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ABSTRACT

Districting is the problem of grouping basic geographic units into
clusters called districts. Districts are typically required to be geomet-
rically compact, contiguous, and evenly balanced with respect to
attributes of the basic units. Though most applications share these
core criteria, domain-specific constraints and objective functions
are common. This leads to a fragmented literature with different
approaches for similar domains and hinders comparisons between
these approaches. In this paper we study a unified heuristic ap-
proach that can handle three of the most common objective func-
tions concerning compactness: diameter, p-center and p-median,
as well as a variable number of balancing attributes. We propose a
multistart method which iteratively constructs greedy randomized
solutions followed by an improvement phase which alternates be-
tween optimizing compactness and satisfying balancing constraints
through a series of tabu searches. Experiments show that the pro-
posed method is competitive when compared to approaches in the
literature which are specific to each objective, improving known
upper bounds in some cases.
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1 INTRODUCTION

Districting is the problem of grouping basic geographical units
into clusters, also called districts. Basic units usually correspond to
contiguous real-world regions of similar size or category, such as
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city blocks, streets or parcels of land. Districting has a broad range
of applications, including electoral districting [3, 13, 18, 21, 24, 26],
design of commercial territories [12, 22, 31, 34], agrarian lots [2, 14],
service districting such as police [6, 8], energy [42], salt spread-
ing [25], waste collection [17] or health care districts [40]. Ref. [20]
provides a comprehensive overview of the different applications as
well as solution methods to districting problems.

Almost all districting problems share three main requirements:

(1) Connectivity: districts must be connected regions in space.
Connected districts generally reduce travel times of agents
and, in the case of political districts, are often legally required.
Connectivity is almost always treated as a hard constraint.

—
)
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Balancing: districts must be evenly balanced with respect
to attributes of the basic units, such as population, product
demand or expected service time. Some applications have
multiple balancing constraints.

Compactness: districts should have a geometrically convex
and compact shape, not being too long or narrow. Compact-
ness is generally seen as a subjective concept. Measures differ
widely from domain to domain (see [5] for an overview), and
are often specially designed for the particular application.
Compact districts tend to have shorter inner-district travel
times and, in the case of political districting, help prevent
gerrymandering.

In addition to these core criteria, domain-specific requirements
are common. Examples are maximizing the similarity to past plans [3,
32], forbidding enclaves [13, 21], satisfying conflict relations be-
tween the basic units [32], or maximizing the number of districts
subject to a minimum district size [9].

Problems have been modeled in a number of different ways in the
literature. Some works use an objective function which is a convex
combination of multiple criteria, possibly including balancing and
several different measures of compactness [3]. Others consider a
multi-objective approach [1, 27, 35]. The most common approach,
however, is to optimize compactness as the objective function and
treat the remaining criteria as constraints, where they are limited
by a maximum allowed value. Balancing, for example, is usually
handled by limiting the maximum deviation of a district’s total or
average attribute value to a target value.

The wide range of compactness measures, the domain-specific
requirements and several different modeling techniques make each
problem in the literature more or less “unique”. As a consequence,
solution methods are often tailored to each model and there is a lack
of standard instances sets or cross-domain comparisons between
different approaches.
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In this paper we take a first step towards the unified solutions
of these problem variants. We propose a generic single-objective
heuristic solver that obtains connected and balanced districts and
that can handle the three most common objective functions found in
the literature: the center-based approaches p-median and p-center,
where a center unit is assigned to each territory, and the diame-
ter, which is independent of centers. For all three objectives the
desired number p of districts is given. The p-median objective min-
imizes the sum of the distances between the units in a district and
their center, summed over all districts. The p-center minimizes the
maximum distance between any unit and its center. The diameter
minimizes the maximum distance between two same-district units.
For the p-center and p-median approaches, centers that minimize
the respective objective function can be found in linear time. The
method we propose in this paper can be applied to either objective
function and multiple balancing constraints with little modification.
It iteratively constructs solutions by a greedy randomized algo-
rithm, and then improves them by an algorithm which alternates
between a tabu search aimed at improving compactness and a series
of constrained tabu searches aimed at balancing the solution.

The rest of this paper is structured as follows. Section 2 gives an
overview of related work in districting concerning the three objec-
tive functions. Section 3 introduces the problem formally. Section 4
and subsections therein present the proposed algorithm in detail.
We discuss some relevant implementation details in Section 5. In
Section 6 we calibrate the parameters of our algorithm and com-
pare its effectiveness with existing approaches in the literature. We
conclude in Section 7.

2 RELATED WORK

Table 1 summarizes the main studies which consider either p-
median, p-center or diameter in the objective function. For each
paper we present the application domain, the objective function and
main constraints, including the number of balancing criteria and
other domain-specific constraints, the solution method used and
the sizes of the instances considered, where n denotes the number
of units and p the number of desired districts. All studies except [42]
and [10] treat connectivity as a hard constraint and, except [13],
use compactness as (part of the) objective function.

Ref. [13] propose an exact method based on set partitioning
where a first step generates a set of feasible districts, and a sec-
ond step selects them so as to minimize imbalance. It is one of
the only works in the literature which considers balancing as an
objective, and treats compactness by setting an upper limit on the
diameter/area ratio of each district. A similar approach is used by
[24] who propose a column generation framework to solve a model
with the p-median objective; however, the corresponding pricing
problem is still too difficult to be solved optimally in feasible time,
so their method is not exact.

Ref. [34] propose exact solutions by integer programming (IP)
models for both p-center and p-median objectives with two balanc-
ing constraints. The models do not consider district connectivity
directly, and connectivity cuts are added iteratively as optimal
unconnected solutions are encountered by the solver. A similar
technique is also used by [32, 35] to solve problems with composite
objectives.
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Refs. [12, 38, 42] propose heuristic solutions based on the location-
allocation originally proposed by [18], which iteratively selects
district centers with a heuristic and then allocates the remaining
units optimally, given the fixed centers. Concerning metaheuris-
tic methods, local search-based methods such as greedy random-
ized adaptive search procedures (GRASP) [28, 30, 31, 33, 36], simu-
lated annealing [1] and tabu search [15] are the most common, and
typically use a neighborhood structure which changes the assign-
ment of a basic unit from its current district to an adjacent district.
Refs. [1, 35-37] propose heuristic solutions to bi-objective models
which optimize one balancing attribute and the p-median value as
objective, while treating additional requirements as constraints.

With respect to instance sizes, current heuristic approaches can
usually handle instances of up to 10000 basic units, whereas exact
approaches are limited to about 200 basic units.

3 DEFINITIONS

In the following, we use the set notation [n] = {1,...,n}. We are
given an undirected planar graph G = (V, E) with |V| = n nodes,
the desired number of districts p < n, and a balancing threshold
7 € [0, 1]. We use the terms node and basic unit interchangeably.
Each unit v € V is associated with a activity values wi, € R, i € [a].
The distance between nodes u and v is given by dy, € R.

A districting plan (or solution) S is a partition S;U---US, C V
of the nodes into p districts. We say that solution S is complete if
Uke[p]sk =V, otherwise it is incomplete. We also use the notation
S(v) = k to denote that node v is assigned to district k, i.e. v € Sg. If
S is incomplete, then S(v) is undefined for some v, in which case we
call v unassigned. We define the boundary 0S; = {v | v ¢ S, Ju €
Sk : {u,v} € E} of district k as the set of nodes not in S which
are directly adjacent to S. We say that two districts k and [ are
neighbors if Sp. N 0S; # O (or alternatively Sx N S; # 0, since the
graph is undirected).

The target value pi; = Yo, ey WL, /p of each district with respect
to activity i € [a] is given by the total value of activity i in V,
averaged over the p districts. Let b;(Sx) = [(Zyes, wil, — i)/ il
denote the absolute relative deviation of activity i in district k
to the target ;. We say that district k is balanced with respect
to activity i if b;(Sg) < 7, and that k simply is balanced if it is
balanced with respect to all i € [a]. A solution is balanced if all its
districts are balanced. The imbalance of district k denotes its total
balance violation and is given by b(Sg) = X;¢[q] max{0, b;(Sx)—7}.
Similarly, the imbalance of solution S is B(S) = 2 k¢[p] b(Sk)-

We denote the compactness of a solution S by C(S). Depending on
which objective function is being considered, C(S) will represent the
diameter, the p-center value or the p-median value of a solution S.
The diameter diam(S) = max{dy,, | u,v € V,S(u) = S(v)} of solu-
tion S is the maximum distance between two nodes belonging to the
same district. The p-center value pcen(S) = maxy ¢[p) maxyes; duc
is the maximum distance of a node u € Sy, to its district center cg,
for any district k. We assume that the district centers are placed
optimally, i.e. ¢ = argmin,cg, {max,cs, dyv}. The p-median ob-
jective value pmed(S) = 2k e[p] Zues, ducy is the sum of distances
of each node to its district center. As before, we assume the district
centers are placed optimally, i.e. ¢y = argmin, g, {Xyes; duv}-
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Table 1: Works in the literature that consider districting with center-based or diameter-based objective functions

Reference Year Domain Objective(s) Constraint(s)  Solution method Instances
Garfinkel and Nemhauser [13] 1970 political 1 bal. attr. diameter/area  Set partitioning n € [26,55], p €[5,7]
Fleischmann and Paraschis [12] 1988 commercial p-median 1 bal. attr. Location-allocation n = 1402, p = 168
Mehrotra et al. [24] 1998 political p-median 1 bal. attr. Branch-and-cut (heu.) n=46,p=6
. (p-median, . . _ _
Bergey et al. [1] 2003 power distr. 1 bal. attr) Simulated annealing n=30,p=5
Segura-Ramiro et al. [38] 2007 commercial ~ p-median 2 bal. attr. Location-allocation n € {500, 1000}
Rios-Mercado and Fernandez [31] 2009 commercial p-center 3 bal. attr. GRASP n =500, p =10
, . . 2 bal. attr., GRASP +
Rios-Mercado and Salazar-Acosta [33] 2011 commercial diameter R . n = 1000, p = 40
max. distr. TSP strategic osc.
- 1 vV
Salazar-Aguilar et al. [34] 2011 commercial I; _:;‘:::n 2 bal. attr. IP + cuts n € [60, 200], p € [4, 11]
Salazar-Aguilar et al. [35] 2011 commercial (lpl;;xlle;itl; n), 2 bal. attr. IP + cuts n € [60, 150], p € [4, 6]
Salazar-Aguilar et al. [37] 2012 commercial (lpl;ge::?rn)’ 1 bal. attr. Scatter search n € {500, 1000}, p € {20,50}
_median + 3 bal. attr.
Rios-Mercado and Lopez-Pérez [32] 2012 commercial P conflicts IP + cuts n € {5000, 10000}, p = 50
sim. to ex. plan .
dif. to cur. plan
Chou et al. [7] 2012 political diameter 1 bal. attr. Genetic algorithm n=66,p=10
Salazar-Aguilar et al. [36] 2013 commercial (ﬁ;:e:tlfr n) 1 bal. attr. GRASP n € [500, 1000], p € [20, 50]
. . 2 bal. attr. .
Elizondo-Amaya et al. [10] 2014 commercial ~ p-center 10 conn Dual bounding n € [60, 2000], p € [4, 20]
Rios-Mercado and Escalante [30] 2016 commercial diameter 3 bal. attr. GRASP + path relinking n = 500, p = 10
Yanik et al. [42] 2016 S"IEY supply p-median 1 bal. attr. Location-allocation n =933, p €[7,100]
system no conn.
Rios-Mercado [28] 2016 commercial  p-center 3 bal. attr. GRASP n € {1000, 2000}, p = 20
Gliesch et al. [15] 2018 commercial diameter 3 bal. att. Tabu search n € [500, 10000}, p € [10, 160]

We call a solution S feasible if it is balanced, complete, and the
subgraph of G induced by each district Sy is connected. Our goal
is to find a feasible solution which minimizes C(S). We use the
pair notation BC(S) = (B(S), C(S)) to indicate a lexicographical
comparison of solutions with respect to non-increasing balance
which breaks ties by non-increasing compactness, and similarly
CB(S) = (C(S), B(S)) for an order that gives preference to more
compact solutions, breaking ties by balance.

Finally, we define two modification operators for complete solu-
tions. A shift v—k applied to a solution S changes the assignment
of node v € V' \ S to district k € [p] \ {S(v)}. Similarly, a swap
veu exchanges the currently assigned districts of nodes v and
u, S(u) # S(v). The notation S[m] is used to refer to the solution
obtained by applying operator m to solution S.

4 PROPOSED ALGORITHM

The multistart heuristic we propose here is outlined in Algorithm 1.
At each iteration we generate a number of initial solutions by a
randomized greedy constructive heuristic, and select a high-quality
one using a simple filtering mechanism (line 3). Section 4.1 gives
further details about this step.

Next, we iteratively alternate between two procedures aimed
at improving compactness and balance (lines 6-7), in this order.
At each alternation, we store the current solution in a hash table
X, and move on to the next multistart iteration if cycling is de-
tected (lines 8-9). Since the total number of intermediate solutions
is expected to be small, this is not performance-critical. We also
stop when the solution is still infeasible after an attempt to balance
it, since it is unlikely that it will become balanced in a subsequent
iteration, or after a maximum number Ay, 45 of alternations. We
use parameter A, qx to avoid alternating indefinitely between low
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Algorithm 1 Main algorithm.

: R0

2: repeat

3 S « selectInitialSolution()

4: X = {S}

5: for i € [Amax] do

6: S’ « optimizeCompactness(S)
7: S’ « optimizeBalance(S’, S)
8: if B(S’) > 0 or S’ € X then
9: break

10: S8, X—XU{S}

11: R « argmin{BC(R), BC(S)}

12: until time limit reached

13: return R

and high compactness values without a global improvement. In
practice, this happens rarely. In our implementation, we have set
Amax = 100.

Both alternating procedures are based on tabu search. Tabu
search is a non-monotone local search proposed by [16]. It iter-
atively executes the best neighboring operator on the current solu-
tion, with respect to some objective. If multiple candidates exist, we
select one uniformly at random. To avoid cycling, some operators
are declared tabu after a neighboring move, and cannot be selected
again for t iterations, where the tenure ¢ is a parameter. Specifically,
after executing a shift u—k we mark operators u — i,i € [p] and
u<v,v € V incident to u as tabu; similarly, after a swap ue—v we
mark all operators incident to u or v as tabu. We discard all moves
which violate district connectivity. The search terminates after Imax
iterations without improvement, where Imax is a parameter, and
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returns the best intermediate solution w.r.t. BC if we are optimizing
for balance, or CB if we are optimizing for compactness.

We improve compactness with a standard tabu search on a spe-
cific neighborhood for each objective. These neighborhoods are
explained in further detail in Sections 4.3, 4.4, and 4.5. To improve
balance, we execute a series of tabu searches on neighborhoods
bounded by a maximum increase to compactness. This is done with
the intent to maintain the progress in compactness made so far.
Given an upper bound C(S), where S is the previous solution be-
fore optimizing compactness (line 7), we apply a binary search to
find the smallest ¢* € [C(S”), C(S)] for which a tabu search aimed
at reducing imbalance and bounded by C < ¢* obtains a feasible
solution. Section 4.2 explains the details of this procedure. Both
optimization procedures always maintain connectivity.

Note, that the alternated search strategy is agnostic of the choice
of optimization algorithms for balancing or improving compact-
ness. We use tabu search, as it has been effective in solving related
problems in the past [3, 15, 29], but other methods might also be
used without loss of generality.

4.1 Initial solutions

We use the constructive heuristic of [15] to generate new solutions.
Although this heuristic was originally developed for the diame-
ter objective, we found in preliminary tests that it also produced
satisfactory results for the other two objectives without further
adaptations, compared to simpler approaches. It consists of two
phases. First, p seed nodes, one for each district, are obtained by
a randomized greedy heuristic to the p-dispersion problem [11],
which aims at maximizing the minimum distance between two
units. Next, starting from a basic solution where each seed is as-
signed to a district, it iteratively selects a district k of minimum
total weight 3} c[a] Zues, w}, and assigns to it an unassigned node
v € Sy which minimizes C(S[v—k]). If there are multiple candi-
date units, one is selected uniformly at random. For more details
on the algorithm as well as an experimental discussion, we refer
the reader to [15].

4.1.1 Filtering. In early experiments we have found that the
quality of the solution obtained after the alternating procedure is
highly dependent on the compactness of the initial solutions. Since
the alternating phase is significantly more time-consuming than
the construction phase, we filter low quality initial solutions in
order to invest time in more promising ones. To this end, at each
multistart iteration we construct p randomized greedy solutions
and add them to a pool P of possible initial solutions. We then
select the solution S € P with minimum CB(S) to be improved
next, and remove S from P. The pool P is carried on to the next
iteration. To limit memory usage, we limit |P| to 2p and discard the
max{0, |P| - 2p} worst solutions w.r.t. CB at each iteration. Here we
are greedy w.r.t. CB as opposed to BC, since empirically the initial
imbalance of a solution is not a good predictor of the difficulty to
balance it in the alternating phase.

4.2 Optimizing balance

We balance solutions by executing a series of tabu searches on
restricted neighborhoods, which are defined by setting an upper
limit to the compactness of a solution. Specifically, given a solution
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Algorithm 2 Improving balance

1: procedure improveBalance(S, S;,)
2 U « C(Sy)
3 if B(Sy,) > 0 then
4: U« 2U
5 L« C(S),R<S
6 while U > L A B(S) # 0 do
7 S «—TS(S, (U +L)/2)
8 if B(S’) = 0 then
9 R« S" U« CRR) —dmin
else
S—S',L— (U+L)/2+dmin

return R

10:
11:
12:

S to be balanced and an upper limit ¢ > C(S), the respective tabu

Nt (5.0 = {u—k |

k € [pl. u € Sk, C(S[u—k]) < c} and N&,,,(S,¢) = {ucv |
S(u) # S(v), u € 0S5(5), v € 3Ss(y), C(S[ue>v]) < c}, in this order.
At each iteration, we first look for non-tabu shifts m € Nsbhi fr which
minimize BC(S[m]), and that are improving, i.e. B(S[m]) < B(S). If
such a move is found, we apply it immediately and move on to the

search TSy (S, ¢) considers neighborhoods

next iteration; otherwise, we search for swaps in Nshw ap under the
same criteria. We then apply the best move found (among all shifts
and swaps) w.r.t. BC. To consider first shifts, then swaps in order
has been generally effective for grouping problems [4, 19]. Since the
size of region boundaries in planar domains tends to scale closely
to v/n, generally |Nsbhift| ~ /n while [N | ~ n; in practice,

swap
visiting all N2 ap at each iteration in a search for the best possible
move is not worth the cost.

The improvesBalance procedure is given a (likely imbalanced)
initial solution S and the solution S,, incident to the current upper
bound (i.e. the best solution visited in this multistart iteration),
such that C(S) < C(Sy). Let U = C(Sy), or, if this is the first call
to improvesBalance (i.e. S;, may not be balanced), U = 2C(S). We
apply binary search to find the smallest ¢* € [C(S), U) such that
TSy (S, ¢*) is balanced. This is motivated by the fact that B(T'Sy (S, ¢))
is expected to be monotonically decreasing as ¢ grows: given some
c1 and ¢ such that ¢; < ¢y, the neighborhood explored by search
TSy(S, c2) is a superset of the one explored by TSy(S, ¢1), and thus
TSy(S, c2) typically has more available improving movements. Be-
cause we already have a feasible solution of value U, we also expect
that TS, (S, U) will be balanced. Of course, since TSy, is a heuristic
algorithm, this may not always be the case.

Algorithm 2 outlines the complete balancing method. At each
step of the binary search with upper and lower limits U and L, we
execute a constrained tabu search with ¢ = (U + L)/2 (line 7). If
the resulting solution is balanced, we update the return solution R
as well as the upper limit U = C(R) — d i (line 9), where dy,ip =
min{dy, | u,v € V} is the smallest distance between any two units;
otherwise, we update the current solution S and the lower limit
L= (U +L)/2+ dmin (line 11). We used step size d i, since we
found it empirically to be a good compromise between precision
and the total number of calls to the tabu search TS.
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4.3 Optimizing p-median

We optimize the p-median objective with a standard tabu search on
neighborhood NP™ = {u—k | k € [p],u € dSi}. This neighbor-
hood is similar to N sbhi fr in that it considers all possible shifts of

nodes to adjacent districts. We have also considered a neighborhood
which uses swap moves, but we have found it to be not effective.

4.4 Optimizing p-center

We optimize the p-center objective with a standard tabu search
which considers two different neighborhoods in an order, in the
same way as the balancing tabu search T'Sy,. To explain them, we
first define the set of critical units Ky (S) = {u € V | ducg,, = C(S)}
of solution S as the set of units whose distance to their district center
is equal to C(S), and the set of critical districts K4(S) = {S(u) | u €
K, (S)} of S as the set of districts that contain a critical node.

The first neighborhood Nfc ={u—k | k € [p],u € Ku(S)NISt}
considered consists of shifting critical units out of their critical
districts, in an attempt to reduce the local compactness of their
district and consequently the global compactness of the solution.

The second neighborhood N;C ={u—k | k € [pl,u e {5n
OSk | j € K4(S)}} consists of shifting arbitrary units out of critical
districts. We do so in an attempt to induce a change to the optimal
district center, in such a way that it is moved closer to the critical
units and therefore decreases the district’s local compactness.

Similarly to TS, we first search for non-tabu moves m € Nf €
which minimize C(S[m]) and, if no improving move exists for it,
we then consider Né’ “ under the same criteria. We consider Nf ¢
and Ng’ “ in this order since Nf ¢ tends to be about a factor \/%

smaller than Né’ ¢ and, in practice, yields the best move in about
80% of cases.

We have also conducted experiments with a third neighborhood
NPS = {u—k | k € K4(S),u € 39Sy} in which a critical district
receives a unit which will become the new optimal district center.
We have found, however, that this neighborhood is seldom better
than the two previous ones, yielding the best move in only 0.36%
of cases, on average, and is rather time-consuming to explore fully.
Therefore, we have excluded Nf ¢ from the final algorithm.

4.5 Optimizing diameter

We use a tabu search algorithm proposed by [15] to optimize diam-
eters, since it solves a problem with a similar model to ours. Let
L(S) = {u | v € S,S(u) = S(v), dyy = D(S)} be a set of critical
units incident to the maximum diameter of S. The tabu search con-
siders neighborhood Ne = {u—ilie [p], u € L(S) N 3S;} which
shifts critical units out of their current district. The main search
parameters and termination criteria are the same as described at the
start of Section 4. Further, [15] use an additional improvement step
in their tabu search called sp-escape, in order to avoid situations
where no critical node is on a boundary. We refer the reader to the
original paper for more details.

5 IMPLEMENTATION

Some components of our algorithm are performance-critical and, if
implemented in a naive way, can easily dominate the running time
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of the algorithm. In this section, we discuss relevant data structures
and speed-up techniques we used in our implementation.

5.1 Connectivity tests

Neighboring operations may break connectivity if a moved unit was
an articulation node of the subgraph induced by its previous district.
Testing for connectivity loss by performing a graph search on such
subgraph in O(n/p) time would be a bottleneck to the algorithm,
since this must be done for each candidate neighbor. This can be
improved by maintaining a flag on each node denoting whether it
is an articulation node of its district’s induced subgraph.

Articulation nodes are computed in O(n/p) average time for each
district with the algorithm of [41], assuming an average district
size of n/p. Since these only need be recomputed after a move
has been made, and only for the districts involved in the move,
given a neighborhood of size k each test is done in amortized time
O(n/(kp)). In the case of Nsbhift’
each test takes O(\/n/(kp)) time.

In the case of a swap u«<v on solution S, we test whether u is
an articulation node in S(u) or v is an articulation node in S(v).
This can however lead us to inadvertently discard valid moves
in the special case where G N (Ss(y) \ {#}) is not connected, but
GN(Ss(u) \ {u} U {v}) is. In practice, however, this situation rarely
happens, and the performance gained by ignoring such cases make
up for the possible lost moves.

. b N
for example, since |Nshift| ~ /n,

5.2 Dynamic objective updates for local search
candidates

Recomputing the objective function and constraint violations for
each candidate neighbor can as well become a bottleneck, especially
Nsbwap .

For balancing constraints dynamic updates are straightforward:
we maintain the total value of each district with respect to each ac-
tivity, update it by adding or removing values as nodes get assigned
or unassigned from the district, and recompute b in constant time
for each candidate.

In the next two subsections, we explain how efficient dynamic
updates for the compactness measures can be achieved.

on large neighborhoods, such as

5.2.1 Dynamicp-median. We maintain, for each node u € V, the
compactness 55 ™ of S(u) if node u were the district center. Further,
we keep the compactness value C‘Zm = YlueS; duc; of each district
k € [p). When considering a candidate shift u—k on solution S, the
expected compactness value is given by

( Z Cfm) + Ak + AS(u)7

Jjelp]
where
Ay = min{ Z dyv, é‘[égn (5’2’” + duv)} - Cim
VESK k
_ . pm pm
AS(u) = vgélsr(lm(&v = duy) — CS(u)

are the expected changes to the compactness values of districts k
and S(u), respectively. Similarly, given a swap u«>v the expected
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compactness is

( 2. m) + As(w) + As(w):
jelpl

where

D, di min (67" ~dio + d,-u>}

1€ S(v)

AS(u) = min{

iESs(v)

(and vice-versa for (Sg(rz)).

Iterating over the nodes of two districts for each candidate takes
O(2n/p) time, for both shift and swap. After a move has been made,
we recompute the optimal centers as well as 87" directly in O(n?).
In a neighborhood of size k, computing the p-median value of each
candidate is therefore done in amortized O(2n/p + n?/k). For the

case of Nsbhi oo for example, the amortized time per candidate is

then O(2n/p + n3/2) = O(n*/2).

5.2.2 Dynamic p-center. We compute dynamic p-center in a
similar way to p-median. We maintain, for each node u € V, two
values 55 ! and 5{:6’2 which correspond to the largest and second
largest distances from u to any other node in S(u) (i.e., the com-
pactness of S(u) if u were center, and the compactness of S(u) if u
were center and 67! was removed). We also keep the compactness
Cic = maxyes, duc; of each district k € [p]. When considering a
candidate shift u—k on solution S, the expected compactness value
is then given by

CcP AL A }
max{je[pf\?fs(@} j Tk B

where

Ap = min{ max dyq, min max{dy, 55‘:’1}
S VESK

vESk

. 1 2 1 1

As() = min ([dw = 5°M160°% + [duo # 857160° )
UESS(M)

are the expected compactness values of districts k and S(u), respec-

tively!. The time complexity analysis and the generalization to

swaps are similar to the p-median case, and have been omitted for

Space reasons.

5.2.3 Dynamic diameters. We compute dynamic diameters us-
ing the same method of [15]. It maintains the convex hull of each dis-
trict in O(n/p) time per update and, for each candidate, obtains the
new diameter in O(log n/p) time by executing the rotating calipers
algorithm of [39], for a final amortized time of O(log n/p + n/(pk))
in a neighborhood of size k. For N? for example, this amounts

shift’
to O(logn/p + v/n/p) time.

5.3 Caching movements on TS,

To avoid recomputing movements on TSy, we cache the outcome
of operators. Given a solution S and a maximum compactness value
¢, for each district k € [p] we maintain a list Ay of feasible op-
erators incident to k, sorted increasing by expected BC. Further,
we maintain flags A; that indicate whether A may contain swap
moves.

1For a proposition P, Iverson’s brackets [ P] evaluate to 1 if P is true, and 0 otherwise.
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Initially we have Ay = 0 and Ay = {u—k |u eV} mNsbhift(S’ c)
for all k. When computing the best neighboring move, we then
proceed as follows. For each k € [p] we consider the first feasible
move m of Ay (ie., S[m] is connected, C(S[m]) < ¢, and BC(S[m])
is minimum) as a possible choice, removing infeasible moves from
Ay in the process. If no such move improves B(S), for each k such
that A = 0 we add to Ay the swap moves {uv | u,v € V,S(u) =
k}n Nsbwap(S, c), sort A accordingly, and set A3 = 1 to indicate
that Ag now considers swaps as well as shifts. Finally, we consider
once again the first feasible move in each Ay, k € [p] as a possible
choice, and return the best move w.r.t. BC.

After applying a chosen move m, we reset 1; = 0 and Aj =
{u—jlueVv} mNshhift
well as its neighbors. Because neighboring relations between dis-
tricts induce a planar graph (since G is planar), the average number
of districts for which A must be recomputed at each iteration is
at most 12 (as opposed to p), since the average degree of planar
graphs is at most 6. This saves us a factor p in time complexity
compared to computing the entire neighborhood, but requires us
to store all neighbors in memory, at the worst case. Note, however,
that for the p-center and diameter objectives we only need store
the first element of each Ag, thus using constant space, since due
to the maximum-based objective a feasible move w.r.t. C < ¢ will
continue to be feasible independently of subsequent moves.

(S, c) for each district j modified by m, as

6 COMPUTATIONAL EXPERIMENTS

In our computational experiments we use the domain originally
introduced by [38] and subsequently studied by [10, 15, 30-37] in
several variant models. It originates from a context in the distribu-
tion of goods, where basic units are city blocks and districts are
independent regions of distribution. Despite the large number of
variants, the corresponding models and solution methods are well-
defined, and large instance sets are available. We use the models
proposed by [34] for the p-median and p-center objectives, and
by [30] for the diameter objective. Besides the objective function,
these models have three balancing constraints concerning the at-
tributes workload, number of customers and product demand of
each city block.

6.1 Instances

We use four data sets from the literature. Data sets DS and DT
comprise 20 instances of size n = 500 with p = 10 districts each and
were originally introduced by [31] for a p-center-based model and
are generated in such a way as to resemble real-world scenarios.
Data set DS selects activity values uniformly from fixed intervals,
while DT selects them from a non-uniform symmetric distribution,
which tends to represent the application more closely.

Data set DL comprises four instances of each sizes n € {1000, 2500,
5000, 10000} and number of districts p € {n/200,n/100,n/62.5},
for a total of 48 instances. It was introduced by [15] to assess the
scalability of their heuristic algorithm to optimize the diameter.
Unit weights are generated as for DL, and topologies are obtained
by Delaunay triangulations.

Finally, the data set introduced by [34], which we denote by DU,
contains 20 instances of each size (n,p) € {(60, 4), (80, 5), (100, 6)}
and 10 of each (n, p) € {(150, 8), (200, 11)}, for a total of 80 instances.
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Table 2: Parameter calibration: optimization ranges and best
setting found by irace.

Param. Optimization range p-med. p-cen. diam.

5p
5000

t {0.1,0.25,0.5, 1, 1.5, 2, 2.5, 5}p
{50, 100, 250, 500, 1000, 2500, 5000}

1.5p 0.25p
100 1000

Imax

It contains significantly smaller instances than the other data sets, as
it reflects the instance sizes treatable by the exact method proposed
of [34].

To be consistent with previous works, we used a balancing thresh-
old of 7 = 0.05 on all instances.

6.2 Experimental setup

We performed all experiments on a PC with an 8-core AMD FX-8150
processor and 32 GB of main memory, running Ubuntu Linux 18.04.
For each experiment, only one core was used. Our algorithms were
implemented in C++ and compiled with GCC 7.2 with maximum
optimization. The source code and the detailed results will be made
available in an online supplement to this paper.

We calibrated parameters t and Imax of the tabu search with
the irace package version 3.1 in GNU R [23]. For each objective,
we ran irace with a budget of 1000 executions and a time limit
of 10 minutes per run. We used a calibration data set consisting
of 48 random instances generated with the same parameters and
generator of data set DL. As [15] use tabu tenure values ¢ relative
to the number of districts. Table 2 shows the parameter ranges and
best values found by irace, for each of the three objective functions.

In the following experiments we compare our method to exist-
ing approaches in the literature. For the p-median and p-center
objectives we consider the exact algorithm of [34], which itera-
tively solves an IP model without connectivity constraints and adds
cuts as unconnected solutions are encountered. Further, for the p-
center objective we also consider the GRASP heuristic of [31]. For
the diameter objective, we consider the multistart alternating tabu
search heuristic of [15]. For the approaches of [34] and [15], we
used the source codes provided by the authors. Because no source
code for the algorithm of [31] was available, we reimplemented the
method on the same platform as our own, and used parameters
p =10, =0.5A={0.1,0.2,0.3,0.4,0.5} as given by [31] and
A = 0.95 as recommended by [28].

Each test was run with a time limit of 30 minutes. Since the
method is stochastic, we report averages over 10 replications. For
each experiment we group the results by number of units n. For
the heuristic methods we report the average deviation of the com-
pactness value relative to the best known value, in percent (C (%)),
the number of multistart iterations (“iter”), the percentage of mul-
tistart iterations which resulted in a feasible solution (“fea. (%)”),
and the time to find the best solution, in seconds (“t.t.b.”). For the
exact methods, we report the percentage of instances for which
an optimal solution was found (“opt. (%)”), the running time in
seconds (“time”) and the number of IP models solved (“iter).

6.3 Experiment 1: p-median objective

In this experiment we compare our approach to the exact method
of [34] for the p-median objective. Table 3 shows the results.
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Table 3: Comparison of our proposed method to the exact
approach of [34] for the p-median objective.

n Our algorithm [34]
C (%) ttb. iter. fea. (%) opt. (%) time iter.
60 0.00 0 193,733 100 100 25 1.2
80 1.34 130 74,056 100 100 35 14
100 0.02 52 54,927 100 100 40 1.3
150 0.02 147 20,195 100 100 147 2.0
200 0.02 334 12453 99 100 765 1.3
500 0.04 701 1,999 89 — — —
1,000 0.03 661 255 100 — — —
2,500 0.13 853 101 94 — — —
5,000 0.28 882 50 98 — — —
10,000 0.35 955 21 91 — — —
Avg. 022 471 35779 97 100 202 14

Our heuristic found feasible solutions in 97% of the iterations,
on average, considering all instance sizes. For instances of size
n € {60,80,150,1000} all iterations were feasible. Further, the
heuristic reached optimality in all instances of size n = 60, and
found solutions within 0.02% of optimality for n € {100, 150, 200}.
It obtained poor results in two particularly difficult instances of
n = 80, which resulted in a higher deviation. As expected, the
number of multistart iterations decreases as n increases.

The exact method of [34] reached optimality in all instances of
size n < 200, and converges to a connected solution in less than
2 iterations, in average. This is most likely because the p-median
objective reportedly tends to yield connected optimal solutions,
given a relatively uniform planar topology. The exact solver timed
out on all instances of n > 200 without finding a feasible upper
bound. Although the proposed heuristic performed worse than the
exact method, on average, it found the optimal solution in 84.6%
of instances in data set DU, and was also able to consistently find
feasible solutions for all instances of data sets DS, DT and DL, with
n up to 10000.

6.4 Experiment 2: p-center objective

In this experiment we compare our approach to the GRASP heuristic
of [31] and the exact method of [34] for the p-center objective.
Table 4 shows the results.

Since the p-center objective is less related to connectivity com-
pared to p-median, as reported by [34], their exact method gener-
ally requires more iterations to converge to a feasible solution. For
n > 200, the exact method timed out in all cases without finding a
feasible upper bound, whereas for n = 100 and n = 150, it found a
solution in 90% and 50% of cases, respectively.

Considering instances solved optimally by the algorithm of [34]
our heuristic found optimality in 95.4% of cases, and obtained an
average relative deviation of 0.27% from the optimal solutions other-
wise. For the remaining instances, the proposed heuristic obtained
the best average objective values in all cases. On data set DA the
heuristic of [31] performs a large number of iterations and thus
obtains relatively good solutions, but has difficulty finding feasible
solutions as n grows. This likely explains the poor solution qual-
ity for data sets DS, DT and DL, since the effectiveness of GRASP
usually relies on having a large sample of feasible solutions.
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Table 4: Comparison of our proposed method to the heuristic of [31] and the exact approach of [34], for the p-center objective.

n Our algorithm [31] [34]
C(%) ttb. iter. fea.(%) C(%) ttb. iter. fea. (%) opt.(%) time iter
60 0.13 50 16,518 96 0.67 36 2,627,936 45 100 52 43
80 0.72 19 11,305 97 1.63 153 1,707,644 30 100 255 8.1
100 0.00 4 13,126 100 1.16 230 1,277,550 42 90 1,018 11.6
150 0.06 107 5,909 100 2.72 515 767,707 30 50 3,436 10.4
200 0.00 44 3,660 100 3.97 812 493,211 15 — — —
500 0.31 499 1,086 97 13.11 870 111,890 15 — — —
1,000 0.79 688 254 100 27.29 934 25,531 7 — — —
2,500 1.68 949 57 99 65.82 1,149 6,468 6 — — —
5,000 1.62 946 23 99 101.89 1,827 2,243 5 — — —
10,000 1.76 980 9 94 161.57 2,347 725 2 — — —
Avg. 0.71 429 5,195 98 3798 887 702,091 20 85 1,190 8.6

Table 5: Comparison of our proposed method to the heuris-
tic approach of [15] for the diameter objective.

n Our algorithm [15]
C (%) ttb. iter. fea. (%) C (%) t.tb. iter. fea. (%)
60 0.00 0 888,007 100 0.61 52 285,632 100
80 0.00 0 461,409 100 0.14 28 108,174 96
100 0.00 0 280,698 100 024 62 114,601 97
150 0.00 18 130,446 100 021 78 144,994 100
200 0.03 64 24,169 100 0.04 68 69,743 98
500 0.07 329 3,634 99 1.05 378 61,316 87
1,000 0.33 532 1,070 100 1.06 564 18,664 84
2,500 1.82 883 264 99 501 803 9,843 75
5000 2.91 886 147 99 732 915 5555 64
10,000 5.31 958 65 92 30.82 874 2,477 53
Avg. 1.05 367 178,991 99 4.65 382 82,100 85

Compared to the p-median objective, the p-center variant of our
algorithm performs as little as 22.16 times fewer iterations in the
same amount of time. This is mainly due to the differences in pa-
rameter Iy (see Table 2), which determines the amount of time
spent on each tabu search. In fact, given equal ¢ and Iy« values,
iterations which optimize p-center are usually faster, since balanc-
ing requires fewer binary search steps, in average. This happens
because the number of possible p-center objective values is limited
to ('21) (i.e., the maximum number of distinct node-node distances).

6.5 Experiment 3: diameter objective

In this experiment, we compare our approach with the heuristic
method of [15] for the diameter objective. Table 5 shows the results.

Overall, our proposed heuristic produced solutions with lower
average diameters in 38.7% of instances, and with equal diameters
in 48.8% of instances. It also generally found solutions which are
closer to the best known values, with an average relative deviation
of 1.05%, compared to 4.65% for the algorithm of [15]. For the
smaller data sets DU, DS and DT the proposed algorithm produced
the best diameters in nearly all cases. For n < 100 it generates
significantly more feasible solutions in the same amount of time,
and finds the best known solutions almost immediately. As n grows,
however, the total number of multistart iterations of our method

decreases rapidly, which reduces the explored sample of the search
space, causing comparatively higher diameters in some cases. This
decrease in performance at higher values of n likely due to the
increasing difficulty of finding balanced solutions.

In general, we found that the algorithm of [15] has more difficul-
ties in balancing instances with high p/n ratios, especially as the
number of units n grows. On the other hand, the performance of our
method is less dependent on the number of districts p. Overall, 99%
of the multistart iterations of our method were feasible, compared
to 85% of [15]’s method.

Compared to the center-based objectives, the diameter approach
is significantly faster per iteration. This is due to the high cost of
computing the expected objective value of a neighbor, even with
dynamic updates, which is O(n/p) for p-median and p-center versus
O(log n/p) for the diameter objective.

7 CONCLUSION

We have proposed a heuristic that can handle the three most com-
mon compactness measures in the literature: p-median, p-center
and diameter, with little modification. It iteratively generates new
solutions in a multistart fashion, and improves them by alternating
between optimizing compactness and balance. Our main goal in
this paper, however, was not to develop a state-of-the-art method
which outperforms all others, but rather to establish a well-defined
generic approach that can serve as a basis of comparison for future
works considering one of the objectives above, as well as a base-
line for new heuristics considering similar objectives or additional
constraints.

The proposed method was compared to existing approaches in a
widely-studied domain in commercial districting. For the p-center
and p-median objectives, our heuristic yielded optimal solutions in
almost all instances with less than 200 basic units in a fraction of
the time, compared to a current exact approach. For the diameter
objective, it improved upper bounds in 38.7% instances considered,
on average, compared to a state-of-the-art heuristic approach.
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