
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

A Hybrid Genetic Algorithm for the Distributed Permutation Flowshop
Scheduling Problem with Sequence-Dependent Setup Times
To cite this article: Jiangping Huang et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 646 012037

View the article online for updates and enhancements.

This content was downloaded from IP address 201.156.216.190 on 04/07/2020 at 15:15

https://doi.org/10.1088/1757-899X/646/1/012037

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AIAAT 2019

IOP Conf. Series: Materials Science and Engineering 646 (2019) 012037

IOP Publishing

doi:10.1088/1757-899X/646/1/012037

1

A Hybrid Genetic Algorithm for the Distributed Permutation

Flowshop Scheduling Problem with Sequence-Dependent

Setup Times

Jiangping Huang
1
, Quanke Pan

1, *
and Qingda Chen

2

1
School of Mechanical and Electrical Engineering and Automation, Shanghai

University, Shanghai, China
2
State Key Laboratory of Synthetical Automation for Process Industries, Northeastern

University, Shenyang, China

*
Email: panquanke@shu.edu.cn

Abstract. The distributed permutation flowshop scheduling problem (DPFSP) has attracted

many researchers’ attention in recent years. In this paper, we extend the DPFSP by considering

the sequence-dependent setup time (SDST). A new hybrid genetic algorithm (HGA) for the

DPFSP with the SDST (SDST/DPFSP) is presented to minimize the maximum of the

completion time. At first, a new population initialization is proposed. And then, the newly-

designed operators are described in details, and we also introduce the mutation rate and the

crossover rate to balance the mutation operator and the crossover operator. To further improve

the obtained solution, a new local search method is developed. At last, the orthogonal

experimental design is applied to adjust the parameters in the HGA, and a comprehensive

computational campaign based on the 135 instances demonstrates the effectiveness of the

proposed HGA for the SDST/DPFSP.

1. Introduction

The DPFSP, which is a kind of extension of the PFSP, has been an active research field and has

impact on many manufacturing industries, such as the compact strip production in the Steel

manufacturing industry [1]. In the DPFSP, there exists f identical factories, each of which is a

flowshop with m machines and capable of processing all of the jobs independently. The scheduling

task of the DPFSP is determining the assignment of the jobs to a certain factory and the processed

order of the jobs in a factory. In addition, there are always some operations between the processing of

two consecutive jobs such as machine-cleaning, tool-replacing, job-transporting, and so on, which can

waste some time called the setup time. Furthermore, the setup time of one job is not only determined

by the machine processing it but also by the job processed immediately before it, that is to say, the

setup time is sequence-dependent. Therefore, to make the problem studied in the paper more practical,

we consider the DPFSP with the SDST to minimize the maximum completion time. To best of our

knowledge, there is few literatures of the SDST/DPFSP. Therefore, we will show the related

literatures about the DPFSP and the PFSP with the SDST (SDST/PFSP).

The DPFSP is first proposed by Naderi and Ruiz in [2] with the objective of minimizing the

makespan. In the following years, many researches have been done to it, and the related effective

heuristics and metaheuristics has been developed to address different objectives. Pan, Gao and Wang

AIAAT 2019

IOP Conf. Series: Materials Science and Engineering 646 (2019) 012037

IOP Publishing

doi:10.1088/1757-899X/646/1/012037

2

present three constructive heuristics and four metaheuristics in [3]. And later, Ruiz, Pan and Naderi

propose simple iterated greedy algorithms to minimize the makespan among all factories in [4]. In [5],

Pan, Gao and Li address a novel distributed assembly permutation flowshop scheduling problem with

three constructive heuristics, two variable neighborhood search methods, and an iterated greedy

algorithm. An artificial chemical reaction optimization (CRO), a hybrid discrete cuckoo search (HDCS)

algorithm and a new heuristic are proposed in [6][7] and [8] respectively, and the genetic algorithm

(GA) is also applied to the DPFSP in [9][10], which has been proved an effective method for the

DPFSP. In addition, some other algorithms such as the modified iterated greedy algorithm, the

efficient tabu search algorithm are developed in [11][12].

The corresponding literatures of the SDST/PFSP are abundant as well, and we will list as follows.

Mirabi [13] presents an ant colony optimization (ACO) algorithm. Rios-Mercado and Bard develop a

branch-and-cut algorithm and two different mathematical formulations in [14], and later, they further

develop the mentioned algorithms in [15]. Three heuristics, a memetic algorithm, a genetic algorithm

and a NEH heuristic are compared in [16] by Kaweegitbundit. Vanchipura and Rajesh develop two

constructive heuristic algorithms in [17] and a neighbourhood search known as variable

neighbourhood descent (VND) to further improve the two constructive heuristics in [18]. Four iterated

local search (ILS) algorithms are constructed in [19] by Wang and Dong. The migrating birds

optimization metaheuristic (MBO) is applied to both [20] and [21].

As shown above, the DPFSP and the SDST are both important, and some researches have been

done to them respectively, while there is few literature about the SDST/DPFSP. Therefore, we study

the SDST/DPFSP in the paper. According to [2], the DPFSP is a NP-Complete problem, and without

doubt, the SDST/DPFSP is a NP-Complete problem as well. Therefore, the algorithms applied to the

DPFSP are also suitable for the SDST/DPFSP. With the extensive application of the GA, we apply it

to the SDST/DPFSP as well. To further improve the quality of the solution we have obtained, we

explore the GA with local search, which is called the HGA in the paper.

 Initialization of one individual
//how to create an individual according to the makespan
 generate a job permutation randomly
 : 1 //where is the number of the joi n n

procedure

for to do

max

min max

min

bs
 calculate the of each factory
 find factory with the minimized
 place job to factory

i

C
F C

J F
endfor

 mutation

 create a random number
 : 1
 select a factory randomly
 select a job randomly from factory
 replace job to the best po

rand

rand rand

rand

k
i k

F
J F
J



procedure

for to do

sition in all the factories
 endfor

Figure 1. The pseudo codes of the initialization

of an individual.
 Figure 2. The pseudo codes of the mutation

operator.

2. Problem description

The SDST/DPFSP can be described as follows. A set of n jobs, 1 2{ , , , }nJ J J J K , can be processed

in f identical factories,
1 2{ , , , }fF F F F K , each of which can process one job ,jJ (

jJ J)

independently just like an independent flowshop, and all of them are with m machines,

1 2{ , , , }mM M M M K , respectively. All jobs are processed in the same production routine that starts

from the first machine and ends at the last machine with no machine being skipped. The processing

time of
jJ on machine iM (iM M) is denoted by

,j ip , the SDST of
jJ can be described as

, ,i j jS  on

the condition that job
jJ is not the first job processed on machine iM and the job immediately

processed before it is job
jJ  (jJ J ), if the job

jJ is the first processed job, the SDST of
jJ on

machine iM is denoted as
, ,i j jS . The objective of the SDST/DPFSP in the paper is to find a

permutation to minimize the makespan (maxC).

AIAAT 2019

IOP Conf. Series: Materials Science and Engineering 646 (2019) 012037

IOP Publishing

doi:10.1088/1757-899X/646/1/012037

3

3. A hybrid genetic algorithm

In this section, we present the HGA for the SDST/DPFSP with the objective of minimizing the

makespan. We will describe the solution representation, population initialization, the design of the

operators and the local search method in details and give the pseudo codes.

3.1. Solution representation

We adopt the job-based representation [4], where a solution is represented by a two-dimensional array,

 1 2, ,..., f    . There are f rows, each of which is used to show the permutation of one factory lF ,

 1 ,2 ,, ,...,
ll l l l     ， , 1, 2,...,l f , where

l is the total number of jobs assigned to factory lF . For

example, there are two factories and five jobs, and it is assumed that job 1, 2 and 5 are placed in

factory 1F , and job 3 and 4 are assigned to factory 2F , as a result, the solution can be represented by

 1 2,   , where  1 1,2,5  and  2 3,4  .

 as the reference solution

 is the number of

the jo

 ()

 set the initial solution

 : 1

 Job_Inserti

 : 1 do // where

o

 (,) //

n

for to d

Proced

o

for to

ure

ref

i i

ref

i f

j n n

Job i j













bs processed in factory

 delete inside

 replace to the best position among all factories

endfor

 endfor

i

Job

Job

 







max

max max max

max

 with the largest makespan

 : 1 // where is the number of factory

 : 1

 Job_Excha ()

 find factor

nge

y

i F

j f

j F

F

n n





for to do

for to do

if do

Procedure

 exchange job with each job in factory and find the best job pairs

exchange the best job pairs

iJ j

endif

 endfor

endfor

Figure 3. The pseudo codes of the
Job_Insertion ()

Figure 4. The pseudo codes of the
Job_Exchange ()

3.2. Population initialization

It is clear that the quality and the diversity are two important factors for an initial population. To

balance the quality and the diversity, we create the individuals in different ways. At first, the NEH2

and the VND(a), both of which are first proposed in [2], are carried out to produce two highly-

qualified individuals respectively, while the rest of the individuals are all created according to the

makespans of all the factories. In the method, we obtain a random permutation of the jobs at first, and

then we reassign the jobs one by one to the factory with the minimized makespan. The pseudo codes

of this initialization method are presented in figure 1.

 crossover
 set the best individual in the population as parent 1
 set a randomly-selected individual in the population as parent 2
 //where parent 1 and parent 2 are different

procedure

f : 1 // where is the number of the factories
 select the random cutting points of each factory for both parent 1 and parent 2
 save the right sides of parent 1 and parent

i f for to do

2 to 2 and 1 respectively
 check parent 1 and 1, and save the remaining jobs to 1 in the order of the

check parent 2 and 2, and save the remaining jo
appearanc

bs to
e

 2 in the order

R R
R L
R L of the

1 to the best slot of
appearance

 obtain child 1 by reinserting the jobs in
obtain child 2 by reinserting the j

 1
 2 to the best slot of o 2

bs in
L R
L R

endfor

max max

Job_Insertion () on
 () ()

 Localsearch
 flag
 perform Job_Exchange () on
 flag
 flag
 perform

flag

ture

false

true
C C

 


 














Procedure

while d

f then

o

i

  
endif

 endwhile

Figure 5. The pseudo codes of the crossover operator. Figure 6. The pseudo codes of the

proposed local search method.

AIAAT 2019

IOP Conf. Series: Materials Science and Engineering 646 (2019) 012037

IOP Publishing

doi:10.1088/1757-899X/646/1/012037

4

3.3. Design of the operators

In the HGA, there are three operators, the selection operator, the mutation operator and the crossover

operator respectively, all of them should be designed carefully since the performance of the algorithm

are effected significantly by them. In the following part, the details about the operators are presented.

With the selection mechanism, the individuals are ranked according to the fitness and selected for the

next iteration. In the paper, the fitness of individuals is equal to maxC , which can show the differences

among the individuals.

With the mutation operator, the individual should be changed slightly to escape from the local

optimization with some good permutation remained. In the mutation operator proposed in the paper, k

jobs are selected randomly, where k is a random number which is not more than the half of the total

number of jobs. And then the k jobs are reinserted into the best position in all the factories. In this

way, on the one hand, it is easy to escape from the local optimization, on the other hand, the new

individual can remain the relative positions of the most unchangeable jobs. The pseudo codes of the

mutation operator are presented in figure 2.

The crossover operator is applied to two selected individuals for obtaining two new individuals

with better fitness. Our crossover operator, for both parents, selects cutting points randomly for all the

factories, and the sets of jobs on the right sides of child 1 and child 2 are denoted by 1R and 2R

respectively which are obtained by exchanging the sets of jobs on the right sides of parent 1 and parent

2. The remaining jobs in each sequence of both children are kept in the order of their appearance of

their parents, and then they are reinserted to the best position of the right sequence of the

corresponding child one by one. In the paper, the two selected individuals are the best one and a

randomly-selected one which is different from the best one. The pseudo codes of the crossover

operator are presented in figure 5.

 HGA
 set the parameters: , ,
 the stopping criterion is not satisfied
 evaluate the fitness of each individual
 apply the local search metho

crossover mutationPsize P P
Procedure

while do

d on the best individual and a randomly-selected individual
 update the best solution
 apply the selection operator
 make a randomly-selected individual replaced by the best solution
 select another individual randomly that is different from the new best individual
 produce a random number

 apply crossover operator

crossover

r
r Pif then

endif
 produce a random number

 apply mutation operator

mutation

r
r P


 if then

endif
endwhile

Figure 7. The general idea of the HGA.

3.4. Local search method

The local search has been proved an effective method for the PFSP in the related literature. To further

improve the solution we have obtained, we present two new local search methods, Job_Insertion ()

and Job_Exchange () , and combine them to the mentioned GA operators. In the Job_Insertion () , the

reference solution is proposed, at the begin of the Job_Insertion () , we set the initial solution as the

reference solution, and test the jobs in the order of the reference solution one by one to find the best

position and place them to it. The pseudo codes of the Job_Insertion () are presented in figure 3. In the

Job_Exchange () , at first, we should find the factory maxF with the maximum makespan among the

AIAAT 2019

IOP Conf. Series: Materials Science and Engineering 646 (2019) 012037

IOP Publishing

doi:10.1088/1757-899X/646/1/012037

5

factories, and then exchange the jobs in factory maxF one by one with the jobs in the other factories to

find the best job pairs (one job from factory maxF , and the other one from one of the other factories),

and exchange the positions between them. The pseudo codes of the Job_Exchange () are presented in

figure 4. In the method of the proposed local search, the Job_Exchange () operator is used to the

individual at first. And then the Job_Insertion () is applied to the new obtained individual repeatedly

until no improvement can be obtained. Figure 6 presents the pseudo codes of the proposed local search

method.

3.5. An overview of the HGA

The general idea of the HGA is presented in figure 7. At first, the parameters, , , crossover mutationPsize P P ,

should be set, where Psize is the size of the population, crossoverP and mutationP are the crossover rate and

the mutation rate respectively. Secondly, the fitness of each individual should be calculated which is

used to rank the individuals. Thirdly, the local search method is applied to the best individual and a

randomly-selected individual, then the best solution should be updated which is used to replace a

randomly-selected individual different from the best one. Fourthly, besides the new best individual,

another individual should be selected randomly that is for the following crossover operation and

mutation operation. At last, we create two random numbers r and r for the crossover operation and

the mutation operation respectively. While r is less than crossoverP , the crossover operator should be

employed to the best individual and the randomly-selected individual, and if r is less than mutationP ,

both the individuals are operated by the mutation operator.

4. Computational Experiment
The 135 problem instances used to test the performance of the algorithms are listed as follows. The

combinations of n m f  are: {100, 200, 300, 400, 500} {5, 8, 10} {2, 3, 4}  , and the setup times are

generated by Setuptime (1 ()%99) Factor / 100rand   , where Factor is selected from {25, 50, 100}

randomly, and ()rand is a random number. All of the algorithms are coded in C++ and compiled with

Visual Studio 2013, and the algorithms share most important functions in the code. All the

experiments in this paper are performed on windows 10 machine with 1 processor, i3-8100, and 8GB

of RAM memory.

Table 1. RPI values for 20t m n   Milliseconds

Instance

Size
2f  3f  4f 

HGA(1) HGA HGA(1) HGA HGA(1) HGA

100 5 15.31 2.50 14.22 2.42 15.10 2.57
100 8 14.84 1.88 16.03 2.5 16.15 2.71

100 10 15.21 2.57 15.50 2.09 14.70 2.64
200 5 11.65 1.86 12.99 1.42 12.21 1.98
200 8 12.46 1.35 12.78 1.19 14.50 2.10

200 10 12.57 2.36 12.01 1.81 13.32 2.44

300 5 11.26 1.24 12.01 1.38 13.52 2.31

300 8 10.51 1.49 11.26 2.03 12.97 1.39

300 10 10.54 1.20 11.76 1.55 9.57 1.80

400 5 10.86 2.37 9.51 1.24 11.04 1.64

400 8 9.57 1.70 11.54 1.57 11.27 1.26

400 10 9.59 2.25 10.43 1.58 9.87 1.36

500 5 9.73 4.04 10.25 2.42 10.70 3.12

500 8 9.39 3.72 9.06 2.70 10.24 3.96

500 10 9.77 2.94 9.79 2.84 10.07 2.79

mean 11.55 2.23 11.94 1.92 12.35 2.27

AIAAT 2019

IOP Conf. Series: Materials Science and Engineering 646 (2019) 012037

IOP Publishing

doi:10.1088/1757-899X/646/1/012037

6

In this paper, we apply the termination criterion with a predefined CPU time, t C m n   , the

algorithm has elapsed, where C is a predefined value. The 3 parameters, , , crossover mutationPsize P P , are

fixed as follows: =40Psize , =0.1crossoverP , =0.1mutationP , and all of them are obtained by the Orthogonal

experimental design with an orthogonal array 3

16 (4)L within 10 m n  milliseconds.

We compare the presented HGA with the HGA(1) proposed in [12]. In the paper, both the HGA(1)

and the HGA are tested to solve the 135 instances mentioned in this section with 5 replications, and

they are also terminated with the same CPU time where the value of C has been tested at 3 levels, 10,

20 and 30 respectively in the paper. The HGA shows better performance among the experiments with

the three levels. Due to the limited space of the paper, we just list the RPI values of =20C in table 1.

From table 1, we can see that the means of the RPI generated by the presented HGA are much smaller

than those of the HGA(1) nevertheless the different factories involved.

5. Conclusion

In the paper, we address the SDST/DPFSP with minimization of the makespan. We propose a HGA

for such a problem, and the results of the numerical experiments show that the developed algorithm

has a better performance than the existing HGA(1). In the future, we will further improve the HGA by

developing more effective local search methods and the operators, and more related algorithms should

be compared together.

Acknowledgments

This research is partially supported by the National Science Foundation of China 51575212 and

61174187.

References

[1] Quan-Ke Pan, Liang Gao, Ling Wang, 2019, Applied Mathematical Modelling, Volume 73,

Pages 327-348

[2] B. Naderi, Ruben Ruiz, 2010, Computers & Operations Research, Volume 37, Issue 4, 754-768

[3] Quan-Ke Pan, Liang Gao, Ling Wang, Jing Liang, Xin-Yu Li, 2019, Expert Systems with

Applications, Volume 124, 309-324

[4] Ruben Ruiz, Quan-Ke Pan, Bahman Naderi, 2019, Omega, Volume 83, 213-222

[5] Quan-Ke Pan, Liang Gao, Li Xin-Yu, Framinan M. Jose, 2019, Applied Soft Computing,,

Volume 81, 105492

[6] Hafewa Bargaoui, Olfa Belkahla Driss, Khaled Ghedira, 2017, Computers & Industrial

Engineering, Volume 111, 239-250

[7] J. Wang, L. Wang and J. Shen, "A hybrid discrete cuckoo search for distributed permutation

flowshop scheduling problem," 2016 IEEE Congress on Evolutionary Computation (CEC),

Vancouver, BC, 2016, 2240-2246.

[8] Fernandez-Viagas V, Framinan JM, 2015, International Journal Of Production Research, Vol.

53, No. 4, 1111–112m

[9] Yan Li, Zhigang Chen, Yan Li, “The distributed permutation flowshop scheduling problem: A

genetic algorithm approach,” 2015, ICMII 2015, Atlantis Press, 2352-538X

[10] J. Wang, L. Wang and J. Shen, "A hybrid discrete cuckoo search for distributed permutation

flowshop scheduling problem," 2016 IEEE Congress on Evolutionary Computation (CEC),

Vancouver, BC, 2016, 2240-2246.

[11] Lin Shih-Wei, Ying Kuo-Ching, Huang Chien-Yi, 2013, International Journal of Production

Research, Volume 51, Issue 16, 5029-5038

[12] Gao Jian, Chen Rong, Deng Wu, 2013, International Journal of Production Research, Volume

51, Issue 3, 641-651

[13] Mohammad Mirabi, 2010, The International Journal of Advanced Manufacturing Technology,

Volume 55, Issue 1-4, 317-326

AIAAT 2019

IOP Conf. Series: Materials Science and Engineering 646 (2019) 012037

IOP Publishing

doi:10.1088/1757-899X/646/1/012037

7

[14] Roger Z. Rios-Mercado, Jonathan F. Bard, 1998, Computers & Operations Research, Volume

25, Issue 5, 351-366

[15] Roger Z Rios-Mercado, Jonathan F Bard, 2003, Journal of Combinatorial Optimization,

Volume 7, Issue 3, 291-318

[16] P. Kaweegitbundit, 2011, Advanced Materials Research, Volume 339, 332-335

[17] Vanchipura R, Sridharan R, 2013, The International Journal of Advanced Manufacturing

Technology, Volume 67, Issue 5-8, 1337-1353

[18] Rajesh Vanchipura, R. Sridharan, A. Subash Babu, 2014, Journal of Manufacturing Systems,

Volume 33, Issue 1, 65-75

[19] Wang Y, Dong X, Chen P, Lin Y, 2014, Advances in Intelligent Systems and Computing, vol

277, 329-338

[20] Imene Benkalai, Djamal Rebaine, Caroline Gagné, Pierre Baptiste, 2016, IFAC-PapersOnLine,

Volume 49, Issue 12, 408-413

[21] A. Sioud and C. Gagne, "An MBO algorithm for a flow shop problem with sequence-dependent

setup times," 2016 12th World Congress on Intelligent Control and Automation (WCICA),

Guilin, 2016, pp. 2471-2474.

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=5&SID=7AsY2eP777LmW8O9r81&page=7&doc=61
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=5&SID=7AsY2eP777LmW8O9r81&page=7&doc=61
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=5&SID=7AsY2eP777LmW8O9r81&page=4&doc=40
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=5&SID=7AsY2eP777LmW8O9r81&page=4&doc=40

