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The thesis aims to study a decision-making problem on the gmergeucy Medical
Service (EMS) systems and implement algorithms fo solve it. The objective is to
improve Mexico’s 911 system by locating and dispatching ambulances to maximi;
patient attention at the minimum response time possible. The problem we studied 1s

rred to as the the Emergency Vehicle Covering and Planning Problem (EVCP),
which is modeled as a two-stage integer stochastic program. In the first stage,
the location of the ambulances must be determined prior to the occurrence of the
accidents. Then, er the accidents become known, the ambulance dispatching

decisions are taken 1n the second stage.

The proposed solution methodology is to determine the location and dispatch
of the ambulance based on scenarios. These scenarios show how the system works.
That is, whether a demand point, which is a place where a patient could need
attention, has to be served by one ambulance or morgahan one ambulance. In this
investigation, we study a finite number of scenarios to determine where to locate
ambulances and how to dispatch them to demand points according to the system.

The study method analyzes integer stochastic models to adapt some ideas for
a practical solution. We are interested in improving Mexico’s EMS system, which
is different from first-world EMS systems. These differences lead us to be unable
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to use mathematical models as we find them in the literature; nevertheless, we can
build an integer stochastic model based on combining ideas proposed before and new
concepts from us.

One of the contributions, from the modeling perspective, is to introduce partial
rate coverage in the objective function. Typically, partial coverage is used in determi-
nistic models because of its simplicity. Another contribution is to propose a feedback
approach to solve the ambulance location and use it as an input for the proposed
stochastic programming model.

The solution method was fully assessed in a wide collection of problem instances.
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CHAPTER 1. INTRODUCTION 2

EMS systems have significantly impacted operational research and medical
investigations in the last decades [1, 7, 45]. Scientists are concerned about the
impact of calls emergency’ average response time for attending a patient who suffers
a medical incident. Moreover, the cost of purchasing material resources, medical
vehicles, or building a new medical center, among other things, can limit patient
service [31]. Lack of human and material resources can cause insufficient attention
in patients [2, 26, 33].

The most studied problem is reducing the average response time &en an
emergency call arrives at a call center and someone needs medical attention [14].
The objective is to provide, as soon as possible, the initial treatment for a patient
who has a medical problem caused by an accident, trauma, or a natural disaster to
reduce the mortality of the patients. For a short response time, it is more likely
that people will survive. Another objective that EMS system problems consider
is to maximize coverage to handle all emergency calls that enter the system [19].
In addition, there are some problems that consider improving patient survival or
reducing the patients’ mortality [56].

Our interest is in the EMS systems of Mexjgn. In Mexico, there exists the
9-1-1 number controlled by the C-5 organization @ntm de Coordinacién Integral,
de Control, Comando, Comunicaciones y Cémputo del Estado), which receives emer-
gency calls. Some calls are for medical emergencies, others for police emergencies,
and still others for fire emergencies. When a call enters the system and an operator
decides that it is a medical emergency, the operator has to determine if it is necessary
to send an ambulance or not. In addition, a doctor can continue the call to guide the
person on the phone if the patient neggsyimmediate attention while the ambulance
arrives. Paramedics can then attend fo the patient and transfer the patient to a
hospital [24].

% propose a two-stage stochastic programming model with recourses for
ambulance location and dispatching, considering two service providers to obtain
a coordinated EMS system to solve those problems. The following sections present
the background investigations about EMS systems (Chapter 2) and the usually used
models. We describe the problem and the factors that affect the EMS system in
Mexico (Chapter 3). In addition, we describe (Chapter 4) the instance generation
and experimental assessments. Then, we solve the problem and define the model
(Chapter 5) used to do the experiments. Figlly, we show conclusions (Chapter 6)
that we obtain from experiments described 1 the previous section. In this section,
we also propose future work.
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1.1 MOTIVATION

Our interest is to improve the Emergency Medical Service System in Mexico, parti-
cularly in Nuevo Leén. World Health Organization establishes that there must be
four ambulances per 1,000 people, which is not available in all states of our country.

Due to the lack of available ambulances, emergency calls are answered late.
However, buying more ambulances so that there are more available to distribute
is not sufficient [21]. Improving the distribution of ambulances and locating and
dispatching them in a better way could improve the EMS systems.

1.2 PROBLEM DESCRIPTION

We address a problem where we have to locate a limited number of two heterogeneous
types of ambulances in different city points and dispatch them to the sites where
accidents occur. % problem considers the uncertainty of the accident (demand)
points. Our goal is 1o maximize the total and partial coverage and the response time
in which the patients receive medical first aighy We propose a two-stage quadratic
stochastic program for this problem. In the first stage, the location of the limited
number of two types of ambulances is decided. In thgasecond stage, the dispatching
of the ambulances to accidents is determined. This stochastic model allows partial
coverage of the accidents by the ambulances based on a decg ) function. Given that
the model is intractable even for medium-sized instances, we propose a location-
allocation methodology that relies on the solution of an auxiliary surrogate model,
which is faster to solvegs This location-allocation heuristic consists of two phases.
In the location phase,eﬂle location of the ambulances is obtained by solving the
surrogate model. Then, this info tion is the input for the allocation phase,
where the original model is solved. Experimental results show the effectiveness and
efficiency of this proposed approach, obtaining high-quality solutions in reasonable
times.

1.3 HYPOTHESIS

This investigation hypothesizes that we can model the Emergency Vehicle Covering
and Planning problem as a stochastic programming model with resources based on
different scenarios. These scenarios consider accident types at each demand point;
many of them can help to know what to do when a situation occurs in the 9-1-1
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system. The ambulance location and dispatching in the system are optimized.

1.4 OBJECTIVES

This investigation aims to improve an Emergency Medical Services System conside-
ring partial coverage. The main idea is to obtain an optimal ambulance location and
optimal policies for ambulance dispatching. The system we consider for solving the
problem includes different factors that affect the system. Those factors are:

e Various types of accidents and variations on maximal response times depending
on accident types;

e Different ambulances types, which are ambulances gor basic life support (BLS)
and ambulances for advanced life support (ALS);

e There is variation in demand points gﬂpending on the day of the week and the
hour of the day, which can be considered different scenarios.

The objective of solving tlle problem is to create a scenario-based stochastic
programming model with resources considering more than one service provider in-
volved in the system to respond to incoming emergency calls.

1.5 SCIENTIFIC DISSEMINATION

Over these years, this investigation has been presented at differepmnational and
international conferences. The national conferences are CSMIO (Congreso de la
Sociedad Mexicana de Investigacién de Operaciones) in the years 2021 (online),
2022, and 2023; CSMM (Congreso de la Sociedac temdtica Mexicana) in the years
2021 (online) and 2023. Also we participated in ELAVIO (Escuela Latinoamericana
de Verano en Investigaciéon Operativa) in the year 2022; the Cologquio VNL de
Grdficas, Combinatoria y sus Aplicaciones in the year 2023 and some seminars in
middle school (Preparatoria 7 Puentes) in the year 2022 and two high schools
Ecultad de Ciencias Fisico Matematicaspand Facultad de Ingenieria Mecanica
y Eléctrica), in the year 2021 and 2024, of the UANL (Universidad Auténoma
de Nuevo Ledn). The international conferences are CLAIO (Laggigs Iberoamerican
Conference on Operations Research) in the year 2024; and the ORMS ALIO-
ASOCIO International Conference in Medellin, Colombia, also in the year 2024.

An article of this investigation has been submitted and is under review.




CHAPTER 2

BACKGROUND

@nergency Medical Services (EMS) systems provide basic but urgent in-situ medical
care for people who suffer a medical incident and then transport patients to hospitals
[5, 9, 46]. When scientists talk about systems, many terms are used to explain
the problem. Two of these terms are%iand points and potential sites. Demand
points ites where an emergency call is usually made. Typically, there is a
di[IereniJ?

period. Potential sites are places where a vehicle (ambulance) could be located if

emand for each point, depending on the number of calls made within a

necessary to cover some demand points, either statically or dynamically.

The first phase of an EMS is the response to an emergency call by an operator
that identifies the emergency type: accident, medical, security, fire, etc. The second
phase is dispatching one or several ambulances to the emergency scene to provide
urgent medical care. Some emergency situations, such as a multiple-car accident,
may involve several people; thus, more than one ambulance could be neec More-
over, different types of ambulances may be required in an emergency: Basic Life
Support (BLS), usually with two Emergency Medical Technicians (EMTs), and
Advanced Life Support (ALS) units with an EMT, an advanced EMT, and one or two
paramedics. The third phase involves the treatment of the patients by paramedics
and their transport to a hospital [5].

EMS ems in developing countries, as is the case in Mexico, lack around
30-60%" of %number of ambulances suggested by the World Health Organization
(WHO), which is at least four ambulances per 100,000 people [16]. For the Red Cross,
an EMS operating witlahis small number of ambulances is considered similar to a
war situation!. Thus, one of the main contributions of this work is to deal with
the problem of deciding whether an emergency will be totally or partially covered.
Sadly, some emergencies may remain uncovered by an emergency unit.

! Anonymous interviews done by the authors.
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In general, the main objective of emergency vehicle planning problems go
reduce the average response time of a patient’s initial treatment administered by
a paramedic in an emergency [3, 8, 50, 51]. In fact, the speed and number of
ambulances dispatched to accidents are crucial. Each ambulance has a response
time for travel from the ential site where it is located to the demand point where
the patient will be cared for. Every minute of delay in treatment in a cardiac patient
reduces the probability of survival by 24% [44].

There are many models to solve the problems of EMS systems divided into
deterministic, probabilistic, and stochastic problems, which use different solution
methods to solve them [17]. The first problem that we studied are the static ones.

2.1 STATIC MODELS

These models are used to solve a system that only considers a particular point in
time. When these models are used to solve EMS systems, it refers to allocating
ambulances that will not be moved from the base.

There are two early models for static problems: @catian Set Covering Model
(LSCM) and Maximal Covering Location Problem (MCLP), which are problems
focused on covering the maximal demand points in the entire zone. However, over
time, these problems evolved according to the needs of the Emergency Medical

Services, as will be defined below.

2.1.1 DETERMINISTIC MODELS

Deterministic models were proposed to solve static problems because sometimes
emergency calls need to be attended for different vehicle types. Most of them are
covered once, like the Backup Coverage Problem or the Double Standard Model,
whi? use two different radii of coverage [36]. Alternative deterministic models
are the tandem equipment allocation model or the Facility-Location Equipment-
Emplacement Technique, which consider two ggapes of vehicles (one for BLS and
another for ALS), or the fact that sometimgsgmore than one ambulance has to he

located on a potential site to maximize that a demand point is covered twice.

In the thousands was introduced by Berman et al. [11] a decay function to
classify coverage as full, none, and partial coverage in a generalized Megh.P model.
They added a weighted demand for each node covered, considering the distance




CHAPTER 2. BACKGROUND 7

between facilities and demand points. The objective aims g) maximize the total
demand weight covered by all facilities when a determined number of facilities are
located.

A vyear later, Karasakal and K kal [34] introduced partial coverage to the
MCLP psgblem. This problem a.imsmlaximize the coverage level for all demand
points, %iding re to locate a certain number of facilities within the available
potential sites. 1e model was based on a p-median formulation and classified
coverage into three levels: totally covered, partially covered, aI#IOL covered. They
defined a monotonic decay function that decreases according to the distance between
the facility and the demand poipgsfor partial coverage. The distance between a
facility and a demand point must be less than or equal to the maximum full coverage
distance established gegconsider total coverage. Demand points are considered not
covered for a facility if the distance between it and the demand point is greater than
or equal to a maximum partial coverage distance. To solve large-size problems, they

used a Lagrangian relaxation.

A decade later, Wang et al. [53] used an extension of the MCLP Problem to
maximize coverage for fire emergencies establishing aggmvel cost between potential
sites and demand points. This extension considers a partial distance and guantity
coverage for multi-type vehicles to locate and dispatch them. The partial distance is
calculated with a decay function that decreases according to the increase in vehicle
response time. Quantity coverage determines whether an emergency is fully served
or not, comparing the number of vehicles dispatched with the necessary quantity.
For this problem, they have to consider demand priority to know where vehicles
must be located and the patient’s classification to decide how to dispatch them.

As an extension of Double Standard Model, Dibene et al. [22] created the
Robust Double Standard Model. They added demand scenarios to the original
Double Standard Model problem. These scenarios divide weeks into workdays and
weekends, divided into four periods: night, morning, afternoon, and evening. They
added eight scenarios applied to optimize the Red Cross Tijuana, Mexico system,
increasing the coverage of demand points to more than 95% locating ambulances at
different points of the city that are not the original bases.

For us, it is imperative to gather all this information for our project as it
provides information on the different types of accident coverage and the improvement
in the location of ambulances. A thorough understanding of these models and their
effectiveness will enable us to optimize our ambulance location strategies.
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2.1.2 PROBABILISTIC MODELS

In the 1980s, some researchers thought about the p: ems involved with probabilities.
One of these probabilities involved in EMS systems 1s the probability of an ambulance
being bual responding to an emergency call. This probability is called the busy

fraction. The Maximum Expected ering Location problem uses this probability.
An extension of this model is the Maximum Expected Covering Location problem
with time variation, which siders travel speed variations during the day. Another

extension is the Adjusted Maximum Expected Covering Location model, which
considers different busy prgiabilities for each potential site to locate ambulances.
All these models can use the hypercube queueing model to calculate the busy
fraction [25].

Other models were proposed @ma&cimiz& the coverage of the demand points
with a probability « used to calculate the busy frageion; one of them is the Maximal
Availability Location problem I, vgich considers the busy fraction is the same for
all potential sites. Another model 1s the Maximal Availability Location problem II,
which uses the hypercube model to assume different busy fractions for each potential
site.

There exist more probabhilistic models created in the nineties. Theghwst is an
extended version of the LSCM called Rel-P; this version considers that more than
one ambulance can be located at the same potential site, but each potential site
has a probability to have ambulances that are available to respond to a call and
considers the probability of the busy fraction, too.

The second model is the two-tier model, which considers two types of vehicles
to allocate at potential sites (BLS and ALS), considering two different coverage radii
and having an associated probability for the combination of how many ALS vehicles
can be located at the radius A, how many ALS can be located at the radius B, and
how many BLS vehicles can be located at the same radius B for each demand point.

Laura Albert and Maria Mayorga researched the EMS systems of Hanover,
Virginia. All these investigations about Hanover, Virginia, were applied to this
county to obtain practical solutions, but all models can be used to any other EMS
system changing data inputs.

The first research focuses on considering a new approach to calculate @
response time threshold (RTT), a class of EMS performance measures [38]. The
appyech uses the patient survival rate, considering that patients have cardiac arrest
and random response times that depend on the distance between demand points and
potential sites instead of patient outcomes, which is most used. Then, they use these
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measures on a hypercube model to evaluate different RTTs needed to input a model
that considers fire stations and rescue stations to be potential sites where ambulances
could be located and distributed in Hanover's rural and urban areas. This model
optimizes the location of ambulances on potential sites to maximize patient survival.

Later, Albert and Mayorga et al. used the performance measures as input
to the performance measure dispatching problem [23]. Based on the survival rate
of the patient, tl used a Markov decision process that identifies the best and
most robust RTT to maximize the level of coverage, prioritizing the location of the
patient. The research concludes that the optimal survival rate is obtained when the
system has an RTT of eight minutes [39]. However, this time for RTT does not
apply to Hanover because of the number of ambulances they have, so they started
a pilot program called the quick response vehicle to have more vehicles for patient
attention, obgsining a nine-minute RTT; these new vehicles are ALS vehicles without
transporting Sgients to the hospital, only attending patients at the scene, and BLS
ambulances transport patients if necessary [40]. The idea of including these quick
response vehicles is to minimize the need to use ALS ambulances.

When talking about optimizing EMS systems, one can also speak about dis-
patching. Bandara et al. [8] coggiders demand priorities for the different emergency
calls arriving at the system. Oﬂje objective is to maximize the patient’s survival
probability when an ambulance is dispatched to demand pointacalmlating a reward
for each dispatch. They used a Markov Decision Process model formulation to

determine the optimal dispatching strategies for an EMS system.

@ro—Dl’az et al. [50] involves location and dispatgyme decisions for EMS vehi-
cles in the same mathematical model with two focuses, minimizing the mean response
time that takes since an emergency call is received and maximizing the expected
coverage demand, using a continuous-time Markov process to balancing flow e-
quations needed to control the busy fraction for each ambulance. Balancing these
equations takes exponential time, and authors consider a genetic algorithm to obtain
some solutions and combine them to create new solutions to reduce computational
time. This genetic algorithm was applied to Hanover, Virginia, and when they
have midsize problems, the nearest dispatch rule is the best solution. It can vary
depending on the zone where it is applied.

Amorim et al. [3] involve a simulation inputting an initial solution to decide
if ambulances have to stay at the potential sites establishes when the mathematical
model is solved or if some of them have to be moved to another potential site. To
decide how to proceed, they used different day’s period times when traffic in the
city is changing on each week’s days, which they called scenarios, to maximize the
patient’s survival.
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Transitioning from probabilistic models to scenario-based models in the ma-
nagement of EMS systems is imperative, as scenarios provide a more robust frame-
work for addressing uncertainty. Probabilistic models frequently require assumptions
regarding the likelihood of various events, such as the busy fraction of ambulances,
which can be challenging to estimate accurately and may not adequately capture
real-world complexities. In contrast, scenario-based models allow for the incorpo-
ration of various demand and traffic conditions, enabling more realistic and flexible
planning. Using scenarios, researchers can ensure a more reliable and adaptive
emergency response system, improving dispatching decisions as we can see in the
next section.

2.1.3 STOCHASTIC MODELS

Recently, ambulance location, allocation, and dispatching problems involved uncer-
tainty at demand points to have a more realistic model. This uncertainty is caused
because it is impossible to know when the system will receive an emergency call.

In Boujemaa et al. [15], Qwo-stage stochastic model with recourse is proposed.
The first stage of the model determines where to open ambulance stations with a
fixed cost to open them. For the second stage, allocagimn is determined considering
the expected traveling cost from ambulance stations to demand points. A demand
point is considered covered if an ambulance station is within a L?eshold value.
And some important factors that they included are two different demand types:
life-threatening calls and non-life-threatening calls; two ambulance tgpes: ALS and
BLS; and scenarios structured by two data for each demand point: number of life-
threatening calls and number of non-life-threatening cxmespectively. This problem
minimizes the agabulance location-allocation cost and 1s solved by a Sample Average
Approximatimfggoritlnn that allows computing lower and upper bounds for problem
solutions and providing the corresponding optimality gaps.

Later, Bertsimas and Ng [12] implemented chastic and robust formulation
for ambulance deployment and dispatch for a problem copsgructed as a graph. These
formulations were compared with Maximum Expected Covering Location problem
and Maximal Availability Location problems and aimed to minimize the fraction of
late-arrivals without requiring ambulances to be repositioned, sending to demand
points the closest available ambulance, and maintaining a call at a queue if there are
no ambulances available at the system. The demand has the problem’s uncertainty,
which was constructed by four demand types: single for each demand point, local
for the demand point and the nearest points, regional for a region of the entire zone,
and global for the whole area. They determined a deterministic equivalent model to
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solve the stochastic formulation, and for the robust formulation, they did a column
and constraint algorithm.

%cently, Ygou et al. [55] studied a two-stage stochastic problem for locating
and dispatching two types of emergency vehicles: ALS and BLS. The first stage
locates the ambulances at potential sites, while the second stage dispatm% ambulances
from the places where they were located to demand points when a call arrives.
The objective is to maximize expected coverage considering a penalty when a call
is not serviced. One difference from other prc@ms is that the system manages
multiple emergency call resgamses, divided into high-priority and low-priority calls.
Any vehicle type can serve low-priority calls. Howevepghigh-priority calls have two
options for the service: the first option is that these calls can be responded by an
ALS ambulance. The secgnd option is that a nearby BLS ambulance can service the
call first, followed by an ALS ambulance that is not necessarily closed. A Sample
Average Approximagsan deterministic equivalent formulation solved this problem for
small data, while aﬂnch-and—Benders-Cut Solution solved a large-scale problem.
And they did another problem version considering non-transport vehicles that can
attend patients without translating them to hospitals.

Sgme works propose gochastic programming models based on call-arrival sce-
narios as a bundle of calls, the total num f emergency calls in each demand
node during a gigen period. As in this work, a two-stage stochastic program deploys
the ambulances m the first stage and dispatches them to respgmd to demand in the
second stage. Beraldi and Bruni [10] and Noyarggs3] induce a reliability approach
using probabilistic constraints. Nickel et al. [42] minimize the total cost of locating
ambulances while ensuring a minimum level of coverage. By considering a bundle of
calls, they address the volume of calls during ggshort period, such as the Friday night
hours. Bertsimas and Ng [12] impleggented stochastic and robust formulations for
ambulance deployment and dispat cheE) minimize the fraction of late arrivals without
requiring ambulances to be relocated, sending to demand points the closest available
ambulance, and maintaining a call at a queue if there are no ambulances available
in the system.

2.2 HEURISTICS, METAHEURISTICS AND
MATHEURISTICS

Scenario based stochastic programming problems have a significant advantage over
deterministic approaches due to the variety in their objectives of the decision process,
and their constraints and their relationship with uncertainty in the systems they
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study [13]. However, recent advancements in the field of metaheuristics have significantly
influenced the approach to stochastic combinatorial optimization problems, which
are defined by their inherent uncertainty and discrete nature.

In the past decades traditional optimization methods often fall short in effecti-
vely addressing these challenges; hence, metaheuristics have emerged as a powerful
alternative. Recent trends highlight the development of hybrid metaheuristics that
combine multiple approaches or integrate exact methods, adaptive metaheuristics
that dynamically adjust parameters based on intermediate results, and multi-objective
optimization techniques to manage conflicting objectives [29].

Emergency Medical Service systems alggpinvolved these procedures to improve
them. Chanta et al. [18] presents a novel approach to optimize the location and
dispatch of emergency response units. The proposed methodology combines Tabu
Search with an embedded queuing model to address both the spatial placement of
units and the dynamic dispatching decisions necessary to respond to emergencies
effectively. By incorporating queuing theory, the model accounts for the stochastic
nature of emergency incidents and response times, resulting in a more responsive and
efficient emergency service system. This hybrid approach demonstrates significant
improvements in minimizing response times and maximizing coverage, which is
crucial for effective emergency management.

ater, Juan et al. [32] reviewed on simheuristics highlights the integration
of simulation techniques with metaheuristics to address stochastic combinatorial
optimization problems. This approach enables realistic modeling of systems with
significant uncertainty. Advances include hybrid models, adaptive mechanisms,
and multi-objective frameworks, further enhanced by modern computational power.
These developments have expanded the applicability of simheuristics to real-world
problems in logistics, supply chain management, and network design, demonstrating
their potential for robust and efficient solutions in uncertain environments.

Recently, Schermer et al. [47] had innovative solutions @ the Vehicle Routing
Problem by incorporating the use of drones alongside traditional delivery vehicles.
The study introduces a mgeuristic approach, which combines mathematical pro-
gramming techniques with heuristic methods, to efliciently solve the Vehicle Routing
Problem with drones. The proposed matheuristic demonstrates high performance in
optimizing delivery routes, reducing total operational costs, and improving service

levels in logistics operations.

Finally, Gruler et al. [28] focuses on addressing the complex multiperiod in -
ventory routing problem where demands are stochastic and uncertain. The proposed
solution combines variable neighborhood search with simulation-based techniques.
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The combination of these methods aims to provide robust and efficient strategies
for managing inventory and routing over multiple periods in the presence of demand
variability.

All the information gathered will be used collectively to formulate a novel
problem that can integrate and utilize the knowledge and strategies mentioned above.
This approach aims to provide an advanced and comprehensive method of optimizing
EMS systems.

2.3 CONTRIBUTION

The novelty in this work lies in additionally maximizing the coverage of emergency
situations and considering different types of ambulances. When a BLS ambulance is
dispatched to an emergency that requires ALS, it can reduce the patient’s survival.
Thus, this work considers that ALS ambulances can be used as BLS units, but
the contrary is not allowed [6]. There are a few works dealing wipsm different types
of ambulances as we do in this work. McLay [37] determines how to optimally
locate and usgggmbulances to improve patient survivability and coordinate mulggple
medical units with a hypercube queueing model. Grannan et al. [27] determine how
to dispatch multiple types of air assets to prioritized service calls to maintain a high
probability of survival of the most urgent casualties in a militsry medical evacuation
by a binary linear programming model. In Yoon et al. [55], two types of vehicles are
considered, but one of them is a rapid vehicle that cannot offer the first care services
of an ambulance. Moreover, neither of these works considers partial coverage of the
calls.

We denote our problem as ﬂle Emergepgy Vehicle Covering and Planning
(EVCP) problem which consists of locating the limited number of two heterogeneous
types of ambulances in different city points and dispatch them to accident points,
considering the uncertainty of accident points, so as to maximize coverage (even
if partially) with short medical first aid response time. Usually, the location and
dispatching decisions are made separately [9, 22, 54]. In the EVCP problgss, these
two interrelated decisions are determined simultaneously as in Amorim gal. 3],
Ansari et al. [4], Toro-Diaz et al. [51].

ﬂ?e propose a novel two-stage stochastic program for the EVCP problem. The
stochastic program locates the limited number of heterogeneous types of ambulances
in the first stage, and in the second stage, the dispatching of ambulances to accidents
is determined. The EVCP stochastic model allows partial coverage of gmsidents by
ambulances based on a decay function [53]. Similarly to Yoon et al. [55], we generate
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the call-arrival scenarios by sampling emergency call logs to use them 1 the second
stage of our stochastic model. In this manner, ldress the volume of calls during
a short period, such as on Friday night. Thus:me is not explicitly measured and
it is assumed that a vehicle can be assigned only once during this high ambulance
demand period [58]. Boujemaa et al. [15] use a bundle of calls but do not consider
a heterogeneous ambulance fleet.

Another contribution of this work is the methodology to solve the EVCP
stochastic model. In fact, the proposed model can only be solved for relatively
small instances with a restricted number of scenarios. Thus, ipsgtead of decomposing
the model with Bender’s methods as is usually done [49, 57], we propose a location-
allocation methodology [48, 52| that relies on the solution in an auxiliary surrogate
model, which is faster to solve. We name this method an scenario-based feedback
approach becauseﬁe location of the ambulances obt gigsed by this surrogate model
is used as input to the original model. Thus, we obtain high-quality solutions
in a reasonable time with an off-the-shell solver without complex decomposition
techniques.

Some works use metaheuristic methods to solve their stochastic models. %m—
ﬁz et al. [50] integrate location and dispatch decisions for EMS vehicles to minimize
1e mean response time of an emergency call and maximize the expected coverage
demand, using a continuous-time Markov process to balance flow equations that
control the busy fraction of each ambulance. A genetic algorithm can solve midsize
instances. Some others, such as Amorim et al. [3], use simulation to decide whether
ambulances stay at potential sites established by a mathematical model or must
be moved to another potential site to maximize patient survival. They work on
a complete day period, while we focus on high-demand periods of some hours.
Moreover, we do not need a metaheuristic due to the high-quality solutions that
we obtained with the scenario-based feedback approach. However, we would like to
propose a matheuristic to improve the solution obtained from this approach.




CHAPTER 3

PROBLEM DESCRIPTION

qhe Emergency Vehicle Covering and Planning problem (EVCP) locates a limited
number of two heterogeneous types of ambulances in different city points and dispatches
them to emergency scenes, considering the uncertainty of the emergency locations,
to maximize the emergency total and partial coverage and the response time in which
patients receive medical first aid.

3.1 DESCRIPTION AND ASSUMPTIONS

Let us formally describe the Emergency Vehicle Covering and Planning problem. Let
set I include the possible demand points where patients may need medical attention
in a city or region. This set can be very large, so we consider all the demand
points observed in the historical data. In our case study, |I| can be as large as
1500 demand points. Set L provides the potential sites or ambulance stations where
ambulances could be located, such as hospitals, firehouses, malls, or similar places
where the ambulance and paramedics can wait for emergency calls. We consider
imstances with up to 30 potential sites for the experimental results. Set K contains
%& two types of ambulances available in the system: the BLS (labeled with index
k = 1) and ALS ambulances (labeled with index & = 2), which are limited by a
known parameter 1. for each type k € K. Thesgmunbulances must be allocated to
a potential site [ € L and dispatched toward ag

emergency situation.

mand point ¢ € [ if there is an

The travel time of any type of ambulance from a potential site [ € L to a
demand point i € I is given by r;. Ideally, ambulances should arrive in less than
7 minutes in a life-threatening emergency. Usually, 7 is a fixed value in the range
[8,15]. This work also considers that the emergency is not covered if an ambulance

15
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takes more than a maximum time 7,,,, to arrive. In this case, unfortunately, the
accident has probably been dealt with by other means.

Since the aim of the EVCP problem 18 to reduce the response time of the
patient’s first medical aid, even if it is in a partial or late way, we define a benefit
decay function that only depends on the response time of a location ] € L to any
demand point ¢ € [I:

1 if Tl S T,
Ty —T - .
Cp = 1— P— if 7< Tl < T
0 if T 2 Tmax-

3.2 INFORMATION RELATED TO THE SCENARIOS

The operational level is = resented by a set of scenarios S with a bundle list
of arriving calls. Each scenario s € S represents the realization of accidents at
the demand points. Thus, a scenario is represented by the number and type of
ambulances needed at each demand point. Recall that an ALS ambulance can he
sent instead of a BLS ambulance, but not the other way around. Thus, each scenario
s € 5 indicates ggthere is an accident at a demand point i € [ and provides the
value af; related to the number of ambulances required of type k € K.

For each scenario s € S, let I* C [ contain only the demand points i € [
where ambulances are needed, that is, where aj, # 0 for any k € K. We dgfime five
different types of ambulance coverage related to the response times cases for each
demand point i € I*:

e Total: the af, required ambulances of each type k are dispatched to ¢, and all
arrive in less than 7 time.

o Total-late: the aj; required ambulances of each type k are dispatched, but at
least one arrives between (7, 7., ) time.

e Partial: at least one of the aj; required ambulances is not dispatched, for
k € K, but all the dispatched ones arrive in less than 7 time.

e Partial-late: at least one of the aj, required ambulances is not dispatched, for
k € K, but at least one of the dispatched arrives between (7, Tyay) time. ]

e Null: none of the aj; required ambulances arrives in less than 7., time, for
ke K.
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1 q of possible demand points (possible accident places)

L set of possible ambulance location sites

K t of ambulance types

Mk total number of ambulances in the system of type £ € K

T response time from potential site [ € L to demand point i €

T ideal response time to give the patients the first medical aid in
an emergency

Tmae DMAXIMUM response time to cover an accident

Cri benefit from traveling from potential site [ € L to %nand
point 7 €

S e of scenarios

aj;,  number of needed ambulances of type k € K at demand
pointi € l,s€ S

I set of demand points for s € § with at least a value
al; ZO0forie ILke K

Table 3.1: Sets and parameters to describe the EVCP problem.

number of ambulances of type k € K located at [ € L, anii the second-stage variables
correspond to the ambulance dispatching decisions at each demand point for each
scenario s :

S sE S

1 if an ambulance of type k£ € K in location [ € L
Yin = is dispatched to demand point ¢ € I°, for scenario s € S,
0 otherwise.

We dE‘-[‘lIlE‘-lmE following binary variables related to the total and total-late coverages
related to the response times of the ambulances to the demand point i € [*, s € S:

oo 1 if demand point i € I* has a fofal coverage,
“ 7 1 0 otherwise,

¢ J 1 if demand point ¢ € I* has a total-late coverage,
9% =1 0 otherwise.

The following %s of binary variables are for the partial and partial-late coverages

of the ambulances to the emergencies:

e 1 if demand point ¢ € I* has a partial coverage,
Y71 0 otherwise,

1 if demand point i € I* has a partial-late coverage,
(0 otherwise.
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Finally, to indicate a null coverage of a demand point, we define

. 1 if active demand point i € I* has a null coverage,
! 0 otherwise.

The MEC formulation is as follows.

max Eues[Q°(2))] (3.1)
where
Q%(x) = Z((:rl Ji+ gl + ash! 4+ agw! — ¢2))
icls
s.t. Z:::ik <N ke K (3.2)
leL
E Y < Tok le Lke K.se S (33)
i€
ff§ ahi DD ciyhes aufi <) awh  i€l'seS (3.4)
K leL keK leL
I Z ay, < Z Z Yiir 0590 < Z Yy icl',se S (3.5)
keK el kel =
g9 <M (Z Z Yiki — Z Z fi‘h"."i'fki) tel’ses (3.6)
1L keK 1L keK
n< Y ap - Z; Vi M <ay = v i€ls€S (3.7)
ke K leL B8k IeL
Z Z Yieehti = Z Z LY ielf,se S (3.8)
leL keK IeL keK

w; < Z g — Z Z Yrki W < ay — Z Yoo 1€’ s€S (3.9)

keK lel ke K lel
wi <M (ZZ Y — Z Zcﬁyfki) iel*seS (3.10)
leL keK lel ke K
SNy =1 iel*seS (3.11)
lel keK
g +hi+w +2 =1 ielsesS (3.12)
e € L7, yhs € {0, 1} le LkeK, i€l se§ (3.13)

f2g8 hiwt, 28 e {0,1} iel’ses. (3.14)
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The g%ective function (3.1) maximizes the expected value of the weighted
coverage of emergencies. The parameters oy, as, g and oy are normalized weights
that ponder the coverage type, and ¢ is the penalty for the null coverage. We assume
that every scenario is equally probable since each s € S represents a sample of the
high-demand period in which we are interested.

Constraints (3.2) establish the available number of ambulances per type. Cons-
traints (3.3) establish the relationship between the first and second-stage variables,
meaning no ambulances can be dispatched from a potential site if no ambulances are
located there. The fotal coverage of an emergency is defined by constraints (3.4).
In fact, if the time response of the location of the ambulances to the emergency
is less than 7, then all ¢; = 1 and total coverage variables f? can be equal to
one, for I € L,i € IY,s € §. The total-late coverage is defined by constraints
(3.5) and (3.6). Constraints (3.5) allow the total-late coverage variables g to be
one when dispatching variables are active. Meanwhile, constraints (3.6) track the
dewnand points where the response time is between (7, Tay) when the difference
i the right-hand side of the equation is positive, that is, when there is a value
¢j < 1 associated with a dispatched ambulance for [ € L,i € I*,s € §. Note
that this difference may be decimal, so we include a big M value. The partial
coverage is defined by constraints (3.7) and (3.8). Recall that in this case, not all
needed ambulances are dispatched to emergencies, but those disp ed have an
ideal response time. Thus, constraints (3.7) activate variables h{ if the number of
dispatched ambulances is less than the required ones. Quadratic constraints (3.8)
ensure that ambulances dispatched arrive within the ideal response time, that is,
their corresponding value ¢; = 1, for [ € L,i € [4,s € 5. Constraints (3.9) and
(3.10) defime the partial-late coverage. Constraints (3.9) activate the w] variables
when the number of required ambulances exceeds the number of dispatched ones.
Similarly to the total-late coverage, constraints (3.10) track the ambulances with a
response time larger than the ideal one and must be multiplied by a big M. The
null coverage is activated by constraints (3.11). All coverage constraints are related
to the constraint (3.12), which ensures only ongswpe of coverage for each emergency.
Finally, (3.13) and (3.14) establish the nature of the decision variables.

The novelty of the MEC model is the stochastic total/partial coverage per
emergency by two types of ambulances. However, the related number of variables and
constraints is usually large. In addition, constraints (3.8) are quadratic. An integer
linear stochastic model could easily be formulated with a classical linearization
method. Still, previous experiments showed similar times between the linearized
and the quadratically constrained models when solved with integer programming
solvers, so we keep the quadratic one for the scenario-based feedback methodology
presented in the next section.
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3.4 SURROGATE-BASED FEEDBACK METHOD FOR THE
EVCP PROBLEM

The EVCP problem is N"P-hard since the classical A"P-hard facility location problem
[41] could be polynomially reduced to it. The MEC model is experimentally cha-
llenging to solve, even for medium-sized instances, as shown in Section 5. Thus, we
propose a surrogate-based feedback method (SBFM) to obtain approximate solutions
to the EVCP problem based on an auxiliary disaggregated model, named Surrogate
Ambulance-Based Coverage (SABC) model, which is faster to solve.

The SABC model’s essential characteristic is that its objective function does
not rely on emergency coverage, as in the MEC model; it only counts the number of
ambulances sent on time, late, or null to emergency demand points. Moreover, its
resolution time is extremely fast since it requires fewer variables and constraints than
the MEC model. However, disaggregating an emergency situation into the number
of ambulances needed does not capture emergency coverage, which is crucial for an
EMS system.

In addition to the location variables x;;, the SABC model requires the following
ambulance dispatching binary variables for k € K,l e L i€ I*,s € S:

1 if ambulance of type k is dispatched from site [ to point i
Uy, = with response time less than 7,
0 otherwise,

1 if ambulance of type k is dispatched from site [ to i
Uy = with response time in (7, Ty,
0 otherwise.

Variables uj;; indicate the ambulances with an ideal response time dispatched from
the location sites corresponding to a decay function value ¢ :@ While variables
Ujy; indicate the ones with a larger than 7 response time which have a value ¢; < 1.
The number of required ambulances & in an emergency demand point 7 that are not
dispatched are counted by integer variable (7, for k € K,i € I*,s € S. The SABC
is as follows.

max E[G%(x)] (3.15)

where G*(x) = Z Z Z(‘Bluf’ci =+ Bovyy,) — Z Z q-5§;1‘| (3.16)

leL keK icl*® ke K icl”
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5.t. Z:}:;k <1 ke K (3.17)
el
Z(ufh- + o) < T lceLkeK secS (3.18)
il
up; < cp leLiel’ ke K.seS (3.19)
Ul + U <1 leLiel’keK seS (3.20)
ﬂ";i =+ ﬂ';i = Z Z(Mfki =+ 1,’;;\_1' =+ C:‘:) i E IS: CNS S (321)

€L keK
ajy, < Z(“‘f?f + vy + 5 icl®sesS (3.22)
el

T Gy € Z7 upy, vy, € {0, 1} leLkeKicl'ses

ﬂe objective function (3.15) maximizes the expected value of the on-time
and late dispatched ambulances minus a penalty ¢ for the required ambulances that
could not be dispatched in less than 7., time response. The weights 5; > 3, are
normalized parameters that prioritize the ambulances dispatched with a response
time less than 7. As in the previous model, no more than the available ambulances
can be located on the sites, corresponding to constraints (3.17). The number
of ambulances dispatched on time or late is less than the number of ambulances
located, as indicated by constraints (3.18). Constraints (3.19) define the ambulances
dispatched with an ideal response time of less than 7. Thus, if ¢; = 1, then the
ambulance will have an ideal response time, while constraints (3.20) activate the late
variables for which their response time is between (7, Ty ). With constraints (3.21)
and (3.22), the non-covered emergencies, (j; variables are defined for i € I*,s € S.
Recall that advanced ambulances can be dispatched instead of basic ones. Finally,
the nature of the variables is stated.

The surrogate-based feedback method: Under the SBFM, the SABC stochastic
model is solved first. From its optimal solution, we obtain the location of the
ambulances of the first stage corresponding to the value of x;. variables, for I € L,
k€ K. Let the solution vector of these values be called z*B¢. Then, in the
allocation stage, we solve MEC taking 2548 as input. We call this model MEC (x5E®)
or simply MEC(SABC), implying that it is the solution of the MEC model with the

location variables fixed with the solution of the surrogate model SABC. Since the first

stage variables are fixed, the MEC(SABC) model becomes easier to solve and yields
high-quality solutions. We could implement a local search neighborhood based on
the location variables z;; to diversify the solution yield by variables x5, However,
experimental results show that the quality of the SBFM solutions is exceptionally
high with a single feedback.
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As mentioned, the SABC auxiliary model is a surrogate for the MEC formu-
lation. Thus, the solutions obtained by the MEC and SABC are not equivalent.
However, the solutions of the SABC model can be mapped into solutions for the
EVCP problem, as shown in Algorithm 1. In this manner, we can compare both
models in terms of emergency coverage, even if the SABC model is short-sighted
regarding this objective. Step 3 activates the total coverage when all the required
ambulances arrive in less than 7 response time. Step 4 verifies if a dispatched
ambulance has a response time in (7, Tyay ), corresponding to the total-late coverage.
Step 6 checks that not all the required ambulances are dispatched but they arrive
between the ideal time, while Step 8 verifies that the dispatched ambulances are
not all the required ones and at least one of them has a response time in (7, Ty )-
Finally, Step 10 activates the null variable.

Algorithm 1 Transformation of a SABC solution into a MEC solution

1: require solution of the SABC model (z, u, v)

2: for i€ I’ s€ Sdo
. 4 i35 P | - — .

3 if ZEEL,J:EK Up; = ap; then f7 =1 > total coverage
| 3 38 s . 8 58— 8

4 i D e rpen U < G a0 3050 e g Uiy + Uiy = A

5 then g/ =1 - total-late coverage
. 3 8 & h T

6: i D e pen U < @ and Dy g Uy =0

7 then h! =1 > partial coverage
. 4 e Pt 5 8

8: i) ex Wi 0 < agand Do ;o U >0 '

9 then wf =1 > partial-late coverage

10: otherwise 2§ = 1 > null coverage

11: return MEC solution (7, f, g, h, w, 2)

3.5 MATHEURISTIC TO IMPROVE THE MEC MODEL

The Surrogate-based feedback method for the MEC(SABC) model has good results.
However, a disadvantage of this method is that we obtain only one solution for the
ambulance location from the surrogate model SABC. This is a problem because
we disown the optimal solution for the MEC model and we are not sure if the
SABC solutiopgis close to that optimality. Trying to improve the solution z548¢
we proposed a local search procedure, which is a matheuristic considering four
neighborhoods, named as SABC Matheuristic. These four different neighborhoods

are as follows:

e Neighborhood 1, (N ): exchange one active potential site with another active
potential site.
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e Neighborhood 2, (N,): pick half of an active potential site and add it to a
non-active potential site.

e Neighborhood 3, (N3): pick half of an active potential site and add it to another
active potential site.

e Neighborhood 4, (Ny): exchange one active potential site with one non-active
potential site.

Ny and Ny change BLS ambulances with BLS ambulances and then ALS
ibulances with ALS ambulances. N; and N3 change only BLS ambulances with
S ambulances due to the small quantity of ALS ambulances in the EMS system.

The algorithm to arﬁ the SABC Matheuristic has the 2515¢ as an initial
solution. First, we obtain the value of the objective function for this initial solution,
defined as t°4B¢ which is the best solution at tlgEspoint. Then, we construct the
first neighborhood from the 2548Y, The t548¢ ghjective value is compared with
each neighbor’s objective value, obtained using the MEC(SABC) methodology. If a
neighbor’s solution is better than ¥45¢  we consider this solution as the best one for
the Matheuristic and we save the objective value and variables’ results. Otherwise,
we have the initial solution as the best one when the algorithm is finished. Regardless
of whether the new best solution is the initial solution or not, we construct the second

neighborhood from x%48¢

, and each neighbor is compared with the best solution at
the moment. We repeat this procedure for the other two neighborhoods and when
the comparisons are finished, we obtain the best solution, as we can see in the

Algorithm 2.

This procedure calculates each neighbor’s objective value as in the MEC(SABC)
methodology in the four different neighborhoods, which makes the SABC Matheuristic
take so much time to check each neighborhood. This Matheuristic aids in improving

£34B¢ golutions, but not for all instances, as we can see in Chapter 5.

The next section compares the MEC, MEC(SABC), and even the SABC solu-

tions.
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Algorithm 2 SABC Matheuristic to improve the MEC model
. require solution of the SABC model z545¢
L gt = pSABC

. t* = MEC (294B¢) = ¢84BC

1
2
3
4: while not all neighborhoods N;, where i € {1,2, 3,4}, have been visited do
5
6
7
8

for ' € N; do
Evaluate ' = M EC(z")
if ¥ > then z*=2'1"=1
return solution (z*, f, g, h,w, z) and objective value ¢*




CHAPTER 4

EXPERIMENTAL ASSESSMENT

This chapter presents an empirical assessment of models and the solution methodology
previously described to solve the EVCP problem. We used Gurobi Optimizer 10.0.2
ith Python 3.10 to solve the integer programming models MEC, SABC, and MEC(SABC).

ﬁe experiments were carried out on an Intel Core i7 at 3.1 GHz with 16 GB of RAM
under the macOS Catalina 10.15.7 operaigws system. Each execution of the integer
linear programming solvers had a CPU ﬂe limit of 10800 seconds. For SABC
Matheuristic the solver had a CPU limit of 300 seconds for neighbor’s evaluation

and 10800 seconds in total.

4.1 INSTANCE GENERATION

The value ranges of our instance generator are @qed on real-world data taken from
Monterrey, Mexico. In the literature, there are no suitable benchmarks for our
problem. The databases for the Monterrey case study showed a larger number of
possible demand points, |I| € {168, 270,500,900, 1500} compared to the one from
the literature with |I| < 270 [55]. The number of possible locations for ambulances
in Monterrey is |L| € {16,50,100}, which is also larger than the one from the
literature (< 30) since not only hospitals and fire stations can be considered. We
consider the whole city of Monterrey, so the number of ambulances (m,n) =
(35,20) is also greater than the ones from the literature cases (6 ambulances per
type [55]). The number of scenarios is set to be as large as that in the literature
|S] € {10,50, 100,150,200}. Thus, our benchmark has 15 instances for which five
different scenario settings were built.

For each instance, we simulated a two-hour high-demand period. Each scenario
s € S consists of a set of demand values per ambulance type and per demand point

26
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{a;, Yrek ic1 ses. Fewer demand points imply a larger city grid and a larger proportion
of emergencies per demand point. Therefore, when |I| = 168, around 30% of the
demand points may have a value different from 0. In contrast, when |I| = 1508 only
1% of the demand points will require ambulances. This setting reflects the number
of emergencies per hour observed in the case study. Instances are built such that
most emergencies require a single ambulance, but as observed in real cases, some of
them may require up to three ambulances.

The ideal ambulance response time is 7 = 10 minutes, while the maximum
response time is Ty, = 30 minutes. Fopshe MEC formulation, we use the following
weights in the objective function (3.1): aq = 0.65,as = 0.2,a3 = 0.1, and a4 = 0.05.
In this manner, the total coverage is thesnost sought-after, while the partial-late
cover has less benefit. Surprisingly, the gue of the big M of the model is not the
main cause of the execution time of the MEC model. Thus, a simple value M = 1000
is set.

For the SABC objective function (3.16) we use 8, = 0.7 and 8y = 0.3. These
values reflect the aim to send primordially the required ambulances with an ideal
response time. The penalty for null coverage in the MEC model or when a required
ambulance cannot be dispatched to the emergency in less than 7, time in the
SABC model is set to ¢ = 1/|S| + 0.0005.

All instances with their related scenarios and detailed solutions are available
at https://doi.org/10.6084/m9. figshare.25928401.




CHAPTER b5

EXPERIMENTAL WORK

n this chapter, we analyze the parameters of the EVCP problem that impact
the performance of the objective values of our stochastic methodologies. Several
questionsgmise. We wish to investigate how sensitive the model is to the number of
scenarios 11 terms of solution quality and solution time. We also want to determine
the size of tractable instances.

5.1 OBJECTIVE VALUES FOR THE MEC,
MEC(SABC) aND SABC MATHEURISTIC

In this first experiment, we solve the instances using the original Mds§' model.
Figure 5.1 consists of six plots. The three plotgsa the left column vary the number
of demand points (x-axis), comparing each one to the va?of the objective function
when different scenarios are tested. The three plots in the right-hand side column
vary theghgsted number of scenarios and show the variation in the solution value
for each number of demand points. The upper plots consider a number of possible
locations for the ambulances of |L| = 16, the middle plots of |L| = 50, and the lower
plots of |L| = 100. Straight lines are the best objective values, while dotted ones are
the best bounds found.
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i the plots on the left-hand side, the better the objective function. This implies
that a better sampling of the emergency demand points benefits the quality of the
solution related to the ambulance response time. The plots on the right side show
that the larger the size of the demand point set, the harder it is to solve the instance.

For the MEC(SABC) methodology, we have the solution represented in Fi-
gure 5.2, which has a similar structure to the previous one. For this methodology,
the number of scenarios does not affect the results for the objective value due to
the MEC(SABC) only considering the ambulances serving the accidents. To this
methodology, the optimal is found in an easier and faster way than the MEC, but it
is different to the optimal at the MEC, so we need to compare the objective values
of both of them.
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each instance. However, we can see the improvement percentage between the MEC
and the MEC(SABC) in column five of Table 5.1, and the improvement percentage
between the MEC(SABC) and the SABC Mafggmuristic in column six. Column
one defines the instance name, which is given gthe number of demand points,
potential sites, and scenarios. Columns two, three, and four have the objective
values for the MEC, the MEC(SABC), and the SABC MAtheuristic, respectively.
Something interesting is that SABC Matheuristic mostly improves MEC solution
for those instances where MEC(SABC) does not improve the objective value. Ta-
ble 5.1 shows only those instances in which we obtain an improvement for the optimal
solution.
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Table 5.1: Comparissons between a subset of instances for the objective values of the MEC,
MEC(SABC) and SABC matheuristic with a limited computational time of 1800

seconds per neighbor. (Continued)

Instance
I| L] |S

MEC

MEC(SABC)

Matheuristic
(Math)

% Improve
MEC vs
MEC(SABC)

% Improve

MEC(SABC)

vs Math

1500 16 200

11.0536

11.05635

11.05635

(0.024878773

168 50 10

T.285

6.485

6.53

0.693909021

168 50 100

5.86825

6.4167

6.4167

9.346057172

168 50 150

5.04052222

6.375988893

6.37H988893

26.4946093

168 50 200 4.6735 6.3773 6.3773 36.4566171 -
270 50 10 8.725 8.05 8.085 - 0.434782609
270 50 50 7.535 7.381 7.389 - 0.108386398

270 50 100

6.85685

7.83305

T.83305

14.23685803

270 50 150

5.9789

T.80876667

T.80876667

30.60540685

270 50 200

4.59045

7.504750002

7.504750002

63.48615064

500 50 50

0.4105

9.547000009

9.547000009

1.450507504

500 50 100

8.02305

9.9521

9.9521

2404384866

500 50 150

T7.61198889

9.7781

0.7781

28.45657216

500 50 200

4.17615

9.883800001

9.883800001

136.6725333

900 50 10 13.4365 12.535 12.603 - 0.542481053
900 50 50 11.987 12.286 12.301 2.4943689 0.122090184
900 50 100 10.8234 12.29315 12.29565 13.57937432 | 0.020336529

900 50 150

0.11984444

11.83602222

11.91226667

2978315908

0.644172873

900 50 200

5.26805

11.98405

12.04855

127.4855022

0.53821538

1500 50 50

14.084

13.709

13.7235

0.10576994

1500 50 100

12.6053

13.82855

13.82855

9.704251386

1500 50 150

11.2970444

14.03975556

14.03975556

24 27812983

1500 50 200 5.9664 14.0559 14.0723 135.5842719 | 0.116676984
168 100 50 5.156 6.463000009 | 6.463000009 | 25.34910801 -
168 100 100 1.8485 6.6976 6.6976 262.3262105 -
168 100 150 1.9081 6.85182223 6.85182223 259.0913594 -

168 100 200

1.93335

6.8329

6.8329

253.4228153

Continued on next page
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Table 5.1: Comparissons between a subset of instances for the objective values of the MEC,
MEC(SABC) and SABC matheuristic with a limited computational time of 1800

seconds per neighbor. (Continued)

270 100 10

8.82500001

8.255000064

8.355

1.211386255

270 100 50

6.71

8.6855

8.6855

2044113264

270 100 100

2.32665

8.208650004

8.208650004

252.8098341

270 100 150

2.41097778

8.375244449

8.375244449

247.3795788

270 100 200 24159 8.15665 8.15665 237.6236599 -
500 100 50 8.169 10.101 10.124 23.6503856 0.22770023
500 100 100 2.97905 10.40835 10.4282 249.384871 0.190712265

500 100 150

2.86453333

10.12661111

10.12661111

253.5169584

500 100 200

2.78645

10.29585

10.29585

269.4970304

900 100 10 13.5535 12.79 12.8315 - 0.324472244
900 100 50 0.42 12.4165 12.4165 31.80997877 -
900 100 100 3.59 1218375 12.18375 239.3802228 -

900 100 150

3.78992222

12.71902222

12.71902222

235.6011411

900 100 200 3.5589 12.4005 12.4005 248.4363146 -
1500 100 10 13.206 12.887 12.889 - 0.015519516
1500 100 50 12.063 13.6875 13.6875 13.4667993 -
1500 100 100 8.8318 14.67245 14.67245 66.13204556 -

1500 100 150

4.62758889

14.60712222

14.60712222

215.6529798

1500 100 200

4.2533

14.3678

14.41435

237.8035878

0.323988387

SAB@matheuristic depends on the time we allow for the neighborhoods ex-

S the number of demand points, potential sites and scenarios increases,
Considering that

ploration.
the number of neighbors in each neighborhood also increases.
each neighbor is verified for the MEC(SABC), the computational time required
is very large if we let SABC Matheuristic do a complete procedure. However,
we checked some instances increasing the computational time from 1800 seconds
to 10800 seconds per neighbor. The results for a selected set are in Table 5.1,
whose structure is similar to the previous table. In these results, we can see that
improvements are very small, but we were able to get an improvement for instances
where we did not get improvements before. However, since these are small instances,

the MEC is still better.
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Table 5.2: Comparissons between a subset of instances for the objective values of the MEC,
MEC(SABC) and SABC matheuristic with a limited computational time of 10800
seconds per neighbor.

Objective values

Instance MEC MEC(SABC) | Matheuristic | % Improve % Improve
| L] |8 Math MEC vs | MEC(SABC)
MEC(SABC) vs Math

168 16 10 4.995000008 4.995 4.995000016 - 3.16983E-07
168 16 50 4.849 41.848 4.848000001 - 1.43126E-08
168 16 100 491145 4.88345 4.887450001 - 0,081909319
168 16 150 | 4.713244444 | 4.677400001 | 4.678066671 - 0,014252984
168 16 200 4.84205 4.8221 4.82355 - 0,030069887
168 50 10 T.285 6.485 6.540000002 - 0,848111051
168 50 50 6.5825 6.441 6.464 - 0,357087409
168 50 100 H.86825 6.4167 6.4623 9.346057172 0,710645659

168 50 150

5.0405622223

6.375988893

6.417422223

26.4946093

0,649833788

168 50 200 4.6735 6.3773 6.4149 36.4566171 0,589591206
168 100 10 7.865 7.070000095 7.18 - 1.555868511
168 100 50 5.156 6.463000009 6.513 2534910801 | 0,773634398
168 100 100 1.8485 6.6976 6.717600001 | 262.3262105 | 0,298614435
168 100 150 1.9081 6.85182223 6.8787 259.0913594 | 0,392271858
168 100 200 1.93335 6.8329 6.8721 253.4228153 | 0,573694917
270 16 10 5.580000003 5.525 5.535 - 0,180995475
270 16 50 5.9145 5.867H 5.872500001 - 0,085215177
270 16 100 5.719 5.70245 5.70465 - 0,038579906
270 16 150 | 5.857844447 | 5.834588893 | 5.835666673 - 0,018472238
270 16 200 5.7808 5.77065 5.771 - 0,006065175
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5.2 RESPONSE TIME FOR THE MEC, MEC(SABC)
AND SABC MATHEURISTIC

The following experiment compares the running times of the equivalent MEC model
with the MEC(SABC) method. Recall that MEC(SABC) attempts to exploit that
the surrogate model SABC is very tractable and solved relatively quickly. To this
end, Figure 5.6 shows plots of the running time in seconds of the instances with
|L| = 16, |L| = 50 and |L| = 100 potential location sites for the equivalent MEC,
and Figure 5.7 shows response Limﬁm the SBFM with the same potential sites. The
x-axis of the plots corresponds to the number of scenarios, and we vary the number
of emergency demand points. Recall that the MEC model with |L| = {50, 100}
reaches the time limit even for ten scenarios and few demand points.
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MEC(SABC) model is an approximated mathod, but it gives solutions that are as
good as the MEC and even better when the MEC instances do not reach optimality
and its gaps are large. The SBFM solves most of the instances in less than a minute.

An interesting advantage of the SBFM is that only one iteration is needed.
In fact, once the location of the ambulances has been retrieved from the SABC
model and fed back to the MEC model, we could perturb the ambulances either
randomly or with a local search, the allocation of the ambulances, and iterate again.
However, we could not systematically generate a neighborhood around a location
solution that yields better solutions with the MEC(SABC) approach. This implies
that local maximums are often reached with this first feedback and that complex or
more diverse neighborhoods should be built to allow escaping from these solutions.
It would probably be interesting to enable local search movements that do not yield
immediate benefits.

Comparing the SABC Matheuristic runtime with MEC and MEC(SABC) we

show Figure 5.8. MEC still has a very large computational time compared to the

her two methodologies. As we can see, MEC(SABC) methodology computational

Eme is always less than or equal to SABC Matheuristic computational time. Even

though SABC Matheuristic is a local search procedure, the evaluation in MEC(SABC)

for each neighbor increases the computational time when instances are large. Still,
it is not a time that should alarm us, which indicates that it is a good procedure.
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question arises: Is the emergency coverage quality of the MEC(SABC) as good as
the one yielded by the MEC model?

The percentage of emergency coverage for all instances is presented with the
equivalent MEC model and the M in Figures 5.9 and 5.10, respectively.. Two
columns with three plots each, varying the number of scenarios and the location
sites. Each plot shows the type of ambulance percentage coverage obtained: T is for
Total coverage (all required ambulances on time), TL is for Total-late coverage (all
required ambulances, but at least one arrives late), P is for Partial coverage (at least
one required ambulance is not dispatched, but the dispatched ones all arrive in time),
PL is for Partial-late coverage (at least one required ambulance is not dispatched, at
least one of the dispatched arrives late), and N for Null (no ambulances assigned to
the demand point). The upper plots are for |L| = {16} potential sites, the middle
ones for |L| = 50, and the lower ones for |L| = 100.






















CHAPTER 6

CONCLUSIONS

EMS systems in developing countries, such as Mexico, suffer from a shortage of
ambulances. Thus, one of the main goals addressed in this work was to investigate
and develop tools that allow us to decide whether an emergency can be uncovered,
or totally or partially covered.

qhe Emergency Vehicle Covering and Planning (EVCP) problem consists of
locating a limited number of two heterogeneous types of ambulances in different
city locations and dispatching them to the emergency points so as to maximize the
coverage with short medical first aid response time. In the EVCP problem, these two
interrelategadecisions are simultaneously considered in a novel two-stage stochastic
program. E‘ghe EVCP stochastic model allows for partial coverage of the accidents
by the ambulances based on a decay function.

ﬂfe propose a two-stage stochastic program for the EVCP problem that n be
solved by branch-and-bound for small instances with a restrictive number of scenarios
with the MEC formgmlation. We also propose a surrogate-based feedback method,
which is essentially a location-allocation procedure that relies on the solution of an
auxiliary surrogate model. This method is faster to solve and allows us to obtain
high-quadity solutions significantly faster than the previous model. The SBFM was
tested over a broad set of randonﬁgenerated instances based on real-world data
from a local system. An important Ieature of the proposed approach is that it can be
implemented by calling any off-the-shelf integer solver without employing complex
decomposition techniques.

SABC-matheuristic aims to improve the solutions obtained from the SABC
methodology. There were slight improvements in the solutions.

In this manner, we have proposed exact and metaheuristics methodologies to
solve the ECVP problem. Moreover, we have tackled a real problem, and now we
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can test it in practice.

Our stochastic model can solve large-scale instances, but as the siggs of the
instances increase, the convergence time becomes very long. This is why one of the
main contributions of this thesis is the SAFM. MEC model egperiments show that
large-scale problems cannot be solved because the solver does not have enough time
or memory to obtain an optimal solution. However, small instances results generate
feasible solutions for ambulance location and dispatching decisions in different scenarios.
Partial rate coverage allows sending ambulances even if there are not enough ambulances
to cover an accident totally or if an ambulance or more than one ambulance are out
of the desired response time for patient attention. These results help us cover more
demand points in the system, allowing us to start giving attention to patients, which
can be finished after providing first aid to them at those demand points where not
all ambulances were sent.

6.1 FUTURE WORK

Our future work involves more than one service provider in the system, considering
the differences between them and the preferences that public ambulances can have
compared to private ambulances. In fact, in Monterrey, there are at least three
emergency service providers who are cooperating but also competing with each other:
Cruz Roja, Proteccion Civil, CRUM. Thus, game theory or bi-level programming
could be used to determine the best policies in such a way that the population is
benefited.

Naturally, there are several lines of work that can be investigated further. For
example, another interesting aspect we observed is that there are some private EMS
services that also dispatch vehicles to accident sites. Some of these are neither
regulated nor coordinated by the state. In some cases, this provokes a conflict as too
many ambulances arrive at the site, leaving other points unattended. This situation
could, of course, benefit if coordinated through decision-making tools as the ones
developed here.

With respect to the methodology, to solve the preliminarily model and future
models, we will include Benders cuts or another solution method that wegame studying.
The difficulty is that our problem considers integer and binary variables In the second
stage of the stochastic programming, thus, we have to evaluate if considering real
variables yields feasible solutions and how much the reduction in the quality is.

Also, we want to include queues at hospitals. During the beginning of the
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COVID-19 pandemic, some hospitals only attended to COVID-19 patients, which
caused other hospitals to have ambulance queues due to overdemand. This wasted

time waiting for attention affects ambulance availability and must be counted in the
EMS system.

Another approach is to consider scenarios by clusters as it is done with the
work of Hewitt et al. [30]. It could reduce the size of the stochastic program, and
maybe it will not be necessary to use the Benders decomposition, and it may be
competitive to the heuristic methods.

Finally, we are improving SABC matheuristic by considering other heuristic
or matheuristic approaches to obtain better solutions compared to the solutions
obtained from the local search procedure that we used in this investigation.
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