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Abstract— The critical role of gas fired-plants to compensate
renewable generation has increased the operational variability
in natural gas networks (GN). Towards developing more reliable
and efficient computational tools for GN monitoring, control,
and planning, this work considers the task of solving the
nonlinear equations governing steady-state flows and pressures
in GNs. It is first shown that if the gas flow equations are
feasible, they enjoy a unique solution. To the best of our
knowledge, this is the first result proving uniqueness of the
steady-state gas flow solution over the entire feasible domain
of gas injections. To find this solution, we put forth a mixed-
integer second-order cone program (MI-SOCP)-based solver
relying on a relaxation of the gas flow equations. This relaxation
is provably exact under specific network topologies. Unlike
existing alternatives, the devised solver does not need proper
initialization or knowing the gas flow directions beforehand, and
can handle gas networks with compressors. Numerical tests on
tree and meshed networks indicate that the relaxation is exact
even when the derived conditions are not met.

Index Terms— Gas flow equations, convex relaxation, second-
order cone constraints, uniqueness.

I. INTRODUCTION

Natural gas has been a critical energy source for decades
with uses across the residential, commercial, industrial, and
electric generation sectors [1]. The importance of natural gas
in the energy sector has further increased, and the same
is anticipated in future. The main reasons for increasing
emphasis on natural gas include the discovery of substantial
new supplies of natural gas in the U.S., and its recognition
as a clean low-carbon solution to meet rising energy de-
mands [2]. The thrust for renewable energy in power sector
demands for technical solutions to handle the high variability,
intermittency, and uncertainty involved with wind and solar
generations. Natural gas has come up as an economically
viable and low-carbon solution to the said problem because
of high ramping abilities of natural gas-fired generators [2].

The primary transportation mode for natural gas is through
a large continent-wide network of pipelines [1]. Along a
pipeline, pressure drops in the direction of flow due to
friction. Gas contracts necessitate the operators to maintain a
minimum pressure at consumer nodes. Therefore, compres-
sors are placed on some pipelines to increase the pressure
at the output. Given gas injection/withdraws, operators need
to solve the gas flow (GF) equations, a set of nonlinear
equations governing the distribution of gas flows and nodal
pressures [3]. The increasing variability in gas withdrawals
by gas-fired generators, the complex interdependence of gas-
electric infrastructure, and increased focus on reliability, they
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all motivate well efficient GF solvers [4]. Solving the GF
problem is hard for non-tree networks even under-steady
state and balanced conditions [5].

The GF problem is typically solved using the Newton-
Raphson (NR) scheme, though its convergence is conditioned
on proper initialization [4]. A semidefinite program (SDP)-
based GF solver, attaining a higher success probability than
the NR scheme, is developed in [3]. Nevertheless, the SDP-
based solver fails to solve the GF problem if the network
state is far from the states considered in designing the solver.
The necessity of good initialization for the NR scheme and
suitable design points for SDP-based solver limit their suit-
ability for reliability studies. For simpler networks without
compressors, the flows and pressures are the optimal primal-
dual solutions of a convex minimization [6]. Broadening the
scope to tree networks, a GF solver based on the monotone
operator theory has been developed in [5]. The latter applies
to meshed GNs presuming that the directions of gas flows
are given. Reference [5] establishes also the uniqueness of
a GF solution but only within a monotonicity domain; still
this domain is hard to characterize for non-tree networks
or networks with compressors. Reference [7] establishes
the uniqueness of a GF solution when the compressors are
modeled as additive with a constant pressure increase.

The contribution of this work is on three fronts: First,
Section III proves that the nonlinear steady-state GF equa-
tions enjoy a unique solution, if a solution exists. To the
best of our knowledge, this is the first claim corroborating
the numerical observations of [5]. Second, Section IV-A puts
forth an MI-SOCP-based GF solver. The GF task is posed as
a minimization problem where flow directions are captured
by binary variables; the nonlinear GF equations are relaxed
to second-order cone constraints; and a judiciously designed
function is appended in the objective. Thanks to the latter,
the third contribution is to show that the relaxation is exact
if there are no compressors in cycles and every pipe belongs
to at most one cycle. Numerical tests on tree and meshed
networks demonstrate that the devised solver finds the unique
GF solution even when the assumed conditions are not met.

Notation: lower- (upper-) case boldface letters denote
column vectors (matrices). Calligraphic symbols are reserved
for sets. Symbol > stands for transposition, and � denotes
entry-wise multiplication between vectors. Vectors 0 and 1
are the all-zero and all-one vectors. The sign function sgn(x)
returns +1 if x > 0; −1 if x < 0; and 0 otherwise.

II. GAS FLOW PROBLEM

Consider a natural gas network (GN) modeled by a
directed graph G = (N ,P). The graph vertices N =
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{1, · · · , N} model nodes where gas is injected or withdrawn
from the network, or simple junctions. The graph edges
P = {1, . . . , P} correspond to gas pipelines connecting two
nodes. Let pn > 0 be the gas pressure at node n for all
n ∈ N . One of the nodes (conventionally one hosting a
large gas producer) is selected as the reference node. The
reference node is indexed by r, and its pressure is fixed to
a known value pr. The gas injection qn at node n ∈ N
is positive for an injection node; negative for a withdrawal
node; and zero for junction nodes.

Without loss of generality, edges are assigned an arbitrary
direction denoted by ` = (m,n) ∈ P with m and n ∈ N .
The gas flow φ` on pipeline ` = (m,n) ∈ P is positive when
gas flows from node m to node n, and negative, otherwise.
Conservation of mass implies that for all n ∈ N

qn =
∑

`:(n,k)∈P

φ` −
∑

`:(k,n)∈P

φ`. (1)

To express (1) in matrix-vector form, collect all gas in-
jections in q := [q1 . . . qN ]> and edge flows in φ :=
[φ1 . . . φP ]>.The connectivity of the GN graph is captured
by the P ×N edge-node incidence matrix A with entries

A`,k :=


+1 , k = m

−1 , k = n

0 , otherwise
∀ ` = (m,n) ∈ P. (2)

The mass conservation in (1) may thus be expressed as

A>φ = q. (3)

Observe that A1 = 0 by definition, and so 1>q = 0. The
latter is intuitive since the network should be balanced under
steady-state conditions. This also implies that (1) provides
N − 1 rather than N independent linear equations on φ.

For high- and medium-pressure networks, the pressure
drop and energy loss across a pipeline are captured by a
set of partial differential equations evolving across time and
spatially along the pipeline length [8], [9]. Ignoring friction,
pipeline tilt, and assuming time-invariant gas injections, this
set of partial differential equations simplifies to the so termed
Weymouth equation [10]

p2
m − p2

n = a`φ`|φ`| (4)

describing the pressure difference across the endpoints of
pipeline ` = (m,n) ∈ P . The parameter a` > 0 depends on
the physical properties of the pipeline [8]. The Weymouth
equation asserts that pressure drops within a pipeline in
the direction of gas flow. To be precise, the difference of
squared pressures is proportional to the squared gas flow. To
simplify notation, define the squared pressure at node n ∈ N
as ψn := p2

n. Then, equation (4) can be written as

ψm − ψn = a` sgn(φ`)φ
2
` , ∀` = (m,n) ∈ P (5a)

ψn ≥ 0 , ∀n ∈ N . (5b)

By slightly abusing the terminology, we will oftentimes refer
to ψm as pressure rather than squared pressure, but the
distinction will be clear from the context.

To avoid unacceptably low or high pressures, GN operators
install compressors at selected pipelines comprising the set
Pa ⊆ P with Pa = |Pa|. Its complement set P̄a := P \ Pa

includes the remaining lossy pipelines satisfying (4)–(5).
A compressor amplifies the squared pressure between its
input and output by a ratio α`. Moreover, a compressor
allows a unidirectional flow in the direction of compression.
Therefore, compressor ` = (m,n) ∈ Pa can be modeled as

ψn = α`ψm (6a)
φ` ≥ 0. (6b)

Equation (6) assumes an ideal (lossless) compressor, that is
a` = 0. This is wlog since an actual non-ideal compressor
on pipe (m,n) can be modeled by inserting an additional
node n′ between nodes m and n: Then, the lossless pipe
(m,n′) hosts an ideal compressor and pipe (n′, n) is lossy.
Both pipes have identical flows φmn′ = φn′n.

Based on (5)–(6), it is not hard to verify that an NG
network can be uniquely described by either the vector of
nodal pressures ψ, or the vector of edge flows φ.

Lemma 1. Given a reference squared pressure ψr for some
r ∈ N , a pair (φ,ψ) satisfying (3), (5), and (6), is uniquely
described by either φ or ψ.

In fact, finding one of these two vectors constitutes the
gas flow (GF) problem formally described as follows.

Definition 1. Given the pressure ψr = p2
r at the reference

node; balanced nodal injections q; the compression ratios
α` for all compressors ` ∈ Pa; and the friction parameters
a` for all lossy pipes ` ∈ P̄a, the GF problem aims at finding
the nodal pressures ψ and pipe flows φ satisfying the GF
equations (3), (5), and (6).

The task involves N − 1 + P equations over N − 1 + P
unknowns. The GF task can be posed as the feasibility task

find {φ,ψ} (G1)
s.to (3), (5), (6).

Albeit (3) and (6) are linear, the Weymouth equation in
(5) is piecewise quadratic and non-convex. In addition, the
requirement {φ` ≥ 0}`∈Pa

could further complicate solving
the GF equations. The GF task is typically solved using
the Newton-Raphson’s scheme, which converges only if
initialized sufficiently close to a solution [11].

If the GN is a tree (P = N − 1), then A is full row-rank
and (3) is invertible. Once the pipe flows φ are known, pres-
sures ψ can be found through (5)–(6). In practice though, gas
networks can exhibit non-radial structure [1], [10]. Therefore,
solving the GF problem remains non-trivial. Before devising
a new GF solver in Section IV, the next section establishes
that the GF equations enjoy a unique solution.

III. UNIQUENESS OF THE GF SOLUTION

The analysis requires some concepts from graph theory,
which are briefly reviewed next. A directed graph G =
(M,P) is connected if there exists a sequence of adjacent
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Fig. 1. Example gas network with 11 edges, 2 cycles, and 1 compressor.

edges between any two of its nodes. All graphs in this work
are assumed to be connected. A minimal set of edges PT
preserving the connectivity of a graph constitutes a spanning
tree of G; is denoted by T := (M,PT ); and |PT | = |M|−1.
The edges not belonging to a spanning tree T are referred
to as links with respect to T .

A path between nodes m and n is defined as a sequence of
adjacent edges between the two nodes. If a path starts and
ends at the same node (without edge or node repetition),
it constitutes a cycle. A tree is a connected graph with no
cycles. The statements ‘cycle C contains node i’ or ‘node i
belongs to cycle C’ mean that there exists an edge in C that
is incident to node i. For any cycle C, we select an arbitrary
direction and define its indicator vector nC with `-th entry

nC` :=


0 , if edge ` /∈ C
+1 , if direction of ` agrees with cycle direction
−1 , otherwise.

(7)
For example, the network of Fig. 1 has 11 edges and 2
cycles. Based on the assigned direction for C2, the entries of
nC2 corresponding to edges {(7, 8), (8, 9), (9, 10), (10, 11)}
are {−1,−1,−1,+1}; the remaining entries are zero. Given
a spanning tree, a fundamental cycle is a cycle formed by
adding a link to the spanning tree.

After the graph preliminaries, we proceed with the unique-
ness of the GF solution. The proof relies on the next result
for a single-cycle graph, which is proved in the appendix.

Lemma 2. Consider a graph comprising a single cycle C
over k + 1 nodes indexed by i = 0, . . . , k, and define nC ∈
Rk as the indicator vector for this cycle. For fixed squared
pressure ψ0, if two flow vectors φ and φ̃ with φ̃ 6= φ satisfy
(5)–(6), they cannot satisfy

sgn(φ̃− φ)� nC < 0; or

sgn(φ̃− φ)� nC > 0

where the inequalities are understood entrywise.

The proof of Lemma 2 exploits the fact that the pressure
differences across a loop should sum up to zero no matter
what the flows φ or φ̃ are. The usefulness of this lemma is
to eliminate scenarios of flow changes. Take for example the
case where nC = 1, and assume two flow vectors φ and φ̃

satisfying (5)–(6). We hypothesize the flows in φ̃ are larger
than the flows in φ, that is φ̃ > φ. Lemma 2 ensures that
this hypothesis is not valid since sgn(φ̃−φ)�nC = 1�1 =
1 > 0. The hypothesis φ̃ < φ can be crossed out likewise.

The proof for the uniqueness of the GF solution builds
also on the ensuing result known from network flows. Its
proof follows as a special case of [12, Th. 8.8] by setting
the source-destination flow to zero.

Lemma 3. Suppose A is the edge-node incidence matrix of
a directed graph. For any vector n ∈ null(A>), there exists
a set of cycles SC such that

n =
∑
C∈SC

λCn
C (8)

where λC ≥ 0 for all C ∈ SC , and nC � nC
′ ≥ 0 for all

C, C′ ∈ SC .

Lemma 3 asserts that any vector in null(A>) can be
expressed as a conic combination of cycle indicator vectors.
Moreover, if any pair of these cycles shares an edge, this
edge participates to both cycles in the same direction. The
following claim follows easily from (8).

Corollary 1. If λC > 0 in the representation of (8), then
n` · nC` > 0 for all ` ∈ C.

Using Lemmas 2–3 and Corollary 1, we next prove the
uniqueness of the solution to the steady-state GF problem.

Theorem 1. The gas flow problem (G1) has a unique
solution, if feasible.

Proof. Proving by contradiction, assume φ and φ̃ are two
distinct flow vectors solving (G1). Since both vectors satisfy
(3), their difference n := φ− φ̃ must lie in null(A>). Then,
from Lemma 3, vector n can be decomposed as in (8).

Select any edge ` corresponding to a non-zero entry of n.
Since n` 6= 0, there exists a cycle C for which λC · nC` 6= 0.
Two cases can be identified:

C1) Cycle C contains the reference node r. From Corol-
lary 1, it follows n` · nC` = (φ` − φ̃`) · nC` > 0 for all edges
` ∈ C. The latter contradicts Lemma 2 and proves the claim.

C2) Cycle C does not contain the reference node r.
Calculate the distance of cycle C from r that we define as

d(C) := min
i∈C

di−r (9)

where di−r counts the edges in the shortest path between
nodes i and r. The node in C attaining distance d(C) will be
indexed by iC . If multiple nodes satisfy the latter property,
pick one arbitrarily. Consider the shortest path iC−r between
nodes iC and r. Two cases can be identified again.

C2a) The entries of n associated with the edges in path
iC − r are all zero. This implies that the related entries in
φ and φ̃ are equal. Therefore, the nodal pressures along the
path iC − r can be recursively computed using (5) and (6)
starting from ψr. Then, the nodal pressures along iC−r agree
between ψ and ψ̃, and so ψiC = ψ̃iC . Since the pressure at
node iC has been fixed, this node can serve as a reference
node, the argument under C1) applies, and proves the claim.
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C2b) There exists an edge `′ in iC−r with a non-zero entry
in n. This edge must belong to a cycle C′. Check whether
cycle C′ falls under C1) or C2), and apply the previous
reasoning recursively.

The previous process considers cycles C with progressively
smaller distances d(C), and so case C1) eventually occurs.
The recursion terminates upon finding a cycle contradicting
Lemma 2 under case C1), and completes the proof.

Remark 1. Two compressors can be sometimes connected in
parallel [6]. If they are assumed ideal, it is not possible to
infer the gas flow on each compressor. Under the practical
assumption that the two compressors are non-ideal, this
identifiability concern is waived as validated by Theorem 1.
Remark 2. While the pressure drop along a pipeline is
oftentimes described by the Weymouth equation in (4), other
alternatives include the Panhandle A and B equations [1].
The uniqueness proof of Theorem 1 holds in general as
it depends on the monotonic dependence of pressure drop
on the flows. Moreover, the proof may be generalized for
dissipative network flow problems as discussed in [7].

IV. MI-SOCP RELAXATION

A. Problem Reformulation

The non-convexity in (G1) is due to the Weymouth equa-
tion in (5a). Using the big-M trick and upon introducing a
binary variable x` for every lossy pipe ` = (m,n) ∈ P̄a,
constraint (5a) can be relaxed to convex inequalities as

−M(1− x`) ≤ φ` ≤Mx` (10a)

−M(1− x`) ≤ ψm − ψn − a`φ2
` (10b)

ψm − ψn + a`φ
2
` ≤Mx` (10c)

x` ∈ {0, 1} (10d)

for some large M > 0. When x` = 1, constraint (10a) yields
φ` ≥ 0, constraint (10b) reads ψm − ψn − a`φ2

` ≥ 0, and
(10c) is satisfied trivially. When x` = 0, constraint (10a)
yields φ` ≤ 0, constraint (10b) is satisfied trivially, and (10c)
becomes ψm − ψn + a`φ

2
` ≤ 0. We therefore get that the

binary variable equals x` = sgn(φ`). It hence determines
the direction of flow φ`, and activates (10b) or (10c).

By replacing (5) with (10) in (G1), the GF problem can
be posed as an MI-SOCP. However, the minimizer of (G2)
is useful only if it satisfies (10b) or (10c) (depending on
the value of x`) with equality for all lossy pipes. Then, the
relaxation is termed exact. Otherwise, the minimizer of (G2)
is infeasible for (G1).

To promote exact relaxations, we will substitute the GF
problem (G1) by the minimization

min r(ψ) (G2)
over φ,ψ,x

s.to (3), (6), (10)

where vector x contains all x` with ` ∈ P̄a, and

r(ψ) :=
∑

(m,n)∈P̄a

|ψm − ψn|.

Fig. 2. Modified Belgian natural gas network.

The cost r(ψ) sums up the absolute pressure differences
across all lossy pipes. A similar MI-SOCP relaxation has
been proposed for optimizing flow in water distribution
networks in [13]. Although problem (G2) remains non-
convex due to the binary variables x, with advancements
in MI-SOCP solvers, this minimization can be handled for
moderately sized networks [14], as corroborated by our nu-
merical tests. The next section provides well-defined network
conditions under which the relaxation (10) in (G2) is exact.

B. Exactness of the Relaxation

The relaxation from (5) to (10) has been proposed earlier
in [15], [16], [17]; yet without optimality guarantees. For in-
stance, reference [15] solves gas expansion planning through
this relaxation. Upon fixing the binary variables to the values
obtained via the relaxation, the continuous variables are then
heuristically refined by a local search. The convex relaxation
has been combined with a McCormick relaxation in [16].
This section provides network conditions ensuring that the
relaxation of (G2) is provably exact.

Assumption 1. Graph G has no compressors in cycles.

Assumption 2. Every edge of G belongs to at most one cycle.

Theorem 2. Under Assumptions 1 and 2, every minimizer
of (G2) solves the GF problem (G1), if the latter is feasible.

Heed that Assumptions 1 and 2 may not be always satisfied
in practical GNs; see e.g., Remark 1. Albeit, the tests of
Section V show that (G2) solves (G1) even when Assump-
tion 2 does not hold. Either way, Theorem 2 guarantees that
(G2) can provably handle the GF task for a broader class
of GNs than existing alternatives; recall [6] cannot handle
compressors, and [5] presumes known flow directions.

V. NUMERICAL TESTS

Our relaxed GF solver was tested on the Belgian bench-
mark network shown in Fig. 2. Parallel pipes were replaced
by their equivalents, and the compression ratios were de-
termined based on the nodal pressures found in [6]. Prob-
lem (G2) was solved using the MATLAB-based optimiza-
tion toolbox YALMIP along with the mixed-integer solver
CPLEX [18], [19], on a 2.7 GHz Intel Core i5 computer
with 8 GB RAM. For the big–M trick, we set M = 104.
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Fig. 3. Inexactness gap attained by (G2) over random feasible GF instances.
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Fig. 4. Running time for (G2) over random feasible GF instances.

We first tested the (G2) solver on the original tree Belgian
network. The obtained pressure and flow values agreed
with those of [6]. We then inserted additional pipelines
on the original benchmark to get a non-radial network as
shown in Fig. 2. Even though Theorem 2 requires non-
overlapping cycles (Assumption 2), the modified network
does not comply with this assumption. To use reasonable
friction coefficients, for every new line (m,n), the coefficient
amn was set equal to the sum of a`’s along the m−n path,
yielding a2,5 = 0.1936, a10,14 = 0.0439, a7,12 = 0.0419.

The reference pressure at node 1 and the compression
ratios were kept constant as in [6]. Note that the benchmark
gas injections qo lie in the range of [−15.61, 22.01]. To test
the exactness of the (G2) relaxation under various conditions,
we drew 1, 000 random gas injection vectors q’s by adding
a zero-mean unit-variance deviation on the entries of qo. To
ensure balanced injections, the injection at node 20 was set
to the negative sum of the remaining injections.

Due to the randomness in selecting gas injections, the
resulting pipe flows are not guaranteed to satisfy (6b): The
problem was found to be infeasible for 411 out of the
1, 000 random injection vectors. Since (G2) is a relaxation of
(G1), these cases are apparently infeasible for (G1) too. The
performance of (G2) was henceforth tested on the remaining
589 gas injection instances that were feasible.

To numerically quantify the success of (G2) in solving
(G1), we define the inexactness gap for injection vector q as

g(q) := max
(m,n)∈P̄a

|ψm − ψn| − amnφ
2
mn

amnφ2
mn

≥ 0

for the pressures {(ψm, ψn)} and flows {φmn} obtained
by solving (G2) for the injection vector q. Fig. 3 depicts

the ranked inexactness gap along the feasible GF instances.
Based on this curve, the gap was less than 10−4 for more
than 72% of the instances, and less than 10−3 for more than
95%. This corroborates that (G2) performs well even when
Assumption 2 is not met. Fig. 4 shows the running time for
solving (G2) over the 589 feasible instances. The average
(median) running time was 1.39 sec (1.28 sec).

VI. CONCLUSIONS

This work has established the uniqueness of the nonlinear
steady-state GF equations, put forth an MI-SOCP-based GF
solver, and provided conditions under which this solver
succeeds. Numerical tests have shown that the relaxation is
exact. The average time of the solver for a 20-node and 22-
pipe network is less than 2 seconds; yet its scalability to real-
world networks is still to be explored. The success of the
relaxation even when the postulated assumptions were not
met motivates further research on broadening the conditions.
Combining the MI-SOCP solver with existing solvers and
adopting it to tackle the GF task under dynamic operation
and towards state estimation constitute timely directions.

APPENDIX

A. Proof of Lemma 2

Select the cycle direction 0→ 1 · · · → k → 0. Without
loss of generality (wlog), suppose the i-th entry of φ
corresponds to the flow in the pipe connecting nodes (i− 1)
and i. We will prove the first claim by contradiction; the
second claim follows similarly.

Suppose the flow vectors φ and φ̃ satisfy (5)–(6) and
sgn(φ̃− φ)� n < 0. The assumption sgn(φ̃− φ)� n < 0
apparently implies that

φi > φ̃i, if ni = +1, and (11)

φi < φ̃i, if ni = −1.

We will show by induction on i that ψ̃i ≥ ψi for all i 6= 0.
Starting with the base step of i = 1, the edge between

nodes 0 and 1 can be either a lossy pipe or a compressor.
If it is a lossy pipe, denote the RHS of (5a) by w(φ`). It is
not hard to see that w(φ`) is monotonically increasing in φ`.
Depending on the value of n1, two cases can be identified:
• If n1 = +1, it follows that

ψ0 − ψ̃1 = w(φ̃1) < w(φ1) = ψ0 − ψ1

where the two equalities stem from (5a) and the inequal-
ity from (11). This implies ψ̃1 > ψ1.

• If n1 = −1, we similarly get that

ψ̃1 − ψ0 = w(φ̃1) > w(φ1) = ψ1 − ψ0

which again implies ψ̃1 > ψ1.
If the edge between nodes 0 and 1 is a compressor, the linear
dependence in (6a) yields ψ̃1 = ψ1 = α1ψ0. Thus, the claim
ψ̃1 ≥ ψ1 holds for all cases.

Proceeding with the induction step, we will assume ψ̃i ≥
ψi and prove that ψ̃i+1 ≥ ψi+1. If the edge between node i
and i+ 1 is a lossy pipe, the following cases arise:
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• If ni+1 = +1, it holds that φi+1 > φ̃i+1 from (11) and

ψ̃i − ψ̃i+1 = w(φ̃i+1) < w(φi+1) = ψi − ψi+1

=⇒ ψ̃i+1 > ψi+1 + ψ̃i − ψi ≥ ψi+1.

• If ni+1 = −1, it holds that φi+1 < φ̃i+1 from (11) and

ψ̃i+1 − ψ̃i = w(φ̃i+1) > w(φi+1) = ψi+1 − ψi

=⇒ ψ̃i+1 > ψi+1 + ψ̃i − ψi ≥ ψi+1.

If the edge between node i and i + 1 is a compressor, we
get ψ̃i+1 = αi+1ψ̃i ≥ αi+1ψi = ψi+1. Therefore, the claim
ψ̃i+1 ≥ ψi+1 holds for all cases.

The claim ψ̃i ≥ ψi holds with equality only if all edges
from node 0 to i are compressors. However, this is practically
impossible for i ≥ 2 since every compressor is modeled
as an ideal compressor followed by a lossy pipe. Therefore
ψ̃i > ψi for all i ≥ 2. Applying the latter around the cycle
gives ψ̃0 > ψ0, which contradicts the hypothesis of fixed ψ0.

B. Proof of Theorem 2

Let (φ,ψ) be the unique solution to (G1), and (φ̃, ψ̃) a
minimizer of (G2). Proving by contradiction, suppose there
exists an edge ` for which φ̃` 6= φ`. Since both flow vectors
satisfy (3), their difference

n := φ̃− φ (12)

must lie in null(A>). The nullspace of A> is spanned by
the indicator vectors of all fundamental cycles in the network
graph [20, Corollary 14.2.3]. Therefore, for all edges not
belonging to a cycle, the corresponding entries of n are zero.
Then, the edge ` must belong to at least one cycle. In fact,
by Assumption 2, edge ` belongs to a single cycle, which
will be henceforth termed cycle C.

Based on cycle C, the remainder of the proof is organized
in three steps. The first step constructs a flow vector φ̂ that
satisfies constraints (3) and (6b). The second step constructs a
pressure vector ψ̂ so that the pair (φ̂, ψ̂) is feasible for (G2).
The third step shows that (φ̂, ψ̂) attains a smaller objective
for (G2), thus contradicting the optimality of (φ̃, ψ̃).

Commencing with the first step, define the flow vector φ̂

φ̂` :=

{
φ` , ` ∈ C
φ̃` , otherwise.

The constructed flow vector φ̂ differs from φ̃ only on cycle
C. Due to (12), we can write

φ̂ = φ̃− λnC (13)

for a λ 6= 0 and where nC is the indicator vector of cycle C.
Since φ̃ satisfies constraint (3) and A>nC = 0, then

A>φ̂ = A>φ̃− λA>nC = A>φ̃ = q.

This proves that φ̂ satisfies constraint (3) as well. Granted
there are no compressors in cycles (Assumption 1) and since
φ̃ satisfies constraint (6b), then φ̂p = φ̃p ≥ 0 for all
compressor edges p ∈ Pa.

We proceed with the second step and construct the pres-
sure vector ψ̂. To define its i-th entry, we identify three cases
depending on the location of node i relative to cycle C.

a) Node i /∈ C, and the shortest path between i and r has
no edge in C. Define the modified pressure at node i as

ψ̂i := ψ̃i.

b) Node i ∈ C. Identify the node iC ∈ C with the shortest
path to the reference node r. Define the modified pressure
at node i as

ψ̂i := ψi + (ψ̃iC − ψiC ).

The node iC may be i itself, implying ψ̂iC = ψ̃iC .
c) Node i /∈ C, but the shortest path between i and r has

an edge in C. Identify the node k ∈ C that is closest to node
i, that is di−k = minj∈C di−j . Note that the nodal pressures
from r to k have been defined under cases a) and b). Starting
from node k and its updated pressure ψ̂k, we next define the
constructed pressures along the shortest path from k to i in a
sequential fashion. Moving along the k− i path, say the first
node is k+ 1 and is connected to k by edge ` = (k, k+ 1).
Then, we define the pressure at node k + 1 as

ψ̂k+1 :=

{
α`ψ̂k , if ` ∈ Pa

ψ̂k + (ψ̃k+1 − ψ̃k) , if ` ∈ P̄a
.

The process is repeated until we reach node i.
As an example, let us construct ψ̂ for Fig. 1. Suppose

cycle C2 is the cycle over which flows differ. Then, nodes
{1, 2} fall under case a); nodes {3, 4, 5} under case b); and
nodes {6, 7, 8, 910} under c), with node 5 acting as node k.
Then, the constructed pressure vector is

ψ̂ =



ψ̂1

ψ̂2

ψ̂3

ψ̂4

ψ̂5

ψ̂6

ψ̂7

ψ̂8

ψ̂9

ψ̂10


=



ψ̃1

ψ̃2

ψ̃3

ψ4 + (ψ̃3 − ψ3)

ψ5 + (ψ̃3 − ψ3)

α5,6ψ̂5

ψ̂6 + (ψ̃7 − ψ̃6)

ψ̂7 + (ψ̃8 − ψ̃7)

ψ̂8 + (ψ̃9 − ψ̃8)

ψ̂9 + (ψ̃10 − ψ̃9)


.

We next show that the constructed (φ̂, ψ̂) is feasible for
(G2). From case b), it follows that for all edges (m,n) ∈ C

ψ̂m − ψ̂n = ψm − ψn = amn sgn(φmn)φ2
mn. (14)

The latter implies that constraint (10) is satisfied with equal-
ity for all (m,n) ∈ C. Moreover, for all edges (m,n) /∈ C,
cases b) and c) yield that

ψ̂m − ψ̂n = ψ̃m − ψ̃n.

Then, since (ψ̃m, ψ̃n) satisfy (10), the same holds for
(ψ̂m, ψ̂n) for all (m,n) /∈ C. The previous two arguments
show that (φ̂, ψ̂) is feasible for (G2).

Continuing with the third step of this proof, note that the
objective r(ψ) sums up the absolute pressure differences
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along lossy pipes. Since by construction these differences
have changed only along C, we get that

r(ψ̃)− r(ψ̂) =
∑

(m,n)∈C

|ψ̃m − ψ̃n| − |ψ̂m − ψ̂n|. (15)

As the pressure differences depend on flows, we next
compare φ̂ and φ̃ using (13). Since the edge directions
are assigned arbitrarily, assume wlog that φ̂mn ≥ 0 for all
(m,n) ∈ C. Given nC and (13), one can find the value of
λ. If λ < 0, reverse the reference direction of cycle C to
redefine its indicator vector as −nC , and get a positive λ.
Then we then assume λ > 0 without loss of generality.

Recall that nC ∈ {0,±1}P . Define the set of edges in C
corresponding to positive entries of nC as P+ ⊆ C. Likewise,
define the set of edges in C corresponding to negative entries
of nC as P− ⊆ C. Take for example cycle C1 in Fig. 1:
Its edges are grouped as P+ = {(3, 5), (4, 3)} and P− =
{(5, 4)}. From (13), it follows that

0 ≤ φ̂` < φ̃`, ∀` ∈ P+; and

φ̃` < φ̂`, ∀` ∈ P−.

Summing up the pressure drops along cycle C for ψ̂ should
be zero. In Fig. 1 for example we have

(ψ̂3 − ψ̂5) + (ψ̂5 − ψ̂4) + (ψ̂4 − ψ̂3) = 0.

Since the pressure drop is positive along the edges in P+,
and negative along the edges in P−, it holds that∑

(m,n)∈P+

(ψ̂m − ψ̂n) =
∑

(m,n)∈P−
(ψ̂m − ψ̂n)

=⇒
∑

(m,n)∈C

|ψ̂m − ψ̂n| = 2
∑

(m,n)∈P+

(ψ̂m − ψ̂n) (16)

where the absolute value is trivial since φ̂mn ≥ 0 for all
(m,n) ∈ C. Referring to Fig. 1, the equations in (16) imply
(ψ̂3 − ψ̂5) + (ψ̂4 − ψ̂3) = (ψ̂4 − ψ̂5).

To draw similar relations on ψ̃, define the set P̃+ ⊆ C
containing any edge (m,n) ∈ C such that the flow φ̃mn is
along the direction of nC . Similarly, define P̃− := C \ P̃+.
Using the same argument as in (16) for ψ̃, we obtain∑

(m,n)∈C

|ψ̃m − ψ̃n| = 2
∑

(m,n)∈P̃+

(ψ̃m − ψ̃n). (17)

Since the flows in φ̂ for the edges in P+ are aligned with nC

and also φ̃` > φ̂` for these edges, it follows that P+ ⊆ P̃+.
Using this fact in (17), we get that

2
∑

(m,n)∈P+

(ψ̃m − ψ̃n) ≤ 2
∑

(m,n)∈P̃+

(ψ̃m − ψ̃n)

=
∑

(m,n)∈C

|ψ̃m − ψ̃n|. (18)

For every edge ` = (m,n) ∈ P+, it holds

ψ̂m − ψ̂n = a`φ̂
2
` < a`φ̃

2
` ≤ ψ̃m − ψ̃n (19)

where the equality comes from the definition in (14); the
first inequality in stems from φ̃` > φ̂` ≥ 0; and the second

inequality is from (10). Summing (19) over all ` ∈ P+, and
multiplying by 2 gives

2
∑

(m,n)∈P+

(ψ̂m − ψ̂n) < 2
∑

(m,n)∈P+

(ψ̃m − ψ̃n)

=⇒
∑

(m,n)∈C

|ψ̂m − ψ̂n| <
∑

(m,n)∈C

|ψ̃m − ψ̃n|

where the inequality stems from (16) and (18). From (15),
this implies r(ψ̃) > r(ψ̂) contradicting the optimality of ψ̃.
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