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Zusammenfassung

Viele Optimierungsprobleme der Wissenschaft und Technik werden anhand eines
Systems nichtlinearer Restriktionen in Kombination mit diskreten Entscheidungen
gelöst. Mathematisch lassen sich diese Probleme als gemischt-ganzzahlige nichtlineare
Programme (MINLPs) modellieren, da diese sowohl nichtlineare Zusammenhänge
als auch diskrete Entscheidungen darstellen können. Das Zusammenspiel von Ganz-
zahligkeit und Nichtlinearität stellt dabei eine große Herausforderung bei der Lösung
dieser Probleme dar.

In dieser Arbeit behandeln wir eine Methode zur global optimalen Lösung von
MINLPs durch Diskretisierung der auftretenden Nichtlinearitäten. Unser Ansatz
erfordert nur kontinuierliche Nichtlinearitäten mit beschränktem Definitionsbereich
und ist daher für eine Vielzahl von MINLP-Problemen geeignet. Die grundlegende
Idee hierbei ist, ausgereifte und zuverlässige Technologie der gemischt-ganzzahligen
Programmierung zur Lösung von MINLPs einzusetzen. Ähnlich wie das Lösen
von gemischt-ganzzahligen linearen Programmen (MIPs) auf der Lösung linearer
Programme, d.h. von Relaxierungen der MIPs, beruht, entwickeln wir einen Ansatz
zur Lösung von MINLPs, der auf der Lösung von MIP-Relaxierungen beruht. Hierzu
verwenden wir stückweise lineare Funktionen, um MIP-Relaxierungen des zugrunde
liegenden MINLPs zu konstruieren. Der iterative Algorithmus konstruiert MIP-
Relaxierungen, die abwechselnd verfeinert und gelöst werden, bis eine global optimale
Lösung gefunden wird.

Die Verfeinerung der Nichtlinearitäten ist entscheidend für die Konvergenz und
Korrektheit des Algorithmus. Aus diesem Grund untersuchen wir verschiedene Ver-
feinerungsstrategien mit dem Schwerpunkt auf deren Einbettung in unseren adaptiven
MIP-basierten Ansatz. Wir liefern zunächst Konvergenzresultate für die vorgestellten
Verfeinerungsmethoden. Darüber hinaus leiten wir erste Ergebnisse zur Größe einer
MIP-Relaxierung her, die benötigt wird, um eine a priori gegebene Genauigkeit für
die Nichtlinearitäten zu erreichen.

Abschließend veranschaulichen wir die Anwendbarkeit unseres Ansatzes in der
Praxis durch numerische Ergebnisse für MINLPs, die mit den modernsten globalen
MINLP-Lösern nur schwer zu lösen sind. Diese Probleme entstehen im Kontext der
Gastransportoptimierung und der optimalen Lastflussberechnung. Sie kombinieren
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nichtkonvexe Nichtlinearitäten, die spezifische physikalische Phänomene beschreiben,
mit ganzzahligen Restriktionen, die diskrete Entscheidungen für schaltbare Elemente
modellieren. Solche Elemente sind beispielsweise Kompressoren bei Gasnetzwerken
oder Generatoreinheiten bei Stromnetzwerken. Anhand dieser MINLP-Instanzen
zeigen wir den Mehrwert unseres Ansatzes gegenüber anderen globalen MINLP-Lösern
auf.
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Abstract

Many optimization problems in science and technology are subject to a system
of nonlinear constraints combined with discrete decisions. Mathematically, these
problems can be modeled as mixed-integer nonlinear programs (MINLPs), since
they can represent both nonlinear correlations and discrete decisions. However, the
interaction of integrality and nonlinearity poses a major challenge in solving these
problems.

In this thesis, we propose a method for solving MINLPs to global optimality by
discretization of the occurring nonlinearities. Our approach requires only continuous
nonlinearities with bounded domains and is thus suitable for a wide range of MINLP
problems. The emphasis is on using sophisticated and reliable mixed-integer linear
programming technology to solve MINLPs. Similarly to the solution of mixed-integer
linear programs (MIPs), which relies on solving linear programming relaxations, we
develop a framework for solving MINLPs by MIP relaxations. To this end, we use
piecewise linear functions to construct MIP relaxations of the underlying MINLP.
An iterative algorithm constructs MIP relaxations that are subsequently refined and
solved until a globally optimal solution is found.

The refinement of the nonlinearities is crucial for the outcome of the algorithm.
For that reason, we study different refinement strategies with a focus on embedding
them in our adaptive MIP-based framework. We prove convergence results for the
presented refinement methods. In addition, we present first results on the size of
an MIP relaxation that is required to achieve an a priori given accuracy for the
nonlinearities.

Finally, we illustrate the practicalness of our approach by numerical results for
MINLPs that are difficult to solve by state-of-the-art global MINLP solvers. These
problems arise in the context of gas transport network optimization and optimal
power flow. They combine non-convex nonlinearities that describe certain physical
phenomena with integer restrictions that model discrete decisions for switchable
elements. Such elements are, for instance, compressors in case of gas networks or
generator units in case of power networks. On the basis of theses MINLP instances,
we demonstrate the advantage of our approach over other global MINLP solvers.
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CHAPTER 1

Introduction

In many academic and real-world problems such as from engineering or economics,
discrete decisions and nonlinear dependencies occur in interaction. The combination
of these two aspects leads to the relatively general modeling class of mixed-integer
nonlinear programs (MINLPs). The great challenge in solving MINLPs lies in the
optimization over a mixed-integer feasible set while incorporating nonlinear functions
at the same time.

In this thesis, we develop a solution approach that is suitable for a wide range
of MINLP problems. The main idea is based on using piecewise linear functions to
construct mixed-integer linear program (MIP) relaxations of the underlying MINLP.
In order to find a global optimum of the given MINLP, an iterative algorithm
constructs MIP relaxations of the MINLP that are then alternately refined and
solved.

Our approach involves two different methodologies compared to standard ap-
proaches for solving MINLPs. First, while spatial branch-and-bound uses a single
branch-and-bound tree, we solve multiple MIPs and therefore use multiple branch-
and-bound trees. Second, in contrast to many methods that use only piecewise linear
approximations to obtain approximate solutions to MINLPs, we extend such approx-
imations to piecewise linear relaxations in our subproblems. This allows us both
to obtain globally optimal solutions for feasible MINLPs and to prove infeasibility
otherwise.

We investigate various refinement strategies for the MIP relaxations with regard
to their incorporation into our adaptive MIP-based framework. We show convergence
results for these refinement procedures, which are crucial for both the size of the MIP
relaxations and the overall convergence of our algorithm. Moreover, we derive tight
bounds on the size of the MIP relaxations for an a priori given accuracy.

Finally, we apply our approach to MINLPs that arise in the context of gas
transport network optimization and optimal power flow. We solve both stationary and
transient gas network optimization problems. These problems combine non-convex
nonlinearities and discrete aspects. On the one hand, modeling the gas physics derived
from the Euler equations results in a coupled system of nonlinear equations. On the
other hand, switching active elements such as valves and compressors involves discrete
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2 CHAPTER 1. INTRODUCTION

decisions. In the transient case, we furthermore introduce a new model for the gas
flow in pipelines. The optimal power flow problems also involve non-convex nonlinear
functions and discrete decisions. Here, the nonlinearities originate from an alternate
current power flow model. The integer part models the switching of the generator
units of the power network. The concluding numerical results demonstrate that our
MIP-based approach outperforms state-of-the-art global MINLP solvers on several
difficult MINLP problems.

Incorporation of Joint Work with other Authors

Some results of this thesis have been achieved in collaboration with other researchers.
In particular, the author of this thesis was supervised by Prof. Dr. Alexander
Martin and Dr. Lars Schewe within subproject B07 of the research project “SFB
Transregio 154: Mathematical Modelling, Simulation and Optimization using the
Example of Gas Networks”1 supported by the German Research Foundation2.

The results of this thesis are to a large extent based on the following two
publications:

R. Burlacu, H. Egger, M. Groß, A. Martin, M. E. Pfetsch, L. Schewe, M.
Sirvent, and M. Skutella (2018). “Maximizing the storage capacity of gas
networks: a global MINLP approach”. In: Optimization and Engineering,
pp. 1–31. doi: 10.1007/s11081-018-9414-5.

R. Burlacu, B. Geißler, and L. Schewe (2019). “Solving mixed-integer
nonlinear programmes using adaptively refined mixed-integer linear pro-
grammes”. In: Optimization Methods and Software, pp. 1–28. doi:
10.1080/10556788.2018.1556661.

The author of this thesis made significant contributions to both publications. In the
following, at the beginning of each chapter, we outline in detail the results achieved
by the author.

The Outline of this Thesis

This thesis is structured as follows.
Chapter 2 gives a formal description of the MINLP problems that we consider

in this thesis. It provides a literature survey and the most important approaches
in the field of MINLP. Moreover, we conduct an experiment, in which MIPs are
reformulated as nonlinear programs (NLPs) by replacing all binary variables using

1http://trr154.fau.de
2http://www.dfg.de

http://dx.doi.org/10.1007/s11081-018-9414-5
http://dx.doi.org/10.1080/10556788.2018.1556661
http://trr154.fau.de
http://www.dfg.de


1.0. THE OUTLINE OF THIS THESIS 3

the constraint x2 − x = 0. These NLPs are subsequently solved by state-of-the-art
global NLP solvers.

In Chapter 3, we develop our MIP-based approach for solving MINLPs. We
prove its convergence and investigate different procedures for the refinement of the
relaxations of the nonlinearities. Additionally, we give tight bounds on the size of the
MIP relaxations that are required to achieve an a priori given accuracy.

In Chapter 4, we derive MINLP models for stationary and transient gas network
optimization problems. In the transient case, we introduce a new gas flow model that
is based on the stationary model.

Chapter 5 describes the MINLP model for optimal power flow problems with
additional switching of the generator units.

In Chapter 6, we compare the practical performance of our MIP-based approach
with state-of-the-art global MINLP solvers. To this end, we use the previously
introduced MINLP problems from the field of gas network optimization and optimal
power flow as benchmark instances.

We finally summarize and conclude this thesis in Chapter 7.





CHAPTER 2

Mixed-Integer Nonlinear Programming

In this chapter, we present a formal description of the problems that we address in
this thesis and give some theoretical background to the methods we develop in the
subsequent chapters. In addition, we provide a literature overview and describe the
most important approaches in the field of mixed-integer nonlinear programming.

Throughout this work, with [n] := {1, . . . , n} for n ∈ N, we consider an MINLP
problem as an optimization problem of the following type:

min
x

c>x

s.t. Ax ≤ b,
fi(x) ≤ 0 for all i ∈ [k],

l ≤ x ≤ u,
x ∈ Rq × Zp,

(P)

where k, q, p ∈ N. First, Ax ≤ b represents all linear constraints, while the nonlin-
ear constraints are described using the continuous nonlinear real-valued functions
fi : Rq+p → R for i = 1, . . . , k. The variables x are bounded from below and above
by the vectors l, u ∈ Rq+p. Furthermore, we denote by F the set of all nonlinear
functions fi(x). Let Df ⊂ Rq+p be the domain of a nonlinear function f ∈ F . Since
each variable in (P) has lower and upper bounds, the domain Df is a compact set.
We consider it to be a d-dimensional box with its edges parallel to the coordinate
axes, while d ≤ q + p. Equality constraints, i.e., constraints of type fi(x) = 0, are
implicitly contained in (P) by adding the constraints fi(x) ≤ 0 and −fi(x) ≤ 0.
Moreover, we are not restricted to a linear objective function c>x, because we can
include any nonlinear objective function f : Rq+p → R simply by substituting f(x)
with a variable y ∈ R and adding f(x) ≤ y as a constraint to the MINLP problem.
Due to max c>x = −min −c>x, any maximization problem can be transformed to a
minimization problem. Thus, (P) represents a general formal description of MINLP
problems.

If there are no integer variables in the optimization problem (P), we refer to it as
a nonlinear program (NLP). If all functions in (P) are linear, we call the resulting

5



6 CHAPTER 2. MIXED-INTEGER NONLINEAR PROGRAMMING
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Figure 2.1. An example of a continuous nonlinear function f(x)
defined by (1) with infinitely many only local optima.

optimization problem a mixed-integer program (MIP). An MIP, where additionally
all variables are allowed to attain non-integer values is called a linear program (LP).

In general, MINLPs are very hard to solve. In order to distinguish between “easy”
and “hard” problems, we categorize MINLPs according to their nonlinear functions.

Definition 2.1. We call the optimization problem (P) a convex MINLP, if all
functions f ∈ F in (P) are convex. If any function f ∈ F is non-convex, then we refer
to (P) as a non-convex MINLP. This transfers to NLPs equivalently.

Note that apart from the terminology in Definition 2.1, the feasible set of (P) is
always non-convex if integer variables or nonlinear equality constraints are involved.
In terms of global optimization, convex MINLPs are usually much easier to solve
than non-convex MINLPs. This is mainly due to the fact that for convex optimiza-
tion problems any local optimum is also a global optimum. In non-convex global
optimization, however, it is often the case that solution algorithms either get stuck in
local optima or they are unable to distinguishing between local and global optima.
This is aggravated by non-convex functions with infinitely many only local optima;
see Example 2.2.

Example 2.2. Consider the function f : [0, 1]→ R defined as

f(x) :=




x sin2

(
0.5πx−1

)
+ (x− 0.5)2 if x ∈ (0, 1],

0.25 if x = 0;
(1)

see Figure 2.1 for an illustration. The global minimum of f(x) on [0, 1] is attained at
x = 0.5. Furthermore, f(x) is continuous on the compact box domain [0, 1] and there-
fore fulfills the conditions of the nonlinear functions in (P). Since limx→0 x−1 =∞,
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there are infinitely many only local minima (and also maxima) of f(x) on [0, ε] for
any ε > 0.

Drawing a line between “easy” and “hard” computational problems in a general
and reasonable manner naturally leads to their categorization with respect to their
intrinsic difficulty. Computational complexity theory attempts to undertake this
categorization in a formally coherent way. We assume that the reader is familiar with
the two most famous complexity classes P and NP, as well as the terms NP-hardness
and NP-completeness. For further details we refer to the comprehensive overview
by Garey and Johnson (1979).

At this point, we would like to point out that there are actually decision problems
that are not in NP, e.g., the halting problem; see Goldreich (2010) for more details.
Moreover, the decision problems corresponding to MINLPs with unbounded feasible
sets are not decidable in general; see Jeroslow (1973). This result implies a definition
of MINLPs as in (P), since it does not apply to MINLPs with compact feasible sets.

This chapter is structured as follows. Section 2.1 provides a description of the
methods for LPs and MIPs contained in modern solvers. Afterward, we give a brief
overview of approaches for solving convex MINLPs in Section 2.2 and non-convex
MINLPs in Section 2.3. Typically, such solution approaches are based on procedures
using search trees and can therefore be divided into multi-tree and single-tree methods;
see Section 2.2 and Section 2.3 for more details. We conclude this chapter in Section 2.3
with an experiment, in which MIPs are reformulated as nonlinear programs (NLPs)
by replacing all binary variables using the constraint x2 − x = 0. We refer to Burer
and Letchford (2012) and Belotti et al. (2013) for more detailed overviews and general
concepts.

This chapter primarily summarizes known facts and methods from the literature.
The contribution of the author of this thesis is the experiment at the end of the chapter,
where we reformulate MIPs as NLPs using the nonlinear constraint x2 − x = 0 and
subsequently solve the NLPs.

2.1. Linear and Mixed-Integer Programming

Over the last decades, a tremendous progress has been made in the field of linear
and mixed-integer programming. Solvers are now capable of solving huge LPs and
even MIPs arising from practical applications. Achterberg and Wunderling (2013),
R. E. Bixby (2002, 2012), and R. E. Bixby et al. (2004) give a history-charged overview
on computations of LPs and MIPs.

2.1.1. Linear Programming. Linear programming started to attract public
attention in 1947 when George Dantzig proposed his simplex algorithm to solve LPs.
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Down to the present day, the simplex algorithm is used in many state-of-the-art solvers.
The performance, however, has drastically improved. One of the first (in that time
large-scale) LPs solved by the simplex method consisted of nine equations and 77
variables. It is reported by Dantzig (1963) that with the aid of hand-operated desk
calculators, 120 man-days were needed to obtain a solution to this problem in 1948.
Five years later, one of the earlier simplex implementations solved the problem in 2
minutes on an IBM 701 machine while printing each iteration required three quarters
of the total run time. More than 60 years later, modern LP solvers are capable of
solving problems modeling real-world applications with several million constraints and
variables without difficulty. This is due both to machine and, to a significant degree,
algorithmic improvements. These two factors multiply in addition, which leads to this
remarkable increase in performance.

The simplex method, albeit its excellent performance in practice, is of exponential
run time in worst-case; see Klee and Minty (1972). Nevertheless, Borgwardt (1987)
showed in a probabilistic analysis that the shadow-vertex variant of the simplex
algorithm is in average of polynomial run time. It was not until 1979 that a poly-
nomial time algorithm appeared. Khachiyan (1979) proposed the ellipsoid method
for solving LPs and proved its polynomial run time. Unfortunately, this method is
only of theoretical value so far, as all implementations have failed in practice due
to numerical instability. Another polynomial time approach is the interior point
algorithm introduced by Karmarkar (1984). This method has a high performance in
practice and is most widely integrated in modern LP solvers. To put it more generally,
it is successfully applied even within the scope of convex NLPs.

There is a variety of LP software nowadays. Most commonly utilized state-
of-the-art solvers are Gurobi, Cplex, and Xpress; see Gurobi (2019), Cplex (2019),
and Xpress (2019), respectively. A performant open-source alternative is SoPlex;
see Gleixner et al. (2012) and Wunderling (1996). All this solvers essentially rely on
the use of both simplex methods and interior point algorithms.

2.1.2. Mixed-Integer Programming. Many methods in mixed-integer pro-
gramming are built upon linear programming. Therefore, reliable and fast LP solvers
establish a strong basis for a sound MIP code.

The first algorithms for solving MIPs appeared in the mid to late 1950s.
Gomory (1958) proposed a cutting-plane method, which alternately solves an LP
relaxation of the MIP and adds constraints that cut off non-integer solutions until
the LP relaxation delivers an integer solution. Secondly, a branch-and-bound (BB)
approach is given in Dakin (1965) and Land and Doig (1960) including theoretical
ground work of Markowitz and Manne (1957a). It consists of a procedure for splitting
the feasible set of the problem and a mechanism determining an objective bound
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for all subproblems by solving an LP. Both techniques are then repeatedly utilized
until a global optimal solutions is found. We point out that apart from mixed-integer
programming, BB is an essential method for many (global) optimization problems.
Combining the enumerative approach of BB with cutting-plane algorithms results in
the highly performant branch-and-cut, which is commonly integrated in today’s MIP
solvers.

Another widely used method for solving MIPs is based on the reformulation and
subsequent decomposition of the problem into a master and a subproblem. Thereafter,
an iterative procedure alternately solves both the master and the subproblem. In each
iteration, at first, the master problem is solved with either fewer variables or fewer
constraints. The subproblem then verifies whether the solution of the master problem
is optimal and provides the master problem with variables or constraints, respectively,
in the event that optimality is not attained. From this perspective, all decomposition
methods attempt to tackle an MIP by solving a series of smaller-sized MIPs. Two
of the most famous approaches are the Dantzig-Wolfe decomposition as in Dantzig
and Wolfe (1960) and Benders’ decomposition as in Benders (1962). The former adds
variables to the master problem while constraints are inserted in the latter.

The decomposition methodology is, to some extent, motivated by the NP-hardness
of MIPs, since with linearly increasing size of the problem, the run time for solving
MIPs grows exponentially. More precisely, Karp (1972) showed that binary inte-
ger programs, i.e., MIPs containing only binary (integer) variables, are NP-hard.
Therefore, MIPs are NP-hard in general.

Finally, we mention two powerful tools implemented in all modern MIP solvers:
preprocessing and warm-starting. Sophisticated preprocessing reduces an MIP to
a significantly smaller-sized problem and is even able to deliver (optimal) solutions.
Starting with Brearley et al. (1975) and Savelsbergh (1994), an enormous number of
different techniques have been developed within the last four decades; see for instance
the works by Achterberg et al. (2016) and R. Bixby and Rothberg (2007); Gamrath
et al. (2015). Preprocessing is now a vital part of mixed-integer programming. On
the other hand, warm-starting speeds up the solution process itself. We recall that
many MIP methods are basically based on successively solving LPs, many of which
arise from small modifications of pre-existing LPs. Due to linear program duality,
the optimal solution of the pre-existing LP is still a feasible solution for the modified
LP or its dual LP and often times even near to optimal. In this way, warm-starting
drastically reduces the number of iterations of embedded LP algorithms; see Ladányi
et al. (2001) for more details.

Exploiting problem-specific structures led to an advantageous combination of the
aforementioned MIP approaches. In this regard, plenty of research has been carried



10 CHAPTER 2. MIXED-INTEGER NONLINEAR PROGRAMMING

out, beginning with Dantzig et al. (1954) and continued by many others, e.g., Grötschel
and Padberg (1979a,b), Crowder et al. (1983), and Van Roy and Wolsey (1987). At
the present day, we have mature MIP solvers that are both in control of enumeration
and highly numerically stable. We are therefore very confident to develop an MINLP
method that is essentially based on MIP technology.

Since solving LPs is fundamental for MIPs, we naturally have Gurobi, Cplex,
Xpress, like in the case of LPs, and the performant open-source alternative SCIP
Maher et al. (2017), as state-of-the-art solvers for MIPs.

2.2. Convex Mixed-Integer Nonlinear Programming

Convex MINLPs (as in Definition 2.1) are typically solved by either addressing the
MIP and NLP parts of the problem separately or by employing efficient methodologies
from the field of MIPs. We draw a distinction between single-tree approaches, where
a single BB tree is used, and multi-tree approaches, where multiple BB trees are used,
and present the most important ones.

One single-tree method is the NLP-based BB mechanism that works analogously
to the MIP case but relies on solving convex NLPs instead of LPs; see Gupta and
Ravindran (1985). Again, the method can be improved by adding cutting planes, as
for example in Stubbs and Mehrotra (2002). Moreover, even warm-starting is available,
e.g., as in Mahajan et al. (2012). Therein, the authors approximate the underlying
convex NLPs by convex quadratic programs (QPs), i.e., MINLPs containing only
one nonlinear and quadratic function in the set F . Their approach converges to the
optimal solution of a given MINLP and uses warm-starting.

A common multi-tree method is outer approximation, which was proposed by Du-
ran and Grossmann (1986) and further developed by Fletcher and Leyffer (1994).
The idea here is to solve an alternating series of MIP relaxations of an MINLP in
a master problem and NLPs obtained by fixing integer variables in a subproblem.
The MIP relaxations are set up by omitting all nonlinearities of the MINLP and
successively adding linear cuts constructed from the solution of the subproblem. At
the same time, the integer fixation in the subproblem is derived from the solution of
the master problem.

Another multi-tree approach in the same setting of master problem and subprob-
lem is the generalized Benders’ decomposition, which is an extension of Benders’
decomposition for MIPs; see Geoffrion (1972). In fact, it was one of the first methods
in the context of convex MINLPs.

As a last multi-tree approach, we mention the extended cutting plane method
by Westerlund and Pettersson (1995), which is closely related to outer approximation.
Here, instead of solving convex NLPs in the subproblem to obtain linear cuts for the
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master problem, the cuts are deduced directly from the solution of the master problem.
Unsurprisingly, this procedure leads to weaker cuts in general. However, in case of
large convex MINLPs with comparatively few nonlinearities, the extended cutting
plane method delivers fairly good results; see again Westerlund and Pettersson (1995).

To come full circle, we present a second single-tree strategy: the LP/NLP-
based BB by Quesada and Grossmann (1992). Roughly speaking, it is a performant
embedding of outer approximation into a single-tree BB framework. LP/NLP-
based BB omits to repeatedly solve the MIP relaxations in the master problems to
optimality. Instead, the approach initially solves an LP relaxation of the MIP master
problem while branching on integer variables leads to integrality. Whenever a feasible
solution is found in the BB tree, the algorithm adds linear cuts analogously to outer
approximation.

As previously hinted, the interior point method, which is of polynomial run time,
is implemented in many state-of-the-art solvers for solving convex NLPs. Nonetheless,
convex (and non-convex) MINLPs are NP-hard in general as MIPs, a special case of
MINLPs, are already NP-hard.

There is a considerable number of solvers for convex MINLPs. We only present
two of the most commonly used ones and point as before to Belotti et al. (2013)
and Bussieck and Vigerske (2010) for a more comprehensive survey. First, α-ECP is a
solver for convex MINLPs using the extended cutting plane method; see Westerlund
and Lundqvist (2001). An open-source alternative is BONMIN, which integrates
the NLP-based BB, LP/NLP-based BB, and outer approximation methodologies;
see Bonami et al. (2008). Finally, we indicate that any solver for general (and possibly
non-convex) MINLPs is naturally also a solver for convex MINLPs.

2.3. Non-Convex Mixed-Integer Nonlinear Programming

When modeling an optimization problem as an MINLP, non-convexities can occur
rather quickly. For example, a nonlinear equality constraint alone already results in
a non-convex feasible set. Non-convex MINLPs are usually tackled by some sort of
relaxation of the (non-convex) nonlinearities combined with a refinement mechanism.
We first present the most important relaxation methods and afterward the refinement
approaches.

Finding a convex relaxation of a nonlinear function is nontrivial in general;
see Tawarmalani and Sahinidis (2002) for an extensive survey on this topic. For
a wide range of practically interesting MINLPs, however, the nonlinear functions
are factorable, i.e., they can be represented by a recursive combination of elementary
operators contained in the set

E = {+,×, /, ,̂ sin, cos, exp, log, |·|};
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sin

+

̂ ̂

x1 2 x2 2

Figure 2.2. The expression tree of f(x1, x2) = sin(x2
1 + x2

2).

see Belotti et al. (2010). An illustration of such a representation by a so-called
expression tree is given in Example 2.3.

Example 2.3. Consider the optimization problem

max
x1,x2

x1 + 0.5x2

s.t. sin(x2
1 + x2

2) ≤ 0.5,

x1 + x2 ≤ 1, (S)

0 ≤ x1, x2 ≤ 1,

x1, x2 ∈ R.

Let f(x1, x2) = sin(x2
1 + x2

2). Using the representation given by the expression tree as
in Figure 2.2, we can write the function f as

f(x1, x2) = f1(f2(f3(x1), f4(x2))),

where

f1(x) = sin(x), f2(x1, x2) = x1 + x2, and f3(x) = f4(x) = x2.

Introducing new variables x3, x4, and x5, we can reformulate (S) as

max
x1,x2

x1 + 0.5x2

s.t. sin(x5) ≤ 0.5,

x5 = x3 + x4,

x3 = x2
1,

x4 = x2
2, (S′)
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x1 + x2 ≤ 1,

0 ≤ x1, x2, x3, x4 ≤ 1,

0 ≤ x5 ≤ 2,

x1, x2, x3, x4, x5 ∈ R.

The reformulated problem (S′) is equivalent to problem (S), but contains only univariate
nonlinearities unlike (S). To put it another way, we lift the problem to a higher
dimension to be able to solve it more easily. After computing a solution, we omit the
additionally introduced variables, i.e., we project the solution back onto the original
variable space.

Consequently, an MINLP with factorable nonlinear functions can be reformulated
to contain only univariate nonlinearities derived from E and, if necessary, the coupling
bivariate function f(x1, x2) = x1x2. The benefit of this reduction is that (linear)
convex relaxations of the nonlinearities in the reformulated MINLP are well studied
in the literature, e.g., Liberti and Pantelides (2003) for monomials and Al-Khayyal
and Falk (1983) and McCormick (1976) in case of f(x1, x2) = x1x2. Although this
reformulation is theoretically applicable to a wide range of MINLPs, it may not always
be a good approach, since the relaxations that are obtained can be weak compared to
the tightest possible ones. Moreover, this method excludes functions whose analytic
expressions are not at hand, for example, integral functions with unknown primitive
integrals, such as the logarithmic integral function

∫ x
0 dx/ ln x, and simulation-based

black-box functions. The latter arise for instance in the context of the design of
nanophotonic devices; see Maria et al. (2009).

A more generic relaxation is obtained by the α-convexification as in Adjiman
and Floudas (1996) and Androulakis et al. (1995), where the nonlinear functions
only have to be twice differential instead of factorable. Therein, the authors propose
a convexification of a non-convex function by adding an α-weighted sum of convex
quadratic terms. With proper choice of the parameter α depending on the minimum
eigenvalue of the non-convex function’s Hessian, the resulting function is convex. Since
computing minimum eigenvalues itself amounts to solving non-convex optimization
problems, the authors further determine lower bounds on the minimum eigenvalues
with the help of interval Hessians, which results in convex underestimators of the
nonlinearities.

A third approach providing relaxations of non-convex functions is based on piece-
wise linearizations. This work fundamentally relies on using piecewise linear functions
in order to obtain MIP relaxations of an MINLP. We therefore point to Chapter 3
for more details.
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Endowed with these relaxation procedures, non-convex MINLPs are most com-
monly solved by spatial BB; see E. M. Smith and Pantelides (1997) and Horst and
Tuy (1996). Initially, this method constructs linear or nonlinear convex relaxations of
all non-convex functions. After additional relaxation of integrality, the resulting LP or
convex NLP is solved. In the event that the solution of the relaxed optimization prob-
lem is infeasible for the MINLP, branching is performed. Accordingly, all subproblems
that arise in spatial BB are either LPs or convex NLPs. In contrast to BB for MIPs,
however, spatial BB branches on both continuous and integer variables. A great
number of branching strategies in the context of MIPs are extended to MINLPs, e.g.,
strong branching, pseudocost branching, and reliability branching; see the works by
Achterberg et al. (2005) and Belotti et al. (2009). With increasingly tight relaxations,
the approach eventually converges to the optimal solution of the non-convex MINLP.
Moreover, we point out that spatial BB is a single-tree method.

Another vital aspect of a performant spatial BB algorithm is bound tightening,
since tight bounds are crucial for tight relaxations of the nonlinearities. The most
popular bound reduction procedures are feasibility-based bound tightening (FBBT)
and optimality-based bound tightening (OBBT); see Ryoo and Sahinidis (1995, 1996)
and again Belotti et al. (2009). The main idea of FBBT is to reduce the bounds
of variables that are directly coupled via constraints. As the bound of one of these
variables is changed, the bounds of the other ones are tightened accordingly. This
technique propagates throughout the variables of the optimization problem until no
bound is reduced any further. On the other hand, OBBT tightens the bounds using
LP relaxations of the MINLP. With n variables of some LP relaxation, OBBT solves
at most 2n LPs minimizing and maximizing each of the n variables while considering
the same feasible set as the LP relaxation. This technique provides fairly tight bounds
in practice. In return, it is very costly. Generally, FBBT delivers weaker bounds than
OBBT, although it can be applied efficiently at almost any spatial BB node. OBBT,
however, is typically only performed at the root node or at nodes of small depth.

Over the last two decades, a large number of spatial BB implementations have
emerged. Baron is a powerful MINLP solver requiring factorable nonlinearities;
see Baron (2019). After decomposing all nonlinear functions as described previously,
linear outer approximations of the known convex relaxations are solved at each node
of the BB search tree. Another MINLP solver, which relies on α-convexifications,
is α-BB; see α-BB (2019). In addition to convex underestimators for general twice
differential functions, tight convex envelopes are available for certain commonly
occurring, non-convex functions. Two open-source alternatives are again SCIP and
Couenne; see Couenne (2019). Both solvers pursue a similar approach as Baron.

Finally, we bring to attention that categorizing MINLPs solely by convexity and
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non-convexity may not be sufficient to capture the complexity of MINLPs that are
hard to solve. For instance, we can reformulate any MIP as a non-convex NLP
containing only one-dimensional nonlinearities. In particular, any binary variable x
can be reduced to the constraint x2 − x = 0, or more generally, any integer variable x
to sin(πx) = 0 with continuous x. In conclusion, non-convex NLPs with nonlinearities
of type x2 − x = 0 alone are in theory as hard as binary MIPs and therefore already
NP-hard. These NLPs, however, are arguably one of the most modest non-convex
NLPs.

One could even go so far as to formulate each MIP as an NLP and then solve the
NLP instead of the MIP. In the following, we perform this experiment on the basis
of the MIPLIB 2017; see MIPLIB (2018). We restrict ourselves to those instances of
the benchmark set that have only binary variables as integer variables. In total, 164
instances are considered; see Table A.1 for an overview. We point out that 7 of
these are infeasible. Each instance is solved on a cluster node with two Xeon 5650
“Westmere” chips (12 cores + SMT) running at 2.66 GHz with 12 MB Shared Cache
per chip and 24 GB of RAM. The maximal total run time is 4 h. In order to neglect the
impact of highly optimized multi-core implementations, we perform each computation
on a single core. In this way, we get a slightly sharper comparison of the MIP
and NLP specific methodologies. Furthermore, we utilize Gurobi 8.0.1 and SCIP 5.0
(denoted by SCIP-MIP) to solve the instances as MIPs and Baron 18.5.8 and again
SCIP 5.0 (as NLP solver and denoted by SCIP-NLP) to solve the instances as NLPs,
all within GAMS 25.1.2; see GAMS (2018).

We compare both relative optimality gaps and run times using performance profiles
as proposed by Dolan and Moré (2002). With z as the primal bound corresponding to
the best found feasible solution and d as dual bound, which is a bound on the best
possible objective value, the relative optimality gap is defined as |z − d|/|z|. Let gp,s
be the best gap obtained by solver s for problem p after a certain time limit. With the
performance ratio rp,s = gp,s/min

s
gp,s, the performance profile ρs(τ) is the percentage

of problems solved by approach s such that the ratios rp,s are within a factor τ ∈ R of
the best possible ratios. Equivalent to this, we obtain the performance profile for the
run times if we consider the run time tp,s that the solver s needs to solve problem p

and form the ratios rp,s = tp,s/min
s
tp,s. All performance profiles in this thesis are

generated with the help of Perprof-py; see Siqueira et al. (2016).
First we look at the relative optimality gaps. An instance is considered to be

solved as soon as the gap is less than 0.0001, which is the default value of Gurobi
for instance. For the performance profile we set gp,s = 0.0001 for solved instances
to prevent a division by zero. An infeasible instance is also considered as solved
if the infeasibility is detected. As we can see in Figure 2.3, the gaps obtained by
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Figure 2.3. Performance profile for Gurobi, SCIP-MIP, Baron, and
SCIP-NLP comparing relative optimality gaps obtained after a total
run time limit of 4 h per instance.

solving the problems as MIPs are clearly tighter than the ones obtained by solving
the problems as NLPs. Overall, for almost all problems, the gaps that are obtained
by Gurobi are the tightest of all gaps. The optimality gaps provided by SCIP-MIP are
in around 60 % of all cases the tightest. In addition, Gurobi is able to find a feasible
solution for every feasible instance and SCIP-MIP for almost every feasible instance,
with Gurobi generally finding solutions of higher quality. Infeasibility is detected by
both Gurobi and SCIP-MIP for three of the 7 instances that are infeasible, while the
two NLP solvers do not detect the infeasibility for any of the cases. In general, Baron
and SCIP-NLP perform significantly worse than Gurobi and SCIP-MIP. In direct
comparison, however, the two NLP solver are of similar quality. In about 10 % of all
cases, both solvers are able to find solutions with optimality gaps that are as tight as
the tightest. Baron, however, computes feasible solutions for 77 % of all instances as
opposed to 67 % by SCIP-NLP. We point out that SCIP-NLP is the only solver that
hits the memory limit of 24 GB RAM for 29 instances. In this case, we use the best
solutions that are computed before the memory limit is reached.

In terms of the run times, Figure 2.4 shows a similar picture as for the relative opti-
mality gaps. Solving the problems as MIPs is orders of magnitude faster than solving
them as NLPs. The performance of the solvers can even be ordered monotonously.
Gurobi is by far the fastest solver, which solves more than 80 % of all problems to global
optimality. Next comes SCIP-MIP, which finds an optimal solution in about 10 % of
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Figure 2.4. Performance profile for Gurobi, SCIP-MIP, Baron, and
SCIP-NLP comparing run times needed to solve the benchmark prob-
lems to global optimality with a total run time limit of 4 h per instance.

the problems as quickly as the fastest solver. It is also able to find optimal solutions
for almost 60 % of all instances within a run time factor of 103 compared to Gurobi.
SCIP-NLP is never the quickest to find an optimal solution. In total, it can find an
optimal solution in about 10 % of all cases, whereby the run times are up to a factor
of 103 longer than those of the fastest solvers. As the last comes Baron, which is a
little slower than SCIP-NLP. Moreover, it solves only about 6 % of the benchmark
problems to global optimality.

The experiment of reformulating MIPs to NLPs shows that an intensive study
of special structures and classes of constraints, such as x2 − x = 0, is mandatory.
To exaggerate, one could even say that the MIP community has specialized in the
nonlinear constraint x2 − x = 0. The exploitation of special structures that arise in
MIPs, on the other hand, has led to MIP technology becoming capable of solving
a large number of various MIPs nowadays. A finer categorization of MINLPs than
only convex and non-convex may therefore be useful and even necessary to achieve a
comparable development for MINLPs.





CHAPTER 3

Adaptive MIP Relaxations for MINLPs

In this chapter, we develop a multi-tree algorithm for solving MINLPs, which mainly
relies on the solution of adaptively refined MIP relaxations of the MINLP. Our goal
is to find an optimal solution for MINLP problems as in (P) such that no constraint
of the problem is violated by more than an a priori (but arbitrarily) given error bound.

We therefore adaptively construct MIP relaxations of (P) and solve these to global
optimality until no given error bound is violated. We indicate that in practice, the
smallest attainable error bound is determined by the tolerance of the MIP solver.
Although not all constraints of (P) may be fulfilled exactly by our approach, we
refer to it as global optimization of MINLPs, since all a priori given error bounds
are controllable and in fact all so-called global optimization algorithms for MINLP
problems deal with feasibility tolerances, e.g., for integrality or constraint violations.
For solving MIP and LP problems to arbitrarily high levels of precision, we refer
to Cook et al. (2011) and Gleixner (2015).

In the following, we prove convergence of our MIP-based approach and investigate
different refinement procedures. Furthermore, we present some results on piecewise
linear approximations of nonlinear functions. More precisely, we show how to compute
the maximal approximation error and for some specific functions, we locate the points
that attain this error. Additionally, tight bounds on the size of MIP relaxations that
are required to achieve an a priori given accuracy are obtained.

In the last decade, several publications on solving MINLPs by MIP relaxations
and especially MIP approximations appeared, many of which are application-driven.
Martin et al. (2006) describe one of the first approaches on this topic. The algorithmic
groundwork for our adaptive multi-tree approach is laid by Geißler (2011) and Geißler et
al. (2012a) introducing the idea of solving a series of adaptively refined MIP relaxations.
Moreover, techniques to obtain MIP relaxations based on MIP approximations are
presented. Very recently, Sirvent (2018) presented adaptive decomposition-based
methodologies for solving MINLPs with simulation-based black-box nonlinearities
using MIP relaxations. The focus therein lies on relaxation strategies, while in this
work we place more emphasis on refinement strategies. Another adaptive approach
based on α-convexifications for solving non-convex MINLPs with twice differential
nonlinearities is given by Lundell et al. (2013). Here, the authors use piecewise linear

19



20 CHAPTER 3. ADAPTIVE MIP RELAXATIONS FOR MINLPS

approximations of the α-convexifications to obtain tighter convex underestimators.
Breakpoints are added iteratively until the optimal solutions of the resulting convex
MINLP relaxations converge to the global solution of the non-convex MINLP. In
contrast, we focus on MIP technology and therefore solve a series of MIP relaxations
of the non-convex MINLP. However, in all these approaches two important problems
must be addressed: the construction of good approximations of the nonlinear functions
and the incorporation of these approximations into an MIP.

One way to obtain such approximations is to fix the error in advance and compute
optimal linearizations for each function as in Rebennack and Kallrath (2015a,b).
Complementary, Morsi (2013) shows how to construct polynomial relaxations of one-
dimensional nonlinear functions with an a priori given approximation error and a
minimal number of line segments. For up to three-dimensional functions, explicit
approximation techniques for general nonlinear functions have been developed by Mis-
ener and Floudas (2010). The main drawback of all these methods, however, is that
the number of simplices in the approximation grows exponentially with the dimension
of the function. We point out that the approach by Rovatti et al. (2014) overcomes
this problem by dropping the requirement that the piecewise linear function must
interpolate the original nonlinear function at the vertices of the triangulation. In our
case, we base the relaxations on piecewise linear approximations that interpolate the
function at the vertices. The relaxations completely contain the graph of the function
and are defined on simplices, which are defined by several vertices.

This chapter is structured as follows. First, in Section 3.1, we show in detail
how to model piecewise linear functions by the generalized incremental method as an
MIP. Furthermore, we give a brief overview of other MIP models for piecewise linear
functions. In Section 3.2, we describe how to compute the maximal approximation
error for piecewise linear approximations of nonlinear functions. For some specific
functions, we characterize where points attaining this error are located. Section 3.3
presents our main algorithm for solving MINLPs, which is based on the adaptive
refinement of MIP relaxations. Moreover, we classify the refinement procedures
that guarantee convergence of the algorithm. In Section 3.4, we investigate different
refinement strategies that we can apply in our adaptive MIP-based algorithm. More
precisely, we analyze for each refinement method whether it is contained in the
previously introduced class of refinements that lead to a convergent main algorithm.
Finally, we give tight bounds on the size of MIP relaxations that is required to achieve
an a priori given accuracy in Section 3.5.

Section 3.1 and 3.2 mostly summarizes known methods and facts from the literature.
Many results in Section 3.3–3.5 have been published in
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R. Burlacu, B. Geißler, and L. Schewe (2019). “Solving mixed-integer
nonlinear programmes using adaptively refined mixed-integer linear pro-
grammes”. In: Optimization Methods and Software, pp. 1–28. doi:
10.1080/10556788.2018.1556661.

The author of this thesis made significant contributions to this publication. All other
results in Section 3.3–3.5 that are not included in the publication from above as well
as Lemma 3.3, have been achieved by the author and are presented for the first time
in this thesis.

3.1. Modeling Piecewise Linear MIP Relaxations

In this section, we show how to model piecewise linear relaxations as an MIP. We
start with two basic definitions.

Definition 3.1. With affinely independent x̄0, . . . , x̄k ∈ Rd, the set

S =
{
x ∈ Rd : x =

k∑

i=0
λix̄i with

k∑

i=0
λi = 1 and λi ≥ 0 for all i = 1, . . . , k

}

is called a k-dimensional simplex.

In this thesis, we consider a simplex S ⊂ Rd to be full-dimensional, i.e., k = d in
Definition 3.1, and described by its extreme points V(S) = {x̄0, . . . , x̄d}. We recall
that Df is the compact domain of the nonlinear function f ∈ F .

Definition 3.2. The set T = {S1, . . . , Sn} with (full-dimensional) simplices Si ⊂ Rd

for i = 1, . . . , n, where d is the dimension of Df , is called a triangulation of Df , if
Df = ⋃n

i=1 Si and int(Sj) ∩ int(Sk) = ∅ for every j 6= k. The notation int(S) is used
to denote the relative interior of a set S ⊂ Rd.

Since we are only interested in an optimal solution for the MINLP problem (P)
such that no constraint is violated by more than an a priori given error bound, it suffices
for our purposes if a piecewise linear approximation φf of f ∈ F is a set of continuous
piecewise linear functions that completely cover the domain Df . Therefore, φf is not
necessarily a function itself, but more generally described as a set of continuous affine
functions φf ;Si(x) : Si → R, together with a triangulation T (φf ) = {S1, . . . , Sn} of Df

and auxiliary binary variables z ∈ {0, 1}n−1 indicating which of the n functions φf ;Si
is chosen. Herewith, the aim is to formulate a mixed-integer linear model in which

y = φf (x, z) := φf ;S1(x) +
n−1∑

i=1
zi(φf ;Si+1(x)− φf ;Si(x)) (2)

holds for x ∈ Df . Additionally, if zi = 1 then zi−1 = 1 also holds and if z0 = 0 then
the first approximation φf ;S0(x) is active. We note that the notation T (φf ) denotes a

http://dx.doi.org/10.1080/10556788.2018.1556661
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triangulation T that is associated with the approximation φf , but does not depend
on it.

In general, an approximation covers only a relatively small part of the graph of
the nonlinear function f . This means that we cannot represent the entire feasible set
of the MINLP by an MIP approximation. Consequently, an optimal solution of the
MIP approximation does not deliver a dual bound for the MINLP. However, since a
relaxation of f covers the graph of f completely, the corresponding MIP relaxation
covers the entire feasible set of the MINLP. Thus, we can provide a dual bound
for the MINLP by the objective function value of the optimal solution of the MIP
relaxation. Furthermore, if the MIP relaxation is infeasible, the MINLP itself is
infeasible as well. On the contrary, if an MIP approximation is infeasible, we cannot
conclude that the MINLP itself is infeasible. With

εu(f, S) := max
x∈S

f(x)− φf ;S(x),

εo(f, S) := max
x∈S

φf ;S(x)− f(x)

as the maximum underestimation and the maximum overestimation of f by φf ;S , we
obtain a relaxation on the basis of the approximation (2) by

y = φf (x, z) + ef ,

ef ≤ εu(f, S1) +
n−1∑

i=1
zi(εu(f, Si+1)− εu(f, Si)), (3)

ef ≥ −εo(f, S1)−
n−1∑

i=1
zi(εo(f, Si+1)− εo(f, Si)). (4)

See Figure 3.1 for an illustration. The blue lines depict a piecewise linear approximation
of the nonlinear function f(x) = 0.5 |x|x on the three simplices S1 = [−2,−1],
S2 = [−1, 1], and S3 = [1, 2]. In order to obtain a relaxation, we add the maximal
approximation error on each simplex to the approximation or subtract it. On S1 the
function f is only underestimated, while on S3 it is only overestimated. Since the
approximation underestimates and overestimates f on S2, we have to add and subtract
the corresponding errors on this simplex. Please note that εu(f, S) and εo(f, S),
respectively, are equal to zero if φf ;S does not underestimate or overestimate f on the
simplex S.

3.1.1. Generalized Incremental Model. There are many different ways to
model piecewise linear functions as an MIP. We apply the classic incremental method
of Markowitz and Manne (1957b), which has been extended to relaxations by Geißler
et al. (2012b). Originally developed for one-dimensional functions, a generalization
to higher dimensions is described by J. Lee and Wilson (2001) and Wilson (1998)
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Figure 3.1. A relaxation (light blue area) of f(x) = 0.5 |x|x, where
the maximum underestimation and the maximum overestimation are
added to or subtracted from the approximation of f (blue lines).

and Geißler (2011). The latter presents numerical experiments that show an advantage
of the generalized incremental model over other models. Similar numerical results are
presented by Correa-Posada and Sánchez-Martín (2014). Nevertheless, it is plausible
that, depending on the nature of the MINLP problem and in particular the occurring
nonlinearities, it is sensible to use different MIP models for the piecewise linear
relaxations. So far, however, there are no rigorous numerical experiments that would
confirm such an assumption. This has yet to be clarified in future research.

There are two main ideas of the generalized incremental model. At first, any
point xS inside a simplex S with V(S) = {x̄0, . . . , x̄d} can be expressed either as a
convex combination of its vertices or equivalently as

xS = x̄S0 +
d∑

j=1

(
x̄Sj − x̄S0

)
δSj (5)

with ∑d
j=1 δ

S
j ≤ 1 and δSj ≥ 0 for j = 1, . . . , d.

The other main idea is that all simplices of a triangulation are ordered in such a
way that the last vertex of any simplex is equal to the first vertex of the next one.
In this way, we can construct a Hamiltonian path and model the piecewise linear
approximation along this path. It is now sufficient to show that an ordering of the
simplices with the following properties is available:

(O1) The simplices in T = {S1, . . . , Sn} are ordered such that Si ∩ Si+1 6= ∅ for
i = 1, . . . , n− 1, and
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(O2) for each simplex Si its vertices x̄Si0 , . . . , x̄
Si
d can be labeled such that

x̄Sid = x̄
Si+1
0 for i = 1, . . . , n− 1.

Let ȳSij := f(x̄Sij ) be the value of f at the vertex x̄Sij of Simplex Si. More formally, for
any nonlinear function f ∈ F , we describe the generalized incremental model by:

x = x̄S1
0 +

n∑

i=1

d∑

j=1

(
x̄Sij − x̄Si0

)
δSij , (6a)

y = ȳS1
0 +

n∑

i=1

d∑

j=1

(
ȳSij − ȳSi0

)
δSij , (6b)

1 ≥
d∑

j=1
δSij for all i = 1, . . . , n, (6c)

0 ≤ δSij for all i = 1, . . . , n; j = 1, . . . , d, (6d)

zi ≥
d∑

j=1
δ
Si+1
j for all i = 1, . . . , n− 1, (6e)

zi ≤ δSid for all i = 1, . . . , n− 1, (6f)

zi ∈ {0, 1} for all i = 1, . . . , n− 1. (6g)

Constraints (6e)–(6g) ensure that the δ-variables satisfy the filling condition, which
states that if for any simplex Si a variable δSij is positive, then δSi−1

j = 1 must hold.
This means that δSij can only be positive if the variables δSkd are equal to one for
all previous simplices k = 1, . . . , i − 1. See Figure 3.2 for an illustration in case of
a two-dimensional domain Df together with a triangulation and its corresponding
ordering of the simplices. All δSkd are equal to one for k = 1, . . . , 3 and equal to zero
for k = 5, . . . , 9. Within the simplex S4, the point x is obtained by δS4

1 = 0.2 and
δS4

2 = 0.6. The point x is represented by the blue path within the triangulation, which
corresponds to (5).

Another important characteristic of the generalized incremental method is the
local ideality. An MIP model of a piecewise linear function is locally ideal if its LP
relaxation is integral, i.e., all binary variables of the MIP model are integral in the
optimal solution of the LP. Wilson (1998) showed that the MIP formulation (6) for
a single nonlinear function f is locally ideal.

We can now obtain an MIP relaxation for (P) by replacing (6b) with

y = ȳS1
0 +

n∑

i=1

d∑

j=1

(
ȳSij − ȳSi0

)
δSij + ef ,
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Figure 3.2. A triangulation of a two-dimensional domain Df and
its corresponding ordering of the simplices S1–S9. Each point x is
represented by a path (thick blue arrows) through the triangulation.

and adding the inequalities (3) and (4). Moreover, we have lower and upper bounds

− max
S∈T (φf )

εo(f, S) ≤ ef ≤ max
S∈T (φf )

εu(f, S)

for ef ∈ R. Concerning the computation of the approximation errors εu(f, S)
and εo(f, S), we refer to Section 3.2.

Additionally, if the gradient ∇f(x̂) of f ∈ F at point x̂ is available and f is convex
or concave, we can tighten the relaxation by adding linearization cuts of the type

∇f(x̂)>(x− x̂) ≤ y or ∇f(x̂)>(x− x̂) ≥ y.

However, since we pursue an approach that solves multiple MIPs and thus uses
multiple branch-and-bound trees, it can be too expensive to store these linearization
cuts throughout all iterations. Hence, it may be sensible to use very few or even no
linearization cuts at all.

3.1.2. Other MIP Models. For the sake of completeness, we mention further
MIP models for piecewise linear functions, but do not go into much detail. As already
pointed out, it is still unanswered which model is most suitable for the various MINLP
problems and therefore still the subject of future research. A detailed overview of the
following models is given by Vielma et al. (2010).

The generalized convex combination model expresses a point x as a convex com-
bination of the vertices of the simplex that contains x. There are two variants of
this model. The aggregated model introduces only one convex combination variable
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for each vertex of the triangulation. The disaggregated model contains a convex
combination variable for each vertex of the simplex. The first model consists of fewer
variables, but is not locally ideal. The second one uses more variables, but is locally
ideal.

Another MIP model for piecewise linear functions are the generalized logarithmic
models. Based on the disaggregated convex combination model the idea is to use
only a logarithmic number of binary variables, since choosing between n simplices
can be modeled by logn binary variables. An aggregated version of this model is
also available, but is restricted to specific triangulations. Both versions, however, are
locally ideal.

3.2. Accuracy of Piecewise Linear Approximations

As we have already seen, the estimate of the maximal approximation error is a
necessary part of our approach. The exact computation of this error is crucial to
obtain tight MIP relaxations whose feasible set is just big enough to cover the graph
of the nonlinear function f . There are many fairly general and more specific cases for
which this is possible with relatively little effort.

First, Geißler (2011) showed how the maximal approximation error on a simplex
and a point attaining the error can be determined by solving at most d+ 2 convex
optimization problems, if convex or concave envelopes of f are known. These opti-
mization problems are rather small, since they contain only d variables. Although it is
generally NP-hard to find convex envelopes Crama (1989), they are analytically given
for a considerable number of nonlinear functions; see for example Geißler (2011), Jach
et al. (2008), and McCormick (1976). In case exact convex envelopes are not available,
it is possible to only use convex underestimators; see Androulakis et al. (1995) and
Tawarmalani and Sahinidis (2004) for more details. Compared to envelopes, the
quality of the MIP relaxation, however, decreases depending on the tightness of the
underestimators.

In point of fact, we primarily need the maximal approximation errors on the
respective simplices rather than the convex envelopes. For specific functions, we
can explicitly indicate points where the maximal error is attained. For instance, in
case of quadratic one-dimensional functions, like f(x) = x2, such a point is given
by the midpoint of the line-segment (one-dimensional simplex). Another example
is f(x, y) = xy, for which a lot of research has been done regarding convex envelopes,
starting with the above mentioned work by McCormick (1976). For this function, we
know that on a simplex, a point with maximal approximation error lies on one of the
midpoints of the three edges; see Pottmann et al. (2000) for example. We can more
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generally specify when a point with maximal approximation error lies on one of the
facets of the simplex.

Lemma 3.3. Let f : Df → R with (compact) Df ⊂ Rd and a triangulation T of Df .
If for each x ∈ Df there is a line Lx ⊂ Rd containing x such that the nonlinear
function f is linear along Lx, then for each simplex S ∈ T there is a point with
maximal approximation error on one of the facets of S.

Proof. Let S ∈ T and φf ;S be an affine linear approximation of f on the
simplex S. Furthermore, let x be a point in the interior of the simplex S and Lx

be a line along which f is linear. Naturally, φf ;S is also linear along Lx. Thus, the
approximation error |φf ;S − f | is linear along Lx. A linear function, however, is either
monotonically decreasing or increasing. Since we want to determine the maximal
approximation error on the simplex S and S is a compact set, we only need to consider
the linear function |φf ;S−f | along Lx on a compact domain [l, u], where l, u correspond
to some points on the facets of S. It follows that the maximal error is either attained
at l, u, or both l and u. Therefore, a point with maximal approximation error lies on
one of the facets of S. �

With Lemma 3.3, for some nonlinear functions, it is easy to show that a point with
maximal approximation error lies on one of the facets of a simplex of the triangulation.

Example 3.4. Let
f(x) =

∏
i∈I aixi∏
j∈J ajxj

(7)

with Df ⊂ Rd, ai, aj ∈ R, I ∩ J = ∅, and I ∪ J = {1, . . . , d}. For x̄ ∈ Df , we consider
the line Lx = x̄ + λek, where λ ∈ R, k ∈ I and ek is the kth unit vector. Along Lx,
however, f is given by

(x̄k + λ) f(x̄1, . . . , x̄k−1, 1, x̄k+1, . . . , x̄d),

which is linear in λ. For each simplex of a triangulation of Df , it follows by Lemma 3.3
that the maximal approximation error is attained at one of its facets.

Please note that the function f(x, y) = xy is a special case of (7). Due to
Lemma 3.3, a point with maximal error lies on one of the three edges of a simplex in
case of f(x, y) = xy. Moreover, along the edges of the simplices, f can be described
by a quadratic one-dimensional function, for which the maximal error is attained at
the midpoint of the edges. This is another proof that for f(x, y) = xy a point with
maximal approximation error lies on one of the midpoints of the three edges.

Example 3.5. Let

f =
(

d∑

i=1
(aixki )

) 1
k

(8)
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with Df ⊂ Rd, ai ∈ R, and k ∈ R+. Additionally, we assume that Df is contained
in the positive orthant of Rd if k is an even integer. For x̄ ∈ Df , we consider the
line Lx = λx̄, where λ ∈ R. Along Lx, the nonlinear function f is given by

(
d∑

i=1
(aix̄ki λk)

) 1
k

=
(

d∑

i=1
(aix̄ki )

) 1
k

λ,

which again is linear in λ. This also holds if k is an even integer due to our assumption
that Df is contained in the positive orthant of Rd. It again follows by Lemma 3.3 that
the maximal approximation error is attained at one of the facets for each simplex of a
triangulation of Df .

A special case of a function as in (8) is f(x, y) =
√
x2 − y2, which occurs in the

context of gas transport optimization. This function essentially models the correlation
between the gas flow q and pressure loss pin − pout in a pipeline, which is given by the
Weymouth equation

β|q|q = p2
in − p2

out,

where β is some constant. We refer to Chapter 4 for more details on gas transport
optimization.

As described in Chapter 2, it is possible to subdivide multi-dimensional functions
into several lower-dimensional functions by expression trees. For the new functions,
the domains and the a priori given error bounds must be converted from the original
ones according to the propagation through the expression tree. This allows to split
the problem of determining the maximal approximation error into several problems
with lower dimensions. In most cases it is reasonable to follow such a strategy. MIP
relaxations based on expression trees, however, are not always useful, for example
if the variables of the function have a very large range. Since the errors of the
lower-dimensional functions can amplify, the problem can quickly become numerically
intractable. In this case, it is more sensible to approximate the multi-dimensional
function directly and construct an MIP relaxation from it.

If the dimension of the function is comparatively low, it is also possible to
determine the maximal error using a global NLP solver; see again the book by
Horst and Tuy (1996) for extensive details on methods of global optimization. As the
dimension increases, this problem becomes increasingly difficult to solve. Thus the
NLP part of the MINLP becomes more and more dominant and we obtain more and
more a pure NLP problem. In this thesis, however, we focus mainly on MINLPs that
have a significant MIP part.

Finally, we point out that if the Lipschitz-constant of the nonlinear function
is known, we can estimate the maximal approximation error by evaluation of the
function over a grid on the respective simplex. The quality of the estimate can then be
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controlled with the resolution of the grid. Naturally, depending on the dimension of
the function, there is a trade-off between the costs of the evaluations and the accuracy
of the estimate.

As pointed out before, for a notable variety of functions, optimal triangulations
(with respect to the number of simplices) that satisfy a given approximation error,
are known. Such triangulations can be used in our approach to find an initial MIP
relaxation of the MINLP, which is then adaptively refined. In the next section, we
clarify in more detail what such an algorithm looks like.

3.3. An Adaptive Refinement Algorithm for MINLPs

Our aim is to solve an MINLP problem, while we mainly solve MIP relaxations. For
the remainder of this chapter, we always refer to globally optimal solutions whenever
we speak of optimal solutions.

We follow a multi-tree approach, which solves several MIPs with increasing
accuracy. Initially, we solve a coarse MIP relaxation and check whether all error
bounds are satisfied in its optimal solution. Then, we locally refine those piecewise
linear approximations, where the error bounds are violated. Afterward, from the
refined approximation, a new MIP relaxation is constructed and the procedure is
started over with the new relaxation until all error bounds are satisfied. A more formal
description of this approach is given in Algorithm 1.

The reason for the adaptivity in our algorithm is that we are only interested in an
optimal solution of an MIP relaxation that satisfies all a priori given error bounds.
It is not necessary that all feasible points of the MIP relaxation comply with these
errors bounds. The adaptive approach allows us to omit many binary variables, which
has a significant impact on the run time. Another more theoretical reason is that
fixing the accuracy can lead to bad outcomes when solving MINLPs as shown by Dey
and Gupte (2015). Therein, the authors show how poorly even very fine piecewise
linear relaxations scale for the specific example of the pooling problem. More precisely,
they prove that for any ε > 0 and for any piecewise linear relaxation, there exists an
instance of the pooling problem such that the ratio of the optimal function value of
the relaxation to the optimal function value is at least n− ε where n is the number of
output nodes. This shows that it is necessary to not rely on an fixed discretization of
the nonlinearities. Consequently, our adaptive approach circumvents the problems
discussed by Dey and Gupte (2015).

In the following, we denote the projection of the optimal solution x of an MIP
relaxation on Df by xf for all f ∈ F . Moreover, the Euclidean norm is denoted
by ‖·‖. The refinement procedure in Algorithm 1 is somewhat abstract for now. We
investigate different possibilities for this in Section 3.4.
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Algorithm 1 Global optimization of an MINLP by solving adaptively refined MIP
relaxations
Input: An MINLP problem P of type (P), upper bounds ε0f > 0 for the absolute

linearization errors in the piecewise linear approximations used to construct the
initial relaxation and the maximal absolute linearization errors εf > 0 for all
f ∈ F .

Output: If P is feasible, the algorithm returns an optimal solution x of an MIP
relaxation Π of P with |f(xf ) − yf | ≤ εf for all f ∈ F and c>x ≤ c>x′ for any
feasible point x′ of P . If no such MIP relaxation Π of P exists, this is reported
by returning infeasible.

1: Set F ← all nonlinear functions that are contained after (optional) reformulation
of P with the help of expression trees.

2: Set Df , ε
0
f , εf ← the domain Df and the error bounds ε0f , εf that result from the

propagation of the original domain and error bounds through the expression trees
for all f ∈ F .

3: Compute an initial piecewise linear approximation φ0
f of f ∈ F satisfying the

upper bound ε0f for all f ∈ F .
4: Set i← 0.
5: repeat
6: Construct an MIP relaxation Πi of P from φif for all f ∈ F .
7: Solve Πi.
8: if Πi is feasible then
9: Set xi ← optimal solution of Πi.

10: else
11: return infeasible.
12: end if
13: Set stop ← true.
14: for all f ∈ F do
15: Set xif ← projection of xi on Df .
16: Set yif ← value of the variable for the approximated function value of f .
17: if

∣∣f(xif )− yif
∣∣ > εf then

18: Set zf ← values of the binary variables in xi used to model φif .
19: Set Sf ← simplex in T (φif

)
, which has been selected according to zf .

20: Set T (φi+1
f

)← refinement of the triangulation T (φif
)
(see Section 3.4).

21: Set φi+1
f ← piecewise linear approximation according to T (φi+1

f

)
.

22: Set stop ← false.
23: else
24: Set φi+1

f ← φif .
25: end if
26: end for
27: Set i← i+ 1.
28: until stop.
29: return xi−1.
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We now prove the convergence of our algorithm under the assumption that the
refining procedure has the following property. The refinement strategies that fulfill
this property in particular are described in Section 3.4.

Definition 3.6. The refinement procedure in Algorithm 1 is called δ-precise, if for an
arbitrary sequence (Si) ∈ Ti of simplices that are refined by the refinement procedure
with initial triangulation T0 of Df and given δ > 0, there exists an index N ∈ N, such
that

diam(SN ) < δ (9)
holds, where diam(SN ) := supx′,x′′∈SN {‖x′ − x′′‖}.

Theorem 3.7. If the refinement procedure in Algorithm 1 is δ-precise for every δ > 0,
then Algorithm 1 is correct and terminates after a finite number of steps.

Proof. We first show that Algorithm 1 terminates after a finite number of steps
and prove correctness afterward.

Let (xif ) be the sequence of (projected) optimal solutions of Πi for f ∈ F . Since
the refinement procedure is δ-precise for every δ > 0, there is an index N ∈ N with
‖x̄− x̄i‖ < δ for every δ > 0, x̄ ∈ SNf and x̄i ∈ V

(
SNf
)
. Furthermore, because Df is

compact, f is uniformly continuous on Df and therefore there is a δf > 0 such that∣∣f(x̄)− φNf (x̄)
∣∣ < εf/2. From the construction of the MIP relaxation it follows that

yNf ∈
[
φNf (xNf )− (εf/2), φNf

(
xNf
)

+ (εf/2)
]
.

Thus, we have ∣∣f
(
xNf
)− yNf

∣∣ ≤
∣∣f
(
xNf
)− φNf

(
xNf
)∣∣+ εf

2 ≤ εf
and Algorithm 1 terminates after a finite number of steps.

If, on the one hand, P is feasible, we can assure that Algorithm 1 does not return
infeasible in any iteration. Because the algorithm terminates after a finite number
of steps, there must be an MIP relaxation ΠN which has an optimal solution xN

with
∣∣f(xNf ) − yNf

∣∣ ≤ εf for all f ∈ F . Moreover, ΠN is a relaxation of P so that
c>xN ≤ c>x′ for all feasible points x′ of P .

If, on the other hand, there exists no MIP relaxation Π of P which has a feasible
point x̃ satisfying |f(x̃f ) − yf | ≤ εf for all f ∈ F , we can easily conclude that
Algorithm 1 must return infeasible, since it terminates after a finite number of
steps. �

Theorem 3.8. Let the refinement procedure in Algorithm 1 be δ-precise for every δ > 0.
If εf → 0 for all f ∈ F , then the (global) optimal solution obtained by Algorithm 1
converges to a (global) optimal solution of the MINLP problem P if and only if P is
feasible.
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Proof. First, it is clear that if Algorithm 1 converges to an optimal solution of
the MINLP problem P , then P must be feasible.

Let us now assume that P is feasible. Then, any MIP relaxation of P is feasible.
We consider a sequence (εf/2i) of constantly decreasing error bounds for all f ∈ F with
limit 0. For each of these sequence elements, we obtain an optimal solution of an MIP
relaxation that satisfies the corresponding error bound due to the δ-preciseness of the
refinement procedure and Theorem 3.7. This yields a sequence of optimal solutions (xif )
of some MIP relaxations that satisfy the error bounds εf/2i. Since Df is compact,
there is a convergent subsequence of (xif ) with a limit x̃f and corresponding error
bound 0. This means, however, that x̃f is feasible for P , because the approximation
error is 0 and P is feasible. Moreover, x̃f is the optimal solution of an MIP relaxation
of P , from which it follows that x̃f is optimal for P due to the relaxation property. �

3.4. Refinement Procedures

In this section, we investigate different refinement strategies that we can apply in
Algorithm 1. We primarily focus on the δ-preciseness of the methods. Furthermore,
if the refinement procedure is δ-precise, we show how to obtain a new triangulation
of the domain Df after a refinement step. Finally, we give a brief comparison of the
described methods using an example of a two-dimensional nonlinear function.

3.4.1. Limited Accuracy by Adding Points with Maximal Error. Intu-
itively, the method of adding a point with maximal approximation error as a new
vertex to the triangulation and constructing a new triangulation from it, seems very
promising. We can proceed as follows: If a simplex Sf of triangulation T (Vf ) is chosen
for refinement, we add a point with maximal approximation error on Sf to the set Vf
of linearization points obtaining a new triangulation T (Vf ∪ {v}). Unfortunately, an
approximation with arbitrary accuracy is not always attainable by such a procedure,
as we will show in the following.

Indeed, let φf be a piecewise linear approximation of a nonlinear function f ∈ F
on a box domain Df . Moreover, let its triangulation T (Vf ) correspond to a set Vf
of linearization points obtained by successively adding solely points with maximal
approximation error on a simplex. As initial linearization points we consider the set
of extreme points of Df . We show that there are nonlinear functions f that cannot
be approximated by φf with arbitrary accuracy.

Theorem 3.9. Let g : R→ R be a continuous nonlinear function with at least three
roots x0, x1, and x2. Additionally, let g(x) > 0 for x ∈ (x0, x1) and g(x) < 0 for
x ∈ (x1, x2) or vice versa. Then, g can be extended to a two-dimensional function f
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Figure 3.3. Extension of g(x) = sin(x) and 0 ≤ x ≤ 2π by multiply-
ing with h(y) = ey.

with domain Df , such that there exists a fixed ε > 0 with |φf (x, y)− f(x, y)| > ε for
any approximation φf and some (x, y) ∈ Df depending on φf .

Proof. Let h : R → R be a continuous and strictly increasing function with
h(0) > 0 and f : Df → R, (x, y) 7→ g(x)h(y) with

Df = {(x, y) ∈ R2 : x0 ≤ x ≤ x2, 0 ≤ y ≤ ȳ}

and arbitrary ȳ > 0. See Figure 3.3 for an illustration of such a function. We now
prove that

ε̃ := min
{

max
x∈(x0,x1)

|g(x)|, max
x∈(x1,x2)

|g(x)|
}
h(0)

is a lower bound for the approximation error of any piecewise linear approximation φf
defined as above.

Let φf be such a piecewise linear approximation. Due to the construction of f ,
if Se ∈ T (Vf ) is a simplex containing the edge e = conv{(x0, 0), (x2, 0)}, then for
all (x, y) ∈ Se either φf (x, y) ≥ 0 or φf (x, y) ≤ 0 holds. We now choose X to be
one of the two intervals (x0, x1) and (x1, x2), such that with x ∈ X either g(x) > 0
and φf (x, y) ≤ 0 or g(x) < 0 and φf (x, y) ≥ 0 holds. This is always possible due to
the assumption that g(x) has at least three roots x0, x1, and x2 with g(x) > 0 for
x ∈ (x0, x1) and g(x) < 0 for x ∈ (x1, x2) or vice versa. Then, for any x ∈ X it follows
that

|0− g(x)h(0)| = |φf (x, 0)− f(x, 0)| < |φf (x, y)− f(x, y)| (10)
for all y > 0, as h(y) is strictly increasing and that a point with maximal approximation
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Figure 3.4. Delaunay triangulation of the two-dimensional domain
Df = [0, 2π]× [0, 2π] of the nonlinear function f(x, y) = sin(x)ey with
flat simplices obtained by adding points with maximal approximation
error to the triangulation.

error can never be contained on edge e. Any initial triangulation of φf contains a
simplex Se with edge e, since the triangulation corresponds to set of extreme points
of Df . Thus, there is a simplex Se with edge e in any approximation φf , because only
points with maximal approximation error are added to the triangulation. Furthermore,
considering that φf (x, 0) = 0 in any φf , with (10) it follows that the maximal
approximation error on Se, and therefore on any piecewise linear approximation φf , is
larger than ε̃. �

Although a refinement strategy adding solely points with maximal approximation
error on a simplex often works well in practice according to Geißler (2011); Geißler
et al. (2013), it is due to Theorem 3.9 not necessarily δ-precise for every δ > 0.

Another disadvantage is that the simplices of the triangulation can become very
flat with such a procedure, even if we use a Delaunay triangulation. Flat simplices,
however, lead to high numerical instability. Delaunay triangulations have the advantage
that they maximize the smallest angle of all triangles; see Berg et al. (2008) and
Delaunay (1934). Hence, they offer the best possibility to avoid flat simplices. We
show an example for the domain Df = [0, 2π] × [0, 2π] of the nonlinear function
f(x, y) = sin(x)ey from Figure 3.3. We consecutively generate 25 random points in
the lower half (y ≤ π) of the domain Df . For each of these points, we determine a
point with maximal approximation error on the simplex containing the point and
subsequently construct a new Delaunay triangulation. The final triangulation after 25
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refinement steps is depicted in Figure 3.4. We see in this example that the routine
of adding points with maximal approximation error can lead to very flat simplices,
which is in general highly unfavorable.

Finally, many functions g(x) with the properties of Theorem 3.9 exist, e.g.,
polynomials of the kind (x− a1)(x− a2)(x− a3), and therefore many corresponding
functions f(x, y). In order to circumvent Theorem 3.9, the refinement procedure has
to add linearization points on the edge e from the theorem. Hence, in terms of global
optimization and controlling the approximation error, the refinement strategy adding
linearization points on the longest edge of a simplex, such as the longest-edge bisection,
is to some extent naturally motivated by Theorem 3.9.

3.4.2. Longest-Edge Bisection. We first show that a refinement procedure
that performs a longest-edge bisection as in Algorithm 2 is δ-precise for every δ > 0.
We then specify how to obtain a new triangulation from the old one after a refinement
step using the generalized incremental method. Please note that with Algorithm 2
hanging nodes can occur, i.e., nodes that are contained in the vertex set of a simplex S,
but not in all vertex sets of the simplices that are adjacent to S. A classical longest-
edge bisection does not allow for hanging nodes. As pointed out before, we only need
an MIP approximation as in (2). This, however, allows for hanging nodes, since we
only require that the resulting approximation is continuous on each simplex of the
triangulation, but not on the entire triangulation.

Now, let T̃k be the refined triangulation of an initial triangulation T0 ofDf obtained
by applying Algorithm 2 in such a way that in every iteration i ≤ k all simplices
of T̃i−1 are refined.

Lemma 3.10. Let S ∈ Rd be a simplex of T0 and e the longest edge of S. Then, the
longest edge of any simplex of T̃

l(d+1
2 ) contained in (the set) S is bounded by

(√3
2
)l‖e‖

with l ∈ N.

Proof. In a refinement step of Algorithm 2, the newly introduced midpoint of
the longest edge is connected to all opposing d− 1 vertices. Let ẽ be one of these d− 1
edges that are added in the first refinement step. Since ẽ can also be considered as
the median of the triangle T described by x̄a, x̄b, where conv({x̄a, x̄b}) = e (as in
Algorithm 2) and a vertex x̄c of the remaining d− 1 vertices of S, with Apollonius’
theorem it follows that

‖ẽ‖ ≤
√

3
2 ‖e‖. (11)

Because a longest edge is halved in a refinement step and there are at most
(d+1

2
)

longest edges in S, the length of the longest edge of any simplex of T̃(d+1
2 ) contained

in S is bounded by (11). Applying this argument recursively, we see that after l
(d+1

2
)
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Algorithm 2 Longest-edge bisection on a simplex S
Input: A simplex S and a scalar δ.
Output: If the longest edge of S is greater than δ, then a set of two simplices {S′, S′′}

with S = S′ ∪ S′′ and int(S′) ∩ int(S′′) = ∅ is returned. Otherwise no refinement
is performed.

1: Set e← longest edge of S with endpoints x̄a, x̄b ∈ V(S).
2: if ‖e‖ ≤ δ then
3: return V(S).
4: else
5: Set x̃← midpoint of the longest edge e.
6: Set V(S′)← (V(S) \ x̄b) ∪ x̃ ; S′ ← conv(V(S′)).
7: Set V(S′′)← (V(S) \ x̄a) ∪ x̃ ; S′′ ← conv(V(S′′)).
8: return V(S′), V(S′′).
9: end if

refinement steps any edge of a simplex of T̃
l(d+1

2 ) that is contained as a set in the set S

is bounded from above by
(√3

2
)l‖e‖. �

We point out that Definition 3.6 is a parametrized version of the notion of
exhaustiveness from Horst and Tuy (1996, Definition IV.10) and formally more
convenient in our case. The same applies to Lemma 3.10, which is similar to Horst and
Tuy (1996, Proposition IV.2) and adapted to our context. In Horst and Tuy (1996)
the authors use the concept of exhaustiveness of a refinement procedure to prove
convergence of their simplicial branch-and-bound methods. In a slightly different way,
we prove convergence of Algorithm 2, which, unlike the simplicial branch-and-bound
methods in Horst and Tuy (1996), allows for integer variables and non-convex nonlinear
functions that are not necessarily Lipschitz-continuous. Moreover, our approach uses
multiple branch-and-bound trees while the methods in Horst and Tuy (1996) are based
on a single branch-and-bound tree.

Theorem 3.11. Let δ > 0, then there is an Ñ ∈ N such that T̃Ñ is a refinement of
every triangulation obtained by applying Algorithm 2 to T0 with δ as input parameter.

Proof. We focus only on d ≥ 2, because in the case d = 1 the theorem obvi-
ously holds by interval bisection. With l = max

{
0,
⌈

ln
(‖e0‖

δ

)
/ ln

( 2√
3
)⌉}

, applying
Lemma 3.10, we conclude that after at most

Ñ :=
(
d+ 1

2

)
max

{
0,
⌈

ln
(‖e0‖

δ

)

ln
( 2√

3
)
⌉}

refinement steps the longest edge of any simplex of T̃Ñ is bounded by δ, where δ > 0
and e0 is the longest edge of all simplices of T0. Since Algorithm 2 only refines simplices
with a longest edge larger than δ and no simplex in T̃Ñ has an edge longer than δ, it
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follows by the pigeonhole principle that no refinement of T0 obtained by Algorithm 2
can be finer than T̃Ñ . �

Theorem 3.12. Algorithm 2 as refinement procedure in Algorithm 1 is δ-precise for
every δ > 0. With Ñ as in Theorem 3.11, the number of refinement steps N as in
Definition 3.6 is bounded from above by

N := m(2Ñ − 1) + 1, (12)

where m is the number of simplices contained in T0.

Proof. Counting every single simplex that has to be refined in order to obtain
the triangulation T̃Ñ from T0, we get

m(1 + 2 + 4 + . . .+ 2Ñ−1) = m(2Ñ − 1)

refinements in total. Again, by the pigeonhole principle, it follows that every sequence
(Si) ∈ Ti of simplices has an element Sk with index k ≤ m(2Ñ − 1) + 1, such that
Sk ∈ T̃Ñ , since T̃Ñ is a refinement of every triangulation obtained by Algorithm 2
with parameter δ. Therefore, simplex Sk has property (9), as no simplex in T̃Ñ has
an edge longer than δ. �

We now show that a piecewise linear approximation obtained by Algorithm 2 can
be modeled by the generalized incremental model.

Theorem 3.13. Let T be a triangulation with the properties (O1) and (O2). Then, any
triangulation T ′ obtained by applying Algorithm 2 to T maintains the properties (O1)
and (O2).

Proof. With T = {S1, . . . , Sn}, let Sk be the simplex that has to be refined
and x̄Sk0 , . . . , x̄Skd its labeled vertices. One of the two simplices S′k and S′′k (as in
Algorithm 2) contains x̄Sk0 , whereas the other one contains x̄Skd , since V(S′k) and V(S′′k )
only differ in one vertex. Without loss of generality, let x̄Sk0 be contained in S′k and x̄Skd
in S′′k . We now order the simplices of T ′ as

(S1, . . . , Sk−1, S
′
k, S

′′
k , Sk+1, . . . , Sn). (13)

With the midpoint x̃, we apply the following labeling:

x̄
S′k
0 = x̄Sk0 , x̄

S′k
d = x̃; x̄

S′′k
0 = x̃, x̄

S′′k
d = x̄Skd ; (14)

see Figure 3.5 for an illustration in case of d = 2. Furthermore, Sk−1 and S′k are linked
by x̄Sk−1

d = x̄
S′k
0 , and S′′k and Sk+1 by x̄S

′′
k
d = x̄

Sk+1
0 . Therefore, the ordering (13) of the

simplices of T ′ has the properties (O1) and (O2), because S′k ∩ S′′k 6= ∅ trivially holds,
x̄
S′k
d = x̄

S′′k
0 as in (14) and the rest is inherited from T . �
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Figure 3.5. A refinement of a two-dimensional simplex by the longest-
edge bisection with corresponding ordering and labeling of the two
sub-simplices. The labeled vertices of the original simplex that is
refined are marked in bold blue.

Please note that if no initial triangulation is given, we can simply choose a standard
triangulation with vertices equal to the set of extreme points of Df . We refer to the
book by O’Rourke (1998) for more details on this topic. As shown in Geißler (2011),
such a triangulation has always an ordering satisfying (O1) and (O2). With higher
dimension d of Df , however, even the triangulation of Df itself becomes intractable.
Let T (d) be the number of simplices in a minimum-cardinality triangulation of the
d-cube. Known results are for instance

T (2) = 2, T (3) = 5, T (4) = 16, T (5) = 67, T (6) = 308, T (7) = 1493

and more generally, at least

T (d) ≥
⌈

6 d2 d!
2(d+ 1) d+1

2

⌉

simplices are needed for a triangulation of the d-cube; see W. D. Smith (2000). It
is therefore imperative to use expression trees even at low dimensions to keep the
MINLP problem computationally within reach.

Remark 3.14. We easily obtain a triangulation T (φi+1
f

)
ofDf by replacing a simplex S

in T (φif
)
with S′ and S′′, since S = S′ ∪ S′′. Hence, there is a piecewise linear

approximation φi+1
f (x) for every x ∈ Df .

The next corollary follows directly from Theorem 3.7 and Theorem 3.12.

Corollary 3.15. Algorithm 1 together with Algorithm 2 as refinement procedure is
correct and terminates after a finite number of steps.

We point out that for a continuous function f ∈ F , in general, its corresponding δf
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Algorithm 3 Generalized red refinement of a simplex S
Input: A simplex S with V(S) = {x̄0, . . . , x̄d} and a scalar δ.
Output: If the longest edge of S is greater than δ, a set of 2d simplices {S0, . . . , S2d−1}

with S = ∪2d−1
i=0 Si and int(Si) ∩ int(Sj) = ∅ for all i 6= j is returned. Otherwise

no refinement is performed.
1: Set e← longest edge of S.
2: if ‖e‖ ≤ δ then
3: return V(S).
4: else
5: Set i← −1.
6: for 0 ≤ k ≤ d do
7: Set v0 ← 1

2(x̄0 + x̄k).
8: for τ ∈ Symd do
9: if τ−1(1) < · · · < τ−1(k) and τ−1(k + 1) < · · · < τ−1(d) then

10: for 1 ≤ l ≤ d do
11: Set vl ← vl−1 + 1

2(x̄τ(l) − x̄τ(l)−1).
12: end for
13: Set i← i+ 1.
14: Set V(Si)← {v0, . . . , vd} ; Si ← conv(V(Si)).
15: end if
16: end for
17: end for
18: return V(S0), . . . ,V(S2d−1).
19: end if

as in the proof of Theorem 3.7 might not be computable. Since such a δf > 0
exists for every continuous f ∈ F , it suffices to set δf := 0 as input parameter for
Algorithm 2. In practice, however, the lower bound of an attainable δ is determined
by the capabilities of the MIP solver.

3.4.3. Generalized Red Refinement. Another well-known refinement proce-
dure is the red refinement. In this thesis, we consider the simplex refinement algorithm 3
by Bey (2000) and Freudenthal (1942). It is a generalization of the red refinement
strategy, which originally was only developed for triangles. It is shown by the authors
that the generalized red refinement procedure always delivers a triangulation of the
simplex that has to be refined by 2d sub-simplices. Moreover, the triangulation is
consistent, i.e., the intersection of any two sub-simplices is either empty or a common
lower-dimensional simplex with respect to the vertex sets. Consequently, a consistent
triangulation does not allow for hanging nodes.

First, we illustrate the refinement by Algorithm 3 using an example in dimension
two.
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Figure 3.6. A red refinement of a two-dimensional simplex with
corresponding ordering and labeling of the four sub-simplices. The
labeled vertices of the original simplex that is refined are marked in
bold blue.

Example 3.16. We consider a simplex Sl of some triangulation of a two-dimensional
nonlinear function with vertex set V(Sl) = {x̄0, x̄1, x̄2} that has to be refined. Let the
scalar δ be sufficiently large such that a refinement is performed by Algorithm 3. Note
that for k ≤ 1 the condition τ−1(1) < · · · < τ−1(k) is considered to be fulfilled. The
same applies for the condition τ−1(k + 1) < · · · < τ−1(d) in case of k ≥ d− 1.

First, the symmetry group Sym2 has two permutations: the identity τ1 = id and
the permutation τ2 : {1, 2} → {2, 1}. The identity fulfills the condition in Line 9 for
all 0 ≤ k ≤ 2.

Since τ2 does not satisfy Line 9 for k = 0, we obtain the first corner sub-simplex S0
l

for τ1. The vertices of S0
l are

v0 = x̄0, v1 = v0 + 1
2(x̄1 − x̄0), v2 = v1 + 1

2(x̄2 − x̄1); (15)

see Figure 3.6 for an illustration.
For k = 1 both permutations τ1 and τ2 comply with Line 9. Equivalent to k = 0,

with τ1 we obtain the simplex S1
l as in (15), while now v0 = x̄0 + 1

2(x̄1 − x̄0). We thus
obtain the corner sub-simplex S1

l simply by translating the corner sub-simplex S0
l by

the vector 1
2(x̄1 − x̄0). For τ2, we compute the vertices of the simplex S2

l as

v0 = 1
2(x̄1 − x̄0), v1 = v0 + 1

2(x̄2 − x̄1), v2 = v1 + 1
2(x̄1 − x̄0). (16)

Finally, for k = 1 again only the identity τ1 fulfills the condition in Line 9. We
obtain the simplex S3

l as in (15) with v0 = x̄0 + 1
2(x̄2− x̄0). The corner sub-simplex S3

l

again corresponds to a translation of S0
l by the vector 1

2(x̄2 − x̄0).

We now proceed as in the previous subsection. First, we prove the δ-preciseness



3.4. REFINEMENT PROCEDURES 41

of the refinement procedure and show how to model a refined triangulation by the
generalized incremental method afterward.

Again, let T̃k be the refined triangulation of an initial triangulation T0 of Df

obtained by applying Algorithm 3 such that in every iteration i ≤ k all simplices
of T̃i−1 are refined.

Lemma 3.17. Let S ∈ Rd be a simplex of T0 and e the longest edge of S. Then,
the longest edge of any simplex of T̃l contained in (the set) S is bounded by 1

2l ‖e‖
with l ∈ N.

Proof. The lemma follows directly from Line 11 of Algorithm 3, since
∥∥∥∥

1
2(x̄τ(l) − x̄τ(l)−1)

∥∥∥∥ ≤
1
2‖e‖

are the lengths of the edges of the sub-simplices that are constructed during the first
refinement step. Applying this recursively finishes the proof. �

With Lemma 3.17 and the results from Section 3.4.2 the δ-preciseness of the red
refinement follows directly:

Corollary 3.18. Let δ > 0, then there is an Ñ ∈ N, such that T̃Ñ is a refinement of
every triangulation obtained by applying Algorithm 3 to T0 with δ as input parameter.

Proof. With Ñ := l = max
{
0,
⌈

ln
(‖e0‖

δ

)
/ ln(2)

⌉}
and applying Lemma 3.17, the

proof works equivalently to the one of Theorem 3.11. �

Corollary 3.19. Algorithm 3 as refinement procedure in Algorithm 1 is δ-precise
for every δ > 0. With Ñ as in Corollary 3.18, the number of refinement steps N as
in Definition 3.6 is bounded from above by

N := m(2Ñd − 1) + 1,

where m is the number of simplices contained in T0.

Proof. We again count every single simplex that has to be refined and obtain

m(1 + 2d + 22d + . . .+ 2Ñd−1) = m(2Ñd − 1)

refinements in total. The rest of the proof follows by the pigeonhole principle as in
the proof of Theorem 3.12. �

We now show that a piecewise linear approximation that results from applying
Algorithm 3 can also be modeled with the generalized incremental method. We first
prove two lemmata that are used afterward to prove the main result of this subsection.

Lemma 3.20. Let S = {S0, . . . , S2d−1} be a refinement of a simplex S by Algorithm 3
with V(S) = {x̄0, . . . , x̄d}. Then, each simplex of the subset of the corner sub-simplices
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S ′ = {Si0 , . . . , Sid} of S contains a vertex of the simplex S, i.e., x̄j ∈ V(Sij ) for
all j = 0, . . . , d. Moreover, for each pair of simplices Sij , Sik ∈ S ′ the midpoint mjk

of the edge with endpoints x̄j and x̄k is contained in both vertex sets of the simplices.

Proof. First, the identity id ∈ Symd always fulfills the conditions from Line 9
of Algorithm 3. Let Sij be the simplex that is constructed using the starting ver-
tex v0 = 1

2(x̄0 + x̄j) and τ = id, where j = 0, . . . , d. Due to the telescoping sum in
Line 11, it follows that

vj = 1
2(x̄0 + x̄j)
︸ ︷︷ ︸

v0

+1
2(x̄1 − x̄0)

︸ ︷︷ ︸
v1

+1
2(x̄2 − x̄1)

︸ ︷︷ ︸
...

+ · · ·+ 1
2(x̄j − x̄j−1) = xj (17)

is contained in the vertex set of Sij .
Furthermore, due to the telescoping sum in (17), we can rewrite Line 11 as

vl ←
1
2(x̄0 + x̄j) + 1

2(x̄l − x̄0) = 1
2(x̄j + x̄l)

for τ = id. Since mjk = 1
2(x̄j + x̄k), we conclude that the vertices vk and vj that occur

during the construction of Sij and Sik , respectively, are equal to mjk. �

Lemma 3.21. Let S ′′ = {S0, . . . , S2d−1−(d+1)} be a refinement of a simplex S by
Algorithm 3 without the d+ 1 corner sub-simplices of S ′ as in Lemma 3.20. Then, the
union of all simplices of S ′′ is a (convex) polytope and the triangulation of S ′′ has an
ordering with the properties (O1) and (O2).

Proof. Alternatively to the vertex description, we can describe the simplex S by
its half-space representation

S =
{
x ∈ Rd : a>j x ≤ bj with aj ∈ Rd and bj ∈ R for j = 0, . . . , d

}
. (18)

We now describe the set S ′′ by adding the inequalities that separate all corner sub-
simplices from the set S as in (18). For a vertex of S exactly d inequalities in (18)
are tight. Due to Lemma 3.20, the vertex set of the corner sub-simplex Sij ∈ S ′
consists of the vertex x̄j and all midpoints mjk with k = 0, . . . , d. Let a>j x ≤ bj be
the inequality that is not tight for x̄j . Naturally, it is tight for all other vertices of S
and it follows that

a>j mjk = 1
2 a
>
j (x̄k + x̄j) = 1

2(bj + a>j x̄j). (19)

Moreover, since the red refinement also delivers a triangulation of S, where all interiors
of the sub-simplices are disjunct, we can describe Sij by substituting a>j x ≤ bj with
a>j x ≤ 1

2(bj + a>j x̄j) in (18). Therefore, by separating all corner sub-simplices, we
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obtain the half-space description

S ′′ =
{
x ∈ Rd : a>j x ≤ bj , a>j x ≥

1
2(bj + a>j x̄j)

with aj ∈ Rd and bj ∈ R for j = 0, . . . , d
}
.

It follows that the union of all simplices of S ′′ is a convex polytope.
The consistency of the triangulation of S translates to the triangulation of S ′′,

because only the corner sub-simplices are omitted. It is shown by Geißler (2011)
that a triangulation with the property that for each nonempty subset S̃ ( T of a
triangulation T there exist simplices S1 ∈ S̃ and S2 ∈ T \ S̃ such that S1, S2 have d
common vertices, always yields a triangulation with the properties (O1) and (O2).
Therefore, we only have to prove that the triangulation of S ′′ has this property. To this
end, we consider a nonempty subset S̃ of S ′′. Each facet of a d-dimensional simplex
consists of d vertices of the simplex. Let S̃F be the set of all facets of the simplices
of S̃, where the simplices are described by the convex hull of its vertices. Then, each
facet in S̃F is either a facet of S ′′ (in the sense of convex hulls) or a common facet of
two simplices of S̃. This is due to the consistency of the triangulation. Since S̃ ( S ′′,
however, there must be a facet in S̃F that is a common facet of two simplices S1, S2
such that S1 ∈ S̃ and S2 ∈ S ′′ \ S̃. �

Endowed with Lemma 3.20 and 3.21, we are now ready to prove the main result
of this subsection.

Theorem 3.22. Let T be a triangulation with the properties (O1) and (O2). Then, any
triangulation T ′ obtained by applying Algorithm 3 to T maintains the properties (O1)
and (O2).

Proof. For the following proof, we first show that there is an ordering of the
sets S ′ and S ′′ from Lemma 3.20 and 3.21 with the properties (O1) and (O2). The
second part of the proof merges these two orderings to obtain an overall ordering with
the properties (O1) and (O2).

Let T = {S1, . . . , Sn} and Sl be the simplex that has to be refined, while
x̄Sl0 , . . . , x̄

Sl
d are its labeled vertices. We first consider d ≥ 4 and d = 2, 3 after-

ward. The 2d simplices S0
l , . . . , S

2d−1
l , into which Sl is divided by the red refinement,

have due to Lemma 3.20 the property that the corner sub-simplices contain the vertices
of Sl. Without loss of generality, let x̄Slj ∈ V(Sjl ).

We first show that the set S ′ of the corner sub-simplices has an ordering with the re-
quired properties. The corner sub-simplices Sjl ∈ S ′ yield a complete graph G = (V,E)
with the simplices as the node set V and the midpoints mjk as the edge set E con-
necting the simplices Sjl and Skl . Due to mjk = mkj , we assume in the following for
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the notation mjk that j < k holds. For each Hamiltonian path in G, we can use the
path itself as an ordering of the simplices that correspond to the nodes of G. An edge
connecting two consecutive nodes of the path corresponds to a common midpoint
of two consecutive simplices. Therefore, the ordering naturally has property (O1),
which indicates that two consecutive simplices have at least one common vertex. The
ordering has the property (O2) as well, which states that the last vertex of any simplex
is equal to the first vertex of the next one: With two consecutive simplices Sjl and Skl
that correspond to two consecutive nodes of the Hamiltonian path, we only have to
set x̄S

j
l
d = mjk and x̄S

k
l

0 = mjk.
Moreover, it follows from Lemma 3.21 that there is an ordering

(Si0l , . . . , S
i2d−1−(d+1)
l ) (20)

of the simplex set S ′′ with the properties (O1) and (O2). Since the vertices of the
simplices of S ′′ are the midpoints mjk, there must be two midpoints mjk and mst with

mjk = x̄
S
i0
l

0 and mst = x̄
S
i2d−1−(d+1)
l
d .

We now link the orderings of S ′ and S ′′ to obtain an overall ordering with the
properties (O1) and (O2). Let R be a Hamiltonian path in the sub-graph of G that
consists of the vertices V \ {0, j, k, s, t, d}. Such a path is always attainable, because
any sub-graph of a complete graph is also complete. With j 6= k one of the following
three cases applies to the node j: j = s, j = t, or j 6= s ∧ j 6= t. With s 6= t, we have
the following three cases for the node s: s = j, s = k, or s 6= j ∧ s 6= k. Consequently,
due to j 6= k and s 6= t only the following five cases are possible for the nodes j, k, s,
and t:

j = s ∧ k 6= t, j = s ∧ k = t, j 6= s ∧ k = t, k = s, j 6= s ∧ k 6= t. (21)

The case k = s is equivalent to the case j = t, since the inverse of the ordering (20)
also has the properties (O1) and (O2).

Keeping the cases in (21) in mind, we define the path

H =





(0, j, t, R, k, d), if j = s ∧ k 6= t, (22a)

(0, R, j, k, d), if j = s ∧ k = t, (22b)

(0, j, s, R, t, d), if k = s, (22c)

(0, j, s, R, k, t, d), otherwise. (22d)
Please note that if t = d in (22a), we can again invert the ordering (20) such that t 6= d

and k = d. The same can be applied in case of k = d in (22c) and (22d). Moreover,
any permutation of the labeling x̄i of the simplex Si0l , where i = 0, . . . , d− 1 and of
the simplex S

i2d−1−(d+1)
l , where i = 1, . . . , d, is permissible. Thus, we can assume that
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mst 6= m0d and that mjk 6= m0u if mst = mud. This guarantees us that the path H is
always a Hamiltonian path.

The path H corresponds to an ordering, where the vertices in H are the corner sub-
simplices Sjl ∈ S ′. As showed above, this ordering has the properties (O1) and (O2).
We now insert the ordering (20) of the simplex set S ′′ into the one of H after the
simplex that corresponds to the vertex j. The union of S ′ and S ′′ corresponds to the
set of all 2d sub-simplices into which Sl is divided by the red refinement. Therefore,
the resulting ordering covers all 2d sub-simplices. The merging of the two orderings
of S ′ and S ′′ via the midpoints mjk and mst finally leads to an overall ordering that
has the properties (O1) and (O2). The remainder of the proof works equivalently to
the one of Theorem 3.13.

In case of d = 2, we use the ordering (S0
l , S

1
l , S

2
l , S

3
l ), where S0

l , S1
l , and S3

l are
the three corner sub-simplices and S2

l the remaining center sub-simplex; see again
Figure 3.6 for an illustration.

For d = 3, we assume without loss of generality that the vertex x̄3 of
the simplex that has to be refined is contained in S7

l . We use the ordering
(S0
l , S

1
l , S

2
l , S

3
l , S

4
l , S

5
l , S

6
l , S

7
l ), where S0

l , S1
l , S2

l , and S7
l are the four corner sub-

simplices contained in S ′ and S3
l –S6

l the four center sub-simplex of S ′′. Finally, the
orderings of S ′ and S ′′ are linked via mjk = m02 and mst = m27.

The rest of the proof again works equivalently to the one of Theorem 3.13. �

3.4.4. Comparison of the Methods. In this section, we compare the longest-
edge bisection and red refinement with the procedure that adds points with maximal
approximation error from Section 3.4. To this end, we again use the two-dimensional
nonlinear function f(x, y) = sin(x)ey and the domain Df = [0, 2π] × [0, 2π] and
generate 25 random points in the lower half (y ≤ π) of the domain Df . We refine the
simplices that contain these points and subsequently construct new triangulations.

First, we can see in Figure 3.7a and 3.7b that both the longest-edge bisection
and the red refinement yield triangulations that prevent flat simplices. In contrast,
the procedure adding points with maximal approximation error can lead to very flat
simplices; see Figure 3.4 again.

Moreover, we give more insight into the quality of the triangulations using the
maximal approximation errors εi on the simplices of the triangulation. Table 3.1
shows a comparison of common error measures. The first column indicates the median
of the errors εi, while the arithmetic mean of εi is given in the second column. The
third and fourth column contain the minimum and maximum of εi. We conclude that
in our example f(x, y) = sin(x)ey after 25 refinement steps the red refinement delivers
the triangulation with the smallest approximation errors. The longest-edge bisection
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(a) Triangulation using the longest-edge bisection.
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(b) Triangulation using the red refinement.

Figure 3.7. Triangulation of the domain Df = [0, 2π] × [0, 2π] of
the nonlinear function f(x, y) = sin(x)ey obtained by applying the
longest-edge bisection (above) and red refinement (below).

and the procedure adding points with maximal approximation error perform very
similarly with respect to the approximation errors.

The number of simplices of a triangulation, however, is crucial for the applicability
of our MIP-based approach, since the run time for solving an MIP grows exponentially
with its size and each simplex corresponds to a binary variable. In our example
f(x, y) = sin(x)ey, the red refinement produces 77 simplices, while the procedure
adding points with maximal approximation error and the longest-edge bisection only
need 52 simplices and 27 simplices, respectively. In this regard, the longest-edge
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Table 3.1. Various error measures using the maximal approximation
errors on the simplices of the triangulations that are obtained by apply-
ing the longest-edge bisection, the red refinement, and the procedure
adding points with maximal approximation error.

refinement procedure median mean min max
longest-edge bisection 1.01 34.71 0.18 534.43
red refinement 0.21 19.03 0.02 535.49
points with maximal error 0.95 30.30 0.18 534.43

bisection is the best procedure. More generally, independent of the dimension of the
nonlinear function, the longest-edge bisection increases the number of simplices of a
triangulation by only one per refinement step. The other procedures, however, lead
to higher increases. In the following, we therefore use the longest-edge bisection as
refinement procedure in Algorithm 1.

Finally, we point out that the triangulations in Figure 3.7a and 3.7b both yield
a Delaunay triangulation. More specific, each simplex of these triangulations is a
Delaunay simplex, i.e., there exists a Delaunay triangulation for the set of vertices in
Figure 3.7a and 3.7b such that the simplex is contained in the Delaunay triangulation.
A more precise characterization of this phenomenon remains the subject of future
research.

3.5. Complexity of MIP Relaxations

In this section, we analyze the complexity of the resulting MIP relaxations in Algo-
rithm 1 in terms of their sizes. In our context, complexity is narrowed down to the
maximal number of continuous and binary variables. In the following, we consider
a fixed dimension of the box domain Df of a nonlinear function f . With higher
dimension, the number of simplices that are needed for the triangulation of Df itself
drastically increases and therefore dominates the number of refinements performed by
Algorithm 1.

As we have seen in the previous section and due to Theorem 3.12, using the
generalized incremental method the number of both continuous and binary variables
is of size O(2Ñ) or, with Ñ = O(d2|ln(diam(Df )/δf )|), of size

O((diam(Df )/δf )d2)
.

In order to give more exact bounds, we assume for the rest of this section that f ∈ F
is Lipschitz-continuous with Lipschitz-constant Lf . This is a common assumption in
terms of practically interesting MINLP problems. With regard to the convergence of
Algorithm 1, we get the following result.
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Theorem 3.23. Let f ∈ F be Lipschitz-continuous with Lipschitz-constant Lf . Then,
it suffices to set δf := εf/(2Lf ) as input parameter in Algorithm 2, such that Algo-
rithm 1 together with Algorithm 2 as refinement procedure is correct and terminates
after a finite number of steps.

Proof. The proof works almost analogously to the proof of Theorem 3.7. With
δf = εf/(2Lf ), now

∣∣f(x̄)− φNf (x̄)
∣∣ < εf/2 holds by applying Lipschitz-continuity

of f . �

Regarding the number of refinements performed in Algorithm 1, we now have

Ñ = O
(
d2
∣∣∣∣ln
(
Lf diam(Df )

εf

)∣∣∣∣
)
, (23)

where Ñ is defined as in Theorem 3.11, and a maximal number of variables of size

O
(
(Lf diam(Df )/εf )d2)

. (24)

These numbers are scale-invariant, since with the scaling of the nonlinear function f ,
the Lipschitz-constant Lf is also scaled accordingly. A classical result on the complexity
of computing approximations of f to within εf is Θ

(
(1/εf )d

)
by Traub et al. (1988).

Compared to this, we see that a longest-edge bisection might not yield an approximation
of f with minimal cost, since every binary variable corresponds to a refinement step
and therefore an evaluation of f . However, because we only need an optimal solution
of an MIP relaxation that satisfies all a priori given approximation errors, locally
fine approximations are sufficient in our case. The adaptivity in Algorithm 1 aims at
obtaining good locally fine approximations. The longest-edge bisection rule increases
the number of binary variables by only one per refinement step for each nonlinear
function and is thus very convenient with respect to the adaptive refinements.

As shown by Vielma et al. (2010) and Vielma and Nemhauser (2011), a modeling
of the MIP relaxations obtained by Algorithm 1 with a logarithmic number of binary
variables is possible. Their so-called logarithmic disaggregated convex combination
model is only based on a triangulation of Df as in Definition 3.2 and does not impose
any other special requirements. Therefore, with Remark 3.14 we can easily use the
model for our MIP relaxations. Hence, concerning the number of binary variables,
we get O(Ñ) with Ñ as in (23), whereas the number of continuous variables equals
the one of the generalized incremental method and is thus of size O(2Ñ ). However,
we point out that in practice the generalized incremental method might be superior
in terms of the run time; see again Correa-Posada and Sánchez-Martín (2014) and
Geißler (2011) for more detailed discussions.

The logarithmic branching convex combination model described by Vielma and
Nemhauser requires a smaller amount of continuous variables than the logarithmic
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Figure 3.8. Triangulations of a two-dimensional box for which only
a 3-way IB scheme (left and right), and a 2-way IB scheme (middle)
exist. In case of 3-way IB schemes, a minimal infeasible set of size
three is marked by squares.

disaggregated convex combination model. This is accomplished by using branching
dichotomies, which decide if a variable corresponding to a vertex of the triangulation
is set to zero or not. In this way, only one continuous variable is needed for each
vertex of a triangulation, instead of d + 1 variables for each d-dimensional simplex
of a triangulation as in the logarithmic disaggregated convex combination model.
Very recently, the approach of Vielma and Nemhauser has been generalized in the
preprint Huchette and Vielma (2016) introducing the notion of k-way independent
branching (IB) schemes. Thereby, a 2-way IB scheme is needed for a triangulation in
order to utilize the logarithmic branching convex combination model. Furthermore,
the existence of k-way IB schemes has been characterized as follows. With V as the
set of all vertices of the triangulation, a subset V ∈ V is called infeasible, if V is not
contained in the set of all vertices describing some simplex S ∈ S of the triangulation,
i.e., V 6⊆ V(S) for all S ∈ S.

Proposition 3.24 (Theorem 1, Huchette and Vielma (2016)). A k-way IB scheme
exists if and only if each minimal infeasible set V ∈ V has |V | ≤ k.

Unfortunately, this model is unsuitable for our purpose. We can see in Figure 3.8
that there can be triangulations in Algorithm 1 for which only 3-way IB schemes
exist:

Proposition 3.25. Triangulations occurring in Algorithm 1 do not always have 2-way
IB schemes

We remark that there is no direct impact of hanging nodes of a triangulation to
the existence of 2-way IB schemes.





CHAPTER 4

Optimization of Gas Transport Networks

In this chapter, we derive MINLP problems that arise in the optimization of gas
transport networks. For these MINLPs, we demonstrate the applicability of our
approach from Chapter 3 in Chapter 6.

Natural gas is one of the most important energy sources worldwide. According
to the BP Statistical Review of World Energy 2018, almost a quarter of the world’s
total energy consumption was covered by natural gas in 2017; see BP Review (2018)
and Figure 4.1 for an overview of the distribution of the various energy sources. With
constantly increasing energy consumption and the associated increase in gas amounts
that are traded, the transport of gas is also becoming more and more of a challenge.

In Germany, natural gas is gaining even more importance in the context of the
“turnaround in energy policy”. The main goal is the transition from the unsustainable
use of fossil fuels and especially nuclear energy towards a sustainable supply with
renewable energy. In order to enable an energy supply during the transition to nuclear-
free energy, gas will play a decisive role as an energy source in the coming decades.
Partially motivated by this, the academic research project “SFB Transregio 154:
Mathematical Modelling, Simulation and Optimization using the Example of Gas
Networks” supported by the German Research Foundation was initiated in 2014. This

Oil: 34.21 %
Nuclear Energy: 4.41 %
Coal: 27.62 %
Hydroelectricity (Renewables): 6.80 %
Other Renewables: 3.60 %
Natural Gas: 23.36 %

Figure 4.1. Overview of the distribution of the various energy sources
covering the total energy consumption worldwide according to BP
Review (2018).
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thesis is to a large extent the result of the subproject B07 of the SFB Transregio 154
project and focuses on one of its central aspects: the optimization of gas transport
networks.

Mathematically, the problems related to gas transport are challenging due to the
interaction of gas flow and pressure. First, from this coupling of flow and pressure, it
follows that there is generally no fixed capacity of a pipe. Therefore, classical network
flow theory, e.g., Ford and Fulkerson (1956), cannot describe the characteristics of gas
networks. Moreover, gas networks are highly sensitive, since changing the pressures
on a small part of the network can have a significant impact on a much larger part of
the network.

The chapter is structured as follows. First, in Section 4.1, we motivate the gas
optimization problems discussed in this thesis and give an overview of the literature
on approaches in the field of gas network optimization and related problems. In
Section 4.2, we describe the mathematical model for the transport of gas in a network.
Then, we provide a discretization of the partial differential equations (PDEs) of this
model in Section 4.3. Endowed with this discretization, we model in Section 4.4 two gas
optimization problems as MINLP problems that are the basis for the computational
results in Chapter 6.

This chapter is mainly based on the book Koch et al. (2015) and the publication

R. Burlacu, H. Egger, M. Groß, A. Martin, M. E. Pfetsch, L. Schewe, M.
Sirvent, and M. Skutella (2018). “Maximizing the storage capacity of gas
networks: a global MINLP approach”. In: Optimization and Engineering,
pp. 1–31. doi: 10.1007/s11081-018-9414-5.

The author of this thesis made important contributions to the elaboration of the
MINLP models and implementation of the approaches in the latter.

4.1. Optimization Issues

In this section, we present two important optimization tasks in the field of gas transport
that we will model as MINLP problems in the remainder of this chapter. In addition,
we provide a literature overview of various approaches to these and similar optimization
problems.

In Europe, on the basis of legislation, gas trading and gas transport are managed
by different companies. Gas transport is typically performed by transmission system
operators (TSOs). These are supplied with gas by the producers at so-called entries
and transport it through a pipeline (or short pipe) network to companies that distribute
the gas at so-called exits. A TSO is therefore responsible for ensuring that a certain
amount of gas can be transported reliably. In this thesis, we highlight two major
optimization tasks of a TSO: the validation of a so-called nomination and the

http://dx.doi.org/10.1007/s11081-018-9414-5
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maximization of the storage capacity of a gas network. We formulate this problems as
MINLPs, which we subsequently solve by our adaptive MIP-based approach.

First, since gas trading and gas transport are decoupled, the TSOs sell rights to
inject the gas into or withdraw it from the network up to a maximal amount. These
maximal amounts are also called a booking. The right holders, for their part, must
specify exactly the amount of gas they wish to inject or withdraw at least one day in
advance. This specification is called a nomination. Moreover, each nomination must
be balanced, i.e., the sum of the injection at all entries must be equal to the sum of
the withdrawal at all entries. The nomination validation problem now is to satisfy all
right holders with regard to the nominated gas amounts. Here, we are dealing with
planning problems on large time scales, where neglecting short-time transient effects
is reasonable. We can therefore use a stationary model for the gas physics.

The second optimization issue we address is the problem of maximizing the storage
capacity of a gas network, which is of particular interest for TSOs. Especially with
regard to Power-to-Gas, this problem becomes essential. In this context, the gas
network serves as a storage system by converting electrical power into gas, e.g., by
generating hydrogen or methane and feeding it into the gas network. In a typical
Power-to-Gas scenario, the generated gas is fed into the network only during a specified
period of time, for instance when solar or wind energy is available and is discharged
later when there is a high demand. To model these dynamics, such scenarios require
a transient model of the gas physics, which makes the problem much more complex
compared to the stationary case.

From a mathematical point of view, these problems result in hard optimization
problems that are challenging because they combine nonlinear and discrete aspects.
First, the nonlinear part originates to a large extent from the physics of the gas,
which is generally described by the Euler equations, i.e., a coupled system of nonlinear
hyperbolic PDEs. On the other hand, switching active elements, i.e., controllable
facilities such as valves and compressors that can have different modes, involves
discrete decisions.

To be more precise, in our setting, the nomination validation problem is as follows:
Find an admissible configuration of the controllable elements satisfying all physical
and technical constraints. Additionally, due to the friction-induced pressure drop on
long pipes, we also incorporate compressors increasing gas pressures into the model,
which leads to a goal of minimizing the compressor energy. Now, the problem of
maximizing the storage capacity of a gas network can be summarized as the following:
Maximize the amount of gas that can be fed into the network such that there is an
admissible time-dependent control of the active elements satisfying all physical and
technical constraints. Furthermore, a specific control has to be computed. We tackle
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these global optimization problems by a first-discretize-then-optimize approach. To
this end, we discretize the system of nonlinear PDEs that describes the gas physics.
Incorporating active elements such as valves and compressors, we subsequently obtain
non-convex MINLPs. Our focus lies in particular on globally optimal solutions of
these problems. In order to solve these MINLPs in Chapter 6, we utilize the approach
from Chapter 3.

In recent years, a lot of literature has been published on such gas optimization
problems. We again refer to the book by Koch et al. (2015) that provides a compre-
hensive survey in case of a stationary gas physics. Recently, alternating direction
methods have been used in Geißler et al. (2015b, 2018) to combine MIP and NLP
techniques in order to solve stationary gas optimization problems for large-scale
real-world instances. Moreover, Gugat et al. (2018) proposed a decomposition-based
approach that solves an MIP in the master problem and deals with the gas physics in
the subproblem using a separation problem. Therein, the gas physics is described by
a system of ordinary differential equations (ODEs), whereby convexity and monotony
of the constraint functions is required for their method. Similarly to this approach,
Schmidt et al. (2018) developed a method that replaces the necessity of convexity and
monotony with Lipschitz continuity. Beyond that, the authors were able to prove
that only approximate Lipschitz constants are sufficient for a finite termination and
deduced additional conditions under which infeasibility can be detected. Ríos-Mercado
and Borraz-Sánchez (2015) as well as Hante et al. (2017) present general information
on modeling and solution methods for gas transport.

The global optimization of transient mixed-integer gas transport has been tackled
with related methods by Mahlke et al. (2010) and Domschke et al. (2011). Therein,
the authors focus on minimizing the fuel gas consumption of the compressors while
gas injection and discharge are given a priori and fixed at each entry and exit. In
contrast, we maximize in the transient case the amount of gas that can be fed into
the network, where some entries and exits have a variable gas injection and discharge.
Recently, Gugat et al. (2017) presented an instantaneous control approach for solving
transient gas transport problems, where an MIP needs to be solved for each time
step. Global optimality, however, is only guaranteed for each time step and not for
the entire time horizon. Moreover, Hahn et al. (2017) proposed several heuristics for
a transient optimal control model for gas transport networks.

Finally, to complete the overview, we give a brief review of the extensive literature
on several general approaches to optimization problems that combine PDEs and
discrete decisions. This is typically referred to as optimal control. In Gerdts (2006) and
H. Lee et al. (1999), variable time transformation methods that result in a continuous
formulation are proposed. However, these are specifically tailored to ODEs. Other
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approaches switch at discrete time points between different systems of ODEs. Recently,
a generalization to PDEs was analyzed in Rüffler and Hante (2016), whereby only
local optimality can be guaranteed. In addition, methods have been developed that
use complementarity-based reformulations, see for example the works by Baumrucker
and L. Biegler (2009), Hante and Schmidt (2017), and Schmidt (2013), while they
depend on special nonlinear solvers or supplementary relaxation techniques. Recently,
Buchheim et al. (2015) presented a global solution method for certain semi-linear
elliptic mixed-integer PDE problems using outer approximation. A first-discretize-
then-optimize approach has been used in the following articles. Sager et al. (2009)
developed the so-called convexification method, in which discrete decisions are used to
derive a convex relaxation of mixed-integer optimal control problems. This method is
limited to ODEs only and is extended to PDEs by Hante and Sager (2013). Moreover,
Jung et al. (2015) and Sager et al. (2011) applied this convexification method to
handle discrete decisions over time and propose an efficient way to compute feasible
solutions. Bock et al. (2018) studied cases in which discrete decisions depend on
the state variables and studied a reformulation as well as solution method for such
problems. Another direction that has been intensively investigated, especially in the
chemical engineering community, is mixed-integer dynamic optimization. The dynamic
system is typically described by a series of differential-algebraic equations (DAEs).
Allgor and Barton (1999) propose a general decomposition-based approach for the
problems that arise in this regard. For further surveys in this field of research, we
refer to the references contained therein.

4.2. Mathematical Model of Gas Transport

In this section, we present the basic equations that describe the transport of gas in
a network consisting of pipes and active elements, i.e., elements such as valves and
compressors that can be controlled in various ways. First, we describe the network and
its elements. We subsequently introduce the partial differential and algebraic equations
that model the conservation of mass and momentum across the entire network.

We model the gas network using a directed finite graph G = (V,A) with node
set V and arc set A. Every arc a ∈ A corresponds to a specific element of the network,
i.e., a pipe or an active element. Correspondingly, we split A = Api ∪Aae into subsets
of pipes and active elements. We consider the set of active elements in this and
the succeeding section from a general perspective and do not state it more precisely.
For a detailed description of the various active elements, see Section 4.4. The nodes
v ∈ V model the endpoints of specific elements and correspond to junctions of several
elements or to the entries and exits of the network, where gas can be injected or
discharged.
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For the subsequent modeling, we need the notation for the set of ingoing and
outgoing arcs

δin(v) := {a = (v1, v2) ∈ A : v2 = v},
δout(v) := {a = (v1, v2) ∈ A : v1 = v}

of a node v ∈ V . Herewith, we denote by A(v) := δin(v) ∪ δout(v) the set of arcs that
are incident on v.

We now split the set of nodes V = V0 ∪ V∂ into a set of interior nodes
V0 := {v ∈ V : |A(v)| > 1} and a set of boundary nodes V∂ = {v ∈ V : |A(v)| = 1}.
Moreover, we partition V∂ = Vq ∪Vp into boundary nodes where either the mass flow q

or the pressure p, both specified more precisely in the next subsection, is prescribed.

4.2.1. Gas Flow in Pipes. Gas is transported through the network via pipes.
The gas transport in a one-dimensional pipe a ∈ Api itself is generally described by the
Euler equations, which are given as a system of nonlinear hyperbolic PDEs. They are
formed by the continuity equation, the balance of moments, and the energy equation;
see for example the works by Feistauer (1994) and Lurie (2008):

∂tρ+ ∂x(ρv) = 0, (25a)

∂t(ρv) + ∂x(p+ ρv2) = − λ

2Dρv |v| − gρh
′, (25b)

∂t
(
ρ
(

1
2v

2 + e
))

+ ∂x
(
ρv
(

1
2v

2 + e
)

+ pv
)

= −kw
D

(T − Tw) . (25c)

The three equations (25a)–(25c) describe the conservation of mass, momentum, and
energy, respectively. Here, ρ = ρ(x, t) ∈ R>0, v = v(x, t) ∈ R, p = p(x, t) ∈ R>0,
and T = T (x, t) ∈ R are the unknown density, velocity in the direction of the pipe,
pressure, and temperature, respectively. The constants λ, g, and kw are the friction
coefficient, the gravitational constant, and the heat coefficient. Furthermore, we
denote the slope of the pipe by h′ = h′(x) ∈ [−1, 1], the diameter by D, and the
temperature at the pipe wall surface by Tw = Tw(x) ∈ R. The internal energy is
given by the variable e = cvT + gh with the specific heat constant cv and height h of
the pipe. System (25) consists of three equations with four unknowns. In order to
complete the system, an additional fourth equation is needed. To this end, we use the
equation of state for real gases

p = RsρTz(p, T ), (26)

where z(p, T ) is the compressibility factor and Rs the specific gas constant. As for
the spatial coordinate x and the time coordinate t, we have x ∈ [0, l] with the pipe
length l and t ∈ [0, T ] with an end of the time horizon at T .
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In our case, we describe the friction factor λ of a pipe by the formula of Nikuradse

λ =
(

2 log10

(
D

k

)
+ 1.138

)−2
,

where k is the roughness of the pipe. This is a reasonable approximation for tur-
bulent flows and very large Reynolds numbers, which we assume in the following;
see Fügenschuh et al. (2015) for more details.

In this thesis, we consider gas optimization problems including discrete decisions
that result from the switching of active elements. Additionally, we put particular em-
phasis on global optimal solutions for these problems. In order to get computationally
tractable problems, we have to simplify system (25) as a trade-off, which is common
practice.

First, we assume that the temperature T is constant, which allows us to neglect
the energy equation (25c). The resulting system is often referred to as the isothermal
Euler equations. We further assume that the compressibility factor z is constant as
well. As a consequence, the speed of sound c is also constant and can be computed by

c2 =
√
p

ρ
= RsTz.

This transforms the equation of state (26) to

p = c2ρ. (27)

Using this simplified equation of state, we can reformulate the second term on the
left-hand side of the balance of moments (25b) as

p+ ρv2 = p

(
1 + v2

c2

)
.

In practice, the velocity of gas is usually around 10 m s−1, which is significantly lower
than the speed of sound in the gas at about 340 m s−1. We therefore fix the gas velocity
to 10 m s−1 in order to reduce noise and vibrations in the pipe. As a result, v2/c2 is
very small and can thus be neglected in our model.

We furthermore consider ∂t(ρv) to be very small as well. This assump-
tion leads to a model comparable to the friction-dominated models discussed by
J. Brouwer et al. (2011), which are widely used, e.g., in the engineering literature; see
again the work by J. Brouwer et al. (2011) and the references therein.

For cylindric pipes and one-dimensional flow in the direction of the pipe, which
we consider in the following, the mass flow q is related to ρ and v by

q = Aρv,

where A = D2π/4 is the cross-sectional area of the pipe. In this way, we obtain a
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simplified formulation of the continuity equation (25a) and balance of moments (25b):

A∂tρ+ ∂xq = 0, (28)

∂xp = − λ

2D
|q|q
A2ρ

− gρh′. (29)

In summary, the system (27)–(29) of nonlinear parabolic PDEs is a friction-
dominated approximation of the system consisting of the isothermal Euler equations
and the equation of state (26); see Domschke et al. (2017) for additional details. In
the following, we refer to this friction-dominated and transient model as (FDT) for
short.

In this thesis, we also consider stationary gas optimization problems. In this case,
the gas is in a steady state and we can omit all time derivatives. Applying this to
the (FDT) model now results in the following system:

∂xq = 0, (30)

∂xp = − λ

2D
|q|q
A2ρ

− gρh′. (31)

We refer to this friction-dominated and stationary model as (FDS) for short. The first
equation simply states that the mass flow q along the pipe is constant. The second
equation can be solved analytically for p using the simplified equation of state (27);
see Fügenschuh et al. (2015) for more details. In the case of horizontal pipes, for
which h′ = 0, this corresponds to the well-known Weymouth equation

p2
out − p2

in = − lλc
2

DA2 |q| q, (32)

where pin = p(0) and pout = p(l); see Weymouth (1912). An overview of the models
derived in this subsection with all simplifications is shown in Figure 4.2.

In the following, all introduced physical entities associated with a pipe
a = (v1, v2) ∈ A are labeled by a corresponding index a. Moreover, we identify
a pipe a with its spatial coordinate interval [0, la], whereby the node v1 corresponds
to the spatial coordinate 0 and the node v2 corresponds to the coordinate la. This
allows us to define differentiation for functions defined on a. For the remainder of
Section 4.2, we consider the transient pipe model (FDT).

4.2.2. Active Elements. In this section, we discuss active elements in more
general terms and refer to Section 4.4 for a more specific treatment. An active Element
a = (v1, v2) ∈ Aae can be switched on or off. It can be interpreted as a pipe of
length la = 0, in which the pressures pa(v1), pa(v2) and mass flows qa(v1), qa(v2) at
the pipe ends v1 and v2 are related in a certain algebraic manner. First, switched-off
elements block gas from passing. For switched-on elements, however, flow through the
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Euler Equations

Isothermal Euler Equations

Transient Friction-Dominated Model (FDT)

Stationary Friction-Dominated Model (FDS) Weymouth Equation Model

T = const

z = const
v � c
∂t(ρv) very small

∂t = 0

=∧

Transient Models

Stationary Models

Figure 4.2. Overview of the stationary and transient models that
are used to represent gas flow in a pipe in this thesis.

element is permitted and we require that

pa(v2) = pa(v1) +4p̂a,

where the pressure difference 4p̂a can be negative, zero, or positive and has to be
prescribed. From now on, the hat symbol indicates that the corresponding function is
considered as input data for the corresponding gas transport model.

In order to model the flow through an active element a ∈ Aae, we now replace the
equations (28), (29) and (30), (31), respectively, by

qa(v1)− qa(v2) = 0, (33)

ŝa(pa(v2)− pa(v1)) + (1− ŝa)qa(v1) = ŝa4p̂a, (34)

where the switching variable ŝa ∈ {0, 1} and 4p̂a have to be prescribed.
We point out that in this and the following section, we will discuss the gas flow

models with regard to numerical simulation. In Section 4.4, we specifically address
the optimization part of our first-discretize-then-optimize approach and consider ŝa
and 4p̂a as free variables that are to be optimized.
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4.2.3. Coupling Conditions. In order to comply with the basic principles of
mass and momentum conservation also at an interior node v ∈ V0 of the gas network,
we require that

∑

a∈δout(v)
qa(v)−

∑

a∈δin(v)
qa(v) = q̂v, (35)

pa(v) = pv for all a ∈ A(v). (36)

Here, qa(v) again indicates the mass flow in the element a at the spatial coordinate
that is associated with the node v. The variable pv represents the value of the pressure
at the node v, which is determined automatically when solving the system. We point
out that for interior nodes in fact q̂v = 0 and that we use q̂v in (35) instead of 0
because of a uniform notation.

At the boundary nodes v ∈ V∂ = Vp ∪ Vq, we prescribe either the mass flow or the
pressure. We state this by

∑

a∈δout(v)
qa(v)−

∑

a∈δin(v)
qa(v) = q̂v for all v ∈ Vq, (37)

pa(v) = p̂v for all v ∈ Vp, a ∈ A(v). (38)

Now, q̂v is the prescribed mass flow entering or leaving the system at the node v and p̂v
is the prescribed pressure at the node v. Note that by definition of the boundary
nodes, the two sums in (37) only lead to exactly one summand, i.e., there is also only
one element a ∈ A(v) for each v ∈ Vp in (38). As before, the hat symbol denotes
prescribed data for the gas flow model.

4.2.4. Initial Data. In order to describe the evolution of the gas network com-
pletely, we have to additionally prescribe the initial density distribution on all ele-
ments a ∈ A by

ρa(x, 0) = ρ̂a,0(x). (39)

The model (30)–(39) fully describes the stationary gas flow in a network. On the
other hand, the model (27)–(29), (33)–(39) is our complete mathematical model for
the transient gas flow in the network and forms the starting point for the subsequent
discretization.

4.3. Discretization of the PDEs

In this section, we derive a discretization method for the transient gas flow model
established in the previous section. We begin with a change of variables and a
subsequent reformulation of the system (27)–(29), (33)–(39) that describes the gas
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flow in a network consisting of pipes and active elements. This results in a system
that is better suited for a systematic discretization.

Thereafter, we discuss the discretization in space by a finite volume approach.
With regard to time discretization, we use an implicit Euler method and a time-
expanded graph for modeling purposes. This idea originates from Martin Skutella,
Marc E. Pfetsch, and Martin Groß within subproject A07 of the previously mentioned
SFB Transregio 154 project.

We focus in this section on the simulation of the gas flow in the network, i.e., we
deal with the discretization part of our first-discretize-then-optimize approach. For
the optimization part, we refer to Section 4.4.

4.3.1. Change of Variables. For the succeeding discretization, we reformu-
late the model (27)–(29), (33)–(39) using the squared pressure π := p2. The equa-
tions (27)–(29), which model the gas transport for a single pipe a ∈ Api can be
reformulated equivalently as follows. First, the equation of state (27) reads as

πa = c4ρ2
a. (40)

For ease of notation, we again state the continuity equation

Aa∂tρa + ∂xqa = 0. (41)

Using (27) and multiplying by pa, the balance of moments (29) corresponds to

pa∂xpa = − λac
2

2DaA2
a

|qa|qa −
gh′a
c2 p2

a ⇐⇒
(

1 + gh′a
c2

)
∂xπa = − λac

2

DaA2
a

|qa|qa. (42)

Note that pa∂xpa = 1
2∂xπa is used in (42), which follows by the product rule. Hence,

we can omit the factor 1
2 on both sides of the equation.

Since we only have to consider the cases ŝa = 0 and ŝa = 1, the algebraic
equations (33) and (34), which model the gas transport through active elements
a ∈ Aae, can be rewritten accordingly as

qa(v1)− qa(v2) = 0, (43)

ŝa(πa(v2)− πa(v1)) + (1− ŝa)qa(v1) = ŝa4π̂a, (44)

where 4π̂a is directly related to 4p̂a via (34).
In a similar manner, we rewrite the coupling condition (36) at the interior vertices

v ∈ V0, while the coupling condition (35) remains unchanged:
∑

a∈δout(v)
qa(v)−

∑

a∈δin(v)
qa(v) = q̂v, (45)

πa(v) = πv for all a ∈ A(v). (46)
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N1 N2 N3

N4

Figure 4.3. A gas network described by a graph G = (V,A) with
node set V = {N1, N2, N3, N4} and arc set A = {(N1,N2), (N2,N3),
(N2,N4)}. All arcs of the network correspond to pipes. The control
volumes volv for all nodes v ∈ V are shown in gray.

Again, the variable πv represents the value of the squared pressure at the node v,
which is determined automatically during the solution process.

Using (27), we reformulate the boundary conditions (37) and (38) as
∑

a∈δout(v)
qa(v)−

∑

a∈δin(v)
qa(v) = q̂v for all v ∈ Vq, (47)

ρa(v) = ρ̂v for all v ∈ Vp, a ∈ A(v), (48)

where ρ̂v can again be obtained from the prescribed pressure p̂v via (27).
For ease of notation, we also recall the initial condition

ρa(x, 0) = ρ̂a,0(x). (49)

The system (40)–(49) in the three variables ρ, q, and π forms the starting point for
the discretization approach outlined in the following.

4.3.2. Space Discretization. As already mentioned, we identify a pipe a ∈ Api
with its spatial coordinate interval [0, la]. In addition, we now associate to each
node v ∈ V a control volume volv made up of the pipes a ∈ A(v) cut to half lengths;
see Figure 4.3 for an illustration. We refer to the physical volume of this control
volume as

|volv| :=
∑

a∈A(v)

1
2Aala,

which is the sum of half the volumes of the incident pipes. Moreover, we require that
volv > 0 for all v ∈ V , i.e., every node is endpoint of at least one pipe a ∈ Api, which
is trivially fulfilled.

Let ṽa be the midpoint of the pipe a ∈ Api. By integration of the continuity
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equation (41) over the control volume volv and use of the coupling condition (45) at
the vertex v, we obtain

∫

volv
∂tρa dx+

∑

a∈δout(v)
qa(ṽa)−

∑

a∈δin(v)
qa(ṽa) = q̂v. (50)

Note that the cross-sectional area Aa from (41) appears implicitly in the definition of
the control volume volv. The equation (50) expresses the conservation of mass on the
control volume volv.

Integration of the momentum equation (42) over a pipe a = (v1, v2) leads to
∫

a
∂xπa dx+ g

c2

∫

a
h′a∂xπa dx = − λac

2

DaA2
a

∫

a
|qa|qa dx, (51)

which expresses the integral balance of pressure forces and friction over a pipe.
We now replace ρa and qa by their respective averages over the control volumes volv

for all v ∈ V and over all arcs a ∈ A. To this end, we use piecewise constant functions
and denote the averages by ρ̃v and q̃a, respectively. As approximation for (50), we
then obtain

|volv| ∂tρ̃v +
∑

a∈δout(v)
q̃a −

∑

a∈δin(v)
q̃a = q̂v for all v ∈ V0 ∪ Vq. (52)

For the boundary nodes v ∈ Vp, where the pressure is prescribed, we instead require
that

ρ̃v = ρ̂v. (53)
With the slope at the midpoint of the pipe h̃′a and the approximations

h′a ≈ lah̃′a,∫

a
|qa|qa dx ≈ la|q̃a|q̃a,

the balance of moments is approximately described by

−
(
DaA

2
a

λac2la
+ gh̃′aDaA

2
a

λac4

)
(πv2 − πv1) = |q̃a|q̃a (54)

for all pipes a ∈ Api.
For an active element a = (v1, v2) ∈ Aae, we can directly use equation (44) and

replace (54) by
ŝa(πv2 − πv1) + (1− ŝa)q̃a = ŝa4π̂a. (55)

This equations resembles the balance of momentum for an active element a ∈ Aae.
Moreover, we set la = 0 in case of active elements for the calculation of the volume |volv|
assigned to the vertex v.
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To complete the system, we finally require that

πv = c4ρ̃2
v for all v ∈ V . (56)

Further, we prescribe the initial density distribution on every control volume volv by

ρ̃v(0) = ρ̂v,0, (57)

while ρ̂v,0 is defined as the average of the initial density distribution ρ̂a,0 in (49)
over the control volume volv. We finally point out that the resolution of this space
discretization can be controlled by artificially subdividing a pipe into several smaller
pipes. This also allows a non-conforming discretization.

The system (52)–(57) is the numerical model for the gas transport in a network
after semi-discretization in space. In order to obtain a computational model, we still
have to discretize in time.

4.3.3. Time Discretization. For the discretization in time, we utilize the im-
plicit Euler method. Let τ > 0 be the time step and tn = nτ with n = 0, . . . , N the
discrete time points, where tN corresponds to the end of the time horizon T . For a
function u(t) of time, we denote by un the approximation for u(tn).

By integration of the space-discretized equation (52) in time from tn−1 to tn, we
obtain

|volv| (ρ̃v,n − ρ̃v,n−1) +
∫ tn

tn−1


 ∑

a∈δout(v)
q̃a −

∑

a∈δin(v)
q̃a


 = τ q̂v,n.

By further approximating ∫ tn

tn−1
q̃a ≈ τ q̃a,n,

we then have
|volv|
τ

ρ̃v,n+
∑

a∈δout(v)
q̃a,n−

∑

a∈δin(v)
q̃a,n = |volv|

τ
ρ̃v,n−1+q̂v,n for all v ∈ V0 ∪ Vq. (58)

To obtain a more intuitional and graph-oriented modeling, we use a time-expanded
graph that can be used equivalently to incorporate equation (58). The discretization
pursued in this subsection is a time-expansion technique, in which time-dependent
properties change only at discrete time points. It can therefore be modeled by a
time-expanded graph. The benefit of this technique is that we can now basically
use a stationary flow model for each time step. The time steps themselves are then
linked using time expansion by linear constraints. This leads to an MINLP model
whose nonlinear functions have the same dimension as in the stationary case, which is
very favorable with regard to piecewise linear approximations of the nonlinearities.
Roughly speaking, with time extension, we solve a transient problem by solving a
large stationary problem.
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N11 N21 N31 N41

N12 N22 N32 N42
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q̃(N11, N12) q̃(N21, N22) q̃(N31, N32) q̃(N41, N42)
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n = 1:
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Figure 4.4. A gas network described by a graph G = (V,A) with
node set V = {N1, N2, N3, N4} and arc set A = {(N1,N2), (N2,N3),
(N3,N4)}. All arcs of the network correspond to pipes, while each
copy of a node is linked to the previous and subsequent copies by
corresponding arcs (dark gray).

We copy the gas network for each time point and introduce for each node v ∈ V a
holdover arc (vn, vn+1) connecting the copy vn of the node v in time step n with the
one in time step n+ 1. Moreover, we introduce a mass flow variable

q̃(vn,vn+1) := |volv|
τ

ρ̃v,n,

which loosely speaking indicates how much gas remains in the node v from time
point tn to time point tn+1. See Figure 4.4 for an illustration.

We further define the parameters

αv := |volv|
τ

for all v ∈ V ,

βa := −
(
DaA

2
a

λac2la
+ gh̃′aDaA

2
a

λac4

)−1

for all a ∈ Api

and assume that ŝa,n, ρ̂v,0, ρ̂v,n, q̂v,n, and 4π̂a,n are prescribed. The fully discrete
approximation of the transient gas transport model (27)–(29), (33)–(39) is now given
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by

q̃(vn,vn+1) +
∑

a∈δout(v)
q̃a,n −

∑

a∈δin(v)
q̃a,n = q̃(vn−1,vn) + q̂v,n for all v ∈ V0 ∪ Vq,

(59a)

q̃(vn,vn+1) = αaρ̂v,n for all v ∈ Vp, (59b)

q̃2
(vn,vn+1) = α2

a

c4 πv,n for all v ∈ V , (59c)

πv2,n − πv1,n = βa|q̃a,n|q̃a,n for all a ∈ Api, (59d)

ŝa,n(πv2,n − πv1,n) + (1− ŝa,n)q̃a,n = ŝa,n4π̂a,n for all a ∈ Aae, (59e)

for all n ∈ {1, . . . , N},. With q̃(v0,v1) = αaρ̂v,0 for all v ∈ V and the variable vec-
tors

(
q̃(vn,vn+1)

)
v∈V , (q̃a,n)a∈A, and (πv,n)v∈V , where n = 1, . . . , N , the problem (59)

is a simulation problem. It does not involve integer variables, because the con-
trols ŝa,n and 4π̂a,n are assumed to be prescribed here. In the further course of our
first-discretize-then-optimize approach, we will deal with gas optimization problems,
where sa,n and 4πa,n are included as free variables (without the hat symbol) in
Section 4.4. Since the number of unknowns and equations in (59) match, we can
prove that there is a unique solution once the input and control variables are set
appropriately.

We also point out that the time-expanded graph can be considered as an extension
of a stationary gas transport model to a transient gas transport model via the mass
flow on the holdover arcs. Indeed, if we omit all mass flow variables q̃(vn,vn+1) and
accordingly the equations (59b) and (59c), we obtain for each time step n the stationary
model that is based on the Weymouth equation; see model (FDS) and (32).

Finally, we remark that the well-posedness of the simulation problem (59) is proven
in Burlacu et al. (2018). It is not part of this thesis, since the author of this thesis did
not contribute to its proof.

4.4. MINLP Models

Endowed with the discretization from Section 4.3, we continue in this section with
the optimization part of our first-discretize-then-optimize approach. To this end, we
show how to model gas optimization problems that are discussed at the beginning of
this chapter and incorporate the previously derived flow models as MINLPs. More
precisely, we consider the stationary gas transport optimization problem of minimizing
the compressor energy costs and the transient gas optimization problem of maximizing
the storage capacity of gas networks. Furthermore, we give more specific descriptions
for the various active elements a ∈ Aae = Avl ∪Acv ∪Ars ∪Acm, where Avl, Acv, Ars,
and Acm correspond to the set of all valves, control valves, resistors, and compressors.
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As mentioned in Subsection 4.3.3, the control variables sa,n and 4πa,n are now free
and to optimize.

In addition, as pointed out in the same subsection, the stationary flow model can
basically be considered as the transient model in a single time step. We therefore
always only describe the transient modeling of a specific gas network element if the
stationary modeling is equivalent to the transient one in a single time step. Otherwise,
we explicitly state the different models. To be consistent with the implementation
regarding the MINLP problems described in this section, we now replace the pressure
square variable π with the square of the pressure variable p2. For ease of notation, we
also write q instead of q̃ for the mass flow variables.

First, for each node v ∈ V and time step n, we assume lower and upper bounds p−v,n
and p+

v,n for the pressure variable pv,n and lower and upper bounds q−a,n and q+
a,n for

the mass flow variable qa,n for each arc a ∈ A and time step n. Regarding the
stationary flow model, we simply omit the second index n for the pressure and mass
flow variables and corresponding bounds. Consequently, with the bounds of the
pressure variable pv,n, the lower and upper bounds q−(vn,vn+1) and q

+
(vn,vn+1) for the flow

variable q(vn,vn+1) are implicitly given via (59c) for each node v ∈ V and time step n.
Finally, we assume that V∂ = Vq, i.e., the mass flow is prescribed for each boundary
node n ∈ V∂ . Also recall that q(v0,v1) are given for all v ∈ V by q(v0,v1) = αaρ̂v,0,
where ρ̂v,0 is the prescribed average of the initial density distribution.

4.4.1. Mass Flow Conservation. We distinguish between the transient and
stationary flow model.

4.4.1.1. Transient Flow Model. With [N ] := {1, . . . , N}, we have the mass flow
conservation constraints

q(vn,vn+1) +
∑

a∈δout(v)
qa,n −

∑

a∈δin(v)
qa,n = q(vn−1,vn) + q̂v,n for all v ∈ V , n ∈ [N ].

(60)
Additionally, we have the constraints

q(vn,vn+1) = αa
c2 pv,n for all v ∈ V , n ∈ [N ] (61)

coupling the two consecutive time points n and n+ 1.
4.4.1.2. Stationary Flow Model. In case of the stationary flow model, we simply

have ∑

a∈δout(v)
qa −

∑

a∈δin(v)
qa = q̂v for all v ∈ V (62)

for the mass flow conservation.

4.4.2. Pipes. Pipes are the most frequent element in our gas networks and are
essential for the transport of the gas. They can be considered as passive elements, i.e.,
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unlike active elements, there is no switching between different modes. With π = p2,
we incorporate the pressure loss equations (59d) as

p2
v2,n − p2

v1,n = βa|qa,n|qa,n for all a = (v1, v2) ∈ Api, n ∈ [N ] (63)

in case of the transient flow model. For the stationary case, we only have one time
step in (63) and omit the index n.

4.4.3. Shortcuts. Another type of passive elements are shortcuts. They are
solely used for modeling purposes, such as the incorporation of hybrid points like gas
storage facilities, and do not exist in reality. They have no influence on the physics of
the gas. We denote by Asc the set of all shortcuts. In the transient case, we model
shortcuts simply by adding the constraints

pv1,n = pv2,n for all a = (v1, v2) ∈ Asc, n ∈ [N ]. (64)

In the stationary case, we again consider only one time step in (64) and omit the
index n.

4.4.4. (Control) Valves. The first active element that we describe in more
detail is the valve. It is a controllable element in the gas network that can be
switched between two modes: closed or open. The following model is largely based
on the stationary model by Geißler et al. (2015a). A closed valve a = (v1, v2) ∈ Avl,
where Avl ⊂ Aae is the set of all valves, impedes gas from passing, which leads to
decoupled pressures at the nodes v1 and v2. On the contrary, for open valves, we
have pv1,n = pv2,n and no pressure drop. We model valves using the binary switching
variables sa,n ∈ {0, 1}, whereby sa,n is equal to one, if and only if the valve is open
and equal to zero if it is closed. In case of the transient flow model, this is described
by

qa,n ≤ q+
a,nsa,n, (65a)

qa,n ≥ q−a,nsa,n, (65b)

(p+
v2,n − p−v1,n)sa,n + pv2,n − pv1,n ≤ p+

v2,n − p−v1,n, (65c)

(p+
v1,n − p−v2,n)sa,n + pv1,n − pv2,n ≤ p+

v1,n − p−v2,n (65d)

for all a = (v1, v2) ∈ Avl and n ∈ [N ]. As before, the consideration of a single time step
in (65) and the omission of the index n corresponds to the model for the stationary
case.

In the same way as a valve, a control valve can either be closed or open. Again,
with Acv ⊂ Aae as the set of all control valves, a closed control valve a = (v1, v2) ∈ Acv
impedes gas from passing, resulting in decoupled pressures at the nodes v1 and v2. An
open control valve, however, can reduce pressure within a given range [4p−a,n,4p+

a,n].
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To model a control valve, we use (65) from above and replace the equations (65c)
and (65d) by

(p+
v2,n − p−v1,n +4p−a,n)sa,n + pv2,n − pv1,n ≤ p+

v2,n − p−v1,n, (66a)

(p+
v1,n − p−v2,n −4p+

a,n)sa,n + pv1,n − pv2,n ≤ p+
v1,n − p−v2,n (66b)

for all a = (v1, v2) ∈ Acv and n ∈ [N ]. We again take into account a single time step
in (66) and omit the index n to obtain the stationary model for a control valve.

We point out that a control valve is a uni-directional element, i.e., we have q−a,n ≥ 0
for the lower mass flow bound and that pressure can only be reduced in the direction
of the flow. Furthermore, a control valve is always located in a control valve station,
which additionally provides the possibility of a bypass, leading to identical pressures
at the nodes v1 and v2; see again Geißler et al. (2015a).

4.4.5. Resistors. To model gas network elements that cause a pressure drop,
e.g., measuring stations and filtration plants, we use (fictitious) resistors, which are
contained in the set Ars ⊂ Aae. As before, the following model is largely based on the
stationary model by Geißler et al. (2015a). Unlike control valves, resistors operate in
both directions. We model this with the binary variables sa,n, where sa,n equals to
zero, if and only if gas flows in the direction of the arc a ∈ Ars, i.e., we have qa,n ≥ 0.
On the other hand, sa,n equals to one, if and only if gas flows against the direction of
the arc a, i.e., qa,n ≤ 0. This is described by

q−a,nsa,n ≤ qa,n ≤ q+
a,n(1− sa,n) (67)

for the transient case and again by considering only one time step in (67) and omission
of the index n for the stationary case. In the remaining part, we distinguish for
additional constraints between the transient and the stationary model of the resistor.

4.4.5.1. Transient Flow Model. In the transient case, each resistor a ∈ Ars causes
a constant pressure drop 4p̂a,n > 0. This is modeled by

pv1,n − pv2,n + 24p̂a,nsa,n = 4p̂a,n for all a = (v1, v2) ∈ Ars, n ∈ [N ]. (68)

4.4.5.2. Stationary Flow Model. For the stationary model, we split the set of
resistors Ars = Ars-c ∪ Ars-v an differentiate between two types of resistors: resis-
tors a ∈ Ars-c with constant pressure drop and resistors a ∈ Ars-v with variable
pressure drop.

First, we model a resistor a ∈ Ars-c with constant pressure drop by (68) while we
consider only one time step and omit the index n.

A resistor a ∈ Ars-v with variable pressure drop is determined by its drag factor ξa
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and diameter Da. We model it by

p2
v1 − p2

v2 + |4pa|4pa = γa|qa|qa, (69a)

4pa = pv1 − pv2 , (69b)

pv1 − pv2 ≤ (p+
v1 − p−v2)(1− sa), (69c)

pv2 − pv1 ≤ (p+
v2 − p−v1)sa (69d)

for all a = (v1, v2) ∈ Ars-v. The pressure drop is now given by the variable 4pa and

γa = 16 ξac2

π2D4
a

(70)

is a resistor-specific constant.

4.4.6. Compressors. In order to compensate for pressure drop on large gas
networks, compressors that increase the inlet pressure to a higher outlet pressure, are
installed. We consider different compressor models for the transient and stationary
case. The following models are again largely based on the stationary model by Geißler
et al. (2015a).

4.4.6.1. Transient Flow Model. A compressor a = (v1, v2) ∈ Acm is modeled using
the binary variables sa,n, whereby sa,n is equal to one, if and only if the compressor is
operating, i.e., increasing the pressure pv1,n. In the following, we restrict ourselves to
a simplified compressor model for the transient case, where an operating compressor
increases the pressure pv1,n such that

1 < r−a ≤
pv2,n

pv1,n
≤ r+

a (71)

holds for given lower and upper bounds r−a and r+
a of the compression ratio. Note that

the flow is only allowed in the direction of the arc (from v1 to v2) for an operating
compressor with 0 ≤ (qop

a,n)− ≤ (qop
a,n)+ as the corresponding bounds. Otherwise, if sa,n

is equal to zero, the compressor is in bypass mode, i.e., we have pv1,n = pv2,n while
flow in both directions is allowed with the bounds (qby

a,n)− ≤ (qby
a,n)+. We model this

by

(qby
a,n)−(1− sa,n) + (qop

a,n)− sa,n ≤ qa,n, (72a)

(qby
a,n)+(1− sa,n) + (qop

a,n)+ sa,n ≥ qa,n, (72b)

4p−a,n sa,n ≤ pv2,n − pv1,n, (72c)

4p+
a,n sa,n ≥ pv2,n − pv1,n, (72d)

r−a pv1,n − (r−a p+
v1,n − p−v2,n)(1− sa,n) ≤ pv2,n, (72e)

r+
a pv1,n − (r+

a p
−
v1,n − p+

v2,n)(1− sa,n) ≥ pv2,n (72f)
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for all a = (v1, v2) ∈ Acm and n ∈ [N ], where 4p−a,n and 4p+
a,n are the bounds for

the pressure increase. Finally, we point out that only compressors that are in either
operating or bypass mode are considered in the transient case. The possibility to
close a compressor can be modeled with additional inlet and outlet valves. We use
the above modeling since closing a compressor is not useful for the instances of the
transient optimization problem that we consider in Chapter 6.

4.4.6.2. Stationary Flow Model. In the stationary case, we use a more realistic
compressor model. Each compressor a ∈ Acm is specified by its adiabatic efficiency ηad,a
and its energy cost coefficient ca. Again, we use the binary variable sa, whereby sa is
equal to one, if and only if the compressor is operating. For an operating compressor,
only flow in the direction of the arc a is allowed. Now, however, we incorporate
the possibility to close a compressor, i.e., to decouple the pressures at the inlet and
outlet nodes and to block gas from passing through the compressor. This is done
by switching sa to zero. Similar to control valves, (usually several) compressors
are located in a compressor station that allows for an additional bypass mode and
corresponding flow in both directions; see again Geißler et al. (2015a) for details.

Furthermore, the operating range of a compressor is described by its non-convex
characteristic diagram. We subdivide the set Acm = Acm-t ∪ Acm-p distinguishing
between turbo compressors a ∈ Acm-t that are usually driven by gas turbines and piston
compressors a ∈ Acm-p that are typically shipped with electric or gas driven motors.
We illustrate their corresponding characteristic diagrams in Figure 4.5. The gray area
describes the feasible operating range of the compressor. We refer to Fügenschuh
et al. (2015) for more details on how to obtain these characteristic diagrams. Since
the description of the operating range requires a volumetric flow Qa and we restrict
ourselves to a mass flow qa, we first add

Qa = qa
ρ0

for all a ∈ Acm, (73)

where ρ0 is the gas density under normal conditions.
Moreover, the adiabatic process of compression leads to a change in the specific

enthalpy Had,a. We model this by

Had,a = κ

κ− 1c
2
((

pv2

pv1

)κ−1
κ − 1

)
for all a = (v1, v2) ∈ Acm, (74)

where κ is the adiabatic exponent which we assume to be constant. Here, considering
a mass flow of qa, we describe the power Pa the compressor consumes to increase the
inlet pressure pv1 to a higher outlet pressure pv2 by

Pa = Had,a
ηad,a

qa. (75)
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Figure 4.5. Characteristic diagrams for turbo compressors (left) and
piston compressors (right). The feasible operating ranges are marked
gray.

To complete the modeling of the different modes of a compressor, we add for
all a = (v1, v2) ∈ Acm the constraints

qa ≤ q+
a sa, (76a)

qa ≥ q−a sa, (76b)

Pa ≤ P+
a sa, (76c)

Pa ≥ P−a sa, (76d)

pv2 − pv1 ≤ 4p+
a sa + (p+

v2 − p−v1)(1− sa), (76e)

pv2 − pv1 ≥ 4p−a sa + (p−v2 − p+
v1)(1− sa), (76f)

pv2 ≤ r+
a pv1 − (r+

a p
−
v1 − p+

v2)(1− sa), (76g)

pv2 ≥ r−a pv1 − (r−a p+
v1 − p−v2)(1− sa), (76h)

where P−a and P+
a are the bounds for the power consumption and 4p−a and 4p+

a are
the bounds for the pressure increase. As in the transient case, the compression ratio
is bounded by 1 < r−a ≤ pv2/pv1 ≤ r+

a . We remark, that whenever a compressor is
operating, power consumption occurs while increasing the pressure of the gas that
flows in the direction of the arc, i.e., pv2 ≥ pv1 and qa ≥ 0. Therefore, flow against
the arc direction is impossible. As pointed out before, a closed compressor results in
decoupled pressures at the nodes v1 and v2 and there is no mass flow through the
compressor.

For the characteristic diagrams, we use the convex outer-approximation approach
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described by Geißler et al. (2015a) in case of a turbo compressor. For piston com-
pressors a = (v1, v2) ∈ Acm-p, we obtain a relaxation of the operating range by the
constraints (76e)–(76h), together with

Q−a
c2 pv1 ≤ qa ≤

Q+
a

c2 pv1 , (77)

where Q−a and Q+
a are given lower and upper bounds of the volumetric flow rate Qa.

Furthermore, the shaft torque Ma and Had,a are connected via

Ma = Voρ0
2πηad,a

Had,a, (78)

where Vo is the operating volume of the piston compressor.

4.4.7. Switching Restrictions. Finally, in case of the transient flow model, we
add constraints to limit switching operations of active elements to predetermined time
intervals. These constraints imply that if the mode of an active element is changed,
then it must stay in this mode for a specified time. This is motivated by the practice
where the time between changing the settings of the active elements is usually long.

We thus require that an active element stays closed for S seconds if the mode is
changed from open to closed (or bypass in case of a compressor), and vice versa. We
model this for all a ∈ Avl ∪Acv ∪Acm by

n+Wn−1∑

i=n
sa,i ≤Wn +Wn(sa,n − sa,n−1) for all n ∈ [N ], (79a)

n+Wn−1∑

i=n
sa,i ≥Wn(sa,n − sa,n−1) for all n ∈ [N ], (79b)

where
Wn := min

{⌈
Sa
τ

⌉
, N − n+ 1

}
(80)

considering that the size of a time step τ is given in seconds.
These min-up/min-down constraints are also used in other optimization problems,

e.g., unit commitment problems, where power generating machines have specific
min-up and min-down times; see the works by Frangioni et al. (2008) and Muckstadt
and Koenig (1977) for example. Moreover, Saravanan et al. (2013) provide a review
on solution methods for unit commitment problems that were developed in the last
decades. Investigations on the polyhedral structure of constraints of type (79) can be
found in J. Lee et al. (2004).

4.4.8. Stationary Compressor Energy Cost Minimization. As mentioned
before, in the stationary case, we cover an essential problem in gas transport optimiza-
tion: the minimization of the compressor energy costs while validating a nomination.
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We therefore consider a gas transport network and a nomination, i.e., a prescribed
amount of gas q̂v for each entry and each exit v ∈ V∂ = Vs ∪ Vt, where Vs and Vt are
the sets of all entries and exits. We assume that this nomination is balanced, i.e., we
have ∑

v∈Vs
q̂v =

∑

v∈Vt
q̂v.

First, we aim to find an admissible configuration of the active elements that satisfies
all physical and technical constraints. Due to friction-induced pressure drop on long
pipes, however, compressors that increase certain gas pressures have to be taken into
account. This leads to the objective of minimizing the compressor energy costs.

Considering the various elements of a gas network that are described in the previous
subsections, we now formally obtain the following MINLP problem:

min
∑

a∈Acm

caPa (81a)

s.t. mass flow conservation (62), (81b)

pipes constraints (63), (81c)

shortcuts constraints (64), (81d)

(control) valves constraints (65) and (66), (81e)

resistors constraints (67)–(69), (81f)

compressors constraints (73)–(78), (81g)

p−v ≤ pv ≤ p+
v for all v ∈ V , (81h)

q−a ≤ qa ≤ q+
a for all a ∈ A, (81i)

sa ∈ {0, 1} for all a ∈ Aae. (81j)

For all equations that are referenced in (81) and also apply to the transient case,
we assume that only one time step is considered and that the index n is omitted.
Moreover, as pointed out before, the variables sa and 4pa are now free and to optimize.
Although the variable 4pa for the pressure difference is not explicitly contained in the
MINLP model (81) for each a = (v1, v2) ∈ Acv ∪Ars ∪Acm, it is implicitly specified
by

4pa = pv2 − pv1 .

The nonlinear parts of the MINLP model (81) are the pipes constraints (63), the
resistors constraints (69a), and the compressor constraints (74) and (75). Due to these
constraints, this MINLP problem is non-convex.

4.4.9. Transient Storage Capacity Maximization. For the transient case,
we focus on the optimization problem of maximizing the storage capacity of a
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gas network. To this end, we consider the following situation: Let a nomina-
tion qnom ∈ RN |Vs∪Vt| be given, i.e., supply and demand for each time step n ∈ [N ]
and each entry and exit v ∈ Vs ∪ Vt.

We assume that the supply and demand vector consisting of the elements of qnom

that correspond only to the first time step n = 1 are feasible for the stationary
case, i.e.,, there exists an admissible configuration of the active elements satisfying
all physical and technical constraints for n = 1. This problem is equivalent to the
MINLP problem (81), where we set ca = 0 and omit all constraints that include the
power variable Pa for all a ∈ Acm. We further assume that such a feasible solution
is available, which we will use as a starting solution for the first time step of our
optimization problem.

Moreover, there are time windows

[N extra
s ] := {1 ≤ n−s , . . . , n+

s ≤ N},
[N extra

t ] := {1 ≤ n−t , . . . , n+
t ≤ N},

in which, additionally to the nomination, a positive amount of gas qextra ∈ RN |Vs′∪Vt′ |

with the bounds

0 ≤ (qextra
v,n )− ≤ qextra

v,n ≤ (qextra
v,n )+ for all v ∈ Vs′ ∪ Vt′ , n ∈ [N ],

can be injected at selected entries Vs′ ⊂ Vs and withdrawn at selected exits Vt′ ⊂ Vt,
respectively. With

(qextra
v,n )− = (qextra

v,n )+ = 0 for all v ∈ Vs′ , n 6∈ [N extra
s ],

(qextra
v,n )− = (qextra

v,n )+ = 0 for all v ∈ Vt′ , n 6∈ [N extra
t ],

we replace the mass flow conservation constraints (60) for all v ∈ Vs′ ∪ Vt′ by

q(vn,vn+1) +
∑

a∈δout(v)
qa,n −

∑

a∈δin(v)
qa,n = q(vn−1,vn) + q̂v,n + qextra

v,n for all v ∈ Vs′ ,

(82a)

q(vn,vn+1) +
∑

a∈δout(v)
qa,n −

∑

a∈δin(v)
qa,n = q(vn−1,vn) + q̂v,n − qextra

v,n for all v ∈ Vt′ ,

(82b)

for all n ∈ [N ]. Furthermore, we balance qextra by
∑

v∈Vs′ ,n∈[N ]
qextra
v,n −

∑

v∈Vt′ ,n∈[N ]
qextra
v,n = 0. (83)

Our goal is to maximize this additional amount of gas that can be stored in the
network.

This gas optimization problem can have different globally optimal solutions. We
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therefore take a simplified version of the minimization of the compressor energy into
account, however, with such low costs that it is almost negligible. This gives us
optimal solutions that tend to switch on compressors only when necessary. A possible
simple formulation for the energy minimization of all compressors a = (v1, v2) ∈ Acm
is

min
∑

a∈Acm

γ1

∫
(pv2(t)− pv1(t))dt+ γ2 |∂t(pv2(t)− pv1(t))|, (84)

where γ1, γ2 > 0 can be considered as costs and are small in our case. With the
pressure increase 4pa,n = pv2,n − pv1,n for all compressors a = (v1, v2) ∈ Acm and
the change of the pressure increase over time |4pa,n −4pa,n−1|, the formulation (84)
corresponds to

min
∑

a∈Acm,
n∈[N ]

γ14pa,n + γ2 |4pa,n −4pa,n−1| (85)

in our MINLP setting. We eliminate the absolute values in (85) by applying a common
LP technique. To this end, we introduce a new variable 4Pa,n ∈ R>0 for all a ∈ Acm
and all n ∈ [N ] and substitute 4Pa,n := |4pa,n −4pa,n−1|. Additionally, we add the
constraints

4Pa,n ≥ 4pa,n −4pa,n−1, (86a)

4Pa,n ≥ 4pa,n−1 −4pa,n. (86b)

Incorporating (85) into the objective function, we are now able to provide the
complete problem of maximizing the storage capacity of a gas network as the MINLP
problem:

max
∑

v∈Vs′ ,n∈[N ]
qextra
v,n −

∑

a∈Acm,
n∈[N ]

γ14pa,n + γ24Pa,n (87a)

s.t. mass flow conservation (60) and (82)–(83), (87b)

time coupling constraints (61), (87c)

pipes constraints (63), (87d)

shortcuts constraints (64), (87e)

(control) valves constraints (65) and (66), (87f)

resistors constraints (67)–(68), (87g)

compressors constraints (71)–(72), (87h)

switching conditions (79), (87i)

absolute values elimination (86), (87j)

p−v,n ≤ pv,n ≤ p+
v,n for all v ∈ V , n ∈ [N ], (87k)
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q−a,n ≤ qa,n ≤ q+
a,n for all a ∈ A, n ∈ [N ], (87l)

(qextra
v,n )− ≤ qextra

v,n ≤ (qextra
v,n )+ for all v ∈ Vs′ ∪ Vt′ , n ∈ [N ], (87m)

0 ≤ 4Pa,n for all a ∈ Acm, n ∈ [N ], (87n)

sa,n ∈ {0, 1} for all a ∈ Aae, n ∈ [N ]. (87o)

As in the stationary case, the variables sa,n and 4pa,n are now free and to optimize.
The nonlinear parts of the MINLP model (87) are the pipes constraints (63) for
all n ∈ [N ]. Again, due to these constraints, this MINLP problem is non-convex.
However, these nonlinear functions are univariate and therefore only depend one a single
variable, which simplifies the piecewise linear approximations of the nonlinearities.





CHAPTER 5

AC Optimal Power Flow with Generator Switching

In this short chapter, we show how to model a fundamental problem in power system
analysis as an MINLP. We use this MINLP to demonstrate the applicability of our
adaptive MIP-based approach in Chapter 6.

In power system analysis, the focus is on the numerical evaluation of the electrical
power flow in a power network. One of the core tasks is to determine an optimal power
flow (OPF), i.e., the condition with the lowest cost per kW h that is generated. This
can be used to plan future extensions of power supply grids and to identify optimal
operating conditions for present systems.

Moreover, we extend the classical OPF problem by the possibility of switching
power generation units on and off. Typically, these units must generate a minimal
(positive) amount of power and therefore cannot be controlled continuously. The
additional component of generation unit switching thus allows us a more comprehensive
optimization of the OPF problem. We consider an alternating current (AC) power
flow model.

AC OPF has been studied in the literature for a long time. Frank et al. (2012)
provide a comprehensive literature overview of the methods that have been applied in
the context of OPF. Carpentier (1962) was the first to model the AC OPF problem
as a non-convex NLP. The first solution approach delivering a local optimal solution
for this model is proposed by Dommel and Tinney (1968).

Many of the optimization approaches developed for AC OPF in recent years use
semi-definite programming (SDP). Lavaei and Low (2012) show that the dual problem
to AC OPF is an SDP problem and that if a certain “rank 1” condition for the optimal
solution of the SDP is fulfilled, then the duality gap is zero. However, the “rank 1”
condition can only be verified after solving the SDP. In addition, the condition
depends on the parameters of the power network and the network itself. The approach
therefore cannot provide satisfactory results in all cases. Another possibility is to
reformulate the AC OPF using conic quadratic constraints resulting in a model with
nonlinearities that are easier to handle; see Jabr (2008). This reformulation and the
method using the dual SDP problem are combined by Kocuk et al. (2018). Based on
the dual SDP problem, the authors construct second-order cone programming (SOCP)
relaxations that are embedded in a branch-and-cut framework. Additional cutting

79
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planes, convex envelopes, and bound tightening techniques complement the approach
that is the current state-of-the-art solver for AC OPF. Moreover, Coffrin et al. (2016)
give an overview of relaxation methods for AC OPF and present a comparison of the
methods.

We point out that a lot of research has been carried out that incorporates direct
current (DC) flow models, which are a linear approximation of AC models. The
advantage is that DC models circumvent the nonlinear parts of the AC model. Thus,
very large power networks can be considered. Electricity market models, for instance,
often use DC models; see the works by Krebs et al. (2018), Piao et al. (2017), Schweppe
et al. (1988), and Stigler and Todem (2005). For electrical distribution networks,
which we consider in our computational part in Chapter 6, the DC approximation is
not accurate enough. Purchala et al. (2005) analyze for which power networks the
DC approximation is useful.

The combination of AC OPF and discrete decisions has rarely been discussed
in the literature so far. Bai et al. (2016) present a two-level approach for OPF
with additional switching of the transmission lines of the power network. First, the
authors compute optimal discrete decisions with a DC model and then deduce feasible
decisions from the DC decisions with an AC model. The same problem is addressed
by Kocuk et al. (2017), who propose a method that constructs mixed-integer SOCP
relaxations based on the SOCP relaxations for AC OPF introduced by Jabr (2008)
and solves the problem by branch-and-cut.

Another class of OPF problems with discrete decisions are the time-dependent
unit commitment optimal power flow problems. These are usually solved using decom-
position methods with a discrete master problem and an AC OPF subproblem. The
drawback here, however, is that the AC OPF subproblem can often not be solved to
global optimality; see for example Castillo et al. (2016). Schultz and Wollenberg (2017)
investigate such unit commitment problems under uncertainty of load and power in-
feed from renewable energies. Furthermore, we refer to Subsection 4.4.7 for more
references on the unit commitment problem.

AC OPF problems with switching of the generator units are even less studied in
literature. In the Ph.D. thesis of Kuhn (2011) heuristic solutions for this problem
are developed. Very recently, Salgado et al. (2018) have proposed a mixed-integer
method for solving this problem. Based on a mixed-integer SDP relaxation of the
problem, they derive two MIP approximations that are subsequently solved: an inner
and an outer MIP approximation. The inner MIP approximation improves feasible
solutions, while the outer MIP approximation provides a relaxation and thus delivers
dual bounds.

On the one hand, the mathematical challenges of the AC OPF with generator
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switching arise from the non-convexity of the AC power flow equations. On the other
hand, switching generation units entails discrete decisions. Altogether, this leads to
MINLP problems that are hard to solve in practice by state-of-the-art solvers. This is
aggravated by the fact that many AC models contain trigonometric functions, which
are not supported by many MINLP solvers such as Baron and SCIP.

This chapter primarily summarizes known facts and models from the literature. As
mentioned before, we solve the MINLP problems that are introduced in this chapter
in Chapter 6.

We now describe the MINLP model for the AC OPF with generator unit switching.
The model is based on the power flow models of Kocuk et al. (2017). We represent
a power network by an undirected graph N = (B,L), where the node set B denotes
the buses and the edge set L the transmission lines. The subset U ⊂ B denotes the
generation units of the system. Our goal is to minimize the production costs of the
generators such that all physical and technical constraints are satisfied. The physical
restrictions are essentially described by Ohm’s and Kirchoff’s Law, while the technical
restrictions model limits of the transmission lines and of the production quantities of
the generators.

A power supply system can be characterized by a nodal admittance ma-
trix Y ∈ C|B|×|B| that describes the nodal admittance of the buses, i.e., roughly
speaking, it contains information about the network topology and transmission parame-
ters. For each transmission line (k, l) ∈ L, this matrix has a component Ykl = Gkl+iBkl
where i =

√
−1. With the shunt conductance gkk and susceptance bkk at bus k ∈ B,

we also have Gkk = gkk −
∑
k 6=lGkl and Bkk = bkk −

∑
k 6=lBkl. We denote by pgk

and qgk the real and reactive power output of the generator for all k ∈ B and assume
lower and upper bounds (pgk)−, (q

g
k)− and (pgk)+, (qgk)+. If k ∈ B \ U , then we simply

set pgk = 0 and qgk = 0. The corresponding demand at bus k is given by p̂dk and q̂dk. As
in Chapter 4, the hat symbol again indicates input data. Moreover, we denote the
real and reactive power on a transmission line (k, l) ∈ L by pkl and qkl.

In the following, we introduce two variants of the AC OPF problem, both of which
are related to the form the complex voltage Vk is described in. First, the rectangular
form specifies the complex voltage by Vk = ek + ifk. Second, with the polar form, we
obtain Vk = |Vk|(cos θi + i sin θi), while

|Vk| =
√
e2
k + f2

k (88)

is the voltage magnitude with lower and upper bounds |Vk|− and |Vk|+, and θi is the
phase angle.
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The rectangular model of the AC OPF problem is given by:

min
∑

k∈U
Ck(pgk, sk) (89a)

s.t. pgk − p̂dk = gkk(e2
k + f2

k ) +
∑

l∈δ(k)
pkl for all k ∈ B, (89b)

qgk − q̂dk = −bkk(e2
k + f2

k ) +
∑

l∈δ(k)
qkl for all k ∈ B, (89c)

(|Vk|−)2 ≤ e2
k + f2

k ≤ (|Vk|+)2 for all k ∈ B, (89d)

pkl = −Gkl(e2
k + f2

k − ekel − fkfl)−Bkl(ekfl − elfk) for all (k, l) ∈ L, (89e)

qkl = Bkl(e2
k + f2

k − ekel − fkfl)−Gkl(ekfl − elfk) for all (k, l) ∈ L, (89f)

p2
kl + q2

kl ≤ (d+
kl)

2 for all (k, l) ∈ L, (89g)

(pgk)
−sk ≤ pgk ≤ (pgk)

+sk for all k ∈ U, (89h)

(qgk)− ≤ qgk ≤ (qgk)+ for all k ∈ U, (89i)

p−kl ≤ pkl ≤ p+
kl for all (k, l) ∈ L, (89j)

q−kl ≤ qkl ≤ q+
kl for all (k, l) ∈ L, (89k)

− |Vk|− ≤ ek, fk ≤ |Vk|+ for all k ∈ B, (89l)

sk ∈ {0, 1} for all k ∈ U. (89m)

We compute the lower and upper bounds of ek, fk in (89l) via (88). The lower and
upper bounds p−kl, q

−
kl and p

+
kl, q

+
kl of pkl, qkl in (89h) and (89i) are computed using (89e)

and (89f) and the bounds of ek and fk.
Each sum Ck(pgk, sk) of the objective function is either linear or quadratic in pgk.

Additionally, each constant term of a cost function of a generator is multiplied in
the objective function with the binary variable sk. The constraints (89b) and (89c)
ensure the conservation of active and reactive power flows at each bus of the net-
work. As usually, the real and reactive power pkl and qkl are computed as in (89e)
and (89f). Additionally, we restrict the apparent power dkl on line (k, l) ∈ L by d+

kl.
Since d2

kl = p2
kl + q2

kl, this restriction is enforced by (89g). We model the switching of
the generator units by (89h). The reactive power output qgk of the generator unit k is
required for the voltage maintenance and can be continuously controlled starting at
zero. In addition, the control of qgk is independent of the control of pgk in our model,
which is consistent with the models of Vittal and Bergen (2000). Therefore, no binary
variables are involved in (89i). Finally, we point out that one of the variables fk must
be set to zero, because the voltage angle at a reference node is fixed at zero. This
prevents the optimization problem (89) from having an infinite number of globally
optimal solutions.



83

We can use the polar form of the complex voltage to obtain a model that contains
nonlinearities that are easier to handle. For each nonlinear expression in (89), we then
obtain the following alternative:

e2
k + f2

k = |Vk| 2, (90a)

ekel + fkfl = |Vk| |Vl| cos(θk − θl), (90b)

ekfl − elfk = − |Vk| |Vl| sin(θk − θl). (90c)

We now introduce the variable substitutions

ckk := e2
k + f2

k , ckl := ekel + fkfl, tkl := ekfl − elfk (91)

for each bus k ∈ B and line (k, l) ∈ L. With (90) and (91), we consequently obtain
the polar model of the AC OPF problem:

min
∑

k∈U
Ck(pgk, sk) (92a)

s.t. pgk − p̂dk = gkk(ckk) +
∑

l∈δ(k)
pkl for all k ∈ B, (92b)

qgk − q̂dk = −bkk(ckk) +
∑

l∈δ(k)
qkl for all k ∈ B, (92c)

(|Vk|−)2 ≤ ckk ≤ (|Vk|+)2 for all k ∈ B, (92d)

pkl = −Gkl(ckk − ckl)−Bkltkl for all (k, l) ∈ L, (92e)

qkl = Bkl(ckk − ckl)−Gkltkl for all (k, l) ∈ L, (92f)

ckl = clk, tkl = −tlk for all (k, l) ∈ L, (92g)

p2
kl + q2

kl ≤ (d+
kl)

2 for all (k, l) ∈ L, (92h)

c2
kl + t2kl = ckkcll for all (k, l) ∈ L, (92i)

θl − θk = arctan2(tkl, ckl) for all (k, l) ∈ L, (92j)

(pgk)
−sk ≤ pgk ≤ (pgk)

+sk for all k ∈ U, (92k)

(qgk)− ≤ qgk ≤ (qgk)+ for all k ∈ U, (92l)

p−kl ≤ pkl ≤ p+
kl for all (k, l) ∈ L, (92m)

q−kl ≤ qkl ≤ q+
kl for all (k, l) ∈ L, (92n)

c−kl ≤ ckl ≤ c+
kl for all (k, l) ∈ L, (92o)

t−kl ≤ tkl ≤ t+kl for all (k, l) ∈ L, (92p)

sk ∈ {0, 1} for all k ∈ U. (92q)

The nonlinear part of the MINLP model (92) is (92h)–(92j). Finally, we would
like to remark that if −π/2 < θl − θk < π/2 holds, which is often the case in practice,
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we can reformulate the constraint (92j) by

ckl tan(θl − θk) = tkl. (93)

This is equivalent to (92j), but much easier to handle in terms of nonlinearity. In
the remainder of this thesis, we always refer to real power production of a generator,
whenever we only indicate the power production of a generator.



CHAPTER 6

Computational Results

In this chapter, we present numerical results that demonstrate the practicability of our
adaptive approach from Chapter 3 to application-driven MINLPs with a considerable
discrete aspect. To this end, we consider MINLP problems that are difficult to solve
by state-of-the-art MINLP solvers. First, we solve both stationary and transient gas
network optimization problems. As a second application, we solve optimal power
flow problems that include the switching of generator units. Moreover, we compare
our adaptive MIP-based approach with state-of-the-art MINLP solvers on several
MINLP instances.

This chapter is structured as follows. Section 6.1 addresses problems in the field
of gas transport network optimization. We apply our adaptive approach on both
stationary and transient gas transport optimization problems. Moreover, we discuss
occurring implementation issues. In Section 6.2, we solve optimal power flow problems
with additional generator switching. As in the previous section, we address occurring
implementation issues. We conclude the chapter in Section 6.3 with some final remarks.

Most of the computational results in Section 6.1 have been carried out in the two
publications

R. Burlacu, H. Egger, M. Groß, A. Martin, M. E. Pfetsch, L. Schewe, M.
Sirvent, and M. Skutella (2018). “Maximizing the storage capacity of gas
networks: a global MINLP approach”. In: Optimization and Engineering,
pp. 1–31. doi: 10.1007/s11081-018-9414-5.

R. Burlacu, B. Geißler, and L. Schewe (2019). “Solving mixed-integer
nonlinear programmes using adaptively refined mixed-integer linear pro-
grammes”. In: Optimization Methods and Software, pp. 1–28. doi:
10.1080/10556788.2018.1556661.

The author of this thesis has made a significant contribution to the conception and
elaboration of the implementation and to the computations in these publications.
Section 6.2 is a joint work of the author of this thesis and Kevin-Martin Aigner. The
latter implemented Algorithm 1 and the details discussed in Subsection 6.2.1 in a
Python framework under the guidance of the author of this thesis. Furthermore, the
results in this section are part of a working paper with contributions by the author
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and Kevin-Martin Aigner, Frauke Liers, and Alexander Martin. All computational
results in Section 6.2 are presented for the first time in this thesis.

6.1. Optimization of Gas Transport Networks

In this section, we consider both stationary and transient gas network optimization
problems, which are introduced in Chapter 4. For the stationary case, we construct
all MINLP instances from the gas network GasLib-582 and for the transient case from
the network GasLib-11; see Schmidt et al. (2017).

The computations are carried out using the C++ software framework Lamatto++,
see LaMaTTO++ (2015), on a cluster using 12 cores of a machine with two Xeon 5650
“Westmere” chips (12 cores + SMT) running at 2.66 GHz with 12 MB Shared Cache
per chip and 24 GB of RAM. Furthermore, we utilize Gurobi 6.0.4 as MIP solver, using
the 12 cores mentioned above for the parallel solution of each MIP. The state-of-the-
art MINLP solvers Baron 17.1.2 and SCIP 3.2 are both used within GAMS 24.8.3;
see GAMS (2017). Note that for a fair comparison, Baron and SCIP also have 12 cores
available and run in parallel.

6.1.1. Stationary Compressor Energy Cost Minimization. In this subsec-
tion, we present computational results for the GasLib-582 gas network, which consists
of 582 nodes, 278 pipes, 5 compressor stations, 23 control valves, 8 resistors, 26 valves
and 269 shortcuts. The subsequent computations are based solely on a subset of all
scaled (95 % of flow amount) nominations provided by GasLib-582 that consists of
more than 4000 nominations. Each of these nominations corresponds in our case to
a separate instance, i.e., a separate MINLP problem. First, we provide an insight
into implementation issues that arise in the context of stationary compressor energy
cost minimization. Finally, we show both a detailed example computation and a
comparison with the state-of-the-art MINLP solvers Baron and SCIP.

6.1.1.1. Implementation Issues. The implementation details we discuss now can be
thought of as either preprocessing techniques or parameter tuning, based on empirical
values, for Algorithm 1 concerning MINLP problems in the fashion of (81).

Since Algorithm 1 iteratively solves MIP relaxations of the MINLP (81), the run
time of the algorithm mainly depends on the size of the MIP relaxations. Based
on (23), the complexity of a relaxation of a nonlinear function drastically increases with
the function’s dimension. Hence, we reformulate the MINLP (81) by constructing
expression trees in order to reduce the dimension of the nonlinear functions; see again
Geißler (2011) and Belotti et al. (2013) for general details.

In our case, we add variables fv and the nonlinear constraints fv = p2
v for each

node v that is incident to an arc a ∈ Api ∪ Ars, i.e., for which we have a ∈ δ−(v) or
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a ∈ δ+(v). For each node v that is incident to an arc a ∈ Acm, we add fκ+
v = p

(κ−1)/κ
v

if a ∈ δ+(v) and fκ−v = p
−(κ−1)/κ
v if a ∈ δ−(v) and the corresponding variables.

Furthermore, we add fpi
a = |qa|qa for each a ∈ Api, f rs+

a = |4pa|4pa and
f rs−
a = |qa|qa for each a ∈ Ars, and f cm

a = fκ
+

v2 f
κ−
v1 for each a = (v1, v2) ∈ Acm

together with the corresponding variables.
Herewith, we reformulate for each a = (v1, v2) ∈ Api the pressure loss equations (63)

by the linear constraint
fv2 − fv1 = βaf

pi
a . (94)

Similarly, we reformulate the equation (69a) that model the pressure drop for each
resistor a = (v1, v2) ∈ Ars by

fv1 − fv2 + f rs+
a = γaf

rs−
a . (95)

As third reformulation, we replace the equations (74) describing the change in the
specific enthalpy Had,a for each compressor a = (v1, v2) ∈ Acm by the linear constraint

Had,a = κ

κ− 1c
2(f cm

a − 1). (96)

Moreover, we perform the preprocessing methods described by Geißler et al. (2015a)
both tightening the bounds of the flow and pressure variables and reducing the amount
of nonlinear functions that are taken into account for relaxation.

Unlike the formal description of Algorithm 1, in which in every refinement step,
every nonlinear function f ∈ F with an approximation error larger than εf is refined,
we only refine a certain amount of all nonlinear functions that are worst regarding to
a specific score. We build this score upon the set

M i :=
{dim(f)2∣∣f

(
xif
)− yif

∣∣
εf

: f ∈ F and
∣∣f
(
xif
)− yif

∣∣ > εf

}
, (97)

in every iteration of Algorithm 1. In order to obtain the elements of M i with
corresponding nonlinear functions that have to be refined, we pursue marking strategies
applied in adaptive finite elements methods; see Verfürth (1996) and Dörfler (1996).
With ηi as the maximum score contained in M i, we refine any f ∈ F , which has a
score larger than θηi. Typically, θ = 0.5 is chosen. However, since the run time of an
MIP grows exponentially with its size, we set θ = 0.75 in our case. In this way, we can
speed up the algorithm by solving many smaller-sized MIP relaxations instead of few
bigger-sized ones. Since we use the longest-edge bisection as refinement procedure in
Algorithm 1 and therefore

∣∣f
(
xif
)− yif

∣∣ ≤ εf holds for any f ∈ F after a finite number
of refinement steps (see Chapter 3), it follows that this approach still is convergent.
Note that the square of the dimension of f in (97) corresponds to (23).

Beyond that, whenever a feasible solution of an MIP relaxation is found, we fix all
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discrete variables of the underlying MINLP problem according to the MIP solution
obtaining an NLP problem, which we solve to local optimality. However, we use the
NLP solver’s standard feasibility tolerance of 10−6 instead of the error bounds εf .
With this relatively inexpensive primal heuristic, we are often able to find feasible
solutions for the MINLP problem quite rapidly. In the subsequent computations,
we use CONOPT3, which in our case performs better than CONOPT4, as local NLP
solver within GAMS 24.8.3.

Finally, since we are only interested in a single globally optimal MIP solution
satisfying some given error bounds εf for all f ∈ F , it is not necessary to solve every
MIP relaxation to global optimality. Instead, it suffices to solve only every kth MIP
relaxation (and the first and last one, respectively) to global optimality and to use
bigger relative MIP gaps otherwise. We chose k = 50 in our case. The relative MIP
gaps depend on whether feasible solutions for the MINLP problems are found or not.
With u as upper bound corresponding to the incumbent solution found by the local
NLP solver and l as lower bound obtained by MIP relaxations as in Algorithm 1, the
relative MIP gap is set to (u− l)/(2u), if an upper bound is available. Otherwise, a
relative MIP gap of 10 % is chosen.

Concerning the error bounds in Algorithm 1, we choose 20.0 bar for the pressure loss
equations and 20.0 MW for the equations describing the power consumption as initial
approximation errors. Due to the complexity of the underlying MINLP problems,
final approximation errors for the example computation are set to 2.0 bar and 0.2 MW,
respectively. For the rest, we choose 1.0 bar and 0.1 MW as final approximation errors
for practical reasons, because even in this case all computations run into time limit.

Finally, we point out that Baron and SCIP are given the same reformula-
tions (94)–(96) of the nonlinear constraints.

6.1.1.2. Example Computation. We start with an example instance showing the
practical performance of Algorithm 1 and that even with coarse final approximation
errors good solutions can be computed.

The result presented in Table 6.1 is obtained by solving a randomly chosen
nomination of GasLib-582 (with ID “nomination_warm_95_2051”) that could be
solved within a time limit of 10 h. The first column indicates the iteration number
of Algorithm 1. The next three columns contain the size of the corresponding MIP
relaxation, split into the number of continuous and binary variables and the number
of constraints. Subsequently, the best lower bound l and upper bound u are given,
followed by the run time (in s) of the actual MIP relaxation and the NLPs that are
solved to local optimality. The next column contains the relative gap computed by
(u− l)/u. In the last two columns, the number of violated constraints and the number
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Table 6.1. Example computation of the GasLib-582 instance with
ID “nomination_warm_95_2051” by Algorithm 1 combined with
CONOPT3 as local NLP solver.

iter cont bin cons lower upper tMIP tNLP gap viol ref
0 2927 593 5714 114.40 416.02 1.85 3.77 72.50 % 77 1
1 2928 594 5716 114.40 316.80 1.12 2.62 63.89 % 74 4
5 2937 602 5733 114.40 316.80 1.43 3.06 63.89 % 75 1

25 3002 653 5849 135.59 316.80 5.88 8.57 57.20 % 79 5
49 3097 722 6013 218.59 316.80 1.91 5.60 31.00 % 77 2
50 3101 725 6020 243.67 316.80 15.64 7.84 23.08 % 72 1
51 3103 726 6023 243.67 316.80 6.44 3.17 23.08 % 73 1
75 3224 826 6244 265.82 316.80 10.93 24.34 16.09 % 65 2
99 3313 896 6403 294.40 316.80 3.08 10.68 7.07 % 61 2
100 3315 898 6407 301.61 316.80 284.05 20.19 4.79 % 54 1
149 3477 1051 6722 301.61 316.80 13.34 5.44 4.79 % 14 2
150 3479 1053 6726 305.89 316.80 233.16 1.55 3.44 % 14 1
194 3592 1154 6940 305.89 316.80 771.75 3.89 3.44 % 4 1
195 3592 1154 6940 306.88 316.80 126.78 4.93 3.13 % 4 1

total 4274.53 1156.66 537

of constraints which are chosen for refinement are indicated. Finally, the last row gives
an overview of the total run time and number of constraints chosen for refinement.

After about 1.5 h, Algorithm 1 is able to find an optimal solution for the MINLP
problem such that no constraint is violated by more than 2.0 bar and 0.2 MW, respec-
tively. Combined with CONOPT3, even a feasible solution for the MINLP problem
could be found, which is optimal up to a relative gap of almost 3 %.

Note that the final MIP relaxation consists of 3592 continuous and 1154 binary
variables, and 6940 constraints only, whereas an MIP relaxation constructed by
piecewise linear approximations satisfying the final approximation errors everywhere,
consists of 39 193 continuous, 21 735 binary variables, and 61 709 constraints. The
first feasible solution for the latter MIP is found after a run time of almost 8 h,
whereas after a total run time of 10 h lower and upper bounds are 131.35 and 594.50,
respectively, resulting in a relative MIP gap of more than 77 %. We can see that
although final approximation errors are relatively high, adaptivity in Algorithm 1
is crucial for a reasonable overall run time. Since the run time to solve an MIP
problem exponentially increases with the size of the MIP, adaptivity becomes even
more important if final approximation errors are tighter; see Geißler (2011) for a more
detailed discussion.

Since the upper bound in Table 6.1 remains unchanged after the first iteration,
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Figure 6.1. Iteration log for a nonlinear function f = xy that shows
the maximal approximation error on the simplex containing the in-
cumbent solution of the corresponding MIP relaxation (red lines), the
approximation error of the solution (blue lines) and the iterations in
which the approximation is refined (black dash).

we conclude that with our approach even very coarse initial approximations can lead
to solutions that are feasible for the MINLP and optimal within a relative gap of
almost 3 %, in a couple of seconds only.

We conclude the example presentation of our approach with Figure 6.1 that
shows an iteration log of a nonlinear function f : R2 → R, (x, y) 7→ xy with domain
Df = [1.028, 1.206]× [30.350, 1139.280] and Lipschitz-constant Lf = diam(Df ). This
function corresponds to the power consumption of a compressor; see (75). The final
approximation error for f is set to 1.265. We plot the maximal approximation error on
the simplex that contains the incumbent solution of the corresponding MIP relaxation
by red lines, whereas the approximation error for the solution itself is given by blue
lines. Moreover, whenever the function is marked for refinement a black dash is drawn.

As expected, the error of the MIP solution tends to a value smaller than 1.265 as
more refinement steps are performed on f . The staircase-shaped descending of the
error is characteristic for Algorithm 1. Often, solutions of consecutive MIP relaxations
have a local affinity, i.e., the projections of the solutions on the domain Df are close
to each other. Hence, depending on the specific triangulation of the piecewise linear
approximation, in some cases we need more than one refinement per nonlinear function
in order to scale the error down to the next level. We point out, that exploiting this
phenomenon, e.g., by refining not only the simplex containing the MIP solution, but
also adjacent simplices, may lead to further improvements.
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Figure 6.2. Performance profiles for Algorithm 1 combined with
CONOPT3 (Lamatto++), Baron, and SCIP comparing relative gaps
obtained after a time limit of 4 h.

With 20 refinements from iteration 0 to 90 and 2 refinements performed on f for
the initial approximation, in total, 22 refinements and 195 iterations are enough to
obtain an optimal MIP solution satisfying the final error bounds both for f and any
other nonlinear function occurring in the MINLP. Regarding the required number
of refinement steps, compared to the worst case estimation of 2Ñ as in (12), where
Ñ = 3

⌈
ln
(2 diam(Df ) diam(Df )

1.265
)
/ ln

( 2√
3
)⌉

= 303, a far less amount is needed in this
case.

Finally, we remark that although the total run time of 1.5 h of Algorithm 1 and
CONOPT3 appears to be long in order to obtain an MINLP solution that is optimal
within a relative gap of 3 %, it is quite short compared to other MINLP solvers.

6.1.1.3. Comparison with State-of-the-Art MINLP Solvers. We demonstrate the
advantage of Algorithm 1 combined with the local NLP solver CONOPT3 over the state-
of-the-art global MINLP solvers Baron and SCIP in Figure 6.2 by comparing relative
gaps computed by (u − l)/u, with the aid of performance profiles; see again Dolan
and Moré (2002) and Chapter 2 for more details.

In order to calculate those profiles, we randomly choose 200 out of roughly 4000
nominations provided by GasLib-582; see Table A.2 in Appendix A for their IDs.
Considering only those nominations for which at least one solver was able to compute
a feasible solution within the total time limit of 4 h, 163 nominations remain for the
performance profiles. Moreover, due to the complexity of the problems, each of the 163
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Table 6.2. Frequency of different solution statuses given by Baron,
Algorithm 1 combined with CONOPT3 (Lamatto++), and SCIP for a
set of 200 randomly chosen nominations provided by GasLib-582.

l and u only u only l infeasible none error
Baron 49 104 0 35 12 0

Lamatto++ 163 0 0 34 3 0
SCIP 13 55 0 19 108 5

nominations ran into timeout, i.e., the relative gap could not be closed. A second
reason for a timeout in our case is that there is no optimal solution for an MIP
relaxation that satisfied all final approximation errors.

We remark that the nomination with ID “nomination_warm_95_2051” from the
previous subsection is also included in the 200 nominations. However, we choose 1.0 bar
and 0.1 MW instead of 2.0 bar and 0.2 MW as final approximation errors. After a
total run time of 4 h, the best lower bound for this specific nomination is now 307.95,
while the best upper bound is again 316.80 as in Table 6.1. This results in a relative
gap of about 2.8 %, which is slightly smaller than the one obtained in the previous
subsection.

As we can see in Figure 6.2, our approach is clearly preferable to Baron and SCIP
applied to gas network optimization problems described in GasLib-582. In all cases,
Algorithm 1 combined with CONOPT3 computes the smallest gap, while Baron and
SCIP in no case were capable to compute the smallest gap. Additionally, in most cases
the relative gaps obtained by our approach are smaller than 10 % and differ from the
relative gaps computed by Baron and SCIP by a magnitude of almost 10, which can
be deduced from Figure 6.2.

In order to gain an in-depth look at Figure 6.2, we compare both lower bounds l
and upper bounds u in Figure 6.3. The upper bounds computed by CONOPT3 after
fixing all discrete variables corresponding to an MIP solution obtained by Algorithm 1
are slightly tighter than the ones attained by Baron and clearly tighter than the ones
computed by SCIP. The main benefit of our approach, however, derives from the fact
that MIP relaxations obtained by Algorithm 1 yield notably tighter lower bounds
than the lower bounds computed by Baron and SCIP. Moreover, the MIP relaxations
can be solved both reliably and fast utilizing mature MIP technology. Baron and
SCIP both struggle to deliver reasonable lower bounds and perform roughly the same
in this respect.

We summarize the comparison presenting the different solution statuses given by
every solver and their frequency in Table 6.2. The first column indicates nominations
with both an upper bound u and a lower bound l greater than zero, whereas in the
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Figure 6.3. Performance profiles for Algorithm 1 combined with
CONOPT3 (Lamatto++), Baron, and SCIP comparing upper bounds u
(above) and lower bounds l (below) obtained after a time limit of 4 h.

second and third column only those nominations are taken into account, for which
only an upper bound u, and a lower bound l, respectively, is available. The next
column contains the number of nominations that are detected as infeasible, followed
by a column in which nominations without any solution status are considered. The
last column gives the number of nominations that are declared as infeasible, and for
which at least one of the other solvers is able to compute a feasible solution for the
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Figure 6.4. The GasLib-11 network.

corresponding nomination. Algorithm 1 combined with CONOPT3 is able to find
feasible solutions for all 163 nominations with additional non-trivial lower bounds. As
already pointed out, Baron struggles with computing lower bounds, as Baron is able
to find feasible solutions for 153 nominations, but only in 49 cases a non-trivial lower
bound is found as well. In this regard, SCIP is clearly inferior. Moreover, in 5 cases
SCIP detects infeasibility of the MINLP, which presumably is false, since our approach
and Baron are able to find feasible solutions. In this matter, our approach and Baron
are almost coherent. For more results concerning the detection of infeasibility we refer
to Joormann et al. (2015) and Hiller et al. (2015).

Finally, we point out that our approach is also suitable for obtaining high-quality
solutions at short run time. In fact, for 161 out of 163 nominations, Algorithm 1
is able to compute discrete decisions proven to be feasible for the corresponding
MINLP by the local NLP solver CONOPT3 after a total run time limit of just 10 min.
Furthermore, as we can see in Table 6.1, Algorithm 1 delivers reasonable lower bounds
after only a few iterations, even with coarse initial approximations.

6.1.2. Transient Storage Capacity Maximization. In this subsection, we
present computational results for the GasLib-11 gas network. The GasLib-11 network
depicted in Figure 6.4 consists of three entries S1–S3, five interior vertices N1–N5, and
three exits T1–T3. Two compressors Cm1 and Cm2 are installed between S3 and N1,
and N4 and N5, respectively. We have lower and upper bounds r−a = 1.0895 and
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r+
a = 1.6009 for the compression ratio of both compressors. All eight pipes have a
length `a of 55 km, a diameter Da of 0.5 m, and a roughness of 0.1 mm resulting in a
friction factor λa = 0.0137. The two vertices T1 and T2 have a lower pressure bound
of 40 bar and an upper pressure bound of 60 bar. All other vertices have lower and
upper pressure bounds of 40 bar and 70 bar. The network also includes a valve Vl1
between N1 and N3.

Again, we first provide an insight into the implementation details in the context
of transient storage capacity maximization. We then illustrate the applicability of our
transient flow model by investigating pressure and flow waves within pipes. Thereafter,
we solve an MINLP problem in the fashion of (87) based on GasLib-11. Finally, we
give a short comparison with the state-of-the-art global MINLP solvers Baron and
SCIP and local MINLP solvers α-ECP (see again Westerlund and Lundqvist (2001)),
BONMIN (see again Bonami et al. (2008)), and Knitro by Byrd et al. (2006), all within
GAMS 24.8.3.

6.1.2.1. Implementation Issues. We again reformulate the MINLP (87) using
expression trees to obtain a model with nonlinear functions of lower dimensions. For
each a = (v1, v2) ∈ Api we substitute each pressure loss equation of type (63) by the
linear constraint (94) and the corresponding nonlinear constraints fv1 = p2

v1 , fv2 = p2
v2 ,

and fpi
a = |qa|qa as in Subsection 6.1.1.1.

As in the stationary case, we only refine a certain amount of all nonlinear functions
that are worst regarding the score M i. Here we select θ = 0.85. We again only solve
every 50th MIP relaxation to global optimality and proceed as in the stationary case
regarding the relative MIP gaps.

Concerning the error bounds in Algorithm 1, we use 50.0 bar for the pressure
loss equations in the initial MIP relaxation. The final approximation errors are set
to 2.0 bar.

As in the stationary case, if a feasible solution of an MIP relaxation is found, we
fix all discrete variables of the underlying MINLP problem according to the MIP
solution and solve the resulting NLP problem to local optimality. The NLPs are
again solved using CONOPT3.

We highlight two algorithmic extensions to the stationary case. First, whenever a
feasible solution of the MINLP is obtained, we transform it into a feasible starting
solution of the MIP relaxation. This can sometimes reduce the run time needed to
solve the MIP. Furthermore, any objective value of a solution of an MIP relaxation
provides a dual bound for the MINLP problem. At the same time, the dual bounds
that we obtain while solving an MIP relaxation are also dual bounds for the MINLP.
We exploit this by solving a very fine MIP relaxation parallel to our main algorithm.
Although the MIP solver is unlikely to solve the fine MIP relaxation within reasonable
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Figure 6.5. Pressure values (y-axis) for a fine (above) and coarse (be-
low) discretization in three consecutive pipes of the GasLib-11 network
over their accumulated length (x-axis) for different time points.

run time limits, if a tighter dual bound is found, we use it as dual bound for the
MINLP.

6.1.2.2. Pressure and Flow Waves within Pipes. As a first case study, we investigate
the propagation of pressure and flow waves within pipes. For this purpose, we consider
the three consecutive pipes S2–N3–N4–N2 from the GasLib-11 network, which add up
to a total length of 165 km. Initially, we assume a stationary state, where 150 m3 h−1

are injected in S2 and discharged at N2. We immediately increase the supply at S2
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Figure 6.6. Flow values (y-axis) for a fine (above) and coarse (below)
discretization in three consecutive pipes of the GasLib-11 network over
their accumulated length (x-axis) for different time points.

to 450 m3 h−1 and inject this amount up to minute 60. From minute 60 on, 150 m3 h−1

are injected again. We choose a time discretization of 5 s and a spatial discretization
of 500 m. Please note that in the following all flow values are given as volumetric flow
values (m3 h−1) instead of mass flow values as in Chapter 4. The volumetric flow Q

and the mass flow q are related by q = ρ0Q, where ρ0 ≈ 0.8304 kg m−3 is the density
under normal conditions.

Figures 6.5 and 6.6 show that our time-expanded graph model is capable of
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detecting parabolic pressure and flow waves and their propagation within pipes.
Furthermore, we observe that these wave effects are quickly smoothed and tend
towards a stationary state. This behavior is typical for parabolic PDEs.

We now give some insight into the discretization that we use in the subsequent
subsection. Therein, we consider a time discretization of 10 min and a two-point space
discretization of 55 km for the pipes. This coarse discretization is due to the fact that
non-convex MINLPs as in (87) are hard to solve in general. Hence, we are forced to
use a coarse discretization in order to keep the MINLP computationally tractable.

We run the same simulation as before, albeit with the coarse discretization. Now,
we depict the result for the coarse discretization at different time points in Figures 6.5b
and 6.6b. Please note that flow values between two discretization points in space
are given by a piecewise constant function; see Section 4.3.2. Hence, the respective
flow values in Figure 6.6b are marked at the midpoints between two consecutive
space discretization points. We therefore obtain points at lengths of 27.5 km, 82.5 km,
and 137.5 km. Pressure values, however, are given for single discretization points in
space, leading to points at lengths of 0 km, 55 km, 110 km, and 165 km in Figure 6.5b.
Comparing both discretizations, we can observe that the characteristic behavior of
the fine discretization is maintained by the coarser one. In addition, the difference
between the two discretizations vanishes with large time horizons. With the goal of
global optimization, we are therefore confident to use the coarse discretization on time
horizons of several hours.

Table 6.3. The prescribed nomination qnom (given in m3 h−1) for one
time step and all entries and exits of the GasLib-11 network.

S1 S2 S3 T1 T2 T3
140.00 160.00 0.00 90.00 150.00 60.00

6.1.2.3. Storage Capacity Maximization. As a second case study, we solve the
storage capacity maximization problem (87) using the GasLib-11 network shown in
Figure 6.4. We choose the parameters γ1 = 0.0015, γ2 = 0.02, Sa = 7200 for all
a ∈ Acm, and Sa = 3600 for all a ∈ Avl, which are introduced in Section 4.4. For the
prescribed nomination qnom ∈ RN |Vs∪Vt|, we use the values that are given in Table 6.3
for all time steps.

Both compressors Cm1 and Cm2 run in bypass mode at the beginning while the
valve Vl1 is closed. This results in a tree-shaped network. Thus, we can compute an
initial stationary solution by fixing the pressure for S1 to 58 bar and propagate the
flow through the network. The resulting initial pressure values for all eleven vertices
are given in Table 6.4.
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Table 6.4. Initial pressure values (given in bar) for all eleven vertices
of the GasLib-11 network as in Figure 6.4.

S1 S2 S3 N1 N2 N3 N4 N5 T1 T2 T3
58.00 59.94 53.77 53.77 49.18 54.55 48.56 48.56 47.15 42.60 47.66
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Figure 6.7. Given volumetric flow rate profiles for the additional
amount of gas that can be injected at S3 (left) and must be discharged
accordingly at T3 (right). Based on qextra in (87), the dashed lines
indicate the additional amount of gas that can be injected at S3
(green lines) and must be discharged accordingly at T3 (red lines) with
corresponding upper and lower bounds.

We now consider a time horizon of 8 h, with a time discretization of 10 min leading
to a total amount of 48 time steps and a two-point space discretization for the
pipes. From minute 20 on, in addition to the nomination, a positive amount of gas
can be injected for two hours at S3. We allow a maximal additional amount that
corresponds to 500 m3 h−1. Moreover, we stipulate a linear increase (and decrease) in
the additionally injectable gas amount up to (and from) the maximum within 20 min.
From the fourth hour onwards, the same additional amount of gas must be discharged
at T3 within two hours, whereby the same conditions apply as in the case of the
additional supply. See Figure 6.7 for an illustration.

The resulting MINLP problem consists of 2311 variables, of which 2164 are
continuous and 147 are binary, and 2785 constraints, of which 2393 are linear and 392
are nonlinear.

After a total run time limit of 4 h, our MIP-based approach delivers a feasible
solution for the storage capacity maximization problem (87) that is globally optimal
within a relative gap of almost 5 %. The corresponding profiles of the solution are
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Figure 6.8. Profile for the pressure increase of compressor Cm1 (left)
and compressor Cm2 (right) corresponding to the best solution for the
storage capacity maximization problem (87) found after a total run
time of 4 h.

shown in Figure 6.8 for the compressors Cm1 and Cm2, in Figure 6.9 for the pressures
of all eleven vertices, in Figure 6.10 for the valve Vl1, and in Figure 6.11 for the
additional amount of gas qextra.

The compressor Cm1 is immediately switched on and operates throughout the
whole time horizon. From minute 50 onwards, almost as much additional Gas qextra is
injected at S3 as possible. As a consequence, all pressure values rise with a higher
amount of gas until no additional gas is injected in S3 anymore. Moreover, the valve Vl1
is opened, with approximately half of qextra passing through it. About an hour before
the additionally injected amount of gas is discharged at T3, the Compressor Cm2 is
also switched on. At the same time, a small amount of gas passes through the valve
again before it is closed. Due to the coincident compression of both compressors, the
pressure at T3 remains within the pressure bounds while discharging the additional
amount of gas.

Returning to the objective of maximizing the storage capacity, around 74.17 % of
the possible additional amount of gas in qextra is attainable according to our solution;
see Figure 6.11. Due to the chosen parameters γ1 and γ2, the cost of compression
is almost negligible in our MINLP problem. Furthermore, our solution is globally
optimal within a gap of less than 6 %. Hence, we conclude that taking into account
the model from above, approximately 78.62 % of the possible additional amount of
gas in qextra can be injected at S3.

Finally, we show an iteration log of Lamatto++ for the storage capacity maximiza-
tion problem (87) in Table 6.5. After a total run time of less than 3 h, Lamatto++
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Figure 6.9. Profiles for the pressures of all eleven vertices of the
GasLib-11 network in Figure 6.4. The values correspond to the best
solution for the storage capacity maximization problem (87) found
after a total run time of 4 h.

is able to find a solution that is feasible for the storage capacity maximization prob-
lem (87) and globally optimal within a relative gap of almost 5 %.

The first column in Table 6.5 indicates the corresponding iteration in Algorithm 1.
The best dual bound d of the MINLP and the objective value z of the incumbent
(feasible) solution are given in column two and three, respectively. The next column
contains the relative gap |(z − d)/z|, which is given in percent. The last column
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Figure 6.10. Volumetric flow rate profile for the valve Vl1 showing
the amount of gas passing through the valve in case that it is open.
The values correspond to the best solution for the storage capacity
maximization problem (87) found after a total run time of 4 h.
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Figure 6.11. Volumetric flow rate profiles for the entry S1 (left) and
the exit T2 (right) showing the additional amount of gas qextra (orange)
that is injected (S1) and discharged (T3). The values correspond to
the best solution for the storage capacity maximization problem (87)
found after a total run time of 4 h.

presents the run time in seconds that Lamatto++ spent until the current iteration.
We observe that Lamatto++ produces feasible solutions with small relative gaps even
in a short run time.

For the sake of comparison, the state-of-the-art global MINLP solvers Baron and
SCIP solve the same MINLP on the same cluster using all 12 cores and a run time
limit of 4 h. After the time limit has been reached, the best feasible solution Baron
finds has an objective value of 332.991, while the best dual bound is 630.965. This
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Table 6.5. Iteration log of Lamatto++ for the storage capacity maxi-
mization problem (87) using the gas network in Figure 6.4 with a total
run time limit of 4 h.

iteration dual primal gap elapsed time
1 498.342 449.080 10.97 % 9.64
6 498.342 460.562 8.20 % 38.36

201 497.297 460.562 7.98 % 1726.50
218 494.919 460.562 7.46 % 1949.03
236 491.733 460.562 6.77 % 2216.00
237 490.160 460.562 6.43 % 5517.05
238 490.160 464.529 5.52 % 10 656.86
239 490.160 464.529 5.52 % 14 103.06

translates into a relative gap of about 89 %. The best feasible solution SCIP finds has
an objective value of 296.724, where the best dual bound is 622.838. This corresponds
to a relative gap of about 109 %. Our approach thus delivers significantly better results
in this case. Sometimes, in the case of application-related problems, a good feasible
solution that is obtained in a short time is also useful. To this end, we solve the same
MINLP with the local MINLP solvers α-ECP, BONMIN, and Knitro. Within a run
time of 30 min, BONMIN and Knitro are not able to find any feasible solution. α-ECP,
however, is able to find a feasible solution with an objective value of 464.885, within
only 2 min. It is slightly better than our solution found after 38.36 s and comparable
to our best feasible solution. α-ECP is a local MINLP solver and thus unable to
provide a dual bound. Moreover, it can only confirm the feasibility of the solution,
but no local optimality. With regard to global optimality, our approach is therefore
preferable, as it provides feasible solutions of high quality and tight dual bounds.

In conclusion, we see that our time-expanded graph method can be successfully
applied in the context of the storage capacity maximization of gas networks. In
addition, the approach delivers solutions within reasonable run time that are both
physically plausible and near-global optimal.

6.2. AC Optimal Power Flow with Generator Switching

In this section, we present computational results for the two standard OPF test cases
Case22Loop by Bukhsh et al. (2013) and Case39 by Zimmerman et al. (2011). As in the
previous subsections, we first provide an insight into the implementation issues in the
context of AC OPF with generator switching. Afterward, we present numerical results
for slightly modified versions of the test cases Case22Loop and Case39, followed by a
short comparison with the global MINLP solver Couenne 0.5.6. The medium-scale
Case22Loop power network consists of 22 buses of which 11 buses are generator units,



104 CHAPTER 6. COMPUTATIONAL RESULTS

U1

B2

U2 B4 U3 B6 U4 B8

U5

B10

B22

U11

B20

U10 B18 U9 B16 U8 B14

U7

B12

U6

Figure 6.12. The Case22Loop power network.

and 22 transmission lines; see Figure 6.12 for an illustration. The medium-scale Case39
power network consists of 39 buses of which 10 buses are generator units, and 46
transmission lines; see Figure 6.13 for an illustration.

The computations are carried out on a laptop using two cores of a dual-core
i7-7600U CPU at 2.8 GHz with 4 MB Shared Cache and 16 GB of RAM. Furthermore,
we utilize Gurobi 8.0.1 as MIP solver, using the two cores mentioned above for the
parallel solving of each MIP. Note that for a fair comparison, Couenne also has two
cores available and runs in parallel.

6.2.1. Implementation Issues. As in the previous MINLP problems, we re-
duce the dimension of the nonlinear functions of the MINLP (92) using expression
trees. For each transmission line e = (k, l) ∈ L, we add variables fe1 , fe2 , . . . , fe7 and
the nonlinear constraints

fe1 = p2
kl, fe2 = q2

kl, fe3 = c2
kl, fe4 = t2kl, fe5 = ckkcll,

fe6 = tan(θl − θk), fe7 = cklfe6 .

Herewith, we reformulate the equations (92h) by the linear constraints

fe1 + fe2 ≤ (d+
kl)

2.

Similarly, we reformulate (92i) with

fe3 + fe4 = fe5 .

As the last reformulation, we replace (93) by the linear constraint

fe7 = tkl.
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Figure 6.13. The Case39 power network.

For quadratic objective functions, we introduce a variable fCk substituting each
square (pgk)2 of the objective function and add the nonlinear constraints fCk = (pgk)2

to the model.
As in the stationary case of the gas network optimization, we only refine a certain

amount of all nonlinear functions that are worst regarding the score M i and chose
again θ = 0.75. We solve only every 20th MIP relaxation to global optimality and
proceed as before regarding the relative MIP gaps, where we use half of the incumbent
relative gap of the MINLP as relative gap for the MIP. If no gap is available for the
MINLP, we set 10 % as MIP gap.

As in previous computations, if a feasible solution of an MIP relaxation is found,
we fix all discrete variables of the underlying MINLP problem according to the MIP
solution and solve the resulting NLP problem to local optimality. The NLPs are now
solved using IPOPT within GAMS 25.1.2. Whenever a feasible solution of the MINLP
is obtained, we transform it into a feasible starting solution of the MIP relaxation. In
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addition, we again compute tight dual bounds of the MINLP by solving a fine MIP
relaxation and using its dual bounds.

Concerning the error bounds in Algorithm 1, we now simply use two equidistant
interpolation points in case of one-dimensional nonlinear functions for the initial MIP
relaxation. In case of a two-dimensional nonlinear function, we use the four extreme
points of the function’s domain. The final approximation errors are set to zero, since
we are now mainly interested in the relative optimality gaps that we are able to obtain
by Algorithm 1 combined with IPOPT as NLP solver.

Finally, we tighten the bounds of all variables in a preprocessing step. To this
end, we solve for each variable two optimization problems minimizing and maximizing
the variable, while we consider the LP relaxation of the initial MIP relaxation as the
feasible set. We then set the bounds of the variables to the obtained optimal objective
values. This bound tightening method is essentially the same as an optimality-based
bound tightening; see again Section 2.3 for more details. Note that due to this
preprocessing, in the case of Case22Loop and Case39, we obtain bounds for the
variables θl, θk such that −π/2 < θl − θk < π/2 always holds. Hence, we can use (93)
instead of (92j) in the MINLP model (92).

6.2.2. Generator Production Cost Minimization. We now solve the
MINLP problem (92), which minimizes the production costs of the generators. The
MINLP instances are based on the Case22Loop and Case39 power network.

6.2.2.1. The Case22Loop Power Network. We begin with the instance that is based
on the Case22Loop power network. The 22 transmission lines and the generators of the
Case22Loop network are identical and the objective function is linear with the same
coefficients. The original lower bounds of the generator production are zero for all
generators. With these bounds, all generators are switched on in the optimal solution,
while each generator produces 206.31 MW. In real-world applications, however, the
minimal amount of power production is usually greater than zero. Hence, we set
all lower bounds to 230 MW, which is roughly an increase of 206.31 MW by 10 %.
This prevents all generators from being switched on and thus brings combinatorics
into play. The upper bounds for the production of the generator are all 10 000 MW.
Furthermore, the buses B2,B4, . . . ,B22 have all a demand of 204.25 MW.

The resulting MINLP problem consists of 143 variables, of which 132 are con-
tinuous and 11 are binary, and 176 constraints, of which 110 are linear and 66 are
nonlinear.

After a total run time limit of 4 h, Algorithm 1 in combination with IPOPT delivers
a feasible solution that is globally optimal within a relative gap of almost 0.4 %. From
a practical point of view, we can regard this solution as essentially globally optimal.
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Table 6.6. Production of the generator units of the Case22Loop power
network (given in MW) corresponding to the best feasible solution
found after a total run time of 4 h.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11
0 287.95 230 230 287.95 0 276.26 230 230 230 276.26

The production of the generator units corresponding to this solution is depicted in
Table 6.6. As expected, only a subset of all generators are switched on.

Table 6.7. Iteration log of Algorithm 1 for the AC OPF problem
with additional generator switching (92). The model is based on the
power network of Case22Loop, while the total run time limit is 4 h.

iteration dual primal gap elapsed time
1 4426.000 - - 210.15
2 4426.000 4564.020 3.024 % 222.67
6 4426.000 4556.839 2.871 % 235.98

21 4467.917 4556.839 1.951 % 358.94
41 4488.315 4556.839 1.504 % 485.09
61 4536.082 4556.839 0.456 % 698.56
921 4536.147 4556.839 0.454 % 9245.92
941 4536.518 4556.839 0.446 % 9573.24

1061 4536.803 4556.839 0.440 % 14 306.65
1071 4536.803 4556.839 0.440 % 14 397.98

Finally, we show an iteration log of Algorithm 1 in Table 6.7. The first column in
Table 6.7 indicates the iteration in Algorithm 1. In column two and three, the best
dual bound d of the MINLP and the objective value z of the incumbent (feasible)
solution are given. The next column contains the relative gap |(z − d)/z| in percent.
The last column shows the run time in seconds that Algorithm 1 combined with IPOPT
spent until the corresponding iteration. After a total run time of less than 4 min,
our approach is able to find a solution that is feasible for the MINLP and globally
optimal within a relative gap of almost 0.4 %. We see that even with shorter run time,
our approach is able to find feasible solutions with small relative gaps.

We have the same MINLP solved by Couenne with the same run time limit of 4 h.
We compare our approach with Couenne based on the iteration log in Table 6.8, which
reads in the same manner as Table 6.7, except for the iteration numbers. Both in
terms of the run time that is needed to find feasible solutions, as well as in terms of
the quality of the solutions, Couenne and our method perform very similarly. However,
our approach delivers tighter dual bounds and is therefore able to prove the optimality
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Table 6.8. Iteration log of Couenne for the AC OPF problem with
additional generator switching (92). The model is based on the power
network of Case22Loop, while the total run time limit is 4 h.

dual primal gap elapsed time
4222.544 4740.556 10.927 % 0.00
4429.462 4740.556 6.562 % 0.81
4429.462 4672.227 5.196 % 3.69
4429.462 4590.228 3.502 % 4.60
4429.462 4564.129 2.951 % 5.66
4438.267 4564.129 2.758 % 7.53
4441.981 4559.075 2.568 % 31.86
4448.090 4557.586 2.403 % 57.35
4449.893 4556.839 2.347 % 82.69
4452.677 4556.839 2.286 % 3600.78
4454.209 4556.839 2.252 % 7200.35
4456.600 4556.839 2.200 % 14 399.79

of the solution within a relative gap of almost 0.4 %. After a run time of 4 h, Couenne
is not able to lower the relative gap any further than 2.2 %. We conclude that in case
of the MINLP (92), based on the Case22Loop power network, Algorithm 1 combined
with IPOPT is preferable to Couenne.

Table 6.9. Upper bounds for the production of the generator units
of the Case39 power network (given in MW).

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
2200 1292 1450 1304 1016 1374 1160 1128 1730 2080

Table 6.10. Demands for all buses of the Case39 power network
(given in MW) including the generator units.

B1 B3 B4 B7 B8 B9 B12 B15 B16 B18 B20
97.60 322 500 233.80 522 6.50 8.53 320 329 158 680

B21 B23 B24 B25 B26 B27 B28 B29 U1 U2
274 247.50 308.60 224 139 281 206 283.50 1104 9.20

6.2.2.2. The Case39 Power Network. The second test instance is based on the
Case39 power network. Now, the 46 transmission lines and the 10 generator units
have different parameters. In addition, the objective function is quadratic with equal
coefficients. We pursue the same strategy for the lower bounds of the generator
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production as in the case of Case22Loop. Since the original bounds are again zero, all
generators are switched on in the optimal solution. Here, each generator produces a
different amount with an average production of 630.175 MW. We set the lower bounds
to 700 MW, which as before approximately corresponds to an increase of 630.175 MW
by 10 %. Moreover, we double the upper bounds for the generator production to
prevent infeasibility; see Table 6.9 for the corresponding values. Table 6.10 contains
all buses of the network that have a demand and the corresponding values.

The resulting MINLP problem consists of 515 variables, of which 505 are con-
tinuous and 10 are binary, and 630 constraints, of which 354 are linear and 276 are
nonlinear.

Table 6.11. Production of the generator units of the Case39 power
network (given in MW) corresponding to the best feasible solution
found after a total run time of 4 h.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
807.37 792.14 786.47 0 782.85 781.07 774.70 0 784.93 792.13

After a total run time limit of 4 h, Algorithm 1 in combination with IPOPT
delivers a feasible solution that is globally optimal within a relative gap of almost 10 %.
We depict the production of the generator units corresponding to this solution in
Table 6.11. Again, only a subset of all generators are switched on.

Table 6.12. Iteration log of Algorithm 1 for the AC OPF problem
with additional generator switching (92). The model is based on the
power network of Case39, while the total run time limit is 4 h.

iteration dual primal gap elapsed time
1 44 189.366 51 703.889 14.534 % 818.69
5 44 212.102 51 570.032 14.268 % 887.74
13 44 334.092 51 537.445 13.977 % 1091.17
14 45 990.397 51 537.445 10.763 % 1130.00
68 45 990.397 51 537.445 10.763 % 13 927.53

As for the previous instance, we show an iteration log of Algorithm 1 in Table 6.12.
After a total run time of less than 20 min, our approach is able to find a solution that
is feasible for the MINLP and globally optimal within a relative gap of almost 10 %.
In conclusion, we see that our approach is able to find near-global feasible solutions
even with shorter run time.

We again have the same MINLP solved by Couenne with the same run time limit
of 4 h and compare our approach with Couenne based on the iteration log in Table 6.13.
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Table 6.13. Iteration log of Couenne for the AC OPF problem with
additional generator switching (92). The model is based on the power
network of Case39, while the total run time limit is 4 h.

dual primal gap elapsed time
38 390.162 - - 0.00
38 390.162 58 711.450 34.612 % 47.89
42 502.945 58 711.450 27.607 % 60.29
45 991.800 58 711.450 21.665 % 88.44
45 991.800 58 711.450 21.665 % 14 397.75

In contrast to the instance based on Case22Loop, Couenne and our approach perform
very similarly regarding the dual bounds. However, Algorithm 1 combined with IPOPT
is able to find feasible solutions that are significantly better than the one obtained by
Couenne. The best solution found by Couenne is globally optimal within a relative gap
of more than 21 %, while our approach delivers a feasible solution with a relative gap
of almost 10 %. We conclude that in case of the MINLP (92), based on the Case39
network, Algorithm 1 in combination with IPOPT again is superior to Couenne.

6.3. Final Remarks

In this chapter, we demonstrated the applicability of Algorithm 1 to real-world MINLP
problems. To this end, we solved instances from the field of gas network transport
optimization and optimal power flow. For these instances, our current implementation
of Algorithm 1 is already superior to state-of-the-art global MINLP solvers such as
Baron, SCIP, and Couenne. However, there is still plenty of room for improvements.

First, the preprocessing so far is only integrated into our implementation in a very
basic version. As pointed out in Chapter 2, preprocessing is a vital aspect of MINLP
(and MIP) solvers. A more sophisticated preprocessing, e.g., a feasibility-based bound
tightening in each iteration, will therefore significantly reduce the size of the MIP
relaxations in our algorithm, since they mainly depend on the bounds of the variables.

Nevertheless, the most promising idea is to refine the nonlinearities such that
we can exploit warm-starting procedures implemented in modern MIP solvers. The
main goal is to embed Algorithm 1 into a single-tree framework. As mentioned in
Subsection 6.1.1.2, the projections of the solutions of consecutive MIP relaxations are
often locally close to each other. A first step towards a single-tree approach, would
be to use the solution of an MIP relaxation to obtain a starting solution for the
subsequent MIP relaxation. With the longest-edge bisection, for each function the
triangulations of two consecutive MIP relaxations differ only in at most one simplex,
if a refinement is performed. Otherwise, the triangulations are identical. Thus, we
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can simply fix all binary and continuous variables according to the solution of the last
MIP relaxation, except for all simplices that are refined. This results in an MIP of
comparatively small size. Based on the observation that solutions of consecutive MIP
relaxations are often locally close to each other, we believe that the optimal solution
of this small-sized MIP is in many cases a good starting solution for the subsequent
MIP relaxation. With good starting solutions, however, the run time of an MIP
relaxation can be drastically reduced.

Furthermore, no problem-specific heuristics are incorporated yet. One possibility is
to use an NLP relaxation of the MINLP, where we reformulate the binary variables as
complementary constraints and obtain a feasible solution by rounding; see for instance
the works by Baumrucker and L. T. Biegler (2010) and Schewe and Schmidt (2018).

Finally, we remark that although a primal algorithm, which in our case is consti-
tuted by CONOPT3 and IPOPT, is necessary to compute valid upper bounds, it is
not necessary for Algorithm 1 to terminate. In fact, with tight final error bounds, we
can skip the primal algorithm entirely, because in this case Algorithm 1 eventually
yields an optimal MIP solution that we can consider as an optimal solution for the
corresponding MINLP.





CHAPTER 7

Summary and Conclusion

In this thesis, we developed a global solution approach for MINLPs that combines
adaptive refinement strategies for the nonlinearities with MIP relaxations for the
integer part of the MINLP.

We motivated our adaptive method, which is largely based on solving MIPs, in
Chapter 2 by an experiment, in which we reformulated MIPs as NLPs by replacing all
binary variables using the constraint x2−x = 0. These NLPs are subsequently solved
by state-of-the-art global NLP solvers within SCIP and Baron. The numerical results
of the experiment demonstrated the capability of modern MIP solvers in comparison
to modern NLP solvers.

We laid the theoretical groundwork for our adaptive MINLP approach in Chapter 3.
We classified the refinement procedures that guarantee the convergence of our adaptive
MIP-based approach. In particular, we proved that the longest-edge bisection and
the red refinement rule belong to this class of refinement procedures that lead to
the convergence of our algorithm. However, a surprising result is that the intuitive
refinement strategy, where points with maximal approximation error are added as
new vertices cannot always yield approximations with arbitrary accuracy. Moreover,
we presented first results on the size of an MIP relaxation that is required to achieve
an a priori given accuracy.

We applied our approach to MINLP problems that are difficult to solve by state-
of-the-art MINLP solvers. To this end, we solved both stationary and transient gas
network optimization problems, while in the transient case we introduced a new model
for the gas flow in pipelines. As a second application, we solved optimal power flow
problems with additional switching of the generator units. The numerical results
in Chapter 6 demonstrate that our MIP-based approach outperforms state-of-the-
art global MINLP solvers on several difficult MINLP instances. Furthermore, our
method even computes high-quality feasible solutions in a considerable short run time.

As pointed out before, our method strongly relies on MIP technology. The integer
part of the MINLP problem is tackled by sophisticated MIP solvers that act as
black-box oracles and quickly provide feasible solutions for the MIP relaxations with
reliable quality guarantees. Hence, we believe that the higher the integer part of the
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MINLP becomes, the more advantageous our approach is compared to other state-of-
the-art global MINLP solvers. The numerical results in this thesis also support this
notion. The gas network optimization instances contain a notably larger number of
integer variables compared to the optimal power flow instances. In the former case,
our approach clearly outperforms state-of-the-art MINLP solvers, whereas in the
latter case our method is less superior.

In addition, our approach is suitable for a wide range of MINLP problems, since
we only require the nonlinear functions of the MINLP to be continuous. In contrast
to the solvers Baron and SCIP, for instance, our algorithm is capable of handling
trigonometric functions that appear, e.g., in MINLPs arising from optimal power
flow.

Building on this thesis, several directions exist for future research. Exemplary
numerical results on triangulations in Section 3.4 suggest that the longest-edge and
the red refinement rule yield Delaunay triangulations in the sense that the simplices
are contained in a Delaunay triangulation of the set of the corresponding vertices.
A more general characterization of this observation remains the subject of future
research. At this point, we would also like to point out that in general it is still open
which triangulations are optimal with respect to the number of sampling points for a
given nonlinear function.

On the algorithmic side, there is still potential for improvements. Besides a more
sophisticated preprocessing, the most promising course is the further development
towards a warm-starting single-tree approach. A first step in this direction would be
to use the solution of an MIP relaxation of the MINLP to obtain a starting solution
for the subsequent MIP relaxation as described in Section 6.3.

Finally, more empirical studies will give a deeper insight into the MINLP classes
for which our method is suitable. The next natural step is to build a global MINLP
solver based on our approach and solve various MINLP problems, e.g., instances
provided by the MINLPLIB; see Bussieck et al. (2003).



APPENDIX A

IDs of Instances

A.1. IDs of the MIPLIB 2017 Benchmark Problems

Table A.1. IDs of all 164 MIPLIB 2017 benchmark problems (in-
feasible ones are marked by *) that have only binary variables as
integer variables and are chosen in order to calculate the corresponding
performance profiles in Figure 2.3 and 2.4.

academictimetablesmall app1-2 assign1-5-8 b1c1s1
bab2 bab6 beasleyC3 binkar10_1
blp-ar98 blp-ic98 bnatt400 bnatt500*
bppc4-08 cbs-cta chromaticindex1024-7 chromaticindex512-7
cmflsp50-24-8-8 CMS750_4 co-100 cod105
cost266-UUE csched007 csched008 cvs16r128-89
dano3_3 dano3_5 decomp2 drayage-100-23
drayage-25-23 dws008-01 eil33-2 eilA101-2
exp-1-500-5-5 fast0507 fastxgemm-n2r6s0t2 fhnw-binpack4-4*
fhnw-binpack4-48 glass-sc glass4 gmu-35-40
gmu-35-50 graph20-20-1rand h80x6320d irish-electricity
irp istanbul-no-cutoff leo1 leo2
lotsize mad map10 map16715-04
markshare2 markshare_4_0 mas74 mas76
mc11 mcsched milo-v12-6-r2-40-1 momentum1
n2seq36q n3div36 neos-1122047 neos-1171448
neos-1171737 neos-1445765 neos-2075418-temuka* neos-2978193-inde
neos-3216931-puriri neos-3402294-bobin neos-3402454-bohle* neos-3555904-turama
neos-3627168-kasai neos-3754224-navua* neos-3754480-nidda neos-3988577-wolgan*
neos-4300652-rahue neos-4387871-tavua neos-4413714-turia neos-4532248-waihi
neos-4647030-tutaki neos-4763324-toguru neos-4954672-berkel neos-5049753-cuanza
neos-5052403-cygnet neos-5075914-elvire neos-5093327-huahum neos-5104907-jarama
neos-5107597-kakapo neos-5114902-kasavu neos-5188808-nattai neos-5195221-niemur
neos-631710 neos-787933 neos-827175 neos-848589
neos-860300 neos-873061 neos-911970 neos-933966
neos-957323 neos-960392 neos17 neos5
net12 netdiversion nexp-150-20-8-5 ns1116954
ns1208400 ns1644855 ns1760995 ns1830653
nw04 opm2-z10-s4 p200x1188c peg-solitaire-a3
pg pg5_34 physiciansched3-3 physiciansched6-2
pk1 qap10 rail01 rail02
rail507 ran14x18-disj-8 rd-rplusc-21 reblock115
rmatr100-p10 rmatr200-p5 rocII-5-11 roi2alpha3n4
roi5alpha10n8 s100 s250r10 satellites2-40
satellites2-60-fs savsched1 sct2 seymour
seymour1 sing326 sing44 sorrell3
sp150x300d sp97ar sp98ar supportcase10
supportcase18 supportcase22* supportcase26 supportcase40
swath1 swath3 tbfp-network thor50dday
toll-like tr12-30 trento1 uccase12
uccase9 uct-subprob unitcal_7 var-smallemery-m6j6
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A.2. IDs of the GasLib-582 Nominations

Table A.2. IDs of all 200 GasLib-582 nominations that are chosen
randomly in order to calculate the corresponding performance profiles
in Section 6.1.1.3.

nomination_cold_95_
101 1048 1089 1184 123 1321 1326 1642 1660 1729

1768 1911 2008 21 2120 2121 2158 2164 2187 229
2381 2393 2503 268 2720 3007 3111 33 3375 3539
3769 3970 4054 4127 4194 4209 468 676 82 954
957 971

nomination_cool_95_
1012 1032 1119 1130 1143 1153 1181 1291 1423 145
1576 1592 1665 1957 201 2040 2050 2168 2178 2196
2275 2284 2321 2364 2398 2453 25 2674 2682 2721
2770 2774 2794 2854 295 3103 312 3148 316 3201
3283 344 3509 3518 3567 3578 3642 3656 3658 3683
3756 378 379 3791 3858 3885 4072 4223 604 663
81 830 979

nomination_freezing_95_
1001 1035 1193 1243 1268 1328 1371 1434 1525 1558
1591 160 1889 1962 2308 2385 2408 2596 2685 2877
2964 3045 3068 3205 3260 3263 3291 3362 3417 3483
3550 3597 3635 3886 3911 3994 400 4008 4091 4211
426 448 454 466 52 56 639 645 741 818
836 881

nomination_mild_95_
1433 1455 1479 1661 1750 1922 1942 2052 2081 2450
2502 2568 2581 2612 2668 2817 3239 3309 3524 3541
3781 3795 4078 4178 4184 679 746 865

nomination_warm_95_
1095 1316 1385 1691 2051 2247 2314 2718 2824 3020
3579 360 450 637 786
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