154.71 0.00% 9794.0 26.00 2.33%

Table 5.15: Methods to find feasible solutions for (200, 11) instances.

Instance Optimal Lagrangean Relaxation TDPQIPR
name Value UB CPU time gap UB CPU time gap

DU200-05-1 10422.0 10422.0 439.37 0.00% 11523.0 28.00 10.56%
DU200-05-2 10639.8 10648.6 344.58 0.08% 11425.0 966.00 7.38%
DU200-05-3 10837.9 10837.9 291.56 0.00% 11443.0 7200.00 5.58%
DU200-05-4 11124.9 11139.4 352.33 0.13% 11443.0 3618.00 2.86%
DU200-05-5 10874.5 10878.6 350.59 0.04% 11097.0 1193.00 2.05%
DU200-05-6 10492.2 10494.0 361.49 0.02% 10746.0 1871.00 2.42%
DU200-05-7 11020.9 11051.6 372.39 0.28% 11682.0 1088.00 6.00%
DU200-05-8 10650.7 10657.3 263.27 0.06% 11205.0 592.00 5.20%
DU200-05-9 11431.3 11456.9 302.86 0.22% 11648.0 1263.00 1.90%
DU200-05-10 11039.5 11049.2 353.57 0.09% 11780.0 2349.00 6.71%
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Fig. 5.2: CPU time (in seconds) for Lagrangean relaxation and TDPQIPR.

5.5 Final Remarks

In this chapter, different methodologies are presented to obtain optimal or feasible
solutions and lower bounds for a class of territory design problems. The class of
territory design problems studied in this chapter, considers different requirements:
compactness, contiguity, and balanced constraints with respect to one or more ac-
tivity measures. Different models and solution procedures from the literature are
presented and also, new exact and approximated solution methods are proposed. The
exact method is based on the formulation proposed in [19]. The exact algorithm uses
a relaxation of an integer linear programming formulation of the problem, where
the connectivity constraints are relaxed (because there is an exponential amount of
them). This formulation is strengthened by using constraints that, although redun-
dant, allow obtaining lower bounds of higher quality for the linear relaxation of
the relaxed problem. Additionally, a cut generation procedure is utilized to obtain
feasible solutions that can be used as incumbent solutions that may help reduce the
enumerative effort.

Langragean relaxation has been extensively used in the field of location problems
to find good quality dual bounds. The approximate method proposed in this chapter
is based on [5] where only compactness and balance constraints were considered.
In that algorithm, feasible solutions for the problem were obtained with a primal
heuristic within the subgradient optimization procedure. The method proposed in
this chapter also includes the connectivity constraints. Therefore, violated connec-
tivity constraints are added to the assignment problem iteratively until a feasible
assignments that also satisfy connectivity constraints is obtained.

Today, there are more efficient optimization software tools that allow the develop-
ment of methodologies such as the one proposed in this chapter. These technologies
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lead to the development of solution methods where it is required to solve several
mathematical programming subproblems in a more efficient way.
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Chapter 6
Mathematical Programming Formulations for
Practical Political Districting

Federica Ricca and Andrea Scozzari

Abstract Political Districting is a very well known technical problem related to
electoral systems in which the transformation of votes into seats depends on the
subdivision of the national electoral body into a given number of smaller territorial
bodies. After a proper discretization of the territory, the problem consists of partition-
ing the territory into a prefixed number of regions which satisfy a set of geographic
and demographic criteria. The problem structure falls back into the one of the more
general Territory Design problem, which arises also in other types of applications,
such as school and hospital districting, sales districting, etc.. In the application to
political elections, the aim is to prevent districts’ manipulation which may favor the
electoral outcome of some specific party (Gerrymandering). Many Political Dis-
tricting models and procedures have been proposed in the literature since the 60’s
following different optimization strategies. Among them, many exploit mathematical
programming which is one of the most used tools to solve problems in practice. The
attractive feature of mathematical programming is that the model is easy-to-read, its
resolution can be automated, and good compromise solutions can be computed in
reasonable computational time for small and medium size problems.

6.1 Territory Design for Political Districting

The literature on Political Districting (PD) is wide and diversified, and in the last 50
years a variety of models and algorithms have been provided to face this problem
through an optimization solution approach [9, 23, 25]. PD is one of the many appli-
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cations of the more general Territory Design (TD) problem. Other applications can
be found in a variety of real-life problems, such as, the design of school and hospital
districts, the regionalization of a territory for transportation service purposes, sales
districting, and so on (see, [4,13]). In all these contexts the territory is viewed as a set
of small land parcels (counties, townships, wards, zip code areas, census tracts), that
we call elementary (territorial) units, and each of them is characterized by a weight
(referring to residents, clients, workloads). Whatever the meaning of the weights,
the broad goal of TD is to obtain a set of districts as balanced as possible w.r.t.
their weight (i.e., the sum of the weights of the units in the district) by collecting
together contiguous territorial units. We will discuss contiguity and the other typical
PD criteria in detail later. From now on we focus on Territorial Design for PD even
if, during the presentation, references to papers dealing with the TD problem in other
contexts will frequently appear.

This chapter is not meant to be a comprehensive review on mathematical pro-
gramming formulations for PD, for which task previous contributions were already
published [23, 25]. It was rather thought as a focus on particular modeling aspects
arising in PD for the formulation of special criteria. As we will see, particular atten-
tion will be dedicated to the contiguity criterion, that plays a central role in PD, trying
to give the reader an organized and systematic presentation of the main contributions
in the literature on this aspect.

The PD application has attracted the interest of the researchers since the 60’s
under two main aspects. On the one hand, it is always a challenge to find efficient
and practical solution procedures that may be adopted to automate PD for supporting
the institutional process at the basis of the political election. On the other hand, the
focus is on which are the PD criteria that must be always taken into account, and
which, on the contrary, should be applied only in very special cases, as happens, for
example, for communities’ integrity that may be required in countries where different
ethnical/cultural communities coexist. For both types of criteria suitable modeling
tools should be addressed. When implementing these criteria in a mathematical
model, also the choice of an appropriate measure becomes an important issue in
order to obtain a fair PD.

We study PDmodels assuming that the territory is divided into n elementary units.
In this discretized territory each unit can be identified by its (geographical) center,
so that it is possible to compute distances from center to center. We also consider
a graph-theoretic model for the territory that can be represented as a connected n-
node graph G = (N,E), where the nodes correspond to the elementary units and an
edge between two nodes exists if and only if the two corresponding territorial units
are neighboring (i.e., they share a portion of boundary). The graph G is generally
known as the contiguity graph. This was introduced by many authors independently
in the 70’s (see, [2,29]) to represent the structure of the territory, but it was frequently
adopted together with a road graph that can be overlapped to G to compute exact road
distances instead of referring to bird’s flight distances. The nodes of the contiguity
graph G are weighted with the population of the corresponding territorial units,
while the weights of the edges represent distances between any two adjacent units.
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The basic criteria for PDare four, namely, integrity, contiguity, population balance
(or population equality), and compactness. They can be stated formally as follows:

• Integrity - Each territorial unit cannot be split between two or more districts.
• Contiguity - The units of each district should be geographically contiguous, that

is, one can walk from any point in the district to any other point of it without ever
leaving the district.

• Population balance (or population equality) - All districts should have the same
portion of representation (according to the one person-one vote principle); in
particular, single-member districts should have nearly the same population.

• Compactness - Each district should be compact, that is, closely and neatly packed
together (Oxford Dictionary). Thus, a round-shaped district is deemed to be
acceptable, while an octopus- or an eel-like one is not.

The first two criteria are in fact strict conditions that must be satisfied in order
to obtain districts that correspond to single land parcels collecting a subset of the
elementary territorial units, without creating districts with holes or isolated parts.

Contiguity of the districts means that in each district one can walk for a point to
another without leaving the district. It is a common geographical requirement in TD
that unlikely can be ignored. Non contiguous districts are formed by more than one
portion of land separated by a land belonging to a different district. Since all TD
problems are motivated by the idea of improving the management of an activity by
distributing it over the territory, it is evident that non-contiguity must be avoided.
Similar arguments hold for the integrity criterion that, after the discretization of the
territory into n population units, requires that the population of a single unit is never
split between two electoral districts.

It is particularly difficult to deal with these criteria to the point that many of
the models proposed in the literature do not include them formally, and the authors
suggest checking integrity and contiguity a posteriori. This generally implies the
need of operating manually on the district map to restore contiguity. As we will see
in the following sections, a main issue in the formulation of the PD problem via
mathematical programming is precisely how to model the contiguity constraints. We
will discuss this aspect extensively in the second part of Section 6.3.

In the specific PD problem imposing contiguity is alsomeant as a first step towards
compactness of the districts. Compactness refers to the shape of the districts, and it
is evident that it is strictly related to contiguity, since hardly a district can be judged
compact if it is not contiguous. Nevertheless, it must be also clear that in a district
map in which contiguity holds, districts may be strongly non compact (for example,
elongated districts are contiguous but, obviously, non compact). Compactness is a
basic criterion for TD problems in general, but it is particularly important in PD
for its ability to control malpractices aimed at designing biased electoral districts.
It is difficult to handle, due to the wide variety of interpretations and possible
measurements of compactness of a shape in general, as well as, to the difficulty in
applying the geometrical notion of compactness to the articulated shapes of real
territories. Including compactness (in any form) among the performance criteria of
a PD model may be useful to prevent districts’ manipulation, since a gerrymandered
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district is typically non compact because it is the result of collecting together people
voting for the same party distributed in different parts of the territory. It must be
also noticed that, even if compactness may help in pursuing contiguity, it does not
guarantee contiguous districts, and the role of the two criteria should be maintained
separate in a PD model. Contiguity is in fact a structural property of the district
map, and it has to be imposed as a hard constraint. On the other hand, an index
of compactness typically suits the objective function, so that it can be improved as
much as possible in the optimization process.

Let n = |N| be the total number of territorial units and 1 < k < n the total number
of districts, we denote by pi the population resident in territorial unit i, i = 1, . . . ,n,
and by P =

n
∑

i=1
pi the total population of the territory; di j denotes any distance

measure between unit i and unit j. The average district population is given by P̄ = P
k .

The PD problem can be formulated as finding a partition of the n units into k districts
according to a set of suitable criteria.

The above four criteria are considered mandatory in the formulation of the PD
problem, and they are generally included in PDmodels. Population equality and com-
pactness are optimization criteria, which, in a mathematical programming approach,
can be pursued in two ways, by modeling them either in the objective function, or as
target constraints. This is what was actually done in the different models proposed
in the literature, both in the first published papers on PD and in the more recent
publications.

There are other criteria that can be also included in a PDmodel. One is conformity
to administrative boundaries (or, shortly, administrative conformity), which prevents
already existing official or normative territorial regions, which are formed by more
than one elementary territorial unit (such as, counties or states), to be split between
two electoral districts. It is also applicable in re-districting, when it is deemed
important to maintain as much as possible the structure of the previous district
map, while rebalancing the districts’ population that typically changes over the years
for demographic reasons. Another important (geographical) criterion is the respect
of natural boundaries, which is useful in countries, like Italy, where the territory
is characterized by many rivers, mountains and lakes that represent obstacles for
the actual reachability of the territorial units in the same district. The above two
criteria are seldom considered in PD. Since it is difficult to manage many aspects in
the same model, these two criteria are frequently sacrificed to privilege population
equality and compactness. In fact, including all criteria in a mathematical program
may result in an intractable model. In spite of this, it must be pointed out that the
use of a graph-theoretic representation of the territory can help in managing this
situations. Arguments similar to those already explained for guaranteeing integrity
and contiguity can be addressed here. For example, the presence of a river or a lake
in the common border of two territorial units i and j is a barrier that can be modeled
directly in this graph representation. In fact, even if the territories of the two units
are adjacent, in the contiguity graph it suffices to remove edge (i, j) to overcome the
problem. Broad discussions about political districting criteria can be found in many
papers, such as in [3, 9, 13].
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There are other PD criteria which are seldom considered, since they apply only
in special situations and because there is no global consensus on their legitimacy.
This is the case of representation of ethnic minorities and respect of integrity of
communities that, in fact, can be singled out when the population of a territory is
composed by different cultural or ethnic groups of citizens. The aim in this context
is to maintain communities as much intact as possible in order to guarantee the
right of any community present on the territory to be represented in the Parliament.
Differently from the classical PD criteria, there is a number of reasons that make it
difficult even to formulate the mathematical constraint to model community integrity
correctly. Actually, even if the principle of representation of the minorities can be
accepted, it may be difficult to implement a correct interpretation of the principle in
themathematical model, and the taskmay be still more difficult (and lessmeaningful)
when many different communities exist that cannot be considered the same (and,
therefore, cannot be merged together in the same district). This happens, for example,
in the USA, where in the same territory many communities may coexist (Hispanic,
African, etc.), and integrity must be maintained for all of them without merging
together any two of them. Another important issue, widely discussed in the literature,
is the legitimacy of the principle itself, about supporting the representation of these
communities, and how this could be done. For a more detailed discussion about
this, see, for example, [9, 16, 30, 32]. In our opinion, integrity of communities can
be applied when there is a single type of minority group, with a specific territorial
configuration, well defined through geographic proximity of people belonging to the
community. This happens for example inMexicowhere the political representation of
the Indigenous community is a problem on the Government Agenda which was also
studied in many papers on PD published in the recent years (see, for example, [6]).

6.2 Mathematical Programming for Political Districting

The use ofMathematical Programming is a common practice in applications inwhich
a quantitative approach is adopted to solve real-life problems. PD is one of these
problems and the first models proposed in the literature for its solution are in fact
mathematical programs (see Section 6.3). The success ofmathematical programming
resides in the fact that the formal model which represents the problem is easy-to-read
(even if, of course, it is not as much easy to model the problem correctly). This is
particularly important for PD in order to interact with politicians and lawmakers,
who may feel comfortable with this kind of approach, also agreeing on the idea of
solving the technical problem in a rigorous and efficient way, instead of proceeding
by hands. In fact, this is what nowadays still happens in many countries, in spite of
the extremely advanced and efficient technologies that are available for automated
problem solving. Many criteria can be easily formulated through suitable algebraic
constraints. But in real-life problems some conditions may require some additional
effort to be modeled in this way, and it is possible that their correct formulation
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leads to a final model which is difficult to solve. This is the case of the contiguity
constraints in PD, that we will discuss extensively in the following sections.

Relying on a correct and possibly concise model, guarantees that in principle
the problem can be solved exactly. Unfortunately, how much efficient is the solution
process depends on the theoretical computational complexity of the problem. The
typical situation in the general case is a computationally hard problem, but, if the
size of the problem instance is not too large, the exact solution may be obtained. In
the mathematics of electoral systems we already have examples. Problems related
to seat allocation on the basis of the vote outcome of an election are of this type.
For example, Biproportional apportionment problems can be formulated as Integer
or Mixed Integer Linear Programs and can be solved efficiently at optimum even if
the variables of the model are binary [20,24,25,27]. For PD the difficulty is related
to the integer decision variables and depends on the size of the territory under study.
There are several cases in which the territory is small, i.e., after its discretization,
the number of its territorial elementary units is small. In this case the problem can
be solved easily. For medium size problems an efficient solution can be obtained
using powerful computers that, thanks to the fast improvement of technology in
the years, today allows solving in reasonable time problems that, for their size, were
prohibitive ten or twenty years ago. Some stratagems can be adopted to face large PD
problems. One is to provide a first division of the territory into a set of subterritories,
and then solve PD separately on these subterritories. This is for example the case
of Italy, where the already existing division of the national territory into the Italian
Administrative Regions is generally taken as a pre-existing subdivision which is
exploited to facilitate the formation of the districts [22, 26]. In any case, due to the
computational complexity of the problem, one cannot guarantee that it can be always
solved to optimality, and, in some cases, a suboptimal solution must be accepted.
Mathematical programming formulations help also in this case, since one possibility
for solving a computationally difficult problem is to exploit the algebraic model in
order to set an efficient heuristic or an approximated solution algorithm.

It must be also pointed out that, besides the traditional PD criteria, there are others
whichmust be adopted only in some specific situations, as, for example, guaranteeing
representation for cultural minorities and indigenous communities.

An additional advantage of mathematical programming is that it provides tools
that may be used in a modular fashion, in the sense that the basic structure of the PD
model can be set, but variants may be suggested by inserting or removing part of the
constraints referring to specific requirements. As before, to avoid huge computational
times, this approach can be followed with a little foresight on implications on the
number of constraints and variables that are included in the final model. We will
discuss this point in Section 6.3.2.
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6.3 Mathematical Programming Formulations for Political
Districting: Milestone Models and Recent Advances

In this section we first illustrate some papers that are considered milestones in the
literature on PD, since they introduced formulations of PD which represented the
starting point for many other authors. In the following years, some variants and new
models were provided to be applied to real-life PD problems of different countries.
We then focus on other, more recent, mathematical programming models for PD that
we deem interesting especially for the different ways they suggest for tackling the
contiguity constraints.

All the models refer to the formation of k single member districts for which equal
population is required to guarantee fair representation. Integer and mixed integer
optimization is applied, and the same kind of variables are generally used. Typically,
there are two approaches to formulate PD: i) all the n elementary units can be the
center of one of the k districts; ii) a set of k labels out of the n are selected a priori, and
territorial units corresponding to such labels are fixed as the centers of the k districts.
The two versions of the problem are generally referred to as the non centered and
the centered PD problem, respectively. In the first case, the decision variables of the
models are xis, i,s= 1, . . . ,n, i 6= s, referring to the possibility of a unit i to be assigned
to a center s (xis = 1) or not (xis = 0); xss, s = 1, . . . ,n is used to indicate whether
unit s is selected by the model as a center (xss = 1) or not (xss = 0). Following the
typical notation of facility location models, some authors adopt fractional variables
0 ≤ xis ≤ 1 i,s = 1, . . . ,n, to measure the fraction of population of unit i which is
assigned to district s; then (binary) indicator variables ys s = 1, . . . ,n are considered
for deciding whether unit s is selected as a center (ys = 1) or not (ys = 0). When the
center units are fixed in advance, the set of units N is partitioned a priori into two
subsets, one for the centers, and another for units that are not centers. We denote
them by S and U respectively, so that we have S∪U = N, S∩U = /0, with |S|= k,
|U |= n− k.

6.3.1 Classical PD formulations

The study of PD through mathematical programming can be dated back to the early
60’s, whenWeaver and Hess published their first work on this topic [31]. In a second
paper, Hess et al. presented their PD model and solution approach more formally,
and published it in an Operations Research (OR) journal [10]. It is worth noting that,
in the same years, Hess and Samuels published another paper on territory design
but applied to sales districts [11]. The approach suggested in these papers basically
proposes to adapt techniques for warehouse location-allocation problems to PD. The
years that followed were characterized by a rich production of OR papers on PD.

The paper by Hess et al. [10] is generally considered as the earliest paper applying
OR, and, in particular, mathematical programming techniques, to PD. Let n be
the total number of territorial units and k the number of districts, the problem is
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formalized as a discrete location problem. The idea is to identify k units representing
the centers of the k districts, so that each territorial unit must be assigned to exactly
one district center. The model has n2 binary variables, xis, i,s = 1, . . . ,n: for i 6= s,
xis is equal to 1 when unit i is assigned to center s, and 0 otherwise; the variable xss
is equal to 1 whenever unit s is chosen as one of the centers. The political districting
model is the following:

min
n

∑
i=1

n

∑
s=1

d2
is pi xis (6.1a)

subject to
n

∑
s=1

xis = 1 i = 1, . . . ,n (6.1b)

n

∑
s=1

xss = k (6.1c)

aP̄xss ≤
n

∑
i=1

pi xis ≤ bP̄xss s = 1, . . . ,n (6.1d)

xis ∈ {0,1}, i,s = 1, . . . ,n (6.1e)

where pi is the population of unit i, dis is the distance between unit i and center
s, and a and b are the minimum and the maximum allowable district population
fractions, calculated as a percentage of the average district population P̄. The first
n constraints (6.1b) mean that each unit must belong exactly to one district. The
next one (6.1c) imposes that the total number of districts is exactly k. The last group
of 2n constraints (6.1d) refers to the upper and lower bounds on district population
imposed to control population balance. The objective function (total inertia) is a
measure of compactness.

Due to the computational complexity of the above problem, a solution is found
heuristically by applying an iterative procedure that, in fact, relies on a different
model, i.e., a transportation model with continuous variables. At each iteration the
procedure performs the following steps: 1) makes a guess for the k district centers;
2) solves a transportation problem to form districts with population exactly equal to
P̄ and assigns units to such districts at minimum cost (the assignment cost of unit i
to district centered in s is given by d2

is); 3) adjusts the solution of the transportation
problem by assigning any split unit i entirely to the district to which the largest quota
of its population was already assigned; 4) computes the centroids of the current
districts to update the district centers to be used in the next iteration. Steps 1)-4) are
repeated until the centers do not change in two successive iterations.

The above solution approach has twomain drawbacks. The first one is that solving
the transportation problem at step 2 generally implies that units are split between
two or more districts. In fact, step 3 is included to restore integrity of the districts.
The second problem is that the contiguity of the districts is neither modeled in the
integer program (6.1a)-(6.1e), nor it is considered in the heuristic solution procedure.
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This obviously requires an a posteriori revision for spatial contiguity. In addition,
we observe that the theoretical convergence of the procedure is not guaranteed.

In spite of the above problems, [10] has always been considered as a seminal paper
in mathematical programming applied to PD, and it has traced the starting point of
a long and wide literature production on this subject. An example is the paper by
Hojati [12] who, starting from [10], developed an alternative approach based on a
capacitated facility location model. The author suggests a three-phase procedure, in
which Phase 2 corresponds to the one given in [10]. Actually, instead of adopting
an iterative strategy based on successive adjustments, the centers are located only
once at the beginning of the procedure and this choice is permanent. This, in fact,
corresponds to changing from a non centered to a centered version of the problem.
The author introduces a mixed integer warehouse location model aimed at locating
the k district centers on the basis of the Euclidean distances dis. The model is the
following:

min
n

∑
i=1

n

∑
s=1

d2
is pi xis (6.2a)

subject to
n

∑
s=1

xis = 1 i = 1, . . . ,n (6.2b)

n

∑
i=1

pi xis = P̄ys s = 1, . . . ,n (6.2c)

n

∑
s=1

ys = k (6.2d)

xis ≤ ys i,s = 1, . . . ,n (6.2e)
0≤ xis ≤ 1 i,s = 1, . . . ,n (6.2f)
ys ∈ {0,1} s = 1, . . . ,n (6.2g)

A Lagrange relaxation of the model is derived and it is solved by a subgradient
optimization algorithm. The solution of the above program provides the k districts
centers to be used in Phase 2. When, after the solution of the transportation problem,
there are split territorial units (i.e., units fractionally assigned to more than one
center), the author introduces the Split ResolutionProblem (SRP)which is formulated
as a graph-theoretic model. Actually, he takes into consideration the subgraph of
the transportation graph whose vertices are given by the split units on one side,
and by those centers to which some split units have been (partially) assigned, on
the other side. The author shows that SRP is NP-hard by a reduction from the
Partition Problem [7], and suggests an heuristic procedure to solve SRP (Phase 3
of his procedure) based on the solution of a sequence of capacitated transportation
problems defined over a suitable modified network (see, for details [12]). Notice
that, applying this heuristic does not guarantee integrity of territorial units but only
reduces as much as possible the number of split ones. It must be also pointed out
that, as in [10], also Hojati does not consider the contiguity criterion, so that non
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contiguous district maps may arise in the final solution, requiring additional effort
to fix this problem.

In 1970, Garfinkel and Nemhauser also proposed a two-phase procedure which
models and solves PD via a set partitioning approach [8]. Phase 1 generates the set
J of feasible districts that are actually considered in Phase 2 when formulating the
set partitioning model. The set J includes only contiguous districts that satisfy some
requirements related to population balance and compactness. A value α ∈ [0,1] is
fixed as the maximum tolerance on the absolute deviation of each district population
from P̄, and district s is feasible only if |Ps− P̄|≤ α P̄. The same tolerance α is used
again in Phase 2 in the formulation of the objective function of the set partitioning
model. The districts included in J are also feasible w.r.t. compactness, according to
an index based on both the maximum distance between two territorial units in the
district and the district area, whose value should be less than or equal to a fixed
threshold β . Compactness is taken into account only in the first phase.

Phase 1 applies an implicit enumeration strategy to find all the feasible solutions
to include in J. A contiguity graph G is adopted to represent the territory and the
district generation is performed via a tree-search on G. Starting from an arbitrary
node (unit), subtrees (which correspond to districts) are formed by including in the
district under construction nodes adjacent to some other nodes already in the district.
This is performed until the district population becomes feasible w.r.t. the threshold
value αP̄. Checks are made periodically to avoid formation of enclaves, that is,
groups of units that remain isolated after the construction of the current district.

In Phase 2 the following model is formulated to select from J a set of k districts
that covers each population unit exactly once and minimizes the overall deviation of
district populations from P̄:

min ∑
s∈J

fs xs (6.3a)

subject to ∑
s∈J

ais xs = 1 i = 1, . . . ,n (6.3b)

∑
s∈J

xs = k (6.3c)

xs ∈ {0,1} s ∈ J (6.3d)

where xs = 1 if district s ∈ J is chosen and xs = 0 otherwise. The ais, i = 1, . . . ,n,
s = 1, . . . , |J| are the typical coefficients of a set covering or partitioning problem
where ais = 1 if unit i is in district s and ais = 0 otherwise.

Coefficient fs is given by the absolute value of the ratio between the deviation of
the population of district s, Ps, from the average district population P̄ ad a fraction α

of P̄,α ∈ [0,1], i.e., fs = (|Ps− P̄|)/(α P̄), and it is introduced to optimize population
balance in the objective function of the model. Due to the computational complexity
of the set partitioning problem, implicit enumeration is applied also for solving the
problem of Phase 2.
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Other authors followed the approach in [8], such as Merhotra et al. [15] who still
use a set partitioning approach, but adopt a different objective function in order to
take into account also compactness of the overall district map.

6.3.2 Recent and new ideas for PD modeling

In this section we consider only the four basic criteria for PD and refer to a PD
model based on a contiguity graph G. Different models have been proposed in
the recent literature on PD according to the specific way one chooses to manage
population balance and compactness, but in all cases, relying on a connected graph
G, guarantees that integral and contiguous districts can be found by searching for a
connected partition of G. In fact, the weakness of PD models illustrated in Section
6.3.1 is that they do not consider contiguity explicitly. On the contrary, in this
section we will see how contiguity can be handled in the model through appropriate
algebraic constraints. As already discussed by Duke et al. for TD [5], there are three
main approaches for modeling contiguity in a mathematical program: i) tree-based;
ii) order-based; iii) flow-based. All approaches were in fact followed bymany authors
who studied TD in general, but interesting formulations were provided in particular
for PD. In i) the feasibility problem is formalized as finding a spanning forest of G,
and each district corresponds to a subtree in the forest. The model requires cycle
preventing constraints analogous to those adopted in the mathematical formulation
of theMinimumSpanning Tree problem of a graph, or those used to avoid subtours in
the Traveling Salesmen Problem. The tree-based models are therefore characterized
by a big number of constraints which grows rapidly as the number n of territorial units
increases. This implies that this kind of formulation cannot be usefully adopted in
practice even for small size problem instances (n≤ 50, see [5]). For this reason, in the
present paper we do not discuss this approach, but focus on the other two. According
to ii), contiguity of a district is guaranteed by following a specified order to include
a unit in a district: such order implies that unit i can be assigned to a district centered
in s either if i is adjacent to s, or if there exists a unit j adjacent to i already assigned
to the same district. The big number of order constraints which arise in this case
can be reduced according to different strategic rules that simplify the problem at the
beginning. Adopting these rules implies that the final solution is not guaranteed to be
optimal w.r.t. the original model, but remains meaningful for PD and can be obtained
in reasonable computational times for up to medium size problems. Finally, in iii)
the existence of the underlying contiguity graph has naturally suggested the idea of
exploiting network flow constraints for modeling contiguity in a PD mathematical
program. In this case, the graph G must be preliminary directed in the ordinary way
obtaining a network G = (N,A) in which an edge of G connecting nodes i and j is
replaced in G by a pair of arcs (i, j) and ( j, i). The rationale behind the model is to
consider a different flow for each district to be formed, with the condition that any
two different flows cannot use the same arc.
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In the following, we focus our attention on the two approaches ii) and iii) and
discuss different mathematical programming models for contiguous PD. As we will
see, different model variants can be considered to solve optimally PD problems of
small size, while additional strategies and techniques can be addressed to efficiently
obtain contiguous district maps also for larger size instances.

Flow-based contiguous PD models

In [28] Shirabe models the topological property of a contiguous district via a set
of flow constraints which are able to enforce the property independently of other
possible constraints that may be included in the mathematical program. The set
of contiguity constraints is formulated for a single district, but can be replicated k
times in the model when there are k > 1 districts to be formed. Starting from this
structural set of constraints, a PD model can be obtained by suitably modeling also
population equality and compactness. In the following, we first illustrate how the
set of contiguity constraints is formulated in [28] for a single district, and then we
report on some specific PD models suggested in the same work which attracted our
interest.

The set of constraints to form a single contiguous district proposed by Shirabe
takes into account the condition that a maximum allowable number m of territorial
units can be included in the district. In the network flow approach each node of
the network G has a supply of one unit of flow. Then, the district is identified as a
subgraph of G with a specific node serving as a sink, which receives one unit of flow
from every other node of G that is included in the district. The demand of the sink
node is bounded by a parameter m. A first set of variables is given by xi, i = 1, . . . ,n
which is equal to 1 if units i is included in the district under formation, and 0
otherwise; variables wi, i = 1, . . . ,n are also included in the model to decide whether
unit i is the sink of the district (wi = 1) or not (wi = 0). In addition, flow variables
yi j ≥ 0 indicate the amount of flow on arc (i, j) ∈ A. The set of flow constraints
proposed in [28] for the formation of a single contiguous district is the following:

∑
j|(i, j)∈A

yi j− ∑
j|( j,i)∈A

y ji ≥ xi−mwi i ∈ N (6.4a)

∑
j|( j,i)∈A

y ji ≤ (m−1)xi i ∈ N (6.4b)

∑
i∈N

wi = 1 (6.4c)

xi ∈ {0,1} i ∈ N (6.4d)
wi ∈ {0,1} i ∈ N (6.4e)
yi j ≥ 0 (i, j) ∈ A (6.4f)
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The first group of constraints (6.4a) controls the net inflow at node i, either when
i is the sink, or when it is simply a unit which was included in the district under
formation. When i is the sink of the district, we have wi = xi = 1 and the constraint
becomes:

∑
j|( j,i)∈A

y ji− ∑
j|(i, j)∈A

yi j ≤ m−1

Since the outflow ∑
j|(i, j)∈A

yi j of a sink i is 0, the constraint actually limits the inflow

of the sink by a maximum of m−1 and, in this case, this constraint is the same as
the corresponding one for the sink i in the second group (6.4b). The second group
of constraints, in fact, bounds above by (m− 1) the incoming flow of any node i
included in the district (xi = 1). When i is in the district, but it is not the sink node
(xi = 1, wi = 0), the constraint of the first group requires that the net outflow of i
is at least one (i.e., the unit supply of i). If i is not in the district (xi = 0), the flow
constraints altogether impose that no flow passes through i. Notice that the second
group of flow constraints also models the condition that flow cannot reach node i
if unit i is not included in the district (dependency of variables y ji from xi). Then
constraint (6.4c) guarantees that only one node in the district plays the role of the
sink. The remaining constraints specify the nature of the model variables.

We note that in the above formulation any node in N may play the role of the sink
to which the flow is directed. Therefore, it must be pointed out that in this model
the sink is not necessarily a central node of the district. In spite of this, when in PD
the centers of the districts are suitably fixed before districting, they can be adopted
as the sinks of the model. For a given center (sink) s, the previous set of constraints
becomes:

∑
j|(i, j)∈A

yi j− ∑
j|( j,i)∈A

y ji = xi i ∈ N, i 6= s (6.5a)

∑
j|( j,i)∈A

y ji ≤ (m−2)xi i ∈ N, i 6= s (6.5b)

∑
j|( j,s)∈A

y js ≤ (m−1) (6.5c)

xi ∈ {0,1} i ∈ N, i 6= s (6.5d)
xs = 1 (6.5e)
yi j ≥ 0 (i, j) ∈ A, i 6= s (6.5f)
ys j = 0 j ∈ N,(s, j) ∈ A (6.5g)

Since the sink node is known, the flow constraints (6.5a) are specialized for i 6= s,
and for the units that belong to the district they impose that the net outflow in i is
exactly equal to 1.

When the PD problem is centered, i.e., there is a set S of units fixed in advance
as the centers of the k districts, the above set of constraints (6.5a)-(6.5g) can be
embedded in aMixed Integer Linear Program (MILP) that also takes into account the
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other PD criteria. Considering compactness in the objective function, and bounding
the population of each district from below and above, [28] provides the following
model where the set of decision variables extends to xis, i = 1, . . . ,n, s = 1, . . . ,k,
which are equal to 1 if unit i is assigned to district s and 0 otherwise. In this case the
model becomes a multi-commodity flow in which there are k different types of flow,
one for each district. Then, also the flow variables are extended to yi js which is the
amount of flow related to district s passing through arc (i, j) ∈ A. The model is the
following:

min ∑
s∈S

∑
i∈N

disxis (6.6a)

subject to ∑
j|(i, j)∈A

yi js− ∑
j|( j,i)∈A

y jis = xis s ∈ S, i ∈U (6.6b)

∑
j|( j,i)∈A

y jis ≤ (ms−2)xis s ∈ S, i ∈U (6.6c)

∑
j|( j,s)∈A

y jss ≤ (ms−1) s ∈ S (6.6d)

∑
i∈N

pixis ≥ (1−α)P̄ s ∈ S (6.6e)

∑
i∈N

pixis ≤ (1+α)P̄ s ∈ S (6.6f)

xis ∈ {0,1} s ∈ S, i ∈U (6.6g)
xss = 1 s ∈ S (6.6h)
xs′s = 0 s,s′ ∈ S, s 6= s′ (6.6i)
yi js ≥ 0 s ∈ S, i, j ∈U (6.6j)
yiss ≥ 0 s ∈ S, i ∈U (6.6k)

where dis is the distance between unit i and center s, while α is the maximum allow-
able absolute deviation from the average district population. The flow constraints are
exactly the same as in (6.5a)-(6.5g), but here they are replicated k times, one for each
center s ∈ S. The population balance constraints (6.6e) and (6.6f) follow, together
with some conditions on assignment variables that guarantee that a center unit s is
always assigned to itself, and it is never assigned to a district centered in a s′ 6= s.

For the sake of simplicity, in the above model we did not report an additional
set of constraints on variables yi js which are considered in [28]. Such constraints
impose that the flow from a center s′ to another center s adjacent to s′ is equal to 0.
In a PD model, they can be discarded if one guarantees that, during the selection of
the district centers, any two centers are never located on adjacent nodes of G. This
is a common rule in PD since the selection of the centers is generally based on a
maximum dispersion criterion (see, for example, [22]).

Variants of the model can be obtained by swapping the role of compactness and
population equality in the model, or formulating compactness in a different way (for
details, see [28]).
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We observe that in model (6.6a)-(6.6k) population balance constraints are com-
bined with bounds on the maximum number of flow units which may reach the sink
of a district (ms). In real-life applications it must be payed attention to the fact that
this may lead to infeasible models, depending on the values of the input parameters
ms, s ∈ S, the actual population of the units, pi, i = 1, . . . ,n, and the value of α .
To illustrate this point, consider the simple example in which n = 10 and k = 2,
with P̄ = 10 and populations of the 10 units given by 9,2,1,1,1,1,1,1,1,1. Let
m1 = 3, m2 = 7, with α = 0.05. In this case, to satisfy population balance, the unit
with population equal to 9 would be forced to stay alone in a district. Therefore, the
second district would include all the other units (9 units). This is obviously a non
feasible solution, since the model allows including in a district at most m2 = 7 units.
This simple example shows that, even if it is true that the contiguity flow constraints
proposed in [28] can be embedded in any MILP formulation of PD, a prudent choice
of the above parameters must be performed to guarantee model feasibility.

We also observe that another possible variant of model (6.6a)-(6.6k) can be
obtained for the case in which the number of territorial units to be included in a
district is not limited above. This can be done by setting ms = n−k+1 for all s ∈ S.
Notice that, in this case, feasibility problems discussed above do not hold any more.

In [5] different Integer and Mixed Integer Linear Programs for the general TD
problem with exactly p districts (called p-regions problem) are provided, with a
focus on the different possibilities for modeling contiguity. In particular, one of them
proposes a variant of the contiguity constraints provided in [28]. They still consist
of a set of flow constraints, but with a slight difference in how the flow is controlled
over the network. The model does not take into account population balance, and
considers compactness in the objective function which is given by the sum of the
distances between all pairs of units belonging to the same district. For the sake of
comparison, in the model formulation that follows we adopt the same notation as in
the previous illustrated models. We denote the total number of districts by k instead
of p that is used in [5]. We also continue to denote by xis the assignment variables to
decide whether unit i is assigned to district centered in s or not, and by yi js the flow
related to district s passing through arc (i, j). The new variables ti j introduced by [5]
to model the objective function are binary and are set to 1 if units i and j belong to
the same district, and 0 otherwise. This makes it possible to model a linear objective
function in the variables ti j.

The mathematical program is the following:

min ∑
i∈N

∑
j∈N: j>i

di jti j (6.7a)

subject to ∑
s∈S

xis = 1 i ∈ N (6.7b)

wis ≤ xis s ∈ S, i ∈ N (6.7c)

∑
i∈N

wis = 1 s ∈ S (6.7d)
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∑
j|(i, j)∈A

yi js− ∑
j|( j,i)∈A

y jis

≥ xis− (n− k)wis s ∈ S, i ∈ N (6.7e)
yi js ≤ xis(n− k) s ∈ S, i ∈ N, j|(i, j) ∈ A (6.7f)
yi js ≤ x js(n− k) s ∈ S, i ∈ N, j|(i, j) ∈ A (6.7g)
ti j ≥ xis + x js−1 s ∈ S, i, j ∈ N, j > i (6.7h)
xis ∈ {0,1} s ∈ S, i ∈ N (6.7i)
wis ∈ {0,1} s ∈ S, i ∈ N (6.7j)
ti j ≥ 0 i, j ∈ N, j > i (6.7k)
yi js ≥ 0 s ∈ S, i ∈ N, j|(i, j) ∈ A (6.7l)

Variables ti j are in fact integer, but this has not to be imposed explicitly in the model,
since it is implied by the set of constraints (6.7f)-(6.7h) and by the minimization of
the objective function.
In this model, the sink nodes are not fixed in advance, so that variables wis (i =
1, . . . ,n;s = 1, . . . ,k) are necessary to model the choice of the sinks. Since k districts
must be formed, the implication wis ≤ xis for any pair i and s must be included in the
model to guarantee that a unit that is chosen as the sink of district swill be necessarily
assigned to s. The flow constraints are similar to those in [28], but not exactly the
same, since in the first group (6.7e) ms is replaced by (n− k+ 1), for all s ∈ S. In
fact, this corresponds to not bounding the maximum number of territorial units in
a district at all, leaving the possibility that all units but k− 1 are included in one
single district (as happened in our previous example). The remaining k−1 would be
the centers of the remaining districts. The other two groups of constraints (6.7f) and
(6.7g) involving the flow variables are a different way to model the dependency of
yi js from xis. Thus, in the model, the flow on the arcs of G is not bounded above, but
the presence of these constraints, and of those related to the dependency between ti j
and xis and x js, together with the minimization of the objective function, guarantees
that only the strictly necessary quantity of flow passes through the arcs.

The fact that no population balance constraints are included, makes the model
slimmer than for example (6.6a)-(6.6k). This implies that the computational times re-
ported in [5] are underestimated if one wants to understand howmuch time is needed
to solve optimally a real-life PD problem by using a general-purpose optimization
software to solve this model.

Order-based PD contiguous models

As already discussed before in this section, contiguity constraints can be modeled
in different ways. In the following we illustrate how to formulate contiguity via
order constraints for a PD problem in which the centers of the districts are fixed in
advance. We start from the models proposed in [1] and [14] where the authors apply
mathematical programming to the problem of partitioning a tree T = (N,E) into



6 Mathematical Programming Formulations for Practical Political Districting 115

k connected components, each including exactly one center. Since the underlying
graph is a tree, contiguity of the districts can be explicitly formulated by a polynomial
number of order constraints. The idea is that in a tree contiguity can be accomplished
by imposing that if unit i is included in the district centered in s, then all units in T
lying in the unique path Pi,s from i to s must be included in the same district as i. The
model has O(n2k) order constraints in total. This can be further improved to O(nk)
if one imposes order constraints on successive adjacent nodes in Pi,s and exploits
transitivity, thus obtaining the following set of constraints:

xis ≤ x j(i,s),s i ∈U, s ∈ S, (i,s) /∈ E (6.8)

xis ∈ {0,1} i ∈U, s ∈ S. (6.9)

where the binary variables xis have the same meaning as before, and j(i,s) is the
label of the node j adjacent to i in the unique path from i to s. In the above papers the
objective function is a linear function of the assignment variables, with coefficients
given by a cost function c : U×S→ℜ which associates a cost cis to each pair (i,s),
i ∈U , s ∈ S. These are in fact flat costs, that is, costs independent of the topology of
the underlying graph.When the samemodel is formulated with a cost metric function
the problem can be solved in strongly polynomial time even if the input graph is
arbitrary (for details, see [1]). Additional theoretical results on the computational
complexity of this problem are provided in [1], showing that the problem becomes
intractable when the cost function is not a metric. One result states that, when ci j
are flat costs, the problem is NP-complete even if c is monotone and the input graph
is bipartite. A second result is related to the capacitated version of the problem in
which a weight is associated to each node of the graph, and the sum of the weights
of the nodes in each class of the partition is bounded above and below. In [14] it is
shown that this problem is NP-complete on 2-spider trees even if c is a metric cost
function.

The above results become relevant for PD applications when the model objective
function is based on flat costs, or when population balance is imposed by lower and
upper bounds on the district populations; in the latter case the PDmodel corresponds
to the capacitated version of the partitioning problem studied in [1] and [14]. From
the above discussion a positive result is that, when the costs aremetric and no capacity
(population balance) constraints are included in the model, the problem is easy to
solve on general graphs. Both in [1] and in [33] it is in fact stated that an optimal
solution can be obtained in this case simply by assigning each territorial unit to its
closest center. Unfortunately, in PD applications, where the graph G representing
the territory is typically a planar graph, population balance is a main criteria which
must be included in the model.

We now present a PD formulation which exploits order constraints for modeling
contiguity and includes population balance. The objective function is a measure of
compactness based on distances dis, i ∈U , s ∈ S.

Consider the contiguity graph G = (N,E), with N =U ∪S. For a given s ∈ S, let
Ts be the tree rooted at s and formed by the minimum cardinality paths from any
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i ∈U to s; denote by Es the set of its edges. We consider a tree Ts for each s ∈ S.
Basing on these trees, for every unit i and center s we can compute univocally the
distance dis as the cardinality of the (unique) path form i to s in Ts. The PD problem
is then formulated as follows:

min ∑
s∈S

∑
i∈U

p j d2
is xis (6.10a)

subject to ∑
i∈N

pixis ≥ (1−α)P̄ s ∈ S (6.10b)

∑
i∈N

pixis ≤ (1+α)P̄ s ∈ S (6.10c)

∑
s∈S

xis = 1 i ∈U (6.10d)

xis ≤ x j(i,s),s i ∈U, s ∈ S, (i,s) /∈ Es (6.10e)

xis ∈ {0,1} i ∈U, s ∈ S (6.10f)

In spite of its computational difficulty, the advantage of this formulation is that it takes
into account all the basic PD criteria. In addition, using the trees Ts, s ∈ S, contiguity
can be formulated by introducing in the model only a polynomial number of order
constraints (O(nk), the same number needed when G is a tree). The hard constraints
in the model are the ones related to population balance (6.10b) and (6.10c). The
solution approach is then to perform a Lagrange relaxation of these constraints. The
resulting model has a flat cost objective function and includes only assignment and
order constraints. It is then possible to show that an equivalent formulation of the
relaxed model as a vertex packing with continuous variables can be obtained. A
straightforward solution of a continuous vertex packing can be found by bringing the
model back to a network flow one, and then solving it through techniques proposed
in [17,18]. Here we do not report all the details of thesemodels, which, in fact, are the
subject of a work in progress finalized to their application to real-life PD problems.
The aim is to understand how much the computational time to solve practical PD
can be reduced via this kind of approach, and which levels of population balance
and compactness of the districts can be reached [21].

To conclude this section, we point out that a similar approach was proposed by
Zoltners and Sinha some years ago for the sales territory alignment problem [33].
Even if their model arises in a different application context, it is applicable also to
PD, since all the basic PD criteria are taken into account. The model by Zoltners
and Sinha fits the PD application when there is just one type of attribute associated
to each territorial unit and it is specific of this unit and independent of the districts.
In the model, the attribute of unit i is measured by a weight ai, i = 1, . . . ,n that
may correspond to different types of weigh associated to i (the number of residents,
of clients, etc.). In the application to PD we have ai = pi. Even if more than one
theoretical model is presented in [33], results are provided in particular for the one
which adopts equality constraints for population balance, that is, the population of
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each district must be exactly equal to P̄. In the following we report this model using
the same notation adopted in the previous models:

min
n

∑
i=1

k

∑
s=1

dis pi xis (6.11a)

subject to
n

∑
i=1

pi xis = P̄ s = 1, . . . ,k (6.11b)

k

∑
s=1

xis = 1 i = 1, . . . ,n (6.11c)

xis ≤ ∑
h∈Ais

xhs i = 1, . . . ,n, s = 1, . . . ,k (6.11d)

xis ∈ {0,1} i = 1, . . . ,n, s = 1, . . . ,k. (6.11e)

In the above model dis are road distances. They are used in order to take into account
geographic features of the territory that may produce obstacles for the reachability
between two units that are adjacent in the contiguity graph G.

Comparing this model with (6.10a)-(6.10f), two main differences arise. First,
the population balance constraint is managed through strict equations in (6.11a)-
(6.11e), while it is formulated by upper and lower bounds in (6.10a)-(6.10f). Second,
in (6.11a)-(6.11e) the notion of hierarchical adjacency tree is introduced instead of
the trees Ts, s ∈ S adopted in (6.10a)-(6.10f). A hierarchical adjacency tree rooted at
s is obtained starting from the shortest path tree rooted at s (computed basing on the
road distances), but including additional edges chosen from those belonging to near
optimal shortest paths from some i to s. This implies that some nodes are duplicated
on different branches of the tree, and that a node i can have more than one parent
in the hierarchical adjacency tree. In the model, Ais denotes the set of nodes which
immediately precede node i on any branch of the hierarchical adjacency tree. The
model allows including a unit i in a district centered in s in different ways, that is,
forcing different sets of other units lying on the same path from i to s to be included
in the same district. If, on the one hand, this avoids the rigid contiguity constraints
used in (6.10a)-(6.10f), in which unit i can be connected to center s only using the
shortest path, on the other hand, the choice of how many and which additional edges
have to be included in the hierarchical tree is arbitrary. If in sales territory alignment
this choice can be legitimately made by the firm, in PD application a neutral rule
should be established, since the structure of the hierarchical tree influences the
district formation, and this clearly may produce consequences on the final electoral
outcome. For this reason, even if we deem model (6.11a)-(6.11e) interesting and
elegant under a theoretical viewpoint, we believe it cannot be applied for PD in
practice.

In both models (6.10a)-(6.10f) and (6.11a)-(6.11e), the difficult constraints are
those related to population balance, either when they are equalities or inequalities,
and, in fact, the solution approach is based on their Lagrange relaxation, so that
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the resulting relaxed model maintains only the easy constraints, i.e., assignment and
order constraints, that can bemanaged easier than in the original model. In particular,
in (6.11a)-(6.11e), relying on metric distances, the optimal solution of the relaxed
model can be obtained in a straightforward way exploiting the theoretical results
recalled at the beginning of this section. The Lagrange relaxation of (6.10a)-(6.10f)
is a bit more complicated, but it can be still shown that, after this relaxation and by
successive reformulations, the model can be re-written as a computationally easy-
to-solve equivalent mathematical program. This model, that, at the moment, is under
study and has to be still validated through empirical experimentation, seems to be
promising for PD applications [21].

6.4 Conclusions and New Perspectives in Political Districting
Modeling

In this chapter we discussed howmathematical programming can be usefully applied
to solve the particular Territory Design problem related to Political Districting, and
in which way mathematical programs help in dealing with the impartiality purposes
arising in a so much delicate application. It must be noticed that, even if the practical
problem is to divide a national territory into smaller territories according to typical
geographical and population-based criteria, in the context of political elections any of
these aspects acquire a particular importance, since, differently from the commercial
territory design problem, only unbiased criteria should be pursued, the aim being to
guarantee a fair division of the territory which, combined with the specific electoral
system, should ensure to the competing parties total neutrality of the vote translation
into seats. This is very difficult to achieve and, in fact, neutrality cannot be guaranteed
by any mathematical tool, nor it can be shown theoretically that a district map is free
from any bias or distortion in this sense. But what a mathematical model can surely
do is to measure criteria objectively, and, once an agreement on a set of criteria
is reached, it is guaranteed that using a mathematical program is a good way to
implement them and to reach the best value at least for one via the optimization of
the model’s objective function. It is also clear that the support that a mathematical
model can provide is most of all in the possibility of solving in short times very
large combinatorial problems, so that, even if an intervention by the human judge
and experience is always necessary (and recommended), a fast and correct solution
procedure allows starting from a high quality district plan, and easily producing
alternative ones, if necessary. This is probably the point that motivates the constant
lively production of mathematical programming models for PD in the literature,
especially for specific PD problems arising in some countries. In fact, there are many
countries, like Mexico, that recognized that PD is a technical problem that can be
solved in a rigorous and efficient way, instead of by hands, and consequently decided
to adopt an automated PD procedure. In other countries, automation is used but
without exploiting the power of the mathematical modeling with much effort and a
clear waste of time.
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We recall that the size of the problem may undermine the efficiency of the
solution process, but in many countries the problem size is small, so that adopting
a mathematical program solves the problem exactly. Another possibility to tackle
together computational times and correctness of the solution is to split the PD
problem of the national territory into a set of smaller PD problems on smaller sub-
territories, such as, for example, regions, or counties. This multiplies the number
of PD problems to be solved, but drastically decreases the computational time for
solving each problem, and may be a viable tool to obtain exact optimal solutions in
short times.

To conclude, it is natural to ask ourselves which may be the possible future de-
velopments in this field. From an analysis of the recent literature, we observed a
slowdown in the proposal of innovative ways for modeling PD criteria. Managing
the efficient solution of the problem seems to be the main challenge at the moment.
To improve this point, the wide variety of works focuses on applying heuristic pro-
cedures, such as local search [3, 26], or Artificial Bee Colony based algorithms [6],
that are able to find contiguous district maps with a good compromise between pop-
ulation balance and compactness in short times. This is motivated by the fact that the
solution time is a critic factor in PD applications, and it increases fast as the number n
of territorial units increases, but the difficulty of the model also depends on the high
number of constraints that the model must include when contiguity is explicitly for-
malized together with the other basic PD criteria. In view of this, a possible approach
to improve the efficiency of the model is to apply a row generation strategy in which
difficult constraints are ignored at the beginning and added later (and gradually) only
when a solution is obtained that does not satisfy some of them. This approach is
advisable for models in which contiguity is formalized through order constraints,
and exactly these generally are the constraints to be ignored at the beginning. This
approach basically follows a relaxation by elimination strategy. Another possibility
to make the model tractable is relaxing some constraints according to Lagrange. For
example, it is well-known that including in the PD model bounds on the district
population is difficult to manage, and, in fact, in many cases a Lagrange relaxation
of these constraints is performed to ease the model solution process (Section 6.3.2).

In spite of the above considerations, we believe that mathematical programming
modeling itself can be further exploited for PD in different ways. In this presenta-
tion we observed that models based on network flow constraints for contiguity are
generally easier to handle than those in which this condition is formalized through
tree-based or order constraints. Flow constraints for contiguity can bemodeled in dif-
ferent ways, and some are more efficient than others (see, Section 6.3.2). Therefore,
one possible future development could be introducing new models for contiguous
districting where contiguity constraints are still realized through flow constraints,
but different from (and, hopefully, more efficient than) the already existing ones. We
ourselves are working on this subject, providing and testing new mathematical pro-
gramming formulations for centered and non centered partition problems of general
graphs that can be also applied to PD. Experimentation is in progress on these new
models.
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Multi-Period Service Territory Design

Matthias Bender and Jörg Kalcsics

Abstract In service districting, a given set of customers has to be assigned to the
individual members of the service workforce such that each customer has a unique
representative, each service provider faces an equitable workload and travel time, and
service districts are compact and contiguous. One important, but rarely addressed
feature of many service districting applications is that customers require service
with different frequencies. As a result, planners not only have to design the service
districts, but also schedule visits to customers within the planning horizon such that
the workload for each service provider is the same across all periods and the set of
all customers visited in the same time period is as compact as possible.
We present a mixed integer linear programming formulation for the problem. As it
turns out, only very small data sets can be solved to optimality within a reasonable
amount of time. One of the reasons for that appears to be the high level of symmetry
between solutions. We first characterize these symmetries and propose ideas to try to
eliminate them in the formulation. Afterwards, we focus on the scheduling compo-
nent of the problem and present a location-allocation based heuristic for determining
visiting schedules for the service providers for fixed districts. In addition, we propose
a branch-and-price algorithm to solve larger data sets to proven optimality. One of
the novel features of the algorithm is a symmetry-reduced branching scheme that
results in a significant speed-up.
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7.1 Introduction

In service districting, a given set of customers, each with a known on-site service
time, has to be assigned to the individual members of the service workforce such
that each customer has a unique representative and each service provider faces
an equitable workload and travel time. One of the most important applications of
service districting is sales territory design. According to [21], approximately every
tenth full-time employee in the U.S. is working as a field and retail sales person and
the expenditure for them is more than three trillion dollars every year. Territories
with a low sales potential, intense competition, or too many small customers lead to
low morale, poor performance, a high turnover rate, and an inability to assess the
productivity of individual territories. Therefore, well-planned decisions are required
to enable an efficient market penetration and decrease costs and improve customer
service and sales. A good territory design can increase sales by an estimated 2%−
7% compared to an average solution [21]. Other applications of service districting
include determining districts for technical maintenance [5], home visits by health-
care personnel [3, 4], postal or leaflet delivery [6, 7], and waste collection, salt
spreading, and winter gritting [9, 16, 18], just to name a few. For more examples,
see [12].

The three main planning criteria in service districting are balance, contiguity, and
compactness. Balance describes the desire for districts that incur an equal workload
for each member of the service workforce. An uneven distribution of workload
among service providers will often result in discontent and, subsequently, a decrease
in productivity and service quality provided to customers. In most models, balance is
treated as a hard constraint andmeasured in terms of the deviation of the actual district
workload from the average workload across all territories. Contiguous districts are
desired to obtain clearly defined geographic areas of responsibility for each service
provider. This is especially important in sales territory design, as it is not uncommon
for sales persons to compete for customers with a high sales potential. Compactness
describes the desire for districts that are geographically closely packed. Apart from
the visual appeal of compact districts, the criterion often serves, together with
contiguity, as a proxy for minimizing travel times. The hope is that compact and
contiguous districts result on average in smaller travel times on a day-to-day basis
than non-compact and/or non-contiguous districts. While the motivation for the
latter two criteria is very intuitive, it is very hard to rigourously define and assess
them. Customers are typically represented as points on a map, making it difficult
to determine whether a district is contiguous or not. Within heuristic methods, a
common approach is to deem a district as being contiguous, if no customer served
by another provider lies within the convex hull of the set of all customers of the
district. While being visually appealing, it is very difficult to include this measure
in mathematical programming formulations. The alternative is to derive proximity
graphs that allow for an assessment of contiguity in a graph-theoretic sense. See
[12, 19, 20] for detailed discussions. Even more ambivalence and ambiguity can
be found for compactness. Given that its main motivation is to propagate short
daily travel distances, an obvious measure would be to calculate the actual travel
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distances, i.e., tours, within the district. This is, however, usually not sensible from a
computational as well as practical point of view. Concerning the former, real-world
data sets for districting problems are often quite large, easily comprising several
thousand customers. This renders the actual calculation of tours very time consuming,
especially in the presence of additional requirements, like time windows or multi-
day trips. With respect to the latter, service territory design is a tactical planning
problem, with districts usually being re-designed at most once per year. According
to estimates, about one in five visits need to be re-scheduled to another day due
short-term requests of customers or unexpected events [1]. This renders the benefit
of calculating daily or even weekly routes questionable. As a result, most districting
models asses compactness using geometricmeasures, like the Schwartzberg orReock
test, or distance-based measures, e.g., the sum of pairwise distances between all
customers of the district. See [10] for a recent review of compactness measures.
Finally, we note that as non-contiguous districts are typically less compact than
contiguous ones, contiguity is oftentimes not explicitly modelled as a criterion.
Instead, the hope is that just ensuring compactness suffices to obtain also contiguous
districts.

One important, but rarely addressed feature of many service districting applica-
tions is that customers require service with different frequencies. Some customers
have to be visited weekly, while others require service only once per month. As a
result, planners not only have to design the service districts, but also schedule visits
to customers within the planning horizon. For example, if the planning horizon is
divided into weeks and days, then we also have to decide which customers should
be visited in which week and on which day of that week. The criteria for scheduling
customer visits are very similar to the ones for designing districts. Concerning bal-
ance, the total workload incurred by all customers served in each time period should
be the same across all periods. Moreover, the set of all customers visited in the same
time period should be as compact as possible to reduce travel times during each
period. While contiguity is still desirable, differing visiting frequencies will make
it very difficult, or even impossible, to obtain contiguous sets of customers for each
period.

The remainder of the chapter is organized as follows. In the next section, we
formally introduce the service territory design problem and briefly review related
literature. In Section 7.3 we present a mathematical formulation for the problem
and discus practically important variants. In Section 7.4 we focus on the scheduling
component of the problem and sketch a heuristic and an exact algorithm for solving
the problem. We end the chapter with some conclusions and an outlook to future
work.

7.2 Problem Description and Literature Review

We consider two sets of time periods: weeks and days. Let W = {1, . . . , |W |} and
D = {1, . . . , |D|} denote the set of weeks and days, respectively, in the planning
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horizon, and Dw ⊆ D the set of days in week w ∈W . To simplify the exposition, we
assume that eachweek contains the same number of days, |Dw|=m∈N,w∈W . Note
that D consecutively numbers all days of the planning horizon, i.e., |D|= m · |W |. The
set of customers is denoted by B = {1, . . . , |B|} and each customer b ∈ B requires
on-site service by a service provider once every rb ∈ N weeks. If customer b is
served in week w, then we call this a visiting week or service week for b; analogously
for days. rb is called the week rhythm of customer b ∈ B. Each customer must be
served within the first rb weeks and then regularly every rb weeks. For example, if
|W |= 8 and rb = 2, then there exist two feasible patterns for the visiting weeks of
b, namely (1,3,5,7) and (2,4,6,8). For a customer with a week rhythm of rb = 3,
the feasible patterns are (1,4,7), (2,5,8), and (3,6). While the first customer will
be served exactly four times during the planning horizon, the second will be served
either twice or thrice, depending on the first visiting week. To avoid this ambiguity,
we assume that |W | is the least common multiple of all week rhythms. Consequently,
customer b is served exactly |W |/rb times during the planning horizon. We denote
by sb ∈ R+ the service time per visit for customer b ∈ B. The set of districts or
territories is defined as T = {1, . . . , |T |} and each district is patronized by a single
service provider. We assume that each district has a designated center, e.g., the office
or home of the service provider. For t ∈ T , we denote by Bt the set of customers
assigned to territory t, by Bw

t ⊆ Bt the set of customers of territory t visited in week
w, and by Bd

t ⊆ Bw
t the set of customers of territory t visited on day d ∈ Dw, w ∈W .

We call the latter two week clusters and day clusters of district t. The problem can
now be stated as follows:

The Multi-Period Service Territory Design Problem (MPSTDP) seeks to
partition the set of customers into service territories (districting subproblem)
and to determine the visiting weeks and days for each customer (scheduling
subproblem) such that all districts, week clusters, and day clusters are balanced
and compact.

Balanced week and day clusters are desirable to avoid deviations from the regular
working hours for the service workforce. The motivation for compact day clusters is
to allow for short day-to-day travel times of the service providers and give them flexi-
bility to sequence visits according to (short-term) customer requests, e.g., because of
time windows. Due to unexpected events, service visits often have to be rescheduled
to another day. Having compact week clusters makes it easier for a service provider
to flexibly re-schedule missed visits on a given day to one of the remaining days of
the week without having to make overly long detours. While the districts may only
be re-designed every two or three years, the scheduling problem is often solved more
frequently in order to adapt to shifts in the customer base during a year. For example,
some customers have dropped out, others have been newly acquired by the service
provider, and yet others request more (or less) frequent visits. If the territories are
already given and only the scheduling subproblem has to be solved, we denote the
problem as MPSTDP-S.
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The MPSTDP was first introduced in Bender et al. [1] and was motivated by
a project with the company PTV Group1, a commercial provider of geomarketing
software, among other tools. After introducing theMPSTDP, the authors focus on the
scheduling subproblemMPSTDP-S, although in a slightlymore general form: service
times can depend on the visiting weeks and customers may request to be served more
than once per week. They introduce a mixed-integer linear programming formulation
for the MPSTDP-S and present a location-allocation heuristic to solve the problem
for large instances. Using real-world data sets, they show that the solutions provided
by the heuristic are in most cases significantly better than the solutions of the–then
current–heuristic of the company, both in terms of compactness and balance. In a
subsequent paper, Bender et al. [2] present a branch-and-price algorithm for the
MPSTDP-S that includes efficient techniques to reduce the inherent symmetries
in the scheduling subproblem. They show that the branch-and-price algorithm is
able to solve real-world data sets by two orders of magnitude faster than Gurobi’s
branch-and-bound method.

A related problem is discussed in Lei et al. [14]. The authors assume that customer
demand is dynamic over time, i.e., changes from period to period, where each time
period may comprise several weeks. Each customer has to be served once per period.
For each time period, the task is to partition all customers into districts, and then
subsequently partition the customers of each district into day clusters. The quality
of solutions is measured based on the total number of districts, the compactness
of day clusters, the similarity of districts across time periods, and the equity of
salesmen profit’s. To solve the problem, the authors combine the four measures
into a single objective function and then present an adaptive large neighborhood
search algorithm. In a follow up paper, Lei et al. [15] generalize the problem by
allowing customer demand to be either deterministic or stochastic, where the actual
demand realization for stochastic customers is only known after the districts have
been planned. Instead of aggregating the four assessment measures for solutions,
they propose a multi-objective evolutionary algorithm to determine non-dominated
solutions. Mourgaya and Vanderbeck [17] discuss a variant of the periodic vehicle
routing problem. While customers still have to be allocated to vehicles, computing
the actual vehicle tours is no longer part of the problem. Instead, for each time
period, they aim to obtain compact sets of customers for each vehicle and to balance
workload between vehicles. To solve the problem, they propose a branch-and-price
algorithm, in which the pricing problems are based on quadratic knapsack problems
and solved using a greedy heuristic. For a more detailed review, including also less
closely related problems and applications, we refer to Bender et al. [1, 2].

1 www.ptvgroup.com



128 M. Bender, J. Kalcsics

7.3 Mathematical Formulations

In this section we present a mixed-integer linear programming formulation for the
MPSTDP that extends the ones in [1,2] by the districting subproblem. We start with
the general MPSTDP. Afterwards, we point out several deficiencies inherent to the
problem that make it difficult to solve it optimally. Finally, we consider the case that
customers also require regularity with respect to the visiting days and not just the
visiting weeks.

7.3.1 A mathematical formulation for the MPSTDP

Before we start presenting the formulations, we have to introduce a few more nota-
tions. For i,b ∈ B and t ∈ T , let cbi and c̄bt be the travel distance (or time or cost)
between customer i and b and between customer b and the designated center of
district t, respectively. To measure the compactness of a set B′ ⊆ B of customers, we
use the classical approach of calculating the sum of distances of all customers in B′

to a center of B′. On a district level, this center is the designated district center. Un-
fortunately, this center cannot be used for measuring weekly and daily compactness,
as each configuration of week and day clusters would give exactly the same value.
Thus, to measure the compactness of week and day clusters in a meaningful way, we
determine an artificial center for each. Typically, this artificial center is the customer
that minimizes the sum of distances to all customers in B′: i∗ = argmini∈B ∑b∈B′ cbi.
Note that the artificial center does not necessarily have to belong to B′. We call the
corresponding customer the week center or day center of week w or day d, respec-
tively. Moreover, we denote by LBt andUBt the lower and upper bound, respectively,
of the acceptable total service time for the service provider of district t. Analogously,
we define LBw

t , UBw
t and LBd

t , UBd
t as the acceptable service time in week w and

on day d, respectively. Finally, let f v(b,w) = ((w−1)modrb)+1; if customer b is
served in week w, then f v(b,w) ∈ {1, . . . ,rb} is the week of the first visit to b.

To formulate the problem, we define the following sets of decision variables:

gw
bt =

{
1, if customer b is part of district t and served in week w
0, otherwise.

hd
bt =

{
1, if customer b is part of district t and served on day d
0, otherwise.

xw
it =

{
1, if customer i is the week center of district t in week w
0, otherwise.

yd
it =

{
1, if customer i is the day center of district t on day d ∈ D
0, otherwise.
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uw
bit =

{
1, if customer b is assigned to week center i of district t in week w
0, otherwise.

vd
bit =

{
1, if customer b is assigned to day center i of district t on day d
0, otherwise.

A mixed-integer linear programming formulation for the MPSTDP is then given as

(MPSTDP)

min ∑
t∈T

∑
b∈B

(
α1 ∑

w∈W
c̄btgw

bt + α2 ∑
i∈B

∑
w∈W

cbiuw
bit + α3 ∑

i∈B
∑

d∈D
cbivd

bit

)
(7.1a)

subject to ∑
t∈T

rb

∑
w=1

gw
bt = 1 b ∈ B (7.1b)

∑
b∈B

∑
w∈W

sbg f v(b,w)
bt ≤UBt t ∈ T (7.1c)

∑
b∈B

∑
w∈W

sbg f v(b,w)
bt ≥ LBt t ∈ T (7.1d)

∑
i∈B

uw
bit = g f v(b,w)

bt b ∈ B, w ∈W, t ∈ T (7.1e)

uw
bit ≤ xw

it i,b ∈ B, w ∈W, t ∈ T (7.1f)

∑
i∈B

xw
it = 1 w ∈W, t ∈ T (7.1g)

∑
b∈B

sbg f v(b,w)
bt ≤UBw

t w ∈W, t ∈ T (7.1h)

∑
b∈B

sbg f v(b,w)
bt ≥ LBw

t w ∈W, t ∈ T (7.1i)

∑
d∈Dw

hd
bt = g f v(b,w)

bt b ∈ B, w ∈W, t ∈ T (7.1j)

∑
i∈B

vd
bit = hd

bt b ∈ B, d ∈ D, t ∈ T (7.1k)

vd
bit ≤ yd

it i,b ∈ B, d ∈ D, t ∈ T (7.1l)

∑
i∈B

yd
it = 1 d ∈ D, t ∈ T (7.1m)

∑
b∈B

sbhd
bt ≤UBd

t d ∈ D, t ∈ T (7.1n)

∑
b∈B

sbhd
bt ≥ LBd

t d ∈ D, t ∈ T (7.1o)
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gw
bt , hw

bt ∈ {0,1} b ∈ B,d ∈ D,w ∈W, t ∈ T (7.1p)

xw
it , yd

it ∈ {0,1} i ∈ B,d ∈ D,w ∈W, t ∈ T (7.1q)

uw
bit , vd

bit ≥ 0 b, i ∈ B,d ∈ D,w ∈W, t ∈ T (7.1r)

The objective function (7.1a) represents a weighted average of the compactness
of districts, week clusters, and day clusters, where α1,α2,α3 ≥ 0 are weighting
factors. By summing over all weeks when computing district compactness, we put
a higher emphasis on customers with small week rhythms, who will be included in
proportionally more week and day clusters than customers with a large value for rb.
Constraints (7.1b) ensure that each customer bmust be assigned to exactly one district
and served exactly once within the first rb weeks. Note that due to the rigid week
rhythms, it suffices to determine the first visiting week for each customer. The next
two sets of constraints, (7.1c) and (7.1d), guarantee that the total workload per district
is within the given bounds. Constraints (7.1e) and (7.1f) enforce that a customer is
allocated to the corresponding week center in each visiting week. Constraints (7.1g)
select a week center for each week and district. Constraints (7.1h) and (7.1i) ensure
that the weekly workload is within the specified limits. Constraints (7.1j) make sure
that there is a visiting day in each visiting week of a customer. Constraints (7.1k)-
(7.1o) are the daily analogues of Constraints (7.1e)-(7.1i). The last three constraints
specify the variable domains.

If the districts are already given and we just want to solve the scheduling sub-
problemMPSTDP-S, then we obtain a formulation for the latter by simply removing
all references to district t in formulation (MPSTDP), including the index t in all
parameters and variables, as well as Constraints (7.1c) and (7.1d).

Computational experiments

To evaluate the computational tractability of the formulation, we present some pre-
liminary experiment results in the following for three different variants of the problem
on randomly generated data sets. The first variant is the MPSTDP without days, i.e.,
only the visiting weeks but not the visiting days have to be scheduled (the main
reason for omitting days is that we are struggling to generate feasible data sets for
small numbers of customers). The second variant is the scheduling subproblem,
also without days. And the last is the scheduling subproblem with days, i.e., the
MPSTDP-S. We generate data sets with 30 and 40 customers. The customer and
service provider locations are uniformly distributed over the squares [0,10]2 and
[2,8]2, respectively. The service times are uniformly drawn from the interval [40,80]
and the travel distances cbi and c̄bt are based on the Euclidean distance between
the respective points. We use six different patterns of week rhythms with differing
planning horizons. The patterns are shown in Table 7.1. The number of weekdays is
five, except for the last two types, where we have to go down to three days as we are
again struggling to generate feasible data sets for the MPSTDP-S. For each pattern
and number of customers, we generate five data sets.
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Table 7.1: Overview of the six different patterns of week rhythms.

Type Week rhythms No. weeks No. weekdays

1 {1,2,4} 4 5
2 {2,4} 4 5
3 {1,2,4,8} 8 5
4 {2,4,8} 8 5
5 {1,2,4,8,16} 16 3
6 {2,4,8,16} 16 3

For the two scheduling subproblems, we set LBw = 0.8µweek andUBw = 1.2µweek

as lower and upper bound, respectively, for the feasible range of weekly service
times, where µweek = 1

|W | ∑b∈B sb
|W |
rb

= ∑b∈B
sb
rb
is the average service time per week

(recall that |W |/rb is the total number of visits to customer b ∈ B). Analogously,
we define LBd = 0.6µday and UBd = 1.4µday, with µday = 1

|D| ∑b∈B sb
|W |
rb

for days.
We use the same allowed weekly deviation for the MPSTDP without days, but with
µ̂week = 1

|T | ∑b∈B
sb
rb
. Concerning the allowed deviation from the average district

size µdistrict = 1
|T | ∑b∈B sb

|W |
rb
, we had to set LBt = 0 and UBt = 2µdistrict to avoid

infeasibility of the instances. Concerning the weighting factors in the objective
function, for the two scheduling subproblems we use α2 =

1
3 and α3 =

2
3 , putting a

higher emphasis on daily compactness. For theMPSTDP, we use α1 =
1
3 and α2 =

2
3 .

All tests are carried out on a Windows 7 machine with an Intel i5-6500T processor
and 8 GB memory. The formulations are solved using CPLEX 12.7.1 with a time
limit of 30 minutes.

We present the results in Table 7.2. The first two columns indicate the number
of customers in the data set and the week rhythm pattern. The next three columns
present the results for formulation (MPSTDP) without days. The columns labelled
Gap, Opt, and Time give the MIP gap reported by CPLEX upon termination, the
number of instances with a proven optimal solution, and the run time in seconds,
respectively. The time and gap values are averages over the five instances. The next
two triples of columns show the results for the MPSTDP-S without days and the
MPSTDP-S. We group the results by number of customers and summarize them for
each number, showing the average MIP gap and runtime and the total number of
instances solved to proven optimality.

Starting with the latter, we can see that only the first set of instances with pattern 1
can all be solved optimally within half an hour for the 30 customer instances. For all
other patterns, CPLEX hits the runtime limit of 30 minutes without finding a proven
optimal solution for all but one instance. Thus, we refrain from carrying out tests
for 40 customers. Turning to the MPSTDP-S without days, the data sets are much
easier to solve. Now, all instances can be solved optimally within seconds. While a
reduction in running times compared to MPSTDP-S was to be expected, the level
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Table 7.2: Experiment result for the three variants of the problem.

MPSTDP w/o days MPSTDP-S w/o days MPSTDP-S
Pattern Gap Opt Time Gap Opt Time Gap Opt Time

30
cu
st
om

er
s 1 0.00% 5 11.8 0.00% 5 0.6 0.01% 5 291.1

2 1.23% 4 738.3 0.00% 5 1.3 3.94% 1 1492.8
3 0.00% 5 274.5 0.01% 5 2.1 5.84% 0 1800.7
4 0.01% 5 556.8 0.00% 5 5.2 17.06% 0 1800.0
5 2.63% 3 1194.1 0.00% 5 6.2 11.05% 0 1800.1
6 6.87% 3 1265.7 0.00% 5 14.9 12.83% 0 1800.1

Summary 1.76% 25 655.6 0.00% 30 5.1 8.45% 6 1497.5

40
cu
st
om

er
s 1 0.01% 5 16.5 0.00% 5 0.8

2 0.01% 5 12.0 0.00% 5 3.1
3 0.01% 5 435.7 0.00% 5 4.7
4 0.01% 5 1056.8 0.00% 5 13.8
5 0.00% 5 1538.1 0.01% 5 16.2
6 0.00% 5 1201.6 0.00% 5 74.2

Summary 0.01% 30 710.1 0.00% 30 18.8

of reduction is slightly surprising. Including the districting subproblem, the running
times increase considerably, as can be seen from the results for the MPSTDPwithout
days. While most of the instances can still be solved optimally within 30 minutes,
the increase in difficulty is apparent.

Looking at the impact that the length of the planning horizon has on the results,
not unexpectedly the run times increase as |W | increases. A common observation
across all results is that the data sets for patterns 2, 4, and 6 are–in most cases–harder
to solve than their counterparts from patterns 1, 3, and 5, respectively. A possible
explanation is that the odd numbered patterns contain weekly customers, whereas the
even numbered patterns don’t. For weekly customers, there is no scheduling decision
to be made on a weekly level, only on a daily level, reducing the number of decision
variables in the formulation.

7.3.2 Symmetry

As we have just seen, already small data sets with just 30 customers are difficult to
solve optimally within half an hour. One of the reasons for this intractability appears
to be the high level of symmetry that is inherent in the scheduling subproblem ( [1,2]).
In the following, we will analyze this more formally, focussing on the scheduling
subproblem MPSTDP-S only, i.e., all references to territories are omitted. We say
that two solutions (Bw)w∈W and (B̂w)w∈W are week-symmetric, if there exists a
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permutation π : W →W such that Bπ(w) = B̂w, w ∈W (recall Bw and B̂w denote the
respectiveweek clusters). Analogously, we say that twoweek clustersBw = (Bd)d∈Dw

and B̂w = (B̂d)d∈Dw are day-symmetric with respect to week w, if there exists a
permutation σ : Dw→ Dw such that Bd = B̂σ(d), d ∈ Dw (recall that Dw is the set of
days in week w). Two solutions are called day-symmetric if they are day-symmetric
with respect to each week.

Starting with days, any permutation of days within the same week w results in
a day-symmetric solution with respect to w with exactly the same objective value.
Hence, a week cluster Bw incurs m!−1 day-symmetric solutions with respect to
w (recall that m = |Dw|). For example, for five weekdays we obtain 5!−1 = 119
alternate solutions. Considering all weeks of the planning horizon, each solution has
(m!)|W |− 1 day-symmetric solutions. Even for just a four-week horizon with five
days per week, this results in more than 207 million day-symmetric solutions.

In addition, there is also symmetry on the level of weeks, albeit much less. For
the ease of exposition, we assume in the following that all week rhythms are powers
of two, i.e., rb = 2k, b ∈ B, k ∈ N, and that |W |= maxb∈B rb (similar arguments
can be used for less regular rhythms and weeks). For a two-week planning horizon,
any solution (B1,B2) for the MPSTDP-S has just one week-symmetric solution:
(B2,B1). For a four-week planning horizon, a solution (B1,B2,B3,B4) already has
seven week-symmetric solutions: (B3,B2,B1,B4), (B1,B4,B3,B2), (B3,B4,B1,B2),
(B2,B1,B4,B3), (B4,B1,B2,B3), (B2,B3,B4,B1), and (B4,B3,B2,B1). In general,
each solution for the MPSTDP-S for a planning horizon of |W |= 2k weeks has
∏

k
l=1 2l−1 = 2k(k+1)/2−1 week-symmetric solutions. To see that, consider the case
|W |= 4 and let (B1,B2,B3,B4) be a solution. Moreover, let (C1,C2,C3,C4), where
Cw = {b∈ Bw | rb ≤ 2} is the set of customers with a weekly or biweekly rhythm.We
obviously have (C1,C2) = (C3,C4) as visiting weeks of the (bi-)weekly customers
have to repeat every two weeks. As the four-weekly customers are served in just one
of the weeks, no permutation of the weeks will violate their week rhythm. Hence,
to obtain all week-symmetric solutions for (B1,B2,B3,B4), we have to consider: i)
all solutions symmetric to (C1,C2), and ii) all their cyclic permutations. Concern-
ing i), we only have (C2,C1), giving us the two alternate solutions (C1,C2,C3,C4)
and (C2,C1,C4,C3). Concerning ii), putting the four-weekly customers back in,
a cyclic permutation of (C1,C2,C3,C4) results in the four week-symmetric solu-
tions (B1,B2,B3,B4), (B4,B1,B2,B3), (B3,B4,B1,B2), and (B2,B3,B4,B1). A cyclic
permutation of (C2,C1,C4,C3) yields the other four. Thus, the total number of week-
symmetric solutions for |W |= 4 is given by the number of week-symmetric solutions
for |W |= 2 times the number of cyclic permutations, which equal the number of
weeks in the planning horizon.

Unfortunately, both daily and weekly symmetries are problem inherent. In the
formulation we presented above, this symmetry carries over to the formulation.
This, however, does not necessarily have to be the case. We could, for example, think
of a formulation where we don’t have variables that assign individual customers
to a day, but for each week we could define decision variables that select a set of
five feasible day clusters (feasible in the sense that the day clusters do not violate
the bounds on the daily service times and that each customer who is scheduled for
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this week is contained in one of the day clusters). This would, however, result in an
exponential increase of the number of decision variables with respect to |B|.

We can think of different ways to try to reduce the number of symmetric solutions.
The most simple and in some cases quite effective method is to pick a customer b and
a priori fix the first visit of b to a specific week and day of the week, e.g., the first day
of the first week. This can be done without loss of generality. By doing so, we reduce
the number of day-symmetries with respect to the chosen week w by a factor of m.
Concerning weeks, if we make the same assumptions as above for the week rhythms
and the length of the planning horizon, then fixing the first visit of customer b with
rb = 2k to a given week w ≤ rb reduces the number of week-symmetric solutions
by a factor of |W |. To see why, consider again the discussion above. Fixing the first
visiting week for b rules out all symmetries due to cyclic permutations of solutions
for the problem with |W |= 2k−1 weeks, because for each week-symmetric solution
of the latter problem, just one of the permutations will put b’s first visit in week w.
The reduction in symmetric solutions is lower for rb < 2k and, thus, we will always
select a customer with rb = |W | in the remainder.We abbreviate this strategy as FRC.

Another possibility is to add constraints to formulation (MPSTDP-S) that sort
the day clusters within each week by increasing customer indices. Let Bw ⊂ B be a
week cluster, (Bdw

, . . . ,Bdw+m−1) its day clusters, where dw = mind∈Dw d is the first
day in week w, and bd = minb∈Bd b is the customer with the smallest index in Bd ,
d ∈Dw. Then we can rule out any day-symmetries with respect to w by ensuring that
bdw

< .. . < bdw+m−1. The corresponding constraints are given by

hd
b ≤

b−1

∑
b′=1

hd−1
b′ b = 2, . . . , |B|,w ∈W,d ∈ Dw \{dw}, (7.2)

where we omit for simplicity the reference to the territories. We abbreviate this
strategy as BDS.

Computational experiments

Using the same data sets as in Section 7.3.1, the experiment results in Table 7.3
show the effect of fixing the first visit of a customer for the three problem variants.
The structure of the table is almost identical to Table 7.2. For an easier comparison
of the results, we also include a row “Deviation” that shows the deviation between
the summarized results of Table 7.3 when compared to the respective summaries in
Table 7.2. For the MIP gap and run times, we present the relative deviation, for the
number of instances with proven optimal solution the absolute deviation. Looking
at the two problem variants without days, we can see that the effect is negligible
and may even result in higher gaps, worse run times, and fewer instances with a
proven optimal solution, especially for the 30 customer data sets. For the scheduling
subproblem MPSTDP-S the situation is however quite different. Across all week
rhythm patterns, the average run times and/or the MIP gaps decrease and the total
number of instances with a proven optimal solution increases.
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Table 7.3: Experiment result of using strategy FRC.

MPSTDP w/o days MPSTDP-S w/o days MPSTDP-S
Pattern Gap Opt Time Gap Opt Time Gap Opt Time

30
cu
st
om

er
s 1 0.01% 5 15.4 0.00% 5 0.5 0.01% 5 146.4

2 1.81% 3 778.1 0.00% 5 1.0 2.29% 3 1198.2
3 0.01% 5 379.4 0.00% 5 1.7 3.73% 0 1800.5
4 1.75% 4 661.4 0.00% 5 5.9 14.70% 0 1800.0
5 3.07% 2 1500.4 0.00% 5 5.4 9.00% 0 1800.1
6 13.12% 1 1620.4 0.00% 5 17.1 12.39% 0 1800.0

Summary 3.30% 20 825.9 0.00% 30 5.3 7.02% 8 1424.2

Deviation 86.8% -5 26.0% 0.00% 0 3.9% -17.0% 2 -4.9%

40
cu
st
om

er
s 1 0.01% 5 42.5 0.00% 5 0.6

2 0.01% 5 39.1 0.00% 5 2.3
3 0.01% 5 482.4 0.00% 5 3.8
4 0.01% 5 1026.4 0.00% 5 12.5
5 0.00% 5 1799.9 0.01% 5 10.9
6 0.00% 5 1417.1 0.00% 5 72.8

Summary 0.01% 30 757.5 0.00% 30 17.2

Deviation -8.9% 0 6.7% 0.00% 0 -8.8%

Next, we evaluate the impact of adding the symmetry breaking constraints for
days (7.2) to the formulation for the MPSTDP-S. The results for the 30 customer
instances are shown in Table 7.4, whose structure is similar to the two previous
tables. The reported deviations are with respect to the results in Table 7.2. Using

Table 7.4: Experiment result of using strategies BDS and FRC for the MPSTDP-S.

BDS BDS & FRC
Rhythm Gap Opt Time Gap Opt Time

1 0.01% 3 1052.7 0.01% 3 208.5
2 9.98% 0 1800.1 6.90% 0 1800.1
3 11.22% 0 1800.1 8.25% 0 1800.1
4 27.46% 0 1800.1 29.46% 0 1800.3
5 12.88% 0 1800.1 11.10% 0 1800.1
6 17.32% 0 1800.1 8.36% 0 1800.1

Summary 12.4% 3 1725.4 10.3% 3 1535.2

Deviation 47.0% -3 15.2% 21.8% -3 2.5%
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strategy BDS leads to worse results when compared to Section 7.3.1, both in run
times and MIP gaps. Combining both strategies, the results are inferior to just using
strategy FRC. Hence, while strategy BDS helps to reduce symmetry “on paper”, it’s
ineffective for our data sets. Unfortunately, other ideas that we tried, like sorting the
service times of the weeks and of the days within each week in an increasing order,
have proven to be equally ineffective.

7.3.3 Mathematical formulations for weekday regularities

When scheduling visits, it might well be that the weekday when a customer is
served changes from visit to visit. While some customers won’t care, others might
be unhappy with this. For those customers, we make sure that they are always
served on the same day of the week. We call this requirement a strict weekday
regularity. Enforcing a strict regularity will reduce the flexibility of planning. Even
if customers prefer a strict regularity, they may not object if the service provider
reschedules the visit to some other weekday every now and then. Thus, we also
consider a hybrid version in which a regular weekday is fixed for serving a customer,
but we are allowed to deviate from that given weekday for a predetermined number
of visits. We call this a partial weekday regularity. For the ease of exposition, we
focus on the scheduling subproblem MPSTDP-S. The corresponding modifications
in formulation (MPSTDP) are straight-forward. We start with the case of a strict
weekday regularity.

7.3.3.1 Strict weekday regularities

Let b ∈ B be a customer who requests to be visited always on the same weekday. Let
d f irst

b ∈ {1, . . . ,rbm} be the first visiting day of customer b. The set of all visiting days
for b is then given by WD(d f irst

b ) = {d ∈ D | d = d f irst
b + k · rbm,k ∈ N0}. Note that

d f irst
b is unique because of Constraints (7.1b) and (7.1j). We call d f irst

b the regular
weekday of customer b. To model a strict regularity, we add the constraints

hd′
b = hd

b d′ ∈ {1, . . . ,rbm}, d ∈ DW (d′). (7.3)

to formulation (MPSTDP-S).
A strict weekday regularity helps to reduce symmetry across weeks. Recalling

the discussion in the previous section, consider a solution where the first visiting
week, but not the first visiting day is the same for two customers b and b′ with a
strict regularity and identical week rhythms. While all permutations of days in the
first week w still yield day-symmetric solutions with respect to w, in all following
visiting weeks w+krb, k ∈N, only permutations which schedule the visiting days of
b and b′ on the same days as in week w are feasible. For the case of five weekdays,
this reduces the number of day-symmetric solutions in subsequent visiting weeks
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from 5!= 120 to 3!= 6. And the smaller the week rhythms of the customers with
strict regularities are, the larger the reduction will be. We refer to Section 7.4.1 for
experiment results.

7.3.3.2 Partial weekday regularities

Let b ∈ B be a customer who allows for a partial weekday regularity and db ∈
{1, . . . ,rbm} denote the regular weekday of b. By fixing the regular weekday in
the first rbm weeks, the set of regular visiting days is again given by WD(db). Let
fb be the allowed number of visiting days different from that, i.e., for a solution
of (MPSTDP-S), we must have |{d ∈ D | hd

b = 1} \WD(db)|≤ fb. To model these
constraints, we define the decision variables

ĥdb
b =

{
1, if db determines the regular weekday for customer b
0, otherwise,

for db ∈ {1, . . . ,rbm}. First, we have to select a regular weekday for customer b

rbm

∑
db=1

ĥdb
b = 1. (7.4)

It is enough to determine the regular weekday within the first rb weeks. Observe that
this only establishes the regular weekday for customer b; it does not imply that the
first actual visit to b has to be on this day. Second, we have to ensure that we deviate
from the regular weekday at most fb times:

∑
d∈D\WD(db)

hd
b ≤ fbĥdb

b +
|W |
rb

(1− ĥdb
b ) db ∈ {1, . . . ,rbm} (7.5)

For a given day d, the left-hand side counts the number of visits that do not match the
regular weekday db. If db is not selected as the regular weekday, then the right-hand
side reduces to |W |/rb, the total number of visits to b during the planning horizon.

The partial weekday regularities still help to reduce symmetry across weeks,
albeit to a smaller extent than for strict regularities. We refer to Section 7.4.1 for
experiment results.

7.4 Solving the Scheduling Subproblem

As seen in the previous section, only very small data sets can be solved optimally with
formulation (MPSTDP-S) within half an hour. However, typical problem instances
often contain several hundred customers and span a time horizon of 24 or 48weeks. In
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the following, we present a heuristic as well as a specially tailored branch-and-price
algorithm for the MPSTDP-S.

7.4.1 A heuristic algorithm for the MPSTDP-S

In Bender et al. [1], we present a simple, yet efficient heuristic for solving the schedul-
ing subproblem. This heuristic is based on Cooper’s location-allocation method [8],
which was first used in the context of (political) districting in the seminal paper of
Hess et al. [11]. The idea of the heuristic is to decompose the simultaneous location
and allocation decisions into two independent phases, a location and an allocation
phase, which are then alternatingly performed until a satisfactory result is obtained.

Adapted to our problem, for a given set of week and day centers, the allocation
phase determines a balanced and compact assignment of customers to week and day
centers. This is done by fixing the values of the week and day center variables xw

i and
yd

i , respectively, in formulation (MPSTDP-S) and then solving it to obtain the optimal
visiting weeks and days for each customer, as well as the corresponding week and day
clusters. In the location phase, we take the set of week and day clusters derived from
the allocation phase and determine an optimal center within each cluster. This can be
done by simply finding the customer within each cluster B′ ⊂ B that minimizes the
sum of distances to all customers of the cluster, i.e., finding i∗ = argmini∈B ∑b∈B′ cbi.

A crucial aspect of the heuristic is how to choose a “good” set of initial centers
to kick off the heuristic. Hess et al. [11] pick initial district centers randomly.
Recent approaches instead suggest the use of a k-means++ method to distribute
the initial centers evenly across the planning area. While sounding very appealing,
the latter approach does not work in our multi-period context, as the set of customers
to be served changes from week to week (and day to day). In [1] we suggest to
determine the week and day centers for the first rmin ≤ |W | weeks, and then copy
those weeks recurringly to obtain initial centers for the remaining weeks and days
of the planning horizon. rmin is chosen as the smallest week rhythm of customers,
i.e., rmin = minb∈B rb. The motivation for this is based on the observation that if
several customers with the same week rhythm r′ have the same first visiting week,
then they will again be in the same week cluster k · r′ weeks later, k ∈ N. Hence,
the corresponding week clusters will look–more or less–the same. Such similarities
across weeks can only emerge after rmin weeks, at the earliest. To find week centers
for the first rmin weeks, a modified k-means++ method is used to evenly distribute
the week centers across the district. The modification affects the probability with
which a customer is selected as center. A customer b with week rhythm rb has to
be served |W |/rb times in total. The smaller rb, the more often b is visited, and
the greater the contribution of b to the objective function is (in terms of distances).
Hence, it would be beneficial to prefer those customers when choosing centers over
customers with long week rhythms. Thus, we scale the probability of selecting a
customer by rb. To determine day centers, temporary week clusters for these first
rmin weeks are derived by assigning each customer, irrespective of her week rhythm



7 Multi-Period Service Territory Design 139

and the weekly workload, to the closest week center. This will ensure that the day
centers are close to their respective week centers. Then, the same procedure as for
weeks is used to determine m day centers for each temporary week cluster. With the
week and day centers for the first rmin weeks being given, the respective centers for a
week w > rmin are copied from week w′, where w = w′+krmin, k ∈N. This finalizes
the initialization step and we can enter into the location-allocation heuristic, starting
with the allocation phase.

To asses the quality of the solutions provided by the location-allocation heuristic,
we generated ten data sets each with 30 and 50 customers. The planning horizon
for each is four weeks, with five days per week, and all week rhythms are powers
of two. We use Gurobi 6.0.2 to solve formulation (MPSTDP-S) with a time limit of
ten hours, using the location-allocation solution to warm-start the solver. All test are
carried out on a machine with an Intel Xeon-2650 v2 CPU with 128 GB memory.
Gurobi could solve none of the 50 customer instances to optimality and only three of
the 30 customer instances. Comparing the heuristic solutions to the best incumbents
from Gurobi, the former are on average 3% worse than the latter. Looking at the
lower bounds provided by Gurobi upon termination, the average relative percentage
deviation between those and the objective values of the location-allocation solutions
is 8%. This underlines the high quality of the latter solutions, which can be computed
on average in 4.6 seconds. For the three 30 customer data sets with know optimal
solutions, the location-allocation solutions are 4.2%, 6.0%, and 7.3% worse than the
optimal ones.

We also evaluate the practical implications of weekday regularities for 20 real-
world data sets. The planning horizon for those experiments is 16 weeks, with five
days per week. Each instance contains on average 115 customers, the visiting rhythms
of all customers are powers of two, and the service times range from 22 to 42minutes.
We choose α2 = 1

3 and α3 = 2
3 , putting a higher emphasis on daily compactness.

Moreover, we set LBw = 0.85µweek andUBw = 1.15µweek as lower and upper bound,
respectively, for the feasible range of weekly service times. Analogously, we define
LBd , UBd and µday for days, however with an allowed deviation of ±0.3 from the
average. All test are carried out under Windows 7 on a machine with an Intel Core
i5-760 processor and 8 GB memory. The linear and integer programs were solved
using Gurobi 6.0.5.

To extend the analysis, we also considered week rhythms of {4,8,16}, still with
|W |= 16, and {3,4,6,12,16} for a planning horizon of 48 weeks. In addition, we
considered a larger range of service times, going from 15 to 60, in steps of five
minutes. We run the location-allocation heuristic for each data set and combination
of parameters, and recorded the run time of the heuristic.Moreover, to get an estimate
of the actual overall daily travel times of the service provider of a given solution,
we solved a symmetric traveling salesman problem for each day cluster’s set of
customers, including the district center.

Starting with the run times, there is little difference between the original week
rhythms {1,2,4,8,16} and theweek rhythms {4,8,16}. The average run times across
all types of regularities (strict, partial, and none) for these two are 11 seconds and
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13 seconds, respectively. The average run time for the third set of week rhythms
however increases considerably to 77 seconds, which is likely due to the longer
planning horizon (48 vs 16 weeks). Looking at the difference between the different
types of weekday regularities, partial regularities result in the longest run times, with
an average of 40 seconds across the three types of week rhythms, while instances
with strict regularities or no regularities at all only take around 22 seconds on average
to solve.

Next, we evaluate the effect of regularities and the different types of week rhythms
on the actual daily travel times. When compared to the case of no regularities, partial
weekday regularities increase the average travel times by 0.59% and 13.69% for the
first and third set of week rhythms, respectively, and decrease them by 0.17% for the
second set of week rhythms. For strict regularities, the increase for the three sets is,
in order, 1.06%, 0.78%, and 18.51%. It becomes apparent that weekday regularities
for the third set of week rhythms, which is much more irregular than the first two sets
(which are all powers of two), has a considerable effect on the daily travel times. In
contrast to that for the first two types, the impact of regularities on daily travel times
is marginal.

Finally, we analyze if the range of service times has an effect on the daily travel for
different weekday regularities. Again, we use the daily travel times for comparison
and average over the three different patterns of week rhythms. For the original service
times, partial and strict regularities increase the travel times by 1.27% and 1.82%,
respectively, over the case of no regularities. For the second type of service times,
these numbers increase to 6.08% and 8.88%. This indicates that an increase in the
range of service times is mirrored by a higher increase in the daily travel times when
weekday regularity is enforced.

7.4.2 A branch-and-price algorithm for the MPSTDP-S

As only very small data sets can be solved optimally with standard MIP solvers, we
present in Bender et al. [2] a specially tailored branch-and-price algorithm. To start,
we first derive a set partitioning based reformulation of the scheduling subproblem.
Let P(B) denote the power set of B. We define Sweeks ⊆ P(B) as the set of all
sets s ∈ P(B) that are feasible week clusters (feasible in the sense that s satisfies
Constraints (7.1h) & (7.1i)). Analogously, we define Sdays ⊆ P(B) for days. For a
cluster s ∈ Sweeks ∪ Sdays, we denote by cs = mini∈B ∑b∈s cbi the compactness of s.
Moreover, we define the following decision variables:

δ
w
s =

{
1, if s ∈ Sweeks is selected as week cluster in week w
0, otherwise.

γ
d
s =

{
1, if s ∈ Sdays is selected as day cluster on day d
0, otherwise.
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Then, an equivalent integer linear programming formulation for the MPSTDP-S is
given as

(MPSTDP-S-SP)

min α2 ∑
w∈W

∑
s∈Sweeks

csδ
w
s + α3 ∑

d∈D
∑

s∈Sdays

csγ
d
s (7.6a)

s.t. ∑
s∈Sweeks

δ
w
s = 1 w ∈W (7.6b)

rb

∑
w=1

∑
s∈Sweeks:b∈s

δ
w
s = 1 b ∈ B (7.6c)

∑
s∈Sweeks:b∈s

δ
w
s = ∑

s∈Sweeks:b∈s

δ
f v(b,w)

s b ∈ B, w ∈W,w > rb (7.6d)

∑
s∈Sdays

γ
d
s = 1 d ∈ D (7.6e)

∑
d∈Dw

∑
s∈Sdays:b∈s

γ
d
s = ∑

s∈Sweeks:b∈s

δ
w
s b ∈ B, w ∈W (7.6f)

δ
w
s ∈ {0,1} s ∈ Sweeks, w ∈W (7.6g)

γ
d
s ∈ {0,1} s ∈ Sdays, w ∈W (7.6h)

The objective function (7.6a) represents a weighted average of the compactness
of week and day clusters, where α2,α3 ≥ 0 are weighting factors, see Section 7.3.1.
Constraints (7.6b) select a cluster for each week. Constraints (7.6c) and (7.6d) ensure
that each customer b is served exactly once within the first rb weeks and every rb
weeks after that, respectively. Constraints (7.6e) select a cluster for each day and
Constraints (7.6f) make sure that a customer is included in one of the day clusters of
each of her visiting weeks. The last two constraints specify the variable domains.

For our branch-and-price algorithm, we replace the set Sweeks in formulation
(MPSTDP-S-SP) by the week dependent sets Sw ⊆ Sweeks, w ∈W . Sw is the set of
all week clusters which can be selected in week w. The reason for this is that in the
course of the algorithm some of the generated clusters may only be valid for certain
weeks, for example due to prior variable fixings. Analogously, we replace Sweeks by
the day dependent sets Sd ⊆ Sweeks, d ∈ D.

To start off the branch-and-price algorithm, we run the location-allocation heuris-
tic and use the week and day clusters of that solution to create initial sets Sw and
Sd of feasible week and day clusters, respectively. The resulting problem is called
the restricted master problem (RMP). When solving the LP relaxation of the RMP,
we check for negative reduced cost variables by solving the following pricing prob-
lem, where πw

0 , πw
1 , πbw

2 , πd
3 and πbw

4 denote the dual variables associated with
Constraints (7.6b)−(7.6f):
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(S-PP) min α2 ∑
b∈B

∑
i∈B

∑
w∈W

cbiuw
bi + α3 ∑

b∈B
∑
i∈B

∑
d∈D

cbivd
bi (7.7a)

− ∑
w∈W

π
w
0 − ∑

b∈B
π

b
1 ∑

i∈B

rb

∑
w=1

uw
bi

− ∑
b∈B

|W |

∑
w=rb+1

π
bw
2 ∑

i∈B

(
uw

bi−u f v(w,b)
bi

)
− ∑

d∈D
π

d
3 − ∑

b∈B
∑

w∈W
π

bw
4 ∑

i∈B

(
∑

d∈Dw
vd

bi−uw
bi

)

subject to uw
bi ≤ xw

i i,b ∈ B, w ∈W (7.7b)

∑
i∈B

xw
i = 1 w ∈W (7.7c)

∑
b∈B

∑
i∈B

sbuw
bi ≤UBw w ∈W (7.7d)

∑
b∈B

∑
i∈B

sbuw
bi ≥ LBw w ∈W (7.7e)

vd
bi ≤ yd

i i,b ∈ B, d ∈ D (7.7f)

∑
i∈B

yd
i = 1 d ∈ D (7.7g)

∑
b∈B

∑
i∈B

sbud
bi ≤UBd d ∈ D (7.7h)

∑
b∈B

∑
i∈B

sbud
bi ≥ LBd d ∈ D (7.7i)

xw
i , yd

i ∈ {0,1} i ∈ B, d ∈ D, w ∈W (7.7j)

uw
bi, vd

bi ∈ {0,1} b, i ∈ B, d ∈ D, w ∈W (7.7k)

Constraints (7.7b)-(7.7i) ensure that we generate feasible week and day clusters
and, together with the first line of the objective function, that their compactness
is computed correctly. The constraints are identical to the corresponding ones in
formulation (MPSTDP), except for the missing district index t and the variables gw

b
and hd

b , which have been replaced by ∑i uw
bi and ∑i vd

bi, respectively (with uw
bi and vd

bi
now being binary). As all constraints linking weeks across the planning horizon or
linking visitingweekswith visiting days are included in themaster and not the pricing
problem, the latter decomposes into |W |+|D| independent pricing problems, one for
each week and each day. To solve each of the independent pricing problems, we
break them further down by fixing a week center i ∈ B and then solving the resulting
formulation for the allocation variables uw

bi; analogously for days. In that fashion we
can identify up to |B|(|W |+|D|) negatively priced variables, instead of just |W |+|D|
if we had solved the independent pricing problems directly. As the independent and
broken down pricing problems are still NP-hard optimization problems, we first
solve them with a Greedy heuristic. Only if the heuristic cannot find any negative
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reduced cost column, we solve the corresponding formulations exactly. At the end,
all columns with negative reduced costs are added to the RMP.

Once the LP relaxation of the master problem has been solved to optimality
in a given node of the branch-and-bound tree and we cannot fathom the node,
we have to branch. As branching on variables of the restricted master problem
changes the structure of the pricing problems, we decided to branch instead on
the scheduling variables gw

b and hd
b of the original formulation (MPSTDP-S). For a

fractional solution, we immediately get gw
b = ∑s∈Sw:b∈s δ w

s and hd
b = ∑s∈Sd :b∈s γd

s . We
prioritize branching on the week scheduling variables gw

b . If all of them are integer,
we branch on the day variables hd

b . Whenever we fix any of those variables to 0
or 1, we remove all clusters from the RMP that would result in infeasible visiting
weeks or days for the corresponding customers. If we have more than one fractional
scheduling variable, we use pseudo cost branching to select a suitable one, see [2]
for more details.

One of the main contributions in [2] is a symmetry-reduced branching (SRB)
scheme that aims at eliminating as many week- and day-symmetric solutions as
possible in the branching process. The idea of this scheme is to add additional
variable fixings in a child node if we can guarantee that for any solution that becomes
infeasible in this node due to the fixation, there exists a week- or day-symmetric
solution in the other child node. Let’s consider again our example from Section 7.3.2
with four weeks and week rhythms that are powers of 2. Assume that we have fixed
the first visit of a customer b′ ∈ B with rb′ = 4 to the first day of the first week
and that no other fixings exist so far. As a result, there are just two possible week-
symmetric solutions remaining: (B1,B2,B3,B4) and (B1,B4,B3,B2). Consider now
a customer b ∈ B with rb = 4 whose scheduling variable for week 2 is fractional,
i.e., 0 < g2

b < 1. Branching on g2
b generates two child nodes: N0 with g2

b = 0 and N1
with g2

b = 1. Considering node N0, b can still be served in week 1, 3, or 4. If we
decide to serve b in week 4, then we could as well have served her in week 2, due
to week-symmetry. But then, this solution is already covered by node N1. Hence, we
can also fix g4

b = 0 in node N0 without loss of generality. In an analogous fashion,
we can add additional variable fixings for days.

Computational experiments

In the following, we evaluate our algorithm using nine real-world data sets. The
planning horizon consists of four weeks, with five days per week. The instances
range from 25 to 35 customers and the service times from 10 to 330 minutes. Each
customer has a power-of-two week rhythm rb ∈ {1,2,4}. As before, we choose
α2 = 1/3 and α3 = 2/3. Moreover, we set LBw = 0.9µweek and UBw = 1.1µweek

for weeks and LBd = 0.8µday and UBd = 1.2µday for days. All tests are carried out
under Ubuntu 16 on a machine with an Intel Xeon E5-2650 processor and 128 GB
memory. The linear and integer programs are solved using Gurobi 7.0.1.

An excerpt of the results can be found in Table 7.5 (we refer to [2] for a more
detailed analysis). The first column lists the number of the data set (for the purpose
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of referencing, we keep the numbering used in [2]). The next three columns present
the results for solving formulation (MPSTDP-S) with a time limit of ten hours. The
columns labelled Gap, Ob j, and Time show the MIP gap reported by Gurobi upon
termination, the objective value of the best found solution, and the total runtime
in seconds, respectively. The following two pairs of columns show the results for
the branch-and-price algorithm, first without and then with our symmetry-reduced
branching scheme. The objective value of optimal solutions is printed in bold.

Table 7.5: Results for the branch-and-price algorithm.

(MPSTDP-S) B&P B&P w/ SRB
Instance Gap Obj Time Obj Time Obj Time

1 0.01% 1908.5 1,132 1908.5 606 1908.5 54
2 1.91% 1228.6 36,000 1228.6 8 1228.6 2
3 0.64% 1893.7 36,000 1893.7 4,284 1893.7 114
4 0.01% 1702.5 12,493 1761.0 36,000 1702.5 458
5 0.17% 2006.4 36,000 2006.4 33,995 2006.4 2,133
8 0.01% 2070.6 24,468 2070.6 171 2070.6 84
9 2.99% 1949.1 36,000 1946.8 36,000 1946.6 416
10 1.27% 1714.8 36,000 1714.8 1,787 1714.8 29
11 0.00% 2067.8 9,844 2067.8 315 2067.8 16

Avg 0.78% 25,326 12,574 365

We can see that even with a running time of ten hours, only four out of the
nine instances can be solved to proven optimality using formulation (MPSTDP-S),
although eight out of nine solutions are in fact optimal. While finding fewer optimal
solutions, the branch-and-price algorithm can considerably reduce the runtimes,
cutting the average by half. Finally, including the SRB in the branch-and-price
algorithm, proven optimal solutions can be found for all nine instances, with the run
times being two orders of magnitude smaller than the ones for (MPSTDP-S).

7.5 Conclusions

In this chapter, we presented the multi-period service territory design problem. The
problem extends classical districting problems by a scheduling component and is of
high practical relevance for many industries, most notably in the retail and mainte-
nance sector. We introduced a mixed-integer linear programming formulation for the
MPSTDP and the preliminary experiments we carried out show that the problem is
very challenging. One reason for this is the high amount of symmetry inherent in the
MPSTDP, which carries over to our formulation. As the districting subproblem is
very well studied, we focussed on the scheduling subproblemMPSTDP-S, proposing
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two new algorithms for it. The first is a location-allocation based heuristic which
produces high-quality solutions within a short time. This heuristic outperformed
the–then current–algorithm of PTV for the scheduling subproblem and has now
replaced it. The second is a specially-tailored branch-and-price algorithm which is
able to decrease the run times by two orders of magnitudes when compared to the
state-of-the-art solver Gurobi for small sized instances. This impressive improve-
ment is mostly due to novel and very efficient symmetry-reduction techniques in the
branching process.
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Chapter 8
Designing Ambulance Service Districts under
Uncertainty

Shakiba Enayati, Osman Y. Özaltın, and Maria E. Mayorga

Abstract For ambulances, quick response to a medical emergency is critical. Lim-
iting response area for each ambulance may lead to shorter response times to emer-
gency scenes and more evenly distributed workload for ambulances. We propose
a two-stage stochastic mixed-integer programming model to address the service
district design problem under uncertainty. The proposed model recommends how
to locate ambulances to the waiting sites in the service area, and how to assign a
set of demand zones to each ambulance at different backup levels. Our proposed
Stochastic Service District Design (SSDD) model enables quick response times by
jointly addressing the location and dispatching policies in a stochastic and dynamic
environment. Each backup level is associated with a given response time threshold.
The objective function is to maximize the expected number of covered calls while
restricting the workload of each ambulance. The proposed model can be optimized
offline as is commonly done for “patrol-beats” used in policing models. We evalu-
ate the implementation of the proposed model via a discrete-event simulation, and
compare the model with two baseline policies. Our computational results show a
significant improvement in mean response time, reduction of 2 minutes, and statisti-
cally lower average workload of ambulances, of 4% on average, when the proposed
model is fully implemented.
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8.1 Introduction

Emergency medical service (EMS) refers to the provision of critical medical care
outside of hospitals and transferring of patients to hospitals by equipped vehicles
under medical supervision [27]. Each EMS agency operates in a specific service area
to respond to emergency calls from the population within its geographic boundaries
(i.e. town, city, or county). To better manage demand, the service areamay be divided
into smaller demand zones [15, 54]. Depending on the regulations and policies of
the agency, demand zones may include a number of potential locations, i.e. waiting
sites, for the vehicles, medical equipment, and paramedics to be stationed while at
rest.

Emergency medical calls are routed through a dispatch center. Dispatchers an-
swering calls interface with a computer-aided dispatch (CAD) system to collect
information (e.g. call type, time of dispatch, time of arrival, time the vehicle left the
scene and arrived at the hospital, and time the vehicle left the hospital and reported
back to service). The service time captures the duration between vehicle dispatch to
a call and vehicle return to service. The response time is the difference between time
the unit is dispatched and its arrival to the scene.

Quick response to a medical emergency by an ambulance is critical. For example,
the survival probability of cardiac arrest patients increases by 50% when attended
to by an ambulance within eight versus fifteen minutes [51], and it is estimated that
survival rate decreases by 5.5% per minute that the patient is without treatment [31].
Thus, reducing emergency response times is one of the main ways that EMS systems
can decrease mortality of out-of-hospital patients.

In many communities, demand and traffic congestion continue to grow but re-
sources cannot keep pace [25]. Under tight resource constraints, improving opera-
tional efficiency is the only way that most EMS systems will be able to maintain or
improve quality of service and potentially save more lives. This is a rather difficult
task however due to several complexities of EMS systems: they are geographically
distributed, operate under uncertainty (e.g. calls arrive randomly and service times
are stochastic) with heterogeneous customers (e.g. patients with different medical
needs), and have inherent interdependencies (e.g. dispatching an ambulance for
service impacts the service of future calls).

Due to such uncertain and complex system dynamics, EMS managers face many
challenges at the strategic and tactical levels. At the strategic level, they need to decide
what locations are potentially appropriate for ambulance waiting sites. This problem
has been studied in the literature as a facility location problem [13, 14, 19, 40, 48].
Moreover, It has been shown that limiting or adapting the response areamay decrease
the average EMS system response time [43] and improve personnel efficiency and
satisfaction. Thus, at the strategic level, EMS management may need to investigate
the advantages of dividing the original service area into several predefined response
districts so as to improve performance of the EMS system. This problem has been
handled in the literature as a districting problem [21,32, 43].

At the tactical level, there are challenges regarding dispatching policies and
redeployment of ambulances. A dispatching policy is a set of rules for selecting
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proper ambulances to respond to emergency calls. This problem has been extensively
covered in the literature [33, 44–46]. Ambulance redeployment refers to a strategy
that potentially helps to improve EMS performance by repositioning idle ambulances
to compensate for unavailability of busy ambulances. Also, redeployment may refer
to finding the next location of busy ambulances after service completion (instead
of sending ambulances back to their home stations). Many approaches have been
proposed in the literature for the redeployment of ambulances [41,42,59–61]. Some
studies also handle integrated problems in one approach, such as joint location and
dispatching problems [23,67] or joint redeployment and dispatching problems [18].

This chapter concentrates on the development and the evaluation of a two-stage
stochastic programming model to address the service district design problem. The
proposed Stochastic Service District Design (SSDD) model enables quick response
times by jointly addressing the location and dispatching policies in a stochastic and
dynamic environment. That is, it first locates ambulances at the potential waiting
sites in the service area. Each ambulance is then assigned to a set of demand
zones to respond to their emergency calls at different backup levels. Each backup
level corresponds to a response time threshold. The proposed SSDD model can be
optimized offline and the outputs regarding the dispatching policy are easily applied
in a dynamic manner. Such an implementation is similar to the idea of “patrol-beats”
used in policing models and it reduces the technological capabilities required to
integrate the model within basic computer-aided dispatch (CAD) systems.

In the remainder of this chapter, we briefly review the related literature in Sec-
tion 8.2. We present the model formulation in Section 8.3. We discuss the output
representation and the numerical results of implementing the proposed model via
simulation in Section 8.4. We finally conclude in Section 8.5.

8.2 Literature Review

EMS providers seek to minimize response times and maximize coverage, i.e. the
proportion of calls answered within a given time threshold. The EMS literature has
addressed four different problems with the goal of improving service: ambulance
location/allocation, redeployment, and dispatching problems aswell as the districting
problem.These problems are formulated and solved in three (not necessarilymutually
exclusive) streams: static/deterministic, dynamic/real-time, and probabilistic. Earlier
approaches mostly dealt with static and deterministic models for location/allocation
problems [13, 66]. Static models are proposed for the strategic decisions in the
planning stage [10]. Dynamic and real-time approaches address tactical decision such
as ambulance redeployment [27]. Probabilistic approaches handle the uncertainty of
ambulance availability. Brotcorne et al. [10], Goldberg [22], Li et al. [36], Başar et
al. [5], Bélanger et al. [7], and Aringhieri et al. [4] reviewed mathematical models
in the EMS literature. The remainder of this section reviews studies addressing
ambulance location/allocation as well as ambulance dispatching and redeployment,
with a focus on those works that address uncertainty. We also summarize the studies
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on service districting problem in the EMS literature as well as in the literature of
other applications.

8.2.1 Ambulance location/allocation

While there is a large body of research related to resource location/allocation in EMS
systems, there is a lack of mathematical models that explicitly consider uncertainty.
The maximum expected covering location problem (MEXCLP) was formulated as
one of the first probabilistic models for the ambulance location problem [14]. MEX-
CLP assumed that each ambulance has the same probability, called the busy fraction,
of being unavailable to respond to a call, and all ambulances are independent. Em-
ploying the busy fraction concept, the maximum availability location problem was
proposed to maximize the demand covered with a given probability [55]. Several
studies viewed ambulances as servers in a queuing system [6, 8, 11, 39, 40], and ap-
plied the hypercube model of Larson [32] to estimate busy fractions associated with
the whole system or with a specific waiting site. Furthermore, compliance tables
are designed to prescribe ambulance allocation given a certain fleet size. A Markov
model was proposed to estimate the busy probabilities of ambulances for a given
compliance table [1]. Optimizing a compliance table design was first proposed by
Sudtachat et al. [64]. Another way to deal with uncertainty is through detailed sim-
ulation models, such as Andersson and Varbrand [2] and Sudtachat et al. [63], but
these can only be used to compare proposed policies or heuristics, not to find optimal
solutions, and cannot be generalized to systems under different operating conditions.

8.2.2 Ambulance dispatching and redeployment

Advances in CAD systems and access to data have spurred research in real-time
models that are executed online. These models focus on dispatching and redeploying
ambulances based on the current system status and demand forecasts [42,53,59,60].
A mixed-integer program was formulated to provide a dynamic relocation strategy
that maximizes the expected demand coverage while controlling the number of
waiting site relocations [20]. System-status management models consider real-time
decisions and not strategic decisions. Real-time recommendations must still adhere
to the underlying design and response policies [41]. Advanced CAD systems may be
linked with GIS technology to make dispatch recommendations based on real-time
traffic information and demand forecasts. However, suburban and rural EMS systems
typically have basic CAD systems that lack GIS capabilities. Even with advanced
CAD systems, enhancing their capabilities is expensive and some agencies view this
as an avoidable cost [57]. Thus, it is important to provide guidelines for data-driven
optimization models that can be integrated into existing CAD systems.
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8.2.3 Service district design

Service district design is a strategic decision that is made offline for constructing
the primary (and possibly backup) response area(s) of ambulances to improve cov-
erage and enable quick response times. This problem can be addressed from two
complementary perspectives. The first perspective involves grouping demand zones
into compact and contiguous districts such that the set of assigned vehicles to each
district is primarily responsible for responding to calls within that district. This is
the traditional districting design approach which creates clear physical borders for
districts. In geographically compact districts the distance to the center does not vary
widely, and contiguity ensures that it is possible to travel between any two points
within a district without having to leave the district. A mixed-integer linear program
was formulated to optimize weighted objectives of district balance (defined as rel-
ative deviation of the district size from the average district size), and recommend
compact and contiguous districts for political districting, police patrol area delin-
eation and sales territory design applications [30]. See additional examples in the
literature of political and public service districting problems [12, 47, 65]. Modeling
such a districting design would result in highly symmetric mathematical programs
in which several equivalent solutions can be obtained by changing the “center” of a
district plan to any of the demand zones included in the district. Therefore, solution
algorithms developed for this modeling perspective have to explore many alternative
symmetric solutions which increases the computational burden [62]. The problem of
dividing an area into a set of compact and contiguous districts is NP-complete [52].
The existing models and solution approaches in the literature are limited to solve
only small instances [16, 58], or some common districting criteria (i.e. contiguity,
compactness, balanced districts) are not fully enforced in the formulation [37,50,56].
Considering uncertainty in the EMS systems is even more challenging in such dis-
tricting models. The second perspective to district design assigns a set of demand
zones to each vehicle at different backup levels. This approach differs from designing
contiguous and compact districts as it prescribes how to dispatch vehicles to calls in
real time without explicitly partitioning the response area into geographical districts.
This chapter adopts the latter perspective to address the districting problem in EMS
systems with uncertainty considerations.

There have been few works in the literature related to district design of EMS
systems. An optimization framework was developed using genetic algorithms to dis-
trict a region and deploy ambulances on highways to minimize the average response
time, however the results were limited to a linear service region [26]. A heuristic was
proposed to design districts for an EMS system, and developed a simulation model to
evaluate the performance of several integrated districting and dispatching policies in
terms of patient survival probability [43]. A mixed-integer program was formulated
to locate and dispatch ambulances through district design [3]. They consider the
uncertainty in ambulance availability and travel times through a hypercube model
approximation.

The districting problem has been extensively studied in various other applications
such as geography, politics, ecology, business, and public service. A broad perspec-
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tive on common criteria and limitations in districting applications was provided [28].
Not many works in the literature have studied stochastic districting problems. A two-
stage stochastic program was developed for vehicle routing and districting problem
with stochastic customers inwhich districting decisions aremade in the first stage and
the routing expenses are approximated in the second stage [35]. They addressed the
compactness of districts in the objective function and developed a large neighbour-
hood search heuristic to solve the model. Also, the districting and routing problem
were addressed with stochastic demand using a two-stage stochastic program and
developed Tabu search and multistart heurisics [24] .

The proposed stochastic programming model in this chapter is the first analytic
model that explicitly considers uncertainty for the EMS service district design prob-
lem. The proposed formulation can model complex EMS system dynamics while
leveraging historical data. Only a few papers considered stochastic programming
formulations for EMS problems. A two-stage stochastic programming model was
developed that is solved repeatedly on a rolling horizon basis in real time to mini-
mize the number of relocationmoves during the planning horizon, while maintaining
an acceptable service level [49]. Furthermore, a two-stage stochastic programming
model with chance constraints was formulated to locate ambulances in the first stage,
and allocate demand points to ambulances in the second stage [8]. However, their
proposed model does not consider the uncertainty in the availability of ambulances
when evaluating coverage. In a similar vein, a chance-constrained optimization to
relocate ambulances was proposed [38]. In summary, there is a lack of mathematical
models for spatially distributed service systems that explicitly consider uncertainty
which is an endemic feature of such systems.

8.3 Model Formulation

Better service district designs may lead to shorter response times, more equitable
division of the workload, familiarization with the assigned area, and more efficient
use of personnel. The average response time and the variation of workload among
different districts are two important performance measures of service district design.
Limiting the primary response area of ambulances enables the EMS system to
decrease the average response time of paramedic support to the scene [43]. However,
a service district design, just like any other decision for improving operational
efficiency in EMS systems, has to consider uncertainty as EMS systems deal with
uncertain demand with several stochastic attributes such as arrival time, location,
and service time of emergency calls [18].

We generate a finite set of scenarios to include the uncertainty of the emergency
call sequence into the decision making process. Each scenario consists of a set of
calls that occurred during a shift and call specifications, i.e., location, arrival time,
and service time.We assume that the likelihood of an ambulance being unavailable to
respond to a call (i.e., busy fraction) is identical and independent for all ambulances
under each scenario [14].
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We formulate a two-stage stochastic programming model to design EMS service
districts with the goal of maximizing expected number of emergency calls that are
responded to in a timely manner while limiting the workload of ambulances. Each
district consists of multiple demand zones, and the ambulance assigned to a district
is responsible to serve calls in those demand zones within a certain response time
threshold. In the first stage, ambulances are assigned to waiting sites, and demand
zones are assigned to ambulances at different backup levels. Each backup level is
associated with a response time threshold. The first-level backup ambulance of a
demand zone primarily responds to calls from that zone; however, if the first-level
backup ambulance is busy, then the second-level backup ambulance responds, and
so on. The second-stage problem measures the expected proportion of calls that
are served by each ambulance at all backup levels as a result of the first-stage
assignments. The proposed model in fact prescribes how to dispatch ambulances to
emergency calls depending on their real-time availability at different backup levels
without explicitly partitioning the service area into compact and contiguous districts.

Let I be the set of demand zones, J be the set of waiting sites (J ⊆ I), and
R be the set of backup levels, i.e., {1, . . . ,R}. We define Jir as the set of waiting
sites that can serve demand zone i ∈ I at the rth ∈R backup level (i.e. Jir includes
those waiting sites that are located within the given time threshold defined for the rth

backup level from demand zone i). The number of available ambulances is denoted
by κ . The first-stage decision variables are denoted by:

• x j ∈ {0,1}: equals 1 if an ambulance is located at site j ∈ J , and 0 otherwise.
• yi jr ∈ {0,1}: equals 1 if the rth ∈R backup ambulance for demand zone i ∈ I is

located at site j ∈ J , and 0 otherwise.

LetX := {x j, j ∈J } andY := {yi jr, i∈ I, j ∈J ,r ∈R}. The Stochastic Service
District Design (SSDD) model is then formulated as:

(SSDD) Z∗ = maxE
(
Qs(X ,Y)

)
(8.1a)

subject to ∑
j∈Jir

yi jr ≥ 1 i ∈ I,r ∈R (8.1b)

∑
r∈R

yi jr ≤ x j i ∈ I, j ∈ J (8.1c)

∑
j∈J

x j ≤ κ (8.1d)

x j,yi jr ∈ {0,1} i ∈ I, j ∈ J ,r ∈R (8.1e)

The first-stage objective function (8.1a)maximizes the expected recourse function
which will be elaborated in the second-stage problem. Constraints (8.1b) state that
demand zone i∈ I must be covered by at least one ambulance located at covering site
j ∈ Jir at backup level r ∈ R. Constraints (8.1c) ensure that site j ∈ J responds to
calls from demand zone i∈ I at any backup level r ∈R only if there is an ambulance
located at site j ∈ J . Constraint (8.1d) enforces the fleet size limit.
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Let S be the set of generated scenarios. The second-stage decision variable is
defined as follows:

• zs
i j ∈ [0,1]: the proportion of calls from demand zone i ∈ I that are served by an
ambulance at waiting site j ∈ J under scenario s ∈ S.

Table 8.1: Parameters in the second stage of the service district design model.

ρs
ir expected proportion of calls from demand zone i under scenario s that arrive when the first

(r−1) backup ambulances are busy and the rth backup ambulance is available:
∑r∈R ρs

ir ≤ 1, i ∈ I, r ∈R, and s ∈ S
ds

i ratio of calls from demand zone i ∈ I to all calls during the planning horizon
under scenario s ∈ S

Fmax maximum proportion of all calls that can be responded by each ambulance

Table 8.1 summarizes the notation of parameters used in the second-stage problem
of the SSDD model. The second-stage problem under scenario s ∈ S is given by:

Qs(X ,Y) = max ∑
i∈I

∑
j∈J

ds
i zs

i j (8.2a)

subject to zs
i j ≤ ∑

r∈R
ρ

s
iryi jr i ∈ I, j ∈ J (8.2b)

∑
i∈I

ds
i zs

i j ≤ Fmaxx j j ∈ J (8.2c)

zs
i j ≥ 0 i ∈ I, j ∈ J (8.2d)

The second-stage objective function (8.2a) maximizes the coverage. Constraints
(8.2b) compute the proportion of calls in demand zone i ∈ I that are responded to
from site j ∈J at different backup levels. Note that parameter ρs

ir is a function of the
busy fraction probability of ambulances and the sequence of calls generated from
a demand zone under each scenario. Constraints (8.2c) establish the upper bound
on the proportion of all calls that can be responded to by site j ∈ J at which an
ambulance is located. We estimate parameter Fmax in constraints (8.2c) by:

Fmax =
maxs∈S(∑i∈I ds

i )

κ
(8.3)

Equation (8.3) sets the upper bound for the workload of each ambulance by
equally distributing the calls between ambulances, i.e. we divide the maximum total
number of calls during a shift generated in scenario set S by the number of available
ambulances. Finally, constraints (8.2d) enforce the second-stage decision variables
to be nonnegative.
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8.4 Computational Results

We discuss the model output on two different instance sets:

1. Small instances: configuration of a service area is randomly generated. Emer-
gency calls are uniformly distributed in the service area and their arrival times
and service times are also generated randomly from a uniform distribution. All
demand zones are considered as potential waiting sites for ambulances (|I|= |J|).

2. Large instance: scenarios are generated based on a real dataset collected from
an EMS agency in Mecklenburg County, North Carolina. The service area is
about 540 square miles that is hypothetically divided into 168 demand zones
(i.e. |I|= 168). Each zone is 4 square miles (2×2) [17]. The set of waiting sites
J is assumed to be the centroid of each demand zone (i.e. |J|= 168) because
ambulances are allowed to wait at any location in Mecklenburg County. The
dataset includes about 50,000 calls in Mecklenburg County for 650 shifts in
2004. The spatial demand distribution is highly concentrated in the central
demand zones and is more sparse in the peripheral areas. Furthermore, demand
significantly varies based on day of the week and time of the day [17]. We
assume that each shift in the data corresponds to a scenario.

In both instances, we consider three different backup levels, |R|= 3, with cor-
responding coverage thresholds of 8, 12, and 16 minutes. We solve the extensive
form of the proposed SSDD model (8.1). All computational experiments have been
performed using CPLEX 12.6 on a Windows computer with 32 GB of memory and
3.4 GHz Intel Core i7 processor. Section 8.4.1 presents the model outputs on small
examples. Section 8.4.2 evaluates the solution of the large instance via simulation.

8.4.1 Discussion of the model output

The SSDDmodel outputs the optimal waiting sites for available ambulances. Also, it
determines the response design at all backup levels corresponding to each ambulance
site.We present the model outputs on two different small examples in Figures 8.1 and
8.2. In each figure, demand zones with asterisks indicate the waiting site at which an
ambulance is located. Demand locations shown in dark gray, light gray, and white
illustrate the zones for which the ambulance located at the asterisked site serve as
the first, second, and third backup, respectively. Demand zones shown in red are not
covered within any backup level of the corresponding ambulance at the asterisked
site. The service area in both examples is a random subset of zones selected from
the service area of the EMS agency at Mecklenburg County.

The first small example is shown in Figure 8.1 which is the ambulance response
design for a service area including 15 demand zones (i.e. |I|= 15), 4 ambulances
(i.e. κ = 4), and 3 backup levels (i.e. |R|= 3). Figures 8.1a, 8.1b, 8.1c, and 8.1d
show the response design at each backup level for ambulances stationed at waiting
sites 3, 7, 9, and 11, respectively. This result is the optimal solution of the SSDD
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(a) (b) (c) (d)

Backup Level
Demand Zones

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
First Backup 1 2 2 2 2 1 2 2 2 2 1 1 1 1 2

Second Backup 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1
Third Backup 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
Total Weighted 6 9 9 9 9 6 9 9 9 9 8 7 8 8 9

Fig. 8.1: Ambulance response design for a small example with 15 demand zones, 4
ambulances, and 3 backup levels. Demand zones with asterisks indicate the station

at which an ambulance is located. Dark gray and light gray demand zones are
covered within the first and the second backup levels by the corresponding

ambulance located at the asterisked site, respectively. White zones demonstrate the
third backup level. Demand zones shown in red are not covered within any backup
level of the corresponding ambulance at the asterisked site. The table shows the
number of ambulances covering at each backup level as well as the total weighted
coverage for each demand zone. The first, second, and third backup levels weigh 3,

2, and 1, respectively.

model for 200 scenarios in which the busy fraction of ambulances ranges between
41.6% and 64.3% during a 6-hour shift. In this instance, the computational time to
solve the extensive form of the SSDD model by CPLEX is 20 seconds. Figure 8.1
demonstrates that all demand zones are covered at least once within each backup
level.

Some of the demand zones may not be served by an ambulance at a specific site
as shown in Figure 8.1d in red fonts, i.e., demand zones 1 and 6 are not covered by
the ambulance located at station 11 at any backup level. However, this does not mean
that those demand zones are not covered at all. According to Figure 8.1, zone 6 is
covered by the ambulances located at sites 3, 7, and 9. Furthermore, it is possible
that the ambulance located at a site does not cover the corresponding demand zone
at the first backup level. For example, in Figure 8.1a the ambulance located at site 3
covers demand zone 3 at the second backup level. This can happen as a result of the
workload constraint and may be difficult to justify in practice. Such circumstances
do not occur frequently according to our trial runs, thus we employ a correction to
the model output and assume if an ambulance is located at a site, it must always
cover the corresponding demand zone at the first backup level.

Figure 8.2 illustrates the solution to the second small instance which includes
37 demand zones (i.e. |I|= 37), 7 ambulances (i.e. κ = 7), and 3 backup levels
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(a) (b) (c) (d)

(e) (f) (g)

Backup Level
Demand Zones

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
First Backup 1 1 1 2 1 1 2 3 2 2 2 1 1 1 1 1 2 2 1

Second Backup 1 1 2 2 2 1 1 1 3 3 3 2 2 2 5 5 3 2 3
Third Backup 2 4 3 3 4 2 3 3 2 2 2 1 4 4 1 1 2 3 2
Total Weighted 7 9 10 13 11 7 11 14 14 14 14 8 11 11 14 14 14 13 11

Backup Level
Demand Zones

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
First Backup 1 1 1 3 2 2 1 2 1 1 1 2 2 2 1 1 1 1

Second Backup 1 2 5 3 3 3 5 4 4 2 3 2 2 2 2 2 1 1
Third Backup 4 4 1 1 2 1 1 1 2 2 2 3 3 2 3 3 3 2
Total Weighted 9 11 14 16 14 13 14 15 13 9 11 13 13 12 10 10 8 7

Fig. 8.2: Ambulance response design for small example with 37 demand zones, 7
ambulances, and 3 backup levels. Demand zones with asterisk indicate the station
at which an ambulance is located. Dark gray and light gray demand zones are
covered within the first and the second backup levels by the corresponding

ambulance located at the asterisked site, respectively. White zones demonstrate the
third backup level. Demand zones shown in red are not covered within any backup
level of the corresponding ambulance at the asterisked site. The table shows the
number of ambulances covering at each backup level as well as the total weighted
coverage for each demand zone. The first, second, and third backup levels weigh 3,

2, and 1, respectively.
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(i.e. |R|= 3). Figures 8.2a, 8.2b, 8.2c, 8.2d, 8.2e, 8.2f, and 8.2g show the response
design at each backup level for ambulances stationed at sites 3, 10, 14, 18, 26, 28,
and 35, respectively. This instance includes 200 scenarios and the busy fraction
of ambulances ranges between 51.2% and 75.3% during an 8-hour shift. The time
required to solve the extensive form of the SSDD model is 72 seconds.

As demonstrated via two examples in this section, the SSDD model (8.1) is
flexible to find the optimal solution to different EMS systems with different demand
congestion levels and shift lengths. A drawback of our model is the possibility of
an infeasible solution due to the constraints (8.1b) that force the system to cover
each demand zone at least once within each backup level. For instance, it was
necessary to have at least 4 and 7 ambulances, respectively, in the first and the
second small example to avoid infeasibility. We do not recommend to relax the
constraints (8.1b), although this can guarantee feasibility. Some demand zones might
not be covered evenwithin the first backup level after relaxing these constraints which
is not practical.

8.4.2 Model evaluation

We develop a discrete-event simulation to evaluate the performance of the SSDD
solution to the large instance based on the real dataset. We generate emergency
calls to the Mecklenburg EMS agency during two weeks, i.e., 28 12-hour shifts.
We consider 18, 19, and 20 ambulances and sample 450 scenarios. This fleet size
is the common range of available ambulances in Mecklenburg county. All reported
instances are solved optimally within 4 hours. We could not increase the scenario
size more than 450 due to the computational intractability of solving the extensive
form of the model. For instance, when the number of scenarios is 500 and the fleet
size is 20, the best reported gap by CPLEX is 27.5% after 4 hours run time. A
tailored decomposition algorithm might be developed to solve large scale instances
rather than solving the extensive form of the model. This is beyond the scope of
this chapter, and we refer the reader to Enayati et al. [18] and Lei et al. [34] for
more information on decomposition methods in a similar application domain. We
assume that ambulances are initially located at the sites proposed by the SSDD
model and they return to their home sites after service completion. Ambulances can
be dispatched to new calls before returning to their home sites. Furthermore, if more
than one ambulance is available for a call, the closest one is dispatched. We compute
actual road network distance for all ambulance trips using the Matlog toolbox in
MATLAB [29].

It might not be possible to apply optimal dispatching decisions in real life due to
legal regulations that mandate sending the closest available ambulance to an emer-
gency call. Hence, we study the isolated effect of ambulance location and dispatching
decisions on the performance of an EMS system by considering two additional base-
line policies. The baseline policy-1 merely uses the ambulance sites in the solution
to the SSDD model. In this baseline policy, ambulances are dispatched according
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to the myopic policy that sends the closest available ambulance to an emergency
call. In baseline policy-2 ambulances are initially located based on the Maximum
Covering Location Problem (MCLP) [13]. We use the historical proportional de-
mand corresponding to each demand zone as the weight multiplier in the objective
function of the MCLP model. Dispatching policy in the baseline policy-2 also sends
the closest available ambulance. We report two performance measures along with
the computational time to solve the extensive form of the SSDD model in Table 8.2:

• MRT (min): mean response time to calls during each shift.
• Workload (%): average percentage of time that an ambulance is busy with service

and travels (dispatching and transportation to hospital) during each shift.

Table 8.2: 95% confidence intervals of mean response time and workload measures
for two-week simulation of an EMS system. The reported time indicates the
computational time to obtain the solution of solving the extensive form of the

SSDD model with 450 scenarios by CPLEX.

κ = 18
SRDP Baseline-1 Baseline-2

MRT(min) [9.9,13.7] [11.3,15.1] [11.9,15.8]
Workload (%) [54.8,59.6] [58.9,62.6] [59.5,63.2]
Time (seconds) 7,982 - -

κ = 19
SRDP Baseline-1 Baseline-2

MRT(min) [9.2,13.3] [10.9,14.9] [11.2,15.1]
Workload (%) [50.2,52.8] [53.3,56.5] [53.6,56.2]
Time (seconds) 8,235 - -

κ = 20
SRDP Baseline-1 Baseline-2

MRT(min) [8.8,12.6] [10.5,14.0] [10.6,14.9]
Workload (%) [43.2,45.7] [47.1,49.3] [47.8,49.7]
Time (seconds) 9,998 - -

We make the following observations from Table 8.2:

• Full implementation of the SSDD model always outperforms both baseline poli-
cies in terms of mean response time. Comparing to the baseline policy-2 in which
alternative location and dispatching policies are applied, the full implementation
of the SSDD model improves the mean response time by 2 minutes on average.
We also observe that solely implementing the SSDD location solution with an
alternative dispatching policy, as in baseline policy-1, does not improve the mean
response time as much.

• Full implementation of the SSDD model always imposes less workload on am-
bulances by about 4% on average as compared with both baseline policies. The
workload of ambulances in baseline policy-1 and baseline policy-2 is statistically
similar.
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Finally, we calculate the value of stochastic solution that measures the potential
benefit of solving the stochastic program over solving a deterministic program in
which random parameters are replaced with their expectations [9]. That is, we
generate a single scenario in which all random parameters (e.g. ds

i ) are estimated to
the average of all 450 generated scenarios. We then run the SSDD for this scenario
and evaluate the output using simulation. The value of stochastic solution in our
set of experiments is reported 18% and 29% based on the MRT and the workload
measures, respectively.

8.5 Conclusion

In this chapter, we formulate a two-stage stochastic program to address the service
district design problem. This model presents two outputs: (1) available ambulances
are located at the potential sites in the service area, and (2) response districts for each
ambulance are designed at different backup levels (i.e. each ambulance is assigned to
serve a set of demand zones within a certain response threshold). We maximize the
expected proportion of covered calls while restricting the workload of ambulances.
The proposed model assumes that each ambulance has identical and independent
busy fraction probability.

We illustrate the solution on two small examples. We then evaluate the implemen-
tation aspects of the proposed model via a discrete-event simulation by comparing
the model with two baseline policies to study the isolated impact of location and
dispatching decisions resulting from the proposed model. The two baseline policies
are designed due to the mandatory regulation in most EMS systems that obligates
to send the closest available ambulance to an emergency call. Our computational re-
sults show a significant improvement in mean response time by 2 minutes on average
when implementing the proposed model. We also observe that average workload of
ambulances are statistically less by 4% on average when the model is fully imple-
mented.

Future studies may formulate a model that endogenously estimates the busy frac-
tion of ambulances as a decision variable for the service district design problem. The
results of such a formulation can be compared with the proposed model in this chap-
ter to study the impact of incorporating the ambulance busy fractions exogenously
versus endogenously on the quality of solutions. An endogenous formulation could
also alleviate the possibility of infeasible solutions. Furthermore, future studies may
develop a decomposition algorithm for the proposed two-stage stochastic program
to deal with computational intractability due to large number of scenarios.
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Chapter 9
Spatial Optimization Problem for Locating
Polling Facilities and Stations and Policy
Implications

Hyun Kim and Kamyoung Kim

Abstract Voting is a critical political activity and gives voters the opportunity and
right to express their opinion in modern democratic society. Ways to increase voter
turnout have been widely explored, but, the optimization approach is recognized by
many scholars as the best way to assess the efficiency of the current system and draw
policy implications. This research highlights the necessity for a spatial optimization
approach in determining the location of polling facilities and polling stations tai-
lored to the regulations of the voting process of South Korea. The effects of distance
and preference, such as that based on pre-knowledge of or experience with existing
facilities, are prescribed as the function ‘utility cost’ in formulating a spatial opti-
mization model, named the Capacitated p-Median Problem with Multiple Stations
in the Same Facility (CPMP-M). In a case study of an area with several precincts in
Seoul, South Korea, our numerical results based on preference factors demonstrate
the need to relocate the existing polling facilities, merge certain precincts, and adjust
existing boundaries of precincts to enhance the efficiency of administration of the
voting process.

9.1 Introduction

Voting is the most fundamental method of political participation in modern democ-
racy. The most important question regarding voting behavior is as follows: What
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are the critical factors that motivate eligible voters to participate in voting, and how
can the rate of participation be improved [11]? This question is critical because
different political turnouts can directly affect election results, and depending on
voter turnout, the outcome of an election may not sufficiently reflect the preferences
of the community [42]. Though there are many reasons that eligible voters do not
participate in voting, several theories have explained the motivation in terms of
economic perspectives. For example, Downs [6] explained the motivation of voters
using the Rational Choice Theory. This theory employed a dichotomy of economic
behavior: cost and benefit. Voters engage in the voting process only if the benefits
of voting are greater than the costs resulting from voting. Although Downs’s theory
provided a general frame to understand voting behaviors, it raised the question of
which elements are crucial factors in terms of the costs of voting. One of the costs
explored was the concept of accessibility of polling stations to eligible voters within
a precinct [7, 13, 32].

Ease of access to a voting location (e.g. ballot box, station, facility) can be
translated into the function of cost, which is well quantified with a geographic
factor, ‘distance.’ Brady and McNulty [3] highlighted the importance of distance to
understanding the behavior of voters through their study of the relationship between
locations of polling places and costs. The cost of a longer distance of travel from
a voter’s residence to a polling station leads to an increased utility cost. If the
cost high enough that eligible voters have a benefit smaller than the cost, then
they are not likely to participate in the voting process in a practical sense [2].
For example, in the case of Seoul, South Korea, the turnout rates of voters in the
20th National Assembly election of 2016 ranged from 26.9% to 72.3% among 2,258
precincts, indicating that these rates could be highly associatedwith the cost factors of
distance from the eligible voters in a precinct to the designated voting facilities [36].
As pointed out by Kim and Kim [22, 23], the decreased rate of voting in South
Korea is recognized as a social problem, requiring an assessment of the current
placement of polling stations [19,26]. To solve this problem, the spatial optimization
approach is considered to assess current system efficiency in terms of administration
and improve accessibility of voters by delineating precincts and selecting polling
facilities and placement of polling stations within the given regulations for better
political participation [2, 3, 27].

The goal of this paper is to highlight the necessity for a spatial optimization ap-
proach in determining the location of polling facilities and polling stations tailored
to the regulations of the voting process of South Korea. The effects of distance and
preference based on things such as pre-knowledge of or experience with existing
facilities, are prescribed as the function ‘utility cost’ in formulating a spatial opti-
mization model, named the Capacitated p-Median Problem with Multiple Stations
in the Same Facility (CPMP-M). The structure of the model is formulated based upon
the traditional p-median problem; however, the restrictions imposed by the admin-
istrative requirements were specified as a set of constraints. More important, voters’
preferences in selecting polling facilities or stations were added to the distance effect
for traveling cost, which is widely used in the majority of location problems. In
addition, demand areas were created by re-aggregated household data, which takes
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into account the unique characteristics of housing systems in Seoul. Our study ex-
plores the relationships between preference factors and the response of the models in
deciding the location of polling facilities and the allocation of demand areas. Finally,
several policy implications are drawn from the results.

9.2 Background

Many studies have examined the effect of distance on voter turnout. Previous research
on voting behaviors has focused on the intangible benefits of voting activity, such
as fulfilling one’s responsibility as a citizen at an individual level, in seeking to
understand voting participation. The aspects of cost, however, were largely ignored
because of the difficulty of quantifying costs. The factors of costs are usually based on
intangible motivation. Distance is an important metric that affects an eligible voter’s
decision-making process in regard to participation, because participation incurs the
direct cost of reaching the polling facility or stations during limited voting hours.
However, in the context of the United States, transportation costs have been largely
ignored in understanding political participation [1] because there are few effective
instruments to measure the transportation costs of voters at an individual level, and
the effect of distance has been generally approximated based on the aggregated level
of voters in specified spatial units [13].

A handful of studies found that distance had a significant effect on voting turnout
(see [2, 7, 13]). A lack of motivation to vote has also been recognized as a factor.
However, it is known that improving the convenience of voting by providing better
access to polling places could produce higher turnouts [11]. The underlying assump-
tion of the role of distance on voting turnout is that the greater the distance from
residence to a polling place, themore the opportunity cost of voting negatively affects
voting participation. Furthermore, recent research highlighted that not only the cost
required to access voting places but other intangible costs, such as the searching cost
to find polling locations, can be added to understand voting behaviors [3]. Recent
empirical research claimed that the effect of distance as a cost can be captured much
more clearly with the help of Geographic Information Systems, which make more
detailed information available (e.g., the locations of polling stations and options to
select among candidate sites), confirming that the distance from voters to polling
facilities negatively affects voting turnouts [7, 24].

The problem of placing voting facilities and stations (i.e., voting system) is
more critically associated with the effectiveness of administration, while an electoral
system focuses more on the issue of delineation of electoral districts, which is
grounded in political equity [21,44]. The voting system requires managing the entire
process of voting, which should provide better convenience for eligible voters to
encourage the participation in voting, resulting in higher turnout rates [17]. The
convenience of voting is directly related to the ease of access to voting facilities,
often called ‘accessibility’ [21,43]. Though the importance of the location problemof
polling facilities has been stressed, there is a lack of literature addressing it [8,37,39].
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Two perspectives justify the need to improve accessibility of eligible voters to
polling places. First, constraining voting activity due to far distance violates the
principle of suffrage in a modern democracy. To encourage eligible voters to par-
ticipate in politics, equal opportunity should be ensured and any physical hindrance
should be eliminated [2]. In this perspective, improving accessibility can result in
more equal opportunity, which is anticipated to increase participation. Second, from
a practical perspective, enhancing accessibility minimizes the operational cost of
administration. The establishment of precincts and polling stations is a critical elec-
tion administration process and entails a significant expense for the public office that
runs the event. Thus, both increased turnouts and reduced operation costs should be
reasonably sought [40]. Adjusting the location of polling facilities and stations is key
to producing a better turnout rate, though it might not be a perfect policy instrument.
As empirical examples, Brady and McNulty [3] reported that reducing the number
of polling stations by consolidating precincts cut down election costs in a case study
of Los Angeles County in the United States for the 2002 and 2003 election. The
research argued that a tiny increase in the cost of traveling to a voting place may
reduce little motivation to vote, because distance could be a crucial factor for voters.
Bhatti [2] also highlighted the importance of location selection of facilities to reduce
traveling costs with a case study of Denmark, while Konishi et al. [27] and Murata
and Konishi [33] discussed the need for modeling to reduce costs by using allocation
models that focus on minimizing the distance from voters to stations. In detail, Kon-
ishi et al. [27] employed a heuristic algorithm to find a solution that would reduce
both the distance of voters to facilities and the cost of those facilities. Cantoni [4]
developed an allocation problem using Mixed Integer Programming (MIP), in which
the objective function was to minimize the cost of moving voters to facilities while
balancing the demand and capacity of the facilities. In the context of political voting
systems in South Korea, however, only a few studies have analyzed the effect of
distance and assessed the location of electoral districts and voting places [22,23,31].
The studies raised the need for a mathematical modeling approach which reflects not
only the effect of distance but also the stipulations of the official voting and election
codes of South Korea. Note that the requirements have changed for each voting event
because of the dynamic change in registered voters as well as the boundaries of
spatial units [14, 15]. Most research, however, has focused on an analysis of voting
results after elections. Virtually none of the research has sought to provide answers
regarding the optimal arrangement of voting places in light of eligible voters (i.e.,
demands) or suggested an adjustment of precincts which can improve the efficiency
of administration and voting turnouts.

The remainder of this paper is organized as follows: Sect. 9.3 explores the core
modeling issues in formulating a location model using the p-median problem when
the model takes account of voting behaviors and requirements in the election codes
of South Korea. The study area is carefully selected in terms of size in order to solve
the various instances using the prescribed model in the environment of commercial
optimization software (CPLEX). Sect. 9.4 presents the mathematical formulation of
the model, followed by the computational results in the Sect. 9.5, focusing on the
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variation of optimal arrangements with the different settings of utility costs. The
concluding remarks section provides several policy implications from the results.

9.3 Modeling Issues and Data

Generally, five issues are raised when a spatial optimization approach is considered
in voting place location models: (1) representation of demand, (2) traveling cost,
(3) voters’ preference for polling facilities, (4) spatial scope of modeling, and (5)
capacity of polling stations. First, the representation issue has long been recognized
as a crucial issue in location modeling, as the space should be discretized regarding
the level of aggregation from different spatial units. Note that the quality of solutions
of optimization models varies with the spatial units used [34,35]. In theory, using the
smallest spatial unit possible, such as the individual level, could be the ideal way to
reduce the propagation of errors of uncertainty, potential problems of gerrymander-
ing, and the effects of the Modifiable Areal Unit Problem (MAUP), which has been
a critical issue in designing voting systems with different districting schemes [16].
However, the spatial units for administrative purposes are usually delineated at a cer-
tain aggregated level with an extent of space. According to the specified aggregated
level, the data at the individual level should be aggregated to represent the properties
of variables at the aggregated level. Often, existing irregular spatial units must be
treated as regular and smaller units through the tessellation process or statistical
clustering methods to replace the distribution of existing values at the original units
with estimated values of the new units [29, 30, 45].

When disaggregated data such as the individual level are aggregated as the input
for spatial optimization problems, two issues are raised. First, the size of input data
is of concern in terms of the complexity of the location problem, because it affects
the capability of mathematical models to solve instances with optimality. Obviously,
the increased size of input data entails a significant computational burden, often
requiring the development of a heuristic algorithm which trades off between the
quality of solutions and solution times. This is particularly true for the p-median
problem and district delineation problems [18,20,25]. If it is inevitable to aggregate
the input data, the method of aggregation then become a following issue. In our
case study, considering the uniqueness of the housing system in South Korea, where
most residential areas are highly dense due to a number of apartment complexes and
multi-unit dwelling housing systems, representing demand areas at an individual
level (i.e. each person) is not recommended, but the household level is recognized
as the proper spatial units for analysis (see [28, 29]). We generate demand areas at
a household level using registered voters’ addresses. The aggregation is made using
a sub-unit of households, which is an unique system of the address system under
the administrative unit of Dong. The aggregated areas are represented as a regularly
sized spatial point unit ai using Eq. (9.1).
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E(ai) =
Si

Tj
×R j (9.1)

where Si is the number of households in a sub-unit in a precinct j, Tj is the total
number of households in a precinct j, and R j is the total number of registered voters
in a precinct i.

Fig. 9.1 illustrates the distribution of demands within the study area of Seogyo-
Dong, Mapo-Gu in Seoul using Eq. (9.1). Currently, the area consists of seven
precincts with 2,497 aggregated demand points from 21,348 eligible voters.

Fig. 9.1: Spatial distribution of demands in Seogyo-Dong, Mapo-Gu in Seoul.

Second, travel cost is well recognized as a fundamental element in location
problems, because both the decisions about where to locate facilities and how to
assign demands to the selected facilities are greatly affected by physical hindrance,
the friction of distance. Thus, the traveling cost is represented as a function of a type
of distance. In general, either physical or time distance is used as a proxy for the
traveling cost. In political districting problems, distance is an important determinant
for eligible voters in selecting the best polling place among candidate sites.Moreover,
recent empirical research demonstrated that traveling cost is a principal factor to
voting turnout [37]. The closer voters are to the polling facility, the greater the
probability they will select the facility to complete their voting activity. The distance-
based arrangement of location models suggests that changing the location of voting
facilities, installing newvoting places, or consolidating or adjusting existing precincts
is key to enhancing the objective function which is to minimize the traveling cost.
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(a)

(b)

Fig. 9.2: Types of polling facilities (9.2a) and preference of facilities (9.2b).

Third, voters’ preference for polling facilities is an important factor in their deci-
sion to selectwhich station they visit. From a behavioral or psychological perspective,
it is recognized that preference helps voters reduce the searching cost [7]. The factor,
however, has rarely been addressed in the literature since the initial work apply-
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ing to political districting facility location problems by Hanjoul and Peeters [12].
Preference for specific facilities is associated with voters’ familiarity with existing
or previous facilities they have used as voting places before as well as with their
experience when they participated in elections. According to the election results for
2016 in South Korea, voters’preference for the use of public facilities (e.g., schools,
community centers) was much higher (58.8%) than for private facilities (3.2% for
banks, daycare centers, and wedding halls) because public facilities are usually more
visible and accessible daily than private facilities. Historically, the more a facility is
used as a voting place an election, the more accustomed voters will be to the facility
for the next election. As result, increased familiarity with the facilities affects the
voters’ preferences when selecting voting facilities and stations. The issue in practice
is how to quantify the preferences. In our study, we scaled preference as a number
between 1 and 10 based on the percentage of usage of facilities in National Assembly
election data [36]. Fig. 9.2 presents the distribution of polling facilities (9.2a) and
their preference scores (9.2b).

Fourth, the spatial scope of modeling, especially when assigning demand areas
to facilities (or polling stations), is an important issue because the spatial scope
is delineated as the regulation for a voting event. In South Korea’s voting system,
the selection of polling facilities as well as the installation of polling stations should
comply with the requirements of the Public Official Election Act (POEA), which was
enacted by the Statutes of the Republic of Korea. Often, the rules are revised before
an election, and regulations related to spatial scope should be adhered to. According
the POEA 2016, a set of precincts is delineated within a spatial administrative unit
of ‘county (Gu).’ A Gu may have several precincts for a voting event. In the POEA
2016, the term polling facility refers to a physical building in a precinct where voters
should go for the voting activity. The polling station, often called the ballot box,
should be placed in a polling facility. Note that a polling facility may have multiple
polling stations. However, the number of facilities and polling stations is determined
by the central and local governments according to regulations or the requirements
described in the POEA [41]. In essence, the location of polling facilities and stations
should satisfy three important requirements of the POEA:

• One basic administrative spatial unit (Gu) consists of several precincts to improve
the efficiency of voting process (Article 31).

• A precinct may have more than one polling station in a polling facility (Article
31).

• If there is no suitable facility to install the polling station in the area, it may be
installed in adjacent precinct, and polling stations may be located outside of the
County (Article 147-2).

Fig. 9.3 illustrates the process of locating polling facilities and polling stations
and their allocation from demands in precincts. Among candidate polling facilities
in a precinct, the best location for the facility is determined based on the principal
factors, such as travel costs and the degree of preference for facilities. Other factors
being equal, the location of the facility in a precinct is purely determined by the total
weighted sum of distance from demands to the facility, which generates the least
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traveling cost of voters or demand areas. For example, the arrangement of precinct
3 falls into this case, with three demand areas assigned to polling station 3. Given
the second regulation, the polling station for the demand areas ‘a’ of precinct 4 can
be placed in facility 1 in precinct 1 if facility 4 cannot serve the demand areas for
some reason. Facility 2 in precinct 2 shows that a polling facility for a precinct can
be located in a different county if there is no suitable facility within a corresponding
precinct.

Fig. 9.3: Location of polling facilities and polling stations, and allocation of
demand.

Fifth, the capacity of a polling station is associated with the voting hours and
the number of personnel at the polling facility, which limits the number of voters
allocated to that polling facility. Figure 8.4 presents the relationship between the
number of voters and turnout rate from the result of the 20th National Assembly
election in 2016. Notice that the number of voters and the turnout rate are related
to each other, indicating that if the capacity of a polling facility is too small or too
large, turnout rate is diminished. Based on the result, the ideal range of capacity is
determined to be [2,192−4,297 persons/ f acility].

9.4 Model Formulation

The p-median problem is a classical location problem of locating p facilities to
minimize the weighted average cost between demands and the selected facilities [5].
The problem is a class of location-allocation, which determines the location of
facilities while at the same time considering the allocation of demands to facilities.
The problem can be extended by plugging in capacity of facility [9, 10], named
the capacitated p-median problem. This study presents the Capacitated p-Median
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Fig. 9.4: Relationship between the number of voters and turnout rate of the 20th
National Assembly election, 2016 (Seoul, South Korea).

ProblemwithMultiple Stations in the SameFacility (CPMP-M),which is an extended
version of the p-median problem. The problem locates p capacitated facilities in
a given space, with a facility able to reside in multiple stations, if necessary, to
minimize the total utility costs from demands (i.e., unit of aggregated voters) to be
assigned to polling facilities and stations. A new term, ‘utility cost,’ here is defined
as a function with a combination of factors such as traveling cost (i.e., physical
distance) and facility preference. As introduced by Ghiani et al. [9] in their models,
a unique situation in which multiple facilities are placed in a single site was reflected
in the model formulation. The CPMP-M includes a polling station location problem,
in which several identical facilities can be opened to accommodate multiple polling
stations in the same facility. The CPMP-M is formulated as a mixed integer linear
program (MILP), as follows:

Indices and Parameters

i,k = index of demand points, i,k ∈ I,
j = index of facilities, j ∈ J,
ai = the population of demand point i,
di j = distance between demand i and facility j,
f j = preference of facility j defined in terms of type and history,
α = scaling factor,
β = preference impact factor,
p = number of facilities to be cited,
CLx j = lower bound of workload at facility j,
CUx j = upper bound of workload at facility j.
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Decision variables

x j = number of (multiple) polling stations placed at facility j

yi j =

{
1, if demand i is assigned to facility j
0, otherwise.

Formulation

minimize Ω = α∑
i

∑
j

ai
di j

f β

j

yi j (9.2a)

subject to ∑
j

x j = p (9.2b)

∑
j

yi j = 1 i ∈ I (9.2c)

yi j ≤ x j i ∈ I, j ∈ J (9.2d)
x j ≥ 0 j ∈ J (9.2e)

∑
i

aiyi j ≤CUx j j ∈ J (9.2f)

∑
i

aiyi j ≥CLx j j ∈ J (9.2g)

yi j ∈ {0,1} i ∈ I, j ∈ J (9.2h)
x j ∈ {0,1,2, . . .} j ∈ J (9.2i)

The objective function minimizes the sum of the total utility cost (di j/ f β

j ) from
demands i to facilities j. Here, the utility cost consists of the factors of traveling
cost (distance di j) and voters’ preference function f j for facility j. Notice that the
preference function f j is treated as the denominator to distance effect. If distance
effect is equal for all facilities j from demand i, then the decision of demand i will
be made based on the preference factor of the facility. In other words, if voters’
familiarity and existing experience with the facility j outweigh the distance effect,
then voters will accept the extra traveling cost to go farther to vote, but this decision
may imply that voters save the search cost of finding a nearby polling facility. Notice
that the exponent β, which is added as a parameter of f j, reflects the degree of power
of the preference factors. By changing the value with a range of [0,3], the effect of
preference will be examined. The results will help in understanding the behaviors
of voters, depending on the friction of preference, and in adjusting current facility
locations. A scaling factor α is used to mitigate the computational burden for the
CPMP-M to find solutions. Constraint (9.2b) sets the number of polling facility j.
Constraints (9.2c) stipulate that demand i can be served by polling facility j only
if the facility is open (i.e. x j = 1). Constraints (9.2d) and (9.2e) together allow the
multiple assignment of demand i to facility j if more than two voting facilities j are
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open. To indicate which facility j has multiple polling stations from demand i, the
decision variable x j is defined as positive integer value. The capacity of workload at
facility j should be limited by constraints (9.2f) to avoid overloading voting activity
but run the minimum threshold of voting workload by constraints (9.2g). Constraints
(9.2h) define assignment variables as binary.

9.5 Computational Experiments and Implications

The application was made to the study area, Seogyo-Dong, Mapo-Gu, Seoul, based
on information from the 2016 election. In this area, 59 potential facilities were
identified as candidates and 2,497 demand areas were extracted at a household level
from 21,378 eligible registered voters’ address information. The processing tool in
ArcGIS 10.4 was used for the geo-coding process and aggregation. In our numerical
experiments, the known instance with current polling facilities was pre-solved as a
reference. The capacity of facilities ranged from 2,192 to 4,297 based on data from
the 2016 National Assembly election. The number of polling facilities was set to
p = 7, as designated for this area by the POEA. The physical distance from demand
areas to facilities wasmeasured usingArcGIS 10.4. For comparison, several different
facility capacity ranges from [2500,4100] to [2500,3100] by -100 from the upper
bound of capacity were applied. Preference factor exponent β ranged from 0.0 to 3.0
by 0.5 in increments of 0.5. In terms of computational complexity, as is well known,
the standard p-median problem is in the class of NP-hard, which indicates that the
problems are solved with optimality to a limited size of instances [5, 38]. However,
in our case study, all instances were solved to optimality using CPLEX 12.5 with an
Intel Core™ i5-3570 running at 3.40 GHz with 4 GB RAM on the Windows 7 OS.
Most instances were solved within a few minutes, but the worst instance took 15.2
minutes for the instance with β = 0 at the facility capacity range of [2500,3800].
The reason for the solving capability of the CPMP-M was related to the relaxation
of location decision variables x j from the definition as a binary value to positive real
number. Table 9.1 presents the computational results of two cases with preference
exponent β when p = 7. The two cases, the reference and the extreme case, were
selected for comparison purposes. Note that a result of the instance with capacity
[2192,4297] when β = 0 was a reference and was the result of the current voting
system of the study area as of the 2016 election. In this case, β = 0 was set to
represent that no preference factor was involved in location allocation decisions. In
contrast, a greater β means greater influence of voter preference on selecting voting
facilities over physical distance itself.

Three findings are worthy to note in drawing policy implications. First, objective
function decreases with higher β and/or smaller upper facility capacity. The objective
function may be influenced by what scaling factor is used; however, the tendency
has been changed in our experiment. The result implies that the total utility cost
(di j/ f β

j ) of demands is improved. However, with an increase of β, meaning a greater
preference for candidate facilities, a greater averaged population-weighted distance
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Table 9.1: Computational results of the CPMP-M.

β
Capacity Objective Solution time APWD* Polling facility locationLower Upper value (sec) (m)

0.0 2192 4297 3,758,429 120.4 176.5 16, 32, 33, 43, 47, 52, 56
0.5 3,210,506 165.1 183.8 6, 27, 32, 34, 44, 47, 52
1.0 2,656,564 192.8 184.8 6, 27, 32, 34, 44, 47, 52
1.5 2,146,974 55.8 203.3 6, 27, 32, 34, 39, 44, 47
2.0 1,721,321 117.9 216.6 6, 27, 32, 39, 44, 47, 53
2.5 1,362,473 180.8 252.0 6 (2)†, 32, 39, 44, 52, 53
3.0 1,039,624 133.7 252.3 6 (2)†, 32, 39, 44, 52, 53

0.0 2500 3500 3,828,205 697.9 179.8 16, 27, 34, 47, 49, 52, 58
0.5 3,288,007 464.9 187.6 6, 27, 32, 34, 42, 47, 52
1.0 2,708,279 156.6 200.0 6, 27, 32, 34, 39, 44, 47
1.5 2,186,976 51.7 202.6 6, 27, 32, 34, 39, 44, 47
2.0 1,775,225 123.3 205.8 6, 27, 32, 34, 39, 44, 47
2.5 1,407,920 219.9 236.4 6 (2)†, 32, 34, 39, 44, 47
3.0 1,082,159 191.0 272.8 6 (3)†, 32, 39, 44, 53

*APWD: Averaged population weighted distance.
† indicates the facility houses multiple pulling stations.

(APWD) is expected. This result, in a behavioral perspective of voters, indicates that
voters will trade their increased travel cost for the searching cost spent to find new
facilities using their pre-knowledge and experience. It should be highlighted that
increased β results in the co-location of polling stations in a facility. For example, in
the instances β = 2.5 and 3.0 for the capacity [2500,3500], the numbers of selected
facilities are 5 and 4, respectively. This is because a polling facility begins to house
multiple polling stations (i.e., x6 = 2 and 3) with higher β. This tendency is observed
in the other instances within the same capacity having different β. In theory, if
distance effect is a dominant factor, then the model tries to disperse facilities to
cover the demand located near the facilities [19]. If distance factor is trivial, then
the model tries to cover demands with a smaller number of facilities. In practice,
managing a smaller number of voting facilities is beneficial, from an administrative
perspective because of its ability to reduce operational costs. However, it entails a
greater inconvenience for voters, because they need to travel farther to vote.

Second, the optimal arrangement of voting facilities and stations gives information
on the ideal delineation among precincts. Fig. 9.5 snapshots the results of two
instanceswith differentβ(= 0, 3) under the identical capacity condition [2500,3500].
The colored layers display the boundaries of the current seven precincts. Per the
current requirements, voters in a precinct should go to one designated polling facility
per precinct. However, the arrangement by the CPMP-M points out that the current
location of polling facilities might not be selected to enhance voters’ accessibility,
raising the issue of adjusting the boundary of current precincts. In Fig. 9.5a, when
only distance effect is considered, only one current location is re-selected by the
model, and the other six current polling facilities are relocated. Interestingly, current
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Table 9.2: Model response to the different capacity ranges of polling facility.

Obj. of current Obj. of selective capacity rangessystem capacity

β [2192−4297] [2500−4100] [2500−3900] [2500−3700] [2500−3500] Capacity
sensitivity*

0.0 3,758,429 3,791,364 3,816,765 3,822,988 3,828,359 1.86%
1.0 2,656,564 2,694,008 2,698,521 2,702,735 2,708,279 1.95%
2.0 1,721,321 1,746,364 1,753,533 1,763,084 1,775,225 3.13%
3.0 1,039,624 1,065,826 1,069,957 1,076,601 1,082,159 4.09%

*Capacity sensitivity = (Existing system′s Ob j.) − (Selective capacity range′s Ob j.)
(Existing system′s Ob j.)

polling facilities for precincts 2 and 4, which are very closely located to each other,
can be replaced with a single facility x6, which would require an adjustment of the
boundary of both precincts. Similarly, current polling facilities of precincts 1 and
6 can be replaced with a new polling facility x53. Based upon these replacements
and the relocation of existing facilities, the ideal delineation of precincts for p =
7 is suggested (see dotted lines). The second map in Fig. 9.5b indicates another
implication when β = 3. First, the locations of four current polling facilities overlap
the location given by the model’s result, implying that currently assigned facilities
are based on voters’ preferences. To make this arrangement of polling facilities valid,
the model suggests that the current seven-precinct system can be replaced with a
five-precinct system. Specifically, current precincts 2 and 4 can be merged into a
single precinct, and new facility x6 can take their place by housing three polling
stations in the facility. The adjusted boundary of the model also presents all facilities
centrally located within each precinct.

Third, in terms of facility capacity design, the sensitivity of capacity should be
considered. Table 9.2 presents the relationships of the change of objective value and
capacity ranges. With β being equal, the objective value increases with a tighter
facility capacity, especially to the maximum capacity. This result is well anticipated
because a limited capacity of a facility can force voters to choose less congested facil-
ities rather than go to nearer and/or preferable facilities. Of interest is the sensitivity
to the different β. As presented in the last column, the capacity sensitivity is much
higher for greater values of β. This result may imply that voters would respond more
sensitively to the expected workload of the facility if the facility were designated on
the basis of a historical familiarity. Voters’ pre-knowledge of the facility’s capacity
may lead them to choose an alternative one. This tendency has been well observed in
other cases from the 2016 election in South Korea. In some areas, a high percentage
of turnout was found in small and local polling facilities (e.g., a set of polling stations
within an apartment complex or parking space) rather than at single and large public
facilities of a precinct, such as public schools and community centers.
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Fig. 9.5: Spatial arrangement of polling facilities and ideal delineation of precincts.

9.6 Concluding Remarks

Voting is a critical political activity that gives voters the opportunity and right
to express their opinion in modern democratic society. However, whether voters
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participate in such political activity is not explained simply by distance effect or
strong motivation as a citizen [7]. Rather, it is a mixture of psychological conditions
and pre-knowledge based on the experience in selecting the best polling facility.Ways
to increase voter turnout have been widely explored, as reviewed in the literature.
However, the optimization approach is recognized as a crucial way of assessing the
efficiency of the current system and drawing policy implications. This paper presents
theCPMP-M, a location-allocationmodel for locating polling facilities and allocating
stations to those facilities. Using the model helps policy-makers who are involved in
the voting process to assess the existing system and find solutions that offer a more
balanced workload of facilities along with improved accessibility. In a modeling
structure, the CPMP-M stems from the traditional p-median problem; however,
the model is formulated to be tailored to the specific requirements of location-
allocation in the region of interest (i.e., South Korea). The model presents several
important findings when deciding where to place polling facilities and stations. First,
a traditional approach may take only the distance effect into account in the modeling
process. However, voters’ decisions are made based not only distance but also upon
preference for facilities. The CPMP-M reflects both factors in an objective function,
which is defined as ‘utility cost.’ If a voter’s goal is to minimize the utility cost of
finding a polling facility, his or her preference often strongly influences their choice.
Our numerical results based on preference factors may induce the need for policy-
makers to (a) relocate existing polling facilities, (b) merge certain precincts, and (c)
adjust existing boundaries of precincts to enhance the efficiency of administration
of the voting process. It may be an issue of how to quantify intangible factors, such
as familiarity with existing facilities, pre-knowledge giving rising to search costs
for finding the best place to vote, and perception of new facilities, into the model.
However, the factor of voter preference is also emphasized, because high level of
preference can entail the co-location of multiple ballot boxes in a single facility.
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Chapter 10
Territory Design for Sales Force Sizing

Juan G. Moya-García and M. Angélica Salazar-Aguilar

Abstract In sales territory design applications, a sales force team is in charge of
performing recurring visits to the customers and tipically, each territory is assigned
to a sales representative with the aim to establish long-term personal relationship
with the customers. At the strategic level, the decision maker must partition the set
of customer in sales territories and at the tactical level, the daily routes (schedule
of visits) of the sales representatives must be planned. Balanced sales territories
allow better customer coverage and balanced workload. Additionally, efficient routes
allow to perform more visits and to reduce the travel time. In this work, we focus
in an application of territory design for determining the size of the sales force in a
Mexican company. We also describe a simple heuristic for this problem and analyze
its performance in two real cases from the company. Computational results show
that the proposed heuristic produces high-quality solutions within a low computation
time.

10.1 Introduction

The process to measure the productivity of sales force in some companies has
been covered by several researches (see [2–4, 12, 15], among others). Frequently,
companies evaluate the size of their sales force with the aim to determine the optimal
human resources required to perform the activities involved in each sales channel
(convenience stores, grocery stores, restaurants, indirect customers, etc) in order to
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ensure customer satisfaction in dynamic markets. There are several factors that make
the company to review the size of its sales force periodically, such as:

1. Growth of the retail chains
2. Increase and complexity of in-store activities
3. Life time of some traditional outlets that face difficult times
4. Changes in the purchase patterns
5. Population growth and demographics issues.

Therefore, it is suggested to carry out a review of the sales structure every year
and try to take advantage of the new opportunities present in the market.

In the literature, mathematical models have been developed in order to help
companies to decide how large their sales force should be, see for example Lodish et
al. [17]. An excellent overview of sales force deployment decisions models can also
be found in Howick and Pidd [13] and in Salazar-Aguilar et al. [20].

A common approach to solve the sales force sizing problem consists in dividing
the market in clusters, called territories, and determining the schedules of visits for
the sales team on each territory. Besides, according to Kalcsics et al. [14], the main
objective of territory design or districting process is to group geographic areas in
clusters. So, shaping the territory for a sales person is known as Sales Territory
Design, as stated by Shanker et al. [21].

In this work, we present an overview of general applications of territory design
and we focus in the ones related to sales territory design. Moreover, we describe a
real situation faced by a nation-wide company in Mexico and propose a heuristic in
which routing decisions and territory design are integrated to determine the size of
the sales force.

The chapter is organized as follows. Section 10.2 provides a brief overview
of related work. Section 10.3 describes a real sales force sizing problem. Section
10.3.1 presents a simple heuristic to solve the problem. Section 10.4 shows the
performance of the proposed heuristic when solving two real cases of the sales force
sizing problem. Finally, some conclusions are included in Section 10.5.

10.2 Related Work

Unbalanced sales territories may cause lower market share, slower growth, and
workload unbalance to the companies. Therefore, the sales territory optimization
is the key to increase sales performance, decrease the driving time, and have more
manageable territories. There are early studies that propose integer programming
formulations for territory design with the objective of maximizing compactness with
workload balancing constraints, such as thework proposed byHess and Samuels [11],
where the number of desired territories is given and balance constraints depend on
the number of customers, call duration, and visit frequencies.

Territory configurations can also be evaluated in terms of the total workload
of a salesperson and the variation coefficient between the regions (see [7]). Other
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desired characteristics are the compactness and contiguity, which are present in the
study of Fleischmann and Paraschis [8]. In the work of Ríos-Mercado and Salazar-
Acosta [19], commercial territories are created by taking into account compactness,
connectivity, customer balance, and demand criteria. Other models that consider
multiple balancing criteria have been also presented in the research of Zoltners and
Sinha [25]. A different, but also a common objective is to maximize the profit of each
territory, this objective has been studied by Lodish [16], Zoltners [24], and Skiera et
al. [22].

As large scale problems demand significant computational resources, in real im-
plementations, solutions are approximated by heuristics. One example is the GRASP
(Greedy Randomized Adaptive Search Procedure) proposed by Ríos-Mercado and
Fernández [18], in which a commercial territory design problem with multiple
balancing constraints is studied. In other cases, the territory design problems are
addressed with hybrid procedures, see for instance the work of González-Ramírez
et al. [9], which is a combination of GRASP and Tabu Search for solving a territory
design problem for pickup and delivery operations for large-scale instances. As one
can see, real applications not only include territory design decisions, they also could
include, scheduling and routing decisions, such is the work proposed by Hervert-
Escobar and Alexandrov [10], which combines the territory design, scheduling, and
routing problems; these three problems individually have been shown to be NP-
complete, therefore, the authors proposed a randomized block projection method
for the territory design problem followed by a branch and bound algorithm for the
scheduling and routing problems.

Besides territorial design, there are other related problems to sales force, see the
work of Drexl and Haase [6], where the problem is divided in subproblems like
sales force sizing, salesman location, territory sales alignment, and sales resource
allocation; these problems are solved simultaneously, using a nonlinearmixed integer
programming model.

In some types of territory design problems the workload is strongly related
to the complexity of the distribution routes. Velarde Cantú et al. [23] propose a
mixed integer linear programming formulation that integrates both territory design
and routing decisions. The authors validate the mathematical model by solving a
practical instance with 40 customers and 4 territories.

In this work we present a sales force sizing problem that includes decisions
related to territory design and scheduling (routing) of visits. To the best of our
knowledge, there are only twoworks closely related to our problem, the one proposed
by Salazar-Aguilar et al. [20] and the one studied by Bender et al. [5]. In [20], the
authors deal with the sales force sizing problem by solving a multi-period VRP with
time windows and heterogeneous customers and vendors. They propose a mixed
integer linear programming formulation that can be used to solve small instances
of the problem, however, their work does not include territory design decisions.
Besides, Bender et al. [5] propose the multi-period service territory design problem
(MPSTDP-S), which consists of finding the visit schedule for each territory while
compactness and service time balance between territories and working periods are
satisfied. Two levels of clustering are considered: week clusters and day clusters; a
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location-allocation heuristic was proposed and tested on a large set of real instances;
computational results showed the efficiency of their approach.

10.3 Sales Force Sizing Problem

The sales force sizing problem presented in this work arises from a goods distri-
bution company that is interested in having more manageable sales territories and
in decreasing the total costs associated to sales force and products distribution. The
company is dedicated to produce and sale fast moving consumer goods and man-
ages a portfolio of local and global brands. The finished product is sent from the
factory to the distribution centers, depots, sub-depots, and cross-docking, and then
to retailers that are classified in channels. For some of the channels the company
uses customer’s own supply network, while in others the sales team is on charge of
product distribution to all of the customer locations. Hence, the problem we studied
here can be described as follows:

Given a set of customers that must be visited every week and a depot where the
sale representatives start and finish their journey each working day, the sales force
sizing problem consists in determining the minimum number of vendors and the
daily schedule of visits such that all customers are visited within a planning horizon
h (see [20]). Therefore, this problem can be seen as a sales territory design problem
where the objective is to minimize the total number of territories needed to serve all
customers, while the working time (service and travel times) on each territory does
not exceed the time limit of a working week. In the territorial design context, the
number of territories determines the size of the sales force, i.e. the number of sale
representatives, and the daily schedules of visits that a sales person should perform
during the week are determined by scheduling the set of customers included in the
territory. Some side characteristics such as different kind of customers and skills of
the sales representatives are considered.

Let Ω be the set of routes that start and finish at the depot and whose duration does
not exceed the duration of a working day (Tmax) and let c(r) be the centroid of route
r ∈ Ω. Assume air = 1 if route r visits customer i. Then, a territory Xk,k ∈ K will
be composed by a set of routes such that the 1-median between them is minimized.
Then, the centroid ck of a territoryXk is computed by ck = argmin

r∈Xk
∑

r̄∈Xk

dc(r)c(r̄), where

dc(r)c(r̄) is the Euclidean distance between c(r) and c(r̄). Let xk
r be 1 if route r is

included in territory k, 0 otherwise; and let yk be 1 if territory k is used, 0 otherwise.
Then, a general formulation for the optimization problem can be written as follows:

min z = λ ∑
k∈K

yk +(1−λ ) ∑
k∈K

∑
r∈Ω

dckc(r)x
k
r (10.1a)

subject to ∑
k∈K

xk
r = 1 r ∈Ω (10.1b)
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∑
k∈K

∑
r∈Ω

airxk
r = 1 i ∈ N (10.1c)

∑
r∈Ω

xk
r ≤ hyk k ∈ K (10.1d)

xk
r ∈ {0,1} k ∈ K, r ∈Ω (10.1e)

yk ∈ {0,1} k ∈ K (10.1f)

Objective (10.1a) minimizes the total number of territories which determines
the number of sales representatives meanwhile the dispersion of the territories is
minimized. Constraints (10.1b) guarantee that each route is assigned to only one
territory. Constraints (10.1c) assure that each customer is served by only one sales
representative. Constraints (10.1d) establish the size of the territories i.e., the number
of routes included in each territory shoud be at most equal to the number of working
days per week.

The implementation of a sales territorial design process besides to optimize the
total number of territories it has the following secondary objectives:

1. To reduce the gasoline expenses and vehicle maintenance through the reduction
of the traveled distance within routes.

2. To increase productivity in terms of total visits, based on a routing and a compact
territory design (in terms of distance).

3. To increase the number of visits with a sale by mean (called effective visits).
4. To avoid overtime in the sales team.

According to Albers et al. [1], sales managers are more suitable to work with
heuristics rather than complex models. Indeed, they suggest to spend time investi-
gating more simple heuristics to be easily understandable for practicioners and easy
to implement. Therefore, due to the complexity of the problem, we propose a simple
heuristic for the sales force sizing problem which is based on the decomposition of
the problem into subproblems. The goal is to provide support to the decision making
with respect to the size of the sales force and the scheduling of customer visits.

10.3.1 Routing-clustering heuristic

In this heuristic, basic unitsmust be partitioned into sales territorieswhich are desired
to be compact (in terms of traveling and service times) and balanced (according to
the workload of six working days). Then, two main stages are carried out : routes
creation and routes clustering.

The preprocessing step consists of identifying the set of basic units that are in
the instance on hand. In our study, the basic units are the basic geospatial areas
defined by INEGI (National Institute of Geography and Statistics). Each basic unit
has an associated service time and it encloses a set of individual customers of the
same type (convenience stores, groceries, wholesalers, etc). Traveling times between
basic units are computed with a GIS (Geographic Information System).
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Algorithm 6 displays the general steps of the proposed heuristic. For the routes
creation, the algorithm starts with a partial route containing only one location, the
central depot, then, the route is extended by adding the basic unit that is closest to
the last unit assigned to the current route and whose traveling and service times do
not exceed the available working time. This process is repeated while it exists a basic
unit that can be added to the current route without exceeding the time limit (duration
of a working day). If such a basic unit does not exist, the route is closed and another
route is initialized. Notice that this routing process is iteratively repeated until all
basic units belong to one route.

After having a set of feasible routes, four consecutive local searches are applied
to each route in order to minimize their duration and then, to reduce the number of
routes, if possible. The moves used in the local searches are the following:

• Relocation: this move sequentially selects one basic unit and reinserts it in another
position in the route.

• (1,1)-exchange: this is known as a swap move and it consists of swapping the
locations of two basic units.

• (2-0)-exchange: this move takes two consecutive basic units and relocate them in
another position in the route.

• (2-2)-exchange: this is similar to (1-1)-exchange, the difference is that two chains
of two consecutive basic units swap their locations in the route.

The local search process stops as soon as a better route is found (first improve-
ment), then, a filter of routes takes place. In the real situation, the number of routes
per channel should be multiple of six (due to the working days). Therefore, the most
productive routes (multiple of six) per channel are kept and the unproductive routes
(those with few basic units and long duration) are destroyed and the basic units
assigned to them are re-inserted in other routes if it is possible.

The clustering process of routes consists of grouping sets of six routes each of
which will conform a sales territory. The centroid of each route is computed as the
average of the latitude and longitude of the basic units included in the route. Then, the
distances between routes (centroids) are computed. A territory is initialized with the
nearest centroid from the depot, an the five remaining routes are added by following a
nearest neighbor heuristic (based on the centroids distance). This process is repeated
until all routes are assigned to one territory. Notice that the number of territories
determines the number of sales representatives to hire (one per territory).

10.4 Case Studies

The described heuristic has been implemented in Microsoft Excel and in order to
evaluate its performance two real cases were studied: one inMexico City and another
in Monterrey. In the first case, a single channel of customers was evaluated. The
second case was developed with the purpose of evaluating the algorithm in a depot
with different customer channels and multiple types of profiles in the sales team.
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Algorithm 6 Routing-clustering heuristic.
Require: Instance of the problem
Ensure: Sales territories

// Routing process
1: Let Nc be the set of basic units in channel c
2: while Nc 6= /0 do
3: Start with a partial route r with just one basic unit i, which is the closest to the depot
4: Let r be the partial route and k be the last basic unit in route r. Find basic unit k′ that is not

yet in the routes and that is closer to k
5: Insert k′ at the end of the partial route r
6: if The total traveling time in the route plus the traveling time from k′ to the depot is less or

equal than the time limit then
7: Nc← Nc \ k′

8: go back to 4
9: else
10: remove k′ from the route and close the route r
11: go back to 3
12: end if
13: end while

// Local Search
14: Let Rc be the set of routes created in the routing process
15: for each route in Rc do
16: Explore consecutively the neighborhoods created by the moves: relocation, (1,1)-exchange,

(2-0)-exchange, and (2-2)-exchange, until the first improvement is found or the full neighbor-
hood has been explored.

17: end for
18: Destroy unproductive routes and reassign the basic units to other routes if possible.

// Clustering process
19: while Rc!= /0 do
20: Start with a partial territory T with just one route ri ∈ Rc, whose centroid is the closest to

the depot
21: Let T be the current partial territory. Find route rk′ that is not yet in a territory and whose

centroid is closer to route rk.
22: Insert route rk′ at the end of the partial territory.
23: Rc← Rc \ rk′

24: if |T |≤ 6 or Rc 6= /0 then
25: go back to 21
26: else
27: close the current territory T
28: STOP
29: end if
30: end while
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Notice that in both cases a weekly visit frequency and six working days per week
were considered. The computational results are presented in the next subsections.

10.4.1 Mexico City depot

This case study is composed by 1,350 basic units (see Figure 10.1) which include
10,183 active customers from December 2015. The territory design used by the
company was composed by 38 territories.

Fig. 10.1: Distribution of basic units in the Mexico City depot.

After 73 minutes, 222 routes were created by our algorithm, then these routes
were used to create the territories and 12 minutes later, the proposed algorithm
reported a territory design with 37 territories, reaching a better compactness and
ensuring minor travel distances in the routes than in the design implemented by the
decision maker at the company. Figure 10.2 represents the map of the new territories
and the graph of workload (in term of number of visits) per day, for each territory.
One can notice that in most of the cases the balance between territories is reached.

Having the initial solution reported by our heuristic, we identified those routes
with a few customers due to long travel times (see for instance, Thursday’s route of
territory 6 and minor changes in territory boundaries were made in order to avoid
crossing important streets. The total computation time to solve this case was 205
minutes which represents 7.1% of the time needed by the decision maker. Figure
10.3 shows this important time reduction in comparison with the traditional process,
where an analyst in the company uses a Geographic Information System to group
customers manually.



10 Territory Design for Sales Force Sizing 193

Fig. 10.2: Map and route workload of territories in the Mexico City depot.
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Fig. 10.3: Comparison in terms of time to carry out a territory design.

We observed that the change to this new territory design implies the reduction of
one territory which saves about $20,000 USD per year. The proposal was accepted
by the company and it was implemented at the beginning of 2016.

To consistently evaluate the sales performance reached after the implementation,
the following indicators were monitored on a monthly basis:

1. Average mileage per representative per week.
2. Number of average daily visits per representative.
3. Number of effective daily visits per representative.
4. Duration of the working day.
5. Average order size.

Figure 10.4 shows the average performance indicators for the first six months
after the implementation and as a complement we present the percentage of change
for each indicator in Table 10.1.

Table 10.1: Key performance indicators for 2015 and 2016.

Indicator 2015 2016 % Improvement
Daily Visits 50 51 2%
Daily Effective Visits 36 41 14%
Traveled Distance (km) 388 324 -17%
Working Day 9:39 10:09 5%
Order Size 5.3 4.8 -10%

As one can see, the new territory design saves 17% of traveled kilometers and
increases the daily visits in 2% with 14% more effective visits. The working time
stills around 10 h per day and the decrease in the average order size is related to
the increment of visits. Nevertheless, the fact that the sales representatives have to
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Fig. 10.4: Performance trend from 2015 to the first six months after the
implementation of the new sales territories.
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visit new zones requires training and time investment in order to get used to the new
routes, which could contradicts the objective of not to impact the workday duration.

10.4.2 Monterrey depot

In this case study the customers were classified in seven layers, according to their
distribution channel and their service type, as we can see in Table 10.2. Then, the
solution method was executed for each layer separately. Notice that the duration of a
salesman visit varies according to the channel and service provided to the customer.

Table 10.2: Customer layers according to their channel and service type.

Layer Channel and Service Type Customers
1 Staff training visits for convenience stores 1,419
2 Sales visits for convenience stores 279
3 Sales visits for grocery stores 278
4 Sales visits for wholesalers 70
5 Sales visits for restaurants 137
6 Stock check visits for indirect customers 118
7 Sales visits for traditional channel 7,931

Solving this case study required 145 minutes and according to Figure 10.5, the
computation time increases with the number of customers (see layer 7).

Fig. 10.5: Computation time per layer.

Then, created territories were compared with the current design used by the com-
pany. In layers 1 and 3, we obtained a reduction of one territory in each layer and
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graphically we observed compact and consistent routes. The most significant im-
provement was obtained in layer 2 (convinience store layer), in which two territories
were saved.

Once the solution was reported by our heuristic, a minor adjustment was needed
(similar toMexico case), nevertheless, we observed that the balance and compactness
were present in the solution generated by the heuristic. Besides, we noticed that in
large instances it is possible to have poor routes in terms of productivity, where most
of the time is spend in driving. Figure 10.6 shows the resultant territories and the
visits balance chart for customers in Layer 1.

Fig. 10.6: Map and route workload of territories in layer 1.



198 J. G. Moya-García, M. A. Salazar-Aguilar

At the end, the savings in terms of the number of territories was three. See Table
10.3 for a complete comparison between the current solution used by the company
and the proposed design of territories obtained with our heuristic. In layers 1 and
3, the proposed solution saves one territory, and in layer 2, it saves two territories.
In contrast, in layer 7, the proposed solution increases one territory. In summary,
with the proposed territory design the company has about $60,000 USD of potential
savings.

Table 10.3: Current and proposed number of territories per customer layer.

Current Proposed
Layer territories territories
1 13 12
2 6 4
3 5 4
4 1 1
5 1 1
6 1 1
7 27 28

Total 54 51

The proposed territory design for the Monterrey depot is currently under review
by the company for a future implementation.

10.5 Conclusions

In this chapter, we describe a territory design for a sales force sizing problem and
propose a simple heuristic to solve it. An important advantage of the proposed
heuristic is that it does not require a big investment in software or equipment, it can
be coded in Visual Basic and run in MS Excel. Hence, it can be an alternative for
micro and medium size companies. The computation time required by the heuristic
is very low in comparison with the time required by the decision maker in the
company, who takes between five or six days to create a solution for the problem.
Moreover, we observed that the fact of considering both routing and clustering
decisions simultaneously, allows us to have compact territories and balanced routes
for the sales representatives which is desired in most companies.

The performance of the heuristic has been evaluated on two real cases: one from
Mexico city and another one from Monterrey. On each case, the reported solution
decreases the number of territories, increases the productivity, and reduces the costs.
Therefore, we encourage the managers to incorporate this type of decision tools in
the planning process to increase service levels and at the same time to reduce overall
distribution costs.

An extension of this work includes a general improvement in order to reduce the
decision maker interventions. Indeed, in both case studies the decision maker had to
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make some adjustments to the reported solution. Besides, it would be interesting to
see the impact on the quality of solutions by using network distances (obtained from
a GIS) instead of the Euclidean distances.
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