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On the Flow Problem in Water Distribution
Networks: Uniqueness and Solvers

Manish K. Singh and Vassilis Kekatos, Senior Member, IEEE

Abstract—Increasing concerns on the security and quality of
water distribution systems (WDS), along with their role as smart
city components, call for computational tools with performance
guarantees. To this end, this work revisits the physical laws
governing water flow and provides a hierarchy of solvers having
complementary value. Given water injections in a WDS, finding
the corresponding water flows within pipes and pumps together
with the pressures at all nodes constitutes the water flow (WF)
problem. The latter entails solving a set of (non)-linear equations.
It is shown that the WF problem admits a unique solution even
in networks hosting pumps. For networks without pumps, the
WF solution can be recovered as the minimizer of a convex
energy function. The latter approach is extended to networks
with pumps but not in cycles, through a stitching algorithm.
For networks with non-overlapping cycles, a provably exact
convex relaxation of the pressure drop equations yields a mixed-
integer quadratic program (MIQP)-based WF solver. A hybrid
scheme combining the MIQP with the stitching algorithm can
handle water networks with overlapping cycles, but without
pumps on them. Each solver is guaranteed to converge regardless
initialization. Two of the solvers are numerically validated on a
benchmark WDS.

Index Terms—Water flow equations, convex relaxation, graph
reduction, mixed-integer quadratic program, second-order cone
constraints, uniqueness.

I. INTRODUCTION

Water distribution systems serve as a critical infrastructure
across the world. The direct dependence of human lives on the
availability of water has motivated research on the security,
resiliency, and quality of water supply systems [1], [2], [3].
The high cost of installation for different WDS components
renders long-term network planning an important problem [4],
[5]. Furthermore, the relatively expensive operation of a WDS
is primarily attributed to the electricity cost for running pumps
to properly circulate water [6], [7]. Thus, optimal pump
scheduling for the daily operation of a WDS is a pertinent
research problem [8], [9]. An inevitable component of the
aforementioned computational problems is satisfying the phys-
ical laws governing water flow. Mathematically, the water flow
(WF) equations consist of a set of linear equations ensuring
mass conservation, along with a set of non-linear equations
arising from energy and momentum conservation [10].

Solving the WF equations constitutes the water flow prob-
lem. Specifically, given water demand at all nodes, the stan-
dard WF task aims at finding the water flows within all
pipes and the pressures at all nodes complying with the
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WF equations. Modern renditions of the WF problem may
incorporate pumps, valves, and pressure-based demands [11],
[12]. Either way, handling the non-linear equations stemming
from the conservation of energy and momentum remain the
core challenge [10].

Existing WF solvers update iteratively a set of WF variables,
which could be the pipe flows, the loop flows, the nodal
pressures, or combinations thereof [13]. These solvers can
be broadly classified into those relying on successive linear
approximations, and those relying on Newton-Raphson-type of
updates [10]. For example, the WF solver of [14] constitutes
a fixed-point iteration and belong to the former class, while
EPANET (perhaps the most widely used WF solver) belongs
to the latter class [12]. In fact, most of the schemes within each
class have been shown to be equivalent to each other upon a
(non)-linear transformation of variables [13], [10]. To reduce
the problem dimensionality, different preprocessing, partition-
ing, and reformulations have been reported [15],[16],[17].

The aforesaid solvers exhibit two major shortcomings. First,
their convergence and rate of convergence depend critically on
initialization. For example, it has been numerically demon-
strated that EPANET fails to find a WF solution for some
practical water networks [18], [19]. Nonetheless, proper ini-
tialization may be challenging when dealing with stochastic
planning or risk analysis, where the WF task has to be solved
repeatedly and under varying demands [16]. As a second
shortcoming, the existing solvers do not naturally extend
to optimal water flow (OWF) formulations. Therefore, most
OWF efforts resort to linear approximations; non-linear local
optimization; or slow zero-order algorithms building on an
independent WF solver such as EPANET; see [1]. Such OWF
approaches lack scalability and/or optimality guarantees.

The contribution of this work is in two fronts. After a
brief modeling of water networks (Section II), this work
first establishes that given the water injections at all nodes,
there exists a unique set of water flows and nodal pressures
satisfying the (non)-linear WF equations (Section III). Second,
it puts forth a suite of solvers that can provably recover the
WF solution under different water network setups; see also the
flowchart of Fig. 1:

i) In networks without pumps, the WF solution can be
recovered as the minimizer of a convex problem. The
problem minimizes a judiciously selected energy function
under a constrained (Section IV-A) or unconstrained
formulation (Section IV-B).

ii) This energy function-based approach is then extended to
networks where pumps do not lie on cycles through the
stitching algorithm of Section IV-C.

ar
X

iv
:1

90
1.

03
67

6v
1 

 [
m

at
h.

O
C

] 
 1

1 
Ja

n 
20

19



2

iii) In networks with no overlapping cycles, the MIQP
scheme of Section V can find the WF solution.

iv) A hybrid procedure combining the stitching algorithm
and the MIQP solver handles networks having overlap-
ping cycles, but without pumps on them (Section VI).

These novel solvers not only operate under different network
configurations, but constitute a hierarchy: Solver ii) builds on
i); and solver iv) builds on ii) and iii). Numerical tests on a
benchmark network evaluate the correctness and running times
for i) and iii); and compare them against the EPANET solver
(Section VII).

Regarding notation, lower- (upper-) case boldface letters
denote column vectors (matrices). Calligraphic symbols are
reserved for sets. The vectors of all zeros, all ones, and the
n-th canonical vector are denoted respectively by 0, 1, and
en, while their dimension will be clear from the context. The
symbol > stands for transposition.

II. WATER DISTRIBUTION SYSTEM MODELING

A WDS can be represented by a directed graph
G := (N ,P). Its nodes are indexed by n ∈ N := {1, . . . , N}
and correspond to water reservoirs, tanks, and points of water
demand. Let dn be the rate of water injected into the WDS
from node n. For reservoirs apparently dn ≥ 0; for nodes with
water consumers dn ≤ 0; tanks may be filling or emptying;
and dn = 0 for junction nodes.

The edges in set P with cardinality P := |P|, are associated
with pipes and pumps. The directed edge p = (m,n) ∈ P
models the water pipe between nodes m and n. Its water flow
is denoted by fmn or fp depending on the context. If water
flows from node m to n, then fmn ≥ 0; otherwise fmn < 0.

Conservation of water flow dictates that for all n ∈ N

dn =
∑

k:(n,k)∈P

fnk −
∑

k:(k,n)∈P

fkn.

The connectivity of the WDS is captured by the edge-node
incidence matrix A ∈ RP×N with entries

Ap,k =


+1, k = m

−1, k = n

0, otherwise
∀ p = (m,n) ∈ P. (1)

Given A and upon stacking flows and injections respectively
in f ∈ RP and d ∈ RN , the conservation of water flow across
the WDS can be compactly expressed as

A>f = d. (2)

The operation of WDS is also governed by pressures.
Water pressure is surrogated by pressure head, defined as
the equivalent height of a water column in meters, which
exerts the surrogated pressure at its bottom. The pressure
head (henceforth pressure) at node n is denoted by hn. The
pressures at all WDS are referred to a common geographical
elevation. Moreover, the pressure hr at a reservoir node r ∈ N
typically serves as the pressure of reference.

With water flowing in a pipe, pressure drops along the
direction of flow due to friction. The pressure drop across
pipe (m,n) ∈ P is described by the Darcy-Weisbach law [20]

hm − hn = cmn sign(fmn)f2
mn (3)

where the constant cmn depends on pipe dimensions [9], and
the sign function is defined as

sign(x) :=

 +1, x > 0
0, x = 0
−1, x < 0

.

The pressures at all nodes are collected in vector h ∈ RN .
To maintain pressures at desirable levels, water utilities use

pumps on specific pipes. Let Pa ⊂ P be the subset of pipes
hosting a pump. The pipes in Pa can be considered lossless;
this is without loss of generality since a pump can be modeled
by an ideal pump followed by a short pipe. The remaining
edges form the subset P̄a := P \Pa, and correspond to lossy
pipes governed by (3). When pump p = (m,n) ∈ Pa is
running, it adds pressure gmn ≥ 0 so that

hn − hm = gmn.

The pressure added by a pump increases with the pump speed
and decreases with the water flow through the pump. The
exact relation is provided by manufacturers in the form of
pump operation curves, and are oftentimes approximated with
quadratic curve fits [21], [22], [8]. In detail, the pressure added
by pump p = (m,n) is modeled as

gmn(fmn, ωmn) = λmnf
2
mn + µmnωmnfmn + νmnω

2
mn

where ωmn is the pump speed; and λmn < 0, µmn ≥ 0, and
νmn ≥ 0 are known pump parameters [8]. If pump (m,n) is
running, its flow is constrained to lie within the range 0 ≤
f
mn
≤ fmn ≤ f̄mn due to engineering limitations [20]. For a

given pump speed ω0
mn, the added pressure is

hn − hm = λmnf
2
mn + µ̄mnfmn + ν̄mn (4)

where µ̄mn := µmnω
0
mn and ν̄mn := νmn(ω0

mn)2. Because
the pump parameters satisfy 2λmnfmn

+ µmnωmn < 0 over
the operating range of pump speeds ωmn, the pressure gain due
to any pump is a strictly decreasing function of the water flow.
This observation is instrumental in establishing the uniqueness
of the WF solution in Section III.

When pump p = (m,n) ∈ Pa is not running, water can
flow freely in either directions through a bypass valve [21], so
that gmn = 0 or hm = hn. In this case, the WDS graph can
be reduced by removing pipe p and node n, and connecting
to node m the edges previously incident to n.

Valves constitute a vital component for water flow control.
They can be modeled by an on/off switch; a linear pressure-
reducing model; a flow-dependent non-linear model; or a flow
control model; see [8] and [12] for details. Under the typical
operational setup, the valve at the reference node regulates
pressure, whereas the valves in the remaining reservoirs and
tanks regulate flows.

Summarizing this section, a WDS is described by the triplet
(d, f ,h) satisfying the WF equations of (2)–(4). This work
deals with the uniqueness of a WF solution and efficient
solvers for finding this solution.
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III. UNIQUENESS OF WATER FLOW SOLUTION

Different from the optimal water flow problem where tanks
and pumps are scheduled over a time horizon, the WF task
aims at solving the WF equations given the water injections
d. As such, it constitutes a key component of WDS operation
and planning. The WF problem is formally stated next.

Definition 1. Given: i) water injections d; ii) the statuses
and speeds {ωmn} for all pumps (m,n) ∈ Pa; and iii) the
pressure hr at the reference node r ∈ N ; the WF task aims
at finding the flows f and pressures h satisfying (2)–(4).

The WF task involves N +P −1 equations over N +P −1
unknowns. The water balance in (2) yields N − 1 linearly
independent equations. In addition, the pressure drops across
lossy pipes [cf. (3)], and the pressure gains due to pumps
[cf. (4)] provide P non-linear equations. Although both f and
h are unknown, it suffices to find any one of them: If f is
known, then h can be calculated from (3)–(4) and hr. On the
other hand, if h is known, the flows f can be found thanks
to the monotonicity of (3) and (4). Therefore, solving the WF
task amounts to finding f or h. Because this simple observation
is used throughout our analysis, it is summarized as a lemma.

Lemma 1. Given d, a triplet (d, f ,h) satisfying (2)–(4) is
uniquely characterized by f or h.

The WF task can be posed as the feasibility problem

find {f ,h} (W1)
s.to (2), (3), (4).

Since (3) and (4) are quadratic equality constraints, prob-
lem (W1) is non-convex. For a tree WDS graph G (for which
P = N − 1), matrix A is square and invertible [23]. Then the
flows f can be found uniquely from (2), and the WF task is
readily solved according to Lemma 1. However, handling the
WF task in a loopy G containing pumps remains non-trivial.
Interestingly enough though, the next claim establishes the
uniqueness of a WF solution regardless of the structure of G
and the existence of pumps.

Theorem 1. If the WF equations are feasible for some d, they
feature a unique solution.

Proof: Proving by contradiction, assume (h, f) and (h̃, f̃)
are two distinct solutions of (W1). Since the two flow vectors
f and f̃ satisfy (2), the vector n := f̃ − f lies in the nullspace
of A>, that is A>n = 0. Then it follows that

n>A(h̃− h) = 0. (5)

Let us decompose n into its positive and negative entries as
n = n+ − n−, where n+ ≥ 0 and n− ≥ 0. Plugging this
decomposition into (5) yields

n>+

(
Ah̃−Ah

)
= n>−

(
Ah̃−Ah

)
. (6)

Recall from (3) that the pressure drop across a lossy pipe
is monotonically increasing in flow. Similarly, the pressure
added by a pump described by (4) is monotonically decreasing
in flow. In other words, the pressure drop along a pump is

EFM	+	Stitching	
Algorithm	

pumps	in	over-	
lapping	cycles?	

Energy	Function	
Minim.	(EFM)	

MIQP	

MIQP	+	Stitching	
Algorithm	

overlapping		
cycles?	

pumps	in		
cycles?	

WDS	with		
pumps?	

No	

No	

No	

No	

Yes	

Yes	

Yes	

Yes	

(Sections	III.A-B)	

(Section	III.C)	

(Section	IV)	

(Section	V)	

Fig. 1. Given a water distribution network, this flowchart suggests the most
suitable WF solver based on its analytical guarantees and computational
complexity.

monotonically increasing in flow. Therefore, for any edge p ∈
P , it holds that

a>p h̃ > a>p h if and only if f̃p > fp (7)

where a>p is the p-th row of matrix A.
Consider the p-th entry of vector n. If f̃p > fp, then

n+,p > 0 and n−,p = 0 by definition of n+ and n−.
Then edge p contributes to the left-hand side (LHS) of (6).
The monotonicity in (7) entails that a>p (h̃ − h) > 0 and so
n+,p·a>p (h̃−h) > 0. The latter holds for all edges contributing
to the LHS of (7), so that

n>+

(
Ah̃−Ah

)
> 0.

On the other hand, if f̃p < fp, then n+,p = 0 and n−,p >
0. Then, edge p contributes to the right-hand side (RHS) of
(7). The monotonicity in (7) entails n−,p · a>p (h̃ − h) < 0.
Applying the claim over all edges participating in the RHS of
(7) provides

n>−

(
Ah̃−Ah

)
< 0.

The signs of the LHS and RHS contradict the equality in (6),
thus proving the claim.

Regarding the pressure drop law of (3), the Hazen-Williams
equation is sometimes used wherein the flow fmn is raised
to the exponent of 1.852. This exponent is different from
the exponent of 2 in the Darcy-Weisbach equation; see for
example [14]. While the Darcy-Weisbach equation is a theo-
retical formula, the Hazen-Williams equation is based on curve
fitting of experimental data [5]. Nevertheless, the uniqueness
argument of Theorem 1 holds for any positive exponent on
the water flow involved in the pressure drop equation.

Having established the uniqueness of the WF solution, the
ensuing sections develop a suite of WF solvers of complemen-
tary value: Each solver finds provably the WF solution under a
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different network setup. The devised solvers exhibit different
computational complexity, yet none of them requires a proper
initialization. Figure 1 summarizes the particular WDS setups
each solver can handle, and serves as a roadmap for the
following sections.

IV. ENERGY FUNCTION-BASED WATER FLOW SOLVERS

The WF task for networks without pumps is posed here
as a constrained convex minimization (Section IV-A), and an
equivalent unconstrained convex minimization (Section IV-B).
The approach is then generalized to networks with pumps, but
not on cycles (Section IV-C).

A. Constrained Formulation

For a WDS without pumps, the WF task simplifies to
solving (2)–(3). These two equations are structurally similar
to the equations governing the flows and pressures in a natural
gas network under steady-state conditions [24]. Exploiting this
link and adopting the energy function minimization approach
for solving the gas flow equations in [25], we next pose (W1)
as a constrained minimization over f .

Lemma 2. In a WDS without pumps (P = P̄a), the vector of
water flows f satisfying (2)–(3) can be found as the unique
minimizer of the convex minimization problem

min
f

1

3

∑
p∈P

cp|fp|3 (8a)

s.to A>f = d. (8b)

Moreover, if ξ∗ is the vector of optimal Lagrange multipliers
corresponding to (8b), then the nodal pressures are provided
by h = (I− 1e>r )ξ∗ + hr1.

Proof: The objective function of (8) can be written
as the `3-norm of a scaled flow vector raised to the third
power. Its strict convexity follows from composition rules [26,
Sec. 3.2.4]. Then, the uniqueness of the minimizer of (8)
stems from strong convexity. Moreover, the objective is dif-
ferentiable: the p-th entry of its gradient vector gc(f) is
cp sign(fp)|fp|2.

The Lagrangian function associated with (8) is

L(f ; ξ) =
1

3

∑
p∈P

cp|fp|3 + ξ>(d−A>f). (9)

The optimal primal and dual variables (f∗, ξ∗) satisfy the
Lagrangian optimality condition, that is gc(f

∗) = Aξ∗, which
coincides with (3).

By the definition of A in (1), it holds that Aξ∗ = A(ξ∗ +
α1) for any α ∈ R. Hence, the pressures can be recovered
either by Lemma 1, or by fixing α = hr−e>r ξ

∗ to equate the
r-th entry of ξ∗ + α1 to the reference pressure hr.

Lemma 2 provides a computational tool for solving the WF
equations in water networks without pumps. It further shows
that the WF solution is unique in networks without pumps.
This claim has also been established using a contraction
argument in [14]. It is worth mentioning that Theorem 1

generalizes this uniqueness claim to water networks containing
pumps.

The problem in (8) can be solved by reformulating it to the
second-order cone program (SOCP)

min
{fp,wp,yp,tp}

1

3

∑
p∈P

cptp (10a)

s.to A>f = d. (10b)
− wp ≤ fp ≤ wp, ∀p (10c)

w2
p ≤ yp, y2

p ≤ wptp, ∀p. (10d)

The equivalence can be established by showing that the
minimizers of (10) satisfy wp = |fp|; yp = w2

p = f2
p ;

and tp = w3
p = |fp|3 for all p ∈ P . Each constraint

in (10d) constitutes a rotated second-order cone. A similar
SOCP reformulation of the WF equations has been previously
adopted in [8] and [27] for solving an optimal water flow
problem.

Alternatively, problem (8) can be tackled via the iterative
method of dual decomposition: During the k-th iteration, the
primal variable f is updated by minimizing the Lagrangian
function L(f ; ξk) evaluated at the latest estimate of dual
variables ξk. The latter problem decouples across pipes as

fk+1
p := arg min

fp

1

3
cp|fp|3 − fpa>p ξ

k

whose minimizer is provided in closed-form

fk+1
p = sign(a>p ξ

k)

√
|a>p ξ

k|
cp

. (11)

Then, for a step-size µ > 0, the dual variables are updated as

ξk+1 := ξk + µ
(
d−A>fk+1

)
.

B. Unconstrained Formulation

For a WDS without pumps, Section IV-A formulated the
WF task as a constrained minimization over the flow vector
f . The same WF task can be alternatively posed as an
unconstrained minimization over the pressure vector h

min
h

2

3

∑
(m,n)∈P

|hm − hn|
3
2

√
cmn

− d>h. (12)

The objective of (12) is convex (again by composition rules)
and differentiable. The n-th entry of its gradient vector gu(h)
is

[gu(h)]n =
∑

p=(m,n)∈P

sign(a>p h)

√
|a>p h|
cp

− dn.

Setting this gradient equal to zero yields the WF equations
after eliminating f from (2)–(3). The ambiguity in pressures
can be waived by shifting the minimizer of (12) to match
the reference pressure hr. Once the pressures h have been
found, the flow vector f can be retrieved by Lemma 1. Problem
(12) is amenable to any first-order method for unconstrained
optimization, such as the gradient descent iterations hk+1 :=
hk − µgu(hk) for a step-size µ > 0, or accelerated variants.
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Remark 1. Let us compare the costs of (8) and (12). Due to
(3), it holds that cpf2

p = |a>p h| and sign(fp) = sign(a>p h).
Therefore, the cost in (8) can be rewritten as

1

3

∑
p∈P
|fp · a>p h|. (13)

Likewise, the first summand of the cost in (12) becomes

2

3

∑
p∈P
|fp · a>p h|. (14)

The product of pressure drop times water flow captures
exactly the energy lost across a pipe; see also [8] and [27].
Therefore, problem (8) finds the f that minimizes friction losses
for a given d; hence, the term ‘energy function minimization.’
While water demands d appear in the constraint of (8), their
effect is incorporated in (12) via the −d>h component of
the cost. As commented in [8], the product −dnhn yields the
power lost in delivering demand dn under pressure hn at node
n. Thus, problem (12) minimizes the energy lost in pipes and
in serving demands. Energy function-based approaches have
been used traditionally for studying the stability of electric
power systems [28], [29]; and recently for establishing the
uniqueness of electric power [30], [31], and natural gas flow
equations [24], [25].

C. Extension to WDS with no Pumps in Cycles

Since problems (8) and (12) cannot handle water networks
with pumps, this section extends their applicability to networks
with pumps, but not on cycles. This is accomplished by
adopting the reduction technique of [32] to build what we
term stitching algorithm:
S1) Remove the edges of G corresponding to pumps Pa. The

obtained graph contains |Pa| + 1 disconnected compo-
nents Gc for c = 1, . . . , |Pa|+ 1.

S2) Replace each component Gc by a supernode, and connect
the supernodes using the edges in Pa to create the
supergraph G′. Graph G′ features a tree structure.

S3) Find the total water injection per supernode Gc. Since G′
is a tree, the water flows on Pa can be found readily.

S4) If the flow along pump (m,n) ∈ Pa is fmn, modify the
injections at nodes m and n as d̂m = dm − fmn and
d̂n = dn + fmn.

S5) Solve (8) per connected component Gc to find the water
flows at all lossy pipes.

S6) Having acquired vector f , the pressure vector h can be
found from Lemma 1.

In S5), rather than solving the constrained minimization of
(8), one could use its unconstrained counterpart of (12). Steps
S1)–S4) are still needed to find a meaningful water injection
vector per component Gc. Once a pressure vector has been
found per component, the pressures must be revised as follows:
The pressures within the component containing the reference
node, say component G1, are kept unaltered. Consider a pump
running from node m ∈ G1 to node n ∈ G2. Having found
hm by solving (12) in G1, the pressure at node n should be
hn = hm + gmn, where the flow fmn has been found in
step S3). If the pressure at node n recovered by solving (12)

in G2 is h̃n, then all pressures within G2 should be shifted by
hn−h̃n. The process is repeated for all components to recover
the entire pressure vector h.

To broaden the applicability of our WF solvers to networks
with pumps in cycles, we next pursue an MIQP solver.

V. MIQP WATER FLOW SOLVER

This section presents an MIQP relaxation of (W1) along
with sufficient conditions for its exactness.

A. Problem Reformulation

The non-convexity of the WF problem (W1) is due to
constraints (3) and (4). These quadratic equalities can be
relaxed to convex inequality constraints: The pressure drop
along pipe (m,n) ∈ P̄a is relaxed from (3) to
• hm − hn ≥ cmnf

2
mn for fmn ≥ 0; or

• hn − hm ≥ cmnf
2
mn for fmn ≤ 0.

To handle the two cases, let us introduce a binary variable
xmn capturing the flow direction on pipe (m,n). By using
the so-termed big-M trick, the two cases can be modeled as

−M(1− xmn) ≤ fmn ≤Mxmn (15a)

−M(1− xmn) ≤ hm − hn − cmnf
2
mn (15b)

hm − hn + cmnf
2
mn ≤Mxmn (15c)

xmn ∈ {0, 1}. (15d)

Constraint (15a) implies that xmn = sign(fmn). If xmn = 1,
the convex quadratic constraint in (15b) is activated, whereas
constraint (15c) becomes trivial. The claim reverses for xmn =
0. Depending on the value xmn, if either (15b) or (15c) is
satisfied with equality, the relaxation is deemed as exact. If
that happens for all lossy pipes, the feasible set of (15) has
captured the original non-convex constraints in (3).

Similarly, the pressure added by pump (m,n) ∈ Pa is
relaxed from (4) to

hn − hm ≤ λmnf
2
mn + µ̂mnfmn + ν̂ (16)

which is a convex constraint since λmn < 0. Again, if the
inequality in (16) is satisfied with equality for all pumps, the
relaxation of (4) to (16) is deemed as exact.

One may now try solving (W1) upon replacing (3) and (4)
respectively by (15) and (16). If all the relaxed constraints
are satisfied with equality, the relaxation is exact. Of course
that is not guaranteed. To favor exact relaxations, we convert
the feasibility to a minimization problem with a judiciously
selected cost. We thus arrive at the MIQP formulation

min s(h) (W2)
over f ,h,x

s.to (2), (15), (16)

where the binary vector x contains all {xmn}(m,n)∈P̄a
, and

the cost is defined as

s(h) :=
∑

(m,n)∈P̄a

|hm − hn| −
∑

(m,n)∈Pa

(hn − hm).

The cost sums up the absolute pressure drops across lossy
pipes minus the pressure gains added by pumps. A related
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MI-SOCP relaxation has been proposed for an instance of
the optimal water flow (OWF) problem [9]. In that work,
the absolute pressure drops across lossy pipes is appended
as a penalty to the objective of the OWF problem. Adding
this penalty renders the relaxation exact under some sufficient
conditions. Although the conditions are restrictive, in practice
this OWF relaxation turns out to be numerically exact under
practical water networks [9].

Problem (W2) is non-convex due to the binary variables
x. However, given the advancements in MIQP solvers, this
minimization can be handled for moderately sized networks
[33]. Recall that every lossy pipe is associated with a binary
and a continuous optimization variable. To accelerate the
computations, we next provide a simple pre-processing step
to determine the flows in all edges not belonging to a cycle.

Lemma 3. Let f be the unique flow solution of (W1), and
consider any vector f̃ satisfying A>f̃ = d. For any edge
(m,n) not belonging to a cycle, it holds that f̃mn = fmn.

Proof: Consider the minimum-norm solution f0 :=(
A>
)†

d to the linear system of (2), where
(
A>
)†

is the
pseudo-inverse of A>. Any other solution of (2) can be
expressed as f = f0 + n for some vector n ∈ null(A>).

The space null(A>) can be represented using the cycles of
graph G as explained next. For cycle C in G, select an arbitrary
direction and define its indicator vector nC ∈ RP as

nC,p :=


0 , if edge p /∈ C
+1 , if the directions of p and C coincide
−1 , otherwise.

We are particularly interested in a set of fundamental cycles
defined as follows [23]: In graph G = (N ,P), select a
spanning tree T . Every edge p ∈ P \ T along with some
edges of T form a cycle. The cycles formed using all edges
in P \ T comprise the set LT of fundamental cycles.

A key property of fundamental cycles is that the space
null(A>) is spanned by the indicator vectors for any set
of fundamental cycles [23, Corollary 14.2.3]. Therefore, the
vector n in f = f0 + n can be decomposed as

n =
∑
`∈LT

α`n` (17)

where n` is the indicator vector for cycle ` and α` ∈ R.
Consider the p-th entry of n. If edge p ∈ P does not belong

to any cycle, then it does not belong to any fundamental cycle.
Then n`,p = 0 for all ` ∈ LT , and np = 0 follows from (17).
To conclude, if edge p does not belong to a cycle, then all
solutions f of (2) agree in their p-th entry.

Lemma 3 ensures that for weekly meshed WDS, the number
of variables in (W2) can be reduced markedly. Moreover, the
flow on any edge not belonging to a cycle coincides with the
related entry of the minimum-norm solution to (2).

B. Exactness of the Relaxation

The next result shown in the appendix provides conditions
under which a minimizer of (W2) satisfies (15)–(16) with
equality.

2 3 4

100 100

11

1

d2 = −2 d4 = −2

1

d1 = 4

Fig. 2. A pathological WDS for which the relaxation of (W2) is inexact.

Theorem 2. In a WDS where no edge (m,n) ∈ P belongs to
more than one cycle, a minimizer of (W2) minimizes (W1) as
well, if (W1) is feasible.

Theorem 2 asserts that the MIQP relaxation of (W1) to (W2)
is exact in water networks with non-overlapping cycles, that
is cycles sharing at least one edge. The claim holds regardless
of water demand or the presence of pumps; yet its network
condition may not always hold. Nonetheless, the numerical
tests of Section VII demonstrate that the relaxation is exact
and (W2) solves the WF problem for practical WDS exhibiting
overlapping cycles.

The condition imposed by Theorem 2 cannot be analytically
relaxed: One could construct pathological examples of water
networks with overlapping cycles that render the relaxation
of (W2) inexact; such a counterexample is presented next.
Consider the 4-node and 5-pipe water network of Figure 2. The
coefficients cmn’s are shown on the respective pipes. Nodes 2
and 4 host water demands, and the reference node 1 supplies
water at the reference pressure of h1 = 10. The edge (1, 3)
belongs to two cycles and hence the condition of Theorem 2 is
violated. The minimizer of (W2) satisfies the relaxed constraint
(15) with strict inequality. The pressure at nodes 1 and 3 were
found to differ by h1 − h3 = 3.435, while the frictional drop
was c13f

2
13 = 0.014. This WDS however is characterized by a

strong disparity of pipe coefficients. For a WDS with limited
variations in pipe dimensions and material, such disparity is
not anticipated in practice.

Since the WDS of Figure 2 does not host pumps, the
solution to the previous WF problem was eventually found
using the energy function minimization approach of (8). This
motivates us to exploit the ability of the energy function-based
approach to handle overlapping cycles alongside the merit of
the MIQP relaxation to handle pumps in cycles. To solve the
WF problem for a broader class of WDS network topologies,
a hybrid solver is developed next.

VI. HYBRID WATER FLOW SOLVER

The hybrid WF solver relaxes the assumption of non-
overlapping cycles of Theorem 2 to the following condition.

Assumption 1. The water network has no pumps in overlap-
ping cycles.

The assumption permits overlapping cycles, but these par-
ticular cycles should carry no pumps. For a network satisfying



7

Assumption 1, the WF task can be solved through the follow-
ing steps illustrated also in Figure 3:
T1) Any cycle C with pumps is non-overlapping. Thus, for

any node n belonging to C, two cases arise:
i) Node n belongs only to cycle C (node 3 of C1); or
ii) Node n belongs to other cycle(s) C′ as well; yet C and
C′ share no edge (e.g., node 4 of C2).
Then, reduce graph G to G′ through the steps:
• If for a cycle C having pumps, all nodes do not belong

to any other cycle, replace C by a supernode nC .
• If for a cycle C having pumps, node n belongs to

other cycle(s), identify the edges (n1, n) and (n, n2),
which belong to C. These two edges belong to no
other cycles as C is non-overlapping. Split the node
n into n and n′ connected by a lossless edge (n, n′),
such that all edges in G other than (n1, n) and (n, n2)
that were incident on n are now incident on n′. After
repeating this step for all nodes in C that belong to
multiple cycles, replace C by a supernode nC .

This process ensures that in G′ all supernodes and the
pumps left out from G do not appear on cycles.

T2) Use Lemma 3 to compute the water flows on the edges
(m,nC) incident to supernodes nC’s in G′.

T3) For each edge (m,nC) in G′, modify the injection at node
m as d̂m = dm − fmnC .

T4) Partition G′ into a set of connected components Gc by
removing the supernodes and their incident edges. Each
Gc has known injections and bears no pumps in cycles.

T5) Use the stitching algorithm of Section IV-C per compo-
nent Gc to find the flows within Gc.

T6) Each supernode nC is split back to the cycle C it replaced.
If the edge (m,nC) of G′ corresponded to edge (m,n) of
G, modify the injection at node n ∈ C as d̂n = dn+fmnC .

T7) Solve (W2) per cycle C to find the water flows on C.
T8) Given vector f , find the pressure vector h using Lemma 1.

Let us apply the previous steps on the 23-node and 28-
pipe water network of Figure 3. There are two cycles carrying
pumps, marked as C1 and C2. Node 4 of cycle C1 belongs to
multiple cycles and hence it is split in 4 and 4′. Next, removing
C1 and C2 along with the edges that connect these cycles with
the rest of the graph results in the connected subgraphs G1,
G2, and G3 shown on the bottom of Figure 3. The demands
on boundary nodes are modified as per steps T3) and T6). The
edge flows within each connected component are subsequently
found by solving (8). The flows on C1 and C2 are finally found
by (W2).

This WDS setup could not be handled by the energy
function-based approach of Section IV alone due to the
presence of pumps on cycles C1 and C2. The convex relaxation
of Section V alone is not guaranteed to succeed either, due to
the presence of overlapping cycles. Combining the merits of
each method and leveraging Lemma 3, this hybrid method can
handle successfully this WDS setup.

VII. NUMERICAL TESTS

The new WF solvers were evaluated on the EPANET Exam-
ple Network-2 representing a water network from Cherry Hills,

r = 1

2

3

C1

C2

4

4

4'

r = 1

2

3

nC2

nC1

f2nC1

d̂3 = d3 + f2nC1

d̂2 = d2 � f 2nC1

G1

G2

G3

C1

4'

Fig. 3. Top: A water distribution network with pumps in non-overlapping
cycles; Bottom: Connected components after removing cycles C1 and C2 that
carry pumps.

Connecticut [3], and is shown in Fig. 4. This network consists
of P = 40 pipes, N = 34 demand nodes, one tank, and one
pump station. We modified the network by representing the
pump station as a reservoir with pressure 100ft connected to
a fixed-speed pump with a head gain of 100 ft. All nodes
were assumed to be at the same reference elevation. The pipe
friction coefficients cmn’s, tank dimensions, and base demand
vector d, were derived from the EPANET benchmark.

We first tested whether the proposed solvers yield a WF
solution that agrees with the EPANET solution. For this
purpose, we obtained WF solutions using the constrained
energy function minimization of (8) and the MIQP solver
(W2). Problem (8) was solved using the closed-form dual
decomposition steps of Section IV-A with µ = 10−4 and
20, 000 iterations. The MIQP in (W2) was solved using the
MATLAB-based toolbox YALMIP along with the mixed-
integer solver CPLEX [34], [35]. All tests were run on a
2.7 GHz, Intel Core i5 computer with 8 GB RAM. The
flows obtained by the two solvers were very close to the
EPANET solution, as illustrated in Figure 5; EPANET uses
more detailed flow models, e.g., the coefficient cmn in (3)
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Fig. 4. EPANET Example Network-2 of a water distribution system from
Cherry Hills, CT [3].
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Fig. 5. Water flows obtained by the EPANET solver, the constrained energy
function minimization of (8), and the MIQP of (W2) for the network of Fig. 4.

depends weakly on flow fmn. The 20, 000 iterations for the
primal-dual updates of (8) were completed within 4.5 sec, and
the running time of the MIQP (W2) was 1.6 sec.

Finally, we evaluated the performance of the (W2) solver
in finding the correct WF solution, when the conditions
of Theorem 2 are not satisfied. Specifically, the network
of Figure 4 has overlapping cycles. To represent various
demand levels, we generated 100 random WF instances by
scaling the base demand d for the EPANET network by a
scalar uniformly drawn from [0, 1.5]. Given a minimizer of
(W2), we defined the inexactness over lossy pipe (m,n) as
|hm − hn| − cmnf

2
mn. For each run of (W2) with a random

input, the ranked maximum inexactness gap over all lossy
pipes is displayed on Figure 6 (top). Despite violating the
conditions of Theorem 2, the maximum inexactness gap is
small for all random tests. On the computational side, the
running time of the MIQP-based solver of (W2) over the 100
instances is shown in the bottom panel of Figure 6; its median
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Fig. 6. Top: Maximum inexactness gap attained by (W2) over 100 random
WF instances. Bottom: Running time for (W2) over random WF instances.

value was only 1.68 sec.

VIII. CONCLUSIONS

Using recent tools from graph theory, convex relaxations,
energy function-based approaches, and mixed-integer pro-
graming, this work has provided a fresh perspective on the
physical laws governing water distribution networks. It has
been established that the WF problem admits a unique solution
even in networks with pumps. Given water demands, this WF
solution can be provably recovered via a hierarchical stack of
WF solvers suitable for different network configurations. Ra-
dial networks can be handled by simple convex minimization
tasks, whereas networks with cycles call for more elaborate
MIQP-based solvers. Nevertheless, numerical tests demon-
strate that even the MIQP approach scales well for moderately-
sized networks. The MIQP solvers have been derived upon
a convex relaxation of the pressure drop equation followed
by an objective penalization, an approach that sparked a
parallel line of research on the OWF problem [9]. Network
configurations hosting pumps on overlapping cycles remain to
be a challenging case. Moreover, solving the WF equations
given a different set of parameters, such as a mixture of water
injections, wtare flows, and/or nodal pressures, constitutes a
pertinent computational problem.

APPENDIX

Proof of Theorem 2: The cost of (W2) can be written as

s(h; f) =
∑

(m,n)∈P

(hm − hn) sign(fmn).
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To express pressure differences along the flow direction in a
compact manner, define the P×N edge-node incidence matrix
A(f): Its dependence on f signifies that the directionality of
each edge coincides with the flow directions in f . Therefore,
if the p-th row of A(f) is associated with pipe p = (m,n),
then its (p, k) entry is

Ap,k(f) :=

 − sign2(fmn) + sign(fmn) + 1 , k = m
sign2(fmn)− sign(fmn)− 1 , k = n
0 , otherwise.

For zero flows (sign(fmn) = 0), the default pipe direction
(m,n) is selected without loss of generality.

Based on A(f), the pressure differences along the direction
of flows can be written as A(f)h, and so

s(h; f) = 1>A(f)h. (18)

If (W1) is feasible, denote its unique solution by (f ,h).
Proving by contradiction, suppose (f̃ , h̃) is a minimizer of
(W2), which is not feasible for (W1). Let us simplify notation
as A(f) := A and A(f̃) := Ã. Since both f and f̃ satisfy (2),
there exists a nonzero vector n ∈ null(A>) such that

f̃ = f + n. (19)

As showed in (17), the vector n can be expressed in terms of
a set LT of fundamental cycles.

Building on (17), consider the p-th entry of n. Because edge
p belongs to at most one cycle, either np = 0 or np = α`n`,p
for a single ` ∈ L. In the latter case, if α` < 0, then one can
reverse the direction of cycle ` and substitute (α`,n`) in (17)
with (−α`,−n`). Hence, it can be assumed that α` ≥ 0 for
all ` ∈ L without loss of generality.

Each vector n` can be decomposed as n` = n+
` −n

−
` , where

n+
` := max{n`,0} and n−` := max{−n`,0}. Because every

edge belongs to at most one cycle, it holds that

1 =
∑
`∈L

n+
` +

∑
`∈L

n−` + n0 (20)

where the p-th entry of vector n0 is 1 if edge p does not
belong to any cycle; and 0, otherwise. Using (20) in (18), the
objective function of (W2) becomes

s(h; f) =
∑
`∈L

(n+
` )>Ah +

∑
`∈L

(n−` )>Ah + (n0)>Ah. (21)

Although the function s(h; f) will be evaluated for different
pairs (h; f), the vectors n`’s remain unchanged and depend
on A. Based on (17) and (21), we will next show that
s(h; f) < s(h̃; f̃). To do so, we consider the three terms of
(21) separately.

First summand of (21). Recall n+
` is a binary vector. If

n+
`,p = 1, then f̃p = fp +α` ≥ fp ≥ 0. In that case, if edge p

runs from node m to node n and corresponds to a lossy pipe,
we get that

(h̃m − h̃n) sign(f̃p) ≥ cmnf̃
2
p

≥ cmnf
2
p

= (hm − hn) sign(fp) (22)

where the first inequality stems from constraint (15) of (W2);
the second one from f̃p ≥ fp ≥ 0; and the equality from
constraint (3) of (W1).

If edge p corresponds to a pump, we can similarly show

(h̃m − h̃n) sign(f̃p) ≥ −gmn(f̃p)

≥ −gmn(fp)

= (hm − hn) sign(fp). (23)

Consider cycle ` and sum up the LHS and RHS of (22) or
(23) for all p with n+

`,p = 1 to get

(n+
` )>Ãh̃ > (n+

` )>Ah. (24)

Summing (24) over all cycles provides∑
`∈L

(n+
` )>Ãh̃ >

∑
`∈L

(n+
` )>Ah. (25)

Second summand of (21). As explained earlier, if n+
`,p = 1,

then f̃p = fp + α` ≥ fp ≥ 0 so f̃p remains positive. On
the other hand, if n−`,p = 1, then f̃p = fp − α` < fp. In the
latter case, the flow f̃p has decreased, and its sign may have
been reversed to negative. Since all fp’s are positive, the flow
reversals in f̃p’s can be modeled as A = SÃ, where matrix
S := dg(sign(f̃)) is diagonal with the signs of f̃ on its main
diagonal. Since the vectors n`’s form a basis for null(A>), it
holds that A>n` = 0 and so

(n+
` )>Ah = (n−` )>Ah. (26)

Similar properties hold for ñ` := Sn`. To see this, the
vector ñ` belongs to null(Ã>) since

Ã>ñ` = Ã>Sn` = A>n` = 0.

Therefore, we also get that

(ñ+
` )>Ãh̃ = (ñ−` )>Ãh̃ (27)

where ñ+
` := max{ñ`,0} and ñ−` := max{−ñ`,0}.

By definition of ñ`, if n`,p = 1, then Sp,p = 1 and ñ`,p =
1. However, if n`,p = −1, then Sp,p = +1 or Sp,p = −1
depending on the sign of f̃p, and so ñ`,p = 1 or ñ`,p = −1.
It therefore follows that

n+
` ≤ ñ+

` (28a)

n−` ≥ ñ−` . (28b)

Returning now to the `-th term of the second summand in
(21), we get

(n−` )>Ãh̃
a
≥ (ñ−` )>Ãh̃
b
= (ñ+

` )>Ãh̃
c
≥ (n+

` )>Ãh̃
d
> (n+

` )>Ah
e
= (n−` )>Ah. (29)

where (a) stems from (28b); (b) from (27); (c) from (28a); (d)
from (24); and (e) from (26). Summing (29) over all ` ∈ L
proves that ∑

`∈L

(n−` )>Ãh̃ >
∑
`∈L

(n−` )>Ah. (30)
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Third summand of (21). The third summand sums up the
pressure differences along the direction of flow for all edges
not lying in any cycle. If edge p = (m,n) belongs to this case
(i.e., n0

p = 1), then fp = f̃p and so as in (22) we get

(h̃m − h̃n) sign(f̃p) ≥ cmnf̃
2
p

= cmnf
2
p

= (hm − hn) sign(fp).

Summing up the previous inequalities for all edges with n0
p =

1 yields
(n0)>Ãh̃ ≥ (n0)>Ah. (31)

Adding (24), (30), and (31) by parts gives s(h̃; f̃) > s(h; f).
This contradicts that (f̃ , h̃) is a minimizer of (W2) since (f ,h)
is feasible for (W2), and concludes the proof.
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