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Optimal compression in natural gas networks: a
geometric programming approach

Sidhant Misra, Michael W. Fisher, Scott Backhaus, Russell Bent, Michael Chertkov, Feng Pan

Abstract—Natural gas transmission pipelines are complex sys-
tems whose flow characteristics are governed by challenging non-
linear physical behavior. These pipelines extend over hundreds
and even thousands of miles with gas injected into the system at
a constant rate. A series of compressors are distributed along the
pipeline to boost the gas pressure to maintain system performance
and throughput. These compressors consume a portion of the
gas, and one goal of the operator is to control the compressor
operation to minimize this consumption while satisfying pressure
constraints at the gas load points. The optimization of these
operations is computationally challenging, and many pipelines
rely on the intuition and prior experience of operators to make
these decisions. Here, we present a new geometric programming
approach for optimizing compressor operation in natural gas
pipelines. Using models of real natural gas pipelines, we show that
the geometric programming algorithm consistently outperforms
approaches that mimic existing state of practice.

Index Terms—Natural Gas Network, Optimal Compression,
Geometric Programming, Dynamic Programming,

I. INTRODUCTION: HISTORY & MOTIVATION

IN recent years, worldwide natural gas reserves have ex-
panded at a rapid pace. The invention and application

of hydraulic fracturing in the US has enabled the economic
capture of many sources of unconventional natural gas [1]
while improved exploration techniques and increased offshore
activity has led to increased conventional reserves in several
countries. The increased availability and lower cost of gas
in these regions are making it more attractive economically.
In the US, the economic advantage of gas is pushing out
coal (and to a lesser extent fuel oil) as a primary source
of energy. In addition, the lower CO2 emissions from gas
mitigate much of the uncertainty related to the future economic
cost of carbon emissions. These properties make gas a very
attractive bridge fuel to a low carbon economy, and this shift
is already occurring in several regions of the US electric sector
[2]. The high cost and long economic lifetime of the electrical
generation assets acts to lock in this shift to a large degree.

The cost of the fuel is not the only advantage of natural gas
over coal and fuel oil. From the planning and construction
point of view, the physical footprint and total emissions of
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gas turbines is smaller than coal or fuel oil-based gener-
ation easing the difficulty of siting and permitting. From
an operational perspective, gas turbines can quickly change
their generation output in response to changes intermittent
renewable generation such as wind. This ability to move
quickly is also manifest in the ability to quickly start up
a gas turbine from a cold condition (especially single-cycle
gas turbines). The combination of these benefits is driving
the higher penetration of gas turbines into the the electrical
grid. The Independent System Operator of New England (ISO-
NE) is a prime example. Over the two decades, the level of
gas generation in ISO-NE has increased from 5% to 50% of
total generation capacity [3]. However, the benefits of natural
gas are not without some risk. As the level of natural gas-
based generation increases, larger and perhaps more variable1,
natural gas loads will effect the operations of the large natural
gas transmission pipelines that bring the gas from the sources
to the generator and other gas loads. The impact is not just one-
way. The finite capacity of these gas transmission pipelines
will limit the availability of gas which will directly affect
ability of natural gas generators to respond to grid operator
control commands.

The majority of the distance between gas sources and gas
generators and other loads is covered by large, high-pressure
transmission pipelines. High pressure/density enables high
throughput with the pressure drop driving the gas through
the pipeline. As the pressure falls, the flow velocity increases
(under constant mass flux) and the pressure then falls even
faster. Gas compressors are used to maintain the throughput
of pipeline and maintain the required pressure at the customer
load points. Often these gas compressors are driven by gas
engines that burn natural gas from the pipeline itself. Typical
designs of transmission pipelines places compressors every
∼75-150 km. In large transmission pipelines that span 1000
km or more, compressors consume (burn) ∼ 2 − 5% of the
transmitted gas. This burn is a cost of transporting the gas,
and who bears that cost affects the goals of the operational
optimizations (discussed below). Complicating the domain, the
bearer of this cost differs from country to country.

The difficulty and expense of building new or expanding
large-scale infrastructure coupled with the increasing (and the
potentially more time-variable) gas loads calls for improved
optimization of pipeline operations. However, the goals of
these optimizations must be aware of and developed within the
regulatory, market and ownership frameworks of the pipelines.

1Natural gas generation is often used to smooth the variability in renewable
energy sources.
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Here, we briefly review two existing frameworks that are
at opposite ends of this regulatory/ownership spectrum. Nor-
way presents a relatively simple framework. In Norway, gas
sources, gas pipelines, and the sale of gas inside and outside
the country is controlled by the government. Norway produces
more gas than can be domestically consumed and has strong
economic motivations to sell this excess to the rest of Europe.
The demand for the gas (and the available Norwegian gas
resource) is typically higher than the ability of Norway’s
pipeline network to transport the gas to markets at its border.
To increase sales and revenues, the pipeline operator’s primary
objective is to increase the pipeline throughput, and the gas lost
to compression offsets improvements in throughput making
the optimal compression problem important in this context.
The throughput on the Norwegian is complicated by the
differing gas compositions required by the buyers of the gas
and the differing compositions of the gas sources. See [4] for
a discussion of this problem.

In the US, gas markets have been deregulated for many
years [2]. The implication is that pipeline operators do not
own sources of gas nor are they involved in sourcing and
selling gas to consumers (LDC, industrial, or gas turbines).
Instead, the pipeline operators are responsible for transporting
the gas and maintaining and expanding the pipelines. Gas is
sold in organized markets via bi-lateral arrangements between
gas suppliers and consumers. In addition to securing the
gas itself, the consumers (buyers) must have also purchased
the right to move the gas though the pipeline from the gas
sources to the gas load locations. It is the sale of these
rights where pipeline owner/operators make their revenue, and
reliably increasing the throughput of the pipeline can enable
the owner/operator to secure additional revenue. Therefore,
as with the case of Norway, the US pipeline operators have
an interest in increasing the pipeline throughput. Gas lost to
compression offsets improvements in throughput making the
optimal compression problem important in this context.

Within these disparate pipeline ownership/operational
frameworks, minimizing the cost of compression is an impor-
tant problem whose solution will enable additional pipeline
throughput. The key contribution of this paper is the develop-
ment of a geometric programming (GP) based approach for
optimizing the transport of natural gas. It offers similar com-
putationally performance to existing algorithms [4] at the same
time as being exact, with several advantages when considering
natural extensions to the problem, including but not limited
to stochastic gas draws, distributed control, risk mitigation,
transient dynamics, and interdepedencies with power systems.
The focus of this paper is to demonstrate GP’s ability to match
the performance of existing algorithms as to motivate its use
in more complex settings where existing algorithms are not
easily adapted.

The remainder of this manuscript is organized as follows.
Section II gives an overview of the pipeline gas flow equa-
tions and formulates the Optimal Gas Flow (OGF) problem.
Section III describes our approach to GP for gas pipelines
and discusses the formulation on both line and tree-graph
networks. For comparison, we also formulated a Dynamic
Programming (DP) approach to the same problems. Section IV

describes the implementation of the GP and DP algorithms
as well as a greedy algorithm that is intended to represent
how many US pipelines are operated today. This section also
compares the results of applying these approaches to a model
of the Belgian natural gas network and the Transco pipeline
network in the US [5]. Finally, Section V provides some
conclusions and a discussion of the paths forward for both
the steady-state gas flow problem and the time variable flow
(line-packing) problem.

II. TECHNICAL INTRODUCTION

A. Gas Flow Equations: Individual Pipe

To introduce notation and the fundamental physics of gas
systems, we first consider the flow of a compressible gas in
a single section of pipe. Transmission pipelines are typically
16-48 inches in diameter and operate at high pressures and
mass flows, e.g. 200 to 1500 pounds per square inch (psi) and
moving millions of cubic feet per day [6], [7]. Under these
highly turbulent conditions, the pressure drop and energy loss
due to shear is represented by a phenomenological friction
factor, and the resulting gas flow model is a partial differential
equation (PDE) with one spatial dimension x (along the pipe
axis) and one time dimension [8]–[10]:

∂tρ+ ∂x(uρ) = 0, (1)

∂t(ρu) + ∂x(ρu2) + ∂xp = −ρu|u|
2d

f − ρg sinα, (2)

p = ρZRT. (3)

Here, u, p, ρ are velocity, pressure, and density at the position,
x. Equations (1,2,3) represent mass conservation, momentum
balance and the ideal gas thermodynamic relation, respectively.
The first term on the rhs of Eq. (2) represents the friction losses
created in the pipe of diameter d with friction factor f . The
second term on the rhs of Eq. (2) accounts for the gain or
loss of momentum due to gravity g if the pipe is tilted by
angle α. In Eq. (3), Z is the gas compressibility factor, T
is the temperature, and R is the gas constant. We have also
assumed (for simplicity) that the temperature does not change
significantly along the pipe.

When gravity and gas inertia can be ignored (which are
standard approximations for pipes operating near normal con-
ditions), Eqs. (1,2,3) are rewritten in terms of the pressure p
and the mass flux φ = uρ:

∂tp = −ZRT∂xφ, (4)

∂xp
2 = −fZRT

d
φ|φ|, (5)

We note that this system of equations leads to the following
nonlinear diffusion equation:

∂tp
2 =

d

f

p

|φ|
∂2xp

2. (6)

If the flow into and out of the pipe at the two ends balance
such that the total mass of gas in the pipe does not change,
the flow is steady and Eqs. (4,5) can be solved:

φ = const, p2in − p(x)2 = a
x

L
φ|φ|, a ≡ fZRTL

d
. (7)
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Here , 0 ≤ x ≤ L, and L is the length of the pipe. The constant
a characterizes the pressure drop due to flow in the pipe and
is the only important pipe parameter in the steady-state model.

B. Steady Gas Flow over Network

Here we discuss how to apply the solution in Eq. (7) to
the case of a steady flow over network. First, the direction
of flow in each segment must be known to resolve the sign
of the term φ|φ|. In the case of tree networks (see below),
this direction is known if all of the injections (positive and
negative) into the network are known. In meshed networks,
this procedure is not so straight forward. One approach sets
the directions arbitrarily initially. These directions are modified
using iterative or enumerative approaches until a consistent and
feasible solution is found. In the remainder of this discussion,
we will assume that the flow directions are known.

To continue the discussion, we consider a Gas Flow (GF)
network without compressors which is represented by a di-
rected graph G = (V,E) with edges E and vertexes V. A
solution of the steady gas flow problem consists of finding a
set of positive node pressures p = (pi ≥ 0|i ∈ V) and edge
flows φ = (φij > 0|(i, j) ∈ E) corresponding to a given set
of gas injections q = (qi|i ∈ V), i.e.:

∀(i, j) ∈ E : p2i − p2j = aijφ
2
ij , (8)

∀i ∈ V : qi =
∑

j:(i,j)∈E

φij −
∑

j:(j,i)∈E

φji. (9)

We note that the GF problem in Eqs. (8, 9) can be restated as
a convex optimization [11], [12]

In the steady-state model, the injections are balanced, i.e.∑
i∈V qi = 0. There is one more node than there are edge

equations in (8). Therefore, the pressure must be fixed at one
of the nodes. Depending on the structure of the GF network
and the gas injections, there may be no physical solution to the
GF problem, i.e. the solution may have one or more p2i < 0.
In reality, the GF network cannot support the imposed gas
injections and resulting edge flows φij without boosting the
pressure with gas compressors.

Next, the GF problem is formulated with compressors
placed along edges (i, j) at a relative locations r ∈ (0, 1)
(see Fig. 1). Let pi and pj be the pressures at nodes i
and j, respectively. Assuming positive flow from i to j, the
compressor inlet pressure is p2i − raijφ2ij , and the compressor
outlet pressure is p2j + (1− r)aijφ2ij . Equation (8) generalizes
to

∀(i, j) ∈ E : α2
ij =

p2j + (1− r)aijφ2ij
p2i − raijφ2ij

, (10)

where αij is the ratio of the compressor outlet and inlet
pressures along edge (i, j), i.e. the compression ratio (see
Fig. 1). αij is the main control input to the GF network. For
edges without compressors, αij = 1, and Eq. (10) reduces
to Eq. (8). Although a compressor has been added, the flow
balance in Eq. (9) remains the same.

Standard “box” constraints are imposed on the compression
ratios and on the pressures to reflect the engineering limits of
the compressors and pipes that form the network and to ensure

Fig. 1. Nodes (blue circles), edges (grey line) and compressor (red square)
for the gas flow equation Eq. (10) and the line graph OGF. The compressor is
at relative location r along the edge. In the line graph OGF, the compressor
is assumed be be adjacent to node i, i.e. r = 0. The expressions below the
edge are the drops in the square pressures before and after the compressor
with compression ratio αij .

that pressures remain high enough to drive gas flow through
the network:

∀i ∈ V : 0 ≤ p
i
≤ pi ≤ pi, (11)

∀(i, j) ∈ E : 1 ≤ αij ≤ αij . (12)

For edges where there is no compressor, 1 = αij = αij .

C. Optimization Problem: Optimum Gas Flow (OGF)

In the GF model above, the only source of cost is the energy
required to run the compressors (ij) at compression ratio αij
and mass flux φij . We adopt the simplest model of this cost
[13] (see also [14] for more general discussion of compression
cost):

C =
∑

(i,j)∈E

cijφij
ηij

(
αmij − 1

)
, (13)

where cij is a constant which may depend on the compressor,
0 < m = (γ − 1)/γ < 1, and γ is the gas heat capacity ratio.
ηij is the efficiency factor measuring the ratio of the useful
power transferred to the gas flow to the shaft power required to
run the compressor. Here, we assume ηij is constant. (Note that
more realistic modeling should account for the dependence of
ηij on the ratio of the compressor motor speed to the speed
of the flow, however, we stick here to the simplest plausible
model [14].)

In the remainder of the manuscript we focus on solv-
ing the OGF problem, i.e. minimizing the cost (13) over
α = (αij |(i, j) ∈ E) within the feasibility range defined by
Eqs. (11,12).

III. SOLVING OGF ON NETWORK WITHOUT CYCLES

A. Geometric Programming (GP)

The major contribution of this manuscript is the formulation
of exact and efficient solution of the OGF problem on a gas
network without cycles. The approach, described below in
two steps, is based on Geometric Programming (GP). See
[15] and references therein for a comprehensive discussion of
GGPs. For simplicity, we first consider a line graph without
constraints on the compression ratios. Subsequently, we will
quickly move to a tree graph that includes compression ratio
constraints.

Line graph:
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First, we consider a line graph with n+ 1 nodes numbered
0, 1, . . . , n and n edges/compressors numbered 1, 2, . . . , n. In
the steady-state model considered here, the flow on each edge
(i, i + 1) is computed by summing over all of the injections
prior to that edge, i.e. φi,i+1 =

∑
k=0...i qk. (We note that this

simple approach does not work in the non-steady case.) For
sake of this discussion, we assume that all φi,i+1 are directed
i→ i+ 1 and that compressor i with compression ratio αi is
located on the edge (i−1, i) right after node i−1, i.e, r = 0+

in Eq (10) and Fig. 1. The OGF can be stated as the following
optimization problem:

min
α,β

∑
i di(α

m
i − 1) (14)

s.t. βi−1αi − δi = βi,

β
i
≤ βi ≤ β̄i, ∀i,

where βi = p2i is the square of the pressure at node i, δi =
ai−1,iφ

2
i−1,i ≥ 0 is the loss of pressure squared that occurs

between the outlet of compressor i and node i. Note that this
drop in pressure is known since φi−1,i is known. We also
consider the quantities di = cijφi,j/ηij to be constants.

Eliminating the αi’s by expressing them in terms of the βi’s
and substituting the result back into Eq. (14), one arrives at

min
β

∑
i di(βiβ

−1
i−1 + δiβ

−1
i−1)m (15)

s.t. β
i
≤ βi ≤ β̄i, ∀i,

where we have dropped the constant di term from Eq. (14).
Equation (15) is an instance of what is called a Generalized
Geometric Program (GGP). A GGP can be transformed into a
convex optimization problem—a process we summarize below.

By introducing the extra variables ti, the GGP OGF is recast
in the following equivalent formulation:

min
β,t

∑
i

dit
m
i

s.t. βi+1β
−1
i + δi+1β

−1
i ≤ ti,

β
i
≤ βi ≤ β̄i, ∀i.

The equivalence to Eq. (15) follows because, at optimality,
we must have βiβ−1i−1 + δiβ

−1
i−1 = ti. Then we introduce zi =

log βi and ui = log ti, and the equivalent formulation becomes

min
u,z

∑
i

die
mui (16)

s.t. log
(
ezi−zi−1−ui + δie

−zi−1−ui
)
≤ 0, (17)

log β
i
≤ zi ≤ log β̄i, ∀i. (18)

It can be verified that Eq. (16) - (18) constitutes a convex
optimization problem and can be solved efficiently.

Tree Graph.
Using the guidance provided by formulation for a simple

line graph network, we now consider a tree network and give
a complete description of our OGF solution method. As with
the line network, the first step is to determine the φij from the
qi at each node. In particular, removing any edge (i, j) ∈ E

Fig. 2. Pipeline segment configuration for the the tree graph OGF. Color
coding of the components is the same as in Fig. 1. δ0ij and δ1ij are the drop
in the squared pressure β from node i to the compressor inlet and from the
compressor outlet to node j, respectively. The compression ratio is tij .

splits G into two disjoint graphs Gi and Gj . The flow on (i, j)
can then be computed as

φij =
∑
i∈Gi

qi = −
∑
i∈Gj

qi. (19)

For the line graph, we did not consider constraints on
the compression ratio. Equation (14) shows one possible
consequence of this choice. Specifically, decompression (i.e.
α < 1) could actually be encouraged. In practice, this should
not occur, and we eliminate this potentially negative cost by
putting a floor of 1 on the term in parenthesis in Eq. 14.
Adding the ᾱ constraint and the modified compression cost
function, the tree-graph version of the OGF becomes

min
∑

(i,j)∈E

dij max{αmij , 1} (20)

s.t. β
i
≤ βi ≤ β̄i, ∀i ∈ V (21)

αij ≤ ᾱij , ∀(i, j) ∈ E (22)

For the case of a tree, we use a more general system
representation by allowing a compressor to appear anywhere
along edge (i, j) (see Fig. 2). For each (i, j) ∈ E, let γij
denote the pressure squared immediately after the compressor
and let βij denote the pressure squared immediately before the
compressor. Let φij be the positive flow from i to j. Denote
by δ0ij ≥ 0 the drop in pressure squared between the node i
and the compressor on edge (i, j) and by δ1ij ≥ 0 the drop
in pressure between the point right after the compressor and
node j. Refering to Eq (10), these quantities are given by
δ0ij = raijφ

2
ij and δ1ij = (1− r)aijφ2ij .

Therefore,

βi − δ0ij = βij , (23)

γij − δ1ij = βj , (24)

and the compression ratio is now given by

αij =
γij
βij

. (25)

Substituting Eqs. (23,24,25) into the tree-graph OGF in
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Eqs. (20,21,22), we obtain the equivalent formulation

min
∑

(i,j)∈E

dij max{(βj + δ1ij)
m(βi − δ0ij)−m, 1} (26)

s.t. β
i
≤ βi ≤ β̄i, ∀i ∈ V (27)

βj + δ1ij
βi − δ0ij

≤ ᾱij , ∀(i, j) ∈ E (28)

Similar to the line-graph OGF, we introduce the extra variable
tij and rewrite the tree-graph OGF as (see Fig. 2)

min
∑

(i,j)∈E

dijt
m
ij (29)

s.t. β
i
≤ βi ≤ β̄i, ∀i ∈ V (30)

max{(βj + δ1ij)
m(βi − δ0ij)−m, 1} ≤ tij , (31)

tij ≤ ᾱij , ∀(i, j) ∈ E. (32)

The cost function is an increasing function of tij for all (i, j) ∈
E which guarantees that, at optimality, Eq. (31) is replaced by
an equality and tij is the compression ratio of the compressor.
The tree-graph OGF above is equivalent to the following GP:

min
∑

(i,j)∈E

dijt
m
ij (33)

s.t. β
i
≤ βi ≤ β̄i, ∀i ∈ V (34)

1 ≤ tij ≤ ᾱij , (35)

βjβ
−1
i t−1ij + δ1ijβ

−1
i t−1ij + δ0ijβ

−1
i ≤ 1, ∀(i, j) ∈ E

(36)

As with the line-graph OGF, this can be reduced to a
convex optimization problem by introducing variables which
are the log of the original variables. Letting t̂ij = log tij and
β̂i = log βi, we arrive at the following convex, tree-graph
OGF formulation:

min log

 ∑
(i,j)∈E

dije
mt̂ij

 , ∀i ∈ V (37)

s.t. log(β
i
) ≤ β̂i ≤ log(β̄i) (38)

0 ≤ t̂ij ≤ log(ᾱij), (39)

log
(
eβ̂j−β̂i−t̂ij + δ1ije

−β̂i−t̂ij + δ0ije
−β̂i

)
≤ 0, (40)

∀(i, j) ∈ E.

This is the final version of our Geometric Programming
formulation of the OGF.

Recall that the cost function in our original tree graph OGF
formulation in Eqs. (20,21,22) is motivated by not wanting
to reward decompression in the cost function. However, the
formulation in Eqs. (20,21,22) (and all of its reformulations)
does allow for unrewarded decompression. In practice, de-
compression can be implemented by simple procedures (such
as a throttling valve) and is usually not associated with
any significant cost. It is possible that allowing zero-cost
decompression could lead to a lower overall global cost of
compression when compared to the case where we do not
allow decompression (i.e., αij = 1 for all edges). However,
for the sake of remaining consistent with the current practices

and to accommodate circumstances where it is not be possible
to implement decompression, we modify our OGF formulation
in Eqs. (20,21,22) by adding the constraints αij = 1 for all
edges and propose a signomial programming approach to deal
with these additional constraints.

Note that adding a lower bound of 1 on the compression
ratios is same as 1 ≤ αij =

βj+δ
1
ij

βi−δ0ij
which after rearranging

the terms becomes βi − βj ≤ δ0ij + δ1ij . Following the exact
same steps as in the derivation of the GP OGF, we get to the
following optimization problem

min log

 ∑
(i,j)∈E

dije
mt̂ij

 (41)

s.t. log(β
i
) ≤ β̂i ≤ log(β̄i), ∀i ∈ V (42)

0 ≤ t̂ij ≤ log(ᾱij), (43)

log
(
eβ̂j−β̂i−t̂ij + δ1ije

−β̂i−t̂ij + δ0ije
−β̂i

)
≤ 0, (44)

β̂i ≤ log(eβ̂j + δij), ∀(i, j) ∈ E (45)

where δij = δ0ij + δ2ij . The challenge with this formulation
is that the constraints in Eq. (45) are non-convex. However,
this formulation is almost a GP, and we propose a signomial
programming approach. Signomial programming is an
iterative descent method, where, in each iteration, the non-
convex constraints are linearized and the resulting GP is
solved to perform one descent step. The iterations of the
algorithm are described below.

Signomial Programming iteration
1. The constraints Eq. (45) are linearized to obtain

β̂i ≤ log
(
eβ̂

(t)
j + δij

)
+

eβ̂
(t)
j

eβ̂
(t)
j + δij

(β̂j − β̂(t)
j ) + ε,

(46)

where a small tolerance parameter ε > 0 is added to act as
a trade-off between speed of convergence and accuracy.

2. Solve the Geometric Program that results from Eqs. (41)-
(45) by replacing the constraints in Eq. (45) withEq. (46)
to obtain the new iterates at iteration number t+ 1.

In practice, if the network consists of a mixture of edges where
decompression can be performed and edges where decompres-
sion cannot be performed, then the signomial program only
needs to linearize the Eq. (45) constraints only for edges that
do not allow decompression. Steps 1 and 2 are repeated until
a certain stopping criterion is reached.

B. Dynamic Programming (DP)

For comparison of both the formulation and the numerics,
we describe a Dynamic Programming (DP) approach to solv-
ing the OGF. The DP approach is not new. It was pioneered
by [13] and has a long history, see e.g. [4] for extended
bibliography. The DP approach exploits the separability of the
cost function in Eq. (20) over the edges as well as the tree
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structure of the underlying graph by calculating the “cost-to-
go” functions recursively from the leaves upwards.

Specifically, choose the node where the pressure is fixed to
be the root of the tree denoted by r. At each node i, we have a
cost-to-go function Ji(βi) which is a function of the squared
pressure at that node. The DP algorithm proceeds as:

1. Initialization. Set S = V, i.e. the set of all nodes. For
each node i that is a leaf of the tree G set

Ji(βi) =

{
0, β

i
≤ βi ≤ β̄i

∞, otherwise

Remove all the leaves from S.
2. Repeat the following steps while S is non-empty:

(a) Pick a node i ∈ S such that all its children have been
removed from S.

(b) Let v1, . . . , vk denote the children of i. Determine
the value of the cost-to-go function Ji(βi) for each
β
i
≤ βi ≤ β̄i as follows.

∗ For each choice of compression ratio on the edges
(i, v1), . . . , (i, vk), compute the quantity

L(α1, . . . , αk) =

m∑
j=1

divjα
m
ivj + Jvj (βvj ),

where βvj is the implied squared pressure at vj
for the choice of αivj above, i.e.

βvj =

{
(βi − δ0ivj )αivj − δ1ivj if φivj > 0,

βi + δ0ivj + δ1ivj , otherwise.
(47)

∗ Set

Ji(βi) =

{
minL(α1, . . . , αk) if β

i
≤ βi ≤ β̄i

∞ otherwise
(48)

∗ Remove i from S.
3. Traceback. Fix the root sqaured pressure βr = β0 where

β0 is the given squared pressure. Set S = V to be the
set of all nodes. Remove the root r from S. Repeat the
following while S is non-empty.
(a) Pick i ∈ S such that its parent has been removed

from S.
(b) Find the implied pressure βi at i by using the optimal

choice of α’s in the optimization Eq. (48) and using
Eq. (47).

(c) Remove i from S.
The squared pressures βi obtained in Step 3 are optimal. The
optimal value is given by the root cost-to-go function Jr(βr).
In practice for implementation, one needs to discretize the
space β

i
≤ βi ≤ β̄i for each i ∈ V and the space 1 ≤ αij ≤

ᾱij for each edge (i, j) ∈ E which has a compressor.

IV. EXPERIMENTS

A. Implementation

The dynamic program and greedy algorithm (described be-
low) were implemented in C++. The geometric programming

algorithm is implemented in python using CVXOPT [16]. The
results were obtained on an Intel 80386 (i386) 32-bit processor
running Linux 11.10 . The first step for all the algorithms is
computing the flow on each edge of the tree networks using
Eq. (19). For each node, n, in the tree, we first compute the
sum of the injections that occur on nodes that have an ancestor
that is n. Second, working from the root of the tree towards
the leaves, the inflow to a node is distributed to the child edges
of that node by weighting with the sum of loads beneath each
edge.

Next we solve the OGF without allowing decompression,
i.e. αij = 1. We compare the signomial program results with
the dynamic program results and with results from a “greedy
compression” scheme. We believe the greedy compression
algorithm is reasonable representation of the intuition of many
of the trained operators discussed above.

1) Signomial Programming: The geometric program iter-
ations of the signomial program are solved using CVXOPT
with a trust region of ε about the previous solution. The initial
point for this iterative method is the solution of the geometric
program with no additional edge constraints (which allows
for decompression). The signomial program interations are
terminated when the difference in the norms of the solution
vectors from one iteration to the next is less than a specified
tolerance δ > 0. As remarked earlier, smaller tolerance
parameters ε and δ lead to higher accuracy but longer runtimes.

2) Dynamic Programming: The DP was solved using our
own code develop according to the algorithm in Section III-B.
The number of bins for the α’s and β’s are specified as inputs.
Finer discretization leads to higher accuracy but with longer
runtime. DP runtimes increase exponentially with the number
of compressors, while signomial programming runtimes do
not.

3) Greedy Compression: A third “greedy compression”
algorithm was implemented for comparison with the DP and
GP. Although exact representation of operator behavior is
beyond the scope of this manuscript, we believe the greedy
compression algorithm to be a reasonable representation of
the day-to-day practice of operators of many natural gas
transmission pipelines [17]. Greedy compression is a simple
scheme which uses local observations to decide when to
compress. The simple rule it tries to adhere to is: whenever the
pressure falls below the lower bound, boosts the pressure to the
maximum value allowed by the local constraints. This simple
rule by itself is not enough to implement the algorithm because
of the complications arising from pressure inconsistencies, i.e.,
it does not by itself always produce a feasible compression
ratio configuration in the network. In what follows, we discuss
how to address this issue in more detail and implement it for
the Transco pipeline model [5].

For the purposes of this discussion we assume that all β̄i =
β̄ and β

i
= β since this is what we actually implement for the

Transco model. Recall that we always pick the root node to be
a significant source. We first set the pressure at the root node
to the maximum β and traverse downstream from the root
updating the square pressure at other nodes using Equation 8.
This of course leads to several node pressures which are below
the lower bound. For reasons that will become clear, we first
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classify such infeasible nodes into those having one inflow and
those having multiple inflows. For those with a single inflow,
we set the output pressure of the nearest upstream compressor
to the maximum possible value subject to the upper bound
on pressure and compression ratio. In some cases the pressure
at the infeasible node is significantly below the allowed lower
bound such that multiple compressors upstream must be turned
on to boost the pressure into the feasible range. In this case,
we try to implement the compressor ratio configurations in a
“greedy” manner described above, which however sometimes
needs to be specialized to our given network. We omit the
details of this for brevity.

Next, we address the case of nodes where there are multiple
inflows. Consider such a node q. The issue with such nodes
is that if we follow the method described in the previous
case for each such inflow, then the implied pressure at q
from each of these paths don’t always match leading to an
infeasible configuration of compression ratios. Additionally,
such inconsistencies might have already been introduced by
the algorithm in one of its previous steps. We need to set
the compression ratios of the nearest upstream compressors
such that the implied pressure at q is consistent. Suppose
e1, . . . , ek are the edges adjacent and immediately upstream
of q. Let the implied pressure squared from upstream ei be
βq(i). As remarked, they are not necessarily equal. We handle
the following two cases separately.
(i) At least one βq(i) is below the minimum pressure β:

In this case denote by ∆i the pressure drop from the
outlet of the nearest compressor along upstream ei and
node q. Assume without loss of generality that ∆1 ≥
∆2 ≥ . . . ≥ ∆k. We first want to decide on one of
these compressors at which we set the outlet pressure
to the maximum allowed value. As it turns out, we
must choose the compressor on path e1 for this purpose.
This is because a quick calculation shows that if we
choose another compressor, say along path e2 and set
the output pressure of that compressor to β̄, then the
implied pressure at the output of compressor along path
e1 is β̄ + ∆1 −∆2 which can be greater than β̄ leading
to infeasibility. So, we set the output pressure of the
compressor along e1 to the maximum allowed pressure
and set the other compressors such that the implied
pressure at q match.

(ii) No βq(i) is outside the pressure bounds:
In this case we set βq = max{βq(i)} to be the target
pressure at q and set the compressors upstream such that
the implied pressure squared at q all match and are equal
to βq . This choice of βq ensures that we do not have to
decompress at any of the upstream compressors.

B. Models

We consider two natural gas pipeline networks to test our
algorithms–the Belgian gas network [12] and the Transco gas
network [5] in the Eastern US. Both networks are nearly
tree like. The minor amount of looping in each network was
reduced to a tree topology by breaking the loops locations
where the flow is expected to be relatively low. For both test
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Figure 2. Belgian gas network.
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set the compressor impact at 1,589, and in the other at 400.

We report these data in the second and third columns of

Table 2. While in both cases our solution satisfies the flow

constraints, we observe that the flows are slightly different

Table 2. Results for the gas transmission problem.

Solution in de Wolf and Smeers (2000) Compressor at 1,589 Compressor at 400

Node Pressure Demand/Supply Pressure Demand/Supply Pressure Demand/Supply

1 55�82 10�9145 55�42 8�9348 61�16 8�9348
2 55�79 8�4 55�40 8�4 61�14 8�4
3 55�66 −3�9212 55�29 −3�918 61�04 −3�918
4 54�11 0 54�11 0 59�97 0

5 53�03 2�8148 55�42 4�7912 61�16 4�7912
6 52�28 −4�034 53�31 −4�034 59�25 −4�034
7 52�37 −5�256 53�28 −5�256 59�22 −5�256
8 59�85 22�012 59�85 22�012 65�20 22�012
9 59�41 0 59�41 0 64�79 0

10 57�59 −6�365 57�59 −6�365 63�13 −6�365
11 56�42 0 56�42 0 62�06 0

12 54�52 −2�12 54�52 −2�12 60�34 −2�12
13 53�19 1�2 53�19 1�2 59�14 1�2
14 52�98 0�96 52�98 0�96 58�96 0�96
15 51�65 −6�848 51�65 −6�848 57�77 −6�848
16 50�00 −15�616 50�00 −15�616 56�29 −15�616
17 55�62 0 55�62 0 61�34 0

18 63�00 0 63�00 0 58�73 0

19 35�74 −0�222 35�74 −0�222 27�52 −0�222
20 33�84 −1�919 33�84 −1�919 25�00 −1�919

from de Wolf and Smeers (2000). (See the shift of supply

from node 1 to node 5.) In de Wolf and Smeers (2000),

the authors were looking for a least supply cost. Interest-

ingly enough, their solution and ours have the same totalFig. 3. Schematic representation of the Belgian gas transmission network.

cases, a root node is selected and the square pressure at the
root is set to β.

1) Belgian Gas Network: Before comparing the algorithms
discussed above on large pipeline networks, we test the
accuracy on a small test case of the Belgian gas network (see
Fig. 3) and compare our results to those in [12]. The Belgian
network only contains 20 nodes and 2 compressors. Both
signomial and dynamic programming are used to solve for
the optimum steady-state compression. For dynamic program-
ming, 1000 pressure bins and 1000 α bins are used. For the
signomial programming, ε was set to 10−3 and the tolerance
δ was set to 10−6. Using the same pressure and compression
limits as in [12], the fractional difference between our optimal
compression costs and those in [12] is only ∼ 5× 10−4. Our
pressure profiles at optimal compression ratio also agreed with
the results in [12].

To test for the effect of allowing decompression, we com-
pare signomial programming without decompression and pure
geometric programming (which does allow decompression).
The fractional difference in optimal costs is ∼ 10−2 with
the geometric programming cost less than for signomial pro-
gramming. For this small test case, the additional freedom of
decompression slightly decreases the total cost of compression.

2) Williams Transco Pipeline: The Willams Transcontinen-
tal (Transco) pipeline (see Fig. 4and [5]) is our second test case
and represents a large pipeline network. The Tranco pipeline
extends northeast from gas sources in and around the Gulf
of Mexico to load centers in New York and New Jersey.
The structure of the pipeline near to the sources is tree like,
however, the details of the gas injections and withdrawls is
quite complicated. Therefore, we choose to test our algorithms
on the northern half of the pipeline extending from South
Carolina up to the load centers in New Jersey and New York
and additional sources in Pennsylvania. We partition a few
small loops near the end of the pipeline to achieve a tree-like
structure. In spite of reducing the scale of the Transco model,
it still consists of 98 nodes and 31 compressors.

The GP and DP algorithms only constrain the pressure at
the nodes. In order to maintain allowable pressures along the
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Fig. 4. Schematic representation of the Transco gas transmission network.
Small loops in the load centers near the northern end of the pipeline were
partitioned to create a tree structure. For this work, only the northern half of
the pipeline was modeled, starting from the southern border of South Carolina.

entirety of the pipeline, we model each compressor as being
attached to very short runs of inlet and outlet pipeline that
attach to nodes with zero gas injections. These short runs of
inlet and outlet pipes put nodes very close to the compressor
and keep the inlet and outlet square pressures from violating β
or β. The minimum and maximum pressures are set to 500 psi
and 800 psi, respectively, as suggested by plots of operational
data over this section of pipeline [18].

Using inflow and injection data from December 29, 2012
we compare results for signomial programming, dynamic
programming, and greedy compression. We note that this
data corresponds to near peak load conditions on the Transco
pipeline. For the dynamic programming, 1000 pressure bins
and 400 α bins were used. For the signomial programming, ε
is set to 10−2 and the tolerance δ is set to 10−3. The fractional
difference in optimal costs between signomial programming
and DP is ∼ 3 × 10−5. The greedy compression optimal
cost is 5.4% higher than the two other methods demonstrating
the benefits of a global optimization approach. The fractional
difference between the optimal costs for signomial program-
ming without decompression and pure geometric programming
(which does allow decompression) is only ∼ 1×10−7. There-
fore, decompression is not a significant degree of freedom in
all cases.

Figures 5, 6, and 7 show plots of the pressure as a function
of distance along the pipeline for the signomial program,
dynamic program, and greedy compression approaches, re-
spectively. The signomial and dynamic programming show
negligible differences, while the greedy compression algorithm
has a very different pressure profile. It is interesting to note that
that although the greedy algorithm runs fewer compressors (9)
in comparison to signomial or dynamic programming (19), the
cost of compression higher for the greedy algorithm. A likely
cause for this difference is the lower average gas density, and
therefore higher gas velocities and larger pressure drops, in
the greedy compression case.

Fig. 5. Gas pressure versus milepost for the signomial programming solution
for the Transco pipeline.

Fig. 6. Gas pressure versus milepost for the dynamic programming solution
for the Transco pipeline.

Fig. 7. Gas pressure versus milepost for the greedy compression algorithm
solution for the Transco pipeline.
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V. PATH FORWARD

The main contribution of this manuscript consists in exactly
solving the steady-state Optimal Gas Flow (OGF) problem
(also called Fuel Cost Minimization Problem in the literature
[4], [14]) with a Geometric Programming (GP) approach
[15]—a new approach for this application. For loop-free gas
pipeline networks, the GP approach turns the OGF problem
into a convex optimization allowing for exact and efficient
(polynomial time) solution. A significant advantage of the GP
method over the traditional Dynamic Programming approach
[13], [19] derives from not having to discretize the node
pressure and compression ratio variables. The GP approach
also scales well, even in networks with a high degree of
branching.

The nature of the OGF problem discussed in the manuscript
as well as practical considerations resulted in a number of
assumptions: 1) the steady-state (balanced injections) nature of
the gas flow, 2) additional compressor feasibility constraints,
3) uniform temperature distribution along the pipe, and 4) the
reduction of network cycles to tree-like structures. However,
the majority of these assumptions can be relaxed, which form
natural extensions to the current work:

• Many modern gas networks contain no or very few cycles.
Combining and extending currently separated (tree-like)
systems into one larger and thus more reliable system will
lead to the emergence of significantly meshed systems
containing multiple cycles. The extension of the GP
approach to the general case of networks with cycles
constitutes an interesting challenge. Indeed, finding the
flows and finding optimal compression rates — the two
problems which became separable in the tree-network
case – are now mutually dependent. However, this com-
plication can be overcome. One promising approach
consists in solving the OGF through multiple repetitions
of the following two alternating steps – (1) finding
compression ratios given the flows (where the GP applies
directly), and (2) finding flows given compression ratios.
Another approach is to apply the log-change of variables
(leading to the convex optimization in the tree case)
followed by relaxation of the new non-convex, cycle-
related constraints.

• Equation (7) describes the case of balanced flows, i.e.∑
i∈V qi = 0. However, this strict balance does not need

to be hold on the scale of minutes or even hours. When
the system is not balanced, the gas pressure changes
leverage the natural storage capacity of pipelines, i.e.
linepack. Exactly accounting for this effect within the
basic model described by Eqs. (4,5) requires solving a
system of coupled PDEs over all pipes of the network
[9] [20], a problem which does not scale well. To
achieve a computationally tractable approach, we plan
to approximate Eqs. (4,5) by a linearized version of the
nonlinear diffusion equation in Eq. (6). When tempo-
ral evolution of sources and sinks is sufficiently slow
(so that one can ignore sound-wave-like transients), the
(linearized) diffusive approximation will allow explicit
solution for the spatiotemporal and flow dependence of

the pressure, i.e. an approximate solution for the time-
dependent line pack and a generalization of Eq. (7). The
result is a generalized OGF that extends what used to be
instantaneous optimization into multi-stage optimization
that accounts for the evolution of the gas injections over
time. We believe the GP approach can be extended to
include this temporal evolution.

The GP approach has advantages over DP not only because
it scales well, but also because GP allows a fully distributed
implementation based on local measurements of pressure and
flows at the compressors and local communications between
nearest-neighbor compressors. We plan to explore this dis-
tributed cyber-physical control [21], [22] to gas networks in
future work.

Finally, this study is motivated by our interest in coupled
energy infrastructures, in particular gas and power system
networks. Future increases in stochasticity in one network is
expected to have impacts across the other coupled networks.
For example, one mitigation strategy for addressing intermit-
tency of renewable generation, e.g. wind and solar, uses con-
trols on gas turbines to “smooth” the intermittency. However,
these gas turbines are loads on the gas network (often burning
comparable amount of gas as all other consumers combined).
Therefore, the uncertainty of electric generation translates into
temporally fast but spatially long-correlated uncertainty of gas
consumption. Future work will quantify these and other effects
of such coupling with a focus on analyzing the stochasticity
and correlations across coupled infrastructure networks and
using this understanding to develop improved optimization and
control of combined systems.
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