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Abstract

This dissertation addresses two crucial power system operational scheduling aspects: the

thermal unit commitment problem and real-time load demand forecasting. These two are

important challenges that need the development of models and efficient algorithms.

To tackle the generator scheduling problem, we propose and develop five matheuristic

methods, including four variations of local branching (LB) and one using kernel search

(KS). Additionally, we have introduced a novel constructive approach named HARDUC,

which effectively generates high-quality initial solutions for the matheuristic methods.

To assess the effectiveness of the proposed matheuristic algorithms, tests were con-

ducted on instances simulating scenarios where an analyst must deliver a generation sched-

ule within one or two hours. A comparison with CPLEX, an off-the-shelf solver, under

two scenarios (i) using the solver from scratch and (ii) using the solver with an initial

feasible solution from the heuristic, revealed interesting insights. For small instances, the

off-the-shelf solver outperformed the matheuristic methods. However, in medium-sized

instances, the solver sometimes struggled to find a feasible solution. When solutions were

found, there were no significant differences in performance between the solver and the

methods. However, the proposed methods excelled and achieved remarkable results for

large instances where the solver left many instances unsolved.

Furthermore, we tested the proposed constructive method by comparing it with the

best UCP constructive method from the literature. The results, supported by statistical

tests, indicate the superiority of our proposed method. Our implementation of the KS algo-

rithm outperformed both the solver and the LB method in terms of relative optimality gap,

especially in challenging instances. This discovery is significant as it reveals tremendous

x



Abstract xi

potential in utilizing KS for solving the UCP, paving the way for further research.

As expected, as complexity increased, matheuristic methods outperformed the solver,

delivering quicker, more e↵ective solutions. Matheuristics have a proven track record

and are incorporated into commercial solvers for e�cient solutions in mixed-integer linear

programming problems. In our research, we customized matheuristics for the thermal

UCP by identifying dominant variables and addressing implementation challenges of the

KS method, improving its e�cacy.

In addition, we introduced a novel method called the Analogue with Moving Av-

erage (AnMA) approach in very short-term load demand forecasting. AnMA exploits

the seasonal characteristics of load demand time series by selecting the most correlated

days. Its adaptability to real-time data positions it as an ideal choice for accommodating

new demand patterns, rectifying biases, and enhancing accuracy. AnMA was compared

against other methods recognized for their e�ciency and precision in the literature. The

results showcased AnMA’s superiority, outperforming naive algorithms and exponential

smoothing methods in accuracy, computational speed, and cost-e↵ectiveness. Addition-

ally, AnMA achieved comparable accuracy to ARIMA models while requiring significantly

fewer computational resources and less time.

Our research addresses critical challenges in power system operational scheduling,

highlighting the e↵ectiveness of tailored methods that align with problem-specific char-

acteristics. These findings hold practical significance for the electricity industry, as our

approach leverages a profound understanding of problem characteristics to improve opera-

tional scheduling. The success of our methods could potentially guide the development of

future hybrid heuristic approaches combining mixed-integer programming or matheuris-

tics alongside analogy-based forecasting techniques, o↵ering substantial practical advance-

ments in the electricity sector.

Roger Z. Rı́os Mercado, Ph.D.

Director

roger
Pencil



Chapter 1

Introduction

Electricity is critical in modern society, as numerous activities rely on it. However, power

systems have limited storage capacity, which means that electricity must be generated si-

multaneously with its consumption. Therefore, reliable and precise scheduling of electrical

generation capacity becomes necessary to ensure the electricity demand’s fulfillment while

upholding the electrical system’s stability and safety. A mismatch between the available

electricity generation capacity and the demand can result in blackouts or other electrical

failures, significantly impacting public service and economic productivity. Hence, it is of

utmost importance to allocate the appropriate amount of electrical generation capacity

for each hour to meet the demand and maintain the stability and safety of the electrical

system.

Independent System Operators (ISO) are dedicated agencies entrusted with the vital

responsibility of ensuring the safe and dependable operation of the electric power system.

Among their primary tasks is the management of electricity flow and the crucial role

of balancing supply and demand. ISOs tackle the complex challenge of solving the unit

commitment problem (UCP) to achieve effective scheduling in day-ahead markets. Efficient

and optimal scheduling yields notable economic benefits.

The UCP is a family of challenging and complex mathematical optimization prob-

lems in power systems that play a crucial role in power system optimization, particularly

in operation scheduling. This task entails making decisions regarding generator turn-on

and turn-off and determining the optimal power generation level to cost-effectively meet

1
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consumer demand while satisfying various operational and technical constraints. The uti-

lization of UCP models is widespread in different countries and markets for power produc-

tion planning. Each country or market customizes the UCP to align with specific energy

policies, incorporating various constraints and objectives.

Its highly non-linear and non-convex nature characterizes the UCP. Due to its com-

plexity, the UCP requires significant computational resources to solve. As a result, several

strategies have been proposed to address the issue of computational demands. One such

strategy is increasing computational power using high-performance or parallel comput-

ing techniques. Another strategy is implementing decomposition methods, which break

down the problem into smaller, more manageable sub-problems, allowing for easier solution

methods. Additionally, researchers have worked to improve the mathematical formulation

of the UCP to make it more tractable.

Despite significant advancements in the field of UCPs, the time required to solve

the UCP remains a critical limitation on runtime. To address this limitation, researchers

continue to develop and refine algorithms and techniques capable of solving the UCP

more efficiently. The study of UCP is a dynamic and rapidly evolving area of research,

as new challenges and complexities arise with integrating renewable energy sources and

implementing new energy policies.

This research aims to improve the efficiency and profitability of the energy market

by reducing the execution time of the UCP. A family of hybrid-heuristic methods, known

as matheuristics, have been tested to address the problems at hand.

Matheuristics are a class of optimization algorithms that integrate mathematical

programming and metaheuristic techniques to tackle complex problems. By blending tra-

ditional mathematical programming approaches, such as integer programming, with the

strengths of metaheuristics, “matheuristics” can solve large-scale optimization problems

more efficiently and quickly. As a result, they often provide high-quality solutions that are

close to optimal. Matheuristics allows for an intelligent search of the solution space guided

by the problem’s structure and knowledge, incorporating the advantages of metaheuristics,

such as local search, diversification, or tabu search.

Another critical aspect this work addresses is load demand forecasting, a fundamen-
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tal element in electricity planning and operation. Load demand refers to the quantity of

electricity consumers require at any given time and is subject to fluctuations influenced

by human behavior. Inadequate consideration of load demand can have significant cost

implications. Hence, ensuring the accuracy of load demand forecasts is of utmost impor-

tance. Given that load demand is not constant, precise forecasting becomes crucial to

guarantee a reliable and cost-effective electricity supply. Accurate forecasting facilitates

efficient, timely scheduling and dispatching of electricity generators, minimizing the need

for costly last-minute electricity purchases from the spot market.

Load demand forecasting is important to prevent the under-generation and over-

generation of electricity, leading to higher costs until blackouts or other disruptions in the

electricity supply. ISO uses advanced forecasting techniques that consider historical data,

weather patterns, and other factors to predict load demand accurately and maintain a

reliable and cost-effective electricity supply.

This research proposes a statistical learning-based method called Analogue (An)

with error correction by moving averages (MA) to address demand forecasting in the short

and very short term. The method uses a neighborhood search to find similar days, applies

a regression model, and finally makes a real-time error correction with a MA model. This

approach has the potential to be utilized in the Mexican real-time market.

Real-time load forecasting and the UCP are closely related to power system opera-

tions. Real-time load forecasting is used to update the inputs of the UCP, allowing power

system operators to adjust the commitment and dispatch of generators in response to

changes in demand. By incorporating real-time load forecasts into the UCP, power system

operators can reduce the cost of electricity, improve stability and reliability, and better

manage the supply and demand of electricity.

This dissertation is organized as follows. In Chapter 2, We provide an overview of

key concepts and methodologies used to address the problems. This chapter includes fun-

damental ideas of electrical power systems, unit commitment, time series load forecasting,

and commonly used solution methods.

Chapter 3 presents the hypotheses and objectives of this research.
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In Chapter 4, a compilation of the most recent works related to thermal unit com-

mitment formulations for the UCP models is discussed. Moreover, the main matheuristic

methods used to solve the UCPs are also presented and compiled. Finally, works related to

real-time load forecasting are discussed, emphasizing those most similar to our proposed

forecasting method.

In Chapter 5, a new and improved model for the thermal unit commitment problem

is presented. This model is designed based on the latest research and includes all the

essential elements of the thermal UCP in a more efficient way. The objective is to provide

a robust benchmark for testing the matheuristic methods proposed in our work.

In Chapter 6, five matheuristic methods using local branching and kernel search tech-

niques are introduced and developed. Four of these methods are based on local branching,

while another focuses on kernel search. In addition, this chapter includes an empirical as-

sessment of the proposed methods, comparing their performance against an off-the-shelve

state-of-the-art general-purpose method. The evaluation involves solving a tight and com-

pact model with a few variables and constraints.

Chapter 7 presents a new demand forecasting method built with statistical and

machine learning tools to calculate the load forecast for a real-time market.

Finally, Chapter 8 presents the conclusions of this work, including a discussion of

the relevance and applicability of the methods and possible extensions. New perspectives

for future research lines are outlined.



Chapter 2

Background

In this chapter, a concise overview of the essential ideas, terminology, and methodologies

used throughout this dissertation will be provided. The primary components of electrical

power systems will be introduced, and their interrelationships will be defined. Additionally,

the fundamental concepts of the UCP, its key constraints, and the context of time series

forecasting in electrical systems, will be outlined. The solution methods used for both the

UCP and real-time forecasting will also be briefly explained.

2.1 Power systems components

The power system is a complex network of interconnected electrical devices that provide

energy to consumers through generation, transmission, and distribution. The main com-

ponents of the power system include generators, buses/nodes, electrical loads, transmission

lines, and tie-lines/flow-gates [78].

Generators are electrical machines that transform mechanical energy from various

primary energy sources into electrical power supplied to the system. The different types of

generators include thermal, hydro, and renewable generators such as wind and solar farms

and geothermal plants.

Buses/nodes are points of connection between generators, lines, and loads located

in power substations. Electrical loads are the elements that consume power energy in the

system and are connected to the buses. They include retail consumers such as domestic,

5
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commercial, and small industries and wholesale consumers such as factories, arc furnace,

and refineries.

Transmission lines are part of the basic infrastructure comprising towers and special-

ized cables, which transmit energy from the generators to the loads. Tie-lines/flow-gates

are groups of transmission lines that have capacity limits.

2.2 The Unit Commitment Problem

The UCP is a family of mathematical optimization problems that revolve around finding

the optimal power production schedule for each generating unit. The aim is to meet the

projected loads cost-effectively [7, 44]. The primary objective is to minimize the total cost

of power generation, encompassing factors such as fuel expenses and start-up costs, all

while fulfilling the technical and operational constraints associated with the power system.

The UCP involves determining which generators to turn-on and turn-off during a

given period and how much power they should produce to meet the system demand while

taking into account various constraints such as minimum/maximum power output levels,

ramp rates, variable start-up costs, and minimum up/down times for each generator.

Various optimization techniques have been proposed for solving different versions of

the UCP, including lagrangian relaxation, priority list, and more advanced methods such as

mixed-integer linear programming, dynamic programming, and metaheuristic algorithms.

In their respective surveys, Montero et al. [62] comprehensively cover various methodolo-

gies, techniques, and resolution strategies for addressing the Unit Commitment Problem

(UCP). Meanwhile, Abdou and Tkiouat [1] provide insights into the historical evolution

of the UCP and its solution methods, highlighting the progress made in addressing its

challenges.
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2.2.1 Generators constraints

Several technical features of generators pose constraints on the optimal scheduling of power

generation. These features include:

• Generation limits: These are the maximum and minimum levels of power energy a

generator can produce while operating in a stable fashion. These limits are imposed

by the generator’s design and reflect its technical capabilities. The generator must be

scheduled in a way that stays within these limits while meeting the expected demand

for electricity.

• Minimum up/down times: These are the minimum periods of time that a generator

must be kept on or off before it can be turned off or on again. This constraint

ensures generators do not experience excessive wear and tear from frequent starting

and stopping. If a generator is started up, it must remain on for at least the minimum

uptime, and if it is turned off, it must remain off for at least the minimum downtime.

• Ramps: Ramps refer to the ability of generators to increase or decrease their power

output between two consecutive periods. This is constrained by the physical lim-

itations of the generator and its supporting infrastructure. Generators must be

scheduled in a way that stays within their ramping capabilities while meeting the

expected demand for electricity.

• Variable start-up costs: The start-up costs of a generator depend on the number

of intervals it has been disconnected. Before a thermal generator can be started, it

must reach its working temperature and pressure, and the fuel costs of warming up

the generator are considered initial costs. If the generator has been disconnected

for a short time, it requires less fuel to reach the required temperature and pressure

levels. However, if it has been disconnected for a long time, it requires more fuel to

start properly, thus increasing the start-up cost.

In the UCP, modeling the costs of power production by generators is a key aspect

that needs to be considered [91]. There are various ways to model the costs of power

production, including the following:
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• Linear: A linear cost model assumes that the cost of producing a unit of electricity

is regardless of the level of power produced. This is the simplest cost model and

can be useful for certain types of generators, such as renewable energy sources with

minimal variable costs.

• Stepwise: A stepwise cost model assumes that the cost of producing a unit of electric-

ity varies at specific intervals of power output. This model is more complex than the

constant cost model and can accurately represent the true costs of power production.

• Quadratic: A quadratic cost model assumes that the cost of producing a unit of

electricity increases quadratically as the level of power output increases. This model

is more complex than the stepwise cost model and can provide an even more accurate

representation of the true power production costs, especially for conventional thermal

generators.

• Staircase: A staircase cost model is similar to a stepwise cost model but assumes

that the cost of power production is constant within each interval of power output.

This model can be useful for representing power production costs for certain types

of generators, such as hydroelectric generators, with discrete steps in their output

levels. The staircase cost model is widely utilized in electricity markets.

The choice of cost model depends on the specific features of the generators being

modeled and the desired level of accuracy in the corresponding UCP. In general, more

complex cost models can provide a more accurate representation of the true costs of power

production but also require more computational resources and can make the optimization

problem more difficult to solve.

Overall, the technical constraints related to the features of generators, such as gen-

eration limits, minimum up/down times, ramps, and variable start-up costs, present chal-

lenges for the UCP in scheduling power generation to meet the expected demand for elec-

tricity. However, considering these constraints is crucial for optimizing the use of available

resources, minimizing costs, and ensuring the stability and reliability of the power system.
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2.2.2 System constraints

The main constraint in power system operation and planning is to balance the electricity

demand, i.e., the load, and the electricity supply, i.e., the generation. This balance is essen-

tial to keep the system’s frequency within safe limits, ensuring the reliability and stability

of the power grid. To achieve this balance, the electricity demand must be continuously

monitored and predicted, while the generating units must be scheduled and dispatched to

meet the forecasted demand.

One of the challenges in power system operation is that electricity cannot be stored

in large quantities, meaning that the generation and demand must be matched in real-time.

This constraint requires the system operator to ensure that only the adequate amount of

generating power is dispatched for each hour to avoid under or over-generation, which

could cause frequency deviations and, in extreme cases, blackouts.

Several mathematical models and optimization techniques are used to achieve the

load-generation balance, which considers multiple factors such as the availability and tech-

nical characteristics of the generating units, transmission capacity, and demand forecast.

The resulting schedule should be feasible and optimized for economic and reliability cri-

teria. The load-generation balance is crucial for the efficient and reliable operation of the

power system, and it remains a key research topic in power systems engineering.

2.3 The Load Forecasting

Load demand forecasting is important in planning and operating the electrical power

system. Load forecasting is the process of predicting future electrical power demand based

on historical data, weather patterns, and other factors. The accuracy of load forecasting

is critical for ensuring the reliable and efficient operation of the power system.

In the long term, load forecasting is used for capacity planning and investment

decisions. This involves forecasting demand for several years (10 to 20 years) into the future

to determine the necessary expansion or upgrades to the power system infrastructure as

new power generation facilities, transmission lines, and other related infrastructure. This
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helps ensure the power system can meet the expected demand growth while maintaining

reliability and stability. The long-term period is focused on identifying long-term trends

and patterns in electricity consumption and demand and developing scenarios for how

demand may evolve over the longer term.

In the short term, load forecasting supports the daily and weekly scheduling of

power generation resources, such as power plants and transmission lines. This involves

predicting the expected electricity demand for each hour and day of the week. The forecasts

are typically updated daily or weekly, using historical data, weather patterns, and other

relevant information.

Short-term load forecasts are used to optimize the use of available resources and

reduce the cost of electricity production. By predicting the expected demand, power

system operators can schedule the generation resources to minimize the overall production

cost while meeting the expected demand. This helps to reduce the cost of electricity for

consumers and improve the overall efficiency of the power system.

In the very short-term, load forecasting is used for real-time power system manage-

ment. This task involves forecasting the electricity consumption for the upcoming minutes

or a few hours. Short-term load forecasts are regularly updated every minute through

real-time data from the power system.

The real-time load forecasts are used to adjust the output of power plants and switch

transmission lines to ensure that electricity supply and demand are balanced. This helps

to maintain the stability and reliability of the power system and prevent power outages or

other disruptions in service.

The timeliness of load forecasting is essential to ensure that the power system can

react promptly to variations in demand. Very short-term load demand forecasts are espe-

cially important for managing the power system during high demand or unexpected events,

such as equipment failures or extreme weather conditions.

Accurate real-time load forecasting is crucial for managing the supply and demand

of electricity in a cost-effective way. Real-time market prices, which are typically based on

the marginal cost of producing the next unit of electricity, can be reduced using accurate
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load forecasts. Inaccurate forecasts can have significant implications for the power system,

leading to excess capacity or insufficient capacity to meet demand. Overestimation of de-

mand can result in wasted resources and higher costs, while underestimation can lead to

power outages and disruptions in service. Accurate load forecasting enables power system

operators to use cheaper and more efficient electricity generators, reducing the marginal

cost of producing electricity and ultimately benefiting consumers and the economy. Ad-

ditionally, accurate load forecasting helps to avoid over-generation and under-generation,

both of which can have negative economic consequences.

Overall, load forecasting is an essential tool for effectively and efficiently managing

the power system. By predicting the expected demand, power system operators can opti-

mize the use of available resources, reduce costs, and maintain the stability and reliability

of the power system.



Chapter 3

Hypothesis and objectives

3.1 Hypothesis

By utilizing custom methods that leverage the mathematical structure and intrinsic fea-

tures of scheduling problems in power system operations, significant improvements can be

achieved in reducing runtime and enhancing accuracy during schedule calculation. These

advancements can be effectively accomplished by implementing strategies such as hybrid

heuristic methods based on mixed-integer programming (matheuristics) to address the

complexities of the thermal unit commitment problem and integrating classical statistical

approaches with machine learning techniques for accurate, very short-term load forecast-

ing.

3.2 Research objectives

The main objective of this dissertation is to enhance the efficiency of operation schedules

in power systems by reducing runtime calculations and increasing the accuracy of the so-

lutions. This objective can be achieved by employing customized methods that leverage

the mathematical structure and intrinsic features of scheduling problems. Specifically, the

research uses hybrid heuristic methods based on mixed-integer programming (matheuris-

tics) to address a thermal unit commitment problem. Additionally, the study integrates

classical statistical approaches with machine learning techniques to solve the problem of

12
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very short-term load forecasting.

In order to achieve this primary objective, a set of specific objectives has been

established, outlined as follows.

1. To comprehensively review related works on the thermal unit commitment problem,

focusing on tight and compact modeling approaches [64] and using hybrid heuristic

methods based on mixed-integer programming for its solution. Additionally, thor-

oughly review the relevant literature on very short-term load forecasting, emphasiz-

ing strategies that employ classical statistical methods and machine learning tools,

specifically those based on pattern analysis.

2. To build a new thermal unit commitment model with tight and compact features [64],

incorporating a staircase cost function and selecting constraints from cutting-edge

formulations [54] to ensure the model’s efficiency as a benchmark.

3. To develop hybrid heuristic methods based on mixed-integer programming or matheuris-

tics, specifically designed to align with the mathematical structure of the problem in

order to solve the thermal unit commitment model at hand efficiently.

4. To develop a method explicitly designed to leverage the distinctive characteristics

of load demand time series and align with the specific requirements of real-time

electricity markets to solve the short-term forecasting problem while concurrently

enhancing accuracy and reducing runtime.

5. To evaluate the performance of the proposed methods for solving the thermal unit

commitment problem, comparing the results obtained by our methods with those of a

commercial solver. Additionally, to assess the performance of our method in solving

the very short-term load forecasting problem, we will employ benchmark forecasting

models, such as those from the exponential smoothing and Box & Jenkins families

[14].



Chapter 4

Literature review

4.1 Literature survey on UCP models

The literature on UCP models is vast [62]. UCP models have been widely used to manage

energy production for many decades. Different variations of UCP models addressing par-

ticular situations and assumptions have been studied [1]. UCP models can be classified

according to generator operating, electrical network, and system constraints. The first set

includes technical constraints related to the generators as power limits, ramps, minimum

up and down times, and start-up costs. The second set comprises limits in lines and tie-

lines. The last one encompasses meeting demand and load-generation balance. Anjos and

Conejo [7] outline some examples of these models.

Recent research has established the UCP as a computationally complex challenge.

Anjos [6] affirm that the UCP is an NP-hard, large-scale, non-linear, non-convex, combina-

torial optimization problem. On the other hand, Bendotti et al. [10] assert that the UCP

can be transformed into multiple knapsack problems with linking constraints in time and

analyze the complexity of the UCP with respect to the number of units and time periods.

The UCP is strongly NP-hard, as proven in this study.

In his doctoral thesis, Morales-España [63] highlights that a significant portion of

the UCP literature concentrates on improving the formulation by seeking locally ideal or

locally tighter representations for a specific subset of constraints of UCP. However, the the-

sis concludes that achieving an excessively tight model becomes useless if computational

14
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limitations slow its computability due to the extensive number of variables and constraints

involved. Given the insights provided by these findings, recent research has focused on

finding tight and compact (T&C) formulations that have shown promising results, partic-

ularly in thermal UCP models. Morales-España et al. [64] are the pioneers in this model

approach. The thermal UCP model aims to minimize operating costs over a specified pe-

riod by optimizing the commitment and dispatch of generators that use gas, coal, fuel oil,

and diesel as primary energy units. It considers generator capacity, up/down times, ramp

rates, and variable start-up costs while meeting electricity demand and reserves.

Recent research on UCP models has concentrated on developing more effective Mixed

Integer Linear Programming (MILP) formulations that can represent the various compo-

nents of the problem more tightly and compactly [65, 67, 89, 90]. These studies have

particularly focused on the thermal UCP model. In addition, Guedes et al. [39] have

presented a hydraulic UCP model with T&C features.

On one hand, a tighter model reduces or narrows down the best solution space to

find the feasible solution and helps methods based on branch and bound (B&B) reach a

solution quicker. On the other hand, a more compact model employs fewer constraints

and variables and requires fewer computing resources. Knueven et al. [54] have compiled

the major modern UCP formulations and proposed different models that balance out T&C

features. The new formulations are derived from combining constraints from other models.

They also tested the model’s performance with instances from electricity markets, showing

positive results for tighter models.

These T&C models have shown promising results because they can be extended with

additional constraints as Nycander et al. [71] that propose a variant based on power and

not in energy. This variant of UCP based on power provides a notable advantage by incor-

porating a more realistic approach to considering generator ramps. It accurately calculates

the generation capacity at the beginning and end of each time period. Additionally, it in-

tegrates constraints that account for intra-hour reserve requirements, leading to enhanced

practicality within the model.

Finally, UCP models have been solved using the B&B method and its variants [87].

In practice, sophisticated solvers and high computing power are required to solve large-scale
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problems at reasonable times. Despite this progress, depending on the size and features of

specific instances, sometimes the algorithms cannot reach an optimal solution in the time

allowed. In this context, metaheuristic methods help find near-optimal solutions. However,

some methods based on Genetic Algorithms [52], Tabu Search [68], and Variable Neigh-

borhoods Search [84] have yet to perform well. Nevertheless, recent research has yielded

promising results by integrating metaheuristic methods with mathematical programming

to address UCPs. Consequently, the next section comprehensively surveys the most recent

matheuristic approaches for solving UCP models.

4.2 Matheuristics works in UCP

Matheuristic or hybrid MIP-based heuristics methods are widely used in optimization for

solving complex problems where traditional exact methods may not be efficient. Matheuris-

tics was introduced as a hybrid approach that combines metaheuristics with mathemat-

ical programming, i.e., heuristic methods with a mathematical programming component

[31, 58, 87].

While heuristic approaches may not guarantee optimal solutions, empirical evidence

has demonstrated their ability to outperform exact methods in scenarios when working

within a predefined time limit.

The efficiency of B&B algorithms have been significantly improved by implement-

ing heuristic ideas in MILP solvers, as highlighted by a survey conducted by Berthold

[12]. Constructive heuristics, such as Relax and Fix (R&F) methods [87] or Feasibility

Pump (FP) techniques [13], make use of continuous solutions derived from linear relax-

ation and rounding. Diving strategies during branching operations of B&B, as outlined by

Achterberg et al. [2], are used to improve solution quality further once a feasible solution

is found. Matheuristics inspired by local search algorithms are then used to refine the

solution quality, such as Local Branching (LB) strategies introduced by Fischetti and Lodi

[32], which define neighborhoods with maximum modifications in the incumbent. The

Relaxation Induced Neighborhood Search (RINS), proposed by Danna et al. [19], com-

bines relaxation and neighborhood search techniques. RINS fixes shared integer variables
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between the incumbent and continuous relaxation solutions, narrowing the search space.

This focused exploration within promising regions enhances the efficiency and effectiveness

of the optimization process.

The kernel search (KS) matheuristic, by Angelelli et al. [5], is inspired by greedy

algorithms. It partitions the solution space into a kernel and multiple buckets and then

solves a simplified version of the problem or sub-MILPs constructed with the kernel and

each bucket. The final solution is achieved by iteratively adding new variables from the

buckets to the kernel until all the buckets are utilized. The solution obtained consists of

the variables assigned within the kernel.

Implementing matheuristics can improve solution quality, convergence guarantees,

and computational efficiency, leading to better solutions. Next, a survey of the matheuris-

tics methods applied to UCP models is discussed.

It is worth mentioning that there is a significant amount of research on the utilization

of matheuristics in UCPs. First, Fayzur et al. [30] present two matheuristic approaches

in their study. The first approach combines the original version of LB from Fischetti

and Lodi [32] and an iterative linear approximation (ILA) method. The second approach

combines particle swarm optimization (PSO) and ILA, incorporating a solver in an iterative

process. The UCP problem addressed in the study initially involves quadratic production

costs, which are later linearized with ILA and solved using the LB method. The model’s

constraints encompass power balance, spinning reserve requirements, minimum up and

down times, production limits, and ramps [86]. The study successfully solves previously

unsolvable instances and achieves faster optimal results for larger instances. The proposed

LB-ILA algorithms significantly reduce the mean CPU time for larger instances by 40%-

56%. However, these algorithms perform worse for smaller instances due to unnecessary

exploration of neighborhoods.

Sabóia and Diniz [77] solve a stochastic thermal network-constraint UPC using the

LB approach combined with an iterative approach that considers transmission lines flow

limits. They dynamically introduce violated flow limit constraints, embedding them into

the nodes of the LB scheme. This iterative procedure involves fixing the optimal integer

solution achieved at each node. The DC power flow is then evaluated iteratively, contin-
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uously checking for violations of line capacity. The process continues until no further line

capacity violations are observed. This model is a new compact MILP formulation with

basic constraints for thermal UCP. The method is tested with one instance.

Todosijević et al. [84] propose a hybrid approach that combines variable neighbor-

hood search (VNS) with mathematical programming to address a UCP. In their method,

the commitment of generators, i.e., deciding which ones will be turned on and off, is deter-

mined using VNS. Additionally, they solve an economic dispatch problem (calculus of each

generator’s power level) for each period by formulating the dispatch as a linear program-

ming problem. The results obtained by the proposed approach outperformed considerable

metaheuristics reported in the literature for solving this version of the UCP. Furthermore,

the solutions achieved were very close to the optimal solutions obtained with the CPLEX

solver. However, the paper lacks information regarding the CPU times of the solver, mak-

ing it impossible to compare the computational efficiency of VNS directly. Nevertheless,

it is important to note that the mathematical model used in the study considers only

constraints of demand, reserves, power limits, minimum up and down times, and hot and

cold start-up costs without incorporating ramps, which are essential constraints in real-life

UCPs. Furthermore, a particular feature of their UCP is that the production cost of the

generators is quadratic.

Dupin and Talbi [25] use a matheuristic method to solve a discrete thermal UCP

from programming thermal generators in the real-time electricity French system. First, in

a constructive phase, they use R&F strategies to find one initially good solution. In the

subsequent improvement phase, a VNS algorithm conducts a local search by iteratively

exploring B&B solutions in neighborhoods defined within the solution space confined by

the MILP model. In other words, these neighborhoods are defined within the MILP using

various heuristics suggested by the authors, such as RINS or LB strategies. The model

used by Dupin and Talbi [25] is based on Dupin [24] work incorporating various constraints

such as demand, reserves, minimum up and down times [75], and fixed start-up costs. Note

that in the discrete thermal UCP, the limits of generation constraints are not applicable.

Instead, discrete power levels and transition constraints exist between them. However,

the model does not incorporate ramps. The method aims to find the best solutions for

the discrete thermal UCP on a 15-minute time limit from its application in a real-time
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scenario. The resulting matheuristic method is better than the MILP solved directly by

the solver in the allotted time frame.

In follow-up work, Dupin and Talbi [26] improved the discrete thermal UCP for-

mulation with T&C features and extended the model to include minimum-stop ramping

constraints for thermal generators. In discrete thermal UCPs, min-stop constraint refers

to the minimum duration a generator must operate at a specific power level before tran-

sitioning to another power level. The “minimum-stop ramping” represents the rate at

which the generator can smoothly change to another power level. To address the problem,

the authors propose a set of constructive matheuristics specifically designed to generate

advantageous feasible solutions. These solutions can be effective initial solutions for a

branch-and-bound (B&B) algorithm. Additionally, they explore the implementation of

parallelization strategies. Some constructive matheuristics apply variable fixing strategies,

which involve fixing the generator output during a set of periods and relaxing the variables

during other sets. Another approach involves fixing a prior solution in one block of variables

and applying a MILP to another block. Moreover, another strategy employed is dividing

the problem into three periods and solving the initial and final parts independently, fixing

the resulting solutions in the entire problem, and then solving the ensuing MILP. Another

interesting constructive matheuristics implements the KS ideas proposed by Guastaroba

et al. [38], i.e., the segregation of generators based on their marginal costs, eliminating

units with higher production costs. Another variant of their heuristic prioritizes utilizing

low-cost units as the main production basis, while the remaining units constitute the ker-

nel of the KS algorithm. However, the authors neither utilize the complete KS method

nor provide specific details about the method. The proposed method produces precise and

high-quality solutions surpassing the solution outperforming the B&B method applied to

the MILP model in the allotted time limit. The authors tested the method with more

than 600 instances from the French electrical system.

In the investigation undertaken by Santos et al. [79], the authors present a model and

method used for planning operations for energy generation in Brazil; their work considers

thermal generation and hydro generation and limitations on the electrical network. They

used a variant of the FP from Fischetti et al. [33] adapted for binary variable decisions.

They also created an objective function adapted with a mathematical term calculating
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the Hamming distance. The authors opted for a heuristic method due to the limitations

in time to solve the UCP, which should be solved daily for a time horizon of seven days.

Considering the dimensions of their problem, utilizing an exact method did not yield a

timely resolution within the allotted two-hour timeframe. The authors report using the

same version of LB as that of Sabóia and Diniz [77].

In the study conducted by Harjunkoski et al. [41], a R&F method for solving the

UCP is devised. The proposed method starts by solving a linear relaxation of the problem.

Subsequently, they analyzed the product of the commitment binary variable with each

generator’s power level. If the product exceeds the minimum feasible generation level, the

commitment binary variables are fixed and solved as a MILP problem. This constructive

method provides a warm start to the B&B algorithm and speeds-up the UCP solution

process.

In the following, we discuss the key distinctions between our work and the related

studies, emphasizing the scientific contributions of our research.

Regarding the mathematical modeling of the problem, our UCP is a deterministic

thermal model with a staircase cost function. Furthermore, our model incorporates valid

inequalities in the cost constraints, making the formulation tighter. This cost function

assigns different price levels for each generation level interval, aligning the model more

closely with the cost modeling of electricity markets. Other works address similar problems

with linear costs [77, 25, 26, 41] and quadratic costs [30, 84]. Another notable difference is

that the modeling of generator startup costs is simplified in most of the papers to a fixed

startup cost [25, 26, 79, 41] or hot and cold starts [30, 84], or, at best, exponential startup

costs depending on the time the generator has been off [77]. In our case, we use variable

startup cost constraints [64] with tighter features.

The main difference with the other works is that, although they also solve a thermal

UCP, they address different variants. For example, Dupin and Talbi [25, 26] tackle a

discrete thermal UCP for a real-time horizon with limited forward scheduling periods. [79]

deal with a hydrothermal UCP problem, while Sabóia and Diniz [77] solve a stochastic

UCP thermal problem. Although our model does not currently consider the power grid,

it can be considered in future work.
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Regarding solution methods, we have developed five methods to solve the problem:

four versions of LB and one version of the kernel search (KS) method. Both LB and KS

versions are unique implementations not previously reported in the literature. On the one

hand, our variants of LB implement concepts such as soft-fixing, restricted candidate lists

(RCL), and local search on variables identified as dominant in the mathematical model

instead of searching in all binary variables. On the other hand, the version of KS that we

present has some differences from the original method proposed by Angelelli et al. [5]. First,

our method excludes kernel construction since a preliminary constructive stage already

provides the kernel. Another important difference is the use of the statistical rule of Sturges

to determine the number of buckets in KS. Also, our KS only focuses on the dominant

variables of the problem. Unlike the original KS approach, the calculation of reduced costs

in our method involves fixing the kernel variables while leaving the remaining variables free,

based on the linear relaxation of the problem. In our version of KS, the kernel expansion

process continues even after processing the buckets, and if there is remaining time, the

kernel is reconfigured using the last solution, and the expansion process is restarted.

Although Fayzur et al. [30] present a hybrid LB method with cost linearization, the

version they report is the original one developed by Fischetti and Lodi [32]. Alternatively,

Todosijević et al. [84] apply VNS to solve the problem and incorporates linear programming

to address a subproblem. Similarly, Dupin and Talbi [25] employ another VNS and some

of the neighborhoods they define incorporate the concepts of LB and RINS matheuristics.

Moreover, it is worth noting that only the local search definition from the LB method is

utilized without involving the branching phase. Additionally, Sabóia and Diniz [77] modify

the original LB to include the power network.

In their research [79], the authors use a variant of FP as a constructive strategy and

LB as an improvement strategy. Furthermore, the authors state that they utilize the same

version of LB as Sabóia and Diniz [77].

The first paper that reports the use of the KS for UCP is by Dupin and Talbi [26],

where they present their findings on incorporating the KS concept as a variable fixing

criterion into a variable fixing strategy. This strategy introduces methods to select specific

variables to fix a priori to obtain a reduced problem that the MILP solver can subsequently

solve. However, it is important to emphasize that their work lacks full implementation of
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the KS method.

Additionally, Harjunkoski et al. [41] propose a constructive method based on R&F,

where the initial feasible solution provides a warm start to the B&B algorithm, resulting

in an accelerated UCP solution process. Finally, we proposed a new constructive method

that aims to compete with the approach of Harjunkoski et al. [41] and the solver.

In summary, the differences between the related works and our study are significant.

On the mathematical modeling side, they address different variants and formulations of

the thermal UCP. On the solution methodologies side, the related papers utilize distinct

implementations of LB and KS, which differ from those proposed in our study. It is

important to highlight that the works included in this comparative analysis specifically

focus on solving the UCP using matheuristics strategies.

In Table 4.1, the comparison between the works that have addressed the UCP prob-

lem with matheuristic approaches is presented. The table lists the main constraints of the

UCP models addressed in each work and their corresponding solution methods.

4.3 Load forecasting works

Many different approaches are adopted for load demand forecasting [8]. For instance,

those based on Machine Learning (ML), such as Artificial Neural Networks (ANN) [40]

or Support Vector Machines (SVM), have had good results in accuracy in forecasting de-

mand from one day ahead. However, training these takes considerable time due to its

high computational cost. Furthermore, it requires periodic retraining due to changes in

demand patterns behavior [50]. For example, the change from winter to summer or the

beginning of the SARS-CoV-2 pandemic. [29]. In addition, powerful computer equipment

is required for its operation. Among the many works around electricity demand forecast-

ing, we highlight the work of Capuno et al. [16]. They proposed a method for real-time

operation using hybrid algebraic prediction and Support Vector Regression (SVR). The

first method generates the baseline forecast, whereas the second compensates for devia-

tions caused by drastic changes in temperature and humidity. The proposed method in

this dissertation adopts the concept of establishing a baseline forecast and subsequently
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Table 4.1: Comparison of works addressing the UCP using matheuristics.
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refining it using real-time data. This approach involves correcting the initial forecast by

incorporating more recent and up-to-date information.

Recently, more complex methods using ML and deep learning models for load fore-

casting have been proposed [85, 76]. However, these require high training times, an ex-

acerbated problem each time the model is retrained due to the arrival of new demand

data. In contrast, other forecasting methods that have been widely used are based on

linear regressions [69]. These methods are computationally cheap but are less accurate.

Environmental factors such as temperature, humidity, rain, and calendar data are among

the most common regression variables used to model electricity demand.

Another different model for time series forecasting is proposed by Monache et al. [61].

They proposed the Analogies (An) method initially used in meteorology and climatology.

The method assumes that errors in calculating a forecast between similar days can happen

again with some probability in the near future. The grouping of days is done by measuring

the distance between the days. An analogue space is a selection of those days with matching

features and the data set of subsequent errors. These models have been applied with

excellent results by Alessandrini et al. [3, 4] to forecast renewable resources in photovoltaic

plants and wind farms, respectively. They proposed the An method where a variable is

a forecast from a set of its most similar past predictions. Azevedo et al. [9] outline its

dynamic time scan forecasting based on analogies as a method fast for large data sets to

forecast wind speed time series. The scan procedure uses polynomial regression models as

a distance measure to identify similar patterns throughout the time series.

Electricity demand has multi-seasonal characteristics that Gould et al. [37] and Liv-

era et al. [56] have extensively studied. They have identified multiple seasonalities in the

time series. This seasonality defines demand patterns between days and seasons. Dudek

[22] studies the seasonal characteristics of the demand and determines some patterns using

tools such as Nearest Neighbors (NN). He founds the criteria between days of the same

season by minimizing the distances between a window of the latest data against the time

series.

Another work related to one day-ahead load forecasting model based on similar

patterns searching using NN and combining sample selection with multiple linear regression
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is proposed by Dudek [23]. This model refines the regression with reduction variables

techniques such as stepwise, Lasso regression, and principal component analysis (PCA).

The central idea of this work is to identify, with precision, days with seasonal cycle patterns.

Further, days are classified by weekday, Saturday, Sunday, and holidays. Finally, the model

was applied for a forecast of the previous day. The ideas presented by the author apply in

a similar way to the present dissertation, such as sample selection, regression of samples

for determination of a model, and calculation of the forecast using immediate after-sample

data.

Ngo et al. [70] propose a method for ultra-short-term load forecasting. This model is

based on robust Holt-Winters double seasonal exponential smoothing. Forecasting results

for distribution feeder loads showed this method has good prediction accuracy. Exponen-

tial smoothing forecasting is widely recognized as a benchmark approach due to its high

accuracy and low computational cost.

Unlike the other works that reported used method based-analogies for next-day

forecasting in wind power forecasting, solar power forecasting, and of course, climatology,

we use the analogies approach in the field of very short-term load forecasting. Also,

we distinguish the unique combination of load demand forecasting approaches based on

analogs and the integration of moving averages to correct baseline forecasts. To the best

of our knowledge has yet to be reported in the literature. The comparison of similarity

metrics to select days with a high correlation and using regression models within a unified

framework, this work presents a novel framework that results in a significant contribution

to the field load forecasting.

4.4 Summary of thesis scientific contributions

The first significant contribution focuses on solving a variation of a unit commitment

problem with the development of matheuristic methods based on local branching and kernel

search; these methods have shown promise in solving efficiently large and complicated

generation-schedule problems on time much faster and more near-optimal than the solver

alone. Moreover, another contribution is developing a novel constructive method that
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obtains feasible solutions of good quality within the allowed time limit for all instances.

From a modeling perspective, a contribution was made with the presentation of

a tight and compact model for a variant of the UCP. This model incorporates a stair-

case feature to represent costs accurately and integrates valid inequalities to tighten the

problem.The formulation provides a solid foundation from which it is possible to develop

tailor-made UCP models that effectively address the distinctive characteristics of electric-

ity markets, including the Mexican market. Another significant contribution focuses on

efficiently calculating real-time load forecasting using a method based on analogies and

moving averages. This method envisions the potential to overcome the trade-off between

accuracy and speed in current forecasting methods. It demonstrates high computational

efficiency and robustness, making it well-suited for operating in a real-time electricity mar-

ket environment, particularly for predicting load demand over horizons ranging from five

minutes to a few hours.



Chapter 5

A tight and compact thermal

unit commitment model

It has been previously stated that the UCP is a challenging optimization problem in

electrical power systems. The major problem in unit commitment scheduling is obtaining

high-quality solutions that accurately represent the real-world conditions of the power

system while ensuring timely solutions is a significant challenge. Power systems’ large and

complex nature and the need to consider various variables and constraints in decision-

making add to the complexity. Developing efficient algorithms and optimization methods

that can balance this trade-off is crucial to achieving high-quality solutions on time for the

UCP.

MILP models are widely used in many fields, including power systems, and involve

finding the optimal solution to a problem with linear constraints and integer and con-

tinuous decision variables. UCP is commonly modeled as MILP, requiring optimizing a

linear objective function subject to constraints, where decision variables are usually binary

and continuous, representing whether a generator is committed during a particular time

interval. Constraints within UCP mean the physical and operational limitations of the

power system, such as ramping limits, minimum and maximum generator output levels,

and power demand, among others. The primary goal of MILP is to determine the optimal

values of decision variables that meet all the constraints while optimizing the objective

function.

27
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To solve MILP problems, the branch-and-bound method and its variants are com-

monly used. The basic idea behind the branch-and-bound method is to explore the search

space of possible solutions, dividing it into smaller sub-problems until the optimal solution

is found. This method is effective and accurate but can be computationally expensive,

particularly for large-scale problems.

Many commercially available optimization packages implement the branch-and-bound

method, and they are commonly used to solve the UCP. These off-the-shelf solvers are effec-

tive and accurate, although they have limitations in terms of processing time. In addition,

they can be sensitive to the mathematical formulation used to represent the problem.

Therefore, it is important to carefully formulate the problem to achieve the best possible

results with the available optimization tools.

Mathematical models, known as tight and compact (T&C) formulations, are em-

ployed to represent the constraints and objectives of the problem to address it effectively.

The tightness of a MILP problem defines the search space that the solver needs to

explore to find the optimal (integer) solution; the compactness of a MILP problem refers

to its size and defines the searching speed that the solver takes to find the optimal solution.

Developing accurate models for the unit commitment problem is essential, but it can

also increase the computational burden of the problem. To address this issue, T&C formu-

lations have been developed to solve the MILP efficiently. Tight formulations incorporate

valid inequalities into the problem, creating a strong formulation of the convex hull of the

set of integer solutions and narrowing down the search space for the solution. Compact

formulations, on the other hand, focus on reducing the number of variables and constraints

involved in the problem, making the solution process computationally less expensive. The

T&C models, which are both tighter and more compact, reduce the computational burden

by requiring fewer constraints, variables, and nonzero elements in the constraint matrix

and are much more computationally efficient than other UCP formulations in the lit-

erature. Therefore, a successful UCP formulation should strive for both tightness and

compactness, as this approach yields solutions more efficiently within a reasonable amount

of time. The T&C model, first introduced by [64], demonstrated a significant reduction in

computational burden and improved solution qualities compared to previous cutting-edge



Chapter 5. A tight and compact thermal unit commitment model 29

formulations, such as those presented in [17] and [72]. The most extensive research on UCP

formulations with T&C features is shown in Knueven et al. [54]. The authors compiled a

comprehensive list of modern UCP formulations and proposed multiple models to balance

T&C features by combining constraints from other models. The new formulations were

tested using actual instances and showed favorable results for tighter models.

A T&C formulation of the thermal UCP is introduced in this chapter, incorporating

constraints from various authors. The inclusion of this model serves the purpose of provid-

ing a robust benchmark for comparison with the matheuristic solution methods proposed

in the subsequent chapter. Essentially, this formulation is a reliable reference for assessing

the effectiveness of our matheuristic methods outlined in Section 6.

To verify the accuracy of the model, we compared its results with those presented by

Morales-España et al. [64]. This was done by utilizing a small instance of their proposed

eight generators.

5.1 The thermal T&C UCP proposed model

The thermal T&C UCP formulation developed considers various constraints, including

power limits, minimum uptime/downtime, ramp capabilities of generators, variable start-

up costs, and demand and reserve requirements. Our model also incorporates staircase

cost production and its valid inequalities to reduce the solution space. Despite being more

sophisticated, our formulation is more compact with fewer restrictions than less advanced

models.

5.1.1 Notation

A summary of sets, indices, parameters, and decision variables is enlisted for quick refer-

ence.

Sets and indices of the power system:

G Set of generators (g ∈ G)
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G1 Subset of generators (g ∈ G) ; (if UTg = 1)

G1∗ Subset of generators (g ∈ G) ; (if UTg = 1 and SUg 6= SDg)

G>1 Subset of generators (g ∈ G) ; (if UTg > 1)

T Set of time periods in the planning horizon; (t ∈ T )

Sets and indices of cost-related aspects:

Sg Set of start-up cost curve segments for a generator (g ∈ G) from hottest (s = 1)

to coldest (s = |Sg|); (s ∈ Sg).

Lg Stairwise production cost intervals for generator (g ∈ G); (l ∈ Lg)

Parameters:

CR
g Minimum operating cost of generator (g ∈ G) that works at least at minimum

power P g; in $

C l
g Cost coefficient for stairwise segment (l ∈ Lg) of generator (g ∈ G) that

works at least at minimum power P g; in $/MWh

CS
g,s Start-up cost for generator (g ∈ G) with a set of segment time (s ∈ Sg); it

determines the starting cost by locating a cost in a segment time s in the

intervals [T g,s, T g,s); in $/h

CSD
g Shut-down cost for generator (g ∈ G); in $

Det Energy load demand in period (t ∈ T ); in MWh

pg,0 Power output of a generation (g ∈ G) at time 0; in MW

P g,P g Maximum and minimum generation value of generator (g ∈ G); in MW

P
l
g Maximum power available for staircase segment (l ∈ Lg) of generator (g ∈

G); in MW

Rt System-wide spinning reserve requirement in period (t ∈ T ); in MW

RDg Ramp-down rate is the capacity of generator (g ∈ G) to decrease power

between two consecutive periods; in MW/h

RSg Ramp-up rate of generator (g ∈ G) to increase power when the generator is

starting; in MW/h

RUg Ramp-up rate of generator (g ∈ G) to increase power between two consecu-

tive periods; in MW/h
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|Sg| Number of segments in the set Sg
SUg Start-up rate for a generator (g ∈ G); in MW/h

SDg Shut-down rate for a generator (g ∈ G); in MW/h

TRU
g Time that a generator (g ∈ G) spends ramping to go from SUg to P g,t; in h

TRD
g Time that a generator (g ∈ G) spends ramping to go from P g,t to SDg; in h

TCg Time offline after a generator (g ∈ G) turned into cold

T g,s Start of start-up cost segment (s ∈ Sg), respectively; in h, (i.e. T g,1 =

DTg, T g,Sg
= TCg

UTg,DTg Minimum up/down time for a generator (g ∈ G); in h

ug,0 Status of generator (g ∈ G) at time 0

Ug Number of periods generator (g ∈ G) is required to be online at t = 1 ; in h

Dg Number of periods generator (g ∈ G) is required to be offline at t = 1 ; in h

Binary variables:

ug,t Equal to 1 if generator (g ∈ G) is online in period (t ∈ T ), and 0 otherwise

vg,t Equal to 1 if generator (g ∈ G) starts up at the beginning of period (t ∈ T ), and 0

otherwise

wg,t Equal to 1 if generator (g ∈ G) is shut-down at the beginning of period (t ∈ T ), and

0 otherwise

δg,t,s Equal to 1 if generator (g ∈ G) have a start-up type s ∈ S in period (t ∈ T ), and 0

otherwise

Real variables:

cp
g,t Production cost over P of generator (g ∈ G) in period (t ∈ T ); in $

cSD
g,t Shut-down cost of generator (g ∈ G) in period (t ∈ T ); in $

cSU
g,t Start-up cost of generator (g ∈ G) in period (t ∈ T ); in $

pg,t Amount of power a generator (g ∈ G) produces in period (t ∈ T ), in MW

p′g,t Amount of power above minimum P g that a generator (g ∈ G) produces in period

(t ∈ T ), in MW

pg,t Maximum power available from generator (g ∈ G) produces in period (t ∈ T ), in

MW
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p′g,t Maximum power available above minimum from generator (g ∈ G) produces in

period (t ∈ T ), in MW

plg,t Power from staircase segment (l ∈ Lg) from generator (g ∈ G) produces in period

(t ∈ T ), in MW

rg,t Spinning reserves provided by a generator (g ∈ G) in period (t ∈ T ), in MW

The parameters Cv
g,l and Cw

g,l are calculated as follows [54].

Cv
g,l =


0 if P

l
g ≤ SUg

P
l
g − SUg if P

l−1
g < SUg < P

l
g

P
l
g − P

l−1
g if P

l−1
g ≥ SUg

(5.1)

Cw
g,l =


0 if P

l
g ≤ SDg

P
l
g − SDg if P

l−1
g < SDg < P

l
g

P
l
g − P

l−1
g if P

l−1
g ≥ SDg

(5.2)

Finally, TRU
g and TRD

g are also computed as follows [54]:

TRU
g =

⌊
P g − SUg

RUg

⌋
, (5.3)

TRD
g =

⌊
P g − SDg

RDg

⌋
. (5.4)

5.1.2 Mathematical formulation

Objective function:

min
∑
t∈T

∑
g∈G

CR
g ug,t + cp

g,t + cSU
g,t + cSD

g,t . (5.5)

Subject to:

t∑
i=t−UTg+1

vg,i ≤ ug,t, g ∈ G, t ∈ {UTg, ..., |T |} ,

(5.6)

t∑
i=t−DTg+1

wg,i ≤ 1− ug,t, g ∈ G, t ∈ {DTg, ..., |T |} ,

(5.7)
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min{Ug ,|T |}∑
i=1

ug,i = min {Ug, |T |} , g ∈ G, (5.8)

min{Dg ,|T |}∑
i=1

ug,i = 0, g ∈ G, (5.9)

ug,t − ug,t−1 = vg,t − wg,t, g ∈ G, t ∈ T , (5.10)

p′g,t + rg,t ≤
(
P g − P g

)
ug,t −

(
P g − SUg

)
vg,t

− [SUg − SDg]+wg,t+1, g ∈ G1, t ∈ {1, ..., |T | − 1} ,

(5.11)

p′g,t + rg,t ≤
(
P g − P g

)
ug,t −

(
P g − SDg

)
wg,t+1

− [SDg − SUg]+ vg,t g ∈ G1, t ∈ {1, ..., |T | − 1} ,

(5.12)

pg,t ≤ P gug,t −
TRU
g∑
i=0

(
P g − (SUg + iRUg)

)
vg,t−i

−
TRD
g∑
i=0

(
P g − (SDg + iRDg)

)
wg,t+1+i g ∈ G, t ∈

{
TRU
g , |T | − TRD

g

}
,

(5.13)

p′g,t + rg,t ≤
(
P g − P g

)
ug,t −

(
P g − SUg

)
vg,t

−
(
P g − SDg

)
wg,t+1 g ∈ G>1, t ∈ {1, ..., |T | − 1} ,

(5.14)

p′g,t + rg,t ≤
(
P g − P g

)
ug,t −

(
P g − SUg

)
vg,t g ∈ G1, t ∈ T , (5.15)

p′g,t + rg,t ≤
(
P g − P g

)
ug,t −

(
P g − SDg

)
wg,t+1 g ∈ G1, t ∈ {1, ..., |T | − 1} ,

(5.16)

p′g,t − p′g,t−1 ≤ (SUg − P g −RUg)vg,t +RUgug,t, g ∈ G, t ∈ T , (5.17)

p′g,t−1 − p′g,t ≤ (SDg − P g −RDg)wg,t +RDgug,t−1, g ∈ G, t ∈ T , (5.18)

plg,t ≤
(
P

l
g − P

l−1
g

)
ug,t, g ∈ G, t ∈ T , l ∈ Lg, (5.19)∑

l∈Lg

plg,t = p′g,t, g ∈ G, t ∈ T , (5.20)

∑
l∈Lg

C l
gp

l
g,t = cp

g,t, g ∈ G, t ∈ T , (5.21)

p′g,t ≤
(
P g − P g

)
ug,t, g ∈ G, t ∈ T , (5.22)



Chapter 5. A tight and compact thermal unit commitment model 34

plg,t ≤
(
P

l
g − P

l−1
g

)
ug,t − Cv

g,lvg,t − Cw
g,lwg,t+1, g ∈ G>1,

t ∈ {1, ..., |T | − 1} , l ∈ Lg,

(5.23)

plg,t ≤
(
P

l
g − P

l−1
g

)
ug,t − Cv

g,lvg,t, g ∈ G1, t ∈ T , l ∈ Lg,

(5.24)

plg,t ≤
(
P

l
g − P

l−1
g

)
ug,t − Cw

g,lwg,t+1, g ∈ G1,

t ∈ {1, ..., |T | − 1} , l ∈ Lg,

(5.25)

plg,t ≤
(
P

l
g − P

l−1
g

)
ug,t − Cv

g,lvg,t −
[
Cv
g,l − Cw

g,l

]+
wg,t+1, g ∈ G1∗,

t ∈ {1, ..., |T | − 1} , l ∈ Lg,

(5.26)

plg,t ≤
(
P

l
g − P

l−1
g

)
ug,t − Cw

g,lwg,t+1 −
[
Cw
g,l − Cv

g,l

]+
vg,t, g ∈ G1∗,

t ∈ {1, ..., |T | − 1} , l ∈ Lg,

(5.27)

δg,t,s ≤
T g,s+1−1∑
i=T g,s

wg,t−i, g ∈ G, t ∈ T , s ∈ [1, |Sg|),

(5.28)

vg,t =

|Sg |∑
s=1

δg,t,s, g ∈ G, t ∈ T , (5.29)

cSU
g,t =

|Sg |∑
s=1

CS
g δg,t,s, g ∈ G, t ∈ T , (5.30)

δg,t,s = 0, g ∈ G, s ∈ [1, |Sg|),

t ∈
(
T g,s+1 −DT 0

g , T g,s+1

)
,

(5.31)

cSD
g,t = CSD

g wg,t, g ∈ G, t ∈ T , (5.32)∑
g∈G

pg,t = Det, t ∈ T , (5.33)

∑
g∈G

pg,t ≥ Det +Rt, t ∈ T , (5.34)
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∑
g∈G

rg,t ≥ Rt, t ∈ T , (5.35)

pg,t = p′g,t + P gug,t, g ∈ G, t ∈ T , (5.36)

pg,t = p′g,t + P gug,t, g ∈ G, t ∈ T , (5.37)

pg,t = p′g,t + rg,t, g ∈ G, t ∈ T , (5.38)

pg,t = pg,t + rg,t, g ∈ G, t ∈ T , (5.39)

pg,t ≤ pg,t, g ∈ G, t ∈ T , (5.40)

p′g,t ≤ p′g,t, g ∈ G, t ∈ T , (5.41)

ug,t, vg,t, wg,t, δ
s
g ∈ {0, 1}, g ∈ G, t ∈ T , (5.42)

pg,t, p
′
g,t, p̄

′
g,t, c

p
g,t, c

SU
g,t , rg,t ≥ 0, g ∈ G, t ∈ T . (5.43)

5.1.3 Model overview

The objective function 5.5 seeks to minimize the total cost, which is composed of the

energy production cost cp
g,t, the fixed cost of operating at a minimum production level CR

g .

The variable startup cost cSU
g,t and the shutdown cost cSD

g,t for each generator g ∈ G during

a specific time period t ∈ T .

The correspondence of the constraints in the proposed model with those of the origi-

nal authors has been listed by the model’s constraints. In Chapter 2, there are explanations

of the physical meanings behind each constraint.

The minimum uptime and minimum downtime constraints as (5.6) and (5.7) from

Rajan and Takriti [75], enforced with (5.8) and (5.9). The logic of the generators’ start-up,

shut-down, and operation is modeled by (5.10) from Garver [34]. The generation limits

constraints are modeled as (5.11) and (5.12) from Gentile et al. [36], and (5.13) from Pan

and Guan [73]. The start and shut-down ramp limits are modeled as (5.14), (5.15), and

(5.16) from Morales-España et al. [64]. The ramp-up and ramp-down limits constraints

are modeled as (5.17) and (5.18) from Damci-Kurt et al. [18].

The staircase production cost constraints are modeled as (5.19), (5.20), and (5.21)

from Garver [34], (5.22) from Wu [88], and (5.23), (5.24), (5.25), (5.26), and (5.27) from
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Knueven et al. [53]. Note that (5.23), (5.24), (5.25), (5.26), and (5.27) are not indispensable

in the formulation, but they serve to tighten the variables’ staircase production.

The shut-down cost constraints are modeled as (5.32) from Knueven et al. [54].

Constraints (5.28), (5.29), (5.30), and (5.31) from Morales-España et al. [64] equalize

the cost of the segment of the variable of start-up function cost c
Sg

g,t of the generator g,

where CS
g,s is the start-up cost in the category s of generator g in $/MWh.

The demand meets, and reserve requirement constraints are modeled as (5.33) and

(5.34) from Ostrowski et al. [72], and (5.35) from Morales-España et al. [64]. Constraints

(5.36) from Morales-España et al. [64], (5.37), (5.38), (5.39), (5.40), and (5.41) from

Knueven et al. [54] establish linear relationships between the power variables pg,t, p
′
g,t, p

′
g,t, pg,t.

These constraints are utilized in the best UCP formulations [54], which helps to constrain

the problem’s convex hull. The relationship between the variables related to generator

power is depicted in Figure 5.1; the rectangle represents the full operating range of the

generator, including the observed minimum and maximum limits and the ranges for energy

and reserves.

Figure 5.1: The relationship among the power variables in the formulation of thermal

UCP.

Lastly, constraints (5.42) and (5.43) define the nature of the variables.

Initial conditions: constraints (5.10),(5.17),(5.18) change when the time is t = 0. The

parameters used in this case to substitute the parameter with t − 1 index are the initial
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conditions of the generators such as ug,0, pg,0, p
′
g,0, Ug,0, Dg,0. Also, constraints (5.31) assure

the start-up variable δg,t to be zero during the initial periods considering its minimum shut-

down time if the generator has been offline [64].

5.2 Validation of the accuracy of the proposed model

The proposed thermal T&C UCP model was validated by comparing it with the benchmark

formulation developed by Morales-España et al. [64], using the small instances described

in their work. Both models contained standard thermal UCP constraints, such as power

limits, minimum uptime/downtime, ramp capabilities of generators, variable start-up costs,

and demand and reserve requirements. However, our formulation is structured differently

and incorporates four valid inequalities and staircase production cost. To ensure a fair

comparison, the cost of all staircase steps in our model was set to a single value, consistent

with the formulation and data used by Morales-España et al. [64]. Consequently, the eleven

steps of the generation cost staircase function in the proposed model had the same value

as the costs for these three instances. The consistent results among the eight generators

tested in a small benchmark instance have confirmed the model’s effectiveness. These

results were observed for horizons 1, 3, and 5 days and are detailed in Table 5.1.

Table 5.1: Generators parameters from Morales-España et al. [64]

Technical Information Cost coeficients

g
P g P g UTg/DTg RUg/RDg Ug/Dg pg,0 TCg CR

g Cl=1
g

†
CS

g,s=1
‡

CS
g,s=2

‡

[MW] [MW] [h] [MW/h] [h] [MW] [h] [$/h] [MW/h] [$] [$]

1 455 150 8 225 0 455 14 1000 16.19 4500 9000

2 455 150 8 225 0 245 14 970 17.26 5000 10000

3 130 20 5 50 0 0 10 700 16.60 550 1100

4 130 20 5 50 0 0 10 680 16.50 560 1120

5 162 25 6 60 0 0 11 450 19.70 900 1800

6 80 20 3 60 0 0 8 370 22.26 170 340

7 85 25 3 60 0 0 6 480 27.74 260 520

8 55 10 1 135 0 0 2 660 25.92 30 60

† The subindex s=1 corresponds to a hot startup, while the subindex s=2 corresponds to a cold startup.

‡ The energy cost is represented as a linear value with a single numerical value.

The subindex l=1 specifically pertains to a step within a staircase function.
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5.3 Results and discussion

The objective function results obtained by our UCP model match those reported by

Morales-España et al. [64] in the three instances. The reported objective value and the

one obtained by us are shown below.

• Instance of one day, zuc 57 = $573,630.60

• Instance of three days, zuc 58 = $1,710,633.60

• Instance of five days, zuc 59 = $2,8477,708.40

Table 5.2 provides the committed power generation data in megawatts (MW) to visualize

the one-day power generation schedule. The table includes information for eight generators

and their respective power output throughout the day.

The results can be repeated using the files uc 57.json, uc 58.json, uc 59.json, located

in repository: https://github.com/urieliram/tc_uc/tree/main/instances.

In addition, the Pyomo code for implementing the optimization model can be found

in the repository: https://github.com/urieliram/tc_uc/blob/main/uc_Co.py. Please

ensure that you have Pyomo version 6.6.1 and the required libraries installed to execute

the code successfully.

5.4 Conclusions

This chapter introduced a thermal UCP model with robust features, encompassing the

standard thermal model constraints. Through validation tests, the model exhibited out-

comes that aligned with the results of a reference author’s research on small instances.

This demonstrates the model’s preparedness for the subsequent phase of research, where it

will be applied to solve the UCP problem using hybrid MILP or matheuristic algorithms,

solving instances considered hard.

https://github.com/urieliram/tc_uc/tree/main/instances
https://github.com/urieliram/tc_uc/blob/main/uc_Co.py
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Table 5.2: Optimal generation scheme for the eight-generator and a time span of one day.

Extracted from Morales-España et al. [64], data in MW.
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In future work, opportunities have been identified to expand this model by incorpo-

rating additional constraints such as prohibited zones, sale and purchase offers of reserves

with different ramp rates [57], hydraulic generators with non-linear characteristics [79],

and variants based on power rather than energy, modeling of combined cycle plants [67],

Power-based models rather than energy-based models [71]. Among other variants.

Another potential line of research could involve exploring the modeling of the dis-

cretized thermal UCP using constraint programming. As far as we know, no prior studies

have investigated constraint programming in this context. This approach can effectively

capture operational requirements and limitations, addressing essential constraints such as

generator limits, minimum up/down times, ramping constraints, spinning reserves, and

demand-supply balancing. A performance comparison can also be conducted with the

T&C model presented by [24].



Chapter 6

Matheuristic approach to solve

the thermal UCP

Obtaining an optimal schedule solution is a daily challenge faced by electricity market

operators; the challenge is even more complicated when time is critical. Less than two

hours is typically the expected time to resolve it [79]. Unfortunately, the reality is that

wholesale electricity markets operate with near-optimal solutions.

Johnson et al. [48] show that slight variations between near-optimal solutions sig-

nificantly impact participants’ profitability, even though they have a negligible effect on

the total cost. Near-optimal UCP solutions with very similar total costs can significantly

differ from the marginal costs used to calculate energy and reserve prices in the market.

These prices are used to calculate the payment to the generators.

Even with significant computational advances that have made it possible to solve

MILP problems with off-the-shelf solvers 1 and reduce the optimality gap in UCP solutions

to negligible levels, price volatility problems persist.

The results of a study by Sioshansi et al. [83] show that the size of generators’ pay-

ment deviations is not necessarily proportional to the size of the optimality gap. Therefore,

the authors conclude that even smaller relative optimality gaps do not necessarily mitigate

1These solvers employ a combination of methods, encompassing preprocessing techniques, cutting plane

algorithms, B&B algorithms and their variations, heuristics, solution refinements, and algorithm selection

to enhance the optimization process.

41
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economic mismatch and assure that the problem will persist until UCP can be solved in a

fully optimal, on time.

In practice, the Independent System Operators (ISO) markets pay “compensation”

to generators to recover unpaid start-up and no-load costs due to under-marginal energy

prices, which has partially helped to reduce the effects of volatility and surplus differences.

For example, a recent study by Eldridge et al. [27] proposed several pricing methods

executed after the UCP to aim fair economic retribution to generators. However, although

these remedial solutions are available, the problem of price instability will remain until

we solve the UCP problem with a zero optimality gap [83]. Despite this, implementing a

strategy to decrease the optimality gap could be beneficial.

Strategies to reduce the optimality gap include tightening the UCP problems to

models closer to the convex hull commonly by adding valid inequalities. However, Morales-

España et al. [64] and Knueven et al. [54] conclude that too many valid inequalities in a

model can increase solution time. These authors tackle the trade-off between strength-

ening models with high computational costs versus increasing computational speed using

compact formulations with fewer constraints and variables.

Another strategy is the design of methods that reduce solution times and improve

accuracy. In line with this strategy, in this dissertation, we propose several hybrid heuristic

methods based on MILP, known as matheuristics [58].

The proposed solution strategy consists of a phase of construction and improvement

phase.

• In the constructive phase, a feasible solution is initially obtained using one of two

methods. The first method, proposed by Harjunkoski et al. [41], has been referred

to as HGPS in this dissertation, which uses the variable-fixing rule. The second

method has been developed by ours and is referred to as HARDUC (hard-fixing unit

commitment). Both methods are of type R&F.

• The improvement phase aims at finding better solutions from the initial solution.

We have designed four adaptations of the local branching (LB) method proposed by

Fischetti and Lodi [32] and one particularization of the kernel search (KS) based on
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Angelelli et al. [5]. In total, five improvement models are developed.

The methods proposed are tested with three groups of instances constructed from

the instances proposed by Kazarlis et al. [52]. The results were evaluated in comparison

to those obtained by the CPLEX solver. A time limit was set for all methods. The

results reveal that the off-the-shelf solver achieved faster optimization for small instances.

However, as the instance sizes increased to medium and large, the proposed methods

consistently outperformed the solver, producing superior results within the given time

frame. Notably, the proposed methods always found a solution, while the solver failed to

solve many instances within the given time frame in the medium and large categories.

6.1 Matheuristics methods

6.1.1 Construction phase

In this phase, we propose a construction method called HARDUC (hard-fixing unit com-

mitment) and compare it with the best UCP construction method known so far, presented

by Harjunkoski et al. [41].

Both methods are of the type R&F. The solution strategy of the R&F methods is to

reduce the size of the MILP to a smaller, easier-to-solve one called sub-MILP, fixing those

variables likely to keep their values in the optimal solution and letting the solver decide

among the others. Finally, the sub-MILP is introduced into the solver, expecting that the

solver returns a high-quality solution.

The first constructive method, proposed by Harjunkoski et al. [41], will be referred to

as HGPS (authors’ initials) in this dissertation, which begins by solving a linear relaxation

of the UCP, obtaining a solution x̃. In this method, the variables ug,t to be fixed to one in

the sub-MILP are those that satisfy the condition ũg,t · p̃g,t ≥ P ; we will call this condition:

Harjunkoski’s rule. Let ũg,t and p̃g,t are the values taken by the variables in the linear

relaxation solution. Once the variables are fixed, the sub-MILP is solved, deciding over

the rest of the non-fixed variables.
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rule for fixing

𝑢𝑔𝑡 = 1: ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 ≥ 𝑃𝑔

𝑢𝑔𝑡 rule for fixing

𝑢𝑔𝑡: ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 ≥ 𝑃𝑔

𝑢𝑔𝑡

𝑢𝑔𝑡 = 0: ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 = 0

HGPS
Harjunkoski et al. 2021 method

HARDUC
Constructive method proposed

variables not fixing

variables not fixing

𝑢𝑔𝑡: ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 < 𝑃𝑔
∩ ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 ≠ 0

RCL

Figure 6.1: Rules for fixing construction methods; shaded area represents the subset of

variables to be fixed in the sub-MILP.

HARDUC is the constructive method we propose. The method starts solving a

linear relaxation of the UCP. Then, to form the sub-MILP, the variables ug,t that satisfy

the criterion ũg,t · p̃g,t = 0 are fixed to zero, and the decision over the other variables is left

to the solver.

In Figure 6.1, the frames illustrate the space of variables ug,t. On the left, we see

the HGPS method, where the shaded region indicates variables set to one, and the light

region shows variables yet to be determined by the sub-MILP solver. On the right, we

have the HARDUC method, where the light region comprises non-zero variables according

to Harjunkoski’s rule but with a value greater than P .

Finally, the variables that meet the criteria ug,t : {ũg,t · p̃g,t < P} ∩ {ũg,t · p̃g,t 6= 0}

will be used for the construction of a restricted candidate list (RCL). We assume these

variables are more likely to be in the optimal solution than those with zero values. This

RCL is essential for other improving methods described in this chapter.
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6.1.2 Improving phase

After obtaining a feasible solution, the search for an improved solution commences, utilizing

a set of five matheuristics. These include four versions based on LB and an additional

version based on KS. Each matheuristic is fully assessed.

6.1.3 Local branching

This matheuristic was proposed by Fischetti and Lodi [32] and implemented the concept

of local search in a MILP problem using a branching strategy. Those feasible solutions

within a distance radius of the parameter k define the neighborhood N(x, k). The distance

from solution x to other solutions is calculated using the hamming distance ∆(x, x), which

counts the number of changes from 0 to 1 and from 1 to 0 between the variables that

conform the binary support (BS) of the solution x to other variables outside of binary

support (BS). The binary support of a solution x consists of all binary variables that take

the value of one in the solution. Exploration in a neighborhood is performed by the solver

adding a non-valid inequality called local branching constraint (LBC) to problem P .

Unlike Fischetti and Lodi [32], which considers all binary variables of a problem to

form a BS, in this dissertation, the BS of a solution x̄ of UCP is defined as the subset of

the commitment variables BS=ug,t : ug,t = 1. Therefore, the LBC limits the number of

moves between the BS and BS to a number k as defined by the equation:

∆(x, x̄) =
∑
j∈BS

(1− xj) +
∑
j∈BS

xj ≤ k (6.1)

That is, in our problem, the binary variables vg,t, wg,t, and δg,t contained in the

UCP are not part of the BS; therefore, they are not used in the local search definition we

present. The decision to use only the binary commitment variables ug,t is because we have

observed that these variables ug,t are found in most of the model constraints, and a change

in the value of these variables can activate or deactivate all the operating constraints

related to a generator. Using a dominant variable in the local search has advantages, such

as a reduction in the solver search time due to reducing the number of variables in the

local search. It also compacts the mathematical model by removing constraints related to
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a generator. This idea of using a single dominant binary variable was initially reported

by Darwiche et al. [21] and is used in his particular version of LB to solve a graph edit

distance problem.

Figure 6.2 depicts the basic LB search tree. We start at node 1 with an initial solution

x̄1. Assuming that the first solution is feasible, we build a left branch to node 2, adding the

∆(x, x̄1) ≥ k to the original problem P . Thus, the new problem P2 ← P∪ {∆(x, x̄1) ≥ k}

is solved. Assuming that we have found the optimum of problem P2, we can say that we

have already explored the whole neighborhood defined by the ∆(x, x̄1) ≤ k finding as best

solution x̄2. Now, leaving the current neighborhood and exploring other neighborhoods is

necessary. To escape from a neighborhood, add to the problem P a constraint ∆(x, x̄1) ≥

k+1 in the right branch of node 1. Note that this constraint complements the neighborhood

already explored in node 2. This constraint will be kept in the subsequent problems and

inherited by all child nodes of node 3; thus, the neighborhood defined by ∆(x, x̄1) ≤ k will

be excluded from future searches. Now, we create node 4 and its left branch that explores

a new neighborhood; the new problem is P3 ← P ∪ {∆(x, x̄1) ≥ k + 1} ∪ {∆(x, x̄2) ≤ k}

finding the solution x̄3 as the best in the neighborhood. Now, we will create a new right

branch from node 3 with the complement constraint ∆(x, x̄2) ≥ k + 1. Note that node 3

inherits the inequalities ∆(x, x̄1) ≥ k+ 1 and ∆(x, x̄2) ≥ k+ 1 from the right-hand side to

child node 5. In this way, the method ensures avoiding visiting neighborhoods that have

already been exhaustively explored. The process continues at node 5 by creating the left

branch with the definition of the new neighborhood ∆(x, x̄3) ≤ k and solving the problem

P4 ← P ∪ {∆(x, x̄1) ≥ k + 1} ∪ {∆(x, x̄2) ≥ k + 1} ∪ {∆(x, x̄3) ≤ k }. The procedure is

repeated until no better solution than the current one is found or, if necessary, until time

runs out.

When the neighborhood exploration time limit is exceeded or when the problem is

infeasible, LB uses diversification mechanisms that enhance or reduce the neighborhood’s

size by modifying k. Figure 6.2 shows that node 6 has reached its time limit, and no

better solution has been found than the current one. As a result, the search continues by

generating a new node 7 and reducing the neighborhood to dk/2e. Another diversification

strategy proposed by Fischetti and Lodi [32] is the addition of tabu constraints ∆(x, x̄2) ≥ 1

to the problem that forces the solver to avoid the current solution where it is stuck.



Chapter 6. Matheuristic approach to solve the thermal UCP 47

T

2

4 5

6 7

T

T

T

• Soft-fixing  
• Local branching  
• RCL

Improved 
solution ഥ𝒙𝟐

Improved 
solution ഥ𝒙𝟑

No improved solution

1 Initial solution ഥ𝒙𝟏

∆(𝒙, ഥ𝒙𝟏) ≤ 𝒌

∆(𝒙, ഥ𝒙𝟐) ≤ 𝒌

∆(𝒙, ഥ𝒙𝟑) ≤ 𝒌

∆(𝒙, 𝒙𝟐) ≥ 𝒌 + 𝟏

∆(𝒙, 𝒙𝟏) ≥ 𝒌 + 𝟏

8
∆ 𝒙, ഥ𝒙𝟑 ≤

𝒌

𝟐

T
Improved 

solution ഥ𝒙𝟒

∆ 𝒙, ഥ𝒙𝟒 ≥
𝒌

𝟐
+ 𝟏

3

Our implementation

Figure 6.2: Representation of branching in the LB method, based on Fischetti and Lodi

[32].

In the case that a maximum solution time is imposed on each node and the time runs

out, two cases may arise: a) the first is that the solver finds a feasible solution better

than the incumbent; this case does not ensure that the solution found is the best in the

neighborhood, and we must continue the exploration with a new incumbent solution; b)

if time runs out and no solution better than the incumbent is found, it is necessary to

apply a diversification strategy such as those mentioned above of enhancing, reducing, or

applying a tabu constraint that forces the solver to leave that solution.

Finally, the constraints representing the movements in LB are enlisted as follows.

left-branch : ∆(x, x̄) ≤ k (6.2)

right-branch : ∆(x, x̄) ≥ k + 1 (6.3)

tabu : ∆(x, x̄) ≥ 1 (6.4)

soft-fixing :
∑
j∈BS

x̄jxj ≥ 0.9
∑
j∈BS

x̄j (6.5)

6.1.3.1 Implementation of Local Branching for the UCP
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Algorithm 1 Function Locbra

Input: k, t total, t node, iter max, x̄, P=a formulation of the instance to solve
Output: A feasible solution x∗ of value z∗

rhs←∞; bestUB←∞; cutoff←∞; tl←∞
first← True; diversify← False
leftbranch← {φ}; rightbranch← {φ}; tabu← {φ}; softfixing← {φ}
iter ← 0
while (elapsed time < t total) or (iter < iter max) do

if (rhs <∞) then
leftbranch← {∆(x, x̄) ≤ rhs}
softfixing← {

∑
j∈SB

x̄jxj ≥ 0.9
∑

j∈SB

x̄j}

end if
tl← min(tl, t total− elapsed time)
P2← P ∪ leftbranch ∪ rightbranch ∪ tabu ∪ softfixing
{stat, x̃, z̃} ← solve(P2, tl, cutoff,first, x̄)
tl← t node
if (stat = Optimal) then

if (rhs = +∞) then
return (x∗)

end if
if (z̃ < bestUB) then

bestUB← z̃;x∗ ← x̃
end if
rightbranch← rightbranch ∪ {∆(x, x̄) ≥ rhs + 1}
diversify← False; first← False; x̄← x̃ ; cutoff← z̃; rhs← k

end if
if (stat = Infeasible) then

if (rhs ≥ +∞) then
return (Infeasible problem)

end if
rightbranch← rightbranch ∪ {∆(x, x̄) ≥ rhs + 1}
if (diversify=True) then

cutoff←∞; tl←∞ ; first← True; iter ← iter + 1
end if
rhs← rhs + dk/2e; diversify← True

end if
if (stat = Timeout with a feasible solution) then

if (rhs <∞ and first = False) then
tabu← {∆(x, x̄) ≥ 1}

end if
if (z̃ < bestUB) then

bestUB← z̃ ; x∗ ← x̃
end if
first← False; diversify← False; x̄← x̃ ; cutoff← z̃; rhs← k

end if
if (stat = No solution found) then

if (diversify=True) then
tabu← {∆(x, x̄) ≥ 1}
cutoff←∞; tl←∞; rhs← rhs + dk/2e ; first← True; iter ← iter + 1

else
rhs← rhs− dk/2e

end if
diversify← True

end if
end while
return x∗
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In this section, we define the implemented branching algorithm based on the original

version of Fischetti and Lodi [32]. The pseudocode can be found in Algorithm 1 called

Locbra.

The inputs of the algorithm Locbra are the MILP (P ), the neighborhood size (k),

total time (t total), the maximum time per node (t node), the maximum number of iter-

ations (iter max), and an initial solution (x̄). The outputs are x∗ and z∗, the incumbent

solution and its cost.

The function solve(P ,tl,cutoff,first,x̄) calls the solver, receiving as parameters: P

represents a problem; tl is the maximum solution time; cutoff is the upper bound value;

first is a boolean flag to tell the solver to stop the search as soon as the first solution is

found; x̄ is an initial solution;

The arrays leftbranch and rightbranch contain the indices (g,t) of the variables ug,t

that constitute the inequalities (6.3) or (6.2) added as constraints to problem P . Also, we

use tabu constraints (6.4) in the method as a diversification strategy; these constraints are

incorporated into problem P to prevent revisiting a previously explored solution x̄ during

the search process.

Soft-fixing is a narrowing strategy also reported by Fischetti and Lodi [32] that

fixes a considerable number of variables in a solution x̄ without losing the possibility of

finding other good feasible solutions. The method adds the soft-fixing constraint (6.5)

that enforces keeping at least 90% of the variables in 1 from the first solution x̄ and gives

flexibility to the solver to decide which variables to keep. In this dissertation, we combined

this soft-fixing strategy with the left-branch constraint (6.2) to modify only 10% of the

variables into BS. Furthermore, we have relaxed the integrality constraint of the variables

ug,t but keeping their bounds into the range of [0,1].

Locbra is an iterative algorithm that calls solve() several times to find the solution

to a problem P ; depending on the result of solve(), its parameters are modified for the

next iteration. In the first iteration, the method checks if the initial solution x̄ provided

by the constructive method is the global optimum of the problem; the solver stops as soon

as it finds the first solution (first ← True). If the solution of x̃ is stat = Optimal, we

have found the optimal global; therefore, the method terminates; otherwise, the iterative
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process continues modifying the MILP and the solver parameters according to one of the

four solution states: Optimal, Infeasible, Timeout with a feasible solution, and No solution

found.

Optimal: in this case, we have explored the whole neighborhood and found the

best solution, so we have likely fallen into a local optimum. Now we need a diversification

strategy to escape from this local optimum. It is also in our best interest that, in subsequent

iterations, we not explore this neighborhood again. The strategy consists of adding a right-

branch constraint (6.3), which complements the neighborhood that has been explored.

Finally, we update the current and incumbent solutions x̄ ← x∗, x̄ ← x̃; as well as cutoff

to the objective value z̄, the flags diversify← False and first← False, and the neighborhood

size return to the original size, rhs← k.

Infeasible: The cause of the infeasibility of the problem may be due to one or more

constraints conflicting in problem P2, or a solution below the upper limit (cutoff) could

not be found. From the second iteration inwards, infeasibility is handled by constructing a

tabu constraint (6.4) added to problem P ; the tabu constraint enforces that the solution x̄

is omitted in the following search. To avoid cutting off the optimal solution in subsequent

searches, replacing the last tabu constraint with the new one if it already exists is impor-

tant. Otherwise, the inequality may be inherited by child nodes. If the diversify flag is

True, then we will apply a diversification strategy, which consists of increasing the size of

the neighborhood to rhs← rhs+ dk/2e. In addition, we will update the cutoff to infinity

and change the flag first← True, which will stop the search process as soon as the solver

finds the first feasible solution.

Timeout with a feasible solution: In this case, a solution has been found; how-

ever, we are not sure that the solution is the best in the neighborhood because the neighbor-

hood has yet to be fully explored; therefore, we must continue to explore the neighborhood.

The strategy to continue the search consists of adding to problem P a left branch (6.2)

with the new, improved solution x̄. If the flag first equals False, we add a tabu constraint

(6.4) as a diversification strategy; this strategy will help find a solution different from the

current one and possibly worse than the previous one. If the found solution z̃ is better

than the incumbent solution bestUB, we update the parameters of bestUB← z̃; and store

the incumbent solution x∗ ← x̃. Also, reset the neighborhood size value to the original
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parameter rhs ← k and set the flags of first ← False and diversify ← False. Finally, we

update the current solution to x̄← x̃, and we update the cutoff← z̃.

No solution found: the time is over, and at least one solution was not found;

however, the infeasibility of the problem cannot be proven. Therefore, two diversification

strategies are employed depending on the diversify flag: the first strategy consists of in-

creasing the neighborhood to rhs ← rhs + dk/2e and including a left branch (6.2) plus

a tabu constraint to problem P and continuing the search from the last solution x̄. The

second strategy involves reducing the neighborhood to rhs ← rhs − dk/2e and including

a left branch (6.2) to problem P and continuing the search from the last solution x̄. If the

diversify flag is True then ∞ ← cutoff, and set the flags of first ← True and diversify ←

True.

The algorithm terminates when either the time limit stopping criterion or the user-

defined maximum number of iterations has been reached.

This chapter outlines four versions of the LB that differ from the original proposed

by Fischetti and Lodi [32]. The main differences are described as follows.

• LB1: First, this version narrows the local search between the BS and an RCL, which

is defined from the elements satisfying the condition ug,t : {ũg,t·pg,t < P}∩{ũg,t·p̃g,t 6=

0}; note that the RCL contains the variables that are not zero but are below the

minimum power value of the generator P g, these variables are discarded by Har-

junkoski et al. [41] in his fixing criterion, but we have included them to construct

our RCL. Second, the soft-fixing method further narrows the search, forcing at least

90% of the original BS variables to remain in the solution by applying the constraint∑
j∈BS

x̄jxj ≥ 0.9
∑

j∈BS

x̄j proposed by Fischetti and Lodi [32]. In addition, soft-fixing

relaxes the integrality constraint on the BS variables but keeps the variables’ bounds

at [0,1]. Finally, we take advantage of the fact that the binary variables vg,t and

wg,t in constraints (5.10) force ug,t to take binary values, even if ug,t is defined as

continuous. The possibility of relaxing the integrality constraint of ug,t and obtain-

ing the same solution without being forcibly binary was visualized and reported by

Morales-España et al. [64] and Morales-España et al. [66] in their works about the

models T&C thermal UCP.
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• LB2: This version is similar to LB1 except that it does not have soft-fixing; therefore,

constraints (6.5) are not applied.

• LB3: This version is the closest to the original one proposed by Fischetti and Lodi

[32]. This version does not do a local search with any RCL and is not narrowed down

by soft-fixing. The local search is defined only between the BS and the variables that

do not form the binary support BS.

• LB4: This version is similar to LB1 except that the RCL is formed by the variables

with negative values in the reduced costs. The reduced costs are calculated by fixing

to 1 the variables that form the BS of the initial solution x̄ and solving the linear

relaxation of the problem.

A key feature of our versions of LB is that they use only the dominant variable ug,t to

define the BS, unlike the generic LB of Fischetti and Lodi [32], where all binary variables

participate in the local search. The adaptations to the original LB method are anticipated

to expedite the search process, aiming to achieve a solution of increased accuracy.

6.1.4 Kernel kearch

The matheuristic method KS was initially developed by Angelelli et al. [5] to solve a

multidimensional knapsack problem with outstanding results. We envision KS as a highly

competitive method for solving the UCP, so it was chosen as another matheuristics besides

the four LB versions.

The KS is divided into two phases, initialization, and expansion. During the initial-

ization phase, the binary variables in problem P that are likely to take a value of one in the

optimal solution are determined. This subset of variables is called the kernel (equivalent

to the binary support in LB). The selection of the variables that form the kernel is usually

those that take the value one in the linear relaxation.

Then, the remaining variables not part of the kernel are sorted according to some

economic criterion (often the reduced costs of linear relaxation) and divided into small

groups called buckets.



Chapter 6. Matheuristic approach to solve the thermal UCP 53

The expansion phase consists of solving the multiple sub-MILPs formed by each

bucket concatenated one by one with the kernel, one at a time. This phase is called

expansion because, in each iteration, bucket variables that take the value of one are picked

and added to the kernel. The constraint
∑

j∈Bi
xj ≥ 1 must be added to the sub-MILP

to enforce that at least one variable of the bucket takes the value one; because of this

constraint, the kernel tends to increase in size with each iteration. For each iteration,

the remaining bucket variables not part of the sub-MILP must be fixed to zero. The

conventional KS terminates when each bucket has been resolved with the kernel or the

allowed time is over [5].

6.1.4.1 Implementation of the KS method for the UCP

In this chapter, we present a version of the KS that can be seen in Algorithm 2 called

kernelsearch.

The inputs of algorithm kernelsearch are total time (t total), a feasible solution (x̄)

of an instance of UCP to solve (P ). The outputs are x∗ and z∗, respectively, the incumbent

solution and its cost. The function kernelsearch starts the initialization phase by building

the kernel from variables with ug,t = 1 in the feasible solution x̄; this feasible solution is

obtained from the constructive method HARDUC. It is noted that only the dominant

variable ug,t is used for building both the kernel and the buckets. Note that our version

of KS does not require kernel building. It is only used as an improvement method, as a

constructive method determines the kernel.

The construction of the buckets begins by fixing to 1 the variables constituting the

kernel ug,t ∈ K and solving a linear relaxation of the problem P fix(K ). Then the set U

is constructed with the variables ug,t that are not inside the kernel K. The number of

buckets is calculated using Sturges’s rule [81]: nbucks = 1 + 3.322 ln(|U |).

Then, the ug,t ∈ U variables are sorted in descending order (since this is a mini-

mization problem) according to the value of their reduced costs obtained from the linear

relaxation problem P fix(K ). The newly ordered set is denoted as Udesc.

The set of buckets of size nbucks, into which the variables of set Udesc is divided, is
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Algorithm 2 Function kernelsearch

Input: x̄=a feasible solution of P , P=a formulation of the instance to solve, t total
Output: A feasible solution x∗ of value z∗

while (elapsed time < t total) do
{Inicialization phase}

cutoff← z∗

K ← kernel formed from the variables that fulfill ug,t : ug,t = 1 ∈ x̄
PK ← fixing(1,K,P ) fixing to 1 all the variables into kernel
{x̂, ẑ} ← solveLR(P fix(K ))
U ← select the variables that fulfill ug,t /∈ K
nbucks← 1 + 3.322 ln(|U|)
Udesc ← sort U in descending order using its reduced cost values
{Bi}nbucksi=1 ← buildbuckets(Udesc,nbucks)
tl← (t total− elapsed time)/n

{Expansion phase}
for i = 1,nbucks do

PK∪Bi ← fixing(0,Bi,P ) fixing to 0 all the variables of the other buckets
PK∪Bi ← PK∪Bi ∪ {

∑
j∈Bi

xj ≥ 1} A variable from the bucket is forced into entering
the kernel.
{stat, x̃, z̃} ← solve(PK∪Bi , cutoff, tl)
if stat=feasible then

if (z̃ < z∗) then
cutoff← z∗ ← z̃; x∗ ← x̃

end if
K ← update the kernel from the buckets variables that fulfill ug,t : ug,t = 1 ∈ x̄

end if
end for

end while
return x∗

Algorithm 3 Function buildbuckets

Input: Udesc=list of ug,t outside the kernel, in descending order, nbucks=number of buckets
Output: A set of buckets {Bi}nbucksi=1

{Bi} ← {φ}
start← 0; end← 0
n← |Udesc|
k ← bn/nbucksc
remainder← n%nbucks
for i = 1,nbucks do

end← start + k
if remainder > 0 then

end← end + 1
remainder← remainder− 1

end if
Bi ← Bi ∪ {Udesc[start : end]}
start← end

end for
return {Bi}nbucksi=1
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denoted as Bi, where i is an index ranging from 1 to nbucks.

Function buildbuckets(Udesc,nbucks), which is located at Algorithm 3, is utilized

to partition the set of variables ug,t ∈ Udesc into approximately equal-sized subsets known

as buckets Bi. First, the size of each bucket is calculated by dividing the total number of

variables in Udesc by the desired number of buckets. Also, the remaining variables that

cannot be equally distributed are identified. Next, an empty list is initialized to hold the

buckets Bi, while two variables, start and end, are created to monitor each bucket’s range

of variables. Then, the function iterates over the number of buckets, sets the range of

objects for each subset, and assigns any remainder variables to the first bucket. Next, the

range of variables for each bucket is appended to the list Bi ← Bi ∪ {Udesc[start : end]}.

Lastly, returns all the buckets {Bi}nbucksi=1 as the output.

During the expansion phase of the KS, problem PK∪Bi is solved by concatenating the

kernel firstly with the buckets that contain variables having the most negatively reduced

costs. Next, the other buckets’ variables ug,t are fixed to zero in the problem, and the

constraint
∑

j∈Bi
xj ≥ 1 is added to ensure that at least one variable in the bucket Bi has

a value of one. The function solve(P , cutoff, tl) is used to send the problem PK∪Bi to

the solver, with P representing the problem, cutoff representing the upper bound value,

and tl representing the maximum solution time. At each iteration, the kernel is updated,

adding the buckets variables that result in a value of one in the solution.

After solving all the buckets Bi with the kernel, if the maximum time has not elapsed,

the incumbent solution x∗ is set as the new initial solution x̄, and the process is restarted

until the time is exhausted.

6.1.5 Summary of proposed matheuristics

To conclude the described methods utilized, Table 6.1 summarizes the characteristics and

distinctions among the matheuristics suggested in this dissertation.
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Table 6.1: Summary of differences in improvement methods.

LB1

LBC built using dominant variable ug,t.

RCL from Harjukovski’s rule [41].

Soft-fixing to 90% of binary support.

LB2
LBC built using dominant variable ug,t.

RCL from Harjukovski’s rule [41].

LB3 LBC built using dominant variable ug,t.

LB4

LBC built using dominant variable ug,t.

RCL from reduced costs.

Soft-fixing to 90% of binary support.

KS

The first solution is given by the HARDUC constructive method.

Kernel and buckets are built only with dominant variables ug,t.

The number of buckets is calculated by Sturge’s rule [81].

The buckets are built using the reduced costs from linear relaxation (fixing kernel).

6.2 Experimental work

Three tests were designed to assess the proposed matheuristics. This assessment includes

a comparison with the CPLEX solver. These tests are defined as follows:

• Test 1: Assessment of the constructive methods.

• Test 2: Assessment of improvement methods under a running time limit of 4000

seconds.

• Test 3: Assessment of improvement methods under a running time limit of 7200

seconds.

Test 2, which has a time limit of 4000 seconds, approximately one hour, allows the

LB methods to perform at least two iterations during their local search, thereby providing

a more comprehensive evaluation.

The repository https://github.com/urieliram/tc_uc contains the source code for

the methods that have been implemented. All methods are coded in Python version 3.10.0

https://github.com/urieliram/tc_uc
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and Pyomo version 6.6.1. [42, 15]. Plots of results with Mathplotlib [45]. The hardware

employed in this test was a 64-bit with 64GB of RAM with a 2.50 GHz Intel(R) i7(R)

11700 CPU, 65W, on a Linux Ubuntu version 20.0 operating system.

6.2.1 Description of test instances

The number of instances to be solved is 83, with 20 obtained from Morales-España et al.

[64]; the remaining 63 were constructed from the parameters of the eight generators re-

ported in Table 5.1. Morales-España et al. [64] used the parameters of these eight gener-

ators to construct their instances.

The 63 new instances were constructed by gradually increasing the number of gen-

erators and combining them randomly. By increasing the number of generators, we also

increased the complexity of the problem. This will allow us to assess the performance of

the proposed methods and the off-the-shelf solver on instances of different sizes. The in-

stances are divided into small, medium, and large sizes (x7day small, x7day medium, and

x7day large) according to the number of generators. There are 20 small instances with 28

to 81 generators, 33 medium instances with 85 to 156 generators, and 30 large instances

with 165 to 405 generators.

Each point in Figure 6.3 corresponds to an instance that belongs to a group. The

color of each point indicates the group, and the number of generators for each instance is

displayed on the vertical axis. The planning horizon of the three groups of instances is 168

periods, equivalent to seven days. The demand profile is shown in Table 6.2. The demand

for each instance is obtained by multiplying the demand profile by the sum of the maximum

capacity of all generators. A reduction factor of 80% on a weekday is applied to calculate

the weekend demand. The spinning reserve requirement of 5% of the power demand has

to be met for each hour. The difficulty of these instances is well known, Kazarlis et al.

[52] were the first to propose instances with these distinct characteristics; even reaching

optimality gap values of less than 0.01% is challenging; for example, Morales-España et al.

[64] used this type of instance to test the first thermal T&C UCP formulation. They

established the optimality gap of 0.1% and 1.0% for the small and large instances. The
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Figure 6.3: Increasing the number of generators in the three groups of instances: x7day

small, x7day medium, and x7day large. Each point represents one instance.

Table 6.2: Load demand profile (% of total capacity).

hour 1 2 3 4 5 6 7 8 9 10 11 12

demand 71% 65% 62% 60% 58% 58% 60% 64% 73% 80% 82% 83%

hour 13 14 15 16 17 18 19 20 21 22 23 24

demand 82% 80% 79% 79% 83% 91% 90% 88% 85% 84% 79% 74%
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Table 6.3: Groups of instances.

Group Instances Generators Periods Files uc

x7day small 20 28-81 168 061-070, 101-110

x7day medium 33 85-156 168 071-073, 111-140

x7day large 30 165-405 168 074-080, 132-163

solution time they report ranges from 1 to 10 hours solving the instances on a personal

computer 2. According to Morales-España et al. [64], the high difficulty of these instances

results from combining eight generators to create large instances, leading to high symmetry.

Because these instances are considered more difficult to solve than others in the

literature, we used them to test our methods. The summary of the characteristics of the

three groups of instances we will use is shown in Table 6.3.

In Appendix A, the parameters of the 83 generators and the number of generators per

instance are listed. Also, the instance files in JSON format are available in the repository

https://github.com/urieliram/tc_uc/tree/main/instances as well as the instance

generator in https://github.com/urieliram/tc_uc/blob/main/Instances_gen.ipynb.

6.2.2 Test 1: Assessment of constructive methods

This test aims to compare the number of feasible solutions obtained by the constructive

methods HARDUC (the proposed method) and HGPS [41]. Additionally, for comparison

purposes, we apply the CPLEX solver by setting a time limit and reporting the best integer

feasible solution found within this time frame. We refer to this solution as CBS (CPLEX

best solution). The CBS is used to verify whether the results obtained by HARDUC and

HGPS are superior to those achieved solely by using the solver. All constructive methods

have a maximum solution time of 1200 seconds.

All tests compare the accuracy of the feasible solutions regarding the relative opti-

mality gap. The relative optimality gap is calculated for the three constructive methods

HARDUC, HGPS, and CBS using the largest lower bound (LB) obtained by the solution

2Quad-core Intel-i7 2.4-GHz personal computer with 4 GB of RAM, CPLEX 12.4 under GAMS

https://github.com/urieliram/tc_uc/tree/main/instances
https://github.com/urieliram/tc_uc/blob/main/Instances_gen.ipynb


Chapter 6. Matheuristic approach to solve the thermal UCP 60

Table 6.4: Parameters of the solver used as constructive CBS.

Parameter Value Description

emphasis mip 1 Emphasize feasibility over optimality

mip strategy file 3 Node file on disk and compressed

mip tolerances mipgap 1E-5 Relative tolerance between the best integer

and the best lower bound

of the CBS solver (if any) using the following equation [47]:

gap =
|LB − z best|

((1E-10) + |z best|)
(6.6)

The solver parameters in constructive CBS mode have been tuned according to the

values in Table 6.4.

The number of feasible solutions and percentages for each method and each group of

instances is shown in Figure 6.4. The figure shows that as the instance difficulty increases,

the number of solutions found by other methods decreases, while the proposed constructive

method consistently discovers an initial solution within the specified time constraints.

The average and standard deviation of the relative optimality gap with the results of

the feasible solutions obtained from the HARDUC, HGPS, and CBS constructive methods

are calculated; the summary is shown in Table 6.5.

HARDUC, HGPS, and CBS methods have been run for the 63 instances x7day small,

x7day medium, and x7day large. The results indicate that our proposed HARDUC con-

structive method found all 20 feasible solutions of the x7day small group, 33 feasible

solutions of the x7day medium group, and 30 feasible solutions of the x7day large group.

Equivalent to 100% of the solutions found in all groups of instances.

HGPS found 20 feasible solutions of 20 instances from the x7day small group, 32

feasible solutions of 33 from the x7day medium group, and 29 feasible solutions of 30 from

the x7day large group. Equivalent to finding 100.0%, 96.9%, and 96.6% of the solutions

in each group.

Finally, the solver used as a constructive method CBS has found 20 feasible solutions

from 20 instances of the group x7day small, 26 feasible solutions from 33 instances of the
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Figure 6.4: Rate of feasible solutions obtained by constructive methods under a running

time limit of 1200 seconds.

group x7day medium, and 18 feasible solutions from 30 instances of the group x7day large.

Equivalent to finding 100%, 78.7%, and 63.3% of the solutions in each group.

The distributions of the relative optimality gap results for each method are shown

in Figures 6.5, 6.6, and 6.7. Each series represents the results of a method; the relative

optimality gap is shown on the horizontal axis. The number of feasible instances found

from each group’s total instances is reported in parentheses. The figures illustrate that, as

the instance difficulty increases, the relative optimality gap of the first solution obtained

with the HARDUC method exhibits a distribution with significantly lower variance than

other methods. Moreover, it demonstrates superior accuracy, as evidenced by the average

relative optimality gap approaching zero. Statistical tests further support these findings.
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Table 6.5: Descriptive statistics of constructive methods results.

x7day small x7day medium x7day large

Method AROG ROGSD NFS AROG ROGSD NFS AROG ROGSD NFS

CBS 0.0075 0.0195 20 0.0005 0.0001 26 0.0071 0.0186 18

HGPS 0.0013 0.0003 20 0.0010 0.0002 32 0.0009 0.0004 29

HARDUC 0.0007 0.0002 20 0.0005 0.0001 33 0.0003 0.0000 30

AROG: average relative optimality gap

ROGSD: relative optimality gap standard deviation

NFS: number of feasible solutions
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Figure 6.5: Relative optimality gap distributions of constructive methods in the instances

group x7day small.
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Figure 6.6: Relative optimality gap distributions of constructive methods in the instances

group x7day medium.
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Figure 6.7: Relative optimality gap distributions of constructive methods in the instances

group x7day large.
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The following is an analysis of variance and mean difference analysis applied to the

results of the methods regarding the relative optimality gap.

On one hand, the analysis of variance checks whether the average relative optimality

gap of the results of all methods is statistically different from each other. On the other

hand, a series of mean difference tests applied to each pair of results verify that the average

relative optimality gap of one method is significantly higher than the mean obtained by

another method. All statistical studies were done only in the instances where the solver

found a feasible solution.

The general procedure of analysis of variance and mean difference is briefly described

and applied to all tests carried out in this chapter.

• First, we carry out a normality test to decide if we use parametric or non-parametric

tests to evaluate the results. The summary of the Shapiro-Wilk tests of x7day small,

x7day medium, and x7day large groups of instances can be found in Tables C.1, C.2,

C.3, respectively.

• Second, an analysis of variance is performed to determine whether the differences

between the results of the group’s mean are statistically significant. We used ANOVA

(parametric) or Kruskal-Wallis tests (not parametric) depending on the normality

test results. The null hypothesis Ho assumes that the mean for each sample is equal,

unlike the alternative hypothesis Ha which assumes that at least one of the means is

different from the rest. Suppose the p-value is less than a significance level established

at 0.05. In that case, we reject the null hypothesis and do not reject the alternative

hypothesis that assumes that at least one means different from the rest. Otherwise,

if the p-value is greater than or equal to 0.05, we fail to reject the null hypothesis

Ho, which assumes that the means are equal. A significance level of 0.05 indicates

a 5% risk of stating that a difference in the means exists when there is no actual

difference.

• Third, a mean difference test is performed between the results of all methods com-

paring each pair of the relative optimality gap results of the methods. We used

the T-test for two samples (parametric) or Mann-Whitney tests (not parametric)
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depending on the normality test results. The null hypothesis Ho assumes that the

sample means are equal, unlike the alternative hypothesis Ha which assumes a sam-

ple mean is greater than the other. For example, suppose the p-value is less than a

significance level established at 0.05. In that case, we reject the null hypothesis and

do not reject the alternative hypothesis that assumes that the means are different.

Otherwise, if the p-value is greater than or equal to 0.05, we fail to reject the null

hypothesis Ho, which assumes that the means are equal. A significance level of 0.05

indicates a 5% risk of stating that a difference in the means exists when there is no

actual difference.

The results of the analysis of variance applied to the results of the constructive

methods are shown in Table C.4. In the three groups of instances, the null hypothesis

Ho of equality of means was rejected. The alternative hypothesis that at least one of

the methods has a mean difference from the others was not rejected. The results of the

mean difference analysis between the HARDUC and HGPS methods can be found in Table

C.5. The HARDUC method has a significantly lower average relative optimality gap than

HGPS.

Because the HARDUC method obtained a feasible initial solution in all test instances

and a significantly smaller relative optimality gap than those obtained by HGPS and CBS,

we consider the HARDUC constructive method to be the most appropriate to provide the

first initial solution to the improvement methods (LB1, LB2, LB3, LB4, and KS) in the

following tests.

6.2.3 Test 2: Assessment of improvement methods under a running

time limit of 4000 seconds

This test compares the accuracy of the relative optimality gap results obtained by the

matheuristic methods LB1, LB2, LB3, LB4, and KS, in contrast to the best solution

obtained by the solver under a running time limit of 4000 sec.

The solver was applied in two modes: Solver Method 1 (SM1) and Solver Method 2

(SM2). SM1 was executed without an initial feasible solution, while SM2 was executed from
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Table 6.6: Parameters of the solver without initial feasible solution SM1.

Parameter Value Description

emphasis mip 1 Emphasize feasibility over optimality

mip strategy file 3 Node file on disk and compressed

mip tolerances mipgap 1E-5 Relative tolerance between the best integer

and the best lower bound

an initial feasible solution provided by our constructive HARDUC. The solver parameters

without an initial feasible solution SM1 have been tuned according to the values in Table

6.6. All improvement methods, including LB1, LB2, LB3, LB4, LB5, KS, and the solver

SM2 using an initial solution, are initiated from the same solution. The objective is to

assess whether the enhancements achieved in reducing the relative optimality gap through

matheuristics differ from those solely by employing the solver. This would demonstrate

that matheuristics results in a more significant improvement in the initial solution than

the solver, even when starting from the same initial solution.

The relative optimality gap set as the optimality criterion is 1 × 10−5. This small

value has been chosen with the objective that the methods exhaust the running time and

return the best solution reached in the allotted time. At the beginning of this chapter, the

importance for electricity markets of approaching a zero optimality gap in the UCP was

already stated [80, 48].

Methods LB1, LB2, LB3, LB4, and KS are given a total running time limit of 4000

seconds. This time covers the search for the first feasible solution and allows at least two

iterations of the LB based methods to be solved. Each iteration of LB has a time limit of

1200 seconds. The solver parameters for these improvement methods have been tuned to

emphasize the search for feasible solutions over the search for optimal solutions [32]. They

can be seen in Table 6.7. The same parameters have been used to tune the solver method

SM2 1h using an initial solution.

It should be noted that the symmetry calculation was turned off in the mip toler-

ances mipgap=0 presolve. It was observed in preliminary tests that the solver’s time

taken to identify and remove symmetries could exceed the maximum allowed running time

of 7200 seconds without finding a feasible solution.
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Table 6.7: Solver parameters used in the HARDUC, HGPS, LB1, LB2, LB3, LB4, KS,

and SM2 methods.

Parameter Value Description

emphasis mip 1 Emphasize feasibility over optimality

mip strategy file 3 Node file on disk and compressed

mip strategy heuristicfreq 50 Apply the periodic heuristic at this frequency

mip tolerances mipgap 1E-5 Relative tolerance between the best integer

and the best lower bound

preprocessing symmetry 0 Turn off symmetry breaking

To ensure that the solver terminates its execution in case of running out of RAM

memory, we selected the flag of mip strategy file=3, which will alternatively write the

solution tree to the hard disk.

Another relevant flag that has been selected is mip strategy heuristicfreq=50,

which sets the frequency of the heuristic search for feasible solutions in the solver. This

value was chosen based on preliminary tests in which it was observed that this value was

adequate to accelerate the speed of searching for feasible solutions in our instances.

The average and standard deviation results of the relative optimality gap, for the five

methods, for the three instance groups x7day small, x7day medium, and x7day large, and

with a solution time of 4000 seconds, approx one hour, are shown in Table 6.8. Finally, the

results of the solver are also plotted, including SM1 without an initial feasible solution and

SM2 with an initial feasible solution. Statistical results were made only with the instances

where the MILP solver found a solution.

We show the distributions formed by each of the methods with the results of the

relative optimality gap in Figures 6.8, 6.10, and 6.12, where each series represents a method,

the horizontal axis represents the relative optimality gap. The figures illustrate that, as

the instance difficulty increases, the relative optimality gap of the results obtained with

the KS and LB methods exhibits a distribution with significantly lower variance than the

solver (SM1, SM2). Moreover, the KS and LB methods demonstrate superior accuracy of

results with an average relative optimality gap closer to zero than the solver (SM1, SM2).

We carry out statistical tests by analyzing variance and comparing means following the

procedure described in 6.2.2 to determine whether the improvements are significant. The
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Table 6.8: Descriptive statistics of the relative optimality gap of improving methods under

a running time limit of 4000 seconds.

x7day small x7day medium x7day large

Method AROG ROGSD NFS AROG ROGSD NFS AROG ROGSD NFS

LB1 1h 6.65E-4 2.20E-4 20 3.74E-4 9.08E-5 26 2.71E-4 6.42E-5 18

LB2 1h 6.56E-4 2.18E-4 20 3.66E-4 9.49E-5 26 2.81E-4 7.17E-5 18

LB3 1h 6.98E-4 2.44E-4 20 3.82E-4 9.44E-5 26 2.91E-4 7.36E-5 18

LB4 1h 6.60E-4 2.30E-4 20 3.76E-4 9.19E-5 26 2.90E-4 6.64E-5 18

KS 1h 6.85E-4 2.63E-4 20 3.10E-4 7.48E-5 26 2.25E-4 3.95E-5 18

SM1 1h 5.79E-4 1.59E-4 20 4.73E-4 1.18E-4 26 3.07E-4 8.77E-5 18

SM2 1h 6.28E-4 1.49E-4 20 3.74E-4 9.08E-5 26 3.33E-4 7.79E-5 18

AROG: average relative optimality gap

ROGSD: relative optimality gap standard deviation

NFS: number of feasible solutions

summary of the results of the analysis of variance for the three groups of instances can be

found in Table C.6.

The analysis of variance results rejects the null hypothesis of equality of the means

and does not reject the alternative hypothesis that at least one of the means differs from

that of the rest of the methods.

The results of the mean comparison study among all the methods, for 4000 seconds

of execution and for the three groups of instances are presented in Tables C.8 and C.10

and C.12. These results are widely discussed in Section 6.3.

Appendix B shows the figures representing the convergence in the solution of the

instances of the three groups x7day small, x7day medium, and x7day large, on the hori-

zontal axis is shown the time in seconds, and on the vertical axis the value of the objective

function. Each series represents one of the methods used. The behavior of the solver is

also plotted, represented as the SM1 label.
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6.2.4 Test 3: Assessment of improvement methods under a running

time limit of 7200 seconds

The 4000 seconds test is designed for scenarios where the decision-maker has limited time

to deliver a solution, such as scheduling the daily day-ahead market. However, in scenarios

where the decision-maker has additional time, such as when scheduling a weekly program

calculated every seven days, it is necessary to establish the effectiveness of our matheuristic

methods compared to relying solely on the solver. This test determines if these methods

can deliver a high-quality solution within the given time frame. Additionally, this test

assesses whether the solver can match the solution achieved by the matheuristic methods,

specifically designed to expedite the search process when provided with a slightly extended

time frame of two hours.

This test compares the results regarding the relative optimality gap obtained by

matheuristic methods LB1, LB2, LB3, LB4, and KS in contrast to the best solution

obtained by the solver under a running time limit of 7200 seconds.

The parameters of the solver without an initial feasible solution SM1 have been set

according to the values shown in Table 6.6. As in Test 2, we use the solver starting from a

feasible solution, SM2; the first solution is provided by our HARDUC constructive method.

The relative optimality gap set as the optimality criterion in all methods is 1× 10−5 and

is calculated using Equation (6.6).

The running time limit for all methods is 7200 seconds. This time covers the search

for the first feasible solution and the improvement of the first solution. Each iteration

of LB has a time limit of 1200 seconds. The solver parameters for these improvement

methods have been tuned to emphasize the search for feasible solutions over the search for

optimal solutions. They can be seen in Table 6.9. The same parameters have been used

to tune the solver to an initial feasible solution, SM2.

The average and standard deviation results of the relative optimality gap of the five

methods for the three instances x7day small, x7day medium, and x7day large are shown

in Table 6.10. In addition, the solver results are reported with no initial feasible solution

(SM1) and with an initial feasible solution (SM2).
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Table 6.9: Solver parameters used in the HARDUC, HGPS, LB1, LB2, LB3, LB4, KS,

and SM2 methods.

Parameter Value Description

emphasis mip 1 Emphasize feasibility over optimality

mip strategy file 3 Node file on disk and compressed

mip strategy heuristicfreq 50 Apply the periodic heuristic at this frequency

mip tolerances mipgap 1E-5 Relative tolerance between the best integer

and the best lower bound

preprocessing symmetry 0 Turn off symmetry breaking

Table 6.10: Descriptive statistics of the relative optimality gap of improving methods under

a running time limit of 7200 seconds.

x7day small x7day medium x7day large

Method AROG ROGSD NFS AROG ROGSD NFS AROG ROGSD NFS

LB1 6.11E-4 1.82E-4 20 3.36E-4 7.25E-5 26 2.47E-4 5.75E-5 18

LB2 6.22E-4 2.00E-4 20 3.39E-4 7.67E-5 26 2.42E-4 5.82E-5 18

LB3 6.67E-4 2.31E-4 20 3.50E-4 6.46E-5 26 2.63E-4 6.44E-5 18

LB4 6.31E-4 2.06E-4 20 3.38E-4 6.91E-5 26 2.54E-4 6.30E-5 18

KS 6.78E-4 2.67E-4 20 2.98E-4 6.73E-5 26 2.08E-4 3.82E-5 18

SM1 5.56E-4 1.59E-4 20 3.13E-4 8.77E-5 26 2.72E-4 7.33E-5 18

SM2 5.81E-4 1.55E-4 20 4.45E-4 1.07E-4 26 3.19E-4 8.34E-5 18

AROG: average relative optimality gap

ROGSD: relative optimality gap standard deviation

NFS: number of feasible solutions
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We show the distributions formed by each of the methods with the results of the

relative optimality gap in Figures 6.9, 6.11, and 6.13, where each series represents a method,

the horizontal axis represents the relative optimality gap. The figures illustrate that, as

the instance difficulty increases, the results obtained with the KS method outperform the

other methods (including the base on LB methods) in terms of relative optimality gap,

showcasing a distribution with significantly lower variance. Moreover, the KS method

demonstrates superior accuracy, as indicated by an average relative optimality gap closer

to zero compared to the other methods. We carry out statistical testing to determine

whether the improvements are significant by analyzing variance and comparing means

following the procedure described in 6.2.2. The summary of the results of the analysis of

variance for the three groups of instances can be found in Table C.7.

The analysis of variance results rejects the null hypothesis of equality of means and

does not reject the alternative hypothesis that at least one of the means is different from

that of the rest.

The results of the mean comparison study among all the methods with a maximum

allowed running time of 7200 seconds and for the three groups of instances are shown in

Tables C.9, C.11 and C.13. These results will be discussed further in the next section.

Figures 6.14a, 6.14a, and 6.14a depict the percentage of solutions found by the solver

within the allowed running time of 7200 seconds.

The convergence of the methods can be observed in the figures presented in Appendix

B, where the evolution in the solution of each instance of the three groups x7day small,

x7day medium, and x7day large is plotted. The horizontal axis of the figures represents

time in seconds, and the vertical axis represents the value of the objective function. Each

series in the figures represents one of the methods used, and the solver’s behavior is rep-

resented as SM1.

6.3 Discussion

Analyzing the results of the methods, we can discuss some general observations.
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Figure 6.8: Relative optimality gap distribution of improvement methods of group

x7day small under a running time limit of 4000 seconds.
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Figure 6.9: Relative optimality gap distribution of improvement methods of group

x7day small under a running time limit of 7200 seconds.
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Figure 6.10: Relative optimality gap distribution of improvement methods of group

x7day large under a running time limit of 4000 seconds.
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Figure 6.11: Relative optimality gap distribution of improvement methods of group

x7day medium under a running time limit of 7200 seconds.
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Figure 6.12: Relative optimality gap distribution of improvement methods of group

x7day large under a running time limit of 4000 seconds.
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Figure 6.13: Relative optimality gap distribution of improvement methods of group

x7day large under a running time limit of 7200 seconds.
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Figure 6.14: Solution rate of each group of instances using the solver method (SM1)

without a warm start solution.

Regarding the constructive methods, the HARDUC method, which found 100% of

the feasible solutions in the three groups of instances and had better accuracy, can be

considered the best alternative to provide a high-quality initial feasible solution. On the

other hand, HGPS and CBS found only some feasible solutions compared to the other

methods. Also, HGPS and CBS were less accurate than HARDUC.

The improvement matheuristic methods LB1, LB2, LB3, LB4, and KS found 100%

of the solutions of the test instances, unlike the solver, which found only 78.8 % of the

medium instances and 63.0% for the large instances, within a maximum allowed running

time of 7200 seconds, as observed in Figures 6.14a 6.14b, and 6.14c. Therefore, we can

confirm that the proposed methods are more efficient than using the solver without an

initial solution.
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Figure 6.15: Comparison of methods on instances where the solver (SM1) could not solve

within the allowed time limit.

Figures 6.15a and 6.15b depict large instances where the solver failed to find a

solution within the expected time. It is worth noting that in these instances, the KS

algorithm showed a higher rate of solution descent compared to the other methods based

on LB. Nevertheless, when the solver did find a solution, its speed of finding solutions

was noticeably slower than that of the other matheuristics methods, as illustrated in the

Figures 6.16a and 6.16b.

While there were some isolated large instances where the solver produced results that

were on par with or even better than those obtained through matheuristics methods, it is

important to note that such occurrences were not the dominant pattern. This observation

becomes apparent when examining Figures 6.17a and 6.17b.

During the first iterations, KS was able to quickly find a solution with a fast reduction

of the optimality gap. However, as the iterations continued, the convergence speed gradu-

ally decreased and eventually reached a point of “stagnation”, a common phenomenon in

greedy algorithms. This phenomenon is clearly observable in the 6.18a and 6.18b instances.

In some instances, KS remained in the first solution without improvement; the per-

centage of instances remaining in the first solution is 13.3% of the large instances and 4.3%

of the total instances. Figures 6.19a, 6.19b, 6.19c, and 6.19d represent the instances where

the KS did not improve the first solution. Despite the fact that the methods based on
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Figure 6.16: Comparison of methods on instances where the solver (SM1) found a solution

but had significantly slower solution-finding speed compared to metaheuristics.
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Figure 6.17: Comparison of methods on instances where the solver (SM1) produced results

that were on par with or better than those obtained through the matheuristics.
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Figure 6.18: Comparison of methods on instances where the KS exhibits a “stagnation”

phenomenon.

LB are slower to converge than the method based on KS, they consistently improved the

starting solution.

Here, a limited selection of examples has been presented to illustrate the behavior of

the methods in specific instances. For a detailed visualization of the evolutionary progress

in the convergence toward solutions for each instance, please consult the figures provided

in Appendix B.

Observing that the solver could not find a feasible solution in some large instances,

we intervened by providing it with a first starting solution obtained by our HARDUC

method. However, even with the first solution, it was found that the solver performed less

accurately than the proposed LB1, LB2, LB3, LB4, and KS improvement methods.

On the statistical results of the methods, we expose the following points.

Regarding the small instances and a maximum allowed running time of 4000 seconds,

we can confirm that the solver can be used as an indistinct alternative to these methods

since no significant differences were found in the accuracy of the LB1, LB2, LB3, LB4, and

KS methods, and the solver.

Regarding the small instances and a maximum allowed running time of 7200 seconds,

differences were found in favor of the solver, which obtained a significantly smaller relative

optimality gap than the LB3 method and the solver with the initial solution SM2.
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Figure 6.19: Comparison of methods on instances where the KS remained in the initial

solution without improvement.
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Regarding the medium instances and a maximum allowed running time of 4000

seconds, the KS method performed better than the other methods, obtaining a significantly

smaller relative optimality gap than all the others. Also, the methods LB1, LB2, LB3,

and LB4 performed better than the solver with a significantly smaller relative optimality

gap than SM2 1h and SM1 1h.

Regarding the small instances and a maximum allowed running time of 7200 seconds,

the results of the KS method are equal in accuracy by the solver without initial solution

SM1, finding no significant differences between the results. We also observed that the

LB3 method is again outperformed by the solver without an initial solution SM1, finding

significant differences in favor of SM1. All methods were more accurate than the solver

with the initial solution SM2.

Regarding large instances and a maximum allowed running time of 4000 seconds,

KS performs better than the other methods, finding significant differences in favor of KS.

Significant results were also found favoring LB1 over the solver without the initial solution

SM1. We note that the solver with initial solution SM2 performed better than the solver

without initial solution SM1.

Regarding large instances and a maximum allowed running time of 7200 seconds,

KS performs better than all other methods, finding significant differences in favor of KS.

It was observed that all methods utilizing local branching (LB1, LB2, LB3, and

LB4) outperformed the solver with an initial solution (SM2). However, it is noteworthy

that within a 7200-second time frame, no significant differences were observed between

LB1, LB2, LB3, LB4, and the solver without an initial solution (SM1). It is important

to remember that these results were obtained based on the successful instances the solver

could do. Therefore, it should be noted that the solver did not effectively solve all medium

and large instances.

Furthermore, we observed a noticeably diminished solver performance when an initial

solution was provided compared to when no initial solution was used.

In the ranking of the methods, we can observe that the KS is the method that

obtained a lower average optimality gap than the other methods. Therefore, KS is the
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best method for large instances within a maximum allowed running time of 4000 and 7200

seconds.

Among the proposed methods, LB3, which is the version most similar to the original

method of Fischetti and Lodi [32], exhibits the poorest performance.

Finally, it should be noted that although the KS method generally achieved better

results regarding the relative optimality gap, it did not the initial solution provided by

HARDUC in approximately 4% of the instances. In contrast, the methods based on local

branching successfully improved the initial solution.

6.4 Conclusions

Five methods were developed to solve a thermal UCP within a matheuristic approach, four

based on the local branching method (LB1, LB2, LB3, and LB4) and one based on the

kernel search (KS) method. In addition, a constructive method (HARDUC) was developed

to provide the first solution to the matheuristic methods.

Among the methods based on local branching, LB3 is the closest version to the

original local branching, unlike LB1, LB2, and LB4, which are variants that implement

soft-fixing concept and a restricted candidate list (RCL). Additionally, only the variables

classified as dominant are considered in the local search. In this case, the commitment

variable, which determines the on or off state of the generator, was identified as such.

The methods were tested by solving three groups of instances classified into small,

medium, and large according to the number of generators they contained. A time span

of 4000 seconds to 7200 seconds was allocated for solving the instances using the LB1,

LB2, LB3, LB3, LB4, and KS improvement methods, including the solver. The results of

the methods were compared against the best solution achieved by the solver providing it

with an initial feasible solution and without an initial feasible solution. The instances were

created based on existing instances from the literature that are known to be challenging

to solve.

The solver without an initial solution only solved approximately 79% of medium-
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sized instances and 63% of large instances. In contrast to our methods, LB1, LB2, LB3,

LB4, and KS always had a feasible initial solution provided by our HARDUC method in

the constructive phase.

In terms of accuracy, measured in the relative optimality gap. Statistical tests showed

no significant differences among the LB1, LB2, LB4, LB3, and KS methods and the solver

on small instances.

For the case of testing with medium-sized instances within a maximum allowed

running time of 4000 seconds, the KS performed the best. The other methods outperformed

the solver with an initial solution and matched the results of the solver without an initial

solution. For the tests with a maximum allowed running time of 7200 seconds, the solver

performed equal to all methods except for LB3, which performed worse than the solver

without an initial solution. LB3 is the method most similar to the original version of local

branching.

Regardless of the time limit, all methods outperformed the solver regarding solution

quality for the large instance set. Again the KS had the best performance.

Therefore, we can confirm that the proposed methods are more efficient than using

only the solver; moreover, KS is the best method for medium and large instances. Accord-

ing to the results, the proposed adaptations (soft-fixing and RCL) to the original version

of the local branching helped find better solutions only in medium instances.

While previous studies have suggested that the KS method effectively solves knap-

sack problems with promising outcomes, the results of our study demonstrate that the KS

method may also be useful in solving the UCP problem.

The KS exhibits a behavior similar to a greedy algorithm, with a quick descent

followed by a “stagnation” effect. On the other hand, local branching methods offer a

constant improvement of the solution and the ability to avoid local optima, albeit with a

slower descent rate than KS. A promising direction for future work would be to hybridize

KS with LB to leverage the strengths of both methods.

We have learned that matheuristics work as “jumps” within the solution space and

help speed up the search for better solutions than if we only used the solver.



Chapter 6. Matheuristic approach to solve the thermal UCP 83

We have found that the proposed improvement methods do their job by improving

the initial solution. Therefore, we can consider our strategy of constructing and improving

solutions using matheuristic methods to be effective.

Finally, in practice, we recommend using these mathematical methods and the solver

simultaneously on different computers. This strategy of diversifying solution methods

allows us to obtain always-in-time feasible solutions of high quality and choose the best

solution.

6.5 Future research

• Develop a hybrid algorithm that combines the advantages of both the KS and LBC

methods. For example, hybridization could leverage the fast convergence of KS in

the initial iterations and the ability of LBC to escape from local optimal solutions.

Then, when the KS solution becomes stagnant, the LB method can be used to escape

the local optimal solution and go out to find a better solution.

• Develop a branch-and-cut method that incorporates the constraints of the local

branching method. Callback functions can introduce local branching cuts into the

solver’s solution tree, saving time when loading the model into the solver. Addition-

ally, by generating and introducing on-the-fly local branching constraints into the

tree, matheuristic methods can solve the problem more efficiently, saving time in the

process of reading the problem and preprocessing data by the solver.

• Test the proposed method with other UCP models. UCPs in electricity markets

have different features depending on technical, operational, and economic factors.

For example, some UCPs include disjoint constraints such as prohibited operative

zones, nonlinear constraints such as hydraulic generation, elastic demand, and com-

bined cycle plants with interdependent generators. Another important variation in

the modeling is the consideration of network flow limits that further complicates

the problem; this version is called network constraint UCP. Therefore, there is a

significant potential to evaluate the effectiveness of the proposed method in UCP

variations.



Chapter 7

A real-time load forecasting

method

We have thoroughly addressed the UCP issue and considered it the computational core

for scheduling the operation of electricity markets in the short-term. However, equally

important is the demand forecast, which serves as one of the essential inputs for the UCP.

For example, in Mexico, short-term load forecast (STLF) and very short-term load

forecast (VSTLF) are calculated daily for the scheduling processes. On the one hand,

STLF calculated seven days in advance in hourly periods are used for the day-ahead

market (MDA) and seven-day operational planning (AU-HE). On the other hand, VSTLF

calculates two and a half hours ahead in fifteen-minute intervals, are used in the real-time

market, specifically in the Real-time Unit Commitment (AU-TR) and Economic Dispatch

with Multi-interval Network Constraints (DERS-MI) processes. The main features of the

forecasts and their use in the electricity market in Mexico are shown in Table 7.1.

In this dissertation, VSTLF is understood as the forecast with a horizon ranging

from a few minutes to a few hours, while real-time forecasting refers to the continuously

calculated forecast using periodically refreshed data. The research of this chapter covers

both concepts simultaneously.

Although unit commitment models and their solution methods can achieve very accu-

rate results with negligible gaps, suppose the demand for which the operation is scheduled

comes from a forecast with a low degree of accuracy. In that case, it can lead to significant

84
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Table 7.1: Electricity demand forecasts in the Mexican market, based on [60].

Forecast Market model Deadline for

submitting

forecasts

Time horizon Time interval Update frequency

Medium-term planning

Short-term AU-MDA 10:00 a.m. daily 7 days 1 hour Daily

AU-GC

VSTLF AU-TR before every

quarter hour

2.5 hours 15 minutes (10 data) Continuously every

15 minutes

DERS-MI

deviations between generator scheduling and power system operation, with unexpected en-

ergy and reserve costs. Forecasts above the real demand can lead to higher costs for keeping

generators running and extra reserve payments to compensate for deviations. Conversely,

forecasts below actual demand may result in a last-minute purchase of power at a higher

price. Another risk can be over-generation, which can jeopardize the system’s security,

which depends heavily on balance between generation and demand [92]. Therefore, having

a quality forecasting method with high accuracy helps to maximize the economic benefits

of the marking participants while preventing power system security problems.

In this chapter, we propose a demand forecasting method for a real-time electricity

market; the method is called Analog Multiple with Moving Averages (AnMA). This method

is divided into three phases: neighbor selection, calculation of a baseline forecast, and

correction of the baseline forecast. The method is designed as a framework in which each

phase can combine both statistical and machine learning tools. As a result, the AnMA

method computes very short-term load forecasting (VSTLF) very fast and with a low

computational cost. Moreover, it has proven to be sensitive to sudden load changes and

excellent real-time bias adjustment.

7.1 Real-time forecasting

Real-time electricity markets operate continuously 24 hours a day, every day of the year,

collecting inputs, solving optimization problems (such as UCP), and delivering results

within minutes. In addition, the results are published continuously. Therefore, the speed

of the very short-term demand forecast (VSTLF) calculation is as important as its accuracy.
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However, accuracy and computation time in currently used forecasting methods seem to

be opposite attributes. Algorithms with high levels of accuracy may take many hours of

training before they can be used; on the other hand, using simpler algorithms with little

training may deliver results with low accuracy. The solution to this trade-off has been to

increase the computational capacity of the equipment, involving high infrastructure and

processing costs. Some forecasting models typically used are long-memory neural networks

with high training times.

A real-time market forecasting (RTM) method demands more than just accuracy

and computational speed. Real-time forecasting methods must meet other requirements,

such as adaptability, low computational cost, robustness, and reproducibility. These re-

quirements will be discussed in detail as follows.

• Adaptability: The method must consider corrections for sudden changes in demand

due to external factors such as cold fronts, rain, or even network operations or failures.

Therefore, the forecast must update its calculations with the most recent demand

information coming in real-time.

• Low computational cost: This feature is fundamental when different forecasting

methods are run simultaneously, or the forecasting method shares resources with

other processes on the same equipment. A computationally cheap forecasting method

has the benefit of saving on infrastructure investments and reducing the carbon foot-

print. They are also ideal when computing resources are limited.

• Robustness: The model must have a high convergence, always guaranteeing results

for the market. Although some convergence problems are often caused by singular

matrices or numerical instability and may be difficult to prevent, they must be han-

dled in the programming in the best possible way, or methods should be implemented

to mitigate their effects. It is generally observed that simpler methods are less prone

to failure.

• Low maintenance: Models should be able to tune parameters automatically with

minimal operator intervention. Simple algorithms with few parameters are preferred.

• Reproducibility: Forecasting methods should be deterministic with the ability to
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obtain the same results even if run multiple times or on different equipment. The

input data and the model parameters must be stored to repeat the calculation if

required.

Dannecker [20] provides a comprehensive analysis of the forecasting needs for elec-

tricity markets, and we concur with certain aspects discussed in the article.

Real-time demand forecasting is not only utilized in market environments; it also

benefits various other real-time applications, such as look-ahead applications. These ap-

plications aim to predict immediate system behavior and assist in operational decision-

making. Additionally, real-time forecasting is employed in the economic dispatch of gener-

ation, transient stability analysis, online coordination between different generation sources

(including hydraulic, wind, and solar sources), price setting, and interchange scheduling

[28].

These methods, which look for patterns in the past similar to present behavior, are

known as analogues (An). The idea was initially proposed by [61], who used it to predict

errors in weather forecasts. However, the basic idea has been extended and used by several

authors [9, 3, 4, 49]. To the best of our knowledge, the analogues method has yet to be used

to forecast electricity demand nor has a moving average adjustment been implemented for

real-time data.

The proposed method breaks the trail-off between accuracy and high computational

cost, presenting a flexible environment that combines simple and complex statistical tools.

7.2 The Analogue Moving Average method

We propose the Analogue Moving Average (AnMA) method, a time series forecasting

method based mainly on statistical components that consist of three phases:

• i) Selection of the neighbors

• ii) Calculation of the baseline forecast

• iii) Correction of the baseline forecast
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Phase i. Selection of the neighbors The load demand data set forms the time

series S = (s1, s2, . . . , sp) with p periods. A sub-sequence is a set of consecutive periods

in a time series. The AnMA method starts by defining a sub-sequence of the latest data

Y = {yj : j ∈ [|S| − v1, |S|]}, where v1 ∈ N is one of the most significant lags in the time

series S from auto-correlation function (ACF) [14]. Then, the forecast horizon of Y ′ with

size v2 : v2 < v1 is defined. Note that v1 should have a value greater than the forecast

horizon, represented by v2.

From the sub-sequence S′ ⊂ S, S′ = (s1, s2, . . . , sn) where sn = |S| − (v1 + v2), the

set X of n sub-sequences of size v1 is extracted. We will refer to this X as a neighborhood

and each one of its sub-sequences as a neighbor.

Afterward, the set of sub-sequences Xk : Xk ⊂ X represents the k neighbors having

the highest correlation with Y based on a distance measure, i.e., the Pearson correlation

coefficient. Those k neighbors are selected using the k-nearest neighbors (k-NN) method

[59].

Figure 7.1 depicts the time series S, from which the k neighbors are extracted, which

are the sub-sequences of S with the highest correlation with the lastest data. Moreover,

the subsequent data are displayed after the neighbors.

𝑣1 𝑣2

𝑋1 𝑋1
′ 𝑋𝑖 𝑋𝑖

′ 𝑋𝑘 𝑋𝑘
′ 𝑌

High correlation
neighbors

𝑆:

Sub-sequent data

… … …

Latest
data

𝑋𝑛 𝑋𝑛
′

𝑡0
𝑆′

Figure 7.1: Phase of selection of neighbors, An method.

Phase ii. Calculation of the baseline forecast In this step, we use a regression

model to explain the recent data of Y as a function of the neighbors Xk. In the basic version
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of the AnMA method, we use the ordinal least squares (OLS) method with backward

stepwise elimination. As a result, we obtain an adjusted regression model M.

Then, we obtained the set of sub-sequences X ′k that are the subsequent periods of

a size v2 for each Xk. Finally, we input this set X ′k as data to model M to estimate the

baseline forecast Y ′.

Figure 7.2 depicts the regression phase, in which a regression model M is estimated

with the latest data of the series Y as the independent variable and the data of the k

selected neighbors Xk as the independent variables. The baseline forecast is the output of

the M model with the sub-sequent of the neigbours data as input.
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′ 𝑋𝑖 𝑋𝑖
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Figure 7.2: Phase of calculation of the baseline forecast.

Below in Figure 7.3 we show a actual example of selecting Xk neighbors with a high

correlation with the latest Y data on the left side of the vertical line. The subsequent X ′k

series and the Y ′ forecast are drawn on the right side of the vertical line. Note that there

is no subsequent Y data on the right side of the figure; instead, the Y ′ forecast is drawn.

Phase iii. Correction of the baseline forecast Because the An method is based

on identifying and repeating patterns that have occurred in the past, it is susceptible

to accumulating a bias over several periods before correcting itself. Therefore, the An

method’s baseline forecast (Y ′) must be compensated for its use with new data from real-

time. This way, it is provided with an adaptive mechanism to correct bias and sudden
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Figure 7.3: Left: neighbors Xk with highest correlation with the lastest data Y . Right:

subsequent data X ′k and the baseline forecast Y ′.

changes in demand by attenuating the error.

The AnMA method generates a time series of the differences between the forecast

(Y ′) and the actual demand (S). This time series of differences, also known as the error

series, can be mathematically represented as ε = εt : t ∈ [−v, 0]. The variable t in this

equation represents the time period, with t = 0 being the current time and t = −v being

the time interval. This means that the error series contains the latest v errors of the An

method. It’s important to keep the baseline forecast results, as they will be used to correct

future forecasts.

We use a moving average (MA) [14] model to calculate the following forecast errors

ε̂ with the stored latest data ε.

Finally, combining the An and MA methods, we calculate the final forecast Y ′′,

adding the ε̂ to the result of the baseline forecast Y ′ as follows: Y ′′ = Y ′(t) + ε̂(t), ∀t =

1, . . . , w.

Figure 7.4 depicts the phase of correction. First, we obtain an error series ε by

subtracting the latest actual data from the previous baseline forecast. Second, we compute

the bias ε̂ using an MA model. Third, we correct the baseline forecast error by adding the

bias ε̂.
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Figure 7.4: Phase of correction, MA method.

To provide a comprehensive overview of the AnMA method, Figure 7.5 merge the

three phases of the method: i) Selection of neighbors, ii) Calculation of the baseline fore-

cast, and iii) Correction of the baseline forecast.
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Figure 7.5: AnMA method.

7.2.1 AnMA variants

The basic version of the proposed AnMA method uses statistical tools such as OLS with

stepwise as the regression model and the Pearson coefficient as the measure of distance

between neighbors. However, other variations of the method can be implemented using

other statistical and machine learning tools in the neighbor selection and calculation of
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the baseline forecast phases.

The first variant can be performed in the neighbor selection phase by changing

the distance measure between neighbors from the Pearson correlation coefficient to the

Euclidean distance.

The second variant is performed at the calculation of the baseline forecast phase,

applying tools such as principal component regression (PCR) and partial least squares

(PLS), which are linear dimension reduction methods that keep a subset of the relevant

variables (in our case, the neighbors) and discard the rest in the model. Other regression

models are Lasso and Ridge, with small differences, which are shrinkage methods that

impose a penalty on the regression coefficients for their size, minimizing the penalized

residual sum of squares. Finally, we can use ensemble-based machine learning models

such as Random Forest (RF), Bagging, and Boosting. All these machine-learning methods

are based on ensembles. RF is a method that combines multiple decision trees to create

a solution; Bagging is a method that combines multiple solutions of the same type of

prediction to decrease variance. Boosting is a method that combines multiple types of

predictions to decrease bias. These methods are broadly discussed by Hastie et al. [43].

7.3 Experimental work

The tests consist of calculating the demand forecast of a time series, using the proposed

AnMA method and its variants against other benchmark methods that compete in accuracy

and computational speed.

Two tests will be carried out:

• Calculation of the demand forecast for five minutes (one period).

• Calculation of the demand forecast for two-and-a-half hours (thirty periods).

The AnMA method’s default version uses OLS with stepwise as the regression

method and the Pearson coefficient as the distance metric during neighbor selection. How-

ever, other AnMA variants use different regression methods such as PCR, PLS, Lasso,
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Ridge, RF, Boosting, and Bagging. Additionally, two neighbor selection metrics are used

in the AnMA approach: Pearson’s coefficient (the default) and Euclidean distance (in-

dicated by the suffix euc). The idea behind using these variants is to identify the best

combination of regression model and selection metric that produces the most accurate

results.

We have selected the additive Holt-Winters (HWA), multiplicative Holt-Winters

(HWM), autoregressive moving average (ARMA), and persistent or naive methods as

reference benchmarks to test the AnMA approach. These widely-used benchmarks possess

important qualities such as adaptability, low computational cost, robustness, and repro-

ducibility, which are essential for real-time forecasting in an electricity market. Our AnMA

method will be compared to these benchmarks to determine its accuracy and promptness.

Accuracy metrics will be in terms of mean absolute percentage error (MAPE), and

mean absolute error (MAE). We will also measure the CPU time of the models and par-

ticularly for AnMA the time of the neighbor selection, regression, and correction baseline;

the time is measured in seconds.

As a validation method, k-fold cross-validation will be used in a particular setup for

time series forecasting, same to the purpose of Bergmeir et al. [11]. However, we simulate

real-time data by incorporating the latest data point while removing the oldest point using

a first-in, last-out approach. This method of simulating real-time data ensures that the

algorithm operates with the most up-to-date information available.

Figure 7.6 shows the time series data divided into training (blue) and testing (orange)

periods for training and evaluating the method performance.

Also, the tests will analyze how effectively the MA error correction component re-

duces the error of the baseline forecast generated by An. To assess the MA correction’s

impact, we omit the MA correction in some variants of AnMA identified only by the prefix

An. The test aims to demonstrate the significant effect of the baseline forecast correction

approach that uses moving averages on the final forecast.

The AnMA method is coded in Python version 3.10.0 The scikit-learn and statsmod-

els libraries developed by Pedregosa et al. [74], Seabold and Perktold [82] in Python
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Figure 7.6: Training and testing periods for tests.

language were used. Plots of results with Mathplotlib [45]. The source code of the

AnMA method and data is available in the https://github.com/urieliram/analog/

blob/main/Analog3.ipynb repository. The hardware employed was a 64-bit with 64GB

of RAM with a 2.50 GHz Intel(R) i7(R) 11700 CPU,65W, on a Linux Ubuntu operating

system.

7.3.1 Dataset

The tests use a time series of load demand from a typical region of Mexico. The time

series plot in Figure 7.7 considers one year of load data with a sampling frequency of five

minutes. As can be seen, the series presents seasonal patterns, i.e., the load increases

during the warm seasons reaching approximately 2500 MW, and decreases during the cold

seasons, with a load of approximately 1000 MW. The data are available in this repository

https://github.com/urieliram/analog/blob/main/data5min.csv

https://github.com/urieliram/analog/blob/main/Analog3.ipynb
https://github.com/urieliram/analog/blob/main/Analog3.ipynb
https://github.com/urieliram/analog/blob/main/data5min.csv
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Figure 7.7: Time series of load demand.

7.3.2 Parameters

The AnMA approach has few parameters. Firstly, a subsequences length of 288 data

points is used for v1, equivalent to one day. This subsequence size is important because

it determines the length of the subsequence of the neighbors. Additionally, the AnMA

searches five neighbors k = 5, and a lag of 144 periods are used for baseline forecast error

correction through MA.

We initially planned to use auto-ARIMA libraries from [46, 35] for day-ahead fore-

casts since they have been effective in previous studies [51]. However, we found that they

were unsuitable for real-time scenarios due to their extensive computation time, which av-

eraged around ten minutes per forecast, exceeding the maximum time limit of ten seconds

per forecast. Instead, we opted for a faster AR-MA approach. Additionally, to account

for the daily and weekly seasonality of electricity demand [56], we implemented an AR

model with a 7-day lag (288 × 7 periods). We performed error correction by applying an

MA model with a half-day lag (144 periods) to the errors of the AR forecast. Finally, the
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HWA and HWM models were trained using the historical data from the last month.

7.3.3 Real-time demand forecasting tests results

The results of the five-minute test suggest that the AnMA variants with the PCR, Lasso,

and Ridge regression methods are the most efficient methods in terms of CPU time, with

mean values of 1.6022, 1.5335, and 1.6184 seconds, respectively. The mean CPU execution

time of AnMA-PCR was 1.6022 seconds, used into 1.5959 seconds for neighbor selection,

while 0.0018 seconds were used for regression. It should be noted that the time for baseline

correction was negligible. Furthermore, these methods use Pearson’s coefficient as the

similarity metric, which has proven effective in this context.

The Persistence method had negligible CPU time and usage, indicating that it is

high-speed and lightweight. However, the HWM, HWA, and ARMA methods had longer

mean CPU times, with values of 5.5842, 3.5475, and 12.6203 seconds, respectively.

Regarding accuracy, the AnMA variants with PCR, Lasso, and Ridge methods had

lower MAPE values of 0.2512, 0.2892, and 0.2893, respectively. On the other hand, bench-

marks such as HWM, HWA, Persistence, and ARMA obtained higher MAPE values of

0.3604, 0.3637, 0.3310, and 0.1633, respectively.

It is important to mention that in both tests, AnMA and its related methods (HWA,

HWM, and persistent) utilized only one processor core, whereas ARMA utilized all eight

cores. The tests recorded the minute-by-minute CPU utilization.

All models, except for ARMA, were tested using a single processing core to ensure a

fair comparison. Although the Statsmodel [82] library implemented in ARMA is designed

to utilize all computer resources to speed up the process, our benchmarks, including our

AnMA, still outperformed it in terms of speed.

Furthermore, the AnMA variants with PCR, Lasso, and Ridge methods had lower

MAE values of 6.80, 7.83, and 7.83 in MW, respectively. In contrast, benchmarks such

as HWM, HWA, Persistence, and ARMA obtained higher MAE values of 9.82, 9.91, 9.03,

and 4.45 in MW, respectively.
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Figure 7.8: Real–time demand forecast summary in five minutes.

These results suggest that the AnMA variants with PCR, Lasso, and Ridge methods

are efficient and accurate for forecasting, while the Persistence method is a good choice

when speed is of utmost importance; however, Persistence obtained the worst accuracy

results compared to the other benchmarks. The benchmarks such as HWM, HWA, and

ARMA may be less suitable for this particular application, given their higher CPU times.

Figure 7.8 and Figure 7.9 provide a visual representation of the performance com-

parison of the forecasting methods. Both figures have a dual-axis plot, where the left axis

represents CPU execution time in seconds, and the right axis represents MAPE and MAE

values. The blue bars represent the performance of AnMA methods, while the orange bars

represent the benchmark methods such as Persistence, HWA, HWM, and ARMA. Additionally,

black crosses denote the MAE, and gray dots denote the MAPE values. The figures clearly

compare the methods, indicating the fastest and most accurate forecasting methods.

Statistical tests are conducted for both tests to determine the significant differences

in the means of the distributions of the absolute errors of AnMA-PCR, HWA, HWM,

Persistence, and ARMA. A Friedman test was conducted in the five-minute test, and

a significant difference was found p–value = 0.0000, implying that the null hypothesis

of equal means between groups is rejected and the alternative hypothesis of difference
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Figure 7.9: Summary of the real–time demand forecast in two-and-a-half hours.

between groups is accepted. Subsequently, a Wilcoxon paired test was performed, and

significant results were obtained between AnMA-PCR and Persistence, HMA, HWM, and

AnMA-OLS with p–value = 0.0000 for all hypothesis tests. This results in rejecting the null

hypothesis of equality and accepting the alternative hypothesis that AnMA-PCR has lower

absolute errors on average compared to the standard AnMA-OLS version and benchmark

methods. In a two-and-a-half-hour test, a Friedman test was conducted and found to be

significant p–value = 0.0000, leading to the rejection of the null hypothesis of equal means

between groups and the acceptance of the alternative hypothesis of difference between

groups. Subsequently, a Wilcoxon paired test was then performed, resulting in significant

results p–value = 0.0000 for AnMA-PCR compared to Persistence, HMA, and HWM. The

Wilcoxon test showed ARMA errors were significantly smaller than AnMA-PCR, with p-

value p–value = 0.0000. This rejection of the null hypothesis of equality indicates that

AnMA-PCR has, on average, lower absolute errors than the standard AnMA-OLS version,

HMA, and HWM. Note that rejecting the null hypothesis of equality indicates that ARMA

has, on average, lower absolute errors than AnMA-PLS.

All these results are further supported by Figures 7.10 and 7.11, which display the

overlapping distribution of absolute errors between AnMA-PCR and the benchmark methods.
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Figure 7.10: Comparison of absolute error distributions between AnMA-PCR and bench-

marks, five-minute test.
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Figure 7.11: Comparison of absolute error distributions between AnMA-PCR and bench-

marks, two-and-a-half hours’ test.
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Figure 7.12: Distribution of errors between forecasts with MA correction, five-minute test.

We have observed a reduction in error variance in methods that incorporate the Mov-

ing Average (MA) component, namely AnMA-PCR, AnMA-Lasso, AnMA-Ridge, AnMA-

OLS, and AnMA-OLS-euc; compared to methods that do not include this component, such

as An-PCR, An-Lasso, An-Ridge, An-OLS, and An-OLS-euc. This variance reduction ef-

fect has been confirmed using Levene’s statistical test, which assumes a null hypothesis

(Ho) that the error distributions of all methods have the same variance and an alterna-

tive hypothesis (Ha) that the error distributions have different variances. The results of

the test indicate a significant difference, providing sufficient evidence to conclude that the

methods using MA have lower variance than those that do not. The table containing the

results of Levene’s test is provided in Table D.1. Additionally, the overlapping distribution

of errors between AnMA-PCR, AnMA-Lasso, AnMA-Ridge, AnMA-OLS, AnMA-OLS-euc and

the An-PCR, An-Lasso, An-Ridge, An-OLS, and An-OLS-euc methods shown in Fig-

ures 7.12 and 7.13 provides further support for these results and thus observe the benefits

of the correction stage. An example of bias correction in the forecasted time series is

illustrated in Figure 7.14. First, a baseline forecast (Y ′) is generated and compared to

actual observations to calculate the bias. The MA model is then applied to estimate the
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Figure 7.13: Distribution of errors between forecasts with MA correction,two-and-a-half

hours’ test.

expected error based on the bias and adjust the original forecast to correct for the bias.

It is important to note that the baseline forecast needs to be stored for some time before

the MA calculation can be performed, and the MA model will correct for the bias in the

same period in which it occurs.

In Figure 7.15, we display the August forecast results for the AnMA-PCR and ARMA

methods during a two-and-a-half-hour test. The graph depicts the predicted values from

each method in orange and green lines, respectively, while the actual observations are

shown in blue. The predicted values of both methods closely follow the observed data

points, with a minimal amount of deviation between the predicted and actual values. This

low deviation indicates that both methods produce accurate and reliable forecasts, making

them well-suited for real-time load demand forecasting applications.
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Figure 7.14: Correction for the An forecast bias through of MA model.
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test.
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7.4 Discussion

The objective of this study was to compare the performance of various methods for load de-

mand forecasting, including our proposed method, in terms of accuracy and computational

efficiency. The experimental results are discussed as follows.

The two tests showed that the AnMA method with its PCR, Lasso, and Ridge

variants had a faster average computational time and the most significant accuracy com-

pared to the HWA and HWM methods. Furthermore, although the persistent model was

much faster, the accuracy was higher for AnMA. On the other hand, although the AnMA

method was much faster than ARMA, ARMA was more accurate; however, the runtime of

ARMA exceeded the established runtime of 10 seconds. Moreover, the dimension-reduced

and shrinkers variants of AnMA performed better than the standard AnMA version using

stepwise OLS regression. Statistical tests support all findings.

The best variants of AnMA use Pearson’s coefficient as a similarity metric instead

of Euclidean distance, taking advantage of the seasonal and repetitive behaviors in load

data to quickly find the most similar past days. This makes the method fast and effi-

cient, with computational complexity proportional only to the number of windows being

compared, making it an ideal choice for load demand forecasting. Therefore, the Pearson

correlation assumption enhances the efficiency of the following regression process, making

it a synergistic feature for the AnMA method.

Moreover, AnMA is particularly suitable for real-time applications due to its calcu-

lation speed and low CPU usage. It can also be shared with other processes on the same

machine, providing an indirect advantage.

The tests’ finding shows that incorporating bias correction techniques such as MA

can improve the accuracy and reliability of their forecasts in real-time, supported by sta-

tistical tests.

The CPU time and resource consumption for the AnMA-PCR method were signifi-

cantly lower using one core to 15% capacity, in contrast to the ARMA model, which proved

to be the most computationally expensive, occupying all eight processor cores with a mean
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CPU utilization of 92%.

Furthermore, the environmental impact of each method was assessed by calculating

their carbon footprint, which takes into account the CPU usage and core count, as well as

the location and computer specifications. The results, including the energy consumption

(in kWh) and CO2 emissions, are presented in Table 7.2, along with the total runtime of

each method, the number of cores used, and the energy spent in kWh. The calculator

footprint used is available online at http://calculator.green-algorithms.org/.

Table 7.2: Carbon footprint per method, [55].

Method Runtime Cores % CPU kWh kg-CO2e

ARMA 92:53:00 8 92.0 7.7500 3.3400

HWM 41:06:00 1 17.1 1.0400 0.4472

HWA 26:07:00 1 16.8 0.6581 0.2839

AnMA-Ridge 11:54:00 1 18.0 0.3010 0.1298

AnMA-PCR 11:47:00 1 15.0 0.2952 0.1273

AnMA-Lasso 11:17:00 1 27.5 0.2941 0.1268

Persistence 00:44:00 1 1.0 0.0078 0.0180

7.5 Conclusions

The main contribution of this chapter is developing the AnMA method as a novel real-time

load demand forecasting approach that combines Analog and Moving Average techniques

within a flexible framework with exchangeable components. Its accuracy is competitive

with the current state-of-the-art, requiring less time and CPU use than the benchmarks.

The method’s main advantage is its low computational cost, allowing it to operate in real-

time scenarios. Additionally, its MA component adapts immediately to changes in data

behavior, ensuring its accuracy and efficiency.

To evaluate the performance of our AnMA method and its variants, we conducted a

simulation of three months of real-time load demand forecasting. The simulation results

showed that our AnMA method with PCR, Lasso, and Ridge variants outperformed the

other methods in terms of accuracy and computational efficiency. Specifically, our method

http://calculator.green-algorithms.org/
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had a faster mean computational time and higher accuracy compared to the HWA, HWM,

and persistent methods and had accuracy similar to ARMA but at a much lower computa-

tional cost. This was achieved using Pearson’s coefficient as a similarity metric, dimension

reduction, and shrinking regressions. Based on these results, we conclude that AnMA with

PCR, Lasso, and Ridge variants is a promising real-time load demand forecasting approach

with high accuracy and computational efficiency.

AnMA adapts to demand changes by estimating residual errors of a baseline forecast

using a moving average MA component. The MA correction reduces variance and improves

performance.

Compared to benchmark statistical methods, our developed approach enables au-

tomated demand forecasting every five minutes, 24/7, yielding results in less than two

seconds and demonstrating competitive accuracy.

We are currently working on improving the accuracy of the AnMA algorithm while

maintaining its efficiency. In the next version, we plan to experiment with selecting neigh-

bors from subsets of days. Additionally, we plan to work on parallelizing the algorithm,

expecting it to lead to better performance. Our goal is to continue innovating and en-

hancing the AnMA algorithm to better serve the field of load demand forecasting with an

efficient method.

7.6 Future research

• The accuracy can be improved by pre-selecting the days on weekdays, Saturdays,

Sundays, and holidays.

• Other similarity measures, such as dynamic time warping, can be used and evaluated.

• It would be interesting to compare this method against pattern similarity-based

methods, where the forecasting problem can be simplified, as proposed by [23].

• Other computationally inexpensive error smoothing methods, such as Kalman filter-

ing, can be tested.
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• Computation time can be further reduced, and more historical data can be used by

parallelizing the sample selection process.

• It is noted that the largest errors of the AnMA method are found in the day’s peaks.

A new version of the AnMA method that includes the prediction of peak demand

can be included in the method.

• The accuracy of load demand forecasts can be improved by incorporating weather

variables and adding a corrective phase.



Chapter 8

Main conclusions

8.1 Summary of main findings

This dissertation tackles significant and relevant power system operational planning issues,

specifically a thermal unit commitment problem and a real-time power demand forecasting

problem. Both problems need the development of efficient algorithms capable of effectively

addressing the inherent trade-off between accuracy and speed. This requirement stems

from the limited time available to solve these problems and the imperative to achieve high

accuracy.

First, we address the generator scheduling problem by solving the unit commitment

problem using five matheuristic methods, four local branching (LB) versions, and one ker-

nel search (KS) version. Furthermore, a new constructive method belonging to the relax

& fix family, called HARDUC, was developed. This method has successfully generated

high-quality, feasible initial solutions for the five matheuristic methods. In addition, we

proposed a new thermal unit commitment model with features of tightness and compact-

ness with a staircase cost function.

Tests were conducted on the developed matheuristic with time limits of 4000 seconds

and 7200 seconds to find a solution. These tests were designed to reflect practical scenarios

where an analyst needs to deliver a generation schedule within approximately one or two

hours. A comparison was made against a state-of-the-art solver such as CPLEX, con-

sidering two cases: (i) running the solver from scratch and (ii) feeding an initial feasible

107
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solution found by the heuristic.

The results revealed that, for small instances, the off-the-shelf solver outperformed

the matheuristic methods. However, in medium-sized instances, the solver sometimes fails

to find a solution. When a solution was found, no significant difference was observed

between the solver and the methods. However, for large instances where the solver left

many cases unsolved, the proposed methods successfully solved all instances and achieved

outstanding results compared to the solver. Statistical tests provided support for all the

results.

Additionally, tests were conducted on the proposed constructive method with a

maximum runtime limit of 1200 seconds. A comparison was made against the best UCP

constructive method available in the literature, as well as against the best solution found

within the solver’s time limit. Unlike the other two methods, the proposed method con-

sistently found feasible solutions for all tested instances, with a better optimality gap.

Statistical tests supported all the obtained results.

It is worth highlighting that our implementation of the KS algorithm exhibited

superior performance, particularly in the more challenging instances, outperforming both

the solver and the LB method regarding the optimality gap. This finding is significant as

the full potential of utilizing the KS for solving the UCP has not been fully explored until

now. It highlights promising avenues for further research that remain open.

As expected, we observed that as the problem instances became more complicated,

the matheuristic methods outperformed the solver by finding better and faster solutions.

Matheuristics have demonstrated remarkable effectiveness when applied to tackle other

problems. They have been incorporated as heuristics in off-the-shelf solvers, enabling ef-

ficient solutions for a wide range of mixed-integer linear programming (MILP) problems.

However, in this research, we have leveraged our understanding of the mathematical struc-

ture of the thermal UCP to enhance the efficiency of our methods. By identifying dominant

variables and selecting candidate variables to be included in the solution, we customized

the matheuristics specifically for the UCP. Additionally, we tackled a common problem

researchers face in implementing the KS method by using the Sturges statistical rule to

calculate the appropriate number of buckets. These specific adaptations of the methods
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enhance the efficacy of matheuristics and make them exceptionally powerful for addressing

the UCP.

In the context of the very-short term load demand forecasting problem, we in-

troduced a novel approach called analogue with moving average method (AnMA). This

method was specifically designed to leverage the seasonal characteristics of the time series

of load demand, selecting the most correlated days. Furthermore, its capability to adapt

to real-time data makes it highly suitable for adjusting to new demand patterns, correcting

biases, and improving accuracy.

The AnMA method was compared to other benchmark methods from the litera-

ture, known for their high efficiency and accuracy. The results clearly demonstrated that

the AnMA method outperformed naive algorithms and exponential smoothing methods

regarding the accuracy, computational speed, and low computational cost. Moreover, it

achieved comparable accuracy to ARIMA models while maintaining significantly lower

computational costs and considerably shorter runtime.

As a result, we achieved a fast and highly effective approach that stands competi-

tively in accuracy compared to benchmark forecasting methods. Notably, it excels in terms

of runtime, showcasing exceptional efficiency. Finally, AnMA was a method adapting from

meteorology to real-time demand forecasting, one example of how techniques from other

fields were incorporated.

It has been demonstrated by our research that both the matheuristic methods and

the analogies with the moving average method developed outperform the solver and bench-

mark forecasting methods in terms of speed and accuracy. The effectiveness of these

approaches in addressing critical power system planning problems is highlighted.

We believe that the success of our proposed methods can be attributed to our un-

derstanding of the specific features of both problems and our ability to leverage these

features when designing solution methods. We anticipate that these findings will offer

valuable insights for developing and implementing future hybrid heuristic methods based

on mixed-integer programming or matheuristics and forecasting methods based on Ana-

logues. This holds big potential for driving substantial practical advancements in the

electricity industry.
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8.2 Future research

In addition to the extensive discussion of future work for each research project at the end

of each chapter, an additional list of potential research topics is provided below.

• Multi-objective optimization can be considered: Different trade-offs can be explored

by including multiple objectives, such as minimizing operating costs, reducing state

changes or movements in generators, or reducing greenhouse gas emissions. In prac-

tice, for market operators and generators, it is desirable that the UCP solution not

only be the most cost-effective for the system but also incorporate only the necessary

or indispensable changes to generators. Therefore, the multi-objective UCP problem

would involve introducing a new objective function that minimizes either the num-

ber of state changes of generators or the total power difference of generators between

periods. To our knowledge, this trade-off has not been studied yet.

• Uncertainty and robustness should be addressed: Techniques to handle uncertainties

in the UCP, such as electricity demand, renewable energy sources, or unit outages,

can be explored. Some optimization methods to tackle these problems are robust

optimization or scenario-based methods to obtain resilient solutions to uncertain

conditions. The developed matheuristics can effectively solve these problems when

modeled as MILP. Drawing from the approach used in solving the deterministic

thermal UCP, our implementation of LB and KS incorporates concepts such as soft-

fixing, restricted candidate list, and dominant variable selection. These matheuristics

can be applied to address the stochastic UCP and achieve efficient solutions.

• It is recommended to combine the proposed and conventional methods to diversify

the approaches. Running in parallel on different computers can offer to obtain a

variety of solutions. This way, the best solution can be chosen, and additional tools

can be added to complement the existing methods.

• The thermal UCP can be addressed using a matheuristic approach that combines

constraint programming and mathematical programming to generate an initial feasi-

ble solution for the thermal Unit Commitment Problem (UCP). The strategy involves

discretizing the operating range of generators and incorporating various constraints,



Chapter 8. Main conclusions 111

such as generator limits, minimum up/down times, ramping constraints, spinning

reserves, and demand-supply balancing. This enables the determination of the com-

mitment status of generators and the calculation of power levels through an economic

dispatch calculation, solving a linear problem. This approach is expected to signifi-

cantly reduce the construction time required for the initial solution compared to our

proposed HARDUC method.

• One main challenge is efficiently designing models that address the UPC with network

constraints and consider the allocation of hydro and renewable units considering the

hydro grid and all the characteristics of such units. Another challenge is considering

the couplings between units in combined cycle package plants.
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Description of instances

Table A.1: x7day small instances group.

Configuration

Group File names Periods Gen G1 G2 G3 G4 G5 G6 G7 G8

x7day small uc 061 168 28 12 11 0 0 1 4 0 0

x7day small uc 062 168 35 13 15 2 0 4 0 0 1

x7day small uc 063 168 44 15 13 2 6 3 1 1 3

x7day small uc 064 168 45 15 11 0 1 4 5 6 3

x7day small uc 065 168 49 15 13 3 7 5 3 2 1

x7day small uc 066 168 50 10 10 2 5 7 5 6 5

x7day small uc 067 168 51 17 16 1 3 1 7 2 4

x7day small uc 068 168 51 17 10 6 5 2 1 3 7

x7day small uc 069 168 52 12 17 4 7 5 2 0 5

x7day small uc 070 168 54 13 12 5 7 2 5 4 6

x7day small uc 101 168 60 11 18 6 3 7 8 2 5

x7day small uc 102 168 62 16 17 5 3 5 6 7 3

x7day small uc 103 168 64 13 20 4 9 4 6 2 6

x7day small uc 104 168 66 17 16 8 8 0 6 6 5

x7day small uc 105 168 70 14 21 9 5 8 6 3 4

x7day small uc 106 168 71 25 18 2 4 7 5 2 8

x7day small uc 107 168 75 16 25 5 9 3 3 8 6

x7day small uc 108 168 76 21 21 4 3 8 10 4 5

x7day small uc 109 168 80 17 24 8 9 8 1 8 5

x7day small uc 110 168 81 22 21 4 9 4 3 8 10

112
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Table A.2: x7day medium instances group.

Configuration

Group File names Periods Gen G1 G2 G3 G4 G5 G6 G7 G8

x7day medium uc 111 168 85 19 27 6 6 8 9 3 7

x7day medium uc 112 168 86 24 23 6 7 4 8 6 8

x7day medium uc 113 168 90 24 28 6 7 6 3 12 4

x7day medium uc 114 168 91 26 24 9 4 5 10 6 7

x7day medium uc 115 168 94 22 28 4 10 5 9 7 9

x7day medium uc 116 168 97 27 26 8 14 5 6 7 4

x7day medium uc 117 168 98 24 30 4 8 10 7 10 5

x7day medium uc 118 168 102 29 28 10 6 5 9 9 6

x7day medium uc 119 168 104 25 32 9 0 10 11 9 8

x7day medium uc 120 168 106 30 29 11 9 5 2 11 9

x7day medium uc 121 168 109 32 34 9 7 8 9 4 6

x7day medium uc 122 168 111 32 36 6 4 10 7 10 6

x7day medium uc 123 168 114 29 36 11 10 6 5 7 10

x7day medium uc 124 168 116 34 32 7 5 9 9 11 9

x7day medium uc 125 168 119 32 37 9 5 7 11 9 9

x7day medium uc 126 168 121 35 34 7 11 12 4 7 11

x7day medium uc 127 168 125 32 39 5 8 5 15 13 8

x7day medium uc 128 168 126 37 36 10 12 4 12 10 5

x7day medium uc 129 168 129 33 40 9 7 7 14 5 14

x7day medium uc 130 168 131 38 37 14 10 6 7 5 14

x7day medium uc 131 168 131 34 42 8 8 8 11 14 6

x7day medium uc 071 168 132 46 45 8 0 5 0 12 16

x7day medium uc 132 168 135 37 44 8 8 9 9 13 7

x7day medium uc 133 168 138 42 40 7 11 9 10 6 13

x7day medium uc 134 168 140 38 45 8 7 10 14 10 8

x7day medium uc 135 168 143 43 42 7 12 7 15 10 7

x7day medium uc 136 168 146 40 47 9 7 15 13 7 8

x7day medium uc 137 168 148 45 44 7 16 9 10 10 7

x7day medium uc 138 168 151 41 48 9 16 11 8 9 9

x7day medium uc 139 168 154 46 45 10 15 10 3 15 10

x7day medium uc 140 168 156 43 48 16 11 9 12 9 8

x7day medium uc 072 168 156 40 54 14 8 3 15 9 13

x7day medium uc 073 168 156 50 41 19 11 4 4 12 15
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Table A.3: x7day large instances group.

Configuration

Group File names Periods Gen G1 G2 G3 G4 G5 G6 G7 G8

x7day large uc 074 168 165 51 58 17 19 16 1 2 1

x7day large uc 075 168 167 43 46 17 15 13 15 6 12

x7day large uc 076 168 172 50 59 8 15 1 18 4 17

x7day large uc 077 168 182 53 50 17 15 16 5 14 12

x7day large uc 078 168 182 45 57 19 7 19 19 5 11

x7day large uc 079 168 183 58 50 15 7 16 18 7 12

x7day large uc 080 168 187 55 48 18 5 18 17 15 11

x7day large uc 141 168 185 52 57 15 12 12 13 11 13

x7day large uc 142 168 195 55 62 15 7 18 12 11 15

x7day large uc 143 168 188 54 52 16 4 16 22 14 10

x7day large uc 144 168 205 60 64 17 13 19 10 10 12

x7day large uc 145 168 219 58 52 18 15 16 25 18 17

x7day large uc 146 168 200 58 60 16 15 21 9 9 12

x7day large uc 147 168 212 58 67 16 7 15 22 16 11

x7day large uc 148 168 212 63 60 17 15 22 15 7 13

x7day large uc 149 168 221 66 65 19 3 13 25 15 15

x7day large uc 150 168 204 65 60 17 22 24 5 9 2

x7day large uc 151 168 219 67 62 19 9 15 21 14 12

x7day large uc 152 168 243 65 64 21 23 25 16 12 17

x7day large uc 153 168 263 72 67 25 22 19 8 21 29

x7day large uc 154 168 270 80 66 15 15 21 7 40 26

x7day large uc 155 168 285 95 80 15 25 25 15 15 15

x7day large uc 156 168 300 80 95 33 33 21 21 10 7

x7day large uc 157 168 315 90 90 30 30 20 30 15 10

x7day large uc 158 168 330 85 130 45 35 7 15 10 3

x7day large uc 159 168 345 120 70 60 53 15 7 10 10

x7day large uc 160 168 360 50 90 30 70 60 10 10 40

x7day large uc 161 168 375 70 85 45 22 25 50 31 47

x7day large uc 162 168 390 55 99 70 53 34 30 12 37

x7day large uc 163 168 405 130 111 35 81 21 12 7 8



Appendix B

Results of comparison among

solution algorithms

B.1 Results on instances from group x7day small

Instances extracted from Kazarlis et al. [52], seven days, and a number of generators

between 85 and 156, files uc 061-uc 070 and uc 101-uc 110. All files are available in JSON

format in the following repository: https://github.com/urieliram/tc_uc.
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Figure B.1: Comparison of algorithms on

instance 061.
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Figure B.2: Comparison of algorithms on

instance 062.
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Figure B.3: Comparison of algorithms on

instance 063.
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Figure B.4: Comparison of algorithms on

instance 064.
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Figure B.5: Comparison of algorithms on

instance 065.
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Figure B.6: Comparison of algorithms on

instance 066.
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Figure B.7: Comparison of algorithms on

instance 067.
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Figure B.8: Comparison of algorithms on

instance 068.
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Figure B.9: Comparison of algorithms on

instance 069.
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Figure B.10: Comparison of algorithms on

instance 070.
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Figure B.11: Comparison of algorithms on

instance 101.
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Figure B.12: Comparison of algorithms on

instance 102.
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Figure B.13: Comparison of algorithms on

instance 103.

0 1000 2000 3000 4000 5000 6000 7000
Time (seconds)

4.2152

4.2154

4.2156

4.2158

4.2160

4.2162

4.2164

z (
$)

1e7
Instance uc_104
 (x7day_small)

LB1
LB2
LB3
LB4
KS
SM1

Figure B.14: Comparison of algorithms on

instance 104.
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Figure B.15: Comparison of algorithms on

instance 105.
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Figure B.16: Comparison of algorithms on

instance 106.
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Figure B.17: Comparison of algorithms on

instance 107.
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Figure B.18: Comparison of algorithms on

instance 108.
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Figure B.19: Comparison of algorithms on

instance 109.
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Figure B.20: Comparison of algorithms on

instance 110.
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B.2 Results on instances from group x7day medium

Most of these instances were constructed based on the parameters of the eight genera-

tors proposed by [52], seven days, and a number of generators between 85 and 156, files

uc 111-uc 131, uc 071-uc 073, uc 132-uc 140. All files are available in JSON format in the

following repository: https://github.com/urieliram/tc_uc.
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Figure B.21: Comparison of algorithms on

instance 111.
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Figure B.22: Comparison of algorithms on

instance 112.
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Figure B.23: Comparison of algorithms on

instance 113.
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Figure B.24: Comparison of algorithms on

instance 114.

https://github.com/urieliram/tc_uc
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Figure B.25: Comparison of algorithms on

instance 115.
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Figure B.26: Comparison of algorithms on

instance 116.
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Figure B.27: Comparison of algorithms on

instance 117.
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Figure B.28: Comparison of algorithms on

instance 118.
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Figure B.29: Comparison of algorithms on

instance 119.
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Figure B.30: Comparison of algorithms on

instance 120.
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Figure B.31: Comparison of algorithms on

instance 121.
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Figure B.32: Comparison of algorithms on

instance 122.
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Figure B.33: Comparison of algorithms on

instance 123.
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Figure B.34: Comparison of algorithms on

instance 124.
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Figure B.35: Comparison of algorithms on

instance 125.
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Figure B.36: Comparison of algorithms on

instance 126.
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Figure B.37: Comparison of algorithms on

instance 127.
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Figure B.38: Comparison of algorithms on

instance 128.
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Figure B.39: Comparison of algorithms on

instance 129.
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Figure B.40: Comparison of algorithms on

instance 130.
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Figure B.41: Comparison of algorithms on

instance 131.
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Figure B.42: Comparison of algorithms on

instance 132.
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Figure B.43: Comparison of algorithms on

instance 133.
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Figure B.44: Comparison of algorithms on

instance 134.
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Figure B.45: Comparison of algorithms on

instance 135.
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Figure B.46: Comparison of algorithms on

instance 136.
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Figure B.47: Comparison of algorithms on

instance 137.
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Figure B.48: Comparison of algorithms on

instance 138.
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Figure B.49: Comparison of algorithms on

instance 139.
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Figure B.50: Comparison of algorithms on

instance 140.
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Figure B.51: Comparison of algorithms on

instance 071.
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Figure B.52: Comparison of algorithms on

instance 072.
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Figure B.53: Comparison of algorithms on

instance 073.
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B.3 Results on instances from group x7day large

Most of these instances were constructed based on the parameters of the eight generators

proposed by [52], seven days, and a number of generators between 165 and 405, files

uc 074-uc 080 and uc 141-uc 163. All files are available in JSON format in the following

repository: https://github.com/urieliram/tc_uc.
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Figure B.54: Comparison of algorithms on

instance 074.
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Figure B.55: Comparison of algorithms on

instance 075.
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Figure B.56: Comparison of algorithms on

instance 076.
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Figure B.57: Comparison of algorithms on

instance 077.

https://github.com/urieliram/tc_uc
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Figure B.58: Comparison of algorithms on

instance 078.
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Figure B.59: Comparison of algorithms on

instance 079.
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Figure B.60: Comparison of algorithms on

instance 080.
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Figure B.61: Comparison of algorithms on

instance 141.
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Figure B.62: Comparison of algorithms on

instance 142.
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Figure B.63: Comparison of algorithms on

instance 143.
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Figure B.64: Comparison of algorithms on

instance 144.
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Figure B.65: Comparison of algorithms on

instance 145.
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Figure B.66: Comparison of algorithms on

instance 146.
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Figure B.67: Comparison of algorithms on

instance 147.
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Figure B.68: Comparison of algorithms on

instance 148.
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Figure B.69: Comparison of algorithms on

instance 149.
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Figure B.70: Comparison of algorithms on

instance 150.
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Figure B.71: Comparison of algorithms on

instance 151.
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Figure B.72: Comparison of algorithms on

instance 152.
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Figure B.73: Comparison of algorithms on

instance 153.
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Figure B.74: Comparison of algorithms on

instance 154.
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Figure B.75: Comparison of algorithms on

instance 155.
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Figure B.76: Comparison of algorithms on

instance 156.
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Figure B.77: Comparison of algorithms on

instance 157.
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Figure B.78: Comparison of algorithms on

instance 158.

2000 3000 4000 5000 6000 7000
Time (seconds)

2.4174

2.4176

2.4178

2.4180

2.4182

2.4184

2.4186

2.4188

2.4190

z (
$)

1e8
Instance uc_159
 (x7day_large)

LB1
LB2
LB3
LB4
KS

Figure B.79: Comparison of algorithms on

instance 159.
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Figure B.80: Comparison of algorithms on

instance 160.
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Figure B.81: Comparison of algorithms on

instance 161.
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Figure B.82: Comparison of algorithms on

instance 162.
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Figure B.83: Comparison of algorithms on

instance 163.



Appendix C

Statistical results

Table C.1: Normality hypothesis test summary for instances in the group x7day small.

Null hypothesis Test p-value Decision

HGPS is from the normal distribution Shapiro-Wilk 1.0000 We fail to reject Ho

HARDUC is from the normal distribution Shapiro-Wilk 0.3069 We fail to reject Ho

CBS is from the normal distribution Shapiro-Wilk 0.0000* We reject Ho and accept Ha: sample

not from a normal distribution

7200 seconds time limit

LB1 is from the normal distribution Shapiro-Wilk 0.1540 We fail to reject Ho

LB2 is from the normal distribution Shapiro-Wilk 0.0360* We reject Ho and accept Ha: sample

is not from the normal distribution

LB3 is from the normal distribution Shapiro-Wilk 0.2751 We fail to reject Ho

LB4 is from the normal distribution Shapiro-Wilk 0.2282 We fail to reject Ho

KS is from the normal distribution Shapiro-Wilk 0.0786 We fail to reject Ho

SM1 is from the normal distribution Shapiro-Wilk 0.2493 We fail to reject Ho

SM2 is from the normal distribution Shapiro-Wilk 0.1540 We fail to reject Ho

4000 seconds time limit

LB1 1h is from the normal distribution Shapiro-Wilk 0.0614 We fail to reject Ho

LB2 1h is from the normal distribution Shapiro-Wilk 0.0307* We reject Ho and accept Ha: sample

is not from the normal distribution

LB3 1h is from the normal distribution Shapiro-Wilk 0.0997 We fail to reject Ho

LB4 1h is from the normal distribution Shapiro-Wilk 0.0441* We reject Ho and accept Ha: sample

is not from the normal distribution

KS 1h is from the normal distribution Shapiro-Wilk 0.0735 We fail to reject Ho

SM1 1h is from the normal distribution Shapiro-Wilk 0.4482 We fail to reject Ho

SM2 1h is from the normal distribution Shapiro-Wilk 0.2626 We fail to reject Ho

* Significance level 0.05
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Table C.2: Normality hypothesis test summary for instances in the group x7day medium.

Null hypothesis Test p-value Decision

HGPS is from the normal distribution Shapiro-Wilk 1.0000 We fail to reject Ho

HARDUC is from the normal distribution Shapiro-Wilk 0.5222 We fail to reject Ho

CBS is from the normal distribution Shapiro-Wilk 0.0015* We reject Ho and accept Ha: sample

not from a normal distribution

4000 seconds time limit

LB1 1h is from the normal distribution Shapiro-Wilk 0.0089* We reject Ho and accept Ha: sample

not from a normal distribution

LB2 1h is from the normal distribution Shapiro-Wilk 0.0022* We reject Ho and accept Ha: sample

not from a normal distribution

LB3 1h is from the normal distribution Shapiro-Wilk 0.0078* We reject Ho and accept Ha: sample

not from a normal distribution

LB4 1h is from the normal distribution Shapiro-Wilk 0.005* We reject Ho and accept Ha: sample

not from a normal distribution

KS 1h is from the normal distribution Shapiro-Wilk 0.0152* We reject Ho and accept Ha: sample

not from a normal distribution

SM1 1h is from the normal distribution Shapiro-Wilk 0.0021* We reject Ho and accept Ha: sample

not from a normal distribution

SM2 1h is from the normal distribution Shapiro-Wilk 0.0089* We reject Ho and accept Ha: sample

not from a normal distribution

7200 seconds time limit

LB1 is from the normal distribution Shapiro-Wilk 0.0187* We reject Ho and accept Ha: sample

not from a normal distribution

LB2 is from the normal distribution Shapiro-Wilk 0.0138* We reject Ho and accept Ha: sample

not from a normal distribution

LB3 is from the normal distribution Shapiro-Wilk 0.2274 We fail to reject Ho

LB4 is from the normal distribution Shapiro-Wilk 0.0587 We fail to reject Ho

KS is from the normal distribution Shapiro-Wilk 0.0038* We reject Ho and accept Ha: sample

not from a normal distribution

SM1 is from the normal distribution Shapiro-Wilk 0.0188* We reject Ho and accept Ha: sample

not from a normal distribution

SM2 is from the normal distribution Shapiro-Wilk 0.7656 We fail to reject Ho

* Significance level 0.05
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Table C.3: Normality hypothesis test summary for instances in the group x7day large.

Null hypothesis Test p-value Decision

HGPS is from the normal distribution Shapiro-Wilk 1.00000 We fail to reject Ho

HARDUC is from the normal distribution Shapiro-Wilk 0.75220 We fail to reject Ho

CBS is from the normal distribution Shapiro-Wilk 0.0000* We reject Ho and accept Ha: sample

not from a normal distribution

7200 seconds time limit

LB1 is from the normal distribution Shapiro-Wilk 0.73600 We fail to reject Ho

LB2 is from the normal distribution Shapiro-Wilk 0.87180 We fail to reject Ho

LB3 is from the normal distribution Shapiro-Wilk 0.85790 We fail to reject Ho

LB4 is from the normal distribution Shapiro-Wilk 0.92370 We fail to reject Ho

KS is from the normal distribution Shapiro-Wilk 0.12470 We fail to reject Ho

SM1 is from the normal distribution Shapiro-Wilk 0.0080* We reject Ho and accept Ha: sample

not from a normal distribution

SM2 is from the normal distribution Shapiro-Wilk 0.73600 We fail to reject Ho

4000 seconds time limit

LB1 1h is from the normal distribution Shapiro-Wilk 0.85130 We fail to reject Ho

LB2 1h is from the normal distribution Shapiro-Wilk 0.84750 We fail to reject Ho

LB3 1h is from the normal distribution Shapiro-Wilk 0.31810 We fail to reject Ho

LB4 1h is from the normal distribution Shapiro-Wilk 0.46750 We fail to reject Ho

KS 1h is from the normal distribution Shapiro-Wilk 0.03830* We reject Ho and accept Ha: sample

not from a normal distribution

SM1 1h is from the normal distribution Shapiro-Wilk 0.46900 We fail to reject Ho

SM2 1h is from the normal distribution Shapiro-Wilk 0.60920 We fail to reject Ho

* Significance level 0.05

Table C.4: Analysis of variance summary of the constructive methods HARDUC, HGPS,

and CBS.

Null hypothesis Instances Test p-value Decision

The mean for each population

is equal

x7day small Kruskal-Wallis 0.0000* We reject Ho and accept Ha:

at least one population mean

different from the rest

The mean for each population

is equal

x7day medium Kruskal-Wallis 0.0000* We reject Ho and accept Ha:

at least one population mean

different from the rest

The mean for each population

is equal

x7day large Kruskal-Wallis 0.0000* We reject Ho and accept Ha:

at least one population mean

different from the rest

* Significance level 0.05



Appendix C. Statistical results 134

Table C.5: Differences mean test summary between the constructive methods HARDUC

and HGPS.

Null hypothesis Instances Test p-value Decision

The means difference of the

samples from the same distribu-

tion

x7day small Mann-Whitney 0.0002* We reject Ho and accept Ha:

HARDUC’s mean is less than

HGPS’s mean

The means difference of the

samples from the same distribu-

tion

x7day medium Mann-Whitney 0.0000* We reject Ho and accept Ha:

HARDUC’s mean is less than

HGPS’s mean

The means difference of the

samples from the same distribu-

tion

x7day large Mann-Whitney 0.0000* We reject Ho and accept Ha:

HARDUC’s mean is less than

HGPS’s mean

* Significance level 0.05

Table C.6: Analysis of variance summary for LB1 1h, LB2 1h, LB3 1h, LB4 1h, KS 1h,

SM1 1h, SM2 1h under a running time limit of 4000 seconds.

Null hypothesis Instances Test p-value Decision

The mean for each population

is equal

x7day small Kruskal-Wallis 0.9758 We fail to reject Ho

The mean for each population

is equal

x7day medium Kruskal-Wallis 0.0000* We reject Ho and accept Ha:

at least one population mean

different from the rest

The mean for each population

is equal

x7day large Kruskal-Wallis 0.0066* We reject Ho and accept Ha:

at least one population mean

different from the rest

* Significance level 0.05

Table C.7: Analysis of variance summary for LB1, LB2, LB3, LB4, KS, MILP, SM2 under

a running time limit of 7200 seconds.

Null hypothesis Instances Test p-value Decision

The mean for each population is

equal

x7day small Kruskal-Wallis 0.7289 We fail to reject Ho

The mean for each population is

equal

x7day medium Kruskal-Wallis 0.0000* We reject Ho and accept Ha:

at least one population mean

different from the rest

The mean for each population is

equal

x7day large Kruskal-Wallis 0.0007* We reject Ho and accept Ha:

at least one population mean

different from the rest

* Significance level 0.05
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Table C.8: Means difference statistical test summary among all methods for instances from

group x7day small under a running time limit of 4000 seconds.

Null hypothesis Test p-value Decision

SM1 1h-LB2 1h: There is no difference between the two population means Mann-Whitney 0.3779 We fail to reject Ho

SM1 1h-KS 1h: There is no difference between the two population means T-test for two samples 0.2725 We fail to reject Ho

SM1 1h-LB1 1h: There is no difference between the two population means T-test for two samples 0.2499 We fail to reject Ho

SM1 1h-LB4 1h: There is no difference between the two population means T-test for two samples 0.1737 We fail to reject Ho

SM1 1h-LB3 1h: There is no difference between the two population means T-test for two samples 0.1318 We fail to reject Ho

SM1 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.0888 We fail to reject Ho

LB2 1h-KS 1h: There is no difference between the two population means Mann-Whitney 0.5484 We fail to reject Ho

LB2 1h-LB1 1h: There is no difference between the two population means Mann-Whitney 0.4302 We fail to reject Ho

LB2 1h-LB4 1h: There is no difference between the two population means Mann-Whitney 0.2714 We fail to reject Ho

LB2 1h-LB3 1h: There is no difference between the two population means Mann-Whitney 0.2367 We fail to reject Ho

LB2 1h-SM2 1h: There is no difference between the two population means Mann-Whitney 0.1617 We fail to reject Ho

KS 1h-LB1 1h: There is no difference between the two population means T-test for two samples 0.492 We fail to reject Ho

KS 1h-LB4 1h: There is no difference between the two population means T-test for two samples 0.4016 We fail to reject Ho

KS 1h-LB3 1h: There is no difference between the two population means T-test for two samples 0.3336 We fail to reject Ho

KS 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.2923 We fail to reject Ho

LB1 1h-LB4 1h: There is no difference between the two population means T-test for two samples 0.4039 We fail to reject Ho

LB1 1h-LB3 1h: There is no difference between the two population means T-test for two samples 0.332 We fail to reject Ho

LB1 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.287 We fail to reject Ho

LB4 1h-LB3 1h: There is no difference between the two population means T-test for two samples 0.4211 We fail to reject Ho

LB4 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.3808 We fail to reject Ho

LB3 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.4675 We fail to reject Ho

* Significance level 0.05
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Table C.9: Means difference statistical test summary among all methods for instances from

group x7day small under a running time limit of 7200 seconds.

Null hypothesis Test p-value Decision

SM1-LB2: There is no difference between

the two population means

Mann-Whitney 0.1584 We fail to reject Ho

SM1-LB1: There is no difference between

the two population means

Mann-Whitney 0.1396 We fail to reject Ho

SM1-LB4: There is no difference between

the two population means

Mann-Whitney 0.117 We fail to reject Ho

SM1-SM2: There is no difference between

the two population means

T-test for two samples *0.0362 We reject Ho and accept

Ha: MILP’s mean less

than MILP2’s

SM1-KS: There is no difference between

the two population means

T-test for two samples 0.0501 We fail to reject Ho

SM1-LB3: There is no difference between

the two population means

T-test for two samples *0.0358 We reject Ho and accept

Ha: MILP’s mean less

than LB3’s

LB2-LB1: There is no difference between

the two population means

Mann-Whitney 0.4569 We fail to reject Ho

LB2-LB4: There is no difference between

the two population means

Mann-Whitney 0.4143 We fail to reject Ho

LB2-SM2: There is no difference between

the two population means

Mann-Whitney 0.2326 We fail to reject Ho

LB2-KS: There is no difference between

the two population means

Mann-Whitney 0.4091 We fail to reject Ho

LB2-LB3: There is no difference between

the two population means

Mann-Whitney 0.2989 We fail to reject Ho

LB1-LB4: There is no difference between

the two population means

Mann-Whitney 0.4515 We fail to reject Ho

LB1-SM2: There is no difference between

the two population means

Mann-Whitney 0.2669 We fail to reject Ho

LB1-KS: There is no difference between

the two population means

Mann-Whitney 0.4623 We fail to reject Ho

LB1-LB3: There is no difference between

the two population means

Mann-Whitney 0.2896 We fail to reject Ho

LB4-SM2: There is no difference between

the two population means

Mann-Whitney 0.3036 We fail to reject Ho

LB4-KS: There is no difference between

the two population means

Mann-Whitney 0.4623 We fail to reject Ho

LB4-LB3: There is no difference between

the two population means

Mann-Whitney 0.3375 We fail to reject Ho

SM2-KS: There is no difference between

the two population means

T-test for two samples 0.3651 We fail to reject Ho

SM2-LB3: There is no difference between

the two population means

T-test for two samples 0.3434 We fail to reject Ho

KS-LB3: There is no difference between

the two population means

T-test for two samples 0.4909 We fail to reject Ho

* Significance level 0.05
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Table C.10: Means difference statistical test summary among all methods for instances

from group x7day medium under a running time limit of 4000 seconds.

Null hypothesis Test p-value Decision

KS 1h-LB2 1h: There is no difference

between the two population means

Mann-Whitney *0.0108 We reject Ho and accept Ha: KS 1h’s

mean less than LB2 1h’s

KS 1h-LB1 1h: There is no difference

between the two population means

Mann-Whitney *0.0031 We reject Ho and accept Ha: KS 1h’s

mean less than LB1 1h’s

KS 1h-LB4 1h: There is no difference

between the two population means

Mann-Whitney *0.0022 We reject Ho and accept Ha: KS 1h’s

mean less than LB4 1h’s

KS 1h-LB3 1h: There is no difference

between the two population means

Mann-Whitney *0.001 We reject Ho and accept Ha: KS 1h’s

mean less than LB3 1h’s

KS 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney *0.0 We reject Ho and accept Ha: KS 1h’s

mean less than SM1 1h’s

KS 1h-SM2 1h: There is no difference

between the two population means

Mann-Whitney *0.0 We reject Ho and accept Ha: KS 1h’s

mean less than SM2 1h’s

LB2 1h-LB1 1h: There is no difference

between the two population means

Mann-Whitney 0.2699 We fail to reject Ho

LB2 1h-LB4 1h: There is no difference

between the two population means

Mann-Whitney 0.2405 We fail to reject Ho

LB2 1h-LB3 1h: There is no difference

between the two population means

Mann-Whitney 0.1593 We fail to reject Ho

LB2 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney *0.0002 We reject Ho and accept Ha: LB2 1h’s

mean less than SM1 1h’s

LB2 1h-SM2 1h: There is no difference

between the two population means

Mann-Whitney *0.0002 We reject Ho and accept Ha: LB2 1h’s

mean less than SM2 1h’s

LB1 1h-LB4 1h: There is no difference

between the two population means

Mann-Whitney 0.4745 We fail to reject Ho

LB1 1h-LB3 1h: There is no difference

between the two population means

Mann-Whitney 0.3538 We fail to reject Ho

LB1 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney *0.0003 We reject Ho and accept Ha: LB1 1h’s

mean less than SM1 1h’s

LB1 1h-SM2 1h: There is no difference

between the two population means

Mann-Whitney *0.0003 We reject Ho and accept Ha: LB1 1h’s

mean less than SM2 1h’s

LB4 1h-LB3 1h: There is no difference

between the two population means

Mann-Whitney 0.3606 We fail to reject Ho

LB4 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney *0.0005 We reject Ho and accept Ha: LB4 1h’s

mean less than SM1 1h’s

LB4 1h-SM2 1h: There is no difference

between the two population means

Mann-Whitney *0.0004 We reject Ho and accept Ha: LB4 1h’s

mean less than SM2 1h’s

LB3 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney *0.0009 We reject Ho and accept Ha: LB3 1h’s

mean less than SM1 1h’s

LB3 1h-SM2 1h: There is no difference

between the two population means

Mann-Whitney *0.0005 We reject Ho and accept Ha: LB3 1h’s

mean less than SM2 1h’s

SM1 1h-SM2 1h: There is no difference

between the two population means

Mann-Whitney 0.2699 We fail to reject Ho

* Significance level 0.05
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Table C.11: Means difference statistical test summary among all methods for instances

from group x7day medium under a running time limit of 7200 seconds.

Null hypothesis Test p-value Decision

KS-SM1: There is no difference between

the two population means

Mann-Whitney 0.3813 We fail to reject Ho

KS-LB1: There is no difference between

the two population means

Mann-Whitney *0.0165 We reject Ho and accept Ha: KS’s mean

less than LB1’s

KS-LB4: There is no difference between

the two population means

Mann-Whitney *0.0125 We reject Ho and accept Ha: KS’s mean

less than LB4’s

KS-LB2: There is no difference between

the two population means

Mann-Whitney *0.0131 We reject Ho and accept Ha: KS’s mean

less than LB2’s

KS-LB3: There is no difference between

the two population means

Mann-Whitney *0.0012 We reject Ho and accept Ha: KS’s mean

less than LB3’s

KS-SM2: There is no difference between

the two population means

Mann-Whitney *0.0 We reject Ho and accept Ha: KS’s mean

less than MILP2’s

SM1-LB1: There is no difference between

the two population means

Mann-Whitney 0.061 We fail to reject Ho

SM1-LB4: There is no difference between

the two population means

Mann-Whitney 0.061 We fail to reject Ho

SM1-LB2: There is no difference between

the two population means

Mann-Whitney 0.0691 We fail to reject Ho

SM1-LB3: There is no difference between

the two population means

Mann-Whitney *0.0103 We reject Ho and accept Ha: MILP’s

mean less than LB3’s

SM1-SM2: There is no difference between

the two population means

Mann-Whitney *0.0 We reject Ho and accept Ha: MILP’s

mean less than MILP2’s

LB1-LB4: There is no difference between

the two population means

Mann-Whitney 0.4418 We fail to reject Ho

LB1-LB2: There is no difference between

the two population means

Mann-Whitney 0.5219 We fail to reject Ho

LB1-LB3: There is no difference between

the two population means

Mann-Whitney 0.1463 We fail to reject Ho

LB1-SM2: There is no difference between

the two population means

Mann-Whitney *0.0001 We reject Ho and accept Ha: LB1’s mean

less than MILP2’s

LB4-LB2: There is no difference between

the two population means

Mann-Whitney 0.551 We fail to reject Ho

LB4-LB3: There is no difference between

the two population means

T-test for two samples 0.2583 We fail to reject Ho

LB4-SM2: There is no difference between

the two population means

T-test for two samples *0.0001 We reject Ho and accept Ha: LB4’s mean

less than MILP2’s

LB2-LB3: There is no difference between

the two population means

Mann-Whitney 0.1638 We fail to reject Ho

LB2-SM2: There is no difference between

the two population means

Mann-Whitney *0.0002 We reject Ho and accept Ha: LB2’s mean

less than MILP2’s

LB3-SM2: There is no difference between

the two population means

Mann-Whitney *0.0004 We reject Ho and accept Ha: LB3’s mean

less than MILP2’s

* Significance level 0.05
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Table C.12: Means difference statistical test summary among all methods for instances

from group x7day large under a running time limit of 4000 seconds.

Null hypothesis Test p-value Decision

KS 1h-LB1 1h: There is no difference

between the two population means

T-test for two samples *0.0071 We reject Ho and accept Ha: KS 1h’s

mean less than LB1 1h’s

KS 1h-LB2 1h: There is no difference

between the two population means

T-test for two samples *0.0038 We reject Ho and accept Ha: KS 1h’s

mean less than LB2 1h’s

KS 1h-LB4 1h: There is no difference

between the two population means

T-test for two samples *0.0005 We reject Ho and accept Ha: KS 1h’s

mean less than LB4 1h’s

KS 1h-LB3 1h: There is no difference

between the two population means

Mann-Whitney *0.0021 We reject Ho and accept Ha: KS 1h’s

mean less than LB3 1h’s

KS 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney *0.0003 We reject Ho and accept Ha: KS 1h’s

mean less than SM1 1h’s

KS 1h-SM2 1h: There is no difference

between the two population means

Mann-Whitney *0.0001 We reject Ho and accept Ha: KS 1h’s

mean less than SM2 1h’s

LB1 1h-LB2 1h: There is no difference

between the two population means

T-test for two samples 0.2958 We fail to reject Ho

LB1 1h-LB4 1h: There is no difference

between the two population means

T-test for two samples 0.1441 We fail to reject Ho

LB1 1h-LB3 1h: There is no difference

between the two population means

T-test for two samples 0.1603 We fail to reject Ho

LB1 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney *0.0425 We reject Ho and accept Ha: LB1 1h’s

mean less than SM1 1h’s

LB1 1h-SM2 1h: There is no difference

between the two population means

T-test for two samples *0.0033 We reject Ho and accept Ha: LB1 1h’s

mean less than SM2 1h’s

LB2 1h-LB4 1h: There is no difference

between the two population means

T-test for two samples 0.3234 We fail to reject Ho

LB2 1h-LB3 1h: There is no difference

between the two population means

T-test for two samples 0.329 We fail to reject Ho

LB2 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney 0.1208 We fail to reject Ho

LB2 1h-SM2 1h: There is no difference

between the two population means

T-test for two samples *0.0155 We reject Ho and accept Ha: LB2 1h’s

mean less than SM2 1h’s

LB4 1h-LB3 1h: There is no difference

between the two population means

T-test for two samples 0.4934 We fail to reject Ho

LB4 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney 0.2347 We fail to reject Ho

LB4 1h-SM2 1h: There is no difference

between the two population means

T-test for two samples *0.032 We reject Ho and accept Ha: LB4 1h’s

mean less than SM2 1h’s

LB3 1h-SM1 1h: There is no difference

between the two population means

Mann-Whitney 0.1853 We fail to reject Ho

LB3 1h-SM2 1h: There is no difference

between the two population means

T-test for two samples *0.0408 We reject Ho and accept Ha: LB3 1h’s

mean less than SM2 1h’s

SM1 1h-SM2 1h: There is no difference

between the two population means

Mann-Whitney 0.1208 We fail to reject Ho

* Significance level 0.05
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Table C.13: Means difference statistical test summary among all methods for instances

from group x7day large under a running time limit of 7200 seconds.

Null hypothesis Test p-value Decision

KS-LB2: There is no difference between

the two population means

Mann-Whitney *0.0164 We reject Ho and accept Ha: KS’s mean

less than LB2’s

KS-LB1: There is no difference between

the two population means

Mann-Whitney *0.0105 We reject Ho and accept Ha: KS’s mean

less than LB1’s

KS-LB4: There is no difference between

the two population means

Mann-Whitney *0.0072 We reject Ho and accept Ha: KS’s mean

less than LB4’s

KS-LB3: There is no difference between

the two population means

Mann-Whitney *0.0019 We reject Ho and accept Ha: KS’s mean

less than LB3’s

KS-SM1: There is no difference between

the two population means

Mann-Whitney *0.0021 We reject Ho and accept Ha: KS’s mean

less than MILP’s

KS-SM2: There is no difference between

the two population means

Mann-Whitney *0.0001 We reject Ho and accept Ha: KS’s mean

less than MILP2’s

LB2-LB1: There is no difference between

the two population means

T-test for two samples 0.3812 We fail to reject Ho

LB2-LB4: There is no difference between

the two population means

T-test for two samples 0.2823 We fail to reject Ho

LB2-LB3: There is no difference between

the two population means

T-test for two samples 0.1417 We fail to reject Ho

LB2-SM1: There is no difference between

the two population means

T-test for two samples 0.0858 We fail to reject Ho

LB2-SM2: There is no difference between

the two population means

T-test for two samples *0.0012 We reject Ho and accept Ha: LB2’s mean

less than MILP2’s

LB1-LB4: There is no difference between

the two population means

T-test for two samples 0.3952 We fail to reject Ho

LB1-LB3: There is no difference between

the two population means

T-test for two samples 0.2175 We fail to reject Ho

LB1-SM1: There is no difference between

the two population means

T-test for two samples 0.1337 We fail to reject Ho

LB1-SM2: There is no difference between

the two population means

T-test for two samples *0.0022 We reject Ho and accept Ha: LB1’s mean

less than MILP2’s

LB4-LB3: There is no difference between

the two population means

T-test for two samples 0.2932 We fail to reject Ho

LB4-SM1: There is no difference between

the two population means

T-test for two samples 0.1826 We fail to reject Ho

LB4-SM2: There is no difference between

the two population means

T-test for two samples *0.0032 We reject Ho and accept Ha: LB4’s mean

less than MILP2’s

LB3-SM1: There is no difference between

the two population means

T-test for two samples 0.3414 We fail to reject Ho

LB3-SM2: There is no difference between

the two population means

T-test for two samples *0.0101 We reject Ho and accept Ha: LB3’s mean

less than MILP2’s

SM1-SM2: There is no difference between

the two population means

T-test for two samples *0.0290 We reject Ho and accept Ha: MILP’s

mean less than MILP2’s

* Significance level 0.05
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Table D.1: Results of the Levene test among methods with and without correction with

moving average (MA) under a 2-hours forecast.

Method 1 Method 2 Null Hypothesis Test p-value Decision

XAnMA PCR XAn PCR The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA Lasso XAn Lasso The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA Ridge XAn Ridge The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA OLS XAn OLS The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA Lasso euc XAn Lasso euc The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA Ridge euc XAn Ridge euc The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA OLS euc XAn OLS euc The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA RF XAn RF The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA PLS XAn PLS The variances are

equal between

samples

Levene 1.0000 We fail to reject Ho; Ho ac-

cepted

XAnMA Boost XAn Boost The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

XAnMA Bagg XAn Bagg The variances are

equal between

samples

Levene *0.0000 We reject Ho and accept Ha:

the variances are not equal

between samples

* Significance level 0.05
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Table D.2: Summary of results of the first test under a five-minute forecast.

Method MAE MAPE Mean time (s)

AnMA PCR 6.81e+0 2.51e-1 1.60e+0

AnMA Lasso 7.83e+0 2.89e-1 1.53e+0

AnMA Ridge 7.84e+0 2.89e-1 1.62e+0

AnMA OLS 8.19e+0 3.03e-1 1.50e+0

AnMA Lasso euc 8.79e+0 3.25e-1 1.97e+0

AnMA Ridge euc 8.79e+0 3.25e-1 1.97e+0

AnMA OLS euc 8.89e+0 3.29e-1 1.82e+0

Persistent 9.03e+0 3.31e-1 0.00e+0

HWM 9.82e+0 3.60e-1 5.58e+0

HWA 9.91e+0 3.64e-1 3.55e+0

AnMA RF 1.05e+1 3.90e-1 1.61e+0

AnMA Boost 1.21e+1 4.54e-1 1.53e+0

AnMA RF euc 1.23e+1 4.58e-1 1.83e+0

AnMA Bagg 1.26e+1 4.69e-1 1.59e+0

AnMA Boost euc 1.43e+1 5.33e-1 1.79e+0

AnMA Bagg euc 1.49e+1 5.54e-1 1.98e+0

An RF 2.25e+1 8.34e-1 1.61e+0

An Boost 2.26e+1 8.35e-1 1.53e+0

An Bagg 2.33e+1 8.62e-1 1.59e+0

An RF euc 2.78e+1 1.03e+0 1.83e+0

An PLS euc 2.81e+1 1.04e+0 2.01e+0

An Boost euc 2.81e+1 1.04e+0 1.79e+0

AnMA PLS euc 2.81e+1 1.04e+0 2.01e+0

An Bagg euc 2.88e+1 1.07e+0 1.98e+0

An Ridge 3.02e+1 1.11e+0 1.62e+0

An Lasso 3.02e+1 1.11e+0 1.53e+0

AnMA PLS 3.16e+1 1.16e+0 1.57e+0

An PLS 3.16e+1 1.16e+0 1.56e+0

An OLS 3.24e+1 1.19e+0 1.50e+0

An Ridge euc 3.42e+1 1.27e+0 1.97e+0

An Lasso euc 3.42e+1 1.27e+0 1.97e+0

An PCR 3.53e+1 1.30e+0 1.60e+0

An OLS euc 3.63e+1 1.35e+0 1.82e+0
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Table D.3: Summary of results of the second test under a two-and-a-half-hour forecast.

Method MAE MAPE Mean time (s)

XAnMA PCR 3.06e+1 1.13e+0 1.60e+0

XAnMA Lasso 3.25e+1 1.20e+0 1.53e+0

XAnMA Ridge 3.25e+1 1.20e+0 1.62e+0

XAnMA OLS 3.25e+1 1.20e+0 1.50e+0

XAnMA Lasso euc 3.49e+1 1.30e+0 1.97e+0

XAnMA Ridge euc 3.49e+1 1.30e+0 1.97e+0

XAnMA OLS euc 3.50e+1 1.31e+0 1.82e+0

XHWA 3.77e+1 1.37e+0 3.54e+0

XHWM 3.97e+1 1.43e+0 5.59e+0

XAn Lasso 4.79e+1 1.76e+0 1.53e+0

XAn Ridge 4.80e+1 1.76e+0 1.62e+0

XAnMA RF 4.81e+1 1.77e+0 1.62e+0

XAn PLS 4.84e+1 1.78e+0 1.57e+0

XAnMA PLS 4.84e+1 1.78e+0 1.57e+0

XAn OLS 4.86e+1 1.78e+0 1.50e+0

XAnMA Bagg 4.84e+1 1.79e+0 1.60e+0

XAnMA Boost 4.88e+1 1.80e+0 1.53e+0

XAn PCR 5.13e+1 1.89e+0 1.60e+0

XAn Lasso euc 5.33e+1 1.98e+0 1.97e+0

XAn Ridge euc 5.33e+1 1.98e+0 1.97e+0

XAn euc 5.34e+1 1.98e+0 1.82e+0

XAnMA RF euc 5.35e+1 1.99e+0 1.83e+0

XAnMA Boost euc 5.42e+1 2.01e+0 1.79e+0

XAnMA Bagg euc 5.47e+1 2.03e+0 1.99e+0

XAn Boost 6.02e+1 2.21e+0 1.53e+0

XAn RF 6.03e+1 2.22e+0 1.62e+0

XAn Bagg 6.06e+1 2.23e+0 1.59e+0

XAnMA PLS euc 6.89e+1 2.56e+0 2.01e+0

XAn Boost euc 6.89e+1 2.56e+0 1.79e+0

XAn PLS euc 6.89e+1 2.56e+0 2.01e+0

XAn RF euc 6.91e+1 2.56e+0 1.83e+0

XAn Bagg euc 6.95e+1 2.57e+0 1.99e+0
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plementations. EURO Advanced Tutorials on Operational Research. Springer, Cham,

Switzerland, 2021.
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