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Abstract

With the high penetration of distributed energy, the scale of current energy network
becomes larger. At the same time, it also has the problems of complex computation and
slow convergence. In order to realize the rational planning and utilize various energy
resources and improve the reliability and economy of the overall system, the problems of
system stability, economic operation and power flow calculation must be considered
comprehensively. As a kind of machine learning, reinforcement learning has strong
intelligence and rapidity, which can realize the optimal control of the system. Aiming at
the energy management model of regional energy Internet, this chapter studies how to
transform energy management into Q learning model, and uses Q learning algorithm to
verify the validity of the model. In the meantime, for the optimization scheduling
problem of large-scale system, this chapter expands the optimal power flow model of
energy internet into the optimal operation structure composed of multiple We-Energies
based on the previous one, and uses the distributed reinforcement learning algorithm to
optimize the large-scale energy internet scheduling which considers the average
consistent information search to achieve the optimization process for cooperating and
communicating multiple We-Energies.

Download chapter PDF
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Optimal energy flow (OEF) is widely used to realize the interconnected multicarrier
system (IMS) of economic and security operation to reduce the network loss [1]. The IMS
is conventionally modeled as a multitude of subsystems in which the operation of energy
subsystems was scheduled and optimized individually [2]. “We-Energy” (WE), as a novel
energy interacting area for energy internet, exchanges energy (electricity, district heat
and natural gas) with others by the advanced communication, electronic conversion and
automatic control technology [3]. In order to enhance the performance of environment,
economic and security, many papers have a comprehensive research on it. In [4, 5, 6, 7,
8, 9], the optimal power flow of electricity and natural gas combined system is discussed.
Paper [10] discussed the scheduling model of multiple energy system which is based on
distributed CHP device. In this model, the city network of electricity, heating and natural
gas is coupled. Energy production and consumption matching problem is summarized at
CHP system level in [11]. The optimal operation of electricity and heating combined
system is studied in [12], which considered the heating network constrains and proved
that CHP system can promote to dispose the wind power.

In this chapter, two issues concerning optimal performance of energy internet are
considered. The first research is conducted on energy management of We-Energy. The
combined of multiple types of energy is one of the specific characteristics of Energy
Internet. The Energy Internet can be assumed as a cluster of distributed energy resources
and loads, which contains various types of energy resources such as electricity, gas, heat
and so on [13]. The use of different kind of energy brings great benefit to Energy Internet,
which allows multiple end users to make options according to their own power demands,
hence increasing the flexibility of the power system and weakening the impact of
traditional energy supplier. However, using distributed generations indiscriminately may
also impose undesirable effects on power system. Therefore, issues on optimal energy
management come into play. A lot of researches concerning control and operation of
power system have been done in recent years. Several common optimization objectives
including lower cost of carbon and minimum operating cost have been discussed in [14].
In [15], authors proposed a smart energy management system in order to minimize the
operating cost of the micro-grid. Only electricity is discussed during optimization process
while other types of energy resources are not considered in the paper. The authors in [16]
proposed a micro-grid scenario consists of combined heat and power generation, as well
as power and thermal energy storage devices. And an online algorithm has been put
forward to optimize the cost of whole system.

However, the optimized economic dispatch does not always satisfy the demands when
taking pollutants emission into account. So, multi-objective energy management has
drawn attention from researchers so as to realize optimization both economically and
environmentally. The authors in [17] proposed an intelligent energy management system
(IEMS) for a CHP-based micro-grid, and minimized the operation cost and the net
emission simultaneously. An efficient modified bacterial foraging optimization algorithm
was used to find the optimal set points of the system. Reference [18] proposed a
Stackelberg game-based optimization model, and a differential evolution-based heuristic
algorithm was designed to reach the Stackelberg equilibrium. But in the previous studies,
there is a lack of consideration of specific characteristics of Energy Internet, such as
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openness, sharing and peer-to-peer integration.

Another research is conducted on optimal power flow. Paper [19] proposed the
generalized heuristic algorithm to study the optimal power flow of multiple energy
system. While with the increasing utilization of co-generation plants such as electricity,
natural gas and local district heating systems that make a strong coupling in IMS [20],
the structure of network becomes more complex. There is a challenge to find the optimal
strategy in such a way for this class of complex nonlinear multi objective optimization
problems. The traditional optimal power flow algorithm such as linear programming
[21], interior-point method [22], is unable to obtain the global optimal solution with
these problems and conventional artificial intelligence such as algorithms genetic
algorithm, particle swarm optimization have the disadvantages of slow computation
speed for the large-scale network. The domestic and foreign scholars made in-depth
study in this question for more efficient algorithm. In addition to improve the basic
heuristic algorithm for OEF [23], distributed algorithm has become a research focus [24].
Meanwhile, some hybrid algorithm has been discussed. Paper [25] presents the
reinforcement learning combined with simulated annealing (SA) algorithm to solve the
optimal reactive power dispatch.

Recently, reinforcement learning algorithm (RL) as a kind of machine learning
algorithms attracts people’s attention. Some learning strategies on the basis of RL to
solve deterministic optimal control problems in continuous state spaces can be found in
some studies such as [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The distributed
reinforcement learning (DRL) which is a new branch of reinforcement learning algorithm
has been developed rapidly in various areas including distributed control, robotic teams,
collaborative decision support systems, and economics [36]. DRL is defined to be
composed of multiple agents, the whole system will achieve the learning goals through
each agent executing part of reinforcement mission independently. All performance of
DRL exhibits its advantage on the col problems, and the features aim at strategic decision
make DRL widely used [37]. Each Pareto optimal solution is also a Nash equilibrium for
a fully cooperative game [38], which means that if one agent is provided with greatest
possible reward in a combined action, the reward received by the other agents must also
be maximized.

In this chapter, the energy management of We-Energy is discussed. An Energy Internet
model consisting of combined heat and power unit (CHP), photovoltaic unit, heating only
unit and storage device is constructed. To construct an environmental-friendly and low-
operating cost energy consumption structure, a multi-objective optimization model is
proposed. Furthermore, in order to satisfy the power and heat demands of the We-
Energy simultaneously as well as realize minimum operating cost and pollutant
emission, an intelligent energy management system (IEMS) is presented. In particular,
reinforcement learning method has been implemented to formulate the optimal
operating strategy. Eligibility trace theory is also been introduced to accelerate the
computational process.

What’s more, the optimal energy flow in interconnected multicarrier systems where
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electric, heat and natural gas systems are coordinated. We propose a double-deck
optimal model to improve the performance of security and environment for IMS. The
proposed formulation for large-scale systems can be solved by machine learning
algorithms which could find the optimization strategy intelligently. We present a hybrid
reinforcement learning algorithm (HRL) for distributed multicarrier energy network,
which computes a global optimal policy in cooperative subsystems on the basis of the
implementation of independent optimization for subsystems. A policy is defined as a set
of actions deriving from the reward function connecting the environment.

10.2 Reinforcement Learning Applied to Energy
Management

10.2.1 Reinforcement Learning on Markov Decision
Processes

As a main class of machine learning methods, reinforcement learning (RL) is an effective
means for making sequential decision under uncertainties. In a reinforcement learning
system, a reinforcement learning agent aims to find an optimal action policy by trial-and-
error interaction with its uncertain environment. At each time step, the learning agent
perceives the state of the environment but it is not provided with explicit information of
the action to take. The agent autonomously selects a random action with certain
probability and the current state of the environment therewith transits into its successive
state. After that, the learning agent can receive a reward signal that evaluates the effect of
this action.

A Markov decision process can be characterized as the formulation of a sequential
decision-making problem. Therefore, reinforcement learning can be described by a finite
Markov decision process.

A finite Markov decision process can be characterized as a 4-tuple , where S
is the state space of a finite set of states, A is the action space of a finite set of actions, R is
the reward function, P is the matrix of state transition probability.  and

 represents the instant reward and probability of the state transition from state
s to state  taking action a. An action policy of the MDP can be defined as .

The objective function of reinforcement learning is to receive the largest discounted
reward. Therefore the state value function can be defined as

(10.1)
where  is the discount factor,  is the initial environment state. According to
the equation above, the optimal action policy can be described as

{𝑆, 𝐴, 𝑅, 𝑃}

𝑟 (𝑠, 𝑎, )𝑠′

𝑝 (𝑠, 𝑎, 𝑠 )′

𝑠′ 𝜋 : 𝑆 → 𝐴

(𝑠) = 𝑟 ( , ) | = 𝑠, = 𝜋 ( ) ,𝑉 𝜋 ∑
𝑡=0

∞

𝛾𝑡 𝑠𝑡 𝑎𝑡 𝑠0 𝑎𝑡 𝑠𝑡

𝛾 ∈ (0, 1) 𝑠0
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(10.2)

The action-state value function can be defined as

(10.3)

According to the equation above, the optimal action policy can be described as

(10.4)

10.2.2 The Q Learning Applied to Energy Management

10.2.2.1 Modeling of Energy Management and Multi-objective
Optimization

In the Energy Internet, different structures of energy prosumers bring about various
energy demands. Consequently, as a novel energy interaction area of Energy Internet,
We-Energy no longer follows the track of traditional energy network where different
types of energy are supplied independently. WE is capable to transform various types of
energy such as electricity, district heat and natural gas into desired energy and exchange
with others using advanced communication, electronic conversion and automatic control
technology. That is to say, WE is no longer a passive consumer, but also a potential
energy supplier during the energy interaction process.

As shown in Fig. 10.1, WEs are connected to information bus and energy bus
simultaneously which can realize bi-directional interaction of information and bi-
directional transmission of energy. Information of each WE can be submitted to the
information bus and useful data of other WEs located in the Energy Internet can be
abstracted from information bus as well, which achieves bi-directional information
interaction. WE is able to supply excess energy to others through energy bus and can get
compensatory energy when needed. Various types of energy can be transmitted through
energy bus. In this section, we take electricity and heat into account simultaneously.

= arg (𝑠) ,𝜋∗ max
𝜋

𝑉 𝜋

( , ) = 𝑟 ( , ) + 𝛾 ( ) ,𝑄𝜋 𝑠𝑡 𝑎𝑡 𝑠𝑡 𝑎𝑡 𝑉 𝜋 𝑠𝑡+1

= arg (𝑠, 𝑎) ,𝜋∗ max
𝑎∈𝐴

𝑄𝜋
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Fig. 10.1

Operation mode of We-Energy in the energy internet

Basically, a WE is comprised of three units including energy production unit, energy
storage unit and user load. Therefore, WE can be classified into seven types in which
traditional pattern of energy network is embraced as well. WE only consists of user load
and energy supplier can be regarded as traditional energy users and traditional energy
supplier respectively. Energy storage unit plays an important role in energy management
of We-Energy and can improve its performance and economic efficiency. In this section,
we adopt the WE structure consists of three units at the same time.

In this research, we consider a WE composed of both electrical and thermal producers,
users and storage devices.

The goal of IEMS is to satisfy electrical and thermal load demands considering both
economic and environmental criteria. We-Energy participates in the open market, buying
and selling power to the Energy Internet via energy bus and information bus.

A.

Objective function

 

1. 

In expectation of a more sustainable and environmental friendly dispatch of We-Energy,
we consider a WE holds more renewable energy resources and less fossil fuels. Thus, the
objective function should be formulated as

(10.5)
𝑓 = min ( , ) ,𝑓1 𝑓2
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where  is the operating cost function of energy dispatch,  is the pollutant emission
function of energy dispatch.

B.

Operating cost

 

1. 

As We-Energy is a comprehensive combination of energy producers in the Energy
Internet, multi types of primary energy resources including fossil fuels, natural gas and
renewable energy are used to satisfy the demand of users. The optimization of economic
benefit is to minimize the operating cost of energy suppliers. The operating cost of We-
Energy includes the cost of photovoltaic, gas-fired CHP and heat only unit. The objective
function is introduced as

(10.6)
where , ,  is the total number of natural gas-fired CHP, photovoltaic and
heat only unit respectively.  is the cost of the ith photovoltaic and the cost is related
to the of active power. ,  is the cost of the ith CHP and heating only unit at
time step t respectively.  is the active power abstracted from the Energy Internet,
while bid  is the corresponding electrical price.

The nonlinear cost function of a CHP unit can be explained as below

(10.7)
where , , , , ,  are the generation parameters of the ith natural gas-fired CHP,

 is the active power of the ith natural gas-fired CHP at time t.

The cost function of a heat only unit is expressed as a quadratic function

(10.8)
where , ,  are the generation parameters of the jth heating only unit,  is the
active power of the jth natural gas-fired CHP at time step t.

C.

Pollutant emission

 

1. 

Due to the aggravation of environmental pollution and energy shortage, there is a rising
trend of reducing consumption of coal, natural gas and other traditional fossil fuels. In
order to minimize the pollutant emission, the use of clean renewable energy should be

𝑓1 𝑓2

= min ( + + + × 𝑏𝑖 ),𝑓1 ∑
𝑡=1

𝑇

∑
𝑖=1

𝑁𝐶𝐻𝑃

𝐹𝐶𝐻𝑃𝑖,𝑡 ∑
𝑖=1

𝑁𝑃𝑉

𝐹𝑃𝑉 𝑖,𝑡 ∑
𝑖=1

𝑁𝐻𝑒𝑎𝑡

𝐹𝐻𝑒𝑎𝑡𝑖,𝑡 𝑃𝐺𝑟𝑖𝑑,𝑡 𝑑𝑡

𝑁𝐶𝐻𝑃 𝑁𝑝𝑣 𝑁𝐻𝑒𝑎𝑡
,𝐹𝑃𝑉𝑖,𝑡

,𝐹𝐶𝐻𝑃𝑖,𝑡 𝐹𝐻𝑒𝑎𝑡𝑖,𝑡

𝑃𝐺𝑟𝑖𝑑,𝑡

t

𝐹𝐶𝐻𝑃𝑖,𝑡 = × + × + + ×𝑎𝑖 𝑃 2
𝐶𝐻𝑃𝑖,𝑡 𝑏𝑖 𝑃𝐶𝐻𝑃𝑖,𝑡 𝑐𝑖 𝑑𝑖 𝐻 2

𝐶𝐻𝑃𝑖,𝑡

+ × + × × ,𝑒𝑖 𝐻𝐶𝐻𝑃𝑖,𝑡 𝑓𝑖 𝐻𝐶𝐻𝑃𝑖,𝑡 𝑝𝐶𝐻𝑃𝑖,𝑡

𝑎𝑖 𝑏𝑖 𝑐𝑖 𝑑𝑖 𝑒𝑖 𝑓𝑖
𝑃𝐶𝐻𝑃𝑖,𝑡

= × + × + ,𝐹𝐻𝑒𝑎𝑡𝑗,𝑡 𝑎𝑗 𝐻 2
𝐻𝑒𝑎𝑡𝑗,𝑡 𝑏𝑗 𝐻𝐻𝑒𝑎𝑡𝑗,𝑡 𝑐𝑗

𝑎𝑗 𝑏𝑗 𝑐𝑗 𝐻𝐻𝑒𝑎𝑡𝑗,𝑡
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maximized, and the objective function is expressed as

(10.9)
where , ,  are the emission parameters of the ith gas-fired CHP, and , ,  are
the emission parameters of the jth heating only unit. As can be seen in (10.9), the
emission function of CHP unit and heat only unit is quadratic function.

In this section, the emission during the production of electricity is also taken into
consideration. The emission mainly caused by burning fossil fuels in thermal power
plants, considering coverage fraction of these plants,  can be defined as follows

(10.10)
where , ,  are emission parameters of thermal power plants.

D.

Constraints

 

1. 

There are several constraints should be taken into consideration. Power balance between
electrical demand and electrical supply, and balance between thermal demand and
thermal supply are expressed as follows

(10.11)

(10.12)
where ,  are the charging and discharging rate of the storage unit at time step t
respectively. ,  are the electrical load demand and heat demand respectively.

Equations (10.13) and (10.14) can be expressed as follows as well

(10.13)

(10.14)
where  is the gas input of the natural gas-fired CHP at time step t, ,  are the
output ratio of electric power and heat respectively.

= min ,𝑓2 ∑
𝑡=1

𝑇

⎡

⎣

⎢⎢⎢⎢⎢

( + + )∑
𝑖=1

𝑁𝐶𝐻𝑃

𝛼𝑖𝐻 2
𝐶𝐻𝑃𝑖,𝑡 𝛽𝑖𝐻𝐶𝐻𝑃𝑖,𝑡 𝛾𝑖

+ ( + + ) +∑
𝑗=1

𝑁𝐻𝑒𝑎𝑡

𝛼𝑗𝐻 2
𝐻𝑒𝑎𝑡𝑗,𝑡 𝛽𝑗𝐻𝐻𝑒𝑎𝑡𝑗,𝑡 𝛾𝑗 𝐸𝐺𝑟𝑖𝑑,𝑡

⎤

⎦

⎥⎥⎥⎥⎥

α𝑖 β𝑖 γ𝑖 α𝑗 β𝑗 γ𝑗

𝐸𝐺𝑟𝑖𝑑
= α + β + ,𝐸𝐺𝑟𝑖𝑑,𝑡 𝑃 2

𝐺𝑟𝑖𝑑,𝑡 𝑃𝐺𝑟𝑖𝑑,𝑡 γ′

α β 𝛾 ′

+ + + − = ,∑
𝑖=1

𝑁𝐶𝐻𝑃

𝑃𝐶𝐻𝑃𝑖,𝑡 ∑
𝑖=1

𝑁𝑃𝑉

𝑃𝑃𝑉 𝑖,𝑡 𝑃𝐺𝑟𝑖𝑑,𝑡 𝑃𝑐ℎ,𝑡 𝑃𝑑𝑖𝑠,𝑡 𝑃𝑙𝑜𝑎𝑑,𝑡

+ = ,∑
𝑖=1

𝑁𝐶𝐻𝑃

𝐻𝐶𝐻𝑃𝑖,𝑡 ∑
𝑖=1

𝑁𝐻𝑒𝑎𝑡

𝐻𝐻𝑒𝑎𝑡𝑖,𝑡 𝐻𝑙𝑜𝑎𝑑,𝑡

𝑃𝑐ℎ,𝑡 𝑃𝑑𝑖𝑠,𝑡
𝑃𝑙𝑜𝑎𝑑,𝑡 𝐻𝑙𝑜𝑎𝑑,𝑡

× + + + − = ,∑
𝑖=1

𝑁𝐶𝐻𝑃

𝑃𝑔𝑎𝑠𝑖,𝑡 η𝐶
𝑒 ∑

𝑖=1

𝑁𝑃𝑉

𝑃𝑃𝑉 𝑖,𝑡 𝑃𝐺𝑟𝑖𝑑,𝑡 𝑃𝑐ℎ,𝑡 𝑃𝑑𝑖𝑠,𝑡 𝑃𝑙𝑜𝑎𝑑,𝑡

× + = ,∑
𝑖=1

𝑁𝐶𝐻𝑃

𝑃𝑔𝑎𝑠𝑖,𝑡 η𝐶
ℎ ∑

𝑖=1

𝑁𝐻𝑒𝑎𝑡

𝐻𝐻𝑒𝑎𝑡𝑖,𝑡 𝐻𝑙𝑜𝑎𝑑,𝑡

𝑃𝑔𝑎𝑠𝑖,𝑡 η𝐶
𝑒 η𝐶

ℎ
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In addition, the output power of all the units should satisfy its upper and lower bound,
which can be expressed as

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)
where , , , , , ,  are the upper limit of each device
respectively. ,  are the lower bound of output electrical power and heat of
CHP respectively.

10.2.2.2 Reinforcement Learning Method

A.

Q-learning with eligibility trace

 

1. 

The aim of Q-learning is to learn the value of each action taken from the action space at
each state, which is defined to be the predicted total discounted reward received by the
agent over the future as a result of taking that action from the action space. The one-step
Q-learning is defined as follows [11]:

(10.22)

At each time step t, the action value  is recorded. After selecting a subsequent
state , an immediate reward  is obtained and  is picked out by

searching a lookup table that stores the action values for each state. The parameter
 is the discount factor. If the discount factor is small, the agent tends to care

more about the immediate reward rather than the rewards received in the future. Thus,
in order to make the agent more “farseeing”, a large discount factor is chosen in this
section. The parameter  is the learning rate which determines how far the agent

≤ ,𝑃𝑃𝑉 𝑖,𝑡 𝑃 max
𝑃𝑉

≤ ,𝑃𝑐ℎ,𝑡 𝑃 max
𝑐ℎ

≤ ,𝑃𝑑𝑖𝑠,𝑡 𝑃 max
𝑑𝑖𝑠

≤ ≤ ,𝑃 min
𝐶𝐻𝑃 𝑃𝐶𝐻𝑃 ,𝑡 𝑃 max

𝐶𝐻𝑃

≤ ≤ ,𝐻min
𝐶𝐻𝑃 𝐻𝐶𝐻𝑃 ,𝑡 𝐻 max

𝐶𝐻𝑃

≤ ,𝐻𝐻𝑒𝑎𝑡,𝑡 𝐻 max
𝐻𝑒𝑎𝑡

≤ ,𝐸𝑠𝑡𝑜𝑟 𝐸max
𝑠𝑡𝑜𝑟

𝑃 max
𝑃𝑉 𝑃 max

𝑐ℎ 𝑃 max
𝑑𝑖𝑠 𝑃 max

𝐶𝐻𝑃 𝐻 max
𝐶𝐻𝑃 𝐻 max

𝐻𝑒𝑎𝑡 𝐸max
𝑠𝑡𝑜𝑟

𝑃 min
𝐶𝐻𝑃 𝐻min

𝐶𝐻𝑃

( , )𝑄𝑡+1 𝑠𝑡 𝑎𝑡 = ( , ) + η[ + γ ( , 𝑎)𝑄𝑡 𝑠𝑡 𝑎𝑡 𝑟𝑡+1 max
𝑎∈𝐴

𝑄𝑡+1 𝑠𝑡+1

− ( , )],𝑄𝑡 𝑠𝑡 𝑎𝑡

( , )𝑄𝑡 𝑠𝑡 𝑎𝑡
𝑠𝑡+1 𝑟𝑡+1 ( , 𝑎)max

𝑎∈𝐴
𝑄𝑡+1 𝑠𝑡+1

γ ∈ [0, 1)

η ∈ [0, 1)
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is adjusted towards the estimated value. A large factor allows the agent to learn faster,
and vice versa. In this section, a large learning rate is selected to shorten the learning
process.

In order to accelerate the training process, the eligibility trace theory is introduced to the
Q-learning algorithm. The updating rule of the eligibility trace is expressed as follows:

(10.23)
where  is the eligibility trace of the state-action pair at time step t,  is the trace
decay parameter,  is the optimal action at time step t. A larger decay parameter makes
the algorithm converge faster, so a large  is adopted in this section.

Therefore, in consideration of eligibility, the updating rule of Q-learning can be rewritten
as

(10.24)

B.

State space and action space

 

1. 

The state space of the intelligent energy management system is as follows:

(10.25)

The action space of the intelligent energy management system can be described as

(10.26)

C.

Reward function

 

1. 

After taking an action, the IEMS receives an immediate reward to evaluate the selected
action. Since our goal is to optimize the operation of We-Energy overall rather than
merely optimize a single objective, the reward function should take the aforementioned

(𝑠, 𝑎) = ,𝑒𝑡+1

⎧

⎩
⎨⎪⎪

γ𝜆 (𝑠, 𝑎) + 1𝑒𝑡

0
γ𝜆 (𝑠, 𝑎)𝑒𝑡

𝑠 = , 𝑎 =𝑠𝑡 𝑎∗

𝑠 = , 𝑎 ≠𝑠𝑡 𝑎∗

𝑠 ≠ 𝑠𝑡

(𝑠, 𝑎)𝑒𝑡 𝜆
𝑎∗

𝜆

( , )𝑄𝑡+1 𝑠𝑡 𝑎𝑡 = ( , ) + η[ + γ ( , 𝑎)𝑄𝑡 𝑠𝑡 𝑎𝑡 𝑟𝑡+1 max
𝑎∈𝐴

𝑄𝑡+1 𝑠𝑡+1
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𝐴 = {𝑎 | } .𝑃𝑔𝑎𝑠,𝑡
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two objectives into consideration simultaneously. In addition, constrains should be
satisfied as well. Therefore, the reward function is defined as

(10.27)
where parameter  is weight,  is the value of the operating cost function,  is
the value of the pollutant emission function, K is a positive number, N is the number of
the inequality constraints that not be satisfied.

D.

Action selection policy

 

1. 

The action selection policy allows the agent to select an action  at state s with a
probability of  according to the action values. The policy can be described as

(10.28)
where  is a parameter called temperature, which determines the randomness of the
exploration. If a lower temperature is selected, the agent tends to select the action with
higher action value, while a higher temperature makes the agent act more randomly.

10.2.3 Simulation and Results

In order to verify the effectiveness of the proposed energy management strategy for the
We-Energy, the following simulation model is built as shown in Fig. 10.2. We consider a
We-Energy model consists of a combined heat and power unit, a photovoltaic unit, a
heating only unit and a storage unit.

𝑟 = − ((1 − ω) + ω + 𝐾𝑁) ,𝑓1 𝑓2

ω ∈ (0, 1) 𝑓1 𝑓2

𝑎𝑖
𝑝 (𝑠, )𝑎𝑖

𝑝 (𝑠, ) = ,𝑎𝑖
𝑒𝑄(𝑠, )/τ𝑎𝑖

∑𝑎𝑖
𝑒𝑄(𝑠, )/τ𝑎𝑖

τ
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Fig. 10.2

Simulation model of We-Energy

Table 10.1 explains the limits of output power of each device in the proposed system. Cost
coefficients and emission coefficients are presented in Tables 10.2 and 10.3.

Table 10.1

Installed device

ID Type Min power (kW) Max power (kW)

1 PV 0 25

2 CHP (electrical) 0 60

3 CHP (heat) 0 80

4 Heat 0 50

Table 10.2

Cost fuction coeffecients
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Devices

Cost parameters

CHP 0.0065 1.21 2 0.003 4 0.61

Heat 0.038 2.011 65 – – –

Table 10.3

Emission function coeffecients

Devices

Emission parameters

CHP 0.08 –2 11

Heat 0.7 –2 5

Power plants 0.46 –1.3 3.27

Power demand and heat demand are shown in Figs. 10.3 and 10.4 respectively. The
output power of photovoltaic is shown in Fig. 10.5. The day ahead market price of
electricity is proposed in Fig. 10.6. The operating cost of photovoltaic is shown in
Fig. 10.7.

𝑎𝑖 𝑏𝑖 𝑐𝑖 𝑑𝑖 𝑒𝑖 𝑓𝑖

α𝑖 β𝑖 γ𝑖
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Fig. 10.3

Electrical power demands of a day

Fig. 10.4

Heat demands of a day
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Fig. 10.5

Output power of a photovoltaic

Fig. 10.6

Day ahead market price

Fig. 10.7

Operating cost of photovoltaic

In this section, we consider CHP produces electrical power and heat at a fixed ratio of
1:1.3. Therefore, electrical power and heat generation scheduling for proposed WE is
shown in Figs. 10.8 and 10.9.
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Fig. 10.8

Heat scheduling of We-Energy

Fig. 10.9

Power scheduling of We-Energy

As can be seen in Figs. 10.8 and 10.9, reinforcement learning algorithm is incorporated
into the energy management system and realizes optimal power scheduling. Considering
the benefits of renewable sources on reducing pollutant emission, power generated by
photovoltaic is consumed at first. In the peak hours, when the market prices are high
(9:00–21:00), storage device transfers power to load while less power is obtained from
Energy Internet. When the market price is low, power is bought from Energy Internet to
fully charge the storage device. Therefore, optimization is realized both environmentally
and economically.

10.3 MFEO Energy Internet Scheme with
Distributed Reinforcement Learning
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10.3.1 Distributed Reinforcement Learning Algorithm

As a branch of reinforcement learning, distributed reinforcement learning is defined as a
global structure composed of a plurality of agents. Each agent independently performs
some or all of the reinforcement learning tasks while allowing the entire system to
achieve the set learning goals. In the current research field, the theory and method of
agent research is an important method to solve large-scale and complex information
interconnection system, while multi-agents with different structures, distributed
performance, dynamic characteristics and large-scale autonomy multi-agent systems can
not only achieve individual intelligent optimization, but also make the whole system
more responsive, intelligent and social.

At present, the intelligence and fast speed of the system operation are higher and higher,
and the information technology and distributed processing power have been developed
rapidly. The current study of distributed reinforcement learning model is divided into
four types considering the feature of the established system structural differences,
including the central reinforcement learning (RLC), independent reinforcement learning
(RLI), group reinforcement learning (RLG) and social reinforcement learning (RLS). A
multi-agent network based on distributed reinforcement learning is established, and the
information of rewards and punishments received by adjacent agent can be obtained by
only a small amount of transmission information between each agent. At the same time,
in the learning process, according to the overall performance of the system, the
application of iterative methods to influence the characteristics of the non-adjacent agent
has reached the global optimization objective of the system.

The main feature of the central reinforcement learning model is the learning objective set
by the collaborative feature of multi-agent. Based on the classical reinforcement learning
algorithm, the optimal interconnection strategy is obtained. In essence, the central
reinforcement learning is to make the system distributed optimization problem as a
learning objective and to study centralized learning.

The feature of independent reinforcement learning model is that each agent is an
independent study module in the whole system, in the process of reinforcement learning,
each agent takes the action strategy with the best reward value according to the
interaction feedback between itself and the environment. Each agent as an independent
agent has no contact with other agents and the agents receive signals from the system’s
distribution mechanism. This kind of learning mechanism to retain the agent
independence of the individual, the optimal target for the whole system is not easy to
balance, but also to change the agent number given high degree of freedom, number of
convergence problem in the process of reinforcement learning agent. It is suitable for
complex system with more agents.

The characteristic of group reinforcement Learning is to set the state of all agents as a
state set and define all the actions as interconnected actions, the Q-table of each agent’s
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reinforcement learning is formed by the correspondence between the interconnected
state, interconnected actions and the Q value. Therefore, group reinforcement learning is
essentially a group behavior in the learning process. Each agent needs to consider the
status and actions of other agents which leads to the state set and action set of the whole
system are relatively large and the learning speed is slow. Group reinforcement learning
is more suitable for the case of a smaller number of agents. The most essential difference
of the mathematical model between the group reinforcement learning and the
independent reinforcement learning lies in the definition of multi-agent state sets.

The social reinforcement learning model is an extension of independent reinforcement
learning, which combines the independent reinforcement learning model with the social
structural system and economic model. The combination of social attributes and
economic structure enhances the intelligence of multi-agents to conduct more
compatible collaborative work and competition at a time to promote the optimization of
the system.

10.3.2 Related Issues of Model-Free Energy Optimization

With the high proportion of new energy terminals such as distributed power, electric
vehicles and distributed energy storage components which have diversified features
including energy production, storage and consumption in power grids, energy internet is
characterized by complex nonlinearity, strong uncertainty and strong coupling. As a
result, there may be situations where a complete and accurate model of energy internet
could not be established in solving practical problems. The reinforcement learning
method is based on the autonomy-based evaluation of the learning process considering
the action that feedback from the environment without accurate model. This method of
replacing rapid mathematical feedback with fast autonomic feedback has a good
application effect for solving complex, uncertain and unstructured environmental system
problems. Therefore, this chapter adopts the reinforcement learning to realize the model-
free optimization of energy internet.

A collaborative optimization control structure composed of multiple We-Energies is
established. The optimal scheduling of energy internet is realized through the distributed
parallel optimal calculation of multiple We-Energies.

According to the basic description of distributed reinforcement learning model and the
establishment of the structure of the collaborative optimization, the analysis to solve the
problem of optimal operation for energy internets is discussed as follows.

(1)

For a large-scale energy internet with distributed power, the architecture of the
energy internet is more complex, and the energy subject with the form of We-
Energy will increase. On this basis, the classical centralized optimization method
for solving the optimal operation is complicated to deal with the larger system.

1. 
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(2)

In solving complex target function, the traditional planning method, such as
Newton method is unable to solve the limitations which are short of flexibility for
dealing with such network characteristics and robustness is weak, and it cannot
achieve ideal results.

 

2. 

To sum up, the method of distributed parallel coordination optimization is applied to
solve the problem of large-scale hybrid optimal operation. This chapter presents a new
approach combining with distributed reinforcement learning algorithm to solve hybrid
optimal operation problem. According to the Q-learning algorithm which is used to solve
the energy management problem has certain feasibility, therefore, the integration of
reinforcement learning with the energy Internet structure based on multiple We-
Energies interconnection constitutes a distributed reinforcement learning optimization
model, but the following key issues need to be considered in model establishment:

(1)

For each We-Energy form the independent optimization individual, we make the
energy action space not exceed 50,000 according to the actual situation to avoid
the influence of the large action space for the learning process.

 

1. 

(2)

In the process of reinforcement learning, the objective function of each We-Energy
and the interconnection action of We-Energy must be considered at the same
time. The actions taken from the We-Energy will affect adjacent We-Energy, thus
affecting the overall performance.

 

2. 

(3)

The objective function is calculated objectively with the method of parallel
computation and serial computation. In the actual energy internet model, the
objective function considers the energy loss of each We-Energy while considering
the energy loss of the whole energy internet.

 

3. 

10.3.3 Distributed Reinforcement Learning Model for
Hybrid Optimal Energy Flow
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10.3.3.1 Mathematical Model

The energy internet is a large-scale energy coupling network with electricity, gas and
heat. Compared with the power systems, optimal power flow problem of the IMS system
becomes more complicated caused by the complex structure. In order to improve
efficiency of the method to solve optimization planning problems in energy system, a
double-deck multicarrier energy network model is proposed in this chapter.

With interconnections of the IMS system, it is well known that the large-scale systems
can be changed as the presence of different political parties. Each party which is defined
as “We-Energy” plays the double role of producers and consumers (prosumers) in energy
internet. The main body of WE will be the individual, company or community that
consists of energy production or storage devices such as distributed generation, energy
storage, CCHP and so on. WEs coordinate with each other to guarantee multi energy to
reliable transport. In addition, each WE is connected to be considered as the nodes of
interconnected multicarrier systems.

Several kinds of WE are presented in this model which consists of energy production
device, energy storage device, and user load. Some of them will be connected to district
heating plant and gas source. Meanwhile some WE will contain distributed generation
such as wind power plant electricity, gas and heat using the coupling way to transmit,
while energy hub is defined as an energy carrier to coupling link electricity/gas/heat.
Multiple energy inputs will be transformed to other forms of energy as the output of the
system. The model of energy hub can be described as

(10.29)
where matrix L stands for electricity, gas and heating output, matrix P are input of
electricity, gas and heating from the corresponding grid respectively. Matrix C is the
conversion coupling matrix which is the mapping from energy input to the energy
output. Then, using energy hub to analyze multi energy condition will implement the
collaborative energy flow optimization calculation in IMS.

In order to highlight the importance of the environmental economic and secure benefits
of IMS, a double nested optimization model is constructed for both minimizing the WE
consumption and optimizing the voltage stability of IMS.

The first layer is considered to minimize the energy cost of system operating for each WE
at different energy types so as to make the best use of renewable energy. The total cost of
operation is sum of the multi-fuel type consumed by the IMS multiplied by the fuel cost.
The objective of the total cost study is as follows:
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(10.30)

T stands for the number of scheduling time. ,  and  are the coefficients of CHP
generators,  is the active power of generator,  is the number of CHP generator
sets. Also  is the total number of coal-fired boiler sets.  is the heat output from
CHP, while  is the heat output from traditional coal-fired boiler.

The aim of second layer is to maintain voltage stability of the global system based on
voltage constrains. It can be presented as follows:

(10.31)
where  means the voltage of node j.  is the node voltage rating and n is the number
of node. Through considering the voltage deviation of each WE, the security of IMS will
be improved.

With double-deck optimization structure, these objectives are to be met with such
thoroughness and confidence as to be embedded into planning or operation problems in
multicarrier energy systems.

In order to achieve this objective, an OEF model must meet the following requirements
with the consideration of electrical network, heating network and natural gas network
operation constraints. The corresponding constraints are presented in the following.

In electrical network, the active power balance equation and reactive power balance
equation connected to the th bus can be calculated as follows:

(10.32)

(10.33)

It can be seen that power balance condition is met with that generator power injection is
equal to load demand plus losses in IMS.

In heating network, the energy balance in IMS is expressed by
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(10.34)

It should be noted that the equation satisfies the equality of heating power producers
with the load demand plus heat energy users losses.

While in natural gas network, the gas power balance is expressed by

(10.35)

In this equation, gas power injection is commensurate with the load demand plus the
compressor power and natural gas power.

Meanwhile, it also should be subjected to some inequality constraints of the whole
network.

10.3.3.2 Proposed RL Method

Considering the energy network structure as well as the optimal energy flow model, the
hybrid reinforcement learning algorithm was applied to solve the problem innovatively.

According to the distributed model of IMS, each WE coordinates and interacts with each
other to solve the complex problems. Unfortunately, the centralized approach does not fit
well with this narrowly defined double-deck model. They tend to enhance the calculation
difficulty and require consideration of multiple aspects. Hybrid Reinforcement Learning
(HRL) is an effective way to improve the learning efficiency and solve the problem of
“dimension disaster”. For the characteristics of the model, the first layer can use the
distributed RL for each WE while centralized RL is put into use for the second layer.

A.

Implementation of DRL for IMS

 

1. 

DRL is a method which expands the single-agent RL. In DRL, each agent can obtain
rewards from adjacent agent with a little information. The global system use iteration to
influence non-adjacent agent so as to optimize the performance of the whole system
based on reinforcement learning.

Combining the IMS and the distributed reinforcement learning, the implementation of
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optimal energy flow is the generalization of the Markov decision process

Definition 1

A OEF of IMS is a tuple  where n is the number of WEs, S
is the discrete set of environment states,  are the sets of actions available
to the WEs, yielding the joint action set  that every WEs parallel
compute for reinforcement learning which is different from the centralized algorithm.

 means the state transition probability.  are the
direct reward functions of each WE.

In the OEF algorithm, through taking into consideration the objects and constrains,
control variables in IMS are output power of each WE by adjusting the energy storage
equipment and so on. The vector of state variables can be defined as follows:

(10.36)
where  is the vector of pressure. ,  are vectors of unknown angles and magnitudes
of voltage.  stands for the vector of pipeline mass flows and ,  are vectors of
supply and return temperatures.

For DRL, in order to achieve the goal of OEF, rewards in reinforcement learning should
be combined with the objective function and constraint conditions.

The local immediate reward value R of each WE need satisfy the constraint conditions to
ensure the validity of the calculation results for each subsystem. Each WE will obtain the
optimal strategy by maximizing reward function values.

Definition 2

The local reward for WE is defined as

(10.37)

Every WE will check control variables through connected transmission lines to see
whether they meet the corresponding boundary conditions. If all of constraints are
satisfied, the local reward signal will be set to the negative objective function. Otherwise,
it will be zero. The local rewards are applied to each WE to guide action strategy.

The aim of OEF is to seek a best strategy from the action space, so that the global reward
is presented as an average value of summation of local rewards from each WE.
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(10.38)

The structure of DRL is shown below as Fig. 10.10. Through the multi-energy flow
calculation for IMS, the running status of each WE will be acquired. Afterwards, the local
reward of WE will be obtained from the information interaction with environment
according to Definition 2. Then, the global reward will be updated with the local reward if
all the information is available in information fusion unit. The Q-learning unit will
operate based on RL iteration rule to find the optimal strategy. Meanwhile, combined
with the prior knowledge for initial action set, the learning state and learning efficiency
could be improved.

Fig. 10.10

Distributed reinforcement learning optimal energy flow structure

B.

Implementation of RL for each WE

 

1. 

In order to minimum energy cost of each WE, RL algorithm is utilized to search for the
optimal strategy which considers the operating state of internal equipment from WE.

RL is a method for single-agent which can be achieved by Markov decision process
(MDP) modeling. A four-tuple  is defined to express the approach, where S is
the limited environmental state space, A stands for the limited action sets. 
stands for the probability that state S transfers to the state  under control action a and

 is the immediate reinforcement signal given by environment when the state s
transfers to the state  after action a. In an optimal energy flow algorithm of IMS,
Q-learning is used to evaluate state of system after an action without an environmental

=𝑅𝐾 1
𝑛 ∑
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𝑛

𝑅𝐾
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model.

The function Q refers to the optimal reward discount value of WE with action a at state s,
denoted by

(10.39)
where s,  are the current state and the state of the next moment.  is the discount factor
which the value of it often is .

Definition 3

Given the RL iteration rule for WE, the Q-learning operation is defined as

(10.40)

(10.41)

where  is the learning factor with ,  indicates the proportion of update part
in Q value. If its corresponding state s or the action  has no samples in state space, the
value of this pair will not update. Otherwise, the update rule will be used to approach its
value.

Definition 4

The reward for WE is defined as

(10.42)

The action sets are made up of equipment actions in WE and the reward is designed as
the reciprocal of reward function. It can be seen that the less energy consumption, the
more rewarding under the condition of satisfying the constraints. Greedy strategy is
adopted for always choosing the highest Q-value movement in the current state.

In the second layer OEF algorithm, each WE uses two types of equipment to realize
operation control strategy, conventional energy components and the energy coupling
unit. The first one is power source and the second one is conversion units of each We-
Energy such as electrical transformers, power electronic devices, gas compressors, heat
exchangers or boilers and others.

RL method only needs to respond to the control effect of assessment information on the

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎, ) + 𝛾 𝑄( , 𝑎),𝑠′ max
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basis of the above equipment adjustment. Using RL for each WE to implement energy
optimization of energy cost respectively has a higher robustness.

10.3.4 Simulation and Results

In this section, we apply the proposed HRL algorithm to the OEF problem for IMS with
the structure of nine interconnection WE which is shown in Fig. 10.11. All the parameters
are expressed in per-unit value. In power system, the apparent power per-unit value is
100 MVA, voltage basic value is defined in 1 kV and the scope of bus voltage is [0.9, 1.1].
Power basic value in natural gas network is 100 MW and the pressure is set for 10 bar.
Thermal power is 100 MW and the temperature basic value is 100 °C, while time delay of
heating pipe network is set for 1 h. Table 10.4 shows the efficiencies of devices for each
WE (Fig. 10.12).

Fig. 10.11

Energy internet simulation diagram

Table 10.4

Test network conversion efficiency of energy equipment
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Devices Efficiency Capacity

The transformer in WE 1 2000

The furnace in WE 1 700

The furnace in WE 3 700

The CHP in WE 3,5 , 700

The furnace in WE 4 300

The heat storage in WE 4 , 700

The boiler in WE 4 150

The gas storage in WE 4 , 300

Fig. 10.12

The heat output power of We-Energies

In layer 1, the curve of the heat output power given by WEs is shown in Fig. 10.14. In
order to minimum voltage deviation in IMS, we should adjust the output of each WE
under the system constrains. According to maximum limits of each WE, the power
output values of each device is divided into 10 grades on the basis of their maximum
limits with 20% fluctuating value.

The action set size of DRL in IMS is  which is smaller than the size of
centralized RL in . Figure 10.13 shows the optimal power flow result of the WE in the
first layer. Figure 10.14 shows the learning step of layer 1 for IMS. The reward is the

= 0.3𝜂𝑔𝑒

= 0.85𝜂𝑔ℎ

= 0.7𝜂𝑔ℎ

= 0.35𝜂𝑔𝑒 = 0.45𝜂𝑔ℎ

= 0.9𝜂𝑔ℎ

= 0.9𝜂𝑐ℎ
ℎ = 0.9𝜂𝑑𝑖𝑠

ℎ

= 0.9𝜂𝑔ℎ

= 0.9𝜂𝑐ℎ
𝑔 = 0.9𝜂𝑑𝑖𝑠

𝑔

10 × 6 = 60
106
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reciprocal of the average voltage deviation. The learning factor  of iteration rule is set
for 0.85 and the discount factor  is 0.2. It can be seen in the chapter that the reward
converges to the reward of 25 after 1680 steps. Meanwhile, if we modify the learning
factor  to be 0.6, the results are presented in Fig. 10.15. Compared with Fig. 10.14, the
learning steps rise to 1960 steps. It shows that learning factor affects the convergence
speed that the higher the learning factor, the better the convergence speed.

Fig. 10.13

The electrical output power of We-Energies

Fig. 10.14

Distributed RL process at ,

Fig. 10.15

Distributed RL process at ,

Then, compared with voltage deviation before optimization, the indicator of DRL shows
that voltage deviation has reduced from 0.045 to 0.038.

𝛼
𝛾

𝛼

𝛼 = 0.85 𝛾 = 0.2

𝛼 = 0.6 𝛾 = 0.2
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In layer 2, According to the devices in each WE, all kinds of control equipment are
considered as control variable including generator, boil, CHP, electric boiler, thermal
storage devices and gas storage device. In order to set each WE action space with unified
standard, the action variables will be discretized in this chapter.

The output of generator is divided into 5 grades according to its limits. The power input
values of boil will be in 10 grades based on its capacity. The same as boil, the power input
of CHP is divided into 5 grades. The power input of electric boil is in 10 grades on
average based on their maximum limits. The power input values of thermal storage
devices are in 3 grades and the power input values of gas storage device is in 5 grades

As we can see that there are 5 control variables in WE1. With the grades defined above,
the number of actions for WE1 can be calculated as . WE2
can be calculated as . Other WE follows a similar pattern to WE1.

Through the RL for each WE, the optimal energy cost has reduced 21%-26% from the
objective function (Fig. 10.16).

Fig. 10.16

DRL optimization process

Based on the system simulation result for Modified 6-bus, hybrid reinforcement learning
is verified to be satisfied with the optimal energy flow in interconnected multicarrier
systems.

10.4 Conclusion

This chapter proposes a model free optimal model and presents the RL algorithm that
can drive these agents to parallel learn behaviors. The model free optimal model not only
reduces the loss of the system but also improves the safety and reliability, especially
considering the accuracy of information. In addition, using the RL algorithm for this
optimal energy model has some advantages. The method of utilizing each WE to
undertake the task independently to reach the coordinated system is suitable for
hierarchical control mode of energy internet. It has the ability to solve the Inadaptability

5 × 10 × 5 × 10 × 3 = 7500
3 × 10 = 30
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of multi-objective function and real-time performance of large-scale network computing.
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