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Zusammenfassung

Wir betrachten die durch die isothermalen Eulergleichungen modellierte
Gasdynamik auf Netzwerken. Die Abnahme der Kunden an den Ausgängen
des Netzwerks stellt dabei eine Massenfluss-Randbedingung dar. Die wah-
ren Abnahmen sind jedoch nicht exakt bekannt und werden mithilfe von
Wahrscheinlichkeitsverteilungen abgebildet.

Zunächst werden die stationären Lösungen der quasilinearen isothermalen
Eulergleichungen auf einem Rohr hergeleitet. Dabei wird ein Realgasmodell
zugrunde gelegt. Es werden wichtige Monotonieeigenschaften der Lösung ge-
zeigt, die für die Erweiterung der Lösung auf Netzwerke von entscheidender
Bedeutung sind. Die Existenztheorie wird jedoch in einem allgemeineren
Rahmen für Flussprobleme auf Netzwerken entwickelt. Damit ist es möglich
unterschiedliche Kopplungsbedingungen an den Knoten sowie verschiedene
– nicht auf Gas eingeschränkte – Modelle sowie aktive Elemente entlang der
Kanten zu behandeln.

Für die Optimierung werden die unsicheren Randdaten mithilfe von Wahr-
scheinlichkeitsrestriktionen abgebildet. Diese garantieren, das System mit
einer Mindestwahrscheinlichkeit innerhalb von technischen Druckschranken
zu halten. Die Berechnung der Wahrscheinlichkeit erfolgt mittels einer
Kombination aus Quasi-Monte-Carlo-Verfahren und der sphärisch radia-
len Zerlegung von gaußschen Zufallsvektoren. Für die gradientenbasierte
Optimierung wird ein Resultat zur Gradientendarstellung auf den Fall
von konvexen Mengen zulässiger Realisierungen erweitert. Es wird gezeigt,
dass die benötigten Voraussetzungen für den Fall von Baumnetzwerken
erfüllt sind. Zur numerischen Umsetzung wird ein Multilevelverfahren vor-
geschlagen, das mithilfe der Lösung für niedriger Stichprobenzahlen einen
Warmstart für das aufwendigere Modell berechnet. Dies führt zu einer
deutlichen Verringerung der Rechenzeit.

Im transienten Fall wird die lineare Wellengleichung auf einer Kante be-
trachtet. Dabei sind die Anfangs- und die Randdaten an einem Intervallende
unsicher und durch stochastische Prozesse gegeben. Das andere Intervallen-
de wird durch ein Neumannfeedbackgesetz gesteuert. Die stochastischen
Prozesse werden mithilfe des Karhunen-Loève-Theorems approximiert. Da-
durch lassen sich die Anfangsranddaten mit endlich vielen Zufallsvariablen
darstellen. Als Stabilitätsmaß wird dabei die Wahrscheinlichkeit in der
L∞-Norm unterhalb einer gegebenen Schranke zu bleiben betrachtet. Das
System lässt sich durch die Anpassung des Feedbackparameters stabilisieren.
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Abstract

We consider the gas dynamics on networks modeled by the isothermal
Euler equations. The demands of the customers at the exits of the network
represent a mass flow boundary condition. The true demands are not
exactly known and are modeled by probability distributions.

First, the stationary solutions of the quasilinear isothermal Euler equa-
tions are derived on a single pipe. For this purpose, a real gas model is used.
Important monotonicity properties of the solution, which are of crucial
importance for the extension to networks, are shown. The existence theory
is developed in a more general framework for flow problems on networks.
This makes it possible to treat different coupling conditions at the nodes
and to use various models that are not necessarily restricted to gas, or
active elements along the edges.

For the optimization, the uncertain boundary conditions are represented
by means of chance constraints. These guarantee that the system is kept
within technical pressure limits with a certain probability. The calculation
of the probability is realized by a combination of quasi-Monte Carlo methods
and the spherical radial decomposition of Gaussian random vectors. For
the gradient-based optimization, a result for a gradient representation is
extended to include the case of convex sets of feasible realizations. It is
shown that, for the case of tree networks, the required assumptions are
fulfilled. For the numerical implementation, a multilevel method is proposed
that uses the solution for low sample numbers as a warm start for the more
complex model. This leads to a significant reduction in computational
time.

In the transient case, the linear wave equation is considered on a single
edge. The initial and boundary data at the end of an interval are uncertain
and given by stochastic processes. The other end of the interval is controlled
by a Neumann feedback law. The stochastic processes are approximated
using the Karhunen-Loève theorem. This enables the representation of
the initial-boundary data by a finite number of random variables. As a
stability measure, the probability to stay below a given threshold in the
L∞-norm, is considered. The system can be stabilized by adjusting the
feedback parameter.
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Introduction

The turnaround in energy politics and the new focus on renewable energies
led to an increased significance of gas as a buffer for power supply. Gas is
tradable, quickly available and storable, which ensures its essential role over
the next decades. It provides a reliable, clean, eco- and climate-friendly
energy production.

The gas is transported through pipelines from the suppliers to the
customers. Due to friction, the gas pressure drops along the pipe making it
necessary to raise it again at compressor stations. This leads to a multitude
of new mathematical challenges. The gas flow is modeled by a quasilinear
system of hyperbolic balance laws—the isothermal Euler equations. The use
of coupling condition at the junctions allows the extension to networks of
pipelines. The demands of the customers translate to mass flow boundary
conditions. The goal is to control the compressor stations and other
active elements in a way that respects technical pressure bounds. This
is a typical problem of mathematical optimization. In practice, however,
the exact demands of the customers are not known, but statistical data
is available. Hence, the resulting problem is an optimization problem
with hyperbolic partial differential equations on networks under stochastic
boundary conditions. In its entirety, the problem is completely out of reach
for today’s methods. The approach in this thesis is to break down the
problem. First, we consider the existence and uniqueness of stationary
states on networks. Then, the stochastic components are included and
stationary stochastic optimization problems are solved. Finally, we consider
a simplified transient model under stochastic initial-boundary conditions.

In Chapter 1, we discuss the stationary states and obtain explicit solutions
on a single pipe. Instead of just focusing on the gas dynamics for the
extension to networks, we derive a powerful existence-and-uniqueness result
for general flow problems on networks. This does not only allow the use
of varying node coupling conditions, but also different gas models, the
inclusion of active elements and the transfer of the result to water networks
or arterial blood flow. The proof is constructive. Hence, the stationary
states on the network can be directly calculated, which is demonstrated by
various examples.
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In Chapter 2, we consider chance constrained optimization problems.
An overview of Monte Carlo and quasi-Monte Carlo methods to evaluate
the probability function is presented. For gaussian random variables a
parametrization of the integral describing the probability—the spherical
radial decomposition—provides a smaller variance for the sampling. We
extend a known result for the gradient representation of this parametrization
to the case, where the set of feasible realizations is convex. We then proceed
to prove that the assumptions for the gradient representation are met if we
consider tree shaped gas networks. This allows the application of gradient
based optimization methods. A multilevel algorithm that generates a warm
start with a lower sample number is proposed and leads to a significant
improvement in computation time.

In Chapter 3, the linear wave equation is considered under stochastic
inital-boundary conditions. The initial data and the boundary data on one
end of the space interval is given by a stochastic process, while the other end
of the space interval is governed by a feedback law. The Karhunen-Loève
theorem allows to approximate stochastic processes by a finite number of
random variables. We consider the probability that the maximum of the
system state stays under a prescribed bound. This gives a measure for the
stability of the system. The feedback parameter can be adapted to increase
the stability of the system.
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1. Stationary Solutions of the
Isothermal Euler Equations

Everything flows and nothing abides,
everything gives way and nothing stays fixed.

(Heraclitus)

In this chapter, we discuss the gas flow through pipeline networks in an
equilibrium. The gas dynamic along a single pipeline as shown in Figure 1.1
is modeled by the isothermal Euler equations.

Figure 1.1.: Gas pipeline next to
the B-145, province of El Loa, Chile,
Photo by Diego Delso, delso.photo, Li-
cense CC-BY-SA

We derive analytic stationary
solutions and discuss the prop-
erties of the pressure solution.
It turns out that the mathe-
matical model shares the phys-
ically expected characteristics:
The pressure decreases in flow
direction due to the friction
in the pipe, a higher initial
pressure leads to a higher pres-
sure at the end of the pipe and
a higher flow rate leads to a
higher pressure drop.

The monotonicity properties of the pressure are the basis for the existence
theory on networks. Mathematically, the pipelines correspond to arcs in a
graph and the junctions correspond to nodes in a graph. By using a very
general setting of arc coupling functions that couple the state values along
the arcs, and node coupling functions that couple the state and flow values
of adjacent arcs, the tackled problem class exceeds mere gas transport. In
the gas transport case, however, the existence theory allows the inclusion
of different node coupling conditions, like the Bernoulli invariant instead of
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CHAPTER 1. Stationary Solutions of the Isothermal Euler Equations

the usual pressure continuity condition and the inclusion of active elements
like resistors or turbo compressors.

Literature Survey

In Gugat, Hante, et al. 2015, stationary states of the ideal gas model were
analyzed on specific networks. For real gas on a single pipe, the stationary
states were discussed in Schmidt, Steinbach, and Willert 2014. In Gugat,
Schultz, and Wintergerst 2018 a concrete representation of the stationary
states was derived and the existence and uniqueness on arbitrary graphs
was shown.

A survey of flow problems on networks modeled by hyperbolic balance
laws is provided in Bressan, Čanić, et al. 2014. The well-posedeness of
general networked systems of balance laws was studied in Gugat, Herty,
et al. 2012. The articles Colombo, Guerra, et al. 2009 and Gugat and
Herty 2011 examined the optimal control of gas networks and networked
systems of canals. Conservation laws without friction were considered
in Garavello and Piccoli 2009 for the case of traffic flow and in Colombo
and Marcellini 2010 for the p-system describing gas flow. For the pressure
law considered in this thesis, Bakhvalov’s condition holds and hence the p-
system for barotropic gas has a global entropy weak solution with uniformly
bounded total variation; see Bressan, Chen, et al. 2015 and Bakhvalov
1970. However, it is pointed out in Bressan, Chen, et al. 2015 that general
pressure laws can lead to a solution with arbitrary large total variation.

In Reigstad 2014, numerical models for isothermal junction flow without
friction were investigated and alternative coupling conditions were proposed.
In Reigstad et al. 2015, the conservation of energy over junctions was
examined for different coupling conditions. Entropy-preserving coupling
conditions for the temperature dependent Euler equations were considered
in Lang and Mindt 2018.

The Weymouth equation, which results from a simplification of the
stationary isothermal Euler equations, is used for evaluation of gas network
capacities in Koch et al. 2015. The existence and uniqueness of gas networks
governed by the Weymouth equation was shown in Rı́os-Mercado et al.
2002, where the simpler structure ensuing from the Weymouth equation
allows an elegant argument using strongly monotonic operators. Models,
structures and algorithms for stationary gas flows are discussed in the
thesis Stangl 2014.

An overview over optimization on gas networks is given in Rios-Mercado
and Borraz-Sanchez 2015. Mixed Integer models for stationary gas network

12



1.1. Stationary Solutions on a Single Pipe

optimization were considered in Martin, Möller, and Moritz 2006. In Gugat,
Leugering, Martin, et al. 2018b, the stationary pressure loss equations on
each pipe were treated as “black box”-nonlinearity leading to a linear mixed
integer formulation, where the unknown nonlinearity is adaptively refined
by solving a nonlinear optimization problem.

1.1. Stationary Solutions on a Single Pipe

We consider the isothermal Euler equations without slope using the notation
explained in Table 1.1





∂tρ+ ∂xq = 0,

∂tq + ∂x

(
p+

q2

ρ

)
= −θ

2

q|q|
ρ
.

(Iso)

The first equation models the conservation mass, while the second equation
describes the balance of momentum. When the systems reaches an equilib-
rium, the time derivatives vanish and we obtain the stationary isothermal
Euler equations 




∂xq = 0,

∂x

(
p+

q2

ρ

)
= −θ

2

q|q|
ρ
.

(IsoStat)

The relation between density and pressure is described by the state equation
for real gas

p = RTz(p)ρ. (StateEq)

For the compressibility factor z(p), we use a model by the American Gas
Association described in Starling, Savidge, Association, et al. 1992 and
evaluated in De Almeida, Velásquez, and Barbieri 2014. The model is
linearly decreasing in the pressure

z(p) = 1 + αp, (AGA)

with the strictly negative (AGA)-constant α. For ideal gas, the compress-
ibility factor would be constant.
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CHAPTER 1. Stationary Solutions of the Isothermal Euler Equations

Table 1.1.: Notation

Variable Symbol Unit Range

pressure p Pa R>0

density ρ kg m−3 R>0

flow q kg s−1 m−2 R
friction coefficient θ m−1 R≥0

length L m R>0

compressibility factor z(p) 1 (0, 1)
(AGA)-constant α Pa−1 (−1, 0)
specific gas constant R J kg−1 K−1 R≥0

temperature T K R≥0

gas velocity v m s−1 R
speed of sound c m s−1 R>0

1.1.1. Real Gas

First, we consider the case of real gas.

Assumption 1. Throughout this section we assume for all x ∈ [0, L]

subsonic flow, that is
q2RT

p2
< 1,

positive compressibility factor, that is

z(p) > 0.

Remark 1 (Subsonic Flow). The subsonic flow condition states that the
squared Mach number η := (v/c)2 shall be smaller than one. It is defined as
quotient of the gas velocity v := q/ρ and the speed of sound c :=

√
∂p/∂ρ.

By (StateEq) and (AGA) we see that

1

c2
=
∂ρ

∂p
=

1

RT
∂p

[
p

z(p)

]
=
pz′(p)− z(p)

z(p)2
=

1

RTz(p)2
.

For the squared velocity, we obtain

v2 = (RT )2 q
2z(p)2

p2
.
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1.1. Stationary Solutions on a Single Pipe

In a nutshell, this yields

η =
v2

c2
= RT

q2

p2
.

The stationary states of (Iso) with nonconstant compressibility factor are
derived in Gugat, Schultz, and Wintergerst 2018. Solutions for a constant
compressibility factor are considered in Gugat, Hante, et al. 2015.

Theorem 1 (Stationary Solutions for Real Gas).
Let a pressure pu > 0 with z(pu) > 0 and a subsonic flow qa ∈ R at x = 0
be given. Then, the system (IsoStat) under the boundary conditions

q(0) = qa,

p(0) = pu,

has the unique solution

q(x) = qa, for all x ∈ [0, L],

p(x) = F−1

(
F (pu, qa)−RTqa|qa|

∫ x

0

θ(s)
2

ds

)
, for all x ∈ [0, L],

where the function F : (0, |α|−1)× R→ R is defined as

F (p, q) :=
p

α
− 1

α2
ln(z(p)) + q2RT ln

(
z(p)

p

)

and the inverse F−1 : R→ (0, |α|−1) is to be understood with respect to p
for fixed flow q.

Proof. The first equation in (IsoStat) states that the flow is constant on
the interval [0, L]. The state equation (StateEq) allows the substitution of
the density in (IsoStat) by 1/ρ = RTz(p)/p. Inserting this in the second
equation of (IsoStat) yields

∂x

(
p+ q2RT

z(p)

p

)
= −θ

2
q|q|RT z(p)

p
.

Carrying out the differentiation results in

(
1−RT q

2

p2

)
∂xp = −θ

2
q|q|RT z(p)

p
. (1.1)
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CHAPTER 1. Stationary Solutions of the Isothermal Euler Equations

The subsonic flow condition RT q2

p2
< 1 prevents the space derivative of the

pressure from blowing up. Defining

f(p, q) :=
z(p)

p

(
1−RT q2

p2

)−1

(1.2)

and

g(x; q) := −θ(x)

2
RTq|q| (1.3)

allows us to write Equation (1.1) in the standard form of a seperable
ordinary differential equation

∂xp = f(p, q) g(x; q). (1.4)

To solve the differential equation explicitly, it is mandatory to find the
primitive (w.r.t. p) of

1

f(p, q)
=

p

z(p)
−RTq2 1

z(p)p
=

1

α
− 1

αz(p)
−RTq2

(
1

p
− α

z(p)

)
. (1.5)

As the terms on the right hand side have elementary antiderivatives, it is
given by

F (p, q) :=

∫
1

f(y, q)
dy =

p

α
− 1

α2
ln(z(p))−RTq2[ln(p)− ln(z(p))]

=
p

α
− 1

α2
ln(z(p)) +RTq2 ln

(
z(p)

p

)
. (1.6)

The arguments of the logarithmic functions are positive, wherefore it is not
necessary to take absolute values. The separation of variables theorem (see
e.g. Burkard 2014, Section Separable Differential Equations) states that a
nonzero pressure solution of (1.4) is given by solving the implicit equation

F (p, q)− F (pu, q) =

∫ x

0

g(s; q) ds. (1.7)

The only step missing to obtain the pressure solution is to justify the use
of the inverse function F−1 : R→ (0, |α|−1). Lemma 1 below shows that F
is strictly increasing in the first argument. Hence, the inverse F−1 exists.
Applying it to (1.7) and using q(x) = qa for all x ∈ [0, L] yields

p(x) = F−1

(
F (pu, qa)−RTqa|qa|

∫ x

0

θ(s)
2

ds

)
.
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1.1. Stationary Solutions on a Single Pipe

Lemma 1 (Strict Monotonicity of F ).
The function F : (0, |α|−1) × R → R is strictly increasing in the first
argument.

Proof. We argue using the first derivative w.r.t the first argument. By
the definition (1.6) of F, the fundamental theorem of calculus and Equa-
tion (1.5), it is given by

∂pF (p, q) =
1

f(p, q)
=

p

z(p)
−RTq2 1

z(p)p
=

p

z(p)

(
1−RT q

2

p2

)
. (1.8)

By the assumptions of subsonic flow q2RT
p2

< 1 and positive compressibility

factor z(p) > 0 it follows that ∂pF (p, q) > 0.

The pressure and the corresponding Mach number along a pipe are
displayed in Figure 1.2. The dependency of the initial pressure value is
shown in Figure 1.3. One can observe that for a Mach number close to one
the derivative tends to minus infinity. At η = 1 the solution breaks down
due to the blowup in the space derivative.

If the friction factor θ is a constant function, the condition of subsonic
flow at every point x ∈ [0, L] can be rewritten in terms of a critical length up
to which the solution is defined. Just for Lemma 2 we drop Assumption 1.

Lemma 2 (Critical Length).
Let the friction factor be constant, i.e. θ(x) = θconst > 0 for all x ∈ [0, L].
Let an initial flow qa 6= 0 and an initial pressure pu ∈

(
|qa|
√
RT, |α|−1

)
be

given. Define the critical length (note that g(x; qa) 6= 0 is constant)

Lc := |g(x; qa)|−1
[
F (pu, qa)− F

(
|qa|
√
RT, qa

)]
. (1.9)

Then, the unique solution p of (IsoStat) as defined in Theorem 1 exists for
all x ∈ [0, Lc).

Proof. It needs to be shown that p(x) stays in the interval

(
|qa|
√
RT, |α|−1

)
for x ∈ [0, Lc)

or in other words that x ∈ [0, Lc) implies Assumption 1.
For positive flow qa > 0, the inequality

x < |g(x; qa)|−1
[
F (pu, qa)− F

(
|qa|
√
RT, qa

)]
,

17
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which holds by assumption, implies

F (pu, qa) + g(x; qa)x > F
(
|qa|
√
RT, qa

)
, (1.10)

because g(x; qa) is negative for qa > 0. Lemma 1 states that the function
F is strictly increasing in the first argument. Taking the inverse of F with
respect to the first argument on both sides of the Inequality (1.10) and
using the representation of Theorem 1 yields

p(x) > |qa|
√
RT, for all x ∈ [0, Lc)

for positive flow qa.
For negative flow qa < 0 the pressure strictly increases in x, which can be

quickly seen by Equation (1.1) and is also stated in Lemma 4. Subsequently,
for qa < 0,

p(x) > pu > |qa|
√
RT

holds for all x > 0.
It remains to show that x ∈ [0, Lc) implies p(x) < |α|−1. For positive

flow qa > 0, the function p strictly decreases in x due to Equation (1.1) or
Lemma 4. Therefore, for qa > 0,

p(x) < pu < |α|−1

holds for all x > 0.
The case qa < 0 is left. Suppose there is a point x̄ such that p(x̄) = |α|−1.

Then, by Equation (1.4), we have ∂xp = 0. The function f(p, q) defined
in (1.2) is continuously differentiable with respect to p for all p > |qa|

√
RT.

Thus it is locally Lipschitz continuous and, by the Picard Lindelöf Theorem,
the differential equation (1.4) has a unique solution. However, we see that
f(|α|−1, qa) = 0 and therefore px(x̄) = 0, which implies that the constant
solution p(x) = |α|−1 solves (1.4). This contradicts the uniqueness of
the solution, because for x close to 0, the function value p(x) is close to
pu < |α|−1 by the continuity of p. Consequently, for qa < 0,

p(x) < |α|−1

has to hold for all x ∈ [0, Lc). This concludes the proof.

The representation in Theorem 1 is quite concrete but it is not yet clear,
how to evaluate the function F−1. In the following, we proceed to show the
convexity of F, which allows the direct application of Newton’s method.
Therefore, we will see that F−1 can be evaluated numerically with high
accuracy using only a few Newton steps.
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1.1. Stationary Solutions on a Single Pipe

Lemma 3 (Strict Convexity of F ).
The function F : (0, |α|−1)× R→ R is strictly convex with respect to the
first argument.

Proof. The first derivative of F is given by Equation (1.8). Differentiating
once more yields

∂2
ppF (p, q) =

1

z(p)2

(
1−RT q

2

p2

)
+

p

z(p)

2RTq2

p3

=
1

z(p)2

(
1−RT q

2

p2

)
+

1

z(p)

2RTq2

p2
. (1.11)

The two assumptions q2RT
p2

< 1 and z(p) > 0 imply ∂2
ppF (p, q) > 0.

Remark 2 (Numerical Evaluation of F−1). Consider z ∈ imF and q ∈ R
and define

ϕ(y) = F (y, q)− z.
The evaluation of F−1(z) is equivalent to finding a root of ϕ. The function
F is strictly increasing and strictly convex in y. Subsequently the function
ϕ has the same properties. By the subsonic flow condition and the positive
compressibility factor, we consider y on the interval (|q|

√
RT, |α|−1) and

therefore z > F (|q|
√
RT, q). This implies

ϕ(|q|
√
RT ) < 0

and by the asymptotic properties of F ( · , q), we obtain

lim
y↗|α|−1

ϕ(y) =∞.

Consequently, Bolzano’s intermediate value theorem implies the existence
of a unique root y∗ ∈ (|q|

√
RT, |α|−1).

Because the function ϕ is strictly increasing and strictly convex, the
Newton iteration defined by

yn+1 = yn −
ϕ(yn)

ϕ′(yn)

generates a monotonically decreasing sequence converging to y∗ for each
starting point y0 ∈ (y∗, |α|−1); see Ortega and Rheinboldt 1970, Theo-
rem 13.3.7.
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Figure 1.2.: The pressure p( · , qa, pu) and the corresponding Mach num-
ber
√
η along the pipe for θ = 0.014261, pu = 60 · 105 Pa,

qa = 453.1495 kg m−2 s−1.
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θ = 0.014261, L = 50 km, qa = 453.1495 kg m−2 s−1
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1.2. Properties of the Pressure Solution for Real Gas

1.1.2. Ideal Gas

The case of ideal gas, i.e., the compressibility factor z(p) = zm is constant,
was treated in Gugat, Hante, et al. 2015. In the subsonic case, that is,

η :=
q2c2

p2
< 1,

the solution of (IsoStat) under the boundary conditions

q(0) = qa,

p(0) = pu,

is given by

p(L) = c |qa|
√
−W−1

(
− exp

(
− C + sign(qa)

∫ L

0

θa(s) ds
))
,

where the constant C is defined as

C :=
1

ηu
+ ln(ηu), ηu :=

q2
ac

2

p2
u

.

1.2. Properties of the Pressure Solution
for Real Gas

In this section, we investigate important properties of the stationary solu-
tions derived in Theorem 1. The monotonicity of the solution with respect
to the initial values will turn out to be essential for the existence proof on
networks of multiple pipes. The concavity of the pressure with respect to
the initial pressure proves to be important in the context of optimization;
see Gugat, Leugering, Martin, et al. 2018b. Assumption 1 is still valid.

Monotonicity Properties of the Pressure Solution

Lemma 4 (Monotonicity of the Pressure Solution in the Space Variable).
For pu > 0 and qa 6= 0, the pressure solution is strictly decreasing in space
for positive flow and strictly increasing in space for negative flow, i.e.,

sign(∂xp) = − sign(qa).
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Proof. The space derivative of p is given by Equation (1.4). For subsonic
flow and positive compressibility factor, the term f(p, q) defined in (1.2) is
positive. The definition of g in (1.3) implies sign(g(x; q)) = − sign(q) and
the result follows.

Next, we determine the monotonicity with respect to the initial values.
The expected physical behavior occurs: A higher ingoing pressure leads to
a higher pressure at the outlet and a higher flow leads to a higher pressure
drop.

Lemma 5 (Monotonicity of the Pressure Solution in the Initial Values).
For x > 0, the pressure solution p is strictly increasing as a function of
the initial pressure

∂pup > 0 (1.12)

and strictly decreasing as a function of the flow for qa 6= 0, i.e.

∂qap < 0. (1.13)

Proof. Implicit differentiation of Equation (1.7) yields

∂pF (p, q)∂pup− ∂pF (pu, q) = 0

and therefore we obtain

∂pup =
∂pF (pu, q)

∂pF (p, q)
. (1.14)

By Lemma 1, both the numerator and the denominator are positive, which
approves the first claim (1.12).

To show (1.13), we start by calculating

∂qF (p, q) = 2RTq ln

(
z(p)

p

)
(1.15)

and
∂qg(x; q) = −θ(x)RT |q|. (1.16)

Implicit differentation of (1.7) with respect to qa leads to

∂pF (p, q)∂qap+ ∂qF (p, q)− ∂qF (pu, q) =

∫ x

0

∂qg(s; q) ds, (1.17)

which is equivalent to

∂qap =
∂qF (pu, q)− ∂qF (p, q) +

∫ x
0
∂qg(s; q) ds

∂pF (p, q)
. (1.18)
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1.2. Properties of the Pressure Solution for Real Gas

By Equation (1.16), the term
∫ x

0
∂qg(s; q) ds is negative for x > 0 and by

Lemma 1 the denominator ∂pF (p, q) is positive. We inspect the remaining
terms:

∂qF (pu, q)− ∂qF (p, q) = 2RTq

[
ln

(
z(pu)

pu

)
− ln

(
z(p)

p

)]

= 2RTq

[
ln

(
z(pu)

z(p)

)
+ ln

(
p

pu

)]
.

By Lemma 4, the pressure p is decreasing in x for positive flow and
increasing in x for negative flow. Because the compressibility factor is
decreasing in p, this implies

sign
(

ln
(
p
pu

))
= − sign(q) and sign

(
ln
(
z(pu)
z(p)

))
= − sign(q).

To sum things up: We showed for the terms in (1.18) that

∂qF (pu, q)− ∂qF (p, q) < 0,

∫ x

0

∂qg(s; q) ds < 0 and ∂pF (p, q) > 0.

This asserts the second claim (1.13).

The concavity of the pressure solution w.r.t. the initial value for positive
flow was derived in Gugat, Leugering, Martin, et al. 2018b, Theorem 3 to
obtain the correctness of a decomposition method for stationary mixed
integer gas network optimization problems. For the existence theory on
networks only the first order properties are relevant.

Second Order Properties of the Pressure Solution

Lemma 6 (Second Order Dependency on the Initial Pressure).
For x > 0 and nonzero flow qa, the pressure solution p is strictly concave
for positive flow and strictly convex for negative flow as a function of the
initial pressure pu, i.e.,

sign
(
∂2
pupup

)
= − sign(qa).

Proof. The first derivative (1.14) in terms of f as defined in (1.2) can be
written as

∂pup =
f(p, q)

f(pu, q)
. (1.19)
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Figure 1.4.: The function h on the domain (0, 1).

Differentiating once more yields

∂2
pupup =

f(pu, q)∂pf(p, q)∂pup− f(p, q)∂pf(pu, q)

f(pu, q)2

and inserting (1.19) leads to

f(pu, q)
2 ∂2

pupup = f(p, q)[∂pf(p, q)− ∂pf(pu, q)]. (1.20)

As f(pu, q) > 0 holds under Assumption 1, we have to check the sign of the
bracketed term. The product rule applied to (1.2) with use of the notation

η = RT q2

p2
leads to

∂pf(p, q) =
z(p)

p

∂pη

(1− η)2
− 1

p2
(1− η)−1

= −(RTq2)−1

[
2z(p)

η2

(1− η)2
+

η

1− η

]
. (1.21)

The function
h(η) :=

η

1− η (1.22)

is strictly increasing in the squared Mach number η, for η ∈ (0, 1) and
therefore h and h2 are strictly decreasing as a function of the pressure. For
a quick view see Figure 1.4.

The compressibility factor z is also strictly decreasing in the pressure.
Furthermore, h, h2 and z are positive valued. Hence, the bracketed term
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Figure 1.5.: The pressure p(L, · , pu) at x = L as a function of the initial
flow and the corresponding Mach number

√
η for θ = 0.014261,

L = 50 km, pu = 40 · 105 Pa

in (1.21) is strictly decreasing in p and as a consequence of this, ∂pf( · , q)
is a strictly increasing function. Because of Lemma 4, it is true that p < pu
for qa > 0 and pu < p for qa < 0. Therefore,

sign[∂pf(p, q)− ∂pf(pu, q)] = − sign(q)

holds, which, by Equation (1.20), leads us to the conclusion that

sign(∂2
pupup) = − sign(qa).

This had to be shown.

The dependence of the pressure on the initial flow for fixed initial pressure
and fixed length is displayed in Figure 1.5.

For the second order dependency on the flow we start with the more
abstract setting of an parameter dependent ordinary differential equation
ux(x) = s(x;u, z), u(0) = u0 with a parameter z ∈ R. We show sufficient
conditions only depending on derivatives of the source term s under which
the solution is strictly concave as a function of the parameter k. Then, we
proceed to show that the result is applicable to the system (IsoStat). To
obtain the result, a version of the Gronwall-Bellman inequality (see Teschl
2012, Lemma 2.7) is needed.

Lemma 7 (Gronwall-Bellman Inequality).
Consider the real interval [0, L]. Let α be a real-valued function on [0, L] and
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CHAPTER 1. Stationary Solutions of the Isothermal Euler Equations

let β be nonnegative and continuous. Furthermore, let u be a continuous
function and let the negative part of α be integrable on every compact
subinterval of [0, L]. Suppose u satisfies

u(x) ≤ α(x) +

∫ x

0

β(s)u(s) ds, for x ∈ [0, L].

Then,

u(x) ≤ α(x) +

∫ x

0

α(s)β(s) exp

(∫ x

s

β(r) dr

)
ds, for x ∈ [0, L]

holds. If α is an increasing function on [0, L], then

u(x) ≤ α(x) exp

(∫ x

0

β(s) ds

)
, for x ∈ [0, L].

Note that only the sign of β needs to be nonnegative. The functions α
and u do not have a sign restriction. Therefore an inequality for the second
derivative with α < 0 can be used to show the concavity of u.

Lemma 8 (Sufficient Conditions for Concavity).
Consider the parametric initial value problem

{
ux(x, z) = s(x;u(x, z), z) x ∈ (0, L],

u(0, z) = u0,
(param-IVP)

for a source term s that is continuous in x and two times continuously
differentiable in (u, z), a parameter z ∈ R and an initial value u0 ∈ R.
Suppose that u is two times continuously differentiable with respect to z
and that

a) ∂us(x;u(x, z), z) ≥ 0 for all x ∈ [0, L]

b)
(
∂zu(x, z) 1

)
∇2s(x;u(x, z), z)

(
∂zu(x, z)

1

)
< 0 for all x ∈ (0, L],

where ∇2s denotes the Hessian of s with respect to u and z. Then

∂2
zzu(x, z) < 0 for all x ∈ (0, L].

Proof. The function s is two times continuously differentiable. This implies
that s is Lipschitz continuous with respect to u on every compact interval.
Because u( · , z) is a continuous function, the Weierstraß theorem implies
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1.2. Properties of the Pressure Solution for Real Gas

that the first argument of the source term can be considered on the compact
interval

u(x, z) ∈ [miny∈[0,L] u(y, z),maxy∈[0,L] u(y, z)].

Therefore, by the Picard-Lindelöff theorem (Teschl 2012, Theorem 2.2),
the initial value problem (param-IVP) has a unique solution u.

We integrate the differential equation to obtain

u(x, z)− u(0, z) =

∫ x

0

s(r;u(r, z), z) dr.

The differentiation with respect to z yields

∂zu(x, z) =

∫ x

0

∇s(r;u(r, z), z)T
(
∂zu(r, z)

1

)
dr, (1.23)

where ∇s(r;u, z) =
(
∂us(r;u, z) ∂zs(r;u, z)

)T
denotes the gradient of s

with respect to u and z. Differentiating once more leads to

∂2
zzu(x, z) =

∫ x

0

(
∂zu(r, z) 1

)
∇2s(r;u(r, z), z)

(
∂zu(r, z)

1

)

+ ∂us(r;u(r, z), z)∂2
zzu(r, z) dr. (1.24)

Define

α(z) := L max
x∈[0,L]

{(
∂zu(x, z) 1

)
∇2s(x;u(x, z), z)

(
∂zu(x, z)

1

)}
.

and
β(r, z) := ∂us(r;u(r, z), z).

The maximum in the definition of α is attained, because u( · , z), ∂zu( · , z)
and∇2s( · , z) are continuous functions by assumption and the interval [0, L]
is compact. Therefore, Equation (1.24) can be estimated by

∂2
zzu(x, z) ≤ α(z) +

∫ x

0

β(r, z)∂2
zzu(r, z) dr for x ∈ [0, L] (1.25)

By assumption a), we know that β(r, z) ≥ 0 and by assumption b), we
know that α(z) < 0. We are now in the setting of Lemma 7 for the function
∂2
zzu( · , z), which gives us the desired estimate

∂2
zzu(x, z) ≤ α(z) exp

(∫ x

0

β(r, z) dr

)
< 0 for x ∈ (0, L].
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Remark 3 (Discussion of Assumption b) in Lemma 8). Assumption b) in
Lemma 8 is weaker than the assumption of strict concavity of the source
term s. Strict concavity of the source term would be equivalent to

yT∇2s(x;u, z)y < 0 for all y ∈ R2,

whereas we only require the condition for the direction y =
(
∂zu(x, z) 1

)T
.

Now, treating the flow qa as the parameter in Lemma 8, we obtain the
concavity of the stationary pressure solution p with respect to a positive
initial flow qa.

Lemma 9 (Concavity of the Pressure with Respect to the Initial Flow).
For x > 0 and a positive flow qa > 0, the pressure solution p is strictly
concave as a function of the initial flow qa, i.e.,

∂2
qaqap < 0.

Proof. We show that the requirements of Lemma 8 are fulfilled for u = p,
u0 = pu and z = q. Using the definitions (1.2), (1.3) and (1.21) and omitting
arguments for the sake of presentation, the source term is given by

s(x; p, q) := f(p, q)g(x; q) = −θ(x)

2
RTq|q|z(p)

p

(
1−RT q2

p2

)−1

= −θ(x)

2
sign(q)pz(p)h(η).

For the derivative with respect to p, we get, using (1.21) with the nota-
tion (1.22),

∂ps(x; p, q) = g(x; q)∂pf(p, q)

= −(RTq2)−1g(x; q)
[
2z(p)h(η)2 + h(η)

]

= sign(q)
θ(x)

2

[
2z(p)h(η)2 + h(η)

]
. (1.26)

The sign of this term depends only on the sign of q, i.e.,

sign(∂ps(x, p, q)) = sign(q). (1.27)

For q ≥ 0 this is condition a) of Lemma 8. Differentiating the source term
with respect to q gives us

∂qs(x; p, q) = −θ(x)
z(p)

p

RT |q|
(1− η)2

. (1.28)
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1.2. Properties of the Pressure Solution for Real Gas

For the second derivatives, we obtain

∂2
pps(x; p, q) = sign(q)

θ(x)

2

[
2αh(η)2 + [4z(p)h(η) + 1]

∂pη

(1− η)2

]
(1.29a)

∂2
qqs(x; p, q) = − sign(q) θ(x)RT

z(p)

p

1 + 3η

1− η (1.29b)

∂p∂qs(x; p, q) =
θ(x)

|q| (1− η)−1
[
4z(p)h(η)2 + h(η)

]
. (1.29c)

Condition b) of Lemma 8 reads

[∂2
pps(x; p, q)∂qap+ 2∂p∂qs(x; p, q)]∂qap+ ∂2

qqs(x; p, q) < 0. (1.30)

By Lemma 5, we know that ∂qap < 0. To prove that (1.30) indeed holds,
we proceed to show

[∂2
pps(x; p, q)∂qap+ 2∂p∂qs(x; p, q)] > 0 and ∂2

qqs(x; p, q) < 0. (1.31)

It is easy to see from (1.29b) that the second inequality holds under
Assumption 1 for q > 0 . Looking at the bracketed term in (1.29a), we
notice due to α < 0 and ∂pη = −2η/p < 0 that

sign(∂2
pps(x; p, q)) = − sign(q)

and hence ∂2
pps(x; p, q) < 0 for q > 0. By Equation (1.29c) it becomes

obvious that
∂p∂qs(x; p, q) > 0.

This leads us to the conclusion that (1.31) holds, which implies (1.30).
Therefore, Lemma 8 is applicable and

∂2
qaqap < 0

follows.

After showing the concavity of the pressure with respect to the initial
flow, we turn to the concavity with respect to the space variable.

Lemma 10 (Concavity of the Pressure with Respect to the Space Variable).
Consider a piecewise differentiable friction factor θ : [0, L] → R>0 and
denote the points, where it is differentiable by A ⊂ [0, L]. Furthermore, let
|θ′(x)/θ(x)| be small in the sense that

∣∣∣∣
θ′(x)

θ(x)

∣∣∣∣ < |∂pf(p, q) g(x; q)| for x ∈ A, (1.32)
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with the functions f and g as defined in (1.2) and (1.3).
Then, for x ∈ A \ {0} and qa 6= 0, the pressure solution p fulfills

∂2
xxp < 0.

If A = [0, L] this is equivalent to p being strictly concave on (0, L].

Proof. Differentiation of Equation (1.4) with use of the product rule, the
chain rule and the fact that ∂xq = 0, leads to the equation

∂2
xxp = ∂pf(p, q) g(x; q) ∂xp+ f(p, q) ∂xg(x; q).

Inserting (1.4) and ∂xg(x; q) = g(x; q) θ′(x)
/
θ(x) yields

∂2
xxp =

[
∂pf(p, q) g(x; q) +

θ′(x)

θ(x)

]
f(p, q)g(x; q). (1.33)

By (1.2) and (1.3) one can observe that

sign(f(p, q)g(x; q)) = − sign(q). (1.34)

The expression

∂pf(p, q) g(x; q) +
θ′(x)

θ(x)

has the sign of ∂pf(p, q) g(x; q) by the smallness assumption (1.32).
We proceed to determine the sign of ∂pf(p, q) g(x; q). The derivative

fp(p, q) was calculated in (1.21) and the notation (1.22) together with the

use of the squared Mach number η = RT q2

p2
allows to write it as

∂pf(p, q) = −(RTq2)−1
[
2z(p)h(η)2 + h(η)

]
.

Since the function h has positive values for η ∈ (0, 1), we see that

∂pf(p, q) < 0.

Furthermore, the equation

sign(g(x; q)) = − sign(q)

holds. Hence,
sign[∂pf(p, q)g(x; q)] = sign(q). (1.35)

Combining (1.34), (1.35), (1.32) and (1.33) yields the result.

Remark 4 (Assumption for the Friction Factor). The assumption (1.32) for
the friction factor in Lemma 10 is certainly fulfilled for a constant friction
factor θ(x) = θconst > 0 for all x ∈ [0, L]. In this case, the set of points A,
where the function is differentiable, is the whole interval [0, L].
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1.3. Existence and Uniqueness for Flow
Problems on Finite Graphs

The next goal is to show the existence and uniqueness of the stationary
isothermal Euler equations coupled by Kirchhoff type conditions on arbi-
trary finite graphs. We can show this for a broader class of problems on
graphs that contains the gas flow problem as a special case. The results
for gas networks were presented in Gugat, Schultz, and Wintergerst 2018,
Section 4.4. Consider the following problem:

Let a connected finite graph G = (V ,A) with nodes V and arcs A and be
given. The node arc incidence matrix A ∈ R|V|×|A| contains the information,
which nodes are connected by which arcs. We take the freedom to use the
nodes u and arcs a as indices. The convention

Aua =





−1, if a = (u, v) for a v ∈ V
+1, if a = (v, u) for a v ∈ V

0, if the arc a is not connected to the node u

is used. In a node u ∈ V denote the set of ingoing arcs, the set of outgoing
arcs and the set of arcs incident to u by

δin(u) := {a ∈ A | Aua = 1} (1.36a)

δout(u) := {a ∈ A | Aua = −1} (1.36b)

δ(u) := δin ∪ δout . (1.36c)

If one assigns a flow value qa to each arc a and names the vector of all flow
values through the arcs q ∈ R|A|, the Kirchhoff coupling condition can be
written as

Aq = qout.

It was formulated for electric current in Kirchhoff 1847 and models the
conservation of mass in each node.

Each arc a = (u, v) ∈ A corresponds to an interval [0, La]. The state
values ya(0) and ya(La) at both ends are assigned to each arc a ∈ A. On
each arc, continuous functions

fa : [0, La]× R× R→ R, (x, y, q) 7→ fa(x; y, q)

that couple the state values at both ends of an arc are given. The functions
fulfill fa(0, y, q) = y. The coupling on an arc a = (u, v) reads

ya(La) = fa(La; ya(0), qa).
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In each node u ∈ V , consider continuous functions

hu : R× R→ R, (y, q) 7→ hu(y, q)

that couple state values of all pairs of arcs a, b incident to u via the set of
equations

hu(ya(xa(u)), qa) = hu(yu(xb(u)), qb),

where

xa(u) =

{
0, if Aua = −1

La, if Aua = +1.

Consider the space of balanced outflows

Q := {qout ∈ R|V| |
∑

u∈V
qout
u = 0} (1.37)

and choose a vector
qout ∈ Q.

Furthermore, prescribe a value yr ∈ R in a boundary node r, that is a
node, which is only connected to one other node by an arc a = (r, u) (the
direction of the arc is without loss of generality). This means

ya(0) = yr. (Initial State)

The question of interest is, whether the system

Aq = qout, (Kirchhoff)

ya(La) = fa(La; ya(0), qa), ∀a = (u, v) ∈ A, (Arc Coupling)

hu(ya(xa(u)), qa) = hu(yb(xb(u)), qb), (Node Coupling)

∀u ∈ V and all a, b ∈ A incident to u,

has a unique solution.

Remark 5 (Nontopological Arcs). Since the arc direction only determines
the sign of the flow, the condition (Arc Coupling) is always to be understood
in both directions, especially

ya(0) = fa(La; ya(La),−qa) ∀a = (u, v) ∈ A
should also hold.

The Kirchhoff condition is illustrated in Figure 1.6. The arc coupling
condition is depicted in Figure 1.7 and the node coupling condition can be
seen in Figure 1.8.

First, we derive important properties of the flow system described by
the Kirchhoff conditions, while the states ya on a ∈ A are ignored for the
moment.
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r u v

w

s

a b

c d

e

qa qb

qc qd

qe

qoutr

qoutu

qoutv

qoutw

qouts

qa = −qoutr

qa − qb − qc = qoutu

qb − qd = qoutv

qc + qd − qe = qoutw

qe = qouts

Figure 1.6.: An example network with the flow variables on the edges,
the outflow values at the nodes and the Kirchhoff coupling
conditions at each node.

r u v
a

b

ya(0)

yb(0)

ya(La) = fa(La; ya(0), qa)

yb(Lb) = fb(Lb; yb(0), qb)

Figure 1.7.: The arc coupling condition illustrated on two connected arcs
a = (r, u) and b = (u, v).

33



CHAPTER 1. Stationary Solutions of the Isothermal Euler Equations

r u v

w

s

a b

c d

e

ya(0) = yr ya(x) ya(La)

ye(0)

ye(x)

ye(Le)

hu(ya(La), qa) = hu(yb(0), qb) = hu(yc(0), qc)

hw(yc(Lc), qc) = hw(yd(Ld), qd)
= hw(ye(0), qe)

hv(yb(Lc), qb)
= hv(yd(0), qd)

Figure 1.8.: An example network with the state variables on edge a and e
and the node coupling conditions in the nodes u, v and w.

Lemma 11 (Solvability of the Flow System).
Let A ∈ R|V|×|A| be the node arc incidence matrix of a finite connected
graph G = (V ,A). The linear system

Aq = qout

has a solution if and only if

qout ∈ Q.

Proof. We need to show that Q = im(A). Clearly, by the definition of Q;
see Equation (1.37), we have

Q = span
(
{1|V|}

)⊥
,

where 1|V| ∈ R|V| is the vector of only ones. The null space of AT is given
by

ker(AT ) = span
(
{1|V|}

)
. (1.38)

This can be seen as follows: Each arc a = (u, v) ∈ A has exactly two
incident nodes in V . Consequently, each row in A has exactly two nonzero
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entries; one being −1 and the other one being 1. Hence, a vector qker with

qker
u = qker

v = µ ∈ R, (1.39)

would ensure that the a-th row of the system AT qker = 0 is fulfilled.
However, as the graph is connected, at least one of the nodes u and v is
adjacent to another node w. Without loss of generality, we assume that
v and w are connected by the arc b = (v, w). Then, by the b-th row of
Aqker = 0, it follows that qker

w = µ. Proceeding inductively leads to the
conclusion that qker = µ1|V|. As µ in Equation (1.39) was arbitrary and
the construction allows no vectors not having the form qker = µ1|V|, this
shows (1.38). Putting things together, yields

Q = span
(
{1|V|}

)⊥
= ker(AT )⊥ = im(A), (1.40)

which completes the proof.

For the following results, we need the definition of a separator. The
direction of arcs is only relevant for the flow direction but not for the
topology of the graph. This means if the nodes u and v are incident to
a = (u, v), then the node u is not just connected to v but the node v is
also connected to u.

Definition 1 (Separator). Let a connected finite graph G = (V ,A) with
nodes V and edges A be given. A set of edges AS ( A such that the
removal of AS from A separates the graph G into two distinct connected
subgraphs

Gl = (Vl,Al) and Gr = (Vr,Ar)
in a way that

V = Vl ·∪ Vr and A = Al ·∪AS ·∪Ar

is called a separator.
The nodes that are incident to an edge a ∈ AS are denoted by VS and

the graph GS = (VS ,AS) is called separating graph.
The incidence matrices of Gl,Gr and GS are denoted by Al, Ar and AS .

Figure 1.9 shows a separator for the graph used in Figures 1.6 and 1.8.
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r u v

w

s

a b

c d

e

Figure 1.9.: The separator AS = {b, c} (dashed) seperates the graph
G = ({r, u, v, w, s}, {a, b, c, d, e}) into the two disjoint sub-
graphs Gl = ({r, v}, {a}) and Gr = ({v, w, s}, {d, e}).

Lemma 12 (Flow Behavior on Subgraphs).
Let a finite connected graph G = (V ,A) and two distinct connected sub-
graphs Gl = (Vl,Al) and Gr = (Vr,Ar) separated by the separating graph
GS = (VS ,AS) be given. Let A be the incidence matrix of G and let the
outflow vector qout ∈ Q be given. Consider one specific solution q ∈ R|A| of
the system

Aq = qout.

Denote the restrictions qoutS := (qoutu )u∈VS and qS := (qa)a∈AS , define

q̃out := qoutS − ASqS , q̃out ∈ R|VS |

and set the new outflows to

fu :=

{
q̃outu if u ∈ VS ,
qoutu if u /∈ VS .

Then, the restrictions ql := (qu)u∈Vl and qr := (qu)u∈Vr of the flow solution
are solutions of the two linear systems

Alql = f l and Arqr = f r,
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with the restrictions f l := (fu)u∈Vl and f r := (fu)u∈Vr as right hand sides.

Furthermore, the restrictions f l and f r of the new outflow vector sum to
zero on the subgraphs Gl and Gr, i.e.,

∑

u∈Vl
f lu =

∑

v∈Vr
f rv = 0.

Proof. Define the node arc incidence matrices with respect to the graphs
(V ,Al), (V ,AS) and (V ,Ar) as Bl, BS and Br (these matrices have addi-
tional rows containing zeros compared to Al, AS and Ar). With appropriate
ordering of the arcs, the vector q and the matrix A, can be written as

q =



ql

qS
qr


 A =

[
Bl BS Br

]
.

This leads to the linear system

Aq = Blql +BSqS +Brqr = qout.

The definitions of f and q̃out imply f = qout −BSqS and thus

Blql +Brqr = f.

The rows of Bl that correspond to nodes in Vr and the rows of Br that
correspond to nodes in Vl contain only zeros. Hence, the first claim of the
Lemma

Alql = f l and Arqr = f r

holds.
For the second part observe that the nodes incident to each separating

arc a = (u, v) ∈ AS fulfill

q̃out
u + q̃out

v = qout
u − ASuaqa + qout

v − ASvaqa = qout
u + qout

v , (1.41)

because ASua and ASva have opposite signs. Due to qout ∈ Q, Equation (1.41)
and the definition of f, we have

0 =
∑

u∈V
qout
u =

∑

u∈VS
q̃out
u +

∑

v/∈VS

qout
v =

∑

u∈Vl
f lu +

∑

v∈Vr
f rv . (1.42)

Suppose
∑

u∈Vl f
l
u 6= 0. Then, Lemma 11 applied to the graph Gl = (Vl,Al)

with incidence matrix Al states that the flow system Alq̃ = f l is not solvable.
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This is a contradiction, as we have already shown that ql solves Alql = f l.
Therefore, ∑

u∈Vl
f l = 0

and subsequently, by Equation (1.42), we obtain

∑

v∈Vr
f r = 0.

r u v

w

s

a b

c d

e

1 0.5

0.5 0.5

1

fr = −1 fu = 1 fv = −0.5

fw = −0.5

fs = 1

Figure 1.10.: The new outflows f l of Example 1. The restrictions of the
specific solution q (numbers at the edges) are solutions of the
flow problem on the subgraphs Gl and Gr with right hand
sides f l and f r.

Example 1. Consider the graphs

G = ({r, u, v, w, s}, {a, b, c, d, e}), Gl = ({r, v}, {a}),
GS = ({u, v, w}, {b, c}) and Gr = ({v, w, s}, {d, e})
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shown in Figure 1.9. The incidence matrices A,Al, AS and Ar (with node
and arc indices for orientation) are given by

A a b c d e
r −1 0 0 0 0
u +1 −1 −1 0 0
v 0 +1 0 −1 0
w 0 0 +1 +1 −1
s 0 0 0 0 +1

Al a
r −1
u +1

AS b c
u −1 −1
v +1 0
w 0 +1

Ar d e
v −1 0
w +1 −1
s 0 +1.

Consider the outflow vector

(qout)T = (−1, 0, 0, 0, 1)T

and the specific solution

qT = (1, 0.5, 0.5, 0.5, 1)T

of the system Aq = qout. The new outflows for the nodes of the separating
graph are

q̃out
u = qout

u − ASubqb − ASucqc = 1,

q̃out
v = qout

v − ASvbqb = −0.5,

q̃out
w = qout

w − ASwcqc = −0.5

and thus

(f)T = (qout
r , q̃out

u , q̃out
v , q̃out

w , qout
s )T = (−1, 1, −0.5, −0.5, 1)T .

The flow values are shown in Figure 1.10. Lemma 12 states that ql = 1
solves Alql = f l and (qr)T = (0.5, 1)T solves Arqr = f r, with the right
hand sides

(f l)T = (−1, 1)T and (f r)T = (−0.5, −0.5, 1)T .

Let us verify this:

Alql =

[
−1
+1

]
1 =

(
−1
1

)
= f l and

Arqr =



−1 0
+1 −1
0 +1



(

0.5
1

)
=



−0.5
−0.5

1


 = f r.
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We recognize that the first part of Lemma 12 indeed holds. Furthermore,

f lr + f lu = f rv + f rw + f rs = 0

validates the second part of the Lemma.

Lemma 12 leads to two results that are essential for the proof of Theo-
rem 2. The first one describes a monotonicity property of the network: If
the outflow one node increases and the outflow in another node decreases,
there is also a path between the two nodes with increased flow. This
path may change for different prescribed values yet Lemma 13 ensures its
existence. The second result states that sufficiently high inflow in one node
and equal outflow in another node imply the existence of a path of positive
flow between both nodes.

Lemma 13 (Path of Increasing Flow).
On the graph G = (V ,A), consider two distinct nodes u, v ∈ V . Let the
outflow vector qout be given and a positive scalar λ > 0 be given. Define a
new outflow vector by

qoutλ = qout − λeu + λev,

where eu, ev are the corresponding unit vectors. This means that the ingoing
flow in u and the outgoing flow in v increases. Let q be a specific solution
of Aq = qout and let qλ be a specific solution of Aqλ = qoutλ .

Then, there exists a path P ⊂ A between u and v (without loss of
generality we assume it is directed from u to v; see Remark 6) such that
flow increases on each arc a of this path in the sense that

qλa ≥ qa ∀a ∈ P .

Additionally, the inequality
qλa > qa

holds for at least one a ∈ P . The choice of the path P may depend on the
value of λ.

Proof. Suppose no such path exists. Then, there is a separator

GS = (VS ,AS)

that separates the graph G into the two distinct subgraphs

Gl = (Vl,Al) and Gr = (Vr,Ar)
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such that the claim for the flow values does not hold on AS . Without loss
of generality, we assume all arcs a ∈ AS point from a node in Vl to a node
in Vr. Furthermore, let u ∈ Vl and v ∈ Vr. The assumption for the proof
by contradiction then reads

qλa < qa ∀a ∈ AS . (1.43)

Define f ∈ R|V| and fλ ∈ R|V| analogously to Lemma 12, where the
definition of fλ uses qout

λ instead of qout. By Lemma 12, we have

0 =
∑

w∈Vl
fw =

∑

w∈Vl∩VS
fw +

∑

w∈Vl\VS

fw =
∑

w∈Vl∩VS
q̃out
w +

∑

w∈Vl\VS

qout
w

(by the definition of q̃out)

=
∑

w∈Vl∩VS

[
qout
w −

∑

a∈δ(w)

Awaqa
]

+
∑

w∈Vl\VS

qout
w

= qout
u +

∑

w∈Vl∩VS
w 6=u

[
qout
w −

∑

a∈δ(w)

Awaqa
]

+
∑

w∈Vl\VS
w 6=u

qout
w

(as Awa = −1 and the Inequality (1.43) states qλa < qa for a ∈ AS)

> qout
u +

∑

w∈Vl∩VS
w 6=u

[
qout
w +

∑

a∈δ(w)

qλa
]

+
∑

w∈Vl\VS
w 6=u

qout
w

(remember (qout
λ )u = qout

u − λ and the definition of fλ)

> (qout
λ )u +

∑

w∈Vl∩VS
w 6=u

fλw +
∑

w∈Vl\VS
w 6=u

qout
w =

∑

w∈Vl
fλ = 0,

where the last equality is due to Lemma 12 applied to the outflow qout
λ .

This is a contradiction and hence proves that there exists a path P from u
to v such that

qλa ≥ qa ∀a ∈ P . (1.44)

The second claim is clear if either u or v are simple nodes, i.e., |δ(u)| = 1
or |δ(v)| = 1. Then, the one incident edge a has the flow qλa = qa + λ > qa.
In the case, where |δ(u)| > 1 and |δ(v)| > 1, we proceed inductively. If
Inequality (1.44) does not hold strictly for any a ∈ P , this implies

qλa = qa ∀a ∈ P .
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Denote the nodes w on the path P with |δ(w)| = 2 by VP . Define

n := min{|δ(u)|, |δ(v)|}, Gn := G and qout
n := qout.

The removal of the edges in P and the nodes in VP leads to the graph

Gn−1 = (Vn−1,An−1) := (V \ VP ,A \ P)

with incidence matrix An−1. The restriction qn−1 = (qa)a∈An−1 solves the
system

An−1qn−1 = qout
n−1,

where
(qout
n−1)w := (qout

n )w −
∑

a∈δ(w)∩P
Awaqa

and, with analogous notation, qn−1
λ solves

An−1qn−1
λ = qout

λ,n−1.

Reapplying the result above for the graph Gn−1 yields that there is a path
Pn−1 with

qλa ≥ qa ∀a ∈ Pn−1.

Assume again that
qλa = qa ∀a ∈ Pn−1

and remove the path and the nodes Vn−1
P , defined similarly as above, from

the graph. After at most n− 1 steps, we arrive at a graph Gk and a path
Pk with

qλa ≥ qa ∀a ∈ Pk

such that one arc a = (w, s) is a separator (if this is possible with a single
arc, it is also called a bridge in graph theory) separating Gkl from Gkr such
that {u,w} ⊂ Gkl and {v, s} ⊂ Gkr . By Lemma 12, this implies that

qλa = (qout
λ,k )w = −(qout

λ,k )u −
∑

t∈Vkl
t6=u

(qout
λ,k )t

(because (qout
λ,k )u = qout

k − λ)

= λ− (qout
k )u −

∑

t∈Vkl
t6=u

(qout
k )t = qa + λ.

This shows the second claim of the Lemma.

42



1.3. Existence and Uniqueness for Flow Problems on Finite Graphs

Remark 6 (No Loss of Generality). If one allows arcs a = (w, s) in P with
Asa = −1, then the result of Lemma 13 reads

Asaq
λ
a ≥ Asaqa ∀a = (w, s) ∈ P .

In the proof, instead of (1.43), the inequality

Asaq
λ
a < Asaqa ∀a = (w, s) ∈ AS ,

is used. The adjustments to the subsequent steps are straightforward.

The result from Lemma 13 can be slightly generalized in the sense that
we can add an additional reference node. The proof is analogous with a bit
more notation due to the additional node.

Corollary 1 (Path of Increasing Flow to a Reference Node).
Let the assumptions of Lemma 13 hold and consider an additional reference
node r ∈ V \ {u, v}.

Then there exists a path P ⊂ A between u and r (without loss of generality
we assume it is directed from u to r) such that flow increases on each arc
a of this path in the sense that

qλa ≥ qa ∀a ∈ P .

Additionally, the inequality
qλa > qa

holds for at least one a ∈ P .

Proof. The proof of Lemma 13 can be directly adapted by separating u
from r instead of u from v.

A result similar to Lemma 13 is developed in Lemma 14. It states that if
a high outflow in one node and a high inflow in another node is prescribed,
then there must be a path of unidirectional flow between both nodes.

Lemma 14 (Path of Unidirectional Flow).
On the graph G = (V ,A), consider two distinct nodes u, v ∈ V . Assume
that the outflow values qoutw are prescribed in all nodes w ∈ V \ {u, v} except
in u and v. Set

qoutu := −
∑

w∈V\{u,v}
|qoutw | and qoutv :=

∑

w∈V\{u,v}
|qoutw |

and let q be a specific solution of Aq = qout.

43



CHAPTER 1. Stationary Solutions of the Isothermal Euler Equations

Then, there exists a path P between u and v (without loss of generality
we assume the arcs on the path are directed from u to v) such that

qa ≥ 0 ∀a ∈ P .

The inequality is strict for at least one a ∈ P if not all outflows are zero.

Proof. The idea of the proof is similar to the proof of Lemma 13. We assume
the contrary of the claim. This means, there is a separator GS = (VS ,AS)
that separates the graph G into the two distinct subgraphs Gl = (Vl,Al)
and Gr = (Vr,Ar) such that

qa < 0 ∀a ∈ AS .

Here, we assumed that all arcs in AS are directed from a node in w ∈ Vl∩VS
to a node s ∈ Vr ∩ VS and that u lies in Vl and v in Vr. Define f l and f r

as in Lemma 12. By Lemma 12, we have

0 =
∑

w∈Vl
f lw =

∑

w∈Vl∩VS
fw +

∑

w∈Vl\VS

fw =
∑

w∈Vl∩VS
q̃out
w +

∑

w∈Vl\VS

qout
w

(by the definition of q̃out)

=
∑

w∈Vl∩VS

[
qout
w −

∑

a∈δ(w)

Awaqa

]
+
∑

w∈Vl\VS

qout
w

(as Awa = −1 and qa < 0 for a ∈ AS)

<
∑

w∈Vl∩VS
qout
w +

∑

w∈Vl\VS

qout
w = qout

u +
∑

w∈Vl∩VS
w 6=u

qout
w +

∑

w∈Vl\VS
w 6=u

qout
w

(by the definition of qout
u )

= −
∑

w∈V\{u,v}
|qout
w |+

∑

w∈Vl∩VS
w 6=u

qout
w +

∑

w∈Vl\VS
w 6=u

qout
w ≤ 0.

This is a contradiction and thus the first part of the Lemma is proven. The
second claim is clear if either u or v are simple nodes. Else, a reduction
similar to the second part of the proof of Lemma 13 can be applied to show
that there is a edge on the path P with qa > 0.
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Another key component for proving Theorem 2 is the inversion of the node
coupling conditions via the implicit function theorem. For the convenience
of the reader, we state it in the appendix; see Appendix A.

Lemma 15 (Implicit Function Theorem for the Coupling Conditions).
In the node u with incident arcs a ∈ δin(u), b ∈ δout(u) consider the coupling
conditions

hu(ya, qa) = hu(yb, qb).

If the function hu is continuously differentiable and the function hu( · , q)
strictly increasing and surjective for each q ∈ R, then there exists a uniquely
determined continuously differentiable function

Ya : R3 → R, (yb, qa, qb) 7→ Ya(yb, qa, qb)

such that

hu(Ya(yb, qa, qb), qa) = hu(yb, qb). (1.45)

The partial derivatives of Ya are given by

∂qaYa(yb, qa, qb) = −∂qhu(Ya(yb, qa, qb), qa)
∂yhu(Ya(yb, qa, qb), qa)

, (1.46a)

∂qbYa(yb, qa, qb) = +
∂qhu(yb, qb)

∂yhu(Ya(yb, qa, qb), qa)
, (1.46b)

∂ybYa(yb, qa, qb) = +
∂yhu(Ya(yb, qa, qb), qa)

∂yhu(yb, qb)
. (1.46c)

Analogously, there exists a uniquely determined continuously differentiable
function

Yb : R3 → R, (ya, qa, qb) 7→ Yb(ya, qa, qb)

such that

hu(ya, qa) = hu(Yb(ya, qa, qb), qb).

The partial derivatives of Yb with respect to the flow variables are given by

∂qaYb(ya, qa, qb) = +
∂qhu(ya, qa)

∂yhu(Yb(ya, qa, qb), qb)
, (1.47a)

∂qbYb(ya, qa, qb) = −∂qhu(Yb(ya, qa, qb), qb)
∂yhu(Yb(ya, qa, qb), qb)

, (1.47b)

∂yaYb(ya, qa, qb) = +
∂yhu(Yb(ya, qa, qb), qb)

∂yhu(ya, qa)
. (1.47c)
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Proof. We show the claim for the function Ya. The result for Yb follows
analogously. The function hu( · , q) is invertible by assumption. Therefore,
for each triple (yb, qa, qb), there exists a uniquely determined state ya such
that

hu(ya, qa) = hu(yb, qb).

The implicit function theorem (see Appendix A) guarantees the existence
of neighborhoods U(ya) and U(qa, yb, qb) and a uniquely determined con-
tinuously differentiable mapping

Ya : U(qa, yb, qb)→ U(ya), (yb, qa, qb) 7→ Ya(yb, qa, qb)

such that (1.45) and (1.46) hold for all (qa, yb, qb) ∈ U(qa, yb, qb). Since
the point (qa, yb, qb) ∈ R3 can be chosen arbitrarily and the function Ya is
uniquely determined as a consequence of the implicit function theorem,
this yields that Ya can be defined globally, i.e.,

Ya : R3 → R, (yb, qa, qb) 7→ Ya(yb, qa, qb).

The function Ya is continuously differentiable, because the denominator in
Equation (1.46) is not changing sign as

∂yhu(Ya(yb, qa, qb), qa) > 0 and ∂yhu(yb, qb) > 0

hold by assumption.

With the representation for the derivatives of the state derived from
solving the node coupling conditions it is possible to ensure that the states
are monotonously decreasing in the flow. The result of the following
Lemma is a key ingredient for the proof of Theorem 2. We reference to the
succeeding theorem’s assumptions within the lemma.

Lemma 16 (Flow-Monotonicity of the State).
Consider a graph G = (V ,A) of two edges A = {a, b} = {(r, u), (u, v)}
with the state yr prescribed in the root node r. Assume that the flow values
qa(λ), qb(λ) on the arcs are continuously differentiable, increasing functions
of a parameter λ and at least one of them strictly increases in λ. The state
values are coupled by (Arc Coupling) and (Node Coupling). Furthermore,
assume that the node and arc coupling functions on the graph G fulfill
Assumptions a)(i)–a)(ii) and b)(i)–b)(vi) of Theorem 2.

Then, the state yb(Lb) is a strictly decreasing function of λ. The same
remains true if the prescribed state yr(λ) is a continuously differentiable,
decreasing function in λ.
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Proof. We can calculate the state values iteratively using the function Yb
of Lemma 15,

ya(La) = fa(yr, qa), yb(0) = Yb(ya(La), qa, qb), yb(Lb) = fb(yb(0), qb).

The chain rule yields

∂λyb(Lb) = ∂yfb(yb(0), qb) ∂λyb(0) + ∂qfb(yb(0), qb) ∂λqb, (1.48a)

∂λyb(0) = ∂yaYb(ya(La), qa, qb) ∂λya(La) + ∂qaYb(ya(La), qa, qb) ∂λqa

+ ∂qbYb(y(La), qa, qb) ∂λqb, (1.48b)

∂λya(La) = ∂yfa(yr, qa) ∂λyr + ∂qfa(yr, qa) ∂λqa. (1.48c)

Denote the terms

Ty := ∂yfb(yb(0), qb) ∂yaYb(ya(La), qa, qb) ∂yfa(yr, qa),

Ta := ∂yaYb(ya(La), qa, qb) ∂qfa(yr, qa) + ∂qaYb(ya(La), qa, qb),

Tb := ∂yfb(yb(0), qb)∂qbYb(y(La), qa, qb) + ∂qfb(yb(0), qb).

Inserting (1.48c) in (1.48b) results in

∂λyb(0) = ∂yaYb(ya(La), qa, qb)
[
∂yfa(yr, qa) ∂λyr + ∂qfa(yr, qa) ∂λqa

]

+ ∂qaYb(ya(La), qa, qb) ∂λqa + ∂qbYb(y(La), qa, qb) ∂λqb

= ∂yaYb(ya(La), qa, qb) ∂yfa(yr, qa) ∂λyr

+ ∂qbYb(y(La), qa, qb) ∂λqb + Ta ∂λqa (1.49)

Inserting (1.49) in (1.48a) yields

∂λyb(Lb) = ∂yfb(yb(0), qb)
[
∂yaYb(ya(La), qa, qb) ∂yfa(yr, qa) ∂λyr

+ ∂qbYb(y(La), qa, qb) ∂λqb + Ta ∂λqa
]

+ ∂qfb(yb(0), qb) ∂λqb

= Ty ∂λyr + ∂yfb(yb(0), qb)Ta ∂λqa + Tb ∂λqb. (1.50)

We show that Ty > 0, Ta < 0 and Tb < 0 hold. The expansion of the first
term leads to

Ty = ∂yfb(yb(0), qb) ∂yaYb(ya(La), qa, qb) ∂yfa(yr, qa)

(by Lemma 15, Equation (1.47c))

=
∂yhu(yb(0), qb)

∂yhu(ya(La), qa)
∂yfb(yb(0), qb) ∂yfa(yr, qa) > 0 (1.51)
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as ∂yhu > 0 by Assumption b)(ii) and ∂yfa and ∂yfb are positive by
Assumption a)(i). The second term can be written as

Ta = ∂yaYb(ya(La), qa, qb) ∂qfa(yr, qa) + ∂qaYb(ya(La), qa, qb)

(using Equation (1.47a) and Equation (1.47c))

=
∂yhu(yb(0), qb)

∂yhu(ya(La), qa)
∂qfa(yr, qa) +

∂qhu(ya(La), qa)

∂yhu(yb(0), qb)
< 0 (1.52)

due to Assumption b)(vi). The final term expands to

Tb = ∂yfb(yb(0), qb)∂qbYb(y(La), qa, qb) + ∂qfb(yb(0), qb)

(by Equation (1.47b))

= ∂qfb(yb(0), qb)− ∂yfb(yb(0), qb)
∂qhu(yb(0), qb)

∂qhu(yb(0), qb)
< 0 (1.53)

as a consequence of Assumption b)(v). Using (1.51), (1.52) and (1.53), the
assumptions for ∂λyr, ∂λqa and ∂λqb and ∂yfb > 0 shows the claim

∂λyb(Lb) = Ty∂λyr + ∂yfb(yb(0), qb)Ta∂λqa + Tb∂λqb < 0.

Now we have the necessary tools available to show the existence and
uniqueness of solutions on arbitrary networks. For the proof the monotonic-
ity properties of the arc coupling functions are of crucial importance. The
assumptions on the node coupling functions ensure that the composition of
the arc coupling functions and the function that resolves the node coupling
conditions preserves those properties.
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Figure 1.11.: Cutting an inner edge in a graph with one circle results in a
tree graph
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Figure 1.12.: Cutting an inner edge in a graph with two circles results in
a graph with one circle
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Theorem 2 (Existence and Uniqueness).
Let a outflow vector qout ∈ Q (see Equation (1.37)) and a state value yr be
given. Assume the following:

a) The arc coupling functions fa, a ∈ A are continuously differentiable
and

(i) strictly monotonic increasing with respect to the state, i.e.,

∂yfa(x; y, q) > 0,

(ii) strictly monotonic decreasing with respect to the flow, i.e.,

∂qfa(x; y, q) < 0, for x ∈ (0, La],

for q 6= 0,

(iii) strictly monotonic decreasing in flow direction, i.e.,

sign(∂xfa(x; y, q)) = − sign(q), for x ∈ (0, La].

b) The node coupling functions hu, u ∈ V are continuously differentiable
and

(i) invertible with respect to the first argument,

(ii) strictly monotonic increasing with respect to the state, i.e.,

∂yhu(y, q) > 0,

(iii) fulfill
∂qhu(y, q) ≥ 0 ∀q ≥ 0,

(iv) are symmetric in the second argument, i.e.,

hu(y, q) = hu(y,−q).

(v) have partial derivatives that fulfill the bound

∂qhu(y, q)

∂yhu(y, q)
>
∂qfa(La(u); y, q)

∂yfa(La(u); y, q)
,

for all a ∈ δ(u) if q 6= 0,
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(vi) are flow-monotonicity preserving in the sense that for two arcs
a ∈ δin(u), b ∈ δout(u) with states ya, yb and nonzero flows qa, qb
that fulfill

hu(ya(La), qa) = hu(yb(0), qb)

and
ya(La) = fa(La; ya(0), qa),

the inequality

∂qhu(ya(La), qa)

∂yhu(yb(0), qb)
< − ∂yhu(yb(0), qb)

∂yhu(ya(La), qa)
∂qfa(La; ya(0), qa)

holds,

(vii) are space-monotonicity preserving in the sense that for arcs
a ∈ δin(u) and b ∈ δout(u) with corresponding flows qa > qb ≥ 0,
and states ya(0) and yb(0) that fulfill

hu
(
fa(La; ya(0), qa), qa

)
= hu(yb(0), ξ),

the inequality

∂qhu(yb(0), ξ)

∂yhu(yb(0), ξ)
<
ya(0)− fa(La; ya(0), qa)

qa − qb
,

holds for all ξ ∈ [qb, qa].

Furthermore, assume that on arcs a that are in a fundamental
cycle, Assumption b)(v) holds if La is replaced by La/2.

Then, the system of the Equations

(Kirchhoff), (Arc Coupling) and (Node Coupling)

under the condition (Initial State) has a unique solution consisting of the
flow vector q ∈ R|A| and the state vectors

y(0) := (ya(0))a∈A, y(LA) := (ya(La))a∈A

with LA := (La)a∈A.

Remark 7 (Regarding the Assumptions). Assumption b)(vii) can be guar-
anteed if the inequality

∂qhu(yb(0), ξ)

∂yhu(yb(0), ξ)
<
La|∂xfa(x; ya(0), qa)|

qa − qb
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is fulfilled for all x ∈ [0, La]. This follows directly from the mean value
theorem, which states that there is a x ∈ [0, La] such that

La∂xfa(x; ya(0), qa) = f(La; ya(0), qa)− f(0; ya(0), qa).

Furthermore, if fa is concave in x, only the point x = 0 has to be considered.
Due to the strict monotonicity of fa, the two Assumptions b)(v) and b)(vii)

certainly hold if hu is constant in q, e.g., if the coupling is given by the
continuity of states over the node, i.e., hu(y, q) = y.

Remark 8 (Idea of the Proof of Theorem 2). The proof shows the existence
and uniqueness of the solution by mathematical induction over the number
of fundamental circles in the graph. The initial step of the proof starts with
a tree graph, where a solution can easily be constructed: For prescribed
boundary flows the linear flow system has a unique solution. By the strict
monotonicity of the coupling function, the node coupling conditions are
invertible with respect to the state and the state values can be obtained
iteratively, starting from the root node, where the state value is prescribed.
The induction assumption requires the existence of a unique solution on
a graph that has dim(ker(A)) = n fundamental circles. For the induction
step, on a graph with dim(ker(A)) = n+ 1 fundamental cycles, we cut one
arc in a fundamental cycle to arrive at a graph with dim(ker(A)) = n. For
each value of the unknown flow λ on this arc, the resulting graph has a
unique solution by the induction assumption. This is true, because after
the removal of a sufficient number of edges, the graph is a tree. To fulfill
the coupling conditions in the two nodes that were generated by the cut,
we introduce an auxiliary function H, which is given by the difference of
the state values in the two new nodes. The monotonicity properties allow
us to show that H has a unique root, which is the desired flow value on the
cut edge and can be used to construct the solution on the whole graph. A
graphical illustration of this idea is depicted in Figure 1.11 and Figure 1.12.

Proof of Theorem 2. We show the statement of the theorem by mathemat-
ical induction over the dimension of the kernel of the incidence matrix
dim(ker(A)), which is the number of fundamental cycles in the graph.

Initial Step
Consider the case dim(ker(A)) = 0, that is, G is a tree. By Lemma 11, the
linear flow system Aq = qout is solvable for a right hand side qout ∈ Q and,
because dim(ker(A)) = 0, the flow solution q is unique. Now, knowing the
flow value on every arc, the states ya(0) and ya(La) on the arc (u, v) can be
obtained as follows: Denote the path from r to v by P and assume without
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loss of generality that it is directed from r to v. Since the graph is a tree,
the path is unique. Denote the predecessor of an arc a ∈ P by π(a). The
state at x = 0 on an arc a = (u, v) can be retained from the state yπ(a)(La)
and the flow values qπ(a) and qa by the mapping

Ya : R3 → R, (yπ(a)(Lπ(a)), qπ(a), qa) 7→ ya(0)

that is introduced in Lemma 15. The assumptions required for Lemma 15
are fulfilled due to Assumption b). The value ya(La) can be directly
calculated by

ya(Lb) = fa(ya(0), qa),

where fa is the arc coupling function on the arc a (throughout this proof,
we omit the argument La ). The argument yπ(a)(Lπ(a)) of the function Ya
can be obtained by the functions Yπ(a) and fπ(a). This defines an recursion
to calculate all state values on the path, because the state in the node r is
prescribed by

yb(0) = yr,

where {b} = δ(r); see (Initial State). Because the functions fa and Ya are
continuous, the solution (y(0), y(LA), q) is continuous with respect to the
prescribed data yr and qout.

Induction Assumption
If dim(ker(A)) ≤ n for a fixed n ≥ 0, then for prescribed yr ∈ R and
qout ∈ Q, there exists a unique solution (y(0), y(LA), q) ∈ R|A|×R|A|×R|A|
fulfilling the Equations (Initial State), (Kirchhoff), (Arc Coupling) and
(Node Coupling). The state is continuously depending on the values of yr
and qout.

Induction Step
To reduce the graph G = (V ,A) with dim(ker(A)) = n+ 1 to a graph Gn
with dim(ker(An)) = n, we pick one basis vector qker of ker(A). Now, we
cut one arc c = (vl, vr) that corresponds to a nonzero entry of qker in the
middle. We obtain two new arcs cl = (vl, vcl) and cr = (vcr, vr) with length
Lcl = Lcr = Lc/2. Here, vcl and vcr are the artificial nodes generated by the
cut. Set

Vn := V ∪ {vcl, vcr}, An := (A \ {c}) ∪ {cl, cr} and Gn := (Vn,An)

and denote the node-arc incidence matrix of Gn by An. The procedure is
shown in Figure 1.12 and Figure 1.11.

A basis for ker(An) can be obtained by extending the basis vectors of
ker(A) with zero entries for the components corresponding to cl and cr.
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This is not possible for vectors with a nonzero component at c. One basis
vector, for which this is not possible, is the vector qker that was chosen to
generate the cut. As the cut does not generate new cycles, this yields

dim(ker(An)) ≤ dim(ker(A))− 1 = n.

The outflow vector z for the graph Gn is known for all nodes, except in
vcl and vcr, by the values of qout on the graph G. The unknown flow λ ∈ R
corresponds to the flow on the arc c on the original graph. For each flow
λ ∈ R and

zvcl = −λ, zvcr = λ, zu = qout
u ∀u ∈ V ,

the induction assumption states that there is a unique solution consisting
of yλ(0), yλ(LA) and qλ on the graph Gn. Due to the continuity of fc, the
values yλcl(Lcl) and yλcr(0) should coincide, as they correspond to the value
of fc(Lc/2; yc(0), qa) on the original graph.

It is equivalent to find a root of the function

H(λ) := yλcl(Lcl)− y
λ
cr(0).

First, we show that the function H is strictly monotonic. Consider a
flow µ > λ. Corollary 1 shows the existence of a path Pl from r to vcl and
a path Pr from r to vcr (once again, we assume that the direction of the
arcs coincides with the direction of the path) such that the flow on the two
paths fulfills

qµa ≤ qλa ∀a ∈ Pl (Note the direction of Pl) (1.54a)

qµa ≥ qλa ∀a ∈ Pr (1.54b)

and each inequality holds strictly for at least one a ∈ Pl and one a ∈ Pr.
By using the function Ycl as in Lemma 15, it is possible to express the

value of ycl(Lcl) by (again, we omit the argument Lcl of fcl)

ycl(Lcl) = fcl(ycl(0), qcl) (1.55)

ycl(0) = Ycl
(
yπ(cl)(Lπ(cl)), qπ(cl), qcl

)
, (1.56)

for fixed yr, where the state yπ(cl)(Lπ(cl)) is determined by the equation

yπ(cl)(Lπ(cl)) = fπ(cl)(yπ(cl)(0), qπ(cl)).

This can be expanded up to the node yr, where the state is prescribed. The
iterative application of Lemma 16, starting at the root node, where the
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state is prescribed, shows that the states ycl(Lcl) strictly decreases in λ,
as (1.54a) holds strictly for at least one arc. Therefore,

yλcl(Lcl) < yµcl(Lcl) (1.57)

holds. On the path Pr, the argumentation is analogous, but, compared
to (1.54b), the inequality (1.54b) is reversed. Consequently,

yλcr(0) > yµcr(0) (1.58)

holds. The combination of (1.57) and (1.58) shows

H(λ) = yλcl(Lcl)− y
λ
cr(0) < yµcl(Lcl)− y

µ
cr(0) = H(µ),

for λ < µ. Therefore, the function H is strictly increasing. Furthermore, it
is continuous, because the states depend continuously on qout.

If we find a flow value λ− with H(λ−) < 0 and a flow value λ+ > λ−
with H(λ+) > 0, Bolzano’s intermediate value theorem ensures that there
is a unique solution λ∗ ∈ (λ−, λ+) fulfilling H(λ∗) = 0. Choose

λ+ :=
∑

v∈V
|qout
v | and zvl = −λ+.

Then, by Lemma 14, there exists a path P from vcl to vcr such that

qa ≥ 0 ∀a ∈ P

with qa > 0 for at least one a ∈ P . Consider a node u on the path with
a ∈ δin(u) ∩ P and b ∈ δin(u) ∩ P . Our goal is to show the decrease of the
state values on the path. If the flow values on the incident arcs are equal,
i.e., qa = qb, then the coupling condition hu(ya(La), qa) = hu(yb(0), qb)
implies yb(0) = ya(La) and, by Assumption a)(iii), we have ya(La) < ya(0)
if qa > 0 and ya(La) = ya(0) if qa = 0.

If qa < qb, then, we have, by (1.47b) and Assumption b)(iii)

yb(0) = Yb(ya(La), qa, qb) ≤ Yb(ya(La), qa, qa) = ya(La),

where the last equation follows from the fact that Yb is the unique solution
of hu(ya, qa) = hu(Yb(ya(La), qa, qa), qa).

If qa > qb, then, using the first order Taylor expansion around the point
(ya(La), qa, qa), we obtain

yb(0) = Yb(ya(La), qa, qb) = Yb(ya(La), qa, qa) + (qb − qa)∂qbYb(ya, qa, ξ)
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(
by Yb(ya(La), qa, qa) = ya(La) and Equation (1.47b)

)

= ya(La)− (qb − qa)
∂qhu(Yb(ya, qa, ξ), ξ)

∂yhu(Yb(ya, qa, ξ), ξ)
,

= fa(La; ya(0), qa)− (qb − qa)
∂qhu(Yb(ya, qa, ξ), ξ)

∂yhu(Yb(ya, qa, ξ), ξ)

< ya(0),

where the last inequality is due to Assumption b)(vii). We have shown that
the states are decreasing along the path (using that Yb is strictly increasing
in the first argument). By Assumption a)(iii) the decrease is strict on the
arc a, where qa > 0. This shows

yλ+cl (Lcl) > yλ+cr (0)

and therefore H(λ+) > 0. Using the same monotonicity arguments with
reversed signs of the flows, we also see that the choice

λ− := −
∑

v∈V

∣∣qout
v

∣∣

leads to H(λ−) < 0. Therefore, by Bolzano’s intermediate value theorem,
there exists a unique λ∗ ∈ (λ−, λ+) such that H(λ∗) = 0. The induc-
tion assumption states that for prescribed λ∗ there is a unique solution
(yλ

∗
(0), yλ

∗
(L), qλ

∗
) on the graph Gn. A solution on the original graph G can

be easily reconstructed by setting

qc := λ∗, yc(0) := yλ
∗

cl
(0), yc(Lc) := yλ

∗

cr (Lcr)

and the remaining flow and state values to their corresponding parts
on the graph Gn. The solution (y(0), y(L), q) is continuous with respect
to the prescribed data, because the solution (yλ

∗
(0), yλ

∗
(L), qλ

∗
) depends

continuously on the prescribed data by the induction assumption. Since the
function H is even continuously differentiable with respect to pr and qout

(as a composition of the continuously differentiable functions Ya and fa)
the implicit function theorem ensures that λ∗ is continuously depending on
pr and qout.

Remark 9 (The Solution’s Independence of the Cut Choice). Each funda-
mental cycle corresponds to a basis vector of the node-arc incidence matrix.
Therefore, the choice, which arc should be cut in the proof of Theorem 2,
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can be interpreted as choosing a basis vector of the incidence matrix. The
arcs in a fundamental cycle correspond to nonzero entries of a basis vector
of the kernel of the incidence matrix. Hence, choosing different edges is
equivalent to choosing a different basis for the kernel and does not interfere
with the uniqueness of the solution. If a flow vector q is retained in one
basis, a change of the basis only changes its representation but not its value.
Therefore, the solution is independent of which edges are being cut.

1.4. Existence and Uniqueness on Gas
Networks

In the previous section, we developed a framework for general flow problems
on graphs. In this section, we apply the results to gas networks. In this
application the flow corresponds to the mass flow of the gas. The outflow
can be thought of as the demand of customers withdrawing gas from the
network. The relevant state values are the pressure values at both ends
of a gas pipeline (the gas density instead of the gas pressure can be used
with slight adjustments).

In Section 1.4.1, we focus on passive networks governed by the station-
ary isothermal Euler equations. Here, networks exclusively consisting of
pipelines are considered under different coupling conditions.

In Section 1.4.2, we include active elements, namely resistors and turbo
compressor, in the networks. A rigorous analysis using the ideal gas model
with pressure continuity coupling is provided.

1.4.1. Passive Networks

Consider the gas flow through a network of pipelines. The pipelines are
represented by the arcs A of a graph G. The interconnections of multiple
pipelines are represented by the nodes V . We denote the pressure on a arc
a ∈ A by pa, the mass flow by ma and the mass flow divided by the cross
sectional area of the pipe by qa = 4ma

πD2
a
.

Kirchhoff Conditions

The stationary gas dynamics along the pipes are described by the isothermal
Euler equations (IsoStat). The conservation of mass in each node u ∈ V
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reads ∑

a∈δ(u)

Auama = mout
u

which is equivalent to the system

Am = mout. (KirchhoffM)

Arc Coupling Conditions

We consider the case of real and ideal gas.

Real Gas
For real gas, Theorem 1 states that the pressure at both ends of a pipe is
coupled via

pa(La) = fa(La; pa(0), qa), where

fa(L; p, q) := F−1

(
F (p, q)−RTq|q|

∫ L

0

θ(s)
2

ds

)
, (Real)

F (p, q) :=
p

α
− 1

α2
ln(z(p)) + q2RT ln

(
z(p)

p

)
.

The domain of fa is given by

D(fa) :=
{

(x, p, q) ∈ [0, La]× R>0 × R | p2 > q2RT, p < |α|−1
}
. (1.59)

Ideal Gas
For ideal gas, an analytic solution of the system (IsoStat) is presented
in Gugat, Hante, et al. 2015, Lemma 3.5 and given by

pa(La) = fa(La; pa(0), qa), where

fa(L; p, q) := c |q|
√
−W−1

(
− exp

(
− C + sign(q)

∫ L

0

θa(s) ds
))
, (Ideal)

C :=
1

η
+ ln(η), η :=

q2c2

p2
.

The Lambert-W-function is the inverse function of x 7→ x exp(x). We use
the branch W−1 for arguments in (−e−1, 0); see Figure 1.13. For details on
the Lambert-W-function see Veberic 2010 or Corless et al. 1996. Keep in
mind that for ideal gas the sound speed c =

√
∂p/∂ρ and the constant com-

pressibility factor z(p) = zm are coupled via the state equation (StateEq).
To be concrete, c2 = RTzm holds. The domain of fa is given by

D(fa) :=
{

(x, p, q) ∈ [0, La]× R>0 × R | p2 > q2c2
}
. (1.60)
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Figure 1.13.: The two branches of the Lambert-W function. The branch
W−1 is used in the ideal gas case.

Remark 10 (Different Mass Flow Quantities). To apply the results of
Section 1.3, the function fa should depend on ma instead of qa. We use the
more common quantity qa, while keeping in mind that all relevant properties
of fa carry over to a function f̃a : (L, p,m) 7→ f̃a(L; p,m) = fa(L; p, q) as
the flow argument is only scaled by a positive constant.

Node Coupling Conditions

Different coupling function are in use; see Reigstad 2014, p. 74. For the
case of ideal gas, we focus on the Bernoulli invariant. For real gas, we
discuss the continuity of pressure.

Pressure
hu(p, q) = p, (Pr)

Momentum Flux

hu(p, q) =
p

c2

(
1 +

q2c2

p2

)
= ρ(1 + η), (MF)

Bernoulli Invariant

hu(p, q) = log
( p
c2

)
+

1

2

q2c2

p2
= log(ρ) +

1

2
η. (BI)
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scaled momentum flux

scaled Bernoulli invariant

Figure 1.14.: The different coupling functions over the pressure for the
values q = 400 kg s−1 m−2, R = 448.66 J kg−1 K−1, T = 290 K
and z(p) = 1. To obtain similar order of magnitudes, the mo-
mentum flux and the Bernoulli invariant are scaled. The func-
tions c2ρ(1+η) (scaled momentum flux) and c2 exp(log(ρ)+ 1

2
η)

(scaled Bernoulli invariant) are depicted.

For the case of real gas, we consider hu on the domain

D(hu) :=
{

(p, q) ∈ R>0 × R | p2 > q2RT, p < |α|−1
}
. (1.61)

For the case of ideal gas, we consider hu on the domain

D(hu) :=
{

(p, q) ∈ R>0 × R | p2 > q2c2
}
. (1.62)

In the following sections, we show that the functions fa and hu fulfill the
assumptions of Theorem 2. The properties of the functions fa in the real
gas case were discussed in Section 1.2.

Existence and Uniqueness for Real Gas with Pressure Continuity

First, we show the required assumptions for the arc coupling functions.

Lemma 17 (Arc Coupling Assumptions).
The functions fa as defined in (Real) fulfill the Assumptions a) of Theo-
rem 2.
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Proof. Lemma 5 shows Assumptions a)(i) and a)(ii). Lemma 4 shows
Assumption a)(iii).

Next, we show the required assumptions for the node coupling functions.

Lemma 18 (Node Coupling Assumptions).
Let hu be given by the pressure (Pr). Then Assumptions b) of Theorem 2
are fulfilled.

Proof. We have hu(p, q) = p. It is obvious that Assumptions b)(ii)–b)(iii)
and b)(iv) hold. Assumptions b)(v) and b)(vi) are true, because

∂qhu = 0, ∂phu > 0 and ∂qfa < 0, ∂pfa > 0

hold. The remaining Assumption b)(vii) is true, because ∂qh = 0 and
∂xfa < 0 for positive flow. Hence, the left hand side of the Equation
in b)(vii) is zero and the right hand side is positive. This shows the
properties for the choice hu(p, q) = p.

Now, we can apply Theorem 2 to show the existence and uniqueness of
solutions on real gas networks.

Theorem 3 (Existence and Uniqueness for Real Gas).
Consider the arc coupling conditions (Real), the node coupling condi-
tions (Pr) and the Kirchhoff conditions (KirchhoffM). Let the pressure
pr > 0 with z(pr) > 0 be prescribed at the simple node r ∈ V . Then there
exists a constant C(pr, G) > 0 such that for all mout ∈ R|V| with

1Tmout = 0, ‖mout‖ < C(pr, G) and
qoutr

2
RT

p2
r

< 1

a unique solution (p(0), p(L), q) ∈ R|A| × R|A| × R|A| exists on the graph
G = (V ,A). This solution fulfills

(KirchhoffM), (Arc Coupling) and (Node Coupling).

Proof. With the results from Lemma 17 and Lemma 18, we see that
the assumptions of Theorem 2 hold on the domains D(fa), a ∈ A and
D(hu), u ∈ V as defined in Equations (1.59) and (1.61). In the node r, the
prescribed pressure and flow fulfill

pr < |α|−1, and
qout
r

2
RT

p2
r

< 1
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by assumption. The proof of Theorem 2 reveals that in each induction step,
the pressure and flow values depend continuously on the boundary values.
This implies that the values pa(0), pa(La), qa stay inside the domains of fa
and hu for a sufficiently small prescribed flow qout. Consequently, there
exists a constant C(pr, G) > 0 such that all obtained pressure-flow pairs
are inside the corresponding domains D(fa) and D(hu) if ‖qout‖ < C(pr, G)
holds. The difference between the conditions (KirchhoffM) and (Kirchhoff)
is discussed in Remark 10.

Theorem 3 was first stated in Gugat, Schultz, and Wintergerst 2018,
Theorem 1, where a direct proof for the specific setting was given. Here,
we used the generalized version of the theorem (Theorem 2) for the proof.

Existence and Uniqueness for Ideal Gas

For the case of ideal, we follow the same steps: First, we show that the arc
coupling assumptions are fulfilled.

Lemma 19 (Arc Coupling Assumptions).
The functions fa as defined in (Ideal) fulfill the Assumptions a) of Theo-
rem 2.

Proof. Assumption a)(i) and a)(ii) follow from Gugat, Hante, et al. 2015,
Lemma 3.6. Assumption a)(iii) is implied by Equation (18) in Gugat,
Hante, et al. 2015, Lemma 3.5.

Next, the node coupling assumptions are shown.

Lemma 20 (Node Coupling Assumptions for the Bernoulli Invariant).
Let hu be given by the the Bernoulli Invariant (BI) on the domain D(hu)
defined in (1.62). For positive flow qa > 0, let the sufficient decrease
condition

1 <
pa(La)

2

pb(0)2

(1− ηb)2

(1− ηL)2

(
1

ηa
− 1

ηL

)
, (1.63)

hold on two adjacent arcs a, b. Furthermore, assume that for negative flow
q < 0, the sufficient increase condition

fa(p, q)
2 − p2 > c2q2 or equivalently

1

ηL
− 1

η
> 1, (1.64)

with ηL = q2c2

fa(p,q)2
holds. Additionally, assume that the constant friction is

sufficiently high in the sense that

1

2
θaLa >

pb(0)

pa(0)

h(ηqab )

h(ηa)

(
1− qb

qa

)
, (1.65)
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with ηqab :=
q2
ac

2

pb(0)2
< 1, ηa :=

q2
ac

2

pa(0)2
< 1 and h(η) :=

η

1− η ,

where a ∈ δin(u), b ∈ δout(u) with the flows qa > qb ≥ 0 and

hu(pb(0), qb) = hu(fa(La; pa(0), qa), qa).

Then, the Assumptions b) of Theorem 2 are fulfilled.

Remark 11 (Assumptions of Lemma 20). Both of the Inequalities (1.64)
and (1.65) can also be seen as a requirement for the length of the pipe to
be sufficiently large. It is evident that Inequality (1.65) is easy to fulfill if
the flows qa and qb are of similar size. For Inequality 1.63, observe that the
fraction

pa(La)
2

pb(0)2

(1− ηb)2

(1− ηL)2

is close to one if the flows qa and qb are of similar size. The condition is
fullfilled if the pressure decrease on the arc a measured by 1

ηa
− 1

ηb
is large

enough.

Proof. The Bernoulli Invariant (BI) is given by

hu(p, q) = log
( p
c2

)
+

1

2

q2c2

p2
.

Assumption b)(iv) can immediately be seen. We proceed to show assump-
tion b)(i). Let qa 6= 0 and (qb, pb) ∈ D(hu) be given. We need to find pa
such that

hu(pa, qa) = hu(pb, qb).

By definition (BI), we have, using the variables ρa = pa
c2

and ηa = q2ac
2

p2a

(ρb, ηb analogously),

log(ρa) +
1

2
ηa = log(ρb) +

1

2
ηb

or equivalently

log

(
ρa
ρb

)
=

1

2
(ηb − ηa).

Hence,
ρa
ρb

= exp

(
1

2
(ηb − ηa)

)
.
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Squaring the equation and multiplying by ρ2
b leads to

ρ2
a = ρ2

b exp(ηb − ηa).

We multiply by c2

q2a
exp(ηa) to obtain

η−1
a exp(ηa) =

c2ρ2
b

q2
a

exp(ηb).

Rearranging shows

(−ηa) exp(−ηa) = − q2
a

c2ρ2
b

exp(−ηb).

Using the right branch of the Lambert-W function yields

ηa = −W0

(
− q2

a

c2ρ2
b

exp(−ηb)
)
,

which is the physically right solution as the range of W0 for negative

arguments is [−1, 0]. For qa 6= 0, and q2a
c2ρ2b

< 1, ηb < 1, the argument of W0

is in (−e−1, 0) and therefore ηa lies in (0, 1). This means, we can explicitly
calculate pa as

pa = qac

√
−
[
W0

(
− q2

a

c2ρ2
b

exp(−ηb)
)]−1

and Assumption b)(i) is shown.
We obtain the partial derivatives

∂phu(p, q) =
1

p
(1− η) and ∂qhu(p, q) =

η

q
. (1.66)

Clearly, η < 1 implies ∂phu(p, q) > 0, which is Assumption b)(ii). Assump-
tion b)(iii) is obvious for p > 0.

We proceed with Assumption b)(v). The first argument of fa is omitted.
By Gugat, Hante, et al. 2015, Lemma 3.6, the partial derivatives of fa are
given by

∂pfa(p, q) =
p

fa(p, q)

1− η
1− ηL

, where ηL :=
q2c2

fa(p, q)2
(1.67)

and

∂qfa(p, q) = −fa(p, q)
q

ηL − η
η(1− ηL)

. (1.68)
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Assumption b)(v) holds for q > 0, because

∂qhu(p, q)

∂phu(p, q)
> 0 >

∂qfa(p, q)

∂yfa(p, q)

holds. The case q < 0 remains. We obtain

∂qhu(p, q)

∂phu(p, q)
=

pη

q(1− η)
(1.69)

and
∂qfa(p, q)

∂pfa(p, q)
= −fa(p, q)

2(ηL − η)

qpη(1− η)
.

We have to show

−fa(p, q)
2(ηL − η)

qpη(1− η)
<

pη

q(1− η)

or equivalently, by multiplication with the negative constant p
qc2

(1− η),

−fa(p, q)
2(ηL − η)

q2c2η
>

p2η

q2c2
.

Inserting η = q2c2

p2
and ηL = q2c2

fa(p,q)2
, yields

(η − ηL)

ηLη
> 1 or

1

ηL
− 1

η
> 1.

This is assumption (1.64) and shows that, since all steps were equivalent,
the inequality

∂qhu(p, q)

∂phu(p, q)
>
∂qfa(p, q)

∂pfa(p, q)

holds. Hence, Assumption b)(v) has been proven.
For Assumption b)(vii), we use the observations of Remark 7. We want

to show
∂qhu(pb(0), ξ)

∂phu(pb(0), ξ)
<
La|∂xfa(0; pa(0), qa)|

qa − qb
, (1.70)

for qa > ξ > qb ≥ 0. The absolute value of the space derivative of fa is
given by

|∂xfa(0; pa(0), qa)| =
1

2
θapa(0)

ηa
1− ηa

, where ηa :=
q2
ac

2

pa(0)2
; (1.71)
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see Gugat, Hante, et al. 2015, Equation (18). Inserting (1.69) and (1.71)
in Inequality (1.70) yields

pb(0)

ξ

ηb
1− ηb

<
1
2
θaLapa(0)

qa − qb
ηa

1− ηa
, where ηξb :=

ξ2c2

pb(0)2
. (1.72)

This is equivalent to

1

2
θaLa >

pb(0)

pa(0)

h(ηb)

h(ηa)

qa − qb
ξ

, (1.73)

where h(η) := η
1−η as in (1.22) is used. Using qa > ξ and the fact that h is

strictly increasing, we find a sufficient condition for (1.72) that does not
depend on ξ :

1

2
θaLa >

pb(0)

pa(0)

h(ηqab )

h(ηa)

(
1− qb

qa

)
(1.74)

Here, we used the definition ηqab := q2ac
2

pb(0)2
. Inequality (1.74) is equal to

assumption (1.65).
Last but not least, we discuss Assumption b)(vi). We notate

ηa =
q2
ac

2

pa(0)2
, ηb =

q2
b c

2

pb(0)2
, ηL =

q2
ac

2

pa(La)2

and use pa(La) = fa(La; pa(0), qa). We have to show

∂qhu(pa(La), qa)

∂phu(pb(0), qb))
< − ∂phu(pb(0), qb)

∂phu(pa(La), qa)
∂qfa(La; pa(0), qa).

The inequality is always true for qa < 0, therefore we consider qa > 0. By
Equation (1.66) and Equation (1.68) the inequality is equivalent to

pb(0)

qa

ηL
1− ηb

<
pa(La)

pb(0)

1− ηb
1− ηL

pa(La)

qa

ηL − ηa
ηa(1− ηL)

.

This is equivalent to

1 <
pa(La)

2

pb(0)2

(1− ηb)2

(1− ηL)2

ηL − ηa
ηLηa

.

Hence, we have

1 <
pa(La)

2

pb(0)2

(1− ηb)2

(1− ηL)2

(
1

ηa
− 1

ηL

)
,

which is Assumption (1.63).
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Finally, we can apply Theorem 2 once again and obtain the existence
and uniqueness of real gas solutions on networks coupled by the Bernoulli
invariant.

Theorem 4 (Existence and Uniqueness for Ideal Gas).
Consider the arc coupling conditions (Ideal), the node coupling condi-
tions (Pr) or (BI) and the Kirchhoff conditions (KirchhoffM). Let the
pressure pr > 0 be prescribed at the simple node r ∈ V and assume that
the assumptions of Lemma 20 are fulfilled. Then there exists a constant
C(pr, G) > 0 such that for all massflows mout ∈ R|V| with

1Tmout = 0, ‖mout‖ < C(pr, G) and
qoutr

2
c2

p2
r

< 1

a unique solution (p(0), p(L), q) ∈ R|A| × R|A| × R|A| exists on the graph
G = (V ,A). This solution fulfills

(KirchhoffM), (Arc Coupling) and (Node Coupling).

Proof. The proof is analogous to the proof of Theorem 3. With the
results from Lemma 19 and Lemma 20, we see that the assumptions
of Theorem 2 hold on the domains D(fa), a ∈ A and D(hu), u ∈ V as
defined in Equations (1.60) and (1.62). In the node r, the prescribed
pressure and flow fulfill (qout

r )2c2 < p2
r by Assumption. The proof of

Theorem 2 reveals that in each induction step, the pressure and flow values
depend continuously on the boundary values. This implies that the values
pa(0), pa(La), qa stay inside the domains of fa and hu for a sufficiently small
prescribed flow qout. Consequently, there exists a constant C(pr, G) > 0 such
that all obtained pressure-flow pairs are inside the corresponding domains
D(fa) and D(hu) if ‖qout‖ < C(pr, G) holds. The difference between the
conditions (KirchhoffM) and (Kirchhoff) is discussed in Remark 10.

1.4.2. Networks with Active Elements

In the following, we introduce active elements that are used to control the
network. For the sake of simplicity, we restrict ourselves to the case of
ideal gas with the pressure continuity as node coupling condition. We view
all active elements as arcs that couple the pressure values via functions fa.
This is analogous to plain pipes with the only difference that the set of
arcs decomposes into multiple subsets. We assume that all active elements
conserve the mass flow. This means especially that compressors only use
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external energy sources and do not use the transported gas as fuel. Active
elements that only change the topology of the graph like valves are already
included in our analysis up to this point. Since the pressure continuity
coupling conditions fulfills Assumptions b) of Theorem 2 (see Lemma 18),
we focus on showing the required assumptions for the functions fa. The
statement of the models is given in Koch et al. 2015, Chapter 2.

Resistors

“Resistors are a surrogate modeling tool ...[for pressure loss induced by] flow
diversion and turbulence in shaped pieces, measurement devices, curvature
of the piping within compressor stations and pressure regulators, filter
systems, reduced radii, and partially closed valves.” (Koch et al. 2015,
Section 2.3.2) The Darcy-Weisbach form of the pressure loss on an arc
a = (u, v) ∈ ARe ⊂ A is given by

fa(x; p, q) := p− 1

2
ζ
q2c2

p
x, x ∈ [0, 1], (R)

where ζ > 0 is a positive friction coefficient and the flow q > 0 is positive.
The domain of fa is given by

D(fa) :=
{

(x, p, q) ∈ [0, 1]× R>0 × R | p2 > q2c2
}
. (1.75)

The space variable x is artificially introduced with the goal to include the
function fa in the framework of Theorem 2. The outgoing pressure and
the ingoing pressure are therefore coupled via

pa(1) = f(1; pa(0), qa).

We check the signs of the derivatives of fa.

Lemma 21 (Derivatives of the Resistor Function).
Let fa be given by (R). Then, for (x, p, q) ∈ D(fa) and q > 0, the following
holds: The function fa is

a) strictly increasing in the ingoing pressure, i.e.,

∂pfa(x; p, q) > 0,

b) strictly decreasing in the flow, i.e.,

∂qfa(x; p, q) < 0, for x ∈ (0, 1]
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c) strictly decreasing in flow direction, i.e.,

∂xfa(x; p, q) < 0, for x ∈ (0, 1].

Proof. The pressure derivative is given by

∂pfa(x; p, q) = 1 +
1

2
ζ
q2c2

p2
x > 0.

For the flow derivative, we obtain

∂qfa(x; p, q) = −ζ qc
2

p
x < 0

and the space derivative is

∂xfa(x; p, q) = −1

2
ζ
q2c2

p
< 0.

Turbo Compressors

Compressors and compressor station are included in the network to keep
the pressure sufficiently high and counteract the pressure loss by friction.
We focus on turbo compressors, which are described by a characteristic
field for the specific change of adiabatic enthalpy Had in dependence of the
volume flow Q = m

ρ
, where m = qA is the mass flow through a pipe with

cross-sectional area A. The specific change of the adiabatic enthalpy and
can be thought of as the compression factor. It is given by

Had(pu, pv) := RTzm
κ

κ− 1

[(
pv
pu

)κ−1
κ

− 1

]
, (1.76)

with the constant compressibility factor zm ∈ (0, 1] and the isentropic
exponent κ > 1; see Koch et al. 2015, Section 2.3.5.1, Domschke et al.
2017, Section 7.4.7 and Cerbe 2008, Section 5.3.1 The characteristic field
of a turbo compressor is depicted in Figure 1.15. For a fixed compressor
speed, the change of adiabatic enthalpy can be described by a continuously
differentiable function (e.g. quadratic polynomials) F : Q 7→ F (Q) of the
volume flow. Assume that the function F is positive and strictly monotonic
decreasing in the operational range D(F ) (nonempty and open) of the

1Menon 2005, Section 4.4 gives values of κ between 1.2 and 1.4, Domschke et al. 2017,
Section 7.4.7 use κ = 1.29 and Koch et al. 2015, Section 2.3.5.1 use κ = 1.296.
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Figure 1.15.: The characteristic field of a turbo compressor. The shaded
area depicts the working range. The solid lines represent lines
of equal compressor speed. The dashed lines represent lines
of equal efficiency. The actual measure points are depicted
by the solid dots.2

compressor. To obtain the outgoing pressure pa(1), where a ∈ ACo ⊂ A is
an arc with La = 1, one must solve the equation

Had = F (Q)

with Q = ma
ρa(0)

. By Equation (1.76), we obtain

RTzm
κ

κ− 1

[(
pa(1)

pa(0)

)κ−1
κ

− 1

]
= F (Q).

Hence, (
pa(1)

pa(0)

)κ−1
κ

− 1 = (RTzm)−1κ− 1

κ
F (Q),

which yields

pa(1)

pa(0)
=

[
(RTzm)−1κ− 1

κ
F (Q) + 1

] κ
κ−1

.

2I am grateful to Martin Schmidt for his permission to use this picture.
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Finally, we obtain

pa(1) =

[
(RTzm)−1κ− 1

κ
F (Q) + 1

] κ
κ−1

pa(0).

In our framework, once again utilizing the artificial space variable x ∈ [0, 1],
this leads to the function

fa(x; p, q) = p(1− x) +

[
(RTzm)−1κ− 1

κ
F (Q) + 1

] κ
κ−1

px, (C)

with Q = Ac2q
p
. It is defined on the domain

D(fa) :=
{

(x, p, q) ∈ [0, 1]× R>0 × R | p2 > q2c2, Q ∈ D(F )
}
. (1.77)

The signs of its derivatives are discussed in the following Lemma.

Lemma 22 (Derivatives of the Compressor Function).
Let fa be given by (C). Then, for (x, p, q) ∈ D(fa), q > 0 and x ∈ (0, 1],
the following holds: The function fa is

a) strictly increasing in the ingoing pressure, i.e.,

∂pfa(x; p, q) > 0,

b) strictly decreasing in the flow, i.e.,

∂qfa(x; p, q) < 0,

c) strictly increasing in flow direction, i.e.,

∂xfa(x; p, q) > 0.

Proof. We denote

G(Q) := (RTzm)−1κ− 1

κ
F (Q) + 1 (1.78)

and obtain using the product rule

∂pfa(x; p, q) = −x+ ∂p

[
G(Q)

κ
κ−1

]
p x+G(Q)

κ
κ−1 x
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(using the chain rule for the second term)

= [G(Q)
κ
κ−1 − 1]x+

κ

κ− 1
G(Q)

κ
κ−1
−1 ∂QG(Q) ∂pQpx

(by the definition (1.78) of G and the simplification κ
κ−1
− 1 = 1

κ−1
)

= [G(Q)
κ
κ−1 − 1]x+ (RTzm)−1G(Q)

1
κ−1∂QF (Q) ∂pQpx

(as ∂pQ = −Ac2q
p2

)

= [G(Q)
κ
κ−1 − 1]x− (RTzm)−1G(Q)

1
κ−1∂QF (Q)

Ac2q

p
x > 0,

because G(Q) > 1 and κ
κ−1

> 1 imply that the first term is positive, while
∂QF (Q) < 0 ensures that the second term is positive.

For the derivative with respect to the flow, we obtain

∂qfa(x; p, q) =
κ

κ− 1
G(Q)

1
κ−1 ∂QG(Q) ∂qQ

(by the definition (1.78) of G and ∂qQ = Ac2

p
)

= (RTzm)−1G(Q)
1

κ−1∂QF (Q)
Ac2

p
< 0,

because ∂QF (Q) is negative, while the remaining terms are positive. For
the space derivative, direct calculation shows

∂xfa(x; p, q) = (G(Q)
κ
κ−1 − 1) p > 0,

since κ > 1, which implies κ
κ−1

> 1, and G(Q) > 1 hold.

With these results at hand, we can include turbo compressors and
resistors in the gas network and obtain a similar existence-and-uniqueness
result as in the case of passive networks. However, due to the construction of
the solution, it is not possible to include turbo compressors in fundamental
cycles, because they increase the pressure in flow direction.

Theorem 5 (Existence and Uniqueness Including Active Elements).
Consider the set of arcs A = APi ·∪ARe ·∪ACo, where the functions fa are
given by (Ideal) for a ∈ APi, by (R) for a ∈ ARe and by (C) for a ∈ ACo.
We assume that all active elements have a bypass mode that treats them as
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normal pipes for negative flow with the corresponding function like in (Ideal).
Let the states at the nodes u ∈ V be coupled by the pressure continuity (Pr).
Assume that the arcs ACo are not contained in any fundamental cycle. Let
a pressure value pr > 0 be prescribed at a simple node r ∈ V .

Then there exists a constant C(pr, G) > 0 such that for all mout ∈ R|V|
with

1Tmout = 0, ‖mout‖ < C(pr, G) and (0, pr,m
out
r ) ∈ D(fa), ∀a ∈ A

a unique solution (p(0), p(L), q) ∈ R|A| × R|A| × R|A| exists on the graph
G = (V ,A). This solution fulfills

(KirchhoffM), (Arc Coupling) and (Node Coupling).

Proof. On arcs that are no compressors, i.e., a ∈ APi ∪ ARe, we see by
Lemma 18, Lemma 19 and Lemma 21 that the assumptions of Theorem 2
are fulfilled. For compressor arcs, we see by Lemma 22 that all assumptions
except a)(iii) and b)(vii) are fulfilled. Knowing that these assumptions
hold, we can follow the proof of Theorem 2 up to the point, where we need
to find a flow value λ− with H(λ−) < 0 and a λ+ with H(λ+) > 0. Here
the monotonicity in space induced by Assumptions a)(iii) and b)(vii) is
required for all arcs lying on the constructed path P between vcl and vcr.
We need to show that the construction of the path of unidirectional flow is
possible without using compressor arcs a ∈ ACo. By assumption the arcs
a ∈ ACo are not part of a fundamental cycle. However, since the arc c is
part of a fundamental cycle, the nodes vcl and vcr remain connected even
after the removal of the arcs in ACo. Also, the flows on the compressor
arcs do not depend on λ, since by Lemma 12, the redefined outflow vectors
sum to zero. To be precise: For an arc a = (u, v) ∈ ACo, let v be the node
that lies in the same subgraph Gc = (Vc,Ac) with redefined outflows f c as
vcl and vcr after the removal of a. Then, by Lemma 12, the flow fv can be
calculated as

fv = −
∑

u∈Vc
f cu = −

∑

u∈Vc\{vcl,vcr}
f cu + λ− λ = −

∑

u∈Vc\{vcl,vcr}
f cu.

The case of removing multiple compressor arcs is analogous with the tools
of Lemma 12. After completing the reduction, we end up with a subgraph
Gc = (Vc,Ac) with the new outflows f c as defined in Lemma 12. We apply
Lemma 14 to deduce that the choice

λ+ =
∑

u∈Vc
|f cu|
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leads to a path P from vcl to vcr that does not contain arcs a ∈ ACo such
that

qa ≥ 0 ∀a ∈ P
with qa > 0 for at least one a ∈ P . The choice

λ− = −
∑

u∈Vc
|f cu|

leads to the same result with reversed signs. The rest of the proof poses
no further problems. Choosing the prescribed flows mout sufficiently small
ensures that the pressure and flow values stay inside the open domains of
the functions fa.

1.5. Examples

Throughout this section, we will demonstrate how to explicitly solve some
example networks and we will give numerical results for realistic data.

1.5.1. Real Gas with Pressure Continuity

Consider fa as given by (Real) and the pressure coupling conditions (Pr).
Throughout this section, we work under the assumptions of Theorem 3.
We will use the examples given in Gugat, Schultz, and Wintergerst 2018,
Section 4.1–4.3. The first network is a graph with no cycles, a tree. The
second network is a graph with one cycle and the third example is a
diamond graph, which is a network with two interconnected cycles.

Tree Network

Consider the topology shown in Figure 1.16. Let the pressure pr > 0 be
prescribed in the node r and let outflows be prescribed at the boundary
nodes. Let the outflow vector

qout = (qout
r , 0, qout

v , qout
w , qout

s )

be given. We assume that r is a source and v, w, s are sinks, hence qout
r < 0

holds. The flow values on the arcs are given by

qa = −qout
r =

D2
b

D2
a
qout
b + D2

c

D2
a
qout
c +

D2
d

D2
a
qout
d ,

qb = qout
b , qc = qout

c , qd = qout
d ,
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r u

v

w

s

a

b

c

d

Figure 1.16.: Tree network

13.00 10.58

9.68

10.45

9.82

166.58

55.53

55.53

55.53

Figure 1.17.: The solution on a tree with the pressure values at the nodes
(in 105 Pa) and the flow values at the arcs (in kg s−1 m−2)

where Da > 0 denotes the diameter of pipe a. Due to the pressure continuity
through the node we will denote pu = pa(xa(u)), ∀a ∈ δ(u). Since the flow
along every arc is known, the pressure values can be calculated starting at
the node r:

pu = fa(La; qa, pr), pv = fb(Lb; qb, pu),

pw = fc(Lc; qc, pu), ps = fd(Ld; qd, pu).

The solution for specific data can be seen in Figure 1.17.

One Circle

Let us now consider a network with two parallel pipes as shown in Fig-
ure 1.18. The node r is a source and the node w is a sink, i.e.,

qout = (qout
r , 0, 0, qout

w ), with qout
r < 0, qout

w > 0,
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r u v w
a

b

c

d

Figure 1.18.: Two parallel pipes

where D2
aq

out
r = −D2

dq
out
w . We prescribe the pressure at the node r. Unlike

in the case of a tree network it is not obvious how to calculate the flow
value on the edges b and c. Due to the Kirchhoff condition

D2
aqa = D2

bqb +D2
cqc

in the node u, we make the ansatz

qb(λ) = λD2
aD
−2
b qa and qc(λ) = (1− λ)D2

aD
−2
c qa, for λ ∈ [0, 1],

with the flow qa = −qout
r > 0. This is equivalent to taking the linear combi-

nation of the specific mass flow solution ms = (mout
w , 0,mout

w ,mout
w ) and a

vector of the kernel mk = (0,mout
w ,−mout

w , 0) and setting m(λ) = ms + λmk.
By the pressure coupling condition in the node v, we have to choose λ such
that

fb(Lb; qb(λ), pu) = fc(Lc; qc(λ), pu),

where pu = fa(La; q
out
w , pr). It is equivalent to find a root of the function

H(λ) := fb(Lb; qb(λ), pu)− fc(Lc; qc(λ), pu).

By definition, qb is strictly increasing in λ and qc is strictly decreasing. The
functions fb(Lb; · , pu) and fc(Lb; · , pu) are strictly decreasing. Therefore,
the function H is strictly decreasing and continuous.

For λ = 0, we obtain

H(0) = fb(Lb; 0, pu)− fc(Lc;D2
aD
−2
c qa, pu) > pu − pu = 0,

because fb(Lb; q, pu) = pu for q = 0 and fb(Lc;D
2
aD
−2
c qa, pu) < pu as fb

strictly decreases in flow direction.
For λ = 1, we obtain

H(1) = fb(Lb;D
2
aD
−2
b qa, pu)− fc(Lc; 0, pu) < pu − pu = 0,

because fb(Lb;D
2
aD
−2
b qa, pu) < pu and fc(Lc; 0, pu) = pu. Consequently,

Bolzano’s intermediate value theorem states that there is a unique solution
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r u
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d
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Figure 1.19.: Diamond graph

λ∗ ∈ (0, 1) such that H(λ∗) = 0. Consequently, the flow values on the edges
can be calculated via

qa = −qout
r , qb = qb(λ

∗), qc = qc(λ
∗), qd = qout

w

and the pressure values can be calculated iteratively starting from the root
node

pu = fa(La; qa, pr),

pv = fb(Lb; qb, pu) = fc(Lc; qc, pu),

pw = fd(Ld; qd, pv).

Diamond Graph

The diamond graph (Figure 1.19) is an example of a network with two
interconnected cycles. We prescribe the pressure in the node r and have
an inflow through node r and an outflow through node t, i.e.,

qout = (qout
r , 0, 0, 0, 0, qout

t ) with qout
r < 0, qout

t > 0,

and D2
aq

out
r = −D2

gq
out
t . To obtain a more direct solution approach, we

want to express the flow value at the arc d as a function of the pressure in
node v and the pressure in node w. The following Lemma was formulated
in Gugat, Schultz, and Wintergerst 2018, Lemma 6.

Lemma 23 (Compensatory flow).
On the arc a = (u, v), let the pressure values in u and v be given by
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pu, pv ∈ (0, |α|−1). Furthermore let the nonzero distance between pu and pv
be small enough in the sense that

|pu−pv| < pu+pv−2

√
α−1(pv − pu)− α−2 ln

(
z(pv)
z(pu)

)

√
ln
(
pv
pu

z(pu)
z(pv)

)
− 1

2
sign(p0 − p1)

∫ La
0
θa(s) ds

. (1.79)

Then, the sign of the flow is determined by

sign(qa) = sign(pu − pv) (1.80)

s and the flow value on the arc a is given by

qa = sign(pu − pv)

√√√√√
α−1(pv − pu)− α−2 ln

(
z(pv)
z(pu)

)

RT
[
ln
(
pv
pu

z(pu)
z(pv)

)
− 1

2
sign(pu − pv)

∫ La
0
θa(s) ds

]

(1.81)
In the case of pu = pv, the flow qa is zero.

Proof. We will assume subsonic flow |qa|
√
RT < min{pu, pv} for the mo-

ment and show later that it indeed holds. By Equation (1.7), we have

F (pv, qa)− F (pu, qa) = −1

2
qa|qa|RT

∫ La

0

θa(s) ds.

The monotonicity of F with respect to the first argument stated in Lemma 1
shows

sign(qa) = sign(F (pu, qa)− F (pv, qa)) = sign(pu − pv),
which is Equation (1.80). Inserting the definition of F , see Equation (1.6),
in (1.7) yields

−1

2
qa|qa|RT

∫ La

0

θa(s) ds = α−1pv − α−2 ln(z(pv)) +RTq2
a ln

(
z(pv)

pv

)

− α−1pu + α−2 ln(z(pu))−RTq2
a ln

(
z(pu)

pu

)

which is equivalent to

RTq2
a

[
ln

(
z(pu)

pu

)
− ln

(
z(pv)

pv

)
− 1

2
sign(qa)

∫ La

0

θa(s) ds

]
=

α−1(pv − pu)− α−2 ln

(
z(pv)

z(pu)

)
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Hence,

q2
a =

α−1(pv − pu)− α−2 ln
(
z(pv)
z(pu)

)

RT
[
ln
(
z(pu)
pu

)
− ln

(
z(pv)
pv

)
− 1

2
sign(qa)

∫ La
0
θa(s) ds

]

holds, which implies (1.81). It remains to show that the flow stays subsonic
under condition (1.79), i.e.,

√
RTqa < min{pu, pv}. We have

min{pu, pv} =
1

2
(pu + pv − |pu − pv|)

>

√
α−1(pv − pu)− α−2 ln

(
z(pv)
z(pu)

)

√
ln
(
pv
pu

z(pu)

z(pv)

)
− 1

2
sign(p0 − p1)

∫ La
0
θa(s) ds

= |qa|
√
RT.

This concludes the proof.

Additionally, for the construction of a solution on the diamond graph,
the monotonicity of qa with respect to pu and pv is required; see Gugat,
Schultz, and Wintergerst 2018, Lemma 7.

Lemma 24 (Monotonicity of the Compensatory Flow).
Under the assumptions of Lemma 23, the derivatives of qa satisfy

∂puqa > 0 and ∂pvqa < 0.

This means qa is strictly increasing as a function of pu and strictly decreasing
as a function of pv.

Proof. Implicit differentiation of Equation (1.7) with respect to pu leads to

−∂pF (pu, qa) = −RT |qa|∂puqa
∫ La

0

θa(s) ds

∂puqa =
∂pF (pu, q)

RT
∫ La

0
θa(s) ds|qa|

and differentiation with respect to pv leads to

∂pF (pv, qa) = −RT |qa|∂pvqa
∫ La

0

θa(s) ds

∂pvqa = − ∂pF (pv, q)

RT |qa|
∫ La

0
θa(s) ds

.
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By Lemma 1, ∂pF (pu, qa) and ∂pF (pv, qa) are positive. Hence,

∂puqa > 0 and ∂pvqa < 0

follows.

With the two Lemmas, we are equipped to derive a solution on the
diamond graph. We make the same ansatz as in the case of one circle and
set

qb(λ) = λD2
aD
−2
b qa and qc(λ) = (1− λ)D2

aD
−2
c qa, for λ ∈ [0, 1].

Then, the pressure values in u, v and w can be calculated as

pu = fa(La; pr, qa),

pv(λ) = fb(Lb; pu, qb(λ)),

pw(λ) = fc(Lc; pu, qc(λ)).

By Lemma 23, the flow through the arc d = (w, v) has to be

qd(λ) = Qd(pw(λ), pv(λ)),

where Qd(pw(λ), pv(λ)) is given by the right hand side of Equation (1.81).
Consequently, by the Kirchhoff conditions in u and v, we obtain

qe(λ) = D2
bD
−2
e qb(λ)−D2

dD
−2
e qd(λ),

qf (λ) = D2
cD
−2
f qc(λ) +D2

dD
−2
f qd(λ).

The pressure continuity in the node s requires λ to be chosen such that
the function value of

H(λ) := fe(Le; pv(λ), qe(λ))− ff (Lf ; pw(λ), qf (λ))

becomes zero. For a better overview, we note the monotonicity properties
with respect to λ in Table 1.2. The arguments for the monotonicity of
qb, qc, pv and pw are straightforward. By Lemma 24, qd is strictly increasing
as a function of pv and strictly decreasing as a function of pw. Hence qd is
strictly decreasing in λ. This directly implies that qe is strictly increasing
and qf is strictly decreasing. Both fe and ff are strictly increasing in the
pressure argument and strictly decreasing in the flow argument. Therefore,
the monotonicity of pv and qe implies that fe strictly decreases in λ and
the monotonicity of pw and qf implies that ff strictly increases in λ.
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Table 1.2.: Monotonicity with respect to λ

Flow Monotonicity (Flow) Pressure Monotonicity (Pressure)

qb strictly increasing pv strictly decreasing
qc strictly decreasing pw strictly increasing
qd strictly decreasing
qe strictly increasing fe(Le; pv( · ), qe( · )) strictly decreasing
qf strictly decreasing ff (Lf ; pw( · ), qf ( · )) strictly increasing

341.40

192.22

227.66

−63.77

299.99

276.98

576.97

Figure 1.20.: Flow values in kg s−1 m−2 at each arc.

60.00 57.20

55.98

54.56

56.26

50.10

Figure 1.21.: Pressure values in 105 Pa in each node.
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Consequently, H is a strictly decreasing function. As in the example with
one circle, we consider the cases λ = 0 and λ = 1. For λ = 0, we obtain

qb(0) = 0 and qc(0) = D2
aD
−2
c qa,

which implies
pv(0) = pu and pw(0) < pu.

Consequently, qd(0) > 0, leading to

qe(0) = −D2
dD
−2
e qd(0) < 0 and qf (0) = D2

aD
−2
f qa +D2

dD
−2
f qd(0) > 0.

Subsequently,

H(0) = fe(Le; pv(0), qe(0))− ff (Lf ; pw(0), qf (0))

> pv(0)− pw(0) > pu − pu = 0

holds. For λ = 1, we obtain

qb(1) = D2
aD
−2
b qa and qc(1) = 0,

which implies
pv(1) < pu and pw(1) = pu.

Consequently, qd(1) < 0, leading to

qe(1) = D2
aD
−2
e qa −D2

dD
−2
e qd(1) > 0 and qf (1) = D2

dD
−2
f qd(1) < 0.

Subsequently,

H(1) = fe(Le; pv(1), qe(1))− ff (Lf ; pw(1), qf (1))

< pv(1)− pw(1) < pu − pu = 0.

Therefore, as H is strictly decreasing and continuous, Bolzano’s intermedi-
ate value theorem implies the existence of a unique λ∗ ∈ (0, 1) such that
H(λ∗) = 0. The flow solution on the diamond graph can then be calculated
as

(−qout
r , qb(λ

∗), qc(λ
∗), qd(λ

∗), qe(λ
∗), qf (λ

∗), qout
t )

and the pressure values can be obtained by

(pr, fa(La; pr, qa), pv(λ
∗), pw(λ∗), ps(λ

∗), fg(Lg; ps(λ
∗), qg)).

The flow solution for specific data is shown in Figure 1.20 and the pressure
solution is shown in Figure 1.21.
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1.5.2. Ideal Gas with Bernoulli Invariant Coupling

Consider fa as given by (Ideal) and the pressure coupling conditions (BI).
Throughout this section, we work under the assumptions of Theorem 4.
We will consider the first and second example of the previous subsection.
The first network is a graph with no cycles, a tree. The second network is
a graph with one cycle.

Tree Network

Consider the topology shown in Figure 1.16. Let the outflow vector

qout = (qout
r , 0, qout

v , qout
w , qout

s ),

be given. We assume that r is a source and v, w, s are sinks, hence qout
r < 0

holds. The flow values on the arcs are given by

qa = −qout
r =

D2
b

D2
a
qout
b + D2

c

D2
a
qout
c +

D2
d

D2
a
qout
d

qb = qout
b , qc = qout

c , qd = qout
d .

Unlike in the case, where we worked with pressure continuity coupling,
now, the pressure values can change over a node. This means pa(La) is not
equal to pb(0) in general. Denote the function that solves

hu(pa, qa) = hu
(
Pb(pa, qa, qb), qb

)

for prescribed pa, qa and qb by Pb(pa, qa, qb). As discussed in the proof of
Lemma 20, it can be explicitly calculated as

Pb(pa, qa, qb) = qbc

√
−
[
W0

(
− q2

b

c2ρ2
a

exp(−ηa)
)]−1

. (1.82)

Then, the pressure values can be calculated iteratively by

pa(0) = pr, pa(La) = fa(La; pr, qa),

pb(0) = Pb(pa(La), qa, qb), pb(Lb) = fb(Lb; pb(0), qb),

pc(0) = Pc(pa(La), qa, qc), pc(Lc) = fc(Lc; pc(0), qc),

pd(0) = Pd(pa(La), qa, qd), pd(Ld) = fd(Ld; pd(0), qd).

The simulation for the same data as in Section 1.5.1 is depicted in Fig-
ure 1.22.
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13.00

10.59 10.47

9.57

10.33

9.71

166.58

55.53

55.53

55.53

Figure 1.22.: Solution on a tree. The pressure values at the beginning and
the end of each pipe (in 105 Pa) and the flow values at the arcs
(in kg s−1 m−2) are shown. The value left of the middle node is
the pressure value pa(La). The value right of the middle node
is the value pb(0) = pc(0) = pd(0). The values are identical,
because the flow values are on the arcs are identical.

One Circle

Consider a network with two parallel pipes as shown in Figure 1.18. For
this example, we consider the case of equal pipe diameters Da, a ∈ A. The
network has one source r and one sink w, i.e.,

qout = (qout
r , 0, 0, qout

w ), with qout
r < 0, qout

w > 0,

where qout
r = −qout

w . We proceed similarly to Section 1.5.1, yet we have to
keep the coupling conditions in the nodes u and v in mind. Again, we make
the ansatz

qb(λ) = λqa and qc(λ) = (1− λ)qa, for λ ∈ [0, 1].

Following the idea of the proof of Theorem 2, we cut the arc b in half and
obtain the artificial nodes ul and vr and the corresponding arcs bl and br
with the lengths Lbl = Lb/2 and Lbr = Lb/2; see Figure 1.23. The flow on
the arcs bl and br is equal to qb(λ). For the pressure values on the new arcs,
we have

pbl(Lbl ;λ) = fb(Lbl ; pbl(0;λ), qbl(λ)),

pbr(0;λ) = fb(Lbr ; pcr(Lbr ;λ),−qbr(λ)).
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r u v w

ul vr

a

bl br

c

d

Figure 1.23.: The circle of Figure 1.18 after performing the cut.

The preceding pressure values are determined by

pa(0) = pr,

pa(La) = fa(La; pr, qa),

pbl(0;λ) = Pb(pa(La), qa, qb(λ)),

pc(0;λ) = Pc(pa(La), qa, qc(λ)),

pc(Lc;λ) = fc(Lc; pc(0;λ), qc(λ)),

pbr(Lbr ;λ) = Pbr(pc(Lc;λ),−qb(λ), qc(λ)),

pbr(0;λ) = fb(Lbr ; pbr(0;λ),−qb(λ)).

The functions Pb, Pc and Pbr are defined analogously to Equation (1.82)
as long the flow argument of the outgoing arc is not zero. We need to
determine the scalar λ as a root of the function

H(λ) := pbl(Lbl ;λ)− pbr(0;λ).

We have (ommiting the argument λ for readability), by the chain rule,

∂λpbl(Lbl) = ∂pfb(Lbl ; pbl(0), qb) ∂qbpbl(0) ∂λqb + ∂qfb(Lbl ; pbl(0), qb) ∂λqb

(by Lemma 15, Equation (1.46a))

= − ∂pfb(Lbl ; pbl(0), qb)
∂qhu(pbl(0), qb)

∂yhu(pbl(0), qb)
∂λqb

+ ∂qfb(Lbl ; pbl(0), qb) ∂λqb < 0, (1.83)

since Assumption b)(v) of Theorem 2 holds due to Lemma 20 and ∂λqbl is
positive.

Differentiating the pressure pbr(0) at the other end of the cut leads to

∂λpbr(0) = ∂pfb
(
Lbr ; pbr(Lbr),−qb

)
∂λpbr(Lbr)

− ∂qfb
(
Lbr ; pbr(Lbr),−qb

)
∂λqb, (1.84)
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where derivative of the pressure pbr(Lbr) is given by

∂λpbr(Lbr) = ∂pcPbr
(
pc(Lc),−qb, qc

)
∂λpc(Lc)− ∂qbPbr

(
pc(Lc),−qb, qc

)
∂λqb

+ ∂qcPbr
(
pc(Lc),−qb, qc

)
∂λqc. (1.85)

Furthermore, we obtain

∂λpc(Lc) = ∂pfc(Lc; pc(0), qc) ∂λpc(0) + ∂qfc(Lc; pc(0), qc) ∂λqc. (1.86)

Similarly to the proof of Lemma 16, we denote

Tpc := ∂pfb
(
Lbr ; pbr(Lbr),−qb

)
∂pcPbr

(
pc(Lc),−qb, qc

)
∂pfc(Lc; pc(0), qc)

Tqb := −∂pfb
(
Lbr ; pbr(Lbr),−qb

)
∂qbPbr

(
pc(Lc), qb, qc

)

− ∂qfb
(
Lbr ; pbr(Lbr),−qb

)

Tqc := ∂pcPbr
(
pc(Lc),−qb, qc

)
∂qfc(Lc; pc(0), qc) + ∂qcPbr

(
pc(Lc),−qb, qc

)

Inserting Equation (1.86) into Equation (1.85) leads to

∂λpbr(Lbr) = ∂pcPbr
(
pc(Lc),−qb, qc

)[
∂pfc(Lc; pc(0), qc) ∂λpc(0)

+ ∂qfc(Lc; pc(0), qc) ∂λqc

]
− ∂qbPbr

(
pc(Lc),−qb, qc

)
∂λqb

+ ∂qcPbr
(
pc(Lc),−qb, qc

)
∂λqc

= ∂pcPbr
(
pc(Lc),−qb, qc

)
∂pfc(Lc; pc(0), qc) ∂λpc(0) + Tqc ∂λqc

− ∂qbPbr
(
pc(Lc),−qb, qc

)
∂λqb. (1.87)

Inserting Equation (1.87) into Equation (1.84) yields

∂λpbr(0) = ∂pfb
(
Lbr ; pbr(Lbr),−qb

)[
∂pcPbr

(
pc(Lc),−qb, qc

)
∂pfc(Lc; pc(0), qc)

∂λpc(0) + Tqc ∂λqc − ∂qbPbr
(
pc(Lc),−qb, qc

)
∂λqb

]

− ∂qfb
(
Lbr ; pbr(Lbr),−qb

)
∂λqb

= Tpc∂λ pc(0) + ∂pfb
(
Lbr ; pbr(Lbr),−qb

)
Tqc ∂λqc + Tqb∂λqb (1.88)

We know that ∂λqc < 0 and ∂λqb > 0. For the derivative of pc(0), we obtain

∂λpc(0) = ∂qcPc(pa(La), qa, qc)∂λqc

(by Lemma 15, Equation (1.47b))

= −∂qhu(Pc(pa(La), qa, qc), qc)
∂phu(Pc(pa(La), qa, qc), qc)

∂λqc > 0, (1.89)

86



1.5. Examples

because the flows qa and qc are positive, Assumption b)(iii) of Theorem 2
holds and ∂λqc < 0 is true. Hence, to show the assertion ∂λpbr(0) > 0, we
have to verify Tpc > 0, Tqc < 0 and Tqb > 0. The first term expands to

Tpc = ∂pfb
(
Lbr ; pbr(Lbr),−qb

)
∂pcPbr

(
pc(Lc),−qb, qc

)
∂pfc(Lc; pc(0), qc)

(by Lemma 15, Equation (1.47a))

= ∂pfb
(
Lbr ; pbr(Lbr),−qb

)
∂pfc(Lc; pc(0), qc)

∂phv(pc(Lc), qc)

∂phv(Pbr(pc(L), qc,−qb),−qb)
> 0,

since each derivative with respect to p is positive. The second term can be
written as

Tqb = −∂pfb
(
Lbr ; pbr(Lbr),−qb

)
∂qbPbr

(
pc(Lc), qb, qc

)

− ∂qfb
(
Lbr ; pbr(Lbr),−qb

)

(by Lemma 15, Equation (1.47b))

= ∂pfb
(
Lbr ; pbr(Lbr),−qb

)∂qhv(Pbr(pc(Lc), qc, qb), qb)
∂phv(Pbr(pc(Lc), qc, qb), qb)

− ∂qfb
(
Lbr ; pbr(Lbr),−qb

)
> 0

as a consequence of Assumption b)(iii) of Theorem 2, which holds due to
Lemma 20. The last term fulfills

Tqc = ∂pcPbr
(
pc(Lc),−qb, qc

)
∂qfc(Lc; pc(0), qc) + ∂qcPbr

(
pc(Lc),−qb, qc

)

(by Lemma 15, Equations (1.47a) and (1.47c))

=
∂phv(Pbr(pc(Lc),−qb, qc),−qb)

∂phv(pc(Lc), qc)
∂qfc(Lc; pc(0), qc)

+
∂qhv(pc(Lc), qc)

∂phv(Pbr(pc(Lc),−qb, qc),−qb)
< 0

by Assumption b)(vi) of Theorem 2, which holds due to Lemma 20. Con-
sequently, we obtain

∂λpbr(0) = Tpc∂λpc(0) + ∂pfb
(
Lbr ; pbr(Lbr),−qb

)
Tqc∂λqc + Tqb∂λqb > 0.

This shows, together with Inequality (1.83), that the function H is strictly
decreasing.
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Now, we find value for λ such that

pbl(Lbl ;λ)− pbr(0;λ) = H(λ) < 0

and a value such that H(λ) > 0 holds. The choice λ = 1, i.e.,

qb(λ) = qa, qc(λ) = 0

leads to (omitting the argument λ from now on)

pbl(Lbl) < pb(0), (1.90)

since fb is strictly decreasing in flow direction.
The initial pressure on the arc c, results from the relation

hu(pc(0), 0) = hu(pb(0), qb).

Inserting the definition of the Bernoulli invariant yields

log

(
pc(0)

c2

)
= log

(
pb(0)

c2

)
+

1

2
ηbl .

Resolving for pc(0) leads to

pc(0) = c2 exp

(
log

(
pb(0)

c2

)
+

1

2
ηbl

)
≥ pb(0). (1.91)

As the flow on the arc c is zero, we obtain pc(0) = pc(Lc). We denote by
Pvc(pbr(Lbr), qb, qc) the function that solves the coupling condition

hv(Pvc(pbr(Lbr , qb, qc), qc) = hv(pbr(Lbr), qb)

in v. Therefore, we obtain

pc(Lc) = Pvc(pbr(Lbr), qb, qc)

(by the Taylor series with ξ ∈ [qc, qb])

= Pvc(pbr(Lbr), qb, qb) + (qc − qb) ∂qcPvc(pbr(Lbr), qb, ξ)

(by Lemma 15, Equation (1.46a))

= pbr(Lbr)− (qc − qb)
∂qhv(Pvc(pbr(Lbr), qb, ξ), ξ)

∂phv(Pvc(pbr(Lbr), qb, ξ), ξ)

= fbr(0; pbr(0), qb)− (qc − qb)
∂qhv(Pvc(pbr(Lbr), qb, ξ), ξ)

∂phv(Pvc(pbr(Lbr), qb, ξ), ξ)
< pbr(0),

(1.92)
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because Lemma 20 states that Assumption b)(vii) of Theorem 2 holds.
Note that in the example qb has the role of qa in the assumption and qc
has the role of qb.

Combining (1.90), (1.91) and (1.92) leads to pbl(Lbl) < pbr(0), which
shows H(1) < 0. With an analogous argumentation, we obtain H(0) > 0,
which ensures that there is a unique solution λ∗ ∈ (0, 1) such thatH(λ∗) = 0.
Hence all flow values on the network are known and the pressure values
can be calculated, starting from the root, as in the tree network example.

Conclusion

We constructed explicit stationary solutions of the quasilinear isothermal
Euler equations on a single pipe and showed essential monotonicity proper-
ties. By introducing node coupling conditions, the states can be extended
to networks. The existence theory is general enough to allow different
node coupling conditions, the inclusion of active elements and even the
combination of different models. The proof is constructive and therefore
allows the computation of the state values, which is demonstrated by the
examples. The requirements of the existence theorem were explicitly shown
for real and ideal gas with the continuity of pressure and the continuity
of the Bernoulli invariant as node coupling conditions. The values on the
arcs can also be coupled by active elements including turbo compressors
and resistors, which was thoroughly discussed.

Although only gas was considered in this thesis, the result can be applied
to other balance laws with friction in an equilibrium that fulfill the required
monotonicity properties. This includes the flow through networks of canals,
modeled by the Saint-Venants Equations (see Gugat and Leugering 2009)
and the flow of blood through an arterial network (see Bressan, Čanić, et al.
2014, Section 3.6).
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2. Chance Constrained
Optimization

As far as the laws of mathematics refer to
reality, they are not certain, and as far as
they are certain, they do not refer to reality.

(Albert Einstein)

In this chapter, we discuss optimization problems under uncertainty. The
uncertainty is handled by using chance constraints (also known as proba-
bilistic constraints). For a prescribed parameter z ∈ Rm, we look at the
optimization problem

min
x∈Rn

f(x)

s.t. g(x, z) ≤ 0.

We will refer to this problem as the deterministic optimization problem.
If, however, the parameter z is not precisely known but replaced by a
random vector ξ with known probability distribution, we can consider the
constraint that g(x, ξ) ≤ 0 holds with at least probability pbd ∈ (0, 1). The
resulting optimization problem reads

min
x∈Rn

f(x)

s.t. P(g(x, ξ) ≤ 0) ≥ pbd.

We will refer to this problem as the stochastic optimization problem despite
the fact that it is actually completely deterministic. This can be easily seen
by denoting G(x) := P(g(x, ξ) ≤ 0) as the evaluation of the probability
function is merely an integration over the set of z ∈ Rm fulfilling g(x, z) ≤ 0
weighted with the probability density. The evaluation of high dimensional
integrals over a complicated integration domain calls for the application of
special integration techniques, namely quasi-Monte Carlo methods. Quasi-
Monte Carlo methods are based on the same principle as Monte Carlo
methods, but use low discrepancy sequences instead of random sequences.
We will give an overview of the methods and known error estimates. If
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the random vector ξ is gaussian, we can apply a parameterization of the
integral known as spherical radial decomposition. For this representation,
we derive subgradients and gradients of the probability function, which are
used in a gradient based optimization. We propose a multilevel approach
that significantly reduces the computational time for solving the stochastic
optimization problem and apply it to gas network optimization under
uncertain demands.

Literature Survey

The book Niederreiter 1992 offers a well written introduction to quasi-
Monte Carlo methods. The more recent book Lemieux 2009 on Monte
Carlo and quasi-Monte Carlo is more focused on computational aspects and
has a more extensive part on Monte Carlo methods. The focus in Dick and
Pillichshammer 2010 lies on digital nets and sequences for quasi-Monte Carlo
methods. A comparison of Monte Carlo methods, lattice rules and other
low discrepancy point sets was provided in Lemieux and L’Ecuyer 1999.

Complexity theory of quasi-Monte Carlo algorithms and the weighted
Koksma-Hlawka inequality are elaborated in Sloan and Woźniakowski 1998.
Quasi-Monte Carlo methods in the weighted Hilbert space setting are
discussed in Kuo, Schwab, and Sloan 2011. Weighted discrepancies for
high dimensional integration are examined in Larcher, Pillichshammer, and
Scheicher 2003.

Quasi-Monte Carlo methods for finance applications were investigated
in Giles et al. 2008. Practical stopping criteria for Monte Carlo and
randomized quasi-Monte Carlo methods that complement the theory are
presented therein.

In Brauchart and Dick 2012 sphere integrals were solved by quasi-Monte
Carlo integration. In Marques et al. 2013 spherical illumination integrals
were treated by quasi-Monte Carlo method and the Fibonacci point set on
the sphere was discussed as low discrepancy set.

Spherical radial decomposition of integrals of normal distribution density
functions is treated in Genz and Bretz 2009 and Monahan and Genz 1997.
Gradient representations for spherical radial decomposed probability func-
tions were derived in Ackooij and Henrion 2014 and 2017.

Stochastic programming and, more specific, chance constrained program-
ming is discussed in Shapiro, Dentcheva, and Ruszczyński 2009. Regu-
larization and optimality conditions for chance constrained programs are
examined in Adam and Branda 2016. The doctoral thesis Ackooij 2013
deals with chance constrained optimization and its application in energy
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management. The compressor control under probabilistic constraints on
stationary gas networks was recently discussed in Gugat and Schuster 2018.
Explicit representations of derivatives of probability functions were first
considered in Uryas’ev 1994 and Kibzun and Uryasev 1998. Safe tractable
approximations of chance constraints were elaborated in Nemirovski 2012.
In Curtis, Wächter, and Zavala 2018 chance constrained problems were
solved by a specialized sequential quadratic programming solver with exact
penalization.

2.1. Monte Carlo Methods

Throughout this section we follow the classical book Random Number
Generation and Quasi-Monte Carlo Methods, Niederreiter 1992, Section 1.2.
The motivation for using Monte Carlo methods instead of traditional
methods like the Newton-Cotes formulas lies in the scaling with the dimen-
sion. Consider the trapezoidal rule that approximates the one dimensional
integral ∫ 1

0

f(x) dx by Ih =
m∑

n=0

wkf
(
k
m

)

with weights w0 = wm = 1/(2m) and wn = 1/m, for n = 1, . . . ,m − 1.
If f is two times continuously differentiable, the integration error is of
order O(m−2). The multidimensional case is analogous: The integral

∫

[0,1]d

f(x) dx

can be approximated by

Ih =
m∑

n1=0

· · ·
m∑

nd=0

wn1 · · ·wndf
(n1

m
, . . . ,

ns
m

)

with the weights defined as in the one dimensional case. Once again,
the error is of order O(m−2) if the function f is two times continuously
differentiable. However, the number of evaluation points needed increases
dramatically with the size of the dimension s, because the number of points
is N = (m+ 1)s and thus the error bound in terms of evaluation points is
given by O(N−2/s). To obtain an accuracy of order 0.01 in one dimension,
10 evaluation points are needed. For the same accuracy in dimension
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100, the number of required evaluation points is 10100. This phenomenon
has received the name the curse of dimensionality. The first approach to
overcome this issue has been the Monte Carlo method.

Definition 2 (Lp-Spaces). Let µ be a measure on the measurable space
(Ω,Σ) and let (Ω′,Σ′), Ω′ ⊂ R be a measurable space.

For 1 ≤ p <∞ and A ⊂ Ω define

Lp(A;µ) :=

{
f : Ω→ Ω′ | f is measurable and

∫

A

|f |p dµ <∞
}
.

In the case, where µ = λs is the s-dimensional Lebesgue measure, we write
Lp(A) instead of Lp(A;λs).

The idea of the Monte Carlo integration is simple: To calculate the
integral

∫
Ω
f(x) dx, consider the integration domain Ω ⊂ Rs with 0 <

λs(Ω) <∞, where λs denotes the s-dimensional Lebesgue measure. The
transformation dµ = dx/λs(Ω) turns Ω into a probability space with
probability measure µ. For f ∈ L1(Ω;µ), we obtain

∫

Ω

f(x) dx = λs(Ω)

∫

Ω

f dµ = λs(Ω)E(f), (2.1)

where E(f) is the expected value of f with respect to the probability
measure µ. The expected value can be estimated by the mean value of a
sufficiently large number of samples.

Definition 3 (Monte Carlo Estimate). Let f be a random variable on
a probability space (Ω,Σ, µ). Take N independent µ-distributed samples
x1, . . . , xn ∈ Ω. The Monte Carlo estimate for the expected value E(f) is
given by

EN(f) :=
1

N

N∑

n=1

f(xn).

For µ = dx/λs(Ω), let f be in L1(Ω;µ) and 0 < λs(A) <∞. The Monte
Carlo estimate for the integral

∫
Ω
f(x) dx is given by

IN(f) :=
λs(Ω)

N

N∑

n=1

f(xn).

This definition is a consequence of replacing the expected value in Equa-
tion (2.1) by its Monte Carlo estimate.
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The convergence of EN (f) to E(f) in the sense of probability is a conse-
quence of the strong law of large numbers.

Theorem 6 (Strong Law of Large Numbers, Klenke 2013, Satz 5.17).
Let X1, X2, . . . ∈ L1(Ω;µ) be pairwise independent and identically dis-
tributed random variables. Then, the sequence (Xn)n∈N obeys the strong
law of large numbers, i.e.,

lim
N→∞

1

N

N∑

n=1

Xn = E(X1) µ∞-almost everywhere,

where µ∞ is product measure of countable many copies of µ.

This directly leads to the convergence of the Monte-Carlo estimates.

Corollary 2 (Convergence of the Monte-Carlo Estimates).
Consider the assumptions of Definition 3. Then

lim
N→∞

EN(f) = E(f) µ∞-almost everywhere

and

lim
N→∞

IN(f) =

∫

Ω

f(x) dx µ∞-almost everywhere.

While this statement assures the convergences in probability, it says
nothing about the speed of convergence. The variance gives us information
about the average integration error.

Definition 4 (Variance). Let f be a random variable on a probability
space (Ω,Σ, µ). The variance of f is defined by

σ2(f) :=

∫

Ω

(f − E(f))2 dµ.

The variance is finite for f ∈ L2(Ω;µ).

Theorem 7 (Average Integration Error).
Let f ∈ L2(Ω;µ) and N ≥ 1. Then, the integral average of the integration
error is

∫

Ω

· · ·
∫

Ω

(
1

N

N∑

n=1

f(xn)− E(f)

)2

dµ(x1) . . . dµ(xN) =
σ2(f)

N
.

Proof. See Niederreiter 1992, proof of Theorem 1.1.
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For a probabilistic error bound of the Monte-Carlo method, we need the
central limit theorem, for which the following definitions are required.

Definition 5 (Product measure). Let (Ω,Σ, µ) be a measure space and
A1, . . . , AN ∈ Σ. The extension of the measure

µ⊗N(A1, . . . , AN) :=
N∏

n=1

µ(An)

to the product sigma-algebra σ(ΣN ) is called the product measure. We also
denote it by µ⊗N .

Definition 6 (Weak Convergence of Measures, Klenke 2013, Def. 13.12).
Let µ1, µ2, . . . be a sequence of finite measures on the measurable space (Ω,Σ).
We say, (µn)n∈N converges weakly to µ and write µn ⇀ µ, for N →∞ if

lim
n→∞

∫

Ω

f dµn =

∫

Ω

f dµ for every f ∈ Cb(Ω),

where Cb(Ω) is the space of continuous bounded functions, i.e.,

Cb(Ω) := {f : Ω→ R | f is continuous and bounded}.

Theorem 8 (Central Limit Theorem, Klenke 2013, Satz 15.37).
Let X1, X2, . . . be independent and identically distributed random variables
with finite variance σ2. Define

SN(ω1, . . . , ωN) := σ−1N−1/2

N∑

n=1

(Xn(ωn)− E(X1)).

Then, the distribution converges weakly against the standard normal distri-
bution, i.e.,

µ⊗N ◦ S−1
N ⇀ N 0,1, for N →∞.

For the cumulative distribution functions, we have, for −∞ ≤ a < b ≤ +∞,

lim
N→∞

µ⊗N
{

(ω1, . . . , ωN) ∈ ΩN | SN(ω1, . . . , ωN) ∈ [a, b]
}

= (2π)−1/2

∫ b

a

e−t
2/2 dt.

This equation is sometimes abbreviated as

lim
N→∞

P

(
a ≤ σ−1N−1/2

N∑

n=1

(Xn − E(X1)) ≤ b

)
= (2π)−1/2

∫ b

a

e−t
2/2 dt.
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As a direct consequence of the central limit theorem we obtain a proba-
bilistic error bound for the Monte-Carlo estimate.

Corollary 3 (Probabilistic Error Bound for the Monte Carlo Estimate).
Assume f has finite variance σ2(f). Then, the probabilistic error bound

lim
N→∞

P

(
a
σ(f)√
N
≤ 1

N

N∑

n=1

f(xn)− E(f) ≤ b
σ(f)√
N

)
= (2π)−1/2

∫ b

a

e−t
2/2 dt

holds, for any constants −∞ ≤ a < b ≤ ∞.
Example 2. For a normal distributed variable, around 99.73% of all
realizations lie inside a 3σ interval around the expected value. Hence, since
σ = 1 for a standard normal distribution, we obtain by choosing a = −3
and b = 3 that

(2π)−1/2

∫ 3

−3

e−t
2/2 dt ≈ 99.73%.

Take a random variable with variance σ(f) = 2. Then
∣∣∣∣∣

1

N

N∑

n=1

f(xn)− E(f)

∣∣∣∣∣ ≤
6√
N

with 99.73% probability. If the error should be smaller than 0.01, we have
to choose

6√
N
≤ 0.01 ⇐⇒

√
N ≥ 600 ⇐⇒ N ≥ 360000.

At first this seems like a extraordinary large number of evaluation points,
especially in the one dimensional case. However, unlike traditional integra-
tion rules, this number does not scale with the dimension of the integration
domain.

Therefore, we obtain a probabilistic error bound of order O(N−1/2)
compared to O(N−2/s) for the trapezoidal rule. The error bound shows
that it can be advantageous to transform f into a function f̃ with lower
variance. Since this thesis focuses on the quasi-Monte Carlo approach
rather than the classical Monte Carlo method, we do not provide further
details on the subject of variance reduction techniques.

For implementation the sample standard variation

σN(f) :=

(
N∑

n=1

(f(xn)− EN(f))2

n− 1

)1/2

can be used as an approximation of σ(f); see Lemieux 2009, p. 10.
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Remark 12 (Integrating over complicated domains). In the case, where
our domain Ω is too complicated to compute λs(Ω), we use the following
slight adjustment: Assume Ω ⊂ [0, 1]s (since Ω is bounded it is certainly
contained in a cube Q ⊂ Ω, which can be transformed to the unit cube).
Then, we can rewrite the integral as

∫

Ω

f(x) dx =

∫

[0,1]s
f(x)χΩ(x) dx

with the characteristic function of χΩ of Ω. The Monte-Carlo estimate is
given by

Ih(f) :=
1

N

N∑

n=1

f(xn)χ(xn) =
1

N

N∑

n=1
xn∈Ω

f(xn).

The results above still apply for the function χΩ · f, because only very weak
regularity is required.

We have seen that the Monte Carlo method provides decisive advantages
over classical integration rules if the dimension is large. In Lemieux 2009,
p. 10–11 an example is provided, where this is the case for dimensions
greater than four. However, the drawbacks are not to be underestimated:
The error bound is only probabilistic, higher regularity of the function to
integrate does not improve the error bound and truly random samples are
not easy to generate (which is why pseudorandom numbers are used in
practice). The quasi-Monte Carlo methods seeks to overcome all of this
problems by using deterministic point sets instead of random numbers.
This achieves a deterministic error bound that is superior for medium
dimensions.

2.2. Quasi-Monte Carlo Methods

The quasi-Monte Carlo is based on the same concept as the Monte Carlo
method with the difference that it uses deterministic point sets instead
of random numbers as integration points. This leads to a deterministic
error bound of order O(N−1[log(N)]s−1) compared to the probabilistic
error bound of order O(N−1/2). We will see that the Koksma-Hlawka
inequality estimates the integration error by the Hardy-Krause variation
of the function and the discrepancy of the point set. The discrepancy
measures, how evenly the points are spread in the integration domain. This
coincides with intuition: A numerical integration is easy if the function is
no too “jumpy” and the evaluation points are evenly spread.
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In view of Remark 12, we restrict ourselves to integration over the
unit cube [0, 1]s. Like in the previous section we follow Niederreiter 1992,
Chapter 2.

Definition 7 (Quasi-Monte Carlo Estimate). Let f ∈ L1([0, 1]s;λs) and
the points x1, . . . , xN ∈ [0, 1]s be given. The quasi-Monte Carlo estimate
of the integral ∫

[0,1]s
f(x) dx

is given by

IN(f) :=
1

N

N∑

n=1

f(xn).

2.2.1. Classical Koksma-Hlawka Inequality

The definition of the integral estimate looks similar to the Monte Carlo
method, yet we obtained more freedom in choosing the points x1, . . . , xN .
To obtain convergence of IN against the integral for a reasonable class
of functions, the set of evaluation points should be evenly distributed
across the unit cube. To measure the “evenness”, we need a concept called
discrepancy of the point set.

Definition 8 (Discrepancy). Consider the point set

P := {x1, . . . , xN} ⊂ [0, 1]s

and an arbitrary set A ⊂ [0, 1]s. We denote the number of points of P in
A by

N(A;P ) :=
N∑

n=1

χA(xn),

where χA is the characteristic function of A. Let A be a family of nonempty
Lebesgue-measurable subsets of [0, 1]s. The discrepancy of the point set P
is given by

DN(A;P ) := sup
A∈A

∣∣∣∣
N(A;P )

N
− λs(A)

∣∣∣∣.

The star discrepancy of the point set P is defined as

D∗N(P ) := DN(I∗;P ),
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(a) Uniform grid (b) Halton point set

(c) Pseudorandom points

Figure 2.1.: Discrepancy

where I∗ is the family of all cuboids of the form
∏s

i=1[0, ai) ⊂ [0, 1]s. In
the case of only one set A, one also speaks of the local discrepancy

DN(A;P ) :=

∣∣∣∣
N(A;P )

N
− λs(A)

∣∣∣∣.

In the case of a set [0, x) and fixed points P, we also abbreviate the local
discrepancy as

DN(x) := DN([0, x);P ).

Remark 13. Dividing by λs([0, 1])s = 1 shows that the discrepancy

DN(A;P ) := sup
A∈A

∣∣∣∣
N(A;P )

N
− λs(A)

λs([0, 1]s)

∣∣∣∣

measures the deviation of the number of points that are expected by the
relative volume from the actual number of points in the test set.

Example 3. Consider the set A = [0, 1/5] × [0, 1] ⊂ [0, 1]2. It is shown
in blue in Figure 2.1a. The point set P is given by a uniform 6× 6 grid.
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The area of A is given by λ2(A) = 1/5. The number of points in A is
N(A;P ) = 12. Consequently the discrepancy of P on the set A is given by

DN(A;P ) =

∣∣∣∣
N(A;P )

N
− λs(A)

∣∣∣∣ =

∣∣∣∣
12

36
− 1

5

∣∣∣∣ =
2

15
.

It can be seen that no points are contained in the open cuboid B =
(0, 1/5)× (0, 1). This leads to

DN(B;P ) =
1

5

and it is the cuboid with the largest area and no points in it. Another
extreme set is C = {0}× [0, 1], (red) e.g. a set which is only a line and has
area λ2(C) = 0, but six points in it. Hence

DN(C;P ) =
1

6
.

Taking the discrepancy over the family A := {A,B,C} leads to the largest
value of the three namely

DN(A;P ) =
1

5
.

We will later discuss low discrepancy sequences. Figure 2.1b shows 36
points of a Halton set. We denote the point set by Q. It can be seen
that eight points are contained in the set A from above. This leads to a
discrepancy of

DN(A;Q) =

∣∣∣∣
N(A;P )

N
− λs(A)

∣∣∣∣ =

∣∣∣∣
8

36
− 1

5

∣∣∣∣ =
1

45
,

which is significantly lower than the discrepancy DN(A;P ) of the uniform
grid. Figure 2.1c shows the typical clustering of pseudorandom points. The
discrepancy of the 36 points R on the sets E = [1/10, 4/10] × [0, 3/10]
(orange) and F = [0, 1/2]× [1/3, 1/2] (green) is given by

DN(E;R) =
9

100
and DN(F ;R) =

∣∣∣∣
8

36
− 1

12

∣∣∣∣ =
5

36
.

The error estimate depends not only on the point set, but also the
behavior of the function to integrate. A higher variation make the function
harder to integrate.
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Definition 9 (Variation). Consider the function f : [a, b] → R in one
dimension. The variation of f is defined by

V (f) := sup

{
N−1∑

n=0

∣∣∣f(y
(N)
n+1)− f(y(N)

n )
∣∣∣ | N ∈ N, a ≤ y

(N)
0 < · · · < y

(N)
N ≤ b

}
.

We say that f has bounded variation if V (f) <∞.

In the one dimensional setting the Koksma inequality provides an error
bound for the quasi-Monte Carlo integration; see Koksma 1942.

Theorem 9 (Koksma Inequality).
Consider a function f : [0, 1]→ R of bounded variation V (f) and evaluation
points x1, . . . , xN ∈ [0, 1]. Then the error bound

∣∣∣∣∣
1

N

N∑

n=1

f(xn)−
∫ 1

0

f(x) dx

∣∣∣∣∣ ≤ V (f)D∗N(x1, . . . , xN)

holds.

The generalization of the Koksma inequality to multiple dimensions
requires a generalized concept of the variation of a function. A good
overview that we follow here is presented in Owen 2005. We notate
xI := (xi)i∈I for an index set I ⊂ {1, . . . , s} and for disjoint index sets I
and J ⊂ {1, . . . , s}, we use the colon operator xI: yJ to denote the vector
z = xI: yJ such that zi = xi, for i ∈ I and zi = yi for i ∈ J. Consider, for
example, I = {1, 3, 5} and J = {2, 4}. Then

xI : yJ = (x1, y2, x3, y4, x5)T .

For the complement with respect to {1, . . . , s} we notate

−I := {1, . . . , s} \ I.

Definition 10 (Ladder). A finite set Y of ordered points on [a, b] containing
a and not containing b except when a = b is called a ladder. The points yi
in Y are ordered by

a = y0 < y1 < . . . < ym.

We denote the successor y+ of y. It is given by (yk)+ = yk+1 for k < m
and (ym)+ = b. The set of all ladders on [a, b] is denoted by Y. The total
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2.2. Quasi-Monte Carlo Methods

variation of a one dimensional function f : [a, b]→ R as in Definition 9 can
be written as

V (f) = sup
Y∈Y

∑

y∈Y
|f(y+)− f(y)|.

In multiple dimensions, we call the product of ladders Yi on [ai, bi] a ladder
on the cuboid [a, b] := {x ∈ Rs | a ≤ x ≤ b} and write Y :=

∏s
i=1 Yi. The

successor y+ is defined by taking the successor in each component of y.

Definition 11 (Alternating Sum). The s-fold alternating sum of f over
[a, b] ⊂ Rs is given by

∆(f ; [a, b]) :=
∑

I⊂{1,...,s}
(−1)|I|f(aI: b−I).

Definition 12 (Vitali Variation). Let [a, b] ⊂ Rs and f : [a, b] → R and
denote set of all ladders on [a, b] by Y. The variation in the sense of Vitali
of f is defined as

VV(f ; [a, b]) := sup
Y∈Y

∑

y∈Y
|∆(f ; [y, y+])|.

Definition 13 (Hardy-Krause Variation). Let [a, b] ⊂ Rs and f : [a, b]→ R
and denote set of all ladders on [a, b] by Y. The variation in the sense of
Hardy-Krause of f is defined as

V (f) :=
∑

I({1,...,s}
VV

(
f([ · ]−I ; bI); [a−I, b−I ]

)
,

where the function f(x−I ; bI) := f(x−I: bI) has the components in −I as
argument, while the components I are set constant to the values in bI .

Having these definitions at hand, we can generalize the Koksma inequality
to the s-dimensional case. The resulting inequality is due to Hlawka 1961a
and is known as Koksma-Hlawka inequality.

Theorem 10 (Koksma-Hlawka Inequality).
Consider f : [0, 1]s → R with bounded variation in the sense of Hardy-
Krause and an arbitrary point set P := {x1, . . . , xN} ⊂ (0, 1)s. Then,

∣∣∣∣∣
1

N

N∑

n=1

f(xn)−
∫

[0,1]s
f(x) dx

∣∣∣∣∣ ≤ V (f)D∗N(P )

holds.
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For convex integration domains in [0, 1]s a similar result is available with
the isotropic discrepancy.

Definition 14 (Isotropic Discrepancy). The isotropic discrepancy of a
point set P is given by

JN(P ) := DN(C;P ),

where C is the family of all convex subsets over [0, 1]s.

Theorem 11 (Quasi-Monte Carlo Error for Convex Domains).
Let A ⊂ [0, 1]s be convex and let f : [0, 1]s → R be a function of
bounded variation in the sense of Hardy-Krause. Then, for any point
set P = {x1, . . . , xn}, we have

∣∣∣∣
1

N

N∑

n=1
xn∈A

f(xn)−
∫

A

f(x) dx

∣∣∣∣ ≤ (f(1) + V (f))JN(P ).

2.2.2. Low Discrepancy Sequences

The construction of sequences with low discrepancy is thoroughly discussed
in Niederreiter 1992. For a sequence S = (xn)n∈N in one dimension, we
have by a result in Béjan 1982 and Niederreiter 1992, Proposition 2.4

lim sup
N→∞

D∗N(S)
N

log(N)
≥ 0.06.

This shows that we cannot hope for a better bound of the star discrepancy
than order O(N−1 log(N)). For the numerical computations in this thesis,
Halton and Sobol point sets were used. We focus on discussing the basics
for the Halton sequence.

Definition 15 (Radical-Inverse Function). For an given integer b ≥ 2, set
Zb := {0, 1, . . . , b− 1}. Then any number n ∈ N has unique digit expansion
in the base b given by

n =
∞∑

j=1

aj(n) bj,

where aj(n) ∈ Zb and aj(n) = 0 for sufficiently large j, this means, the
expansion is finite.

The radical-inverse function φb : N→ [0, 1) is defined by

φb =
∞∑

j=0

aj(n) b−j−1.
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2.2. Quasi-Monte Carlo Methods

Example 4. Choose the base b = 4 and the integer n = 27. Then,
Zb = {0, 1, 2, 3} and the digit expansion of n is given by

n = 27 = 3 · 1 + 2 · 4 + 1 · 16 = 3 · 40 + 2 · 41 + 1 · 42

= a0(27) b0 + a1(27) b1 + a2(27) b2.

One also writes 1234. The radical-inverse function is the symmetric reflection
at the “decimal point” resulting in

φ4(n) = 3 · 4−1 + 2 · 4−2 + 1 · 4−3 = 0.890625

or in digit notation φ4(1234) = 0.3214.

The radical-inverse function can be used to construct a low discrepancy
sequence (or quasirandom sequence) in one dimension.

Definition 16 (Van der Corput Sequence). Choose an integer b ≥ 2. The
van der Corput sequence in base b is defined by setting

xn := φb(n) for all n ∈ N.

The multidimensional generalization of the van der Corput sequence is
the Halton sequence.

Definition 17 (Halton Sequence). In dimension s ≥ 1 choose s bases
b1, . . . , bs that are integers and greater than two. The Halton sequence in
the bases b1, . . . , bs is defined as

xn :=
(
φb1(n), . . . , φbs(n)

)
∈ [0, 1)s for all n ∈ N.

A example of the two dimensional Halton sequence in the bases 2, 3 can
be seen in Figure 2.1b.

Theorem 12 (Discrepancy Bound for the Halton Sequence).
Let S be the Halton sequence in the pairwise relatively prime bases b1, . . . , bs.
Then,

D∗N(S) <
s

N
+

1

N

s∏

i=1

(
bi − 1

2 log(bi)
log(N) +

bi + 1

2

)
for all N ≥ 1.

The coefficient

C(b1, . . . , bs) :=
s∏

i=1

bi − 1

2 log(bi)

is minimized by choosing b1, . . . , bs as the first s primes p1, . . . , ps, which
yields the bound

D∗N(S) ≤ C(p1, . . . , ps)N
−1 log(N)s +O(N−1 log(N)s−1) for all N ≥ 2.
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2.2.3. Weighted Koksma-Hlawka Inequality

There are other useful inequalities of similarly to the classical Koksma-
Hlawka inequality that allow to shift the exponents between the norm of
the function and the weighted discrepancy. We follow the article Sloan and
Woźniakowski 1998. The error estimates hold in a weighted Sobolev space
setting.

Definition 18 (Sobolev Spaces). The Sobolev space W k,p(Ω) is defined by

W k,p := {f ∈ Lp(Ω) | the weak derivatives of f up to order k lie in Lp(Ω)}.

The Hilbert space case p = 2 is also denoted by Hk(Ω) := W k,2(Ω).
Furthermore, for a ordered vector of weights

γ1 ≥ . . . ≥ γs > 0

define the weighted Hilbert space norm on [0, 1]s by

‖f‖2
γ :=

∑

I⊂J
γ−1
I

∫

[0,1]|I|

∣∣∣∣
∂|I|

∂xI
f
(
xI: 1−I

)∣∣∣∣
2

dxI ,

where γI denotes the product weight

γI :=
∏

i∈I
γi.

and the weighted Sobolev space

Hγ([0, 1]s) := {f ∈ [H1([0, 1])]s | the mixed weak partial

derivatives ∂|I|

∂xI
f, I ⊂ J exist and ‖f‖γ <∞},

where [H1([0, 1])]s denotes the s-times tensor product of the space of
absolutely continuous functions with derivative in L2([0, 1]).

Definition 19 (Weighted L2-Discrepancy). The weighted L2-discrepancy
of a point set P is defined as

(Dγ(P ))2 :=
∑

∅6=I⊂J
γI

∫

[0,1]|I|

(
DN(xI: 1−I)

)2
dxI .

The basis to develop weighted Koksma-Hlawka inequalities is Zaremba’s
identity; see Zaremba 1968 or Hlawka 1961b. Remember the notion of the
local discrepancy in Definition 8.
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2.2. Quasi-Monte Carlo Methods

Theorem 13 (Zaremba’s Identity).
Let f ∈ Hγ([0, 1]s) and S = (xn)n∈N be a sequence in [0, 1]s. Denote

J := {1, . . . , s} and IN(f) :=
1

N

N∑

n=1

f(xn).

Then

∫

[0,1]s

f(x) dx− IN(f) =
∑

∅6=I⊂J
(−1)|I|

∫

[0,1]|I|

DN

(
xI: 1−I

) ∂|I|
∂xI

f(xI: 1−I) dxI .

With Zaremba’s identity, the weighted Koksma-Hlawka inequality can be
derived. It provides an error estimate for quasi-Monte Carlo integration in
the weighted Hilbert space setting.

Theorem 14 (Weighted Koksma-Hlawka Inequality).
Consider f ∈ Hγ([0, 1]s) and a point set P = {x1, . . . , xN}. Then the error
bound ∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N∑

n=1

f(xn)

∣∣∣∣∣ ≤ ‖f‖γDγ(P )

holds.

Proof. We follow the proof of Sloan and Woźniakowski 1998, p. 9–10. By
expanding Zaremba’s identity (Theorem 13) with the factor γ

1/2
I , we obtain

∫

[0,1]s
f(x) dx− IN(f) =

∑

∅6=I⊂J
(−1)|I|

∫

[0,1]|I|
γ

1/2
I DN

(
xI: 1−I

)
γ
−1/2
I

∂|I|

∂xI
f(xI: 1−I) dxI .

Using the Cauchy-Schwartz inequality for the L2 inner product leads to

∣∣∣∣
∫

[0,1]s
f(x) dx− IN(f)

∣∣∣∣ ≤

∑

∅6=I⊂J

√
γI

∫

[0,1]|I|
[DN(xI : 1−I)]2 dxI

√
γ−1
I

∫

[0,1]|I|

[
∂|I|

∂xI
f(xI: 1−I)

]2

dxI

≤ Dγ(P )‖f‖γ,
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where the last step is due to the application of the Cauchy-Schwartz
inequality for the euclidean scalar product. Note that the empty set is not
excluded in the definition of the weighted Sobolev norm ‖ · ‖γ. Adding it
to the sum corresponds to adding the term f(1), which makes the sum
certainly larger and makes ‖ · ‖γ a norm instead of a semi-norm.

Weighted Koksma-Hlawka inequalities can be formulated in for functions
in non-Hilbert Sobolev spaces using the Lp norm instead of the L2 norm.

Definition 20 (Lp-Discrepancy). The Lp-discrepancy of the point set P,
for p ∈ [1,∞) is defined by

[Dγ, p(P )]p :=
∑

∅6=I⊂J
γ
p/2
I

∫

[0,1]|I|

[
DN(xI: 1−I)

]p
dxI

and for p =∞ by

Dγ,∞(P ) := sup
x∈[0,1]s

max
∅6=I⊂J

γ
1/2
I |DN(xI: 1−I)|.

Definition 21 (Weighted Sobolev spaces). Define for q ∈ [1,∞), the norm

‖f‖qγ,q :=
∑

I⊂J
γ
−q/2
I

∫

[0,1]|I|

∣∣∣∣
∂|I|

∂xI
f(xI: 1−I)

∣∣∣∣
q

dxI

and for q =∞

‖f‖γ,∞ := sup
x∈[0,1]s

max
I⊂J

γ
−1/2
I

∣∣∣∣
∂|I|

∂xI
f(xI: 1−I)

∣∣∣∣.

The weighted Sobolev space on [0, 1]s is defined by

Hγ,q([0, 1]s) := {f ∈ [W 1,q([0, 1])]s | the mixed weak partial derivatives

∂|I|

∂xI
f, I ⊂ J exist and ‖f‖γ <∞}.

Theorem 15 (Weighted Koksma-Hlawka Inequality; Lp-Version).
Let p ∈ [0,∞] and q the Hölder conjugate of p, i.e., 1/p+ 1/q = 1. Let f
be in Hγ,q([0, 1]s) and let P = {x1, . . . , xN} be a point set on [0, 1]s. Then,

∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

N

N∑

n=1

f(xn)

∣∣∣∣∣ ≤ ‖f‖γ,qDγ,p(P )

holds.

Proof. Use the Hölder inequality instead of the Cauchy-Schwartz inequality
in the proof of Theorem 14.
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2.3. Spherical Radial Decomposition

The quasi-Monte Carlo methods explained in the previous sections can
be combined with other integration techniques. The integration over the
whole space can be split into an integral over the unit sphere and an
integral over the radius. The one dimensional radius integral can be
treated by classical integration techniques or analytically and the high
dimensional sphere integral by quasi-Monte Carlo integration. This proves
to be advantageous, because the sphere integral has a lower dimension
compared to the whole space, which reduces the variance; see Ackooij and
Henrion 2014, Equation (1.5). Furthermore, we will discuss a gradient
representation for the spherical radial decomposition of a probabilistic
constraint function, which can be used for optimization. For the derivation
of the transformation, we follow Genz and Bretz 2009, Section 4.1.1.

We start by sketching the basic idea. For x ∈ Rm, consider a integrable
function f : Rm → R. By Stein and Shakarchi 2003, p. 180, the integral
over f can be transformed by writing x = rv, where v is a vector on the
unit sphere

Sm−1 := {v ∈ Rm | ‖v‖ = 1}
and r = ‖x‖. The transformation is given by

∫

Rm
f(x) dx =

∫

Sm−1

∫ ∞

0

rm−1f(rv) dr dσ(v),

where σ is the surface measure on the sphere. The integral over a cuboid
[a, b] ⊂ Rm instead of the whole space can be calculated by transforming
the boundaries for the radius integral via

rl(v) := min{r ≥ 0 | a ≤ rv ≤ b}, (2.2a)

ru(v) := max{r ≥ 0 | a ≤ rv ≤ b}. (2.2b)

The surface measure on the sphere can be normalized with the area of the
surface of the unit sphere

Hm−1(Sm−1) =
2πm/2

Γ(m
2

)
,

to obtain the uniform distribution on the sphere by u = σ/Hm−1(Sm−1),
which verifies

∫ b

a

f(x) dx =
2πm/2

Γ(m
2

)

∫

Sm−1

∫ ru(v)

rl(v)

rm−1f(rv) dr du(v). (2.3)
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We apply the method to the density function of a multivariate normal
distribution. Consider the positive definite covariance matrix Σ ∈ Rm×m,
which has the Cholesky decomposition Σ = LLT . The matrix L is a
lower triangular matrix. We discuss the case for the expected value µ = 0.
A nonzero expectation µ ∈ Rm for x is treated by the simple shift y = x−µ,
where y has an expected value of zero. The multivariate normal density
function is defined by

ϑ(x) :=
exp
(
−1

2
xTΣ−1x

)
√

(2π)m det(Σ)
.

The probability for x ∼ N (0,Σ) to lie in the box [a, b] is given by
∫ b
a
ϑ(x) dx.

To make ϑ only dependent on the norm of x, we use the transformation
Ly = x. This makes y ∼ N (0,1) a standard normal distributed random
variable. The Jacobian is given by det(L) =

√
det(Σ). The integral becomes

(2π)−m/2 det(Σ)−1/2

∫ b

a

exp
(
−1

2
xTΣ−1x

)
dx = (2π)−m/2

∫

a≤Ly≤b

exp
(
−1

2
yTy
)

dy.

Using the transformation (2.3), the probability function can be rewritten
as

∫ b

a

ϑ(x) dx =
21−m/2

Γ(m
2

)

∫

‖v‖=1

∫ ru(Lv)

rl(Lv)

rm−1 exp
(
−r2/2

)
dr du(v) (2.4)

with rl and ru as in Equations (2.2).

The integrand in Equation (2.4) is the probability density function of
the chi distribution with m degrees of freedom given by

fχ(x) =
21−m/2

Γ(m
2

)
xm−1 exp

(
−x2/2

)
, for x ≥ 0

and fχ(x) = 0, for x < 0. This allows us to write (2.4) as

∫ b

a

ϑ(x) dx =

∫

‖v‖=1

∫ ru(Lv)

rl(Lv)

fχ(r) dr du(v). (2.5)

See Figure 2.2 for the idea.
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Figure 2.2.: Evaluation of the probabilistic constraint by a direct approach
and by spherical radial decomposition

0
0

z1

z2

ϑ(z)

(a) The density function of the normal
distribution over a set M. The inte-
gral can be directly approximated
by crude (quasi-)Monte Carlo sam-
pling. Sample points that are not
in M are rejected.

0
0

z1

z2

ϕ(r)

(b) Spherical radial decomposition:
For each vector v ∈ Sm−1 the cu-
mulative distribution function of
the chi-distribution is evaluated
along Lv up the boundary of M.
The value of the cumulative distri-
bution function corresponds to the
green area in the figure.

2.3.1. Spherical Radial Decomposition in Chance
Constrained Programming

The spherical radial decomposition is a useful tool to treat the chance
constrained optimization problem of the introduction of this chapter. A
preliminary version of the following sections has been made publicly avail-
able online; see Wintergerst 2017.

Let f : Rn → R and g : Rn × Rm → R be continuously differentiable
functions, and let ξ ∼ N (0,Σ) be a normal distributed random vector with
realizations in Rm. The positive definite covariance matrix Σ ∈ Rm×m has
the Cholesky decomposition Σ = LLT . Consider the optimization problem

min
x∈Rn

f(x)

s.t. P(g(x, ξ) ≤ 0) ≥ pbd.

Denote the chi distribution by χ and define

e(x, v) := χ({r ≥ 0 : g(x, rLv) ≤ 0}). (2.6)

111



CHAPTER 2. Chance Constrained Optimization

Then, a representation of G(x) := P(g(x, ξ) ≤ 0) is given by

G(x) =

∫

v∈Sm−1

e(x, v) du(v), (2.7)

where u is the uniform distribution over the sphere.

Definition 22 (Set of Feasible Realizations). For a fixed optimization
variable x ∈ Rn, denote the set of feasible realizations by

M(x) := {z ∈ Rm | g(x, z) ≤ 0}

and its boundary by

N(x) := {z ∈ Rm | g(x, z) = 0}.

2.3.2. Gradient Representation for a Single Constraint

To apply efficient optimization algorithms, an analytic representation of
the gradient of the probability function is desirable. In the articles Ackooij
and Henrion 2014 and Ackooij and Henrion 2017 such a representation
is given, under the strong assumption that the function g is convex in
the second argument. We generalize this to the case, where it is not
assumed that the function g is convex. Instead, we only require the sets of
feasible realizations M(x) to be convex and bounded. We follow the ideas
of Ackooij and Henrion 2014, while adapting the argumentation for the new
assumptions. Throughout this section, we pose the following assumptions
to the point x ∈ Rn, where we want to differentiate the probability function:

(A1) The sets M(y) are convex in a neighborhood U of x.

(A2) The set M(x) is bounded.

(A3) The function g : Rn × Rm → R is continuously differentiable.

(A4) The gradient ∇zg(x, z) is nonzero on the set N(x).

(A5) The point (x, 0) is a Slater-point, i.e., g(x, 0) < 0.

Remark 14. The assumption (A1) is significantly weaker than imposing
the convexity of the function g(x, · ). The function g(x, · ) does not even
have to be quasiconvex for (A1) to be fulfilled. For example, consider
g : R× R→ R with

g(x, z) := x z(z − 1)(z − 3)(z − 4)− 5x
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0

0

z

g(x̄, z)

L0 = M(x̄)

L−2.5

Figure 2.4.: The function ful-
fills (A1) at the point x̄ as the
level set L0 := M(x̄) (in blue) is
convex. However, the function
is not quasiconvex in the second
argument, because the level set
L−2.5 := {z ∈ R | g(x̄, z) ≤ −2.5}
(in red) is not convex.

at the point x̄ = 1. Its graph is shown in Figure 2.4. The function g(x̄, · )
is not quasiconvex, yet (A1) is fulfilled in the point x̄.

Remark 15. The nonzero gradient assumption

∇zg(x, z) 6= 0, for z ∈ N(x)

is fulfilled if g(x, · ) is convex. This can be shown as follows: Suppose
∇zg(x, z) = 0, then using, in this order, the convexity of g(x, · ), the
equation g(x, z) = 0 and the Slater condition (A5) yields

0 = ∇zg(x, z)T (0− z) ≤ g(x, 0)− g(x, z) = g(x, 0) < 0,

which is a contradiction.

Remark 16. Assumption (A5) is no severe restriction for a symmetrical
probability distribution with expected value 0. If 0 is a point on the
boundary of M(x), the convexity of M(x) implies that M(x) is contained
in a halfspace defined by a separating plane through 0. This, however
implies that G(x) ≤ 0.5.

For applications, we are typically interested in points G(x) ≥ pbd for a
pbd close to 1 or, to phrase it differently: Points that do not fulfill (A5) are
not feasible with respect to the constraint G(x) ≥ pbd for pbd > 0.5.

Our goal is to show a gradient representation of the form

∇G(x) = −
∫

v∈Sm−1

fχ(r(x, v))

∇zg(x, r(x, v)Lv)TLv
∇xg(x, r(x, v)Lv) du(v), (2.8)

where r(x, v) > 0 is chosen such that g(x, r(x, v)Lv) = 0 and fχ is the
probability distribution function of the chi distribution. The key points
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to show are the following: The denominator in Equation (2.8) does not
approach zero, and a locally unique continuously differentiable function r
with g(x, r(x, v)Lv) = 0 exists in a neighborhood of a given point (x, v).

Lemma 25 (Nonzero directional derivative).
For a direction v, let rv > 0 be a scalar fulfilling

g(x, rvLv) = 0, (2.9)

which exists, because M(x) is bounded by Assumption (A2).
Then, there is a constant C > 0 such that

∇zg(x, rvLv)TLv > C for all v ∈ Sm−1. (2.10)

Proof. First, note that

∇zg(x, rvLv)TLv ≥ 0, (2.11)

as by (2.9) and the convexity of M(x) stated in (A1),

g(x, rvLv + tLv)− g(x, rvLv) = g(x, (rv + t)Lv) ≥ 0,

holds. Suppose that
∇zg(x, rvLv)TLv = 0.

Define the affine linear (half-)spaces

H=(x) := {rvLv + z | z ∈ Rm : ∇zg(x, rvLv)T z = 0},
H≤(x) := {rvLv + z | z ∈ Rm : ∇zg(x, rvLv)T z ≤ 0},
H>(x) := {rvLv + z | z ∈ Rm : ∇zg(x, rvLv)T z > 0}.

Because of ∇zg(x, rvLv)T (−rvLv) = 0, the point 0 is in H=(x). Since the
set M(x) is convex, the inclusion

M(x) ⊂ H≤(x) (2.12)

holds. In a ball
Bε(0) := {y ∈ Rm | ‖y‖ < ε}

around 0, we have g(x, y) < 0 for y ∈ Bε(0), because of the generalized
Slater condition (A5). Choose a point y ∈ H>(x)∩Bε(0). Because the origin
lies in H=(x) and the gradient∇zg(x, rLv) is nonzero, the set H>(x)∩Bε(0)
is nonempty. The strict inequality

g(x, y) < 0,
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M(x)

Bε(0)

0

H=(x)

rLv M(x)

0

H=(x)

rLv

Figure 2.5.: If the directional derivative is zero, while the z-gradient at rLv
is not, then either the Slater point 0 is not an interior point or
the set M(x) is not convex.

holds, since y ∈ Bε(0). However, as y lies in H>(x) = C
(
H≤(x)

)
, the

Inclusion (2.12) implies that y /∈M(x). This is a contradiction to

y ∈ Bε(x) ⊂M(x).

Therefore, ∇zg(x, rvLv)TLv 6= 0 holds and, by Equation (2.11), the in-
equality

∇zg(x, rvLv)TLv > 0

follows. The idea of this step is illustrated in Figure 2.5. The boundedness
of M(x) implies that the maximum possible radius rv is bounded from
above by a constant r̄, while the Slater condition (A5) ensures it is bounded
from below with a positive lower bound r. Furthermore, by the continuity
of g the set N(x) is closed. Hence, the minimum of the continuous function

(v, rv) 7→ ∇zg(x, rvLv)TLv

is attained and we can choose

C = min{∇zg(x, rvLv)TLv | v ∈ Sm−1, rv ∈ [r, r̄] : rvLv ∈ N(x)} > 0.

Before we begin the construction of the radius function r( · , · ), we show
that Assumption (A4) extends to a neighborhood of x. This prevents the
situation of Figure 2.6 for small changes of x.

Lemma 26 (Nonzero Gradient in a Neighborhood).
Let

∇zg(x, z) 6= 0 ∀z ∈ N(x)
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M(x)

N(x)

Figure 2.6.: In the Figure, the func-
tion g is locally constant, which means
that the boundary N(x) of M(x) is
given by an area instead of a line.
This situation is avoided by Assump-
tion (A4).

Then, there exists a neighborhood U of x such that for all y ∈ U

∇zg(y, z) 6= 0 ∀z ∈ N(y).

Proof. Observe that ∇zg(x, z) 6= 0 near the set N(x), i.e.,

∇zg(x, z) 6= 0 on Nε(x) := {z ∈ Rm | dist(z,N(x)) < ε}, (2.13)

for ε > 0 small enough. This is true, because N(x) is compact, which
implies the existence of a c > 0 such that

‖∇zg(x, z)‖ > c on N(x).

Therefore, Equation (2.13) holds by the continuity of the gradient. By
choosing U small enough to guarantee N(y) ⊂ Nε(x) for y ∈ U we obtain

∇zg(y, z) 6= 0 for all z ∈ N(y) ⊂ Nε(x).

The next step is to show the existence of a continuously differentiable
radius function, that fulfills g(x, r(x, v)Lv) = 0. This is a consequence of
the implicit function theorem (Theorem A). The results of the following
Lemma are analogous to Ackooij and Henrion 2014, Lemma 3.2 and parts
of its proof are similar.

Lemma 27 (Implicit Function for the Radius).
There exist neighborhoods U of x, V of v and a continuously differentiable
function r : U × V → R≥0 such that

a) For all (y, w, s) ∈ U × V × R≥0, we have

g(y, sLw) = 0 ⇐⇒ s = r(y, w).
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b) For all (y, w) ∈ U × V the gradient representation

∇xr(y, w) = − 1

∇zg(y, r(y, w)Lw)TLw
∇xg(y, r(y, w)Lw)

holds.

Proof. The inequality

∇zg(x, rLv)TLv ≥ C > 0

from Lemma 25 allows us to apply the implicit function theorem (Theo-
rem A) to the Equation

g(x, rvLv) = 0,

to derive the existence of neighborhoods U of x, V of v and W of rv such
that a continuously differentiable function r : U×V → W exists and fulfills
the equivalence

g(y, sLw) = 0, (y, w, s) ∈ U × V ×W ⇐⇒ s = r(y, w), (y, w) ∈ U × V.

By choosing U sufficiently small, it is guaranteed that r maps to R≥0 and,
due to the continuity of the function g, that

g(y, 0) < 0 for all y ∈ U.

Because of Lemma 26, by further shrinking U, we obtain

∇zg(y, z) 6= 0 for all z ∈ N(y) ⊂ Nε(x)

if y lies in U. Consequently, choosing

0 < s = r(y, w), (y, w) ∈ U × V

implies

g(y, sLw) = 0, for all (y, w, s) ∈ U × V ×W, where W ⊂ R+.

For the converse implication in a), we have to show the uniqueness
of the root of the function g(y, ·Lw) in R>0. We assume the contrary.
Suppose there is a r∗ ∈ R≥0 not equal to r(y, w) fulfilling g(y, r∗Lw) = 0,
for (y, w) ∈ U × V. Consider the case r∗ > r(y, w). By the convexity of
M(y), the point

[r(y, w) + λ(r∗ − r(y, w))]Lw
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is feasible for all λ ∈ [0, 1]. This yields

0 ≥ g(y, [r(y, w) + λ(r∗ − r(y, w))]Lw)

(by the Taylor formula)

= g(y, r(y, w)Lw) + λ(r∗ − r(y, w))∇zg(y, θLw)TLw, (2.14)

where θ ∈ [r(y, w), r(y, w) + λ(r∗ − r(y, w))]. By Lemma 25, the bound

∇zg(x, r(x, v)Lv)TLv ≥ C > 0

holds and we have, due to the continuity of the gradient,

∇zg(y, r(y, w)Lw)TLw ≥ D for a D ∈ (0, C).

Hence, it is possible to choose a neighborhood W̃ of r(y, w), where

∇zg(y, rLw)TLw ≥ D
2

holds for r ∈ W̃ .

For λ > 0 small enough, θ lies in W̃ . Continuing (2.14), we obtain

0 ≥ g(y, r(y, w)Lw) + λ(r∗ − r(y, w))∇zg(y, θLw)TLw

≥ λ(r∗ − r(y, w))D
2
> 0,

which is a contradiction. The case r(y, w) > r∗ can be treated analogously
by exchanging the roles of r∗ and r(y, w). For an illustration of this idea
see Figure 2.7.

Equation b) holds by the implicit function theorem.

With the radius function r, we can represent the function e defined in (2.6)
as well as the gradient of e. This allows us to deduct (2.8) from (2.7).

Lemma 28 (Characterization of e(x, v)).
Remember the Definition (2.6) given by

e(x, v) := χ({r ≥ 0 : g(x, rLv) ≤ 0}),

where χ is the measure of the chi-distribution. There exist neighborhoods
U of x and V of v such that for y ∈ U and w ∈ V,

e(y, w) = Fχ(r(y, w)) (2.15)

holds, where Fχ is the cumulative distribution function of the chi-distribution.
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0

0
r∗ r′

r

g(x, rLv)

0

0
r∗ r′

r

g(x, rLv)

Figure 2.7.: A non unique root of g(x, ·Lv) (marked by the blue dots)
implies either that the directional derivative becomes zero or
that the feasible set (depicted by the green line) is nonconvex.

Proof. Choose the neighborhoods U and V according to Lemma 27. Then,
by Lemma 27 a), we obtain

e(y, w) := χ
(
{r ≥ 0 : g(y, rLw) ≤ 0}

)

= χ
(
[0, r(y, w)]

)

= Fχ
(
r(y, w)

)
for all (y, w) ∈ U × V,

because the chi-distribution is zero for negative values.

This leads to the gradient representation of e.

Corollary 4 (Gradient of e(x, v)).
The function e : Rn × Sm−1 → R is continuously differentiable with respect
to x and its gradient is given by

∇xe(x, v) = − fχ(r(x, v))

∇zg(x, r(x, v)Lv)TLv
∇xg(x, r(x, v)Lv),

where fχ is the density of the chi-distribution with m degrees of freedom
and r is the function of Lemma 27.

Proof. The application of the chain rule to Equation (2.15) together with
Lemma 27 b) and

F ′χ(r(x, v)) = fχ(r(x, v))
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yields the formula for the partial derivatives. Because

∇zg(x, r(x, v)Lv)TLv ≥ C > 0

holds and all functions in the formula are continuous, the function ∇xe( · , v)
is continuous.

Now we have the necessary tools to prove the gradient representa-
tion (2.8).

Theorem 16 (Gradient Formula for the Probability Function).
Let Assumptions (A1)-(A5) hold in x ∈ Rn.

Then, G is continuously differentiable in a neighborhood U of x and its
gradient is given by

∇G(y) = −
∫

v∈Sm−1

fχ(r(y, v))

∇zg(y, r(y, v)Lv)TLv
∇xg(y, r(y, v)Lv) du(v),

for all y ∈ U.

Proof. By Lemma 26 and assumption (A4), we have

∇zg(y, z) 6= 0 ∀z ∈ N(y),

provided we choose y in a sufficiently small neighborhood U of x. The conti-
nuity of g together with (A2) implies M(y) is bounded in each neighborhood
of x. Using the representation (2.7) we have

∇G(y) = ∇
∫

v∈Sm−1

e(y, v) du(v). (2.16)

To differentiate under the integral, we want to apply Lebesgue’s dominated
convergence theorem. Therefore, we have to show that ‖∇xe(y, v)‖ is
bounded for all directions v ∈ Sm−1. By Corollary 4 we have

‖∇xe(y, v)‖ =
|fχ(r(y, v))|

|∇zg(y, r(y, v)Lv)TLv|‖∇xg(y, r(y, v)Lv)‖

≤ 1

C
max
v∈Sm−1

‖∇xg(y, r(y, v)Lv)‖,

where we used Lemma 25 and the fact that fχ is bounded by 1. The
occurring maximum exists as a consequence of the Weierstrass theorem,
because the sphere Sm−1 is compact and ∇xg(y, r(y, · )L · ) is continuous
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(the continuity of r is a result of Lemma 27). Hence, we can differentiate
under the integral in (2.16) and obtain

∇G(y) =

∫

v∈Sm−1

∇xe(y, v) du(v)

(by Corollary 4)

= −
∫

v∈Sm−1

fχ(r(y, v))

∇zg(y, r(y, v)Lv)TLv
∇xg(y, r(y, v)Lv) du(v).

2.3.3. Gradient Representation for Multiple Constraints

In the previous section, we have treated the case of a real-valued constraint
function g : Rn × Rm → R. In this section, we consider a vector-valued
constraint function g : Rn × Rm → Rp and the joint chance constraint or
joint probabilistic constraint

G(x) := P(g(x, ξ) ≤ 0) ≤ pbd.

This case was considered in Ackooij and Henrion 2017 under the assump-
tion that g(x, · ) is convex. We follow the basic line of argumentation
therein, but adapt it to our assumptions. Define the maximum function
gm : Rn × Rm → R

gm(x, z) := max
i=1,...,p

gi(x, z). (2.17)

Note that gm is not differentiable in general.

Definition 23 (Set of Feasible Realizations). Define the set of feasible
realizations for all components, the set of feasible realizations for the i-th
component and its boundary for the i-th component as

M(x) := {z ∈ Rm | g(x, z) ≤ 0},
Mi(x) := {z ∈ Rm | gi(x, z) ≤ 0},
Ni(x) := {z ∈ Rm | gi(x, z) = 0}.

Definition 24 (Sets of Finite and Infinite Directions). We denote the sets
of finite and infinite directions by

Fi(x) := {v ∈ Sm−1 | ∃r > 0 : gi(x, rLv) = 0},
Ii(x) := {v ∈ Sm−1 | ∀r > 0 : gi(x, rLv) < 0}.
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Throughout this section, we assume that in the point x ∈ Rn, where we
want to differentiate, the following holds:

(B1) The sets Mi(y) are convex for y in a neighborhood U of x.

(B2) The set M(x) is bounded.

(B3) The functions gi : Rn × Rm → R are continuously differentiable.

(B4) The gradients ∇zgi(x, z) are nonzero on the sets Ni(x).

(B5) The point (x, 0) is a Slater-point, i.e., gm(x, 0) < 0.

The indices i are in {1, . . . , p}. Under this assumptions, directions in a
finite direction v ∈ Fi(x) stay finite. We formulate this in a Lemma.

Lemma 29 (The Set of Finite Directions is Open).
For a fixed index i ∈ {1, . . . , p}, the set Fi(x) is open.

Proof. Because Fi(x) and Ii(x) are complements of each other, the equality

Fi(x) = Sm−1 \ Ii(x)

holds and it is equivalent to show that Ii(x) is closed. Let us assume it is
not. Then, there is a sequence

(vk)k∈N ⊂ I(x) with lim
k→∞

vk = v

such that v ∈ Fi(x). By the definition of Fi(x), there exists a r̄ > 0 with
gi(x, r̄Lv) = 0. Since Mi(x) is convex and ∇zgi(x, z) 6= 0 on Ni(x), we have

gi(x, (r̄ + t)Lv) > 0 for t > 0

and moreover, by the continuity of gi, we have

gi(x, z) > 0 for all z ∈ Bε((r̄ + t)Lv)

if the ball Bε((r̄ + t)Lv) around (r̄ + t)Lv is sufficiently small. However,
since vk converges to v, the vector (r̄ + t)Lvk lies in Bε((r̄ + t)Lv) for k
sufficiently large. This shows

gi(x, (r̄ + t)Lvk) > 0,

whereas the Slater condition states

gi(x, 0) < 0.
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Now Bolzano’s intermediate value theorem implies the existence of a scalar
r ∈ (0, r̄ + t) such that

gi(x, rLv
k) = 0.

This contradicts vk ∈ Ii(x) and proves the Lemma.

Next, we show that the directional derivative in direction Lv is locally
bounded from below.

Corollary 5 (Locally Bounded Directional Derivative).
Consider the case, where Mi(x) is not bounded. Then, for a given v ∈ Fi(x),
there is a neighborhood V of v and a constant C > 0 such that

∇zgi(x, rvLv)TLv > C for all v ∈ V.

Proof. By Lemma 29 the set F(x) is open, hence it is possible to choose a

neighborhood of v fulfilling Ṽ ⊂ F(x). Choose a sufficiently small subset

V ⊂ Ṽ such that cl(V ) ⊂ Ṽ .

One can completely follow the proof of Lemma 25 up to its last paragraph,
where it is necessary to replace Sm−1 by cl(V ) and choose

C = min{∇zgi(x, rvLv)TLv | v ∈ cl(V ), rv ∈ [r, r̄] : rvLv ∈ Ni(x)} > 0,

which shows the claim.

For each active constraint, we retain results similar to Section 2.3.2. This
will allow us to characterize the Clarke subdifferential of the probability
function.

Definition 25 (Set of Active Constraints). We denote the set of active
constraints by

A(x, v) := {i ∈ {1, . . . , p} | ∃r > 0 : gi(x, rLv) = 0}.

Corollary 6 (Implicit Function for the Radius for the Active Constraints).
For any active index i ∈ A(x, v), there exist neighborhoods U of x, V of v
and a continuously differentiable function ri : U × V → R≥0 such that

a) For all (y, w, s) ∈ U × V × R≥0, we have

gi(y, sLw) = 0 ⇐⇒ s = ri(y, w).
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b) For all (y, w) ∈ U × V the gradient formula

∇xri(y, w) = − 1

∇zgi(y, ri(y, w)Lw)TLw
∇xgi(y, ri(y, w)Lw)

holds.

Proof. Lemma 29 states that for a finite direction v ∈ Fj(x), there is a
neighborhood V, such that w ∈ Fj(x) for all w ∈ V. By the continuity of gi,
the direction w ∈ Fj(x) also fulfills w ∈ Fj(y) for y in a sufficiently small
neighborhood U of x. By Corollary 5, the directional derivative is bounded
by C > 0 in the following way:

∇zgi(x, rwLw)TLw > C for all w ∈ V.
This brings us in the situation of Lemma 27 and its proof applies.

With the result for the active components of g, the Clarke-subdifferential
of the minimal radius function can be characterized.

Definition 26 (Clarke-Subdifferential, Clarke 1990, p. 10). Let the function
f : Rn → R be locally Lipschitz continuous. The Clarke-directional
derivative in direction d ∈ Rn is defined as

f ◦(x; d) := lim sup
y→x
h↘0

f(y + hd)− f(y)

h
.

The Clarke-subdifferential is defined as the set of linear functionals that
are dominated by the Clarke-directional derivative for all directions, i.e.,

∂f(x) := {l ∈ Rn | lTd ≤ f ◦(x; d) for all d ∈ Rn}.
We choose the Clarke-subdifferential, because it is convenient. How-

ever, our results can be adapted to other subdifferentials, for example
by Demyanov, Rubinov and Mordukhovich (see Knossalla 2015 for an
overview).

Lemma 30 (Implicit Function for the Radius for Multiple Constraints).
Let the point (x, v) be in Rn× Sm−1. Apply Corollary 6 for each component
gi of g with i ∈ A(x, v) to get the functions ri defined on the neighborhoods
Ui of x and Vi of v. Furthermore, define the intersections

Ũ :=
⋂

i=1,...,p

Ui and Ṽ :=
⋂

i=1,...,p

Vi.

The following results hold: There exist neighborhoods U ⊂ Ũ of x and
V ⊂ Ṽ of v such that
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a) the mapping r : Ũ × Ṽ → R≥0 defined as

r(y, w) := min{ri(y, w) | i ∈ A(x, v)}

fulfills the equivalence

gm(y, sLw) = 0 ⇐⇒ s = r(y, w),

for all (y, w, s) ∈ U × V × R≥0.

b) the partial Clarke-subdifferential of r with respect to x is given by

∂xr(y, w) = conv{∇xri(y, w) : i ∈ Ix,v(y, w)}

for (y, w) ∈ U × V, with the index set

Ix,v(y, w) := argmin{ri(y, w) | i ∈ A(x, v)}.

Proof. The existence of the functions ri(y, w) for i ∈ A(x, v) is due to
Corollary 6.

The forward direction of the implication

s = r(y, w) =⇒ gm(y, sLw) = 0

can be shown as follows: If j ∈ A(x, v) is such that r(y, w) = rj(y, w), we
have

0 = gj(y, rj(y, w)Lw) = gj(y, r(y, w)Lw).

If gm(y, r(y, w)Lw) = 0 holds, the implication is true. Suppose

gm(y, r(y, w)Lw) > 0.

The continuity of the functions gi implies the continuity of the function gm.
Due to Assumption (B5), we have gm(y, 0) < 0, for y in a sufficiently small
neighborhood U . By Bolzano’s intermediate value theorem, there exists a
radius

r∗ ∈ (0, r(y, w)) such that gm(y, r∗Lw) = 0

holds. Let k ∈ A(x, v), k 6= j be an index that fulfills the equation

0 = gm(y, r∗Lw) = gk(y, r
∗Lw).

By Corollary 6 this is equivalent to r∗ = rk(y, w). However, as r∗ lies in
(0, r(y, w)), we obtain

min{ri(y, w) | i ∈ A(x, v)} = r(y, w) > r∗ = rk(y, w),
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which contradicts the minimality in the choice of r(y, w).
For the converse implication

gm(y, sLw) = 0 =⇒ s = r(y, w),

we start with (y, w, s) ∈ U × V × R≥0 such that gm(y, sLw) = 0. For an
index j that fulfills

gm(y, sLw) = gj(y, sLw) = 0,

we have by Corollary 6 that s = rj(y, sLw). Suppose that rj is not minimal,
i.e.,

r(y, w) < rj(y, w)

and that the minimal radius is attained for the index k 6= j, i.e.,

gm(y, r(y, w)Lw) = gk(y, r(y, w)Lw) = 0.

The convexity of M(x) from Assumption (B1) implies that each convex
combination r(y, w) + λ(s− r(y, w)) for λ ∈ [0, 1] is feasible. Hence,

0 ≥ gm(y, r(y, w) + λ(s− r(y, w))Lw)

(by the definition gm)

≥ gk(y, r(y, w) + λ(s− r(y, w))Lw)

(by the Taylor theorem)

= gk(y, r(y, w)) + λ(s− r(y, w))∇zgk(y, θLw)TLw,

(since gk(y, r(y, w)) = 0 holds)

= λ(s− r(y, w))∇zgk(y, θLw)TLw,

where θ ∈ [r(y, w), λ(s− r(y, w))]. Now we are in the situation of the proof
of Lemma 27 and can follow it from Equation (2.14) onwards under the use
of Corollary 5 to obtain a contradiction. Therefore, we have s = r(y, w),
which shows a).

For the statement in b), we use Corollary 6b), which states that for an
index i ∈ A(x, v) and (y, w) ∈ U × V, the gradient formula

∇xri(y, w) = − 1

∇zgi(y, r(y, w)Lw)TLw
∇xgi(y, r(y, w)Lw)
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holds. Since the functions ri(y, w), i ∈ A(x, v) are continuously differen-
tiable, they are regular1 in the sense of Clarke. Therefore by Clarke 1990,
Proposition 2.3.12, we have

∂xr(y, w) = ∂x(min{ri(y, w) | i ∈ A(x, v)})
= conv{∇xri(y, w) | i ∈ Ix,v(y, w)},

where Ix,v(y, w) is the set of indices that attain the minimal radius, i.e.,

Ix,v(y, w) := argmin{ri(y, w) | i ∈ A(x, v)}.

This shows b) and concludes the proof.

The next steps are straightforward: We characterize the function e in the
case of multiple constraints and obtain its subdifferential as a consequence
of the subdifferential representation of the radius in Lemma 30. This leads
to a subdifferential characterization of the probability function G. As in
the case of one constraint, an argument for exchanging the subdifferential
with the integral is needed.

Definition 27. Define the function e : Rn × Sm−1 → R as

e(x, v) := χ
(
{r ≥ 0 : gm(x, rLv) ≤ 0}

)
.

Corollary 7 (Characterization of e for Multiple Constraints).
There exist neighborhoods U of x and V of v such that

e(y, w) = Fχ(r(y, w)), y ∈ U, w ∈ V (2.18)

where Fχ is the cumulative distribution function of the chi-distribution and
r is defined as in Lemma 30b).

Proof. Follow the proof of Lemma 28.

Corollary 8 (Partial subdifferential of e).
The partial Clarke subdifferential of the function e : Rn × Sm−1 → R is
given by

∂xe(x, v) = fχ(r(x, v)) conv{∇xri(x, v) | i ∈ Ix,v(x, v)}.
1the directional derivative exists and is identical with the Clarke-directional derivative
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Proof. We use the representation e(x, v) = Fχ
(
r(x, v)

)
from Corollary 7 and

the chain rule for the Clarke-subdifferential Clarke 1990, Theorem 2.3.10
as well as F ′χ = fχ. This yields

∂xe(x, v) = fχ(r(x, v)) ∂xr(x, v)

and Lemma 30b) implies the result.

Similar to the gradient representation of Theorem 16 for one constraint,
we obtain a subdifferential representation for multiple constraints.

Theorem 17 (Subdifferential of G).
Let Assumptions (A1)–(A5) hold in x ∈ Rn. Then, the Clarke-subdifferential
of G is nonempty for all y in a neighborhood U of x and characterized by

∂G(y) ⊂
∫

v∈Sm−1

fχ
(
r(y, v)

)
conv{∇xri(y, v) | i ∈ Iy,v(y, v)} du(v),

where

∇xri(y, v) = − 1

∇zgi(y, r(y, v)Lv)TLv
∇xgi(y, r(y, v)Lv),

for i ∈ Iy,v(y, v).

Remark 17. The integral is to be understood as the set of integrals over all
measurable selections (see Kuratowski and Ryll-Nardzewski 1965) of

∂xe(y, v) = fχ
(
r(y, v)

)
conv{∇xri(y, v) | i ∈ Iy,v(y, v)}.

This means to every subgradient l ∈ ∂G(y) corresponds a measurable
mapping

hl : Sm−1 → Rn, v 7→ lv

such that lv ∈ ∂xe(y, v) holds u-almost everywhere, hl is in L1(Sm−1,Rn;u)
and

∫

v∈Sm−1

∂xe(y, v) du(v) =

{∫

v∈Sm−1

hl(v) du(v) | l ∈ ∂G(y)

}
.

Proof of Theorem 17. We have

∂G(y) = ∂

∫

v∈Sm−1

e(y, v) du(v). (2.19)
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To interchange the subdifferential with the integral, we use Clarke 1990,
Theorem 2.7.2. Clearly, the space Rn is separable and by Corollary 7 there
is a neighborhood V of v for each v ∈ Sm−1 such that

e(y, w) = Fχ(r(y, w)),

which, noting that r(y, · ) is the minimum over continuous functions, is a
continuous function and thus measurable. It remains to assert the Lipschitz
continuity of e( · , v) on U. As its subdifferential is known for each y ∈ U , the
Lipschitz constant can be estimated by the norm of the largest subgradient
due to a generalized version of the mean value theorem, see Lebourg 1979,
Theorem 1.7. By Corollary 8 each subgradient l ∈ ∂xe(y, v) can be written
as

l = fχ(r(y, v))
∑

i∈Ix,v(y,v)

λi∇xri(y, v), λi ∈ [0, 1],
∑

i∈Ix,v(y,v)

λi = 1. (2.20)

Because the set M(y) is bounded due to Assumption (B2), the function
r(y, v) is bounded as a consequence of Lemma 30a). The continuity of fχ
implies the boundedness of fχ(r(y, v)). Therefore, the boundedness of each
gradient

∇xri(y, v), i ∈ Iy,v(y, v)

is sufficient to prove the boundedness of l. Corollary 6 provides the repre-
sentation

∇xri(y, v) = − 1

∇zgi(y, ri(y, v)Lv)TLv
∇xgi(y, ri(y, v)Lv).

Clearly, ∇xgi(y, ri(y, v)Lv) is bounded on U × Sm−1 since g is continuously
differentiable due to (B3) and ri(y, v) is bounded. We need to show
that ∇zg(x, ri(y, v)Lv)TLv is bounded away from zero. By an analogous
argumentation as in the proof of Lemma 25, it is sufficient to show that
the sets of directions

Vi(y) := {v ∈ Sm−1 | i ∈ Iy,v(y, v)},
such that the i-th radius function ri(y, w) stays minimal, are compact for
y ∈ U. By Lemma 30a) and Corollary 6, we have

i ∈ Iy,v(y, v) ⇐⇒ gm(y, ri(y, v)Lv) = 0.

The continuity of gi and ri(y, · ) imply that for a convergent sequence
{wk} ⊂ Vi(y) with limit w the equality

gm(y, ri(y, w)Lw) = 0
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holds true. This shows r(y, w) = ri(y, w) and hence i ∈ Iy,w(y, w). Con-
sequently w ∈ Vi(y) holds, which asserts that Vi(y) is closed. Together
with its boundedness implied by ‖v‖ = 1, the compactness of Vi(y) follows.
Hence, we have to consider the continuous functions

Cij(y) := min
v∈Vi(y)

∇zgj(y, r(y, v)Lv)TLv

for i ∈ {1, . . . , p} and j ∈ Iy,v(y, v). The construction with the sets Vi(y)
is needed, because the sets Mi(y) do not need to be bounded, but the sets

{rLv | v ∈ Vi, r > 0} ∩Mi(y)

are bounded. This allows to adapt the argument of Lemma 25. Thus, we
know that

min
v∈Vi(y)

∇zgj(y, r(y, v)Lv)TLv

is bounded away from zero for each admissible combination of i and j and
hence

inf
y∈U

Cij(y) > C > 0.

Consequently, the inequality |l| ≤ K for each l ∈ ∂xe(y, v) for a K > 0
follows from the representation (2.20) and subsequently e( · , v) is Lip-
schitz continuous in U. Finally, the exchange of subdifferential and integral
in (2.19) is justified and we obtain

∂G(y) ⊂
∫

v∈Sm−1

∂xe(y, v) dµζ(v).

Application of Corollary 8 yields the claim.

2.3.4. Differentiability of the Probability Function

To obtain differentiability of G, it is sufficient to show that the subdifferen-
tial of G contains only one subgradient. This is the case if the right hand
side of the formula of Theorem 17 contains only one element. Therefore
a sufficient condition is given by the assumption that the set of vectors
v ∈ Sm−1 with more than one active constraint is of measure zero, because
then the convex hull is taken over only one gradient. Let us formalize this
in a Theorem.
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2.3. Spherical Radial Decomposition

Theorem 18 (Sufficient Condition for Differentiability, Ackooij and Hen-
rion 2017, Theorem 4.1).
Let Assumptions (B1)-(B5) hold in x ∈ Rn. Furthermore, assume that

u
({
v ∈ Sm−1 | |Iy,v(y, v)| > 1

})
= 0,

for all y ∈ U.
Then, the function G is differentiable in U and its gradient is given by

∇G(y) =

∫

v∈Sm−1:
|Iy,v(y,v)|=1

fχ(ri(v)(y, v)) ∇xri(v)(y, v) du(v),

where

∇xri(y, v) = − 1

∇zgi(y, ri(y, v)Lv)TLv
∇xgi(y, ri(y, v)Lv)

and i(v) is the single index in Iy,v(y, v).

Proof. The Lipschitz continuity of e( · , v) was shown in the proof of Theo-
rem 17. It ensures that the subdifferential of G is nonempty. Because the
set {

v ∈ Sm−1 | |Iy,v(y, v)| > 1
}

has measure zero, it can be excluded from integration. Therefore,

∂G(y) ⊂
∫

v∈Sm−1

fχ(r(y, v)) conv{∇xri(y, v) | i ∈ Iy,v(y, v)} du(v)

=

∫

v∈Sm−1:
|Iy,v(y,v)|=1

fχ(ri(v)(y, v)){∇xri(v)(y, v)} du(v).

The facts that the left hand side is nonempty and the right hand side
contains only one element lead us to the conclusion that equality holds and
G is indeed differentiable.

It is not easy to verify the zero measure condition directly. The rank 2
constraint qualification (R2CQ) for the gradients of g is easier to verify and
implies the zero measure condition.
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Definition 28 (Rank 2 Constraint Qualification (R2CQ), Ackooij and
Henrion 2017, Section 4). The functions gi satisfy the rank 2 constraint
qualification (R2CQ) if

rank{∇zgi(x, z),∇zgj(x, z)} = 2,

for all pairs i, j ∈ J (x, z) with i 6= j, and all z ∈M(x), with the index set
J (x, z) given by

J (x, z) := {i ∈ {1, . . . , p} | gi(x, z) = 0}.

Lemma 31 (Zero Measure Condition under (R2CQ), Ackooij and Henrion
2017, Lemma 4.3).
If g satisfies the (R2CQ) at the point x, then

u
{
v ∈ Sm−1 | |Ix,v(x, v)| > 1

}
= 0.

Proof. See the proof of Ackooij and Henrion 2017, Lemma 4.3.

Therefore Theorem 18 can be formulated under (R2CQ).

Corollary 9 (Theorem 18 under (R2CQ), Ackooij and Henrion 2017,
Corollary 4.4).
Theorem 18 holds if the zero measure condition

u
{
v ∈ Sm−1 | |Iy,v(y, v)| > 1

}
= 0

is replaced by (R2CQ). Additionally, the gradient ∇xG(y) is continuous in
the neighborhood U of x.

2.4. Chance Constrained Optimization on Gas
Networks

In this section, we turn our attention to gas networks. The goal is to control
the pressure in the entry node of a tree network such that the pressure
values in the nodes stay inside prescribed bounds with a certain probability.
The demands at the exit nodes are uncertain and given by a multivariate
normal distributed random variable.

To apply the results of Section 2.3.3 and Section 2.3.4, we formulate the
feasible set for gas network optimization on a tree, simplify the system
such that it can be written with only inequality constraints of the form
g(x, z) ≤ 0 and show that the necessary assumptions (B1)–(B5) are fulfilled.
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2.4. Chance Constrained Optimization on Gas Networks

We consider a tree network described by the graph T = (V ,A), where
V is the set of nodes and A is the set of arcs. The network has one entry,
which is the root node r of the tree. The arcs point away from the root
node. For a given node v ∈ V the set of leaf nodes that are reachable by
the directed arcs from v is denoted by

L(v) := {u ∈ V | |δ(u)| = 1 and there is a directed path from v to u}.

We denote |L(r)| = m. The pressure function on each edge a ∈ A as defined
in (Real) on page 58 is denoted by fa. The node-arc incidence matrix is
denoted by A.

Coupling the flow values by the Kirchhoff conditions and the pressure
values by the continuity condition yields the system

Aq = qout,

pv = fa(La; pu, qa), ∀ a = (u, v) ∈ A,
plb ≤ p,

(Stat-Net-Full)

for p ∈ R|V| and q ∈ R|A|, where plb ∈ R|V|>0 is the vector of pressure bounds
for p. In the terms of Section 1.3 this is the system

(Kirchhoff), (Arc Coupling), (Node Coupling)

with pressure continuity as node coupling condition. Therefore, it is
sufficient to assign one variable

pv = pa(xa(v)) for all arcs a ∈ δ(v)

to the pressure in each node. However, by Theorem 3, we know that the
solution to the first two Equations of (Stat-Net-Full) is in fact completely
determined if the pressure in the root node is prescribed. Therefore, we
can reduce the system: First, we eliminate the equality constraints. Since
the graph is a tree, the system Aq = qout has a unique solution

q = A+qout,

for balanced outflows, that is 1T qout = 0. The matrix A+ is the pseudoin-
verse of A. Since |A| = |V| − 1 and A ∈ Rm×|A|, it is given by

A+ = (ATA)−1AT .
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The demand vector z describes the outflows in the leave nodes L(r). For
inner nodes the outflow is zero and the inflow in the rootnode balances the
outflows, i.e.,

1T qout = qout
r + 1T z = 0,

where

qout =

(
qout
r

z

)
qout
r ∈ R−.

Once the flow values on every edge are known, the system can be param-
eterized by one pressure value pr in the root node. Furthermore, for a
node v, there exists a unique path from r to v. Denote the set of arcs on
this path by [r, v]. The pressure in v can be calculated by the function
pv(pr, z) that is the composition of the functions fa(La; · , qa) along the
path [r, v]. The flow qa is only depending on qout. For example, in the case
[r, v] = {(r, u), (u, v)} = {a, b}, we obtain

pv(pr, z) = fb(Lb; fa(La; pr, qa), qb),

where q = A+qout.

Definition 29 (Pressure Function in the Node). Formally, on the path [r, v],
we have the recursion

pv(pr, z) := fa(La; pu(pr, z), qa),

for the arc a ∈ δin(v) ∩ [r, v]. The pressure pu is calculated along the path
[r, u] ( [r, v]. The recursion is well defined, because the pressure at the
node r is given as a argument of the function and the flow q = A+qout is
uniquely defined by the argument z.

The system (Stat-Net-Full) reduces to

plb
v ≤ pv(pr, z) ∀v ∈ V . (Stat-Net)

We are interested in the set of admissible outflows for a given pr > 0.

Definition 30 (Set of Feasible Outflows). Define the set of feasibly outflows
by

Q(pr) :=
{
z ∈ Rm

∣∣ plb
v ≤ pv(pr, z) for all v ∈ V \ {r}, z ≥ qlb

}
(2.21)

and the set of feasible outflows for the v-th constraints by

Qv(pr) :=
{
z ∈ Rm

≥0

∣∣ plb
v ≤ pv(pr, z)

}
.
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The flow bound qlb ∈ Rm
>0 pays respect to the assumption that every

exit node has a minimal positive demand. We assume z ∼ N (µ,Σ) to be
normally distributed with expected value µ ≥ qlb and a positive definite
covariance matrix Σ. The joint probabilistic constraint with respect to
system (Stat-Net) is given by

P(z ∈ Q(pr)) ≥ pbd (2.22)

for a probability bound pbd ∈ (0, 1), which is usually close to one. With
the probability density function fν(z), this can be rewritten as

G(pr) := P(z ∈ Q(pr)) =

∫

Q(pr)

fν(z) dz. (2.23)

We will now show assumptions (B1)–(B5) for the functions describ-
ing (2.21). The describing functions are continuously differentiable. There-
fore (B3) is fulfilled. For pbd > 0.5, there is no need to discuss (B5) as a
consequence of Remark 16. Hence we have to show (B1), (B2) and (B4).

We begin by showing the monotonicity of the functions pv with respect
to a single outflow.

Lemma 32 (Monotonicity of the functions pv in zw).
For z ∈ Rm

≥0, the functions pv(pr, z) are strictly decreasing as a function of
zw for each leaf node w ∈ L(r).

Proof. On the arc a = (u, v), the pressure function fa strictly decreases as
a function of qa and strictly increases as a function of pu for qa > 0. For
u = r, which means we are on the first arc of the tree starting from the
root, the conjecture is clear, because the flow qa can be calculated as

qa =
∑

w∈L(r)
zw.

Hence also pv strictly decreases as a function of qa. For the following
vertices pursue inductively.

We assume the convexity of the sets of feasible flow. The assumption seems
to hold in all practical cases; see Figure 2.8. A tree network with three arcs
and two exits was used for the computation. The outflows were evaluated
on a 500× 500 grid between 0 and 400 kg s−1. For the data see Table C.1
and Table C.2 in the appendix.

Assumption 2 (Convexity of Qv(pr)). Assume that the sets Qv(pr) are
convex.
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(a) pr = 61 · 105 Pa (b) pr = 62 · 105 Pa

(c) pr = 63 · 105 Pa (d) pr = 64 · 105 Pa

Figure 2.8.: The sets of feasible outflows (in green) for a tree network with
one entry and two exits for different pressure values at the root
node.

Lemma 33 (Convexity of Bw(pr)).
The sets

Bw(pr) := {z ∈ Rm | zw ≥ qlbw}.
are convex.

Proof. The restriction in Bw(pr) is linear. This implies that Bw(pr) is a
convex set.

Lemma 34 (Boundedness of Q(pr)).
The set Q(pr) is bounded.

Proof. The pressure functions fa on each arc a ∈ A are strictly decreasing
in the flow value qa. Consider the first node u connected to the root node r.
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By the strict monotonicity of the function fa(pr, · ), see Lemma 5, there is
a unique flow2 q̄a such that

fa(pr, q̄a) = plb
u .

The flow on each arc a = (u, v) is bounded from below by

qlb
a =

∑
v∈L(u)

qlb
v .

Therefore, the flow on each arc is bounded by

qlb
a ≤ qa ≤ q̄a.

For the next layer of arcs, note that the flow on each arc may be larger if
the ingoing pressure pu is larger, because a higher pressure drop is allowed
before attaining the lower pressure bound. To be precise: If pl < ph and
fa(pl, ql) = fa(ph, qh) holds, then ql has to be greater than qh. Consequently,
choosing a lower ingoing pressure only relaxes the obtained upper bound
for the flow. Set

pu := fa(pr, q
lb
a ) ≥ fa(pr, qa)

on the arc a = (r, u) and consider the arc b = (u, v). The strict monotonicity
of fb with respect to the flow allows the calculation of a unique flow q̄b such
that

fb(pu, q̄b) = plb
v .

Proceeding inductively gives flow bounds qlb
a and q̄a for every arc a ∈ A,

which are written in the vector q̄ ∈ R|A|. Hence, we have

qlb ≤ q ≤ q̄.

Multiplying by the node arc incidence matrix A yields that the vector of
outflows Aq = qout is bounded. Consequently, the set Q(pr) is bounded.

It remains to show assumption (B4). We define the sets that correspond
to the sets Ni(x) of Definition 23.

Definition 31. Define the sets

NQv(pr) := {z ∈ Rm | plb
v = pv(pr, z)}

NBw(pr) := {z ∈ Rm | zw = qlb
w }.

2under the reasonable assumption that plbu lies in the image of fa(pr, · ), which is the
case for subsonic flow, i.e., if plbu is not too small
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Lemma 35 (Nonzero Flow Gradient at the Boundaries of Qv(pr), Bw(pr)).
The flow gradient with respect to z of the single restriction in Qv(pr) or
Bw(pr) respectively is nonzero on the sets NQv(pr) and NBw(pr).

Proof. It is easy to see that the gradient of the function

gw : z 7→ zw − qlb
w

is the unit vector ew, which is one at the component w. Therefore the
gradient is nonzero on NBw(pr). Let us now discuss the mappings

hv : z 7→ plb
v − pv(pr, z).

By Lemma 32 the functions pv are strictly decreasing in zw for w ∈ L(v).
This implies ∂zwhv(z) > 0 and therefore ∇zhv(z) 6= 0.

Corollary 10 (Subdifferential of G for the Gas Network Problem).
Let Assumption 2 hold. Then, the Clarke subdifferential of G fulfills

∂G(pr) ⊂
∫

d∈Sm−1

fχ(r(pr, d)) conv
{
gv(pr, d),gw(pr, d)

∣∣ v, w ∈ I(pr, d)
}

du(d),

where the derivatives gv and gw are given by

gv(pr, d) =
∂prpv(pr, rv(pr, d)Ld)

∇zpv(pr, rv(pr, d)Ld)TLd
, for v ∈ V \ {r}

and gw(pr, d) = 0, for w ∈ L(r).

The index set I(pr, d) is defined as

I(pr, d) := argmin{ri(pr, d) | i ∈ A(pr, d)},

compare Lemma 30.

Proof. Assumption 2 and Lemmas 33–35 show that the assumptions re-
quired for Theorem 17 are fulfilled.

Under (R2CQ) (see Definition 28) the function G is differentiable. This
allows the application of gradient based optimization algorithms for the
numerical treatment.

138



2.5. Numerical Results

Corollary 11 (Derivative of G for the gas network problem).
Let assumption 2 be fulfilled and assume that (R2CQ) holds. Then, G is
continuously differentiable and its derivative is given by

∂prG(pr) =

∫

d∈Sm−1

|I(pr,d)|=1

fχ(r(pr, d)) g(pr, d) du(d),

where

g(pr, d) =

{
gv(pr, d) if I(pr, d) = {v},
gw(pr, d) if I(pr, d) = {w}.

Proof. This is a direct consequence of Corollary 10 and Corollary 9.

2.5. Numerical Results

2.5.1. Algorithmic Treatment

The evaluation of G is extremely time consuming for higher sample numbers.
In the case of gas network optimization each function evaluation of G might
mean simulating the whole network 10000 times. The high computational
cost of the evaluation of the chance constraint is a challenge of the chance
constrained optimization problems of the form

min
x∈Rn

f(x)

s.t. P(g(x, ξ) ≤ 0) ≥ pbd.

This makes an approach that uses fewer number of samples to generate a
warmstart for the highest sample number attractive. The pseudo code is
shown in Algorithm 1. Like in previous sections, we denote

G(x) := P(g(x, ξ) ≤ 0),

the function fχ is the density of the chi distribution and e is defined as in
Definition 27. Moreover, we define the (approximated) Lagrangian function
using the definition of Gl in Algorithm 1.

Definition 32 (Lagrangian Function). The Lagrangian function

L : Rn × R→ R

139



CHAPTER 2. Chance Constrained Optimization

is defined as
L(x, λ) := f(x) + λ(pbd −G(x))

and its approximation on level l is given by

Ll(x, λ) := f(x) + λ(pbd −Gl(x)).

The samples vi on the sphere that are required for Algorithm 1 are
obtained sampling random or quasirandom uniformly distributed points
in the unit cube and using the inversion method to obtain a standard
normal distributed sequence. Normalizing the vector of standard normal
distributed values yields a vector on the unit sphere. The samples are
uniform distributed. See Weisstein 2018 for the method. The procedure is
shown in Algorithm 2.

Remark 18. It is essential that the approximations Gl and ∇Gl in Algo-
rithm 1 are continuous in x even for low sample numbers. Compare them
to the crude quasi Monte Carlo approximation

Hl(x) :=
1

sl

sl∑

i=1

1{g(x,zi)≤0}(x),

which is discontinuous in x as a sum over characteristic functions and needs
high sample numbers to be “approximately” continuous.

For Algorithm 2, we need the definition of the error function.

Definition 33 (Error Function). The error function erf : R→ (−1, 1) is
defined as

erf(x) =
2√
π

∫ x

0

exp(−t2) dt

and its inverse is notated by erf−1. We also use the vector notation

erf(x) =




erf(x1)
...

erf(xm),


 and erf−1(x) =




erf−1(x1)
...

erf−1(xm),




for x ∈ Rm (or x ∈ (−1, 1)m for the inverse).

Remark 19 (Wrong Approach to Sphere Sampling). The approach to sample
two angles θ ∈ [0, 2π], and φ ∈ [0, π] uniformly and set

x =




cos(θ) sin(φ)
sin(θ) sin(φ)

cos(φ)
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Algorithm 1 Successive Subsampling Solver (SSS)

Require: A vector s of L refinement levels, all sL uniform distributed
samples {vi}1,...,sL on the sphere for the finest level, the constraint function
g used in the joint probabilistic constraint, an objective function f, a
probability bound pbd, a starting point x0

For l = 1, . . . ,L, define

Gl(x) :=
1

sl

sl∑

i=1

e(x, vi) and

∇Gl(x) :=
1

sl

sl∑

i=1

fχ(r(x, vi))

∇zgj(x, r(x, vi)Lvi)TLvi)
∇xgj(x, r(x, vi)Lvi),

for {j} = I(x, vi).
Set λ = 1.
for l = 1, . . . ,L do

if l < L then
Set the constraint tolerance τcon to |Gl+1(x0)−Gl(x0)|.
Set the optimality tolerance τopt to |λ| ‖∇Gl+1(x0)−∇Gl(x0)‖.

else
Set tolerances reasonable fine.

end if
Solve the optimization problem

min
x∈Rn

f(x), s.t. Gl(x) ≥ pbd

with starting point x0 to obtain the optimal solution x∗ and the
corresponding Lagrange multiplier λ∗. The stopping criteria for the
optimization is given by

pbd −Gl(x) ≤ τcon and ‖∇xLl(x, λ)‖ ≤ τopt.

Set x0 ← x∗ and λ← λ∗.
end for
return x∗
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Algorithm 2 Sphere Point Picking

Require: Number of desired samples N, dimension m
Generate uniform distributed samples xi for i = 1, . . . , N on [0, 1]m.
Use the inversion method to obtain standard normal distributed points
yi via

yi =
√

2erf−1(2xi − 1), for i = 1, . . . , N.

The normalized vectors

vi =
1

‖yi‖y
i, for i = 1, . . . , N,

are uniformly distributed on the sphere Sm−1.
return {vi}i=1,...,N

to generate a uniform distribution on the sphere S2 is faulty as it leads to
a accumulation of points around the poles. This is due to the nonlinear
surface element dS = sin(φ) dθ dφ. See Figure 2.9 for the comparison
between this method and Algorithm 2.

It is not desirable to solve the optimization problem to small tolerances
as long as the approximation of G is very coarse. The optimization stops,
when

pbd −Gl(x) ≤ τcon and ‖∇xLl(x, λ)‖ ≤ τopt.

The difference
τcon := |Gl(x0)−Gl+1(x0)|

provides an estimate of the error |Gl(x)−G(x)|. Similarly, the difference
of the gradient of the Lagrangian on the coarse and the next finer level is
given by

‖∇xLl(x0, λ)−∇xLl+1(x0, λ)‖
= ‖∇f(x0)− λ∇Gl(x0)−∇f(x0) + λ∇Gl+1(x0)‖
= |λ|‖∇Gl(x0)−∇Gl+1(x0)‖ =: τopt,

where we can estimate the Lagrange multiplier by the Lagrange multiplier
obtained in the last optimization with the constraint approximation Gl−1.
It is useful to project the tolerances back to a box [τl, τr] to avoid making
not enough ”cheap” steps while not demanding unachievable tolerances if
Gl and Gl+1 happen to (almost) coincide at the evaluation point x0. In our
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2.5. Numerical Results

Figure 2.9.: Sampling of points on the sphere for N = 300, 500 and 800
(top to bottom). The samples in the left column are generated
Algorithm 2 based on Sobol points on [0, 1]3. The right column
shows the faulty approach of sampling two angles uniformly
and using spherical coordinates. This leads to an accumulation
of points around the poles of the sphere.
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computations we did choose τl = 0.1 and τr = 10−3. If the approximation
on the fine level is close to G and the pair (x0, λ) is in a neighborhood of
the optimal solution (x∗, λ∗) of the exact problem, then the error estimate
provides a useful bound.

Lemma 36 (Error Estimates).
Let (x∗, λ∗) be a solution of the problem

min
x∈Rn

f(x), s.t. G(x) ≥ pbd.

Assume that
‖x0 − x∗‖ ≤ ε1, ‖λ− λ∗‖ ≤ ε2

and
|Gl+1(x∗)−G(x∗)| ≤ ε3, ‖∇Gl+1(x∗)−∇G(x∗)‖ ≤ ε4,

for εi > 0, i = 1, . . . , 4. Furthermore, let G be continuously differentiable
on Bε1(x

∗) and let the Lipschitz conditions (the conditions on the left hand
side are no additional assumptions)

|G(x)−G(y)| ≤ K‖x− y‖ ‖∇G(x)−∇G(y)‖ ≤ K‖x− y‖
|Gl(x)−Gl(y)| ≤ K‖x− y‖ ‖∇Gl(x)−∇Gl(y)‖ ≤ K‖x− y‖

|Gl+1(x)−Gl+1(y)| ≤ K‖x− y‖ ‖∇Gl+1(x)−∇Gl+1(y)‖ ≤ K‖x− y‖

hold for all x, y ∈ Bε1(x
∗).

Then, the following holds:

a) |Gl(x
∗)−G(x∗)| ≤ 2Kε1 + ε3 + τcon,

b) ‖∇xLl(x
∗, λ∗)−∇xL(x∗, λ∗)‖ ≤

(ε2 + |λ|)(2Kε1 + ε4 + ‖∇Gl(x0)−∇Gl+1(x0)‖).
For εi ↘ 0, i = 1, . . . , 4 the right hand side of a) converges to τcon and the
right hand side of b) converges to τopt = |λ|‖∇Gl(x0)−∇Gl+1(x0)‖.
Proof. The function values fulfill

|Gl(x
∗)−G(x∗)| = |Gl(x

∗)−Gl(x0) +Gl(x0)−Gl+1(x0) +Gl+1(x0)

−Gl+1(x∗) +Gl+1(x∗)−G(x∗)|

(by the triangle inequality)

≤ |Gl(x
∗)−Gl(x0)|+ |Gl(x0)−Gl+1(x0)|

+ |Gl+1(x0)−Gl+1(x∗)|+ |Gl+1(x∗)−G(x∗)|
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(by the Lipschitz continuity and |Gl+1(x∗)−G(x∗)| ≤ ε3)

≤ K‖x∗ − x0‖+ τcon +K‖x0 − x∗‖+ ε3

≤ 2Kε1 + ε3 + τcon.

For the gradients of the Lagrangians, we obtain

‖∇xLl(x
∗,λ∗)−∇xL(x∗, λ∗)‖ = |λ∗|‖∇Gl(x

∗)−∇G(x∗)‖
= |λ∗|‖∇Gl(x

∗)−∇Gl(x0) +∇Gl(x0)−∇Gl+1(x0)

+∇Gl+1(x0)−∇Gl+1(x∗) +∇Gl+1(x∗)−∇G(x∗)‖

(using the triangle inequality)

≤ |λ∗|(‖∇Gl(x
∗)−∇Gl(x0)‖+ ‖∇Gl(x0)−∇Gl+1(x0)‖

+ ‖∇Gl+1(x0)−∇Gl+1(x∗)‖+ ‖∇Gl+1(x∗)−∇G(x∗)‖)

(by the Lipschitz continuity and ‖∇Gl+1(x∗)−∇G(x∗)‖ ≤ ε4)

≤ |λ∗|(K‖x∗ − x0‖+ ‖∇Gl(x0)−∇Gl+1(x0)‖
+K‖x0 − x∗‖+ ε4)

(using the triangle inequality on |λ∗ − λ+ λ|)

≤ (|λ∗ − λ|+ |λ|)(2Kε1 + ε4 + ‖∇Gl(x0)−∇Gl+1(x0)‖)
≤ (ε2 + |λ|)(2Kε1 + ε4 + ‖∇Gl(x0)−∇Gl+1(x0)‖).

2.5.2. Example 1: Control of the Pressure in the Root
Node of a Tree

Problem Description

We consider a tree network with one entry and six exits as depicted in
Figure 2.10. The outflows are normally distributed with expected value
µ ∈ R6 and positive definite covariance matrix Σ ∈ R6×6. Our objective is
to find the minimal pressure such that the lower pressure bounds in all
nodes are fulfilled with high probability. As a consequence of the discussion
in Section 2.4, the pressure values in the network depend only on the
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Figure 2.10.: A tree network with six
exits (red) with uncertain outflows.
The pressure at the green entry node
can be controlled.

pressure in the root node and the outflows and the problem can be written
as

min
pr∈R

1
2
p2
r

s.t. G(pr) ≥ pbd,

pr ∈ [plb
r , p

ub
r ].

(Ex1)

The pressure bounds are set to plb
v = 40 · 105 Pa for all nodes v ∈ V and

the upper pressure bound in the root node is set to pub
r = 60 · 105 Pa. For

the normal distribution the expected value

µ =
(
100 110 120 130 140 150

)T
ρ0 · 1000 m3 h−1,

where ρ0 is the norm density, was chosen. The covariance matrix was set to

Σ = 0.91 + 0.1E,

where 1 is the identity in R6×6 and E the matrix of only ones. The
probability bound was set to pbd = 0.75. A similar problem is discussed
in Gotzes et al. 2016. However, in the mentioned article the set of feasible
realizations is defined as the outflows, such that there exists a pressure in
the root node that keeps the system within the prescribed thresholds. In
our case, we choose the pressure before the realization of the demands.

We provide results for both the common Weymouth model (see e.g. Koch
et al. 2015, Lemma 2.2) and the more accurate but computationally more
expensive stationary isothermal Euler equation with nonconstant compress-
ibility factor as described by (Real). On the arc a = (u, v), the pressure
loss described by the Weymouth equation is given by

Weymouth formula

pv = fa(pu, qa) :=
√
p2
u − Λqa|qa| (Wey)

with a constant Λ > 0.
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Data and Methods Used for the Numerical Computations

We solve the optimization problem with a maximal sample number of
20 000 and the starting point p0

r = 50 ·105 Pa. For the optimization problem
on each level, Matlab’s SQP solver (part of the fmincon routine) was used
with the constraint tolerance τcon, the optimality tolerance τopt and the
step size tolerance 10−8 (practically avoiding abortion due to low step
sizes). An analytic gradient for the objective was provided, while for the
chance constraint the gradient approximation described in Algorithm 1 was
used with finite difference gradients for the functions gj. In our example
the gradient of gi is the gradient of the negative pressure functions pv in
each node. The sampling of points on the sphere was implemented by
Algorithm 2 with Sobol points (see Sobol’ 1967) as initialization3. All
computations were carried out on a desktop PC with a Intel(R) Core(TM)
i7-2600 CPU @ 3.40GHz processor and 16 GB RAM.

Comparison of the Two Models for Different Numbers of
Refinement Levels

The results in Table 2.1 show that by solving the optimization on the
coarse intermediate levels one quickly approaches the optimal solution. In
comparison the Weymouth model is much cheaper to evaluate; see Table 2.2.
The optimal solution p∗r = 46.8513 · 105 Pa is lower than for the model with
the isothermal Euler equation. A lower optimal pressure in the root node
means that it is easier to fulfill the lower pressure bounds and therefore
shows a tendency of the Weymouth formula to overestimate the pressure.
The seemingly low difference in time between the first and the second
level can be explained by the increasing benefits of the parallelization for
the evaluation of the chance constraint. Table 2.3 shows the results for
a direct computation on the finest level of 20000 samples with starting
point p∗r = 50 · 105 Pa. The calculation time needed is significantly higher
compared to Algorithm 1. The results in Table 2.4 and 2.5, where only
two levels were used, show that the run times are even lower than with
five levels. This indicates that the intermediate levels may be to time
consuming.

3The Matlab implementation found in Burkardt and Fox 2010 was used
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Table 2.1.: Results for the (Real)-Model with 5-Level-(SSS)

l sl SQP iterations p∗r in 105 Pa Time in s

1 50 20 46.8870 38
2 250 6 46.8854 73
3 1000 5 46.8900 282
4 5000 4 46.8900 1026
5 20000 6 46.8894 3767

Total Time 5186

Table 2.2.: Results for the (Wey)-Model with 5-Level-(SSS)

l sl SQP iterations p∗r in 105 Pa Time in s

1 50 18 46.8489 11
2 250 6 46.8473 15
3 1000 5 46.8519 49
4 5000 4 46.8519 201
5 20000 6 46.8513 734

Total Time 1010

Table 2.3.: Results without (SSS)

sL SQP steps p∗r in 105 Pa Time in s

Weymouth 20000 16 46.8521 1660
isothermal Euler 20000 20 46.8900 7399

Table 2.4.: Results for the (Real)-Model with 2-Level-(SSS)

l sl SQP iterations p∗r in 105 Pa Time in s

1 50 20 46.8870 140
2 20000 7 46.8893 4013

Total Time 4153
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Table 2.5.: Results for the (Wey)-Model with 2-Level-(SSS)

l sl SQP iterations p∗r in 105 Pa Time in s

1 50 18 46.8489 33
2 20000 7 46.8512 835

Total Time 868

Table 2.6.: Results for the (Real)-model with 2-Level-(SSS)
and Weymouth warmstart

Model l sl SQP iterations p∗r in 105 Pa Time in s

Weymouth 1 50 18 46.8489 12
isothermal Euler 1 50 8 46.8863 293

2 20000 7 46.8893 4034

Total Time 4339

Using Weymouth as a Warmstart

Different model hierarchies can be coupled in the (SSS) approach. The
cheap Weymouth model with a low number of samples can be used to
generate a warmstart for the accurate but expensive isothermal Euler
equations. The results displayed in Table 2.6 are not very encouraging.
The difference in time needed on the coarse level does not make up for the
worse warmstart, when compared to a coarse approximation with the more
accurate (Real) model in Table 2.4.

Comparison to Optimization without Uncertainty

Consider the optimization problem with the (Real)-model, where the out-
flow is not stochastic, but simply replaced by the expected demand. For
the remaining data, the values of Section 2.5.2 were used. The resulting
problem reads (again with the constant arguments of pv omitted).

min
pr∈R

1
2
p2
r

s.t. pv(pr, µ) ≥ plb
v , ∀v ∈ V \ {r},

pr ∈ [plb
r , p

ub
r ].

(Ex1-Det)
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46.70

40.54
40.20

40.00

40.01
43.80

44.14

Figure 2.11.: Network simulation for the optimal pressure in the determin-
istic problem for the expected demand. The size of each circle
corresponds to the pressure in the node and the width of each
edge to the flow on the edge. The pressure values in 105 Pa
are shown at the source and sink nodes only.

Optimizing yields an optimal pressure of p∗det = 46.6964 · 105 Pa,which is
clearly lower than the optimal pressures obtained from the computations
including uncertainty. The network simulation for the optimal pressure is
shown in Figure 2.11. The lower pressure bound of 40 · 105 Pa is exactly
met at one node. The optimal pressure of pstoch = 46.8893 · 105 Pa for the
stochastic problem calculated with two levels (see Table 2.4) was used for
the network simulation in Figure 2.12. Here the lowest sink node still has
some slack to the lower pressure bound. The approximate probability on
the finest level is

GL(p∗det) = 0.4837 and GL(p∗stoch) = 0.7500,

i.e. the chance constraint is active in the solution of the stochastic opti-
mization problem. However, the solution of (Ex1-Det) is feasible with less
than 50% probability in the stochastic formulation.

2.5.3. Example 2: Controlling Multiple Compressors

We consider a problem similar to the one above, but with two additional
controls. Two arcs in the tree graph correspond two compressor stations
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46.89

40.77
40.43

40.23

40.24
44.01

44.35

Figure 2.12.: Network simulation with the expected demand for the optimal
pressure in the stochastic problem. The size of each circle
corresponds to the pressure in the node and the width of each
edge to the flow on the edge. The pressure values in 105 Pa
are shown at the source and sink nodes only.

with controllable compressionrates γ ∈ [1, 2]2. To obtain reasonable scaling
of the problem, we use the variable β := pr · (40 · 105 Pa)−1 for the pressure
in the root node. The node pressures in the nodes u, v connected by the
arc a = (u, v) corresponding to the compressor i satisfy

pv(β, γ, z) = γi pu(β, γ, z).

The goal is to find the minimal compression rates γi and a pressure

40 · 105 Pa · β = pr ∈ [50 · 105 Pa, 60 · 105 Pa]

in the root node such that the pressures in the nodes stay inside the
prescribed bounds [40 · 105 Pa, 60 · 105 Pa] with high probability. Similarly
to above, we define

G(β, γ) := P
(
z ∈ Rm

≥0 | pv(β, γ, z) ≥ plb
v ∀v ∈ V \ {r}

)
,

with the obvious adjustments to the functions pv. It is advantageous to
rather use the two compressor stations than demanding a higher pressure
in the root node, which corresponds to a possibly complex control of a
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Table 2.7.: Results for the (Real)-Model with 2-Level-(SSS)

l sl SQP iterations β∗ γ∗1 γ∗2 Time in s

1 50 6 1.2500 1.0818 1.0757 844
2 5000 6 1.2500 1.0815 1.0725 11603

Total Time 12447

connected network. Therefore the pressure in the root node is assigned
a larger constant in the objective function. The resulting optimization
problem reads

min
(β,γ)∈R3

1
2

(
10 β2 + γ2

1 + γ2
2

)

s.t. G(β, γ) ≥ pbd,

β ∈ [1.25, 1.5],

γ ∈ [1, 2]2.

(Ex2)

The value pbd = 0.90 was used. For the multivariate normally distributed
outflow, the expected values

(
100 125 500 150 175 200 225

)T
ρ0 · 1000 m3 h−1,

and the covariance matrix

Σ = 0.91 + 0.1E

were used. The results for two levels can be seen in Table 2.7. The relatively
high computation times can be explained by two effects: The optimization
method needs more function evaluations for each iteration. In regions of
the optimization variable, where the expected demand is not feasible, i.e.,
Assumption (B5) is not fulfiled, a smoothened direct quasi Monte-Carlo
method with higher sample numbers was used as a backup routine to
evaluate the probability function. The state of the gas network for the
optimal solution

(
β∗ γ∗1 γ∗2

)
=
(
1.2500 1.0815 1.0725

)

under the expected demand is depicted in Figure 2.13.

Conclusion

We have shown that the gradient formula for the spherical radial decompo-
sition of the chance constraint is applicable for gas network optimization
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50.00

43.99
47.17

40.61

47.10

42.45

40.78

44.62

1.08

1.07

Figure 2.13.: Network simulation for the expected demand with optimal
controls of the stochastic problem. The size of each circle
corresponds to the pressure in the node and the width of each
edge to the flow on the edge. The pressure values in 105 Pa
are shown at the source and sink nodes only. The green edges
correspond to compressors that raise the pressure by 7% and
8% respectively.

on trees. With a multilevel approach medium sized networks are solved in
reasonable time with the quasilinear isothermal Euler equations with non-
constant compressibility factor as a model for the gas flow. The numerical
results show the advantage of optimization with chance constraints over the
naive optimization using the expected values for the uncertain parameters.

How to extend the framework to the case, where the sets of feasible
realizations are nonconvex, remains an open question. Furthermore, it is not
clear if the theoretical results remain applicable for gas networks containing
cycles. Approaches that do not depend on spherical radial decomposition
include direct quasi-Monte Carlo methods with smoothening, kernel density
approximation (see Caillau et al. 2017) or exact penalization (see Curtis,
Wächter, and Zavala 2018).
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3. Feedback Stabilization of the
Linear Wave Equation under
Uncertain Initial-Boundary
Data

Have you considered that if you don’t make
waves, nobody including yourself will know
that you are alive?

(Theodore Isaac Rubin)

Until now, we have discussed the case of the gas being in an equilibrium.
The instationary case is more complex, which makes simplifications of the
model desirable. For ideal gas, the pressure p and the density ρ of the gas
obey the linear dependency p = c2ρ, where c > 0 is the speed of sound
in the gas. See also Table 1.1 for the notation. The system (Iso) from
Chapter 1 can be written as





∂tρ+ ∂xq = 0,

∂tq + ∂x

(
c2ρ+

q2

ρ

)
= −θ

2

q|q|
ρ
.

(Iso)

With the velocity v = q/ρ, we can reformulate the term in the space
derivative of the momentum equation

c2ρ+
q2

ρ
= c2ρ

(
1 +

v2

c2

)
,

see Domschke et al. 2017, Section 4.1. For small gas velocities |v| � c this
term is close to 1 and we arrive at the semilinear model on the acoustic
timescale 




∂tρ+ ∂xq = 0,

∂tq + c2∂xρ = −θ
2

q|q|
ρ
.

(Iso-semi)
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A rigorous derivation of this model by asymptotic analysis is given in
Brouwer, Gasser, and Herty 2011, Section 3.2.2. We can show that the
density ρ and the mass flow q obey a semilinear wave equation. Taking the
time derivative of the first equation and the space derivative of the second
equation yields

∂2
ttρ+ ∂x∂tq = 0,

∂x∂tq + c2∂2
xxρ = −θ

2
∂x

(
q|q|
ρ

)
.

Inserting the second equation into the first equation leads to

∂2
ttρ = c2∂2

xxρ+
θ

2
∂x

(
q|q|
ρ

)
. (3.1)

Taking the space derivative of the first equation and the time derivative of
the second equation yields

∂t∂xρ+ ∂2
xxq = 0,

∂2
ttq + c2∂t∂xρ = −θ

2
∂t

(
q|q|
ρ

)
.

By inserting the first equation into the second equation, we arrive at the
semilinear wave equation

∂2
ttq = c2∂2

xxq −
θ

2
∂t

(
q|q|
ρ

)
. (3.2)

Thus neglegting the friction in Equation (3.1) and Equation (3.2) leads to
the linear wave equations

∂2
ttρ = c2∂2

xxρ (WaveEq-ρ)

and
∂2
ttq = c2∂2

xxq. (WaveEq-q)

Literature Survey

In Gugat and Leugering 2008, L∞-minimal control of the wave equation
was considered. The article Gugat, Leugering, and Wang 2017 examined
Neumann boundary feedback stabilization of a nonlinear wave equation
using H2-Lyapunov functions. Time optimal control of the wave equations
has been considered in Kunisch and Wachsmuth 2013.
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Stabilization of the wave equation on one dimensional networks was
analyzed in Valein and Zuazua 2009. Dynamic control games on string
networks governed by the wave equation were analyzed in Gugat and
Steffensen 2017. Traveling wave solutions of the quasilinear isothermal
Euler equations on networks and a corresponding optimal control problem
were discussed in Gugat and Wintergerst 2018.

Stochastic optimal control for the semilinear isothermal Euler equations
is discussed in Zavala 2014. The numerical results of different objective
functions are compared. Chance constrained optimal control in aerospace
via kernel density estimation is investigated in Caillau et al. 2017. The prop-
erties of chance constrained problems in infinite dimension were analyzed
in Farshbaf-Shaker, Henrion, and Hömberg 2017.

3.1. Deterministic Wave Equation

The attentive reader may have guessed by now that in view of Equa-
tions (WaveEq-ρ), (WaveEq-q) and the quote at the beginning of this
chapter, it makes sense to study the linear wave equation. Like in pre-
vious parts of this thesis, we want to include stochastic boundary data
(and analogously stochastic initial data). We start, however, by discussing
the deterministic case with fixed initial and boundary data. Consider
the wave equation on the space interval [0, L] and the time interval [0, T ]
with prescribed initial data (v0, v1) ∈ L∞(0, L)× L1(0, L), boundary data
ξ ∈ L∞(0, T ) on the boundary x = L and Neumann feedback with feedback
parameter η ∈ R on the boundary x = 0. This leads to the system




v(0, x) = v0(x), vt(0, x) = v1(x), (Initial Condition)

vx(t, 0) = ηvt(t, 0), v(t, L) = ξ(t), (Boundary Condition)

vtt(t, x) = c2vxx(t, x). (PDE)

(S)

An explicit representation of the generated state in terms of travelling waves
(d’Alembert’s solution) is given in Gugat 2015, Gugat and Leugering 2008.
This allows the computation of the system state v ∈ L∞((0, T )×(0, L))
without discretization errors. The feedback stabilization of a wave equation
is discussed in Adelhütte et al. 2018 (In Revision), Section 5 for the case of
completely absorbing Neumann feedback.

Theorem 19 (Solution of system (S)).
Consider system (S) with initial-boundary data

ξ ∈ L∞(0, T ) and (v0, v1) ∈ L∞(0, L)× L1(0, L)
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for the feedback parameter η 6= −1
c
. Define the antiderivative of v1 by

V1(x) :=

∫ x

0

v1(s) ds

and define

α(s) :=

{
v0(cs) + 1

c
V1(cs) for s ∈

[
0, L

c

)

2ξ
(
s− L

c

)
− β

(
s− L

c

)
for s ∈

[
L
c
, T + L

c

]

and

β(s) :=

{
v0(L− cs)− 1

c
V1(L− cs) for s ∈

[
0, L

c

)

γ(η)α
(
s− L

c

)
+ C(η) for s ∈

[
L
c
, T + L

c

]

with the constants

C(η) := [1− γ(η)]v0(0),

γ(η) :=
1− cη
1 + cη

.

Then, the function

v(t, x) := 1
2
α
(
t+ x

c

)
+ 1

2
β
(
t+ L−x

c

)
(3.3)

solves system (S) and the solution v lies in L∞((0, T )× (0, L)).

Note that for the feedback parameter η = 1/c all energy is absorbed at
the boundary x = 0 as γ(η) becomes zero and the solution simplifies.

Proof. Because the initial-boundary data is not necessarily weakly differ-
entiable, all upcoming derivatives are to be understood in the sense of
distributions.

Wave Equation:
First, we see that v satisfies the wave equation, because we have

vtt = 1
2
α′′
(
t+ x

c

)
+ 1

2
β′′
(
t+ L−x

c

)
,

vx = 1
2c
α′
(
t+ x

c

)
− 1

2c
β′
(
t+ L−x

c

)
,

vxx = 1
2c2
α′′
(
t+ x

c

)
+ 1

2c2
β′′
(
t+ L−x

c

)
.

158



3.1. Deterministic Wave Equation

Initial Conditions:
At t = 0, we have for x ∈ (0, L)

v(0, x) = 1
2
α
(
x
c

)
+ 1

2
β
(
L−x
c

)

= 1
2

[
v0(x) + 1

c
V1(x)

]
+ 1

2

[
v0(x)− 1

c
V1(x)

]
= v0(x).

The time derivative at t = 0, x ∈ (0, L) fulfills

vt(0, x) = 1
2
α′
(
x
c

)
+ 1

2
β′
(
L−x
c

)

= 1
2
[v′0(x) + v1(x)]− 1

2
[v′0(x)− v1(x)] = v1(x).

Boundary Conditions:
Now we prove that the Dirichlet boundary condition at x = L is fulfilled
for t > 0. We obtain

v(t, L) = 1
2
α(t+ L

c
) + 1

2
β(t)

= 1
2
[2ξ(t)− β(t)] + 1

2
β(t) = ξ(t).

The feedback law at x = 0, implies

0 = 2[vx(t, 0)− ηvt(t, 0)] = 1
c
α′(t)− 1

c
β′(t+ L

c
)−

[
ηα′(t)− ηβ′(t+ L

c
)
]

= [1
c
− η]α′(t)− [1

c
+ η]β′(t+ L

c
).

This is equivalent to

β′(t+ L
c
) =

1− cη
1 + cη

α′(t).

Integrating yields

β(t+ L
c
) = γ(η)α(t) + C,

with a constant of integration C(η) that is given by

C(η) := β(L
c
)− γ(η)α(0) = v0(0)− 1

c
V1(0)− γ(η)

[
v0(0)− 1

c
V1(0)

]

= [1− γ(η)]v0(0).

Now we show that v lies in L∞((0, T )× (0, L)). By the assumptions, we
have v0 ∈ L∞(0, L) and ξ ∈ L∞(0, L). The claim is true if V1 is in L∞(0, L).
We know that v1 is in L1(0, L). This implies

‖V1‖L∞ = ess sup
x∈(0,L)

∣∣∣∣
∫ x

0

v1(s) ds

∣∣∣∣

≤ ess sup
x∈(0,L)

∫ x

0

|v1(s)| ds ≤
∫ L

0

|v1(s)| ds = ‖v1‖L1 .

This finishes the proof.
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3.2. Karhunen-Loève Approximation

For uncertain initial-boundary data given by stochastic processes, we
are interested in the stability of the system in the following sense: The
L∞((0, T )×(0, L))-norm of the solution should stay below a prescribed
bound with high probability. This means that the probability

G(η) := P(‖v(η)‖∞ ≤ vub) (3.4)

should be large. The solution v(η) depends on the feedback parameter η
and the realization of the inital-boundary data. For each realization it is
given by Theorem 19.

Because the infinite dimensional case of arbitrary stochastic processes as
boundary data cannot be handled numerically, we need a tool to break down
the dimension to the finite dimensional case. This tool is the Karhunen-
Loève series. It allows us to write an stochastic process as a series of random
coefficients multiplied with the eigenfunctions of the covariance function1

of the stochastic process. The series can be cut off after a finite number
of summands, which leads to an approximation of the stochastic process
that requires only a finite number of random variables and is optimal in
the L2-sense. The theorem is due to Karhunen 1947 and Loève 1978.

Theorem 20 (Karhunen-Loève Theorem).
Let {Xt}t∈[a,b] be a zero-mean square integrable stochastic process on the
probability space (Ω,Σ, µ) over the finite time intervall [a, b] with continuous
covariance function

C(s, t) := cov(Xs, Xt) = E(XsXt).

Define the Hilbert-Schmidt operator of the covariance function as

TC : L2([a, b])→ L2([a, b]), TCf :=

∫ b

a

C(s, · )f(s) ds.

Denote the pairs of eigenvalues λk and eigenfunctions ek of the operator
TC that solve

TCek = λkek.

Then, the eigenfunctions ek form an orthonormal basis of L2([a, b]) and the
stochastic process has the representation

Xt =
∞∑

k=1

akek(t)

1To be precise: the eigenfunctions of the Hilbert–Schmidt integral operator correspond-
ing to the covariance function
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3.2. Karhunen-Loève Approximation

with the random variables

ak :=

∫ b

a

Xtek(t) dt.

The convergence of the series is in L2(Ω) and uniform in t. The random
coefficients have zero-mean, are uncorrelated and have variance λk.

The covariance function of a Wiener process is given by

C(t, s) = cov(Wt,Ws) = min(s, t),

which allows a direct calculation of the Karhunen-Loève series.

Corollary 12 (Karhunen-Loève series of a Wiener process).
Let {Wt}t∈[0,1] be a Wiener process on [0, 1].

Then there is a sequence of independent standard normal distributed
random variables {ak}k=1,...,∞ such that

Wt =
√

2
∞∑

k=1

ak
sin(ωkπt)

ωkπ
, ωk =

(
k − 1

2

)
.

The convergence is in L2(Ω) and uniform in t.

We use a finite approximation of the representation of a Wiener process as
in Corollary 12 as initial boundary data. However, by the use of Theorem 20,
the methodology can be applied to arbitrary zero-mean square integrable
stochastic processes with the obvious adaptions. The finite dimensional
approximation of a Wiener process on [0, T ] yields

ξ(t) =
√

2T
N∑

k=1

ak
sin
(
ωkπ

t
T

)

ωkπ
, ωk = k − 1

2
, on [0, T ]. (KL-bd)

Analogously, we choose the compatible initial data on [0, L]

v0(x) =
√

2L
N∑

k=1

bk
sin
(
ωkπ

L−x
L

)

ωkπ
, ωk = k − 1

2
, on [0, L]. (KL-id)

The random variables ak and bk are independently normal distributed. The
compatibility condition ξ(0) = v0(L) = 0 holds. Furthermore, set v1 = 0.
The value of ‖v‖L∞ is not easily expressed as an analytic function of the
random variables. This means a sampling scheme based on spheric radial
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CHAPTER 3. Feedback Stabilization of the Linear Wave Equation

Figure 3.1.: Realizations of the random initial-boundary data

(a) Different realizations (21)
of the initial data for a
Karhunen-Loève sum with 20
standard normal distributed
coefficients

(b) Different realizations (21)
of the boundary data for a
Karhunen-Loève sum with 20
standard normal distributed
coefficients

decomposition can not be directly be applied. We use a quasi-Monte Carlo
method based on a Sobol sequence instead. Different realizations of the
initial-boundary data are shown in Figure

For an approximation of the L∞-norm of the velocity by pointwise
evaluation on a grid, the Lipschitz continuity of the velocity is required.

Definition 34 (Space of Lipschitz Continuous Functions). Denote the
space of Lipschitz continuous functions on X by

C0,1(X) := {f : X → R | there exists a constant K > 0 such that

|f(x)− f(y)| ≤ K‖x− y‖X}

Theorem 21 (Lipschitz Continuity of the Solution).
Assume that the boundary data ξ ∈ C0,1([0, T ]) and initial data v0 ∈
C0,1([0, L]) are Lipschitz continuous and assume that Lipschitz compatibility
over the edge holds, i.e.,

|ξ(t)− v0(L− x)| ≤ K|t− L+ x|, for (t, x) ∈ [0, T ]× [0, L] (3.5)
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3.2. Karhunen-Loève Approximation

with a Lipschitz constant K > 0. Furthermore, let the initial time derivative
v1 ∈ L∞(0, L) be bounded. Then the solution v of system (S) is Lipschitz
continuous in time and space, i.e., v ∈ C0,1([0, T ]× [0, L]).

Proof. The sum of Lipschitz continuous functions is Lipschitz continuous.
It is therefore sufficient to show the Lipschitz continuity of α and β defined
in Theorem 19. Without loss of generality—by going to the maximum of
the occurring Lipschitz constants—we assume that they are all the same
and denote each of them by K > 0. First, we show the Lipschitz continuity
of V1. We have, for x, y ∈ [0, L]

|V1(x)− V1(y)| =
∣∣∣∣
∫ x

0

v1(s) ds−
∫ y

0

v1(s) ds

∣∣∣∣

=

∣∣∣∣
∫ x

y

v1(s) ds

∣∣∣∣ ≤ |x− y| ‖v1‖L∞ .

The functions α and β are Lipschitz continuous on the interval [0, L
c
) by

the Lipschitz continuity of v0 and V1. On the interval [L
c
, T + L

c
] we can use

an induction argument: We show the Lipschitz continuity of α and β for

s ∈ Ik :=
[
kL
c
, (k+1)L

c

)
, k ≥ 1

under the assumption that α and β are Lipschitz continuous on the interval

Ik−1 :=
[

(k−1)L
c

, kL
c

)
.

By the definition of α in Theorem 19, we have for s, r ∈ Ik using the
triangle inequality

|α(s)− α(r)| =
∣∣2ξ
(
s− L

c

)
− β

(
s− L

c

)
− 2ξ

(
r − L

c

)
+ β

(
r − L

c

)∣∣
≤ 2
∣∣ξ
(
s− L

c

)
− ξ
(
r − L

c

)∣∣+
∣∣β
(
s− L

c

)
− β

(
r − L

c

)∣∣
≤ 2K|s− r|+K|s− r| = 3K|s− r|.

by the Lipschitz continuity of ξ and the Lipschitz continuity of β on Ik−1.

For the function β, we obtain for s, r ∈
[
kL
c
, (k+1)L

c

)

|β(s)− β(r)| =
∣∣γ(η)α

(
s− L

c

)
− γ(η)α

(
r − L

c

)∣∣
≤ K|γ(η)||s− r|,

because α is Lipschitz continuous on Ik−1. Thus, we have shown the Lips-
chitz continuity of α and β on the individual intervals

[
0, L

c

)
and

[
L
c
, T + L

c

]
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CHAPTER 3. Feedback Stabilization of the Linear Wave Equation

(the inclusion of the right boundary is due to the continuity of the func-
tions on

[
L
c
, T + L

c

]
). Clearly, the functions are Lipschitz continuous on[

0, T + L
c

]
if they are continuous in the point L

c
. The Lipschitz constant

can be chosen as the maximum of the Lipschitz constants on each interval.
We calculate the left and right limits:

lim
s↗L

c

α(s) = lim
s↗L

c

v0(cs) + 1
c
V1(cs) = v0(L) + 1

c
V1(L)

lim
s↘L

c

α(s) = lim
s↘L

c

2ξ
(
s− L

c

)
− β

(
s− L

c

)

= 2ξ(0)− β(0) = 2ξ(0)− v0(L) + 1
c
V1(L)

Both limits are equal, because ξ(0) equals v0(L) as a consequence of (3.5).
For β, we have

lim
s↗L

c

β(s) = lim
s↗L

c

v0(L− cs)− 1
c
V1(L− cs) = v0(0)

lim
s↘L

c

β(s) = lim
s↘L

c

γ(η)α
(
s− L

c

)
+ C(η) = γ(η)α(0) + C(η)

= γ(η)[v0(0) + 1
c
V1(0)] + [1− γ(η)]v0(0) = v0(0),

where V1(0) = 0 was used. This shows the continuity of α and β and
concludes the proof.

The solution for different realizations of the initial-boundary data with the
value of the L∞-norm is depicted in Figure 3.3 for the feedback parameter
η = 1 and in Figure 3.4 for completely absorbing feedback η = 1/c. Note
that in the case of feedback η = 1/c, the value of the L∞-norm can be
calculated analytically in dependence of the initial and boundary data.

Theorem 22 (Value of ‖v‖L∞ in terms of initial and boundary data).
Let v be a solution of system (S) for η = 1/c under the assumptions of
Theorem 19. For (t, x) ∈ (0, T )× (0, L), define

m1(t, x) := 1
2

[
v0(x+ ct) + 1

c
V1(x+ ct)

]
+ 1

2

[
v0(x− ct)− 1

c
V1(x− ct)

]
,

m2(t, x) := 1
2

[
v0(ct+ x) + 1

c
V1(ct+ x) + v0(0)

]
,

m3(t, x) := ξ(t+ x−L
c

)− 1
2

[
v0(2L− x− ct)− 1

c
V1(2L− x− ct)

]

+ 1
2

[
v0(x− ct)− 1

c
V1(x− ct)

]
,

m4(t, x) := ξ(t+ x−L
c

) + 1
2

[
1
c
V1(2L− x− ct) + v0(0)− v0(2L− x− ct)

]
,

m5(t, x) := ξ(t+ x−L
c

),
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3.2. Karhunen-Loève Approximation

Figure 3.3.: The solution v of the wave equation with boundary and
initial data given by the functions defined in (KL-bd) and (KL-id) for
nine samples of the standard normal distributed random vector (a, b) with
realizations in R40, i.e. N = 20. The data T = 8, L = 2, c = 0.5, η = 1 was
used and the value of the L∞-norm was evaluated on a 100× 100 grid in
time and space. The estimated probability after 10000 samples is 0.8101.

denote ΩT = (0, T )× (0, L) and set

Ω1 :=
{

(t, x) ∈ ΩT | t < min{L−x
c
, x
c
}
}
,

Ω2 :=
{

(t, x) ∈ ΩT | xc ≤ t < L−x
c

}
,

Ω3 :=
{

(t, x) ∈ ΩT | L−xc ≤ t < x
c

}
,

Ω4 :=
{

(t, x) ∈ ΩT | max{L−x
c
, x
c
} ≤ t < L

c
+ L−x

c

}
,

Ω5 :=
{

(t, x) ∈ ΩT | t ≥ L
c

+ L−x
c

}
;

see Figure 3.5. For i ∈ {1, . . . , 5} denote

Mi := sup{ |mi(t, x)| : (t, x) ∈ Ωi}.

Then the L∞-norm of the solution v is given by

‖v‖L∞ = max{M1,M2,M3,M4,M5}.

Proof. By Theorem 19 the solution of system (S) is given by

v(t, x) := 1
2
α
(
t+ x

c

)
+ 1

2
β
(
t+ L−x

c

)
.
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CHAPTER 3. Feedback Stabilization of the Linear Wave Equation

Figure 3.4.: The solution v of the wave equation with boundary and initial
data given by the functions in (KL-bd) and (KL-id) for nine samples of
the standard normal distributed random vector (a, b) with realizations in
R40, i.e., N = 20. The constants T = 6, L = 2, c = 0.5 and the completely
absorbing feedback η = 2 were used. The bound vmax = 5 was chosen.
The probability of ‖v‖L∞ ≤ vmax is 0.8808 with 10000 samples used. The
value of the L∞-norm is approximated by evaluation on a 100× 100 grid
on [0, T ]× [0, L]. The points, where the value of the L∞-norm is attained
are marked in red.

Remember that the definition of α was

α(s) :=

{
v0(cs) + 1

c
V1(cs) for s ∈

[
0, L

c

)

2ξ
(
s− L

c

)
− β

(
s− L

c

)
for s ∈

[
L
c
, T + L

c

]
.

Because η = 1/c implies γ(η) = 0 and C(η) = v0(0), the function β
simplifies to

β(s) :=

{
v0(L− cs)− 1

c
V1(L− cs) for s ∈

[
0, L

c

)

v0(0) for s ∈
[
L
c
, T + L

c

]
.

By the definition of α and β, there are four cases to consider. The last case
is split into two subcases. The cases correspond to the different regions in
the space time domain that are separated by the characteristic curves

t = x
c
, t = L−x

c
and t = L

c
+ L−x

c
.
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0 L
0

T

Ω1

Ω2 Ω3

Ω4

Ω5

{
(t, x) ∈ ΩT | t = L−x

c

}
{

(t, x) ∈ ΩT | t = x
c

}

{
(t, x) ∈ ΩT | t = L

c
+ L−x

c

} Figure 3.5.: The different
cases to consider are deter-
mined by the sectioning of
ΩT = [0, T ]× [0, L] by the
characteristic curves.

The regions are depicted in Figure 3.5.
The first case t < min

{
x
c
, L−x

c

}
, which is (t, x) ∈ Ω1, corresponds to

being in the first case for both α and β. Therefore, we obtain

v(t, x) = 1
2

[
v0(x+ ct) + 1

c
V1(x+ ct)

]
+ 1

2

[
v0(x− ct)− 1

c
V1(x− ct)

]
.

For x
c
≤ t < L−x

c
, which is (t, x) ∈ Ω2, we are in the first case for α and in

the second case for β. Note that the interval for t can only be nonempty
for x ∈

(
0, L

2

)
. Hence,

v(t, x) = 1
2

[
v0(ct+ x) + 1

c
V1(ct+ x) + v0(0)

]
.

For L−x
c
≤ t < x

c
, which corresponds to (t, x) ∈ Ω3, we are in the second

case for α and in the first case for β. Note that the interval for t can only
be nonempty for x ∈

(
L
2
, L
)
. Consequently,

v(t, x) = 1
2

[
2ξ(t+ x−L

c
)− β(t+ x−L

c
) + β(t+ L−x

c
)
]

= ξ(t+ x−L
c

)− 1
2
β(t+ x−L

c
) + 1

2

[
v0(x− ct)− 1

c
V1(x− ct)

]

= ξ(t+ x−L
c

)− 1
2

[
v0(2L− x− ct)− 1

c
V1(2L− x− ct)

]

+ 1
2

[
v0(x− ct)− 1

c
V1(x− ct)

]
,

since t < x
c
< L

c
and x−L

c
< 0, imply t+ x−L

c
< L

c
. The last case to consider

is t ≥ max{L−x
c
, x
c
}. It leads to

v(t, x) = 1
2

[
2ξ(t+ x−L

c
)− β(t+ x−L

c
) + v0(0)

]
,
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which is equal to

ξ(t+ x−L
c

) + 1
2

[
1
c
V1(2L− x− ct) + v0(0)− v0(2L− x− ct)

]
,

for t < L
c

+ L−x
c

and

ξ(t+ x−L
c

), for t ≥ L
c

+ L−x
c
.

This corresponds to the domains Ω4 and Ω5.

3.3. Optimization of the Feedback Parameter

The feedback parameter η can be chosen such that the probability G(η)
defined in Equation (3.4) is maximized. We consider the probability to

1.5 2 2.5 3 3.5 4

0.855

0.86

0.865

0.87

0.875

0.88

2
η

G
(η

)

Figure 3.6.: The proba-
bility to stay under the
bound vub = 5 over the
feedback parameter η for
the data L = 2, c = 0.5,
T = 2 using 2000 sam-
ples. In this case, the
maximum of the proba-
bility is reached for com-
pletely absorbing feed-
back η = 1/c = 2.

0 500 1,000 1,500 2,000
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0.86

0.87

0.88

0.89
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Figure 3.7.: The quasi-
Monte Carlo approxima-
tion of the probability
to stay under the bound
vub = 5 over the number
of samplesN for the data
L = 2, c = 0.5, T = 2 for
the feedback parameter
η = 3.
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1.8 1.9 2 2.1 2.2
0.8650

0.8675

0.8700

0.8725

0.8750

0.8775

2

η

G
(η
)

500 Samples
1000 Samples
1500 Samples
2000 Samples

Figure 3.8.: The proba-
bility to stay under the
bound vub = 5 over
the feedback parameter
η for the data L = 2,
c = 0.5, T = 2 using
500, 1000, 1500 and 2000
samples.

stay under the bound vmax = 5 for different feedback parameters η > 0
on a grid with stepsize 0.01 between 1.5 and 4. The data for the example
has been chosen as L = 2, T = 2, c = 0.5. For the approximation of the
probability, 2000 samples were used for each value of η. In Figure 3.6 the
probability is plotted over the feedback parameter. The maximum of the
probability is reached for completely absorbing feedback η = 1/c = 2. The
peak in probability is very distinct. At the peak the probability function
appears to be nonsmooth.

The Figure 3.7 shows the quasi-Monte Carlo approximation of the prob-
ability function over the number of samples. The variance decrease and
thus the increasing quality of the approximation for higher sample numbers
is apparent. The importance of sufficiently high sample numbers is high-
lighted in Figure 3.8. The lower sample numbers do not show the sharp
peak at η = 2 as it is the case for N = 2000. The grid stepsize between
η = 1.75 and η = 2.25 is 0.01 for all sample sizes.

Conclusion

We introduced a way to model stochastic boundary conditions for par-
tial differential equations (PDEs) using a Karhunen-Loève series. When
including uncertainty into the system, the existing literature focuses on
uncertainty of the dynamics, leading to stochastic PDEs. Although the un-
certainty of the input data in the form of boundary conditions is important
in applications such as gas pipeline control, it is a barely explored research
topic. The robustness in the sense that the supremum of the absolute value
of the state stays under a certain bound with high probability has been
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CHAPTER 3. Feedback Stabilization of the Linear Wave Equation

considered. The system can be stabilized using a feedback stabilization to
maximize this probability.

There are different directions to continue the research of this topic: Other
norms than the L∞-norm may be used in the probability function. There is
hope that the classical choice of a squared L2-norm might lead to a proba-
bility function that is differentiable with respect to the feedback parameter.
Analytical gradients or subgradients are desirable, yet traditional methods
as in Uryas’ev 1994, Kibzun and Uryasev 1998 or Shapiro, Dentcheva,
and Ruszczyński 2009, Theorem 4.77 fail due to the infinite dimensional
nature of the problem (the solution v lies in the space L∞((0, T )×(0, L))).
Furthermore, the feedback boundary may be replaced by a free control
expanding the framework from a one dimensional optimization parameter
to a infinite dimensional optimal control problem. Nontrivial optimality
conditions for this problem are not known due to the lack of derivatives
even for the feedback control problem. The extension to networks is open
to further research.
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A. Mathematical Basics

Implicit Function Theorem (Rudin 1976, Theorem 9.28).
Let U1 ⊂ Rk and U2 ⊂ Rm be open subsets and let

F : U1 × U2 → Rm, (x, y) 7→ F (x, y),

be continuously differentiable. Let a point (a, b) ∈ U1 × U2 that fulfills

F (a, b) = 0

be given. Assume that the Jacobian DyF with respect to y is invertible in
the point (a, b). Then, there exist open neighborhoods V1(a) ⊂ U1 of a and
V2(b) ⊂ U2 of b and a continuously differentiable mapping g : V1 → V2 ⊂ Rm

with g(a) = b such that

F (x, g(x)) = 0 for all x ∈ V1.

If (x, y) ∈ V1×V2 fulfills F (x, y) = 0, then y = g(x) follows. The derivative
of g is given by

g′(x) = −(DyF (x, g(x))−1DxF (x, g(x)).
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B. Data of Chapter 1

For the convenience of the reader, Tables B.1–B.7 below contain the data
used in the numerical examples presented in Chapter 1. The constant αa
in the compressibility factor model is computed via (see e.g., Domschke
et al. 2017)

α =
0.257

pc
− 0.533

Tc
pc T

,

where pc > 0 is the pseudocritical pressure and Tc > 0 is the pseudocritical
temperature. We have used the formula of Chen (s. Cerbe 2008), which
is an explicit estimate for the Colebrook-White law, to calculate realistic
values for θa = λa/Da. The equations for the Reynolds number and the
friction factor read as follows:

Rea :=
qaDa

ηv
,

1√
λa

= −2 log10

(
ka/Da

3.7065
− 5.0425

Rea
log10

[
(ka/Da)

1.1098

2.8257
+

5.8506

(Rea)0.8981

])
.

In practice the friction factor λa is of the order 10−1−−1. Since the flow qa
is constant along each pipe, for the stationary states, this leads to constant
friction factors λa along each pipe. In all examples, the dynamic viscosity
is ηv := 11.9 · 10−6 kg m−1 s−1. Note that our analysis does not directly
cover the dependency of the friction factor on qa, but it poses no problems
for numerical calculations. For trees, there is no difference between a
flow-dependent and a flow-independent friction law.

Table B.1 contains the constants used for the single pipe computations
in Section 1.1 and 1.2. Table B.2 contains the globally used constants and
Table B.3 the constants for each pipe for the example of a tree networks in
Section 1.5.1 and Section 1.5.2. The boundary values for the tree example
are presented in Table B.4. The globally used constants for the diamond
graph (Section 1.5.1) are contained in Table B.5. The pipe data for this
example is presented in Table B.6 and its boundary flow values in Table B.7.
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Table B.1.: Values for single pipe examples

Symbol Name Value Unit

R Specific gas constant 448.66 J kg−1 K−1

T Temperature 290 K
pc Pseudocritical pressure 46.70206 105 Pa
Tc Pseudocritical temperature 202.43951 K
α Constant in the state equation -2.46391 10−8 Pa−1

ka Roughness 0.06 mm

Table B.2.: Global values for the tree network example

Symbol Name Value Unit

R Specific gas constant 447.80152 J kg−1 K−1

T Temperature 273.15 K
pc Pseudocritical pressure 45.92935 105Pa
Tc Pseudocritical temperature 188.54976 K
α Constant in the state equation -2.41499 10−8Pa−1

Table B.3.: Pipe data for the tree network example

Pipe name From To Length La Diameter Da Roughness ka

a r v 15.99078 km 1.0 m 0.05 mm
b u v 44.71898 km 1.0 m 0.05 mm
c u w 7.05313 km 1.0 m 0.05 mm
d u s 38.05409 km 1.0 m 0.05 mm

Table B.4.: Given boundary data for the tree network example

Node name Node outflow qout
v Pressure pr

r -130.83333 kg s−1 13.00000 · 105 Pa
u 0 kg s−1 –
v, w, s 43.61111 kg s−1 –
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Table B.5.: Global values for the diamond graph example

Symbol Name Value Unit

R Specific gas constant 460.66628 J kg−1 K−1

T Temperature 288.15 K
pc Pseudocritical pressure 46.70206 105Pa
Tc Pseudocritical temperature 202.43951 K
α Constant in the state equation -2.51506 10−8Pa−1

Table B.6.: Pipe data for the diamond graph example

Pipe name From To Length La Diameter Da Roughness ka

a r u 39.74748 km 1.3 m 0.01 mm
b u v 37.57120 km 1.0 m 0.01 mm
c u w 28.40076 km 1.3 m 0.01 mm
d v w 26.59033 km 1.3 m 0.01 mm
e v s 17.97404 km 1.0 m 0.01 mm
f w s 25.14802 km 1.0 m 0.01 mm
g s t 14.58364 km 1.0 m 0.01 mm

Table B.7.: Given boundary data for the diamond graph example

Node name Node outflow qout
v Pressure pr

r -453.1495 kg s−1 60 · 105 Pa
u, v, w, s 0 kg s−1 –
t 453.1495 kg s−1 –
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C. Data of Chapter 2

The data for the calculations in Chapter 2 is presented in Tables C.3–C.6.
The friction λ and the compressibility factor z are calculated as described
in Chapter B. The simple tree network (for Figure 2.8) uses the data of
Table C.1 and Table C.2. The example of a tree with six exit nodes (see
Section 2.5.2) uses the data of Table C.3 and Table C.4. The example with
multiple compressors (see Section 2.5.3) uses the data of Tables C.5 and
Table C.6.

Table C.1.: Global values for the simple tree network

Symbol Name Value Unit

R Specific gas constant 461.91443 J kg−1 K−1

T Temperature 300 K
pc Pseudocritical pressure 46.7 105 Pa
Tc Pseudocritical temperature 202 K
α Constant in the state equation -2.18172734 10−8 Pa−1

Table C.2.: Pipe data for the simple tree example

Pipe name From To Length La Diameter Da Roughness ka

Entry1 Innode Entry1 Innode 100 km 0.8 m 0.06 mm
Innode Exit1 Innode Exit1 80 km 0.8 m 0.06 mm
Innode Exit2 Innode Exit2 60 km 0.8 m 0.06 mm
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CHAPTER C. Data of Chapter 2

Table C.3.: Global values for the larger tree example

Symbol Name Value Unit

R Specific gas constant 447.80152 J kg−1 K−1

T Temperature 273.15 K
pc Pseudocritical pressure 45.92935 105 Pa
Tc Pseudocritical temperature 188.54976 K
α Constant in the state equation -2.41599 10−8 Pa−1

Table C.4.: Pipe data for the larger tree example

Pipe name From To Length La Diameter Da Roughness ka

pipe 1 source 1 innode 1 13.07109 km 1.0 m 0.05 mm
pipe 2 innode 1 innode 2 76.89355 km 0.8 m 0.05 mm
pipe 3 innode 2 sink 1 21.55757 km 1.0 m 0.05 mm
pipe 4 innode 2 innode 3 6.99805 km 1.0 m 0.05 mm
pipe 5 innode 3 sink 2 58.21897 km 0.8 m 0.05 mm
pipe 6 innode 3 sink 3 86.69027 km 0.8 m 0.05 mm
pipe 7 innode 3 sink 4 16.57933 km 0.6 m 0.05 mm
pipe 8 innode 1 innode 4 10.02278 km 0.6 m 0.05 mm
pipe 9 innode 4 sink 5 35.21884 km 0.6 m 0.05 mm
pipe 10 innode 4 sink 6 20.32221 km 0.6 m 0.05 mm

Table C.5.: Global values for the compressor tree example

Symbol Name Value Unit

R Specific gas constant 447.80152 J kg−1 K−1

T Temperature 273.15 K
pc Pseudocritical pressure 45.92935 105 Pa
Tc Pseudocritical temperature 188.54976 K
α Constant in the state equation -2.41499 10−8 Pa−1
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Table C.6.: Pipe data for the compressor tree example

Pipe name From To Length La Da ka

pipe 1 source 1 innode 1 13.07109 km 1.0 m 0.01 mm
pipe 2 innode 1 innode 2 16.89355 km 0.8 m 0.05 mm
pipe 3 innode 2 sink 1 21.55757 km 1.0 m 0.05 mm
pipe 4 (comp) innode 2 innode 3 – – –
pipe 5 innode 3 sink 2 88.21897 km 0.8 m 0.05 mm
pipe 6 innode 3 sink 3 86.69027 km 0.8 m 0.05 mm
pipe 7 innode 3 sink 4 16.57933 km 0.6 m 0.05 mm
pipe 8 innode 11 innode 4 10.02278 km 0.6 m 0.05 mm
pipe 9 innode 4 sink 5 15.21884 km 0.6 m 0.01 mm
pipe 10 (comp) innode 4 innode 5 – – –
pipe 11 innode 5 sink 6 91.32221 km 0.6 m 0.05 mm
pipe 12 innode 5 sink 7 21.32221 km 0.6 m 0.05 mm
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D. Equation Glossary

(Iso)





∂tρ+ ∂xq = 0

∂tq + ∂x

(
p+

q2

ρ

)
= −θ

2

q|q|
ρ

(IsoStat)





∂xq = 0

∂x

(
p+

q2

ρ

)
= −θ

2

q|q|
ρ

(StateEq) p = RTz(p)ρ

(AGA) z(p) = 1 + αp

(param-IVP)

{
ux(x, z) = s(x;u(x, z), z) x ∈ (0, L]

u(0, z) = u0

(Initial State) ya(0) = yr

(Kirchhoff) Aq = qout

(Arc Coupling) ya(La) = fa(La; ya(0), qa) ∀a = (u, v) ∈ A

(Node Coupling) hu(ya(xa(u)), qa) = hu(yb(xb(u)), qb)

(KirchhoffM) Am = mout

(Real) pa(La) = fa(La; pa(0), qa),

fa(L; p, q) := F−1

(
F (p, q)−RTq|q|

∫ L

0

θ(s)
2 ds

)
,

F (p, q) :=
p

α
− 1

α2
ln(z(p)) + q2RT ln

(
z(p)

p

)
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CHAPTER D. Equation Glossary

(Ideal) pa(La) = fa(La; pa(0), qa),

fa(L; p, q) := c |q|
[
−W−1

(
− exp

(
− C + sign(q)

∫ L
0
θa(s) ds

))]1/2
,

C := 1
η + ln(η), η := q2c2

p2

(Pr) hu(p, q) = p

(MF) hu(p, q) =
p

c2

(
1 +

q2c2

p2

)
= ρ(1 + η)

(BI) hu(p, q) = log
( p
c2

)
+

1

2

q2c2

p2
= log(ρ) +

1

2
η

(R) fa(x; p, q) := p− 1

2
ζ
q2c2

p
x, x ∈ [0, 1]

(C) fa(x; p, q) = p(1− x) +
[
(RTzm)−1 κ−1κ F (Q) + 1

] κ
κ−1 px

(Stat-Net-Full) Aq = qout,

pv = fa(La; pu, qa), ∀ a = (u, v) ∈ A,
plb ≤ p

(Stat-Net) plbv ≤ pv(pr, z) ∀v ∈ V

(Ex1) min
pr∈R

1
2p

2
r

s.t. G(pr) ≥ pbd,
pr ∈ [plbr , p

ub
r ]

(Wey) pv = fa(pu, qa) :=
√
p2u − Λqa|qa|

(Ex1-Det) min
pr∈R

1
2p

2
r

s.t. pv(pr, µ) ≥ plbv , ∀v ∈ V \ {r},
pr ∈ [plbr , p

ub
r ]
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(Ex2) min
(β,γ)∈R3

1
2

(
10β2 + γ21 + γ22

)

s.t. G(β, γ) ≥ pbd,
β ∈ [1.25, 1.5],

γ ∈ [1, 2]2

(Iso-semi)





∂tρ+ ∂xq = 0,

∂tq + c2∂xρ = −θ
2

q|q|
ρ

(WaveEq-ρ) ∂2ttρ = c2∂2xxρ

(WaveEq-q) ∂2ttq = c2∂2xxq

(S)





v(0, x) = v0(x), vt(0, x) = v1(x),

vx(t, 0) = ηvt(t, 0), v(t, L) = ξ(t),

vtt(t, x) = c2vxx(t, x)

(Initial Condition) v(0, x) = v0(x), vt(0, x) = v1(x)

(Boundary Condition) vx(t, 0) = ηvt(t, 0), v(t, L) = ξ(t)

(PDE) vtt(t, x) = c2vxx(t, x)

(KL-bd) ξ(t) =
√

2T

N∑

k=1

ak
sin
(
ωkπ

t
T

)

ωkπ
on [0, T ],

ωk = k − 1
2

(KL-id) v0(x) =
√

2L

N∑

k=1

bk
sin
(
ωkπ

L−x
L

)

ωkπ
on [0, L],

ωk = k − 1
2

183





Bibliography

[1] Wim van Ackooij. “Chance constrained programming: with appli-
cations in energy management”. PhD thesis. Ecole Centrale Paris,
2013.
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