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Mixed integer programming (MIP) maximizes (or minimizes) a linear

objective subject to a set of constraints. In particular, one of the constraints

for a MIP is that at least one of the variables can only take integer values. This

technique has been widely studied in operations research and a MIP can be

solved efficiently by commercial solvers. In this dissertation, two power system

problems namely, an interdiction problem and a unit commitment problem,

are formulated and solved with MIP techniques. The studies presented in this

dissertation focus on extracting the special features embedded in the problems

and formulating the problems such that they can be solved using the available

MIP techniques.

The objective of an interdiction problem in a power system is to find

a set of the most critical or vulnerable components to secure and reliable op-

eration. Before formulating the problem, we need to study the outages and

vii



their impacts in power systems in depth. Once a critical component of a power

system fails, the outages including generator and load trips can sequentially

spread and frequently lead to large blackouts. The efforts to develop a model

to analyze cascading outages is first summarized. Reports about cyber at-

tacks on the Ukraine power grid revealed that one or more malwares were

deliberately developed to attack industrial facilities, with power systems as

one of the major targets. Another potential cyber threat to secure operation

of power transmission grids involves Internet of Things (IoT) demand attacks.

Increasingly, Internet connections are available to devices with high energy

consumption such as air conditioners and water heaters. However, these new

connections expose the control of new electric loads to potential manipulation

by attackers. To help assess the effects of cyber attacks, we develop numerical

experiments and define different types of cyber attacks to simulate Ukraine-

style cyber attacks and IoT demand attacks to study the system responses in

a North American regional interconnection system. Based on the studies in

cascading outage analysis and cyber attack simulations, an interaction prob-

lem between a defender (e.g. system operator) and an attacker (e.g. terrorist)

in a power system is formulated as a MIP and a “short-term” impact of an

attack is considered using a cascading outage anylsis (COA) tool. A demon-

strative case study with an existing method is presented and numeric studies

with “short-term” impacts with COA model are ongoing.

The unit commitment (UC) problem in a power system is another MIP

problem. UC determines the start-up and shut down schedules of generat-
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ing units to meet forecast demand in a short term future (few hours to few

days). It is critical to precisely represent the generating units in a UC prob-

lem to maximize the social welfare, which is the objective of the problem.

The formulation of two types of unit namely, combined-cycle gas units and

pumped-storage hydro units in a UC problem are presented in this disserta-

tion.

In recent years, combined-cycle units (CCUs) have been operated as

providers of flexibility needed due to the increasing shares of renewables. Con-

sequently, optimization models have been proposed to determine the configura-

tion of CCUs. However, most of the existing models assume that any transition

between configurations finishes in a single interval. This assumption is often

violated in reality, as a transition might last up to a few hours during which the

CCU has limited dispatchability. In this work, a mixed-integer programming

formulation that represents the transition ramping of CCUs is summarized

and the formulations of ramping constraints are discussed. Numerical studies

are performed on an illustrative test system and a Mid-continent Independent

System Operator (MISO) system.

As one of the mature technologies for energy storage, pumped-storage

hydro is able to provide services in a time range from minutes to days. Partic-

ularly, pumped storage hydro units are useful for enhancing the integration of

renewable generations that are naturally intermittent. Optimization models

have been proposed to determine strategies to dispatch a energy storage unit

in the system. However, most of existing work assumes the output from a

ix



energy storage unit is continuous. This assumption is not true for a pumped

storage hydro unit. Inspired by the work of modeling a combined cycle unit

in the unit commitment problem, this work proposes a configuration based

pumped storage hydro model that removes the invalid continuous outputs as-

sumption in order to enhance the use of pumped storage hydro resources in

the system. By introducing three “configurations,” namely, pumping, gener-

ating and “alloff” or off-line, for a pumped storage hydro unit, the proposed

model can more accurately reflect the practical operations of pumped storage

hydro units in the day-ahead market. A comprehensive review of the existing

pumped storage hydro models and industry practices is presented. The def-

inition of configurations of a pumped storage hydro unit and the transitions

between the configurations during operation are revealed and discussed in de-

tail to describe the proposed model. A case study is presented to illustrate

the proposed model.
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Chapter 1

Introduction

1.1 Outline

This dissertation is organized as follows. The first part of this disserta-

tion is focused on power system interdiction problems. The details of cascading

outage analysis (COA) models are discussed in Chapter 2. The framework of

the COA model and the designs of different checkers are presented. Examples

are demonstrated. Different cyber attacks on power systems are discussed in

Chapter 3. The implementation of the COA model and simulation results in

the North American regional interconnection case are included. The model

and knowledge learned in these two chapters are applied in a power system in-

terdiction problem that is formulated as a mixed-integer programming (MIP)

model in Chapter 4.

The second part of the dissertation focuses on a typical mixed-integer

programming problem in the operation of a power system – the unit commit-

ment problem. The unit commitment (UC) problem determines the start-up

and shut down schedules of generating units to meet forecast demand in a

short term future (few hours to few days). It is critical to precisely represent

the generating units in a UC problem to maximize the social welfare, which
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is the objective of the problem. In Chapter 5, a transition ramping model is

summarized based on a configuration-component hybrid combined cycle gas

unit model. Ramping constraints are discussed and computational studies are

presented with a Mid-continent Independent System Operator (MISO) system.

In Chapter 6, a configuration based pumped hydro unit model is formulated.

An illustrative case study is shown, while further study on the MISO system

will be conducted as future work.

The rest of this chapter is organized as follows. Section 1.2 discusses

cascading outages in a power system. Section 1.3 introduces cyber attack sim-

ulations on power systems. Section 1.4 presents a formulation and techniques

to solve a power system interdiction problem considering “short-term” effects.

Section 1.5 and section 1.6 discusses the formulation of two different genera-

tion units, namely, a combined-cycle unit and a pumped-storage hydro unit,

in the power system unit commitment problem.

1.2 Cascading Outages in Power System

Many large blackouts have occurred across the globe, such as the 2003

Northeastern America Blackout [377] and the 2012 India Blackout [281]. It

is noticeable that during the 2003 Northeastern America Blackout, 14 high

voltage transmission lines tripped out within 5 minutes. The blackout also

caused 61,800 MW of load lost. Over 50 million people were without power

in northeast US and Ontario, Canada and an estimated monetary cost of 6-

10 billion US dollars is reported. Many of these large blackouts are caused

2



by a consecutive series of various outages, or cascade, following an initial

disturbance. Some major blackouts in North America due to cascading outages

are shown in Table 1.1.

The practice in electric system design and operations has considered the

N-1 security criterion [91]. The North American Reliability Standards require

that the “transmission system is operated so that instability, uncontrolled

separation, or cascading outages will not occur as a result of the most severe

single contingency and specified multiple contingencies” [90]. However, when

multiple, simultaneous or near simultaneous contingencies occur, the outages

including transmission line, generator, and load trips can sequentially spread

and lead to large blackouts [381].

Nevertheless, it is very difficult to identify critical components that

represent weaknesses in the power system and to analyze cascading outages

due to the lack of detailed blackout data and complicated electrical-physical

interactions. In this work, we propose an improved outage checker based

cascading outage analysis (COA) algorithm to simulate the potential cascading

outage of the system.

1.3 Cyber Attack on Power System

Based on the further developed cascading outage analysis tool, two

types of cyber attacks on power systems are studied in this work. The first

type of cyber attack targets power grid control centers. Once the cyber at-

tackers have access to the power grid control system, an attack could blackout
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Table 1.1: Examples of Cascading Blackouts in North America (Source: data is
from [381], [376], [132])

Date Location

Customers

Affected

/ MW Lost

Collapse Time

Nov. 9, 1965 Northeast 30 million 13 minutes

July 13, 1977 New York City 1 million 1 hour

Dec. 22, 1982 West Coast 12,350 MW Few Minutes

Dec. 15, 1994 Western U.S. 9,336 MW N/A

July 2, 1996 Western U.S. 2 million 36 seconds

Aug. 14, 2003

Northeastern and

Mid-western U.S.

and Ontario, Canada

55 million Few Minutes

Sep. 8, 2011 Southwestern U.S. 7 million Few Minutes

a regional power system and may trigger cascading outages and cause large-

scale load losses. The second type of cyber attack targets consumers that have

high-energy consumption loads and potentially could interrupt the system op-

eration by manipulating the compromised load. These types of attacks are

described in the next two sections.

1.3.1 2015 Ukraine Cyber Attack

On December 23rd 2015, a regional electricity distribution company

in Ukraine reported service outages to customers. The outages were due to

a third party’s illegal access into the company’s computer and Supervisory

Control and Data Acquisition (SCADA) systems. Forensic investigations re-
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vealed that a malware named BlackEnergy had infected the SCADA systems

after a successful attack. Seven 110 kV and twenty-three 35 kV substations

were disconnected for three hours. Later it was revealed that three different

such distribution companies were attacked, resulting in several outages that

caused approximately 225,000 customers to lose power across various areas in

Ukraine [326]. On December 17th 2016, a second power outage occurred in

Ukraine and deprived part of its capital, Kiev, of power for over an hour. Al-

though the official investigation is still ongoing, an assessment was made that

a more advanced malware, Industroyer, was used in the second cyber attack

against the power grid in Ukraine [1].

On May 11, 2017, President Trump signed an executive order to strengthen

the cyber security defenses of federal networks and critical infrastructure. In

the executive order, there is a section that specifically addressed the threats

from “electricity disruption and prolonged power outages resulting from cyber

security incidents.” Incident responses have been carefully studied and a sub-

stantial set of cyber requirements has been placed on all U.S. grid operators

of bulk power grid for several years [284]. On October 19th 2017, the Federal

Energy Regulatory Commission (FERC) proposed new mandatory cybersecu-

rity controls to address the risk posed by, for example, smaller grid control

centers that are typically less critical than major control centers, but which

are nonetheless vulnerable to intrusion software [354].

Power system vulnerability under cyber security threats has also been

studied previously in the engineering literature. Ten et al [371] proposed a
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vulnerability assessment framework for a systematic analysis incorporating

both power and cyber systems of the control networks. Chen et al [73] built

a real-time cyber physical test bed that simulates the communication system

and power system simultaneously.

A typical assumption in this literature is that the cyber attackers have

full or partial control of the SCADA systems. For example, Xuan et al [240]

solved a bi-level linear programming problem to study the effects of a cyber

attack on the system economic operation cost. These methods only considered

partial effects of a cyber attack on power systems. For example, Xi et al [430]

proposed a model to investigate the cascading failures in a smart grid consisting

of a power grid and a coupled cyber network. In [430], they studied cascading

sequences of transmission overloading. However, there are other protection

actions such as generator over- and under-frequency that may contribute to

the cascade that were not considered in [430].

Thus motivated, for the purpose of developing a tool to assess the ef-

fects of cyber attacks, we propose a method to simulate the power system re-

sponses under cyber attacks using a cascading outage analysis model that con-

siders generator tripping under rotor angle and system frequency deviations,

under-frequency and under-voltage load shedding, and overload protections

on branches. The emphasis of this study primarily involves adapting a previ-

ously developed cascading outage analysis (COA) tool to simulate the effects

of cyber attacks. We implement the tool in a planning case of a North Amer-

ican regional interconnection system. The initial cyber attacks are modeled
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as simultaneously opening circuit breakers associated with various categories

of devices in each transmission and distribution company (owner) in the in-

terconnection system. Our results show different features of system responses

under different cyber attacks.

1.3.2 IoT Cyber Attack

The vulnerability of Internet of Things (IoT) devices is a well-known

problem [8, 111, 328]. An IoT cyber attack has become a concern to power

system operators recently since more and more devices with high-energy con-

sumption such as water heaters and air conditioners can be controlled by con-

sumers through the Internet. Although manipulating the energy consumed in

a single household is not enough to cause any major problem to the power

grid, a recent paper presented in USENIX Security 2018 [361] proposed the

Manipulation of demand via IoT (MadIoT) attacks, and showed an attacker

who could coordinate the compromise of hundreds of thousand of high-energy

IoT devices to launch several attacks on the power grid, including (i) frequency

instabilities, (ii) line failures, and (iii) increase in operating costs.

In this work, we perform an in-depth study of the power grid effects

of MadIoT attacks using the COA tool. Our analysis shows that while Ma-

dIoT attacks can create negative consequences on the power grid, the negative

impact on the grid will not be as serious as originally claimed in [361]. In

particular, while some load shedding may be necessary to deal with these at-

tacks, our results show that creating a system blackout–which would a require
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black start period of several days to restart the grid—would be very difficult,

given the embedded protections that all power systems have throughout their

infrastructure.

1.4 Power System Interdiction Problem

Based on our knowledge learned from cascading outage analysis and

cyber attacks studies, an interdiction problem between a defender (e.g. system

operator) and an attacker (e.g. terrorist) in a power system is formulated as

a mixed-integer programming (MIP) problem. A “short-term” impact of an

attack is considered and discussed with the cascading outage anylsis (COA)

tool.

The electric system is designed to satisfy the N − 1 security criterion,

which means the system could lose any one of its N components (such as gen-

erators, transmission lines) and continue operating within emergency limits.

However, when multiple, simultaneous contingencies occur, the system might

experience various stability problems, which might lead to the large cascading

events. Outages are typically caused by storms or other extreme weather con-

ditions but could also be carried out deliberately by knowledgeable attackers

with little risk of detection. Furthermore well-planned and coordinated at-

tacks by terrorists could leave the electric power system in a large region of

the country at least partially disabled for a very long time [95].

In [338], an interdiction problem is formulated as a bi-level mixed-

integer programming problem. A decomposed heuristic algorithm was devel-
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oped. Salmeron et al. [339] introduced Global Benders Decomposition (GLBD)

to solve the same problem described in [338] and observed improved conver-

gence toward the optimal solution even with a non-linear, non-convex sub-

problem. The key advantage of GLBD over a single level MILP formulation

is that the algorithm’s subproblems represent simple, familiar instances of the

primal linear program OPF. Thus, the user need not maintain a problem that

involves unfamiliar constructs from the dual of the OPF model that are compli-

cated by interactions with binary variables as in Mixed-Integer LP procedure

in [276] and as in the KKT method to solve the subproblem described in [428].

To better represent the “short-term” system responses to an attack, the

COA model that analyzes both transient and steady state system responses to

a contingency is incorporated as a sub-problem in the interdiction framework

in [398] in addition to DC-OPF used in [338] and [339]. Because of the non-

linearity brought by COA model, the problem in [398] is solved through a

heuristic method that is similar to the algorithm in [338]. A key question is

whether the GLBD method might also be successful for the problem in [398].

In this dissertation, the efficiency of the application of the GLBD

method on the bi-level system interdiction problem with DC-OPF as the sub-

problem is first demonstrated. Then the GLBD method is applied in the

problem with COA model incorporated as the sub-problem. The test systems

are built on a PowerWorld 7 bus OPF case and a PowerWorld 37 bus system

with transient stability data and generic costs for OPF.
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1.5 Combined Cycle Unit Formulation

Unit commitment (UC) problem in a power system determines the

start-up and shut down schedules of generating units to meet forecast demand

in a short term future (few hours to few days). The objective of a UC prob-

lem is to minimize the total generation costs; that is, to maximize the social

welfare. Unit commitment decisions (binary variables) and unit dispatch lev-

els (continuous variables) are determined. Also, a large set of operational

constraints has to be satisfied. Therefore, the UC problem is a complex op-

timization problem that can be formulated as a mixed-integer programming

problem.

There are new features in electricity markets that may involve formu-

lation modifications and potentially add computational complexity to the UC

problem. One such new feature is the participation of combined cycle gas

power plants. A combined cycle power plant has a combination of gas and

steam turbine units. The exhaust heat from a gas turbine is used by a steam

turbine to generate more electricity. Combined cycle units (CCUs) have higher

efficiency, lower CO2 emission, better flexibility and faster response. There-

fore, there is an upward trend of installing combined cycle units [201], [52].

Consequently, optimization models have been proposed to determine

the configuration and operation of CCUs in the electricity market. However,

there are assumptions made in existing models that are often violated in reality.

In this work, we will first address a one interval transition assumption made in

the existing models. A mixed-integer programming formulation that represents
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the transition ramping of CCUs and removes the invalid assumptions of one

interval transitions is proposed in [181]. We build on [181] by incorporating

a set of configuration-wise ramping constraints into the transition ramping

model. Numerical studies are performed on a MISO system.

1.6 Pumped Storage Hydro Unit Formulation

Pumped hydro plants use power to pump water uphill to an elevated

reservoir when the electricity price is low. The water is released to a lower

reservoir and drives the turbine to generate electricity when it is needed. There

are now about 38 pumped storage plants in the United States. As one of

the mature technologies for energy storage, pumped storage hydro is able to

provide service in a time range from minutes to days. The services in this time

range include spinning reserve and load or generation shifting. Therefore,

pumped storage hydro units can be used as a flexible energy management

tool and it is particularly useful for enhancing the integration of renewable

generations that are naturally intermittent.

Inspired by the work of modeling a combined cycle unit in the unit

commitment problem, this work proposes a configuration based pumped stor-

age hydro model for the day-ahead market, in order to enhance the use of

pumped storage hydro resources in the system. By introducing three “config-

urations,” namely, pumping, generating and “alloff” or off-line, in a pumped

storage hydro unit, the proposed model can more accurately reflect the prac-

tical operations of pumped storage hydro units in the day-ahead market. A
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comprehensive review of the existing pumped storage hydro models and indus-

try practices is presented. The definition of configurations of a pumped storage

hydro unit and the transitions between the configurations during operation are

revealed and discussed in details to describe the proposed model.
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Part I

Power System Interdiction
Problem
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Chapter 2

Cascading Outages in Power Systems

2.1 Introduction

1 Cascading outages is the main mechanism of large blackouts, and the

duration of the sequence of cascading events can be very short so that there

is little time for operator intervention. In the 2003 North-Eastern America

Blackout [377], 14 high voltage transmission lines were tripped out within 5

minutes. In order to evaluate the short term impacts of a particular attack,

the amount of short-term load shed should be calculated. Many efforts have

been put into research to identify the cause of these events and the methods

to mitigate them. Eppstein et al [119] has developed a Random Chemistry

algorithm to identify the multiple contingencies that initiate cascading failure.

Hazra et al [164] proposes pattern recognition and fuzzy estimation to calculate

the cascading sequences of an event. Jie Chen et al [75] introduces a hidden

failure model with an embedded DC model to study the cascading dynamics

1Bing Huang, Mohammad Majidi and Ross Baldick, “Case Study of Power System Cy-
ber Attack Using Cascading Outage Analysis Model,” 2018 IEEE Power Energy Society
General Meeting, Portland, OR. Mohammad Majidi contributed in advising on the design
of Cascading Outage Analysis (COA) Model and the techniques in programming used in
this paper. Ross Bladick contributed in advising the design of Cascading Outage Analysis
(COA) Model, the simulations using the COA, discussion of results and multiple revisions
of the paper.
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and mitigation.

These methods are either very computationally expensive, or do not

very accurately represent the system behavior after the initial disturbances. In

several cases, these methods explicitly model initiating events that are “nat-

ural” or caused by equipment failure, rather than initiating events that are

deliberately chosen to cause damage, as is the main focus of our research.

Thus motivated, we developed an improved outage checker based algorithm to

simulate the potential cascading outage of the system. While our approach is

also computationally intensive, it is directly aimed at modeling the effects of

deliberate large-scale attacks. Some previous work on developing sequential

outage checker based Cascading Outage Analysis (COA) is presented in [190]

and [396]. In this chapter, we provide an improved COA model, more de-

tailed and accurate preventive equipment modeling, and a case study using a

PowerWorld test system.

2.2 Framework of the COA

In previous models [190], [396], the cascading outage analysis is per-

formed with sequential application of the checkers. This sequence is applied

based on assumptions about the timing of various system protective actions

subject to different criteria. For example, it is assumed in the previous mod-

els that the transient stability protection will detect rotor angle instability

and trip generators before Under Frequency Load Shedding (UFLS) activates.

The frequency relay will deploy UFLS before the over current relays trip the
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overloaded components, and over current relays will act before the under volt-

age relays trip out the loads or generators that experience voltage instability.

However, in practice, the time of potential relay actions for the frequency re-

lays, over current relays, and voltage relays could overlap. Once an element is

tripped out (i.e., the line tripped out by the fastest relay), the system topol-

ogy is changed accordingly, which will induce a sudden change of the power

flow. The elements that were not tripped out will experience different loading,

and could then be tripped by subsequent protective action. Therefore, in the

improved COA developed here, simultaneous application of protection is mod-

eled by the checkers and more detailed models of each protection scheme are

implemented to provide a better representation of the sequence of the cascade.

We ignore the possibility of operator intervention between outages, under the

assumption that events occur too rapidly for an operator to handle.

The analysis starts from a specification of the initial disturbances. Then

the transient stability or rotor angle stability is checked by the Transient Sta-

bility Checker (TSC). If the generator rotor angle is larger than a certain

threshold, say, 100 degrees, the generator will be automatically tripped. At

the same time, the frequency at each bus is checked by the frequency outage

checker (FOC). If the frequency at a bus deviates from from the nominal fre-

quency of 60 Hz to be outside the range (e.g. 57.6 Hz to 62.4 Hz) for longer

than a minimum time threshold, then the generator connected to this bus will

be tripped. If the frequency at a load bus drops lower than some predefined

thresholds for longer than a minimum time threshold then a percentage of the
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total loads connected to this bus will be shed. After any of these actions, the

analysis goes to the next cascading stage involving analysis with the TSC and

FOC. If the system reaches a transiently stable state, the COA activates the

two other checkers (overload outage checker or OOC, voltage outage checker

or VOC) simultaneously. Each checker is implemented with a relay function

to return a potential trip time. Then the COA determines the first element to

trip (if any). If the topology changes, the COA will come to the next cascading

stage and start the transient stability checker and frequency outage checker

again. The workflow diagram is shown in Figure 2.1.

2.3 Design of the Transient Stability Checker (TSC)

Transient stability, or rotor angle stability, is the ability of the power

system to remain in synchronism when subjected to large transient distur-

bances [218]. According to [250], the power system dynamic behavior can

be represented as a set of differential equations (2.1) and a set of algebraic

equations (2.2).

ẋ = f(x, y) (2.1)

0 = g(x, y) (2.2)

where x represents electromechanical state of the power system and y repre-

sents control inputs. Both x and y are implicitly functions of time.

A disturbance in the network usually requires a change to both the net-
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Figure 2.1: Work Flow of the COA

work configuration and boundary conditions. These are modeled by changing

the coefficients in the functions appearing on the right-hand side of (2.1) and

(2.2).

In the context of transient stability under disturbances, the distur-

bances may include faults on transmission elements, loss of load or loss of

generation. Notice that typical “natural” faults on the transmission elements,

which are normally short-circuits, if cleared and re-closed successfully, should

not result in physical destruction of the assets [421]. This is very different from
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the physical attack aimed at damaging the facilities or cyber attack targeted

at taking control of Supervisory Control and Data Acquisition (SCADA) sys-

tems, since permanent damage or intended opening of breakers with a denial

of service attack, could contribute to long-term impacts on the system.

Transient stability analysis has been performed in power system analy-

sis by many methods. Studies in [422] and [115] use time-domain simulation to

calculate the exact system response in time by implicitly numerically integrat-

ing the differential equations (2.1) and solving the algebraic equations (2.2)

at each time step. The time domain simulation is the most accurate method,

but is slow in computation and does not provide any measurement of degree

of system stability.

Other approaches include transient energy function (TEF) and poten-

tial energy boundary surface (PEBS) [141], [70], [83]. These methods avoid

numerical integration by constructing energy functions and comparing the

system energy at the time when the fault is cleared to a critical energy value

estimated by the energy functions to determine whether or not the system will

remain stable. These methods are fast in computation compared to the time

simulation, and also able to provide useful information regarding the degree

of stability or instability. However, they are only applicable to power system

stability models having energy functions, and are not as accurate as numerical

integration. Hybrid methods [252] combine the numerical integration and the

energy functions method.

We use time-domain simulation to perform the transient stability as-
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sessment because of its high accuracy. The time-domain simulation allows

taking into account the full system dynamic model and consists in checking

that inter-machine rotor angle deviations lie within a specific range of values.

Different models have been used to represent different dynamic charac-

teristics of the generator. In our simulation, a “GENROU” model is selected to

represent the round rotor generator. It is noticeable in [320] that the GENROU

model provides a very good approximation of the behavior of a synchronous

generator. More than two-thirds of the machines in the 2006 North American

Eastern Interconnect case are represented by GENROU models. Additionally,

standard “IEEE T1” exciter model is used to represent a brushless alternating

current (AC) exciter with a rotating rectifier, and “IEEE G1” governor model

is used to represent the governor response model. However, we observe that

data for these models may not be readily available publicly because of data

security issues (see Section 3.2.1).

The transient stability checker uses the PowerWorld transient stability

solver to numerically calculate the system response after a fault. If the rotor

angle deviation of a generator is bigger than a certain threshold (e.g. 100 de-

grees), then the generator will automatically be tripped. The implementation

of transient stability enables the Cascading Outage Analysis (COA) model

to include transient stability assessment (that is, it analyzes the rotor angle

stability problem), and hence provides a more accurate representation of the

system behavior [421].
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2.4 Design of the Frequency Outage Checker (FOC)

If there is a mismatch between the generation mechanical power and

the net-load, then a frequency excursion will occur. The frequency excursion

may then trigger the over- or under-frequency protection. To represent this

possibility, the frequency outage checker (FOC) is designed to model the pro-

tection behavior against system over or under-frequency events. In previous

work [421], a system frequency response (SFR) model [14] was used as a fre-

quency response model. In the model, nonlinearities and all but the largest

time constants in the equations of the generating units of the power system

are neglected, with the added assumption that the generation dynamics are

dominated by reheat steam turbine generators.2

Since the latest PowerWorld transient simulation includes models for

generator over- under- frequency relay and under frequency load shedding

relays, the frequency checker can be embedded in the transient simulation and

use the PowerWorld transient solver to calculate the frequency response of

disturbances. It adds two advantages to the model. First, actual frequency

response is used by relays instead of system wide approximation while the

computational efforts are not significantly increased since we are running the

PowerWorld transient simulation for rotor angle stability anyway. Second, as

it is part of the transient analysis, if the protection relay takes any action, the

2With increasing capacities of gas turbine and combined cycle gas turbines, this as-
sumption is not literally true in, e.g. ERCOT. However, the resulting second order model
for frequency may still be a reasonably accurate representation if it is calibrated to actual
behavior.
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Table 2.1: Over/ Under Frequency Generator Tripping (O/UFGT) (Source: data
is from [320])

Frequency

O/UFGT (Hz)

Time

Delays(s)

62.4 2

57.6 2

Table 2.2: Under Frequency Load Shedding (UFLS) (Source: data is from [122])

Frequency

UFLS(Hz)

Time

Delays(s)

Percentage of

Total Load Shed

58.9 - 59.3 270 5 %

58.5 - 58.9 30 15 %

58 - 58.5 2 25 %

below 58 at least 2 Approval of ERCOT

impact of that action on transient analysis is automatically considered.

There are two protections implemented in the frequency checker, namely

Over/Under Frequency Generator Tripping (O/UFGT) and Under Frequency

Load Shedding (UFLS). If the frequency at a bus deviates from a predefined

threshold for more than a threshold time period, the generator connected to

that bus would be tripped, and a certain percentage of load connected to the

bus will be shed. A default configuration of PowerWorld O/UFGT and a con-

figuration of ERCOT UFLS are shown in Table 2.1 and Table 2.2 respectively.
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2.5 Design of the Overload Outage Checker (OOC)

Line overloading for violating thermal limits is an important and com-

mon measure to identify the mechanism of cascading outages and to assess

vulnerability to cascading outages [397]. In a cascading outage scenario perti-

nent to line overloading, a line outage can cause increased flows on other lines,

potentially leading to overloading of these other lines. As a result, when a line

violates the thermal limit, it may be tripped.

It usually takes more than a few seconds for an over-current protection

to trip an over-loaded line because of the deliberate time delay built into

over-current relays; therefore we use steady-state power flow results to trigger

over-current protections. For steady state analysis, we used the PowerWorld

Simulator to solve the AC power flow. The status and dispatch set point of

units from transient analysis are used as a starting point for AC power flow.

Based on the result of AC power flow, we would first consider the transmission

over current protection.

A normal inverse-time over-current model described in Siemens SIPRO-

TEC 5 Current Relay [355] is implemented in our model. The time when the

over current relay trips the element is determined by (2.3):

T =
0.14

( I
Ith

)0.02 − 1
Tp[s], (2.3)

where Ith is the current threshold value of the relay, and Tp is the setting value

of the relay. Both values are set by the relay operator. The current I is on
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the monitored component such as a transmission line or a transformer. The

value of T in (2.3) determines when the protection operates.

The normal inverse current relay characteristic is shown in Figure 2.2.

Note that in some cases a sag of a transmission line may result in a short

circuit to other objects, e.g. a tree, which would result in a much faster trip

due to distance protection actuation. This phenomenon was observed in 2003

North America blackout [377]. We are not modeling this issue in the COA.

Figure 2.2: Normal Inverse Current Relay Characteristic. [355]

24



2.6 Design of the Voltage Outage Checker (VOC)

Another typical character of cascading outages includes under (or over)

voltages. When the system is highly stressed, the voltage profiles of power

systems may decline. Similar to the line outage checker, when a voltage profile

for a bus violates a pre-defined threshold chosen to maintain system stability,

the voltage outage checker (VOC) may activate. If a bus voltage stays below

the lower limit during the VOC process although the power flow calculation

converges, load shedding action may be taken to maintain bus voltages within

limits [397].

A standard Inverse time characteristic model described in ABB RXEDK

2H Time over/under voltage relay [2] is implemented in voltage relay model-

ing. The time that under or over voltage relay trips the element is determined

in (2.4) and (2.5).

T =
k

( U
Uo
th
− 1)

[s], (2.4)

T =
k

(1− U
Uu
th

)
[s], (2.5)

where k is the inverse time constant, parameters U o
th and Uu

th are the over/under

voltage relay pick-up values respectively. The voltage U is the monitored bus

voltage. The values of T in equation (2.4) and equation (2.5) determine when

the protection operates. The inverse voltage relay characteristic curve is shown

in Figure 2.3.
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Figure 2.3: Normal Inverse Current Relay Characteristic [2].

2.7 Case Study of COA

Before a detailed discussion of the case studies in this paper, we clarify

the terms of Load Shedding and Blackout used in this section and Chapter 3

indicating the results of the simulations.

When some load is disconnected by under frequency load shedding

(UFLS), the customer in the relative small load region will experience a tem-

porary loss of electric power that can be quickly corrected once the system is

taken to a stable state. For example, load could be restored within 30 minutes

or an hour. UFLS is therefore nowhere near as serious as a complete system

blackout. When a complete system blackout happens, all the customers in

the system will lose their electric power from the system and it typically takes

several days to restore the system and the power supply to its customers.

The proposed improved COA model is demonstrated on a PowerWorld
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Figure 2.4: 37 Bus System and the Targeted Lines.

37 bus test case [301] for the purpose of illustration. An application of COA

to a large system is presented and discussed in Chapter 3. In our simulation,

transmission line and transformer MVA limits are set relatively tight in order

to illustrate the cascading scenarios. The cascading outage analysis (COA)

tool has been built in python 2.7.13 [383] in order to make it easier to connect

to other model or software such as PowerWorld simulator [320]. The AC

power flow calculations and the numerical integrations of the transient stability

checkers are based on the PowerWorld simulator results.

Figure 2.4 shows the topology of the PowerWorld 37 bus test system.

The initial disturbances that are highlighted by the red boxes in the figure are
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tripping transmission lines MORO138-LAUF138-1, BUCKY138-SAVOY138-1,

SLACK345-JO345-1, SAVOY138-JO138-1 and LYNN138-JO138-1.

Figure 2.5: Generator Rotor Angle.

Figures 2.5 to 2.8 display simulation results of system responses after

the initiating disturbances triggered at 1 second. These four figures present

the simulation results of, respectively, generator rotor angle, bus frequency,

branch current, and bus voltage corresponding to the four checkers. It can

be observed from Figure 2.5 that rotor angle at each generator converges to a

new value after some swings caused by the initial disturbances, which occur

simultaneously at time equal to 1 second. In Figure 2.6, after the disturbance
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at 1 second, the frequencies at all buses deviate from 60 Hz and gradually settle

at the end of the simulation. Notice that, since the rotor angle deviations at all

generators are within the limits and the frequency at each bus has not reached

any thresholds, there are no actions from TSC and FOC. In Figure 2.7 and

Figure 2.8, similar to rotor angle, the current and voltage start to settle after

a few seconds of fluctuations. The red horizontal line in Figure 2.7 indicates a

threshold value for OOC. Therefore, observed from the figure, because of the

violation of the OOC threshold, OOC will start to calculate tripping time for

two transmission branches.

Figure 2.6: Bus Frequency.
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Figure 2.7: Branch Current.

The real power flow on branches calculated by AC Power Flow are

shown in Figure 2.9. The green circles with green crosses inside are the tripped

lines during the initiating disturbances. The red arrows and red circles indicate

the overloaded transmission lines or transformers consistent with Figure 2.7.

The number in the red circle tells how much the element is overloaded by a

percentage of its MVA limit.

As a result from OOC and VOC, the transmission line highlighted in

the red box in Figure 2.9 LAUF69-HALE69-1 has the shortest tripping time

(27.8 sec). Therefore, transmission line LAUF69-HALE69-1 will be opened

30



Figure 2.8: Bus Voltage Magnitude.

and thereby this becomes the 2nd disturbance to the system. Notice from Fig-

ure 2.5, that by 27.8 seconds, the transient variations will die out and each of

the variables will reach a steady state. Hence, the transient simulation with

TSC and FOC start to run with the 2nd disturbance and an updated system

topology from a steady state again depicted in Figure 2.10. The initial con-

ditions for this transient analyses correspond to the state just before tripping

transmission line LAUF69-HALE69-1.

The transient simulation results of rotor angle and frequency are pre-

sented in Figure 2.10a and Figure 2.10b. First, in both figures, we can observe
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Figure 2.9: Steady State Reached After the Initiating Contingency.

that the 2nd disturbances happens 27.8 sec after the end of the initiating tran-

sient simulation. We expect, for large systems, that the shortest tripping time

from overload and voltage protections will significantly exceed the transient

simulation time. Therefore, the accumulation of overload time that occurs

during the transient simulation is ignored. After the lines are tripped, the

generator rotor angles and bus frequencies start to deviate from their original

values. In Figure 2.10a, after 37.8 sec, rotor angle of five generators indicated

by four lines (there are two generators connected to one bus and thereby rep-

resented by one line) go up very rapidly. Between 38.97 sec and 38.99 sec,

these five generators are tripped by TSC since the magnitudes of their rotor
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angle deviations are larger than the predefined threshold.

(a) Generator Rotor Angle

(b) Bus Frequency

Figure 2.10: Simulation Results of the Cascading Contingencies

As a result, in Figure 2.10b, at 38.99 sec, the frequency of buses started

33



to drop quickly as marked by the horizontal red arrow. This frequency drop is

due to the sudden loss of generators in the system. The frequencies at buses

keep decreasing and at 40.48 sec and 41.12 sec, respectively, the frequencies

have dropped below two thresholds for enough time so that the FOC activates

the Under Frequency Load Shedding twice. At time 41.12 sec, 45% of the to-

tal load in the system is shed. After the second load shedding, the imbalance

between generation and load in the system is relieved a little bit and the fre-

quencies stopped decreasing at 41.6 sec. However, before the frequencies reach

to a steady state, at 42.35 sec, highlighted by the red circle, 4 more generators

are tripped by FOC because the bus frequencies stay below the lower threshold

of the generator frequency protection for longer than a predetermined period

of time. At the same time, all 9 generators in the system are disconnected

which means the system has no power generation, a blackout happens, and

the simulation stops.

2.8 Conclusion and Future Work

In this chapter, a cascading outage analysis model (COA) is proposed

and illustrated in a case study of a small test system. The model provides a

way to evaluate the short term impacts of an attack, e.g. the amount of short-

term load shed. The COA model applies four outage checkers, namely Tran-

sient Stability Checker, Frequency Outage Checker, Overload Outage Checker,

and Voltage Outage Checker to simulate the system behavior after an initial

disturbance, i.e. an attack.
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Building on previous work [397], we enhance the COA model further.

First, we write the cascading outage analysis model with an open source lan-

guage - Python. After moving to Python, the COA model is easier to connect

to other models or other software. Second, the previous model was only semi-

automated, needing a human to manually specify outages as a result of an

attack. The current COA code is fully automated and can directly read ini-

tiating events from a database, modify the case study and run transient and

steady state analysis. Third, we add the frequency checker (as under and over

frequency protection relays) into the transient analysis. It gives two advan-

tages to the model namely actual frequency response is used by relays instead

of system wide approximation, and since it is part of the transient analysis, if

the protection relay takes any action, the impact of that action on transient

analysis is automatically considered.

The cascading outage analysis has several limitations. Potential im-

provements include:

• The cascading outage analysis model does not consider breaker fail-

ures and back-up protection schemes such as zone-2 and zone-3 pro-

tection. The future work may include these models to reflect the

real-world scenarios.

• The cascading outage analysis model uses a set of predetermined pa-

rameters and settings for protection devices. In the industry applica-

tions, different coordinations and settings among various protection

schemes may lead to different system behavior.
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• There are some control schemes in the power systems, including con-

trolled islanding schemes and automatic tap changers, etc that are

not modeled in the cascading outage analysis tool. These sophisti-

cated models could be incorporated and studied to make the simu-

lation results more reflective of reality.

Given the ability to simulate the potential cascades, a natural next step

is to develop a tool to analyze the effects of attacks on power systems. Recently,

cyber attacks have been a security concern of power systems operations and,

potentially, can cause large scale disturbances in the system. In the next

chapter, these issues are studied.
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Chapter 3

Cyber Attack on Power System

3.1 Introduction

1 2 Two types of cyber attacks on power systems are discussed in this

chapter. The first type of cyber attack targets power grid control centers. Once

the cyber attackers have access to the power grid control system, an attack

could blackout a regional power system and may trigger cascading outages

and cause large-scale load losses. The second type of cyber attack targets

consumers with high-energy consumption and potentially could interrupt the

system operation by manipulating the compromised load.

Reports about cyber attacks on the Ukraine power grid revealed that

one or more malwares were deliberately developed to attack the industrial fa-

cilities, with power systems control centers as the major targets. Such cyber

1Bing Huang, Mohammad Majidi and Ross Baldick, “Case Study of Power System Cy-
ber Attack Using Cascading Outage Analysis Model,” 2018 IEEE Power Energy Society
General Meeting, Portland, OR. Mohammad Majidi contributed in advising on the design
of Cascading Outage Analysis (COA) Model and the techniques in programming used in
this paper. Ross Bladick contributed in advising the design of Cascading Outage Analysis
(COA) Model, the simulations using the COA, discussion of results and multiple revisions
of the paper.

2Bing Huang, Alvaro Cardenas and Ross Baldick, “A Study of the Impacts of IoT De-
mand Attacks on Power Grids,” 28th USENIX Security Symposium, Santa Clara, CA, 2019.
Alvaro Cardenas and Ross Baldick contributed in advising and discussion of IoT simulations,
polishing and revising the paper in multiple rounds.
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security threats have been considered and studied by the North American Elec-

tric Reliability Corporation (NERC) since at least 2012. Thus, the purpose of

the work described in this chapter is to develop a tool, of potential use to gov-

ernment entities, to assess the effects of specific types of cyber attacks that are

modeled on the Ukraine attacks. The previous chapter described the previous

work on a sequential outage checker based cascading outage analysis (COA)

model. In this chapter, we first apply this COA model to a North American

regional interconnection system model and perform case studies to simulate

analogous system interdictions assuming the cyber attackers gained full control

of the system. During the cyber attacks in Ukraine in 2015, attackers opened

breakers using Supervisory Control and Data Acquisition (SCADA) systems

in three distribution companies that they previously compromised. This is

the most intuitive way for cyber attackers to create power outages once they

have access to SCADA. To help assess the effects of such attacks, we further

develop the COA model and study the impacts of opening different types of

devices of each transmission and distribution company (owner) in the studied

North American regional interconnection system.

The vulnerability of Internet of Things (IoT) devices is a well-known

problem [8, 111, 328]. Previous work has demonstrated that various of IoT

devices from cameras to door locks can be compromised directly or through

their designated smart phone applications [135, 282]. Vulnerabilities of IoT

devices go beyond personal privacy and information security. For example,

the Distributed Denial of Service (DDoS) attack by the Mirai botnet compro-
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mised over six hundred thousand IoT devices and was able to affect multiple

websites and network infrastructures [15]. Recently, more and more devices

with high-energy consumption such as water heaters and air conditioners are

also enabling consumers to interact with them through the Internet. Although

manipulating the energy consumed in a single household is not enough to cause

any major problem to the power grid, a recent paper presented in USENIX

Security 2018 [361] proposed the Manipulation of demand via IoT (MadIoT)

attacks, and showed an attacker who could coordinate the compromise of hun-

dreds of thousand of high-energy IoT devices to launch several attacks on the

power grid, including (i) frequency instabilities, (ii) line failures, and (iii) in-

crease in operating costs. These attacks paint a dire picture of the security

of the power grid as they show that a 30% increase in demand trips all the

generators in the US Western interconnection and a 1% increase of demand in

the Polish grid results in a cascading failure with 263 line failures and affecting

86% of the load in the system.

In this chapter, using the COA model, we perform an in-depth study

of the power grid effects of MadIoT attacks. Our analysis shows that while

MadIoT attacks can create negative consequences on the power grid, the neg-

ative impact on the grid will not be as serious as originally claimed in [361].

In particular, while some load shedding will be necessary to deal with these

attacks, our results show that creating a system blackout–which would require

black start period of several days to restart the grid—will be very difficult,

given the embedded protections that all power systems have throughout their
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infrastructure.

3.2 The Design of Cyber Attack Experiments

There are certain limitations of the studies on power system cyber at-

tacks: first, the absence of accurate transient simulation data; second, the lack

of perfect fidelity of power flow model; third, the imperfect models of protec-

tion. The first limitation will be elaborated in section 3.2.1. For reasons of

confidentiality, the power flow model of the North American regional intercon-

nection system is not the real system case. As discussed in detail in section

3.2.2, we model the system protections in a way that approximates the system

response to the contingencies but do not try to replicate the real protection

configurations.

Because of these limitations, our results are indicative of the types

of outcomes that might result from attacks by terrorists but are not specific

predictions for a real system. The assumptions would reflect the sort of limited

information that might be gathered by a terrorist.

3.2.1 Transient Data

The power flow case available for investigation does not include tran-

sient data. Therefore, in order to implement the COA model, we assemble

the transient data (machine, exciter, governor) from IEEE standard 300 Bus

case. The generators in the IEEE 300 Bus system have 6 levels of real power

outputs, so we create a range of generation level with 7 intervals. Then, we
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considered each generator in the interconnection case in our study and locate

which interval its power capacity falls into and use the IEEE 300 Bus system

transient data of that interval to configure the generator in the interconnection

case.

For reasons of confidentiality, we were not able to obtain the actual

generator transient data, so we apply the above method to approximate the

system transient behaviors. With the approximated transient data, the gener-

ator rotor angles in the system are very sensitive to even single contingencies

indicating that the model is not reflecting how an actual system would behave.

However, some of these results still display some interesting insights that will

be shown and discussed in section 3.3.1.3.

3.2.2 Protection Configurations

There are two protections implemented in the transient simulation,

namely Over/Under Frequency Generator Tripping (O/UFGT) and Under

Frequency Load Shedding (UFLS). If the frequency at a bus deviates from

a predefined threshold for more than a specific time period, the generator

connected to that bus would be tripped, and a certain percentage of load

connected to the bus will be shed. The details of the protections are shown

in Tables 2.1 and 2.2. As discussed in Sections 2.5 and 2.6, since the cur-

rent and voltage responses in the system are normally slower than frequency

feedbacks, the Time Inverse Overload, Time Inverse Under Voltage Load Shed-

ding, and Time Inverse Over Voltage Generator Tripping are modeled in the
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steady state simulation. Both protections will calculate tripping times once

the current flow on branches or the voltage at buses exceed the thresholds. The

element (branch, generator, or load) with the shortest tripping time will be

tripped as the initial conditions for the next iteration of transient simulation.

The parameters of the steady state protection models described in equations

(2.3),(2.4) and (2.5) are shown in Table 3.1.

Table 3.1: Steady State Protections

Over Load Over Voltage Under Voltage

Threshold Ith = 2 × line limit [amps] U o
th = 1.3 [pu] Uu

th = 0.8 [pu]

Parameters Tp = 0.05 k = 0.5 k = 0.5

3.2.3 Cyber Attacks Target on Grid Control Centers

Based on the experience in Ukraine power system hacking events, we

present three types of experiments that simulate analogous attacks on each

transmission and distribution system provider (TDSP) in the system in turn:

1. Open all devices of that TDSP;

2. Separately open all branches in each of three different voltage levels

of that TDSP;

3. Open all generators and loads connected to the lines of that TDSP.

Although experiment 1 is the closest scenario to the Ukraine attack,

experiment 2 creates examples that apply when companies only own branches

at specific voltage levels or otherwise have control systems that are partitioned
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across voltage levels, while experiment 3 creates examples where the attack

targets the creation of supply/demand imbalance as well as removing trans-

mission and distribution capability.

Before detailed discussion of the case studies, we state two main as-

sumptions that we make about a cyber attack:

• Cyber attackers already have full and unlimited ability to control the

tripping of breakers, and

• Cyber attackers actions of tripping of breakers of a TDSP are simul-

taneous.

In this study, an “Algorithmic non-convergence” is deemed to occur if

the PowerWorld transient solver could not find a solution. This could happen

either after the initial contingency or in subsequent transient runs. In contrast,

“Convergence” case means PowerWorld was able to obtain a transient solution

after the initial contingency, and also that any subsequent runs of the transient

solver were completed.

Algorithmic Non-convergence is a proxy to a complete blackout oc-

curring; however, it should be recognized that the correspondence between

Algorithmic Non-convergence and blackout is not perfect. Convergence is a

proxy to the system staying energized, although some generation and load

could be lost.
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3.2.4 IoT Demand Attack

We state three main assumptions (in line with previous work) about

an IoT demand attack:

1. IoT attackers already have full and unlimited ability to control the

compromised portion of loads;

2. IoT attackers’ actions of increasing or decreasing of compromised

loads are simultaneous;

3. The portion of the system demand compromised by the cyber at-

tackers are evenly distributed at each demand connection point in

the transmission system.

The third assumption is a speculation about the scalability of an IoT

attack. For example, if the adversary is able to compromise one brand of AC,

they can systematically apply the attack to as many ACs as possible in the

target system. Thus, if the total energy capacity of all such ACs is 10% of the

system demand, this 10% of demand is likely to be spread to every demand

connection point in the transmission system.

3.3 Simulation Results of Cyber Attacks on Grid Con-
trol Centers

In this section, we present the simulation results and discussions of

experiments described in section 3.2.3. First, we would like to investigate what

types of initial attacks are prone to cause an algorithmic non-convergence to
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the system in section 3.2.3. Although convergence means that a complete

algorithmic non-convergence does not happen, there is still load shed in the

system. Therefore, we display the results of load shedding in the convergence

cases and discuss relations between the amount of lost load and the voltage

levels of the attacked lines in section 3.3.2.

3.3.1 Algorithmic Non-convergence Cases

A brief summary of the number of algorithmic non-convergence cases

in the experiments is shown in Table 3.2.

Table 3.2: Number of Algorithmic Non-convergence Cases

Initiating

Contingency

All

Devices

All Branches All Loads and

GeneratorsEHV HV MV

Results 9/231 6/66 9/99 0/55 3/214

The results in Table 3.2 show the number of algorithmic non-convergence

cases as a fraction of the total number of cases of each type. For example, in

the experiment to open all extra-high-voltage (EHV) branches, the results

6/66 indicates that in total there are 66 TDSPs with EHV lines, and if all of

the EHV lines of a given TDSP are opened, 6 cases of TDSPs would result in

algorithmic non-convergence. The ratio of algorithmic non-convergence cases

to total cases is the same for opening EHV lines and high-voltage (HV) lines.

It is zero in the experiment on medium voltage (MV) lines. Since EHV and

HV lines carry heavy power flow in the system, opening those high voltage

lines will result in very large changes in power flow, which has a greater poten-
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tial to overload other lines and precipitate a cascade. Similarly, opening such

high voltage lines would also tend to cause power imbalance locally or globally

and stress the system the most. Therefore, opening the lines of TDSPs that

have high voltage lines is more prone to cause algorithmic non-convergence. In

contrast, while opening MV lines may interrupt load, there is a smaller effect

on overloading other lines.

3.3.1.1 Open All Devices of a TDSP

Figure 3.1: Histogram of Algorithmic Non-convergence and Convergence Cases

Figure 3.1 shows the distribution of the number of tripped devices for

both the algorithmic non-convergence and convergence cases. Here, “devices”

include generators, loads, lines, transformers, and capacitors. The compar-

ison between the distribution of the number of devices in algorithmic non-
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convergence cases versus convergence cases suggests the intuitive result that

algorithmic non-convergences are more likely to occur when TDSPs with large

numbers of devices have their devices removed from the system. Nevertheless,

algorithmic non-convergences occur even for some TDSPs that have a small

number of devices.

3.3.1.2 Open All Branches at a Particular Voltage Level of a TDSP

Figure 3.2: Average Pre-attack Flow vs Number of HV Branches Scatter Plots

Figures 3.2 and 3.3 show the scatter plots of the average pre-attack

flow (vertical-axis) and number of branches (horizontal-axis) in each case. In
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the plot, each dot represents a simulation result from opening all the lines at

a particular voltage level for a particular TDSP. Algorithmic non-convergence

cases are the red dots, convergence cases are the green dots. The average pre-

attack flow is the average power flow on the branches before they are opened

in the contingency. These figures show the results of simulation without rotor

angle checker.

Figure 3.3: Average Pre-attack Flow vs Number of EHV Branches Scatter Plots

At both HV and EHV, it can be observed that there are thresholds in

the number of branches. This is consistent with the conclusion drawn from

Figure 3.1. In particular, an algorithmic non-convergence will happen if the
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number of branches in an initiating event is greater than the threshold.

When we include the rotor angle checker in the same experiment, in ad-

dition to the similar thresholds in Figures 3.2 and 3.3, the results show thresh-

olds on average pre-attack flow that result in algorithmic non-convergence.

This result indicates the importance of loading on branches before the attack.

Intuitively, the observation from the simulation with rotor angle is reasonable.

The more power flow is disturbed, the higher the probability that local power

imbalance would happen, and the more generators would be tripped because

of rotor angle deviation. Therefore, we would expect a qualitatively similar

result if more accurate transient data were available, although the details of

the number of tripped devices would be different.

3.3.1.3 Trip All Generators and Loads of a TDSP

In the experiment of tripping all generators and loads of a TDSP, there

are only three algorithmic non-convergences in the simulation results with no

rotor angle checker. The TDSPs in these three cases either have very large

amounts of generation relative to load, or vice versa. The algorithmic non-

convergence is primarily caused by the significant supply-demand imbalance

due to the initial contingency.

Figures 3.4 and 3.5 show the results of tripping all generations and loads

of a TDSP when the rotor angle checker is included in the simulation. It can

be observed that the difference between generation and load lost is important.

In Figure 3.4, the vertical axis indicates how much load is lost in the initial
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Figure 3.4: Tripping All Generation and Loads Scatter (Include Generator Rotor
Angle Checker)

contingency and the horizontal axis indicates how much generation is lost in

the initial contingency. In this case, we can see that above a certain level of

load and generation, all the convergence cases (green points) involve roughly

equal amounts of generation and load tripped. This result clearly shows that

the power imbalance caused by the initial contingency is critical to algorithmic

non-convergence in the system. The extreme case shown in the figure is that

the system converged when around 1000 MW of both loads and generations

are lost in the initial contingency.
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Figure 3.5: Tripping All Generation and Loads Histogram (Include Generator
Rotor Angle Checker)

In Figure 3.5, the horizontal-axis is the power imbalance caused by the

initial contingency calculated as the amount of generation minus the amount

of loads. The vertical-axis is the frequency occurrence. This histogram shows

how the algorithmic non-convergence and convergence cases distribute for dif-

ferent levels of power imbalance. The results show that the convergence cases

mostly occur when the differences between generation and load lost is small.

In addition, the frequency of algorithmic non-convergence (the red bars) on

the right is greater than the left. That is, in the case of creating energy imbal-
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ances in the system by tripping generations and loads, given the same level of

imbalance, tripping more generations are more likely to cause an algorithmic

non-convergence than tripping more loads.

3.3.2 Load Lost in Convergence Cases

Convergence cases are the cases in which both transient and steady

state simulation would have a feasible solution at the end of COA. As men-

tioned above, although convergence means that a complete algorithmic non-

convergence did not happen, there is still load shed in the system.

Figure 3.6 shows the lost load for the case of opening lines at a particular

voltage level of a TDSP. The vertical axis shows the amount of load shedding

at the end of simulation, and the horizontal axis is the sum of real pre-attack

flow on the branches that are attacked. We can observe that, at each of the

three voltage levels, the amount of load lost caused by opening the breakers of

a TDSP at a particular voltage level has a relatively linear relationship with

total pre-attack flow on the branches for that TDSP. In addition, the slope of

MV cases is higher than HV cases, and EHV case has the lowest slope.

This result suggests that the more pre-attack flow on the lines that

are attacked, the more load would be lost. In addition, attacks on MV and

HV lines are more effective than attacks on EHV lines in terms of creating

load lost. In many cases, because the lower voltage lines are close to the load,

the loss of those low voltage lines would directly disconnect loads, or lead to

overloads on lines that disconnect loads. In addition, since EHV lines are
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Figure 3.6: Load Lost of Open Branches in Different Voltage Levels

highly meshed, if the system does not face algorithmic non-convergence, the

loss of EHV pre-attack flow is easier to be handled by the remaining network.

Therefore, the loss of EHV lines is less likely to result in further load lost.

3.4 Simulation Results of IoT Demand Attacks

This section will first demonstrate the contribution of applying the

cascading outage analyzer to the study of IoT demand attacks with a relatively

simple but standard Western System Coordinating Council (WSCC) model

with 9 buses and 9 lines to compare our results with previous work. Then, a
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detailed study of IoT demand attack described in Section 3.2.4 on the large

study case described in Section 3.2 is presented. The settings for the frequency

protections are updated according to ERCOT operation guide [123] for the

study in this section:

Table 3.3: Over/Under Frequency Generator Tripping. Source: data is from Sec-
tion 2.6.1 of [123].

Over

Frequency

Threshold

Time

Delay

Under

Frequency

Threshold

Time

Delay

60.6 Hz 9 min 59.4 Hz 9 min

61.6 Hz 30 sec 58.4 Hz 30 sec

61.8 Hz or above 0 sec 58.0 Hz 2 sec

57.5 Hz 0 sec

Table 3.4: Under Frequency Load Shedding. Source: data is from Section 2.6.2
of [123].

Frequency

Threshold

System Load

Relief

Time

Delay

59.3 Hz 5 % 0 sec

58.9 Hz 15 % 0 sec

58.3 Hz 25 % 0 sec

3.4.1 Demonstration of IoT Demand Attacks Simulations with a
Cascading Outage Analyzer

In order to understand the effect of an IoT attack on the grid, it is

important simulate the response of power systems to disturbances, and in
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particular, to include the existing power system protections. The Cascading

Outage Analyzer described in Chapter 2 is designed to provide such a sim-

ulation. This tool is used to update analyses in [361] using a higher fidelity

model.

3.4.1.1 The Need for Closed Loop Transient and Steady-State Sim-
ulations

Since the operation of a power system after a disturbance is a contin-

uous process from seconds to minutes and even a longer time frame, a closed

loop structure of the cascading outage analyzer can better approximate the

operations of the power system over those various time scales after a distur-

bance. As previously discussed, the results and states of the system after the

transient simulation are stored and set as the starting point of the steady state

simulations. The cascading outage generated from steady state simulations, if

there is any, will be used as the initial condition in the transient simulation

for the next loop.

Previous work in [361] considered transient and steady state simulation

as separate, and as a result, the transient impacts on generators and system

frequencies are not present in the power flow simulations. Therefore the predic-

tions of cascading outages can differ between the two simulations. Let us look

at an example to see a possible inconsistency between the prediction in [361]

and the COA model prediction, while emphasizing the significance of a closed

loop simulation to the analysis of cascading outages and IoT demand attacks.
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Figure 3.7: PowerWorld 9-bus system.

Figure 3.7 shows the WSCC 9-bus system considered by Soltan et

al. [361]. Consider an IoT demand attack that increases all loads by 15%

in the system. Assume an outage would happen on a line if the power flow

is over its rated capacity [68]. If the transient impacts of this attack are not

considered, the results from the steady-state power flow would indicate a line

outage between bus 7 and bus 8. The resulting line considered to be in outage

is highlighted with a red circle (with the number showing the percentage of

the rated capacity) in the top left corner in Figure 3.8.

However, because of the sudden load increase caused by the MadIoT

attack, load and generation are not balanced and the frequency of the system

will be affected. A frequency protection relay would disconnect a generator

from the system if the frequency of the system stays lower or higher than the
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Figure 3.8: Power flow results of 15% of load increase.

generator’s threshold values for too long in order to prevent permanent damage

to the generator. Figure 3.9 shows the frequency responses to the 15% load

increase by considering frequency protection relays on generators [361]. We can

see that the system frequency starts to decline after the attack starts (at time

equal to one second of the simulation). The frequency relays then disconnect

all the generators in the system two seconds after the frequency drops below

the threshold of 58 Hz. Therefore, the system is completely blacked out in

the transient simulation of the IoT demand attack. These transient stability

results are different from the steady state stability study, which identified only

one cascading line outage as discussed in the previous paragraph.

This is a motivating reason to include transient and steady state analy-

sis together in a single simulation. Because transient and steady-state simula-
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Figure 3.9: Frequency responses to the 15% of load increase in the transient
simulation.

tions are connected in a closed loop in our model, the transient solution at the

end of the simulation time will be used as initial condition for the steady-state

power flow simulation. In this example, if the under frequency load shedding is

not considered, which will be discussed in subsection 3.4.1.2, the transient so-

lution would include the fact that all three generators were disconnected from

the system. Thus, the power flow solution would indicate a system blackout.

3.4.1.2 Under Frequency Load Shedding

Under Frequency Load Shedding (UFLS) is a countermeasure applied

by bulk power system operators [123] to reduce the incidence of generator

under-frequency tripping, which is a great danger to the reliable operation

of the power systems. UFLS is a coordinated disconnection of small and

non-critical loads (e.g., no Hospitals are ever disconnected) to prevent a large

blackout.
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To illustrate why it is important to consider UFLS in the simulation

of IoT demand attacks, let us first take a second look at Figure 3.9. As

observed, after the 15% load increase attack, the system frequency starts to

decrease. Because there is no action that could relieve the imbalance between

the increased load and unchanged generation, the system frequency declines

fast until it drops below the thresholds of frequency protections at generators.

Because the frequency stays below the thresholds for longer than the delay

time set at the frequency protections, the generators are disconnected and

there is a system blackout.

Now, let us compare the simulation results when we incorporate UFLS.

Figure 3.10 shows the frequency response to the 15% system demand increase

attack on the WSCC 9-bus system. The system frequency declines after the

IoT load increase attack starts at one second of the simulation time. The

frequency of the system then reaches the first UFLS threshold at 59.3 Hz,

and as a result, 5% of the system load is disconnected. However, this is not

enough and the system frequency keeps declining until it reaches the second

threshold: 58.9 Hz, and at that time a total of 15% of the system demand

is disconnected and the frequency stops decreasing and starts to stabilize.

The system frequency reaches a new stable state and there are no generator

disconnections from the system.

What is more, because of UFLS, the system load is reduced to a level

that no transmission line is overloaded as defined to be a line carrying power

flow that is greater than its rated capacity. Therefore, there are no cascading
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Figure 3.10: Frequency responses with Under Frequency Load Shedding to the
15% of load increase in the transient simulation.

Figure 3.11: Power flow on the transmission line connected between bus 7 and
bus 8 in the transient simulation

outages. In Figure 3.11, we can observe that the transmission line between bus

7 and bus 8 in Figure 3.7 is overloaded after the IoT demand increase attack

begins at one second. However, the power flow on the line soon decreases

following the load shedding event caused by UFLS and remains below its

rated capacity at the end of the transient simulation. As discussed in Section
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3.4.1.1, a power flow steady state simulation starts based on the solution of

the transient simulation; the results of this new steady state stability analysis

are shown in Figure 3.12. As seen in Figure 3.12, no line is overloaded and

the closed loop transient and steady state simulation ends.

Figure 3.12: Power flow results after the transient simulation with UFLS.

The example in this section shows that the simulation results will be

significantly affected if UFLS protections are considered. In fact, by includ-

ing UFLS, the closed-loop transient and steady state simulations used in this

work generates a result suggesting that the system would shed some demand,

but all the system transmission lines and generators will remain in operation.

This result is different from the cascading line outage suggested by our earlier

steady state simulation and the complete system blackout suggested by pre-

vious work [361]. This example shows the importance of detailed modeling of
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transient response and protection.

3.4.1.3 Frequency Response Model

UFLS protections have been considered in previous work in [97] on load

attacks in power systems. However, the simplified frequency response model

in [97] does not fit well with the analysis of IoT demand attacks. The system

frequency responses in the study are modeled as a single large machine that

represented an “aggregation” of all the synchronous generators in the system.

Under this simplification, each of the generators in the system will respond

to a disturbance exactly the same as described by the model in [97]. The

assumption implicitly made by this simplification is that all the generators in

the system will always keep synchronism and respond identically. However,

when the system is under a significant disturbance, generators will respond

differently to the disturbance and the system will risk losing synchronism in a

short time after the disturbance. In some scenarios, the frequencies at different

buses will diverge from synchronism. This frequency diversity can not be

reflected in the single machine model studied by Dabrowski et al. [97]. A

detailed discussion of these phenomenon will be demonstrated with examples

in Section 3.4.2.5.

3.4.1.4 Power Flow, Line Overload Outage and Bus Voltage Outage

Power flow have been solved in previous work in [361]. Although not

directly specified, it is very likely the previous work [361] uses DC power flow
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for the cascading outage analyses. In contrast, we use PowerWorld [320] to

solve an AC power flow for each of the steady state simulations.

The computation of AC power flow gives voltage magnitude, phase

angles, and power flow on transmission lines. However, DC power flow is

a linearized calculation based on several assumptions ignoring variation in

voltage magnitudes. First, using a DC power flow model for cascade prediction

may result in a misrepresentation of the gravity of a cascade. Secondly, the

voltage changes in the cascading outages will not be captured in a DC power

flow. DC power flow is a simplification to obtain fast simulation results, but it

is not adequate in a study of a major disturbance like an IoT demand attack.

The line overload outage models also play an important role in under-

standing the impact of MadIoT attacks. Previous work in [361] relied on the

criteria described by Cetinay et al. [68], where a line will be removed from

the system if the steady-state results indicate that the power flow on the line

is greater than its rated capacity. When a transmission line is overloaded,

the heat generated from the extra power flow on the line will sag the trans-

mission line. Although it exposes the line to a possible outage from faults

associated with ground elements or vegetation, it does not necessarily cause

any immediate real danger to the system. In fact, under an emergency, the

system operator is allowed to use overloaded transmission lines for additional

transmission capacity [124]. Therefore, instead of immediately removing the

overloaded lines, we utilize an Overload Outage Checker (OOC) that will cal-

culate the time of tripping given the overload level. The details are described
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in Section 2.5. The time inverse calculation in the OOC will result in a quick

tripping time for the lines that are heavily overloaded. In this way, we approx-

imate the different actions taken at different levels of overload on transmission

lines.

Finally, the voltage profile of the system may decline when the system

is under extreme conditions and voltage collapse is a typical pattern seen

in cascading outages. Therefore, a Voltage Outage Checker is defined and

discussed in Section 2.6. To the best of our knowledge, we haven’t found a

specific model of voltage failures in the previous work of IoT demand attacks.

Based on the above discussions, we believe that, with a more detailed

and realistic model, our results of IoT demand attack simulations can provide

a different set of insights for similar studies.

3.4.2 Simulation Results in a Large Power System

In addition to the demand increase attacks, we also consider attacks

that increase and then subsequently decrease the load. The intuition for this

attack is that the demand increase attack may trigger system automatic re-

sponses such as UFLS and therefore cause the system to drop loads, for ex-

ample, to reverse the frequency decline. Then, a successive demand decrease

attack can potentially drive the system to an unstable state, because there is

less UFLS available after the first attack.

First, because of the features of an IoT attack, it is easy to increase

and decrease the demand in a short period time once the demand is compro-
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mised. In addition, if the attackers have some knowledge of the power system

operation, it would not be hard for them to figure out that there are some sys-

tem frequency protections that are designed to stop and reverse the frequency

drop caused by a sudden demand increase. The attackers will decrease the

demand when they think the system frequency reverses due to UFLS and by

doing so intend to overshoot the system frequency to be above the thresholds

of generator over-frequency protections in the hopes of causing a generator

disconnection.

This demand increase and decrease attack was studied by Dabrowski

et al. [97]. However, our results will differ because the simplification of the

frequency model in [361] as discussed in Section 3.4.1.3. In addition, if the

attacker can cyclically increase and decrease then decrease demand, it is also

reasonable to assume that the attacker is capable to achieve a repetition of

this cycle of attacks. This extends the attack in [361]. The simulation results

and detailed discussions of the experiments are shown in Section 3.4.2.4.

3.4.2.1 Terminology

First, as mentioned in Section 2.7, the loss of electric power caused by

load shedding from UFLS is temporary and can be quickly corrected within

an hour. However, a complete system blackout will result in all customers

in the system losing their electric power for several days before the system is

restored. Therefore, limited UFLS is nowhere as serious as a complete system

blackout.
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Second, as mentioned in Section 3.4.1.4, a transmission line is over-

loaded when the power flow on the line is over 100% of its rated capacity. As

discussed in Section 2.5, overloaded transmission lines are potential causes for

cascading failures but they do not necessarily lead to immediate disconnections

of the lines.

3.4.2.2 Cascading Failures on Transmission Lines after an IoT De-
mand Increase Attack

One outcome the attackers can attempt to achieve is to overload the

transmission lines and potentially cause cascading failures. Those severely

overloaded transmission lines will be disconnected by protection relays. The

trip time of the overload relay on the transmission lines is approximated by

equation (2.3). Then, the attack of load increase may cause cascading failures

on the transmission lines as discussed in Section 2.5. In the following sections,

we consider protection system responses to load increases of 1% and 10% as

suggested by previous work, together with some variations.

1% System Demand Increase Attack

One percent of the system load in this case study is equivalent to 822.7

MW. Figure 3.13 shows the bus frequency responses after 1% of load increase

occurring at second 1 and Figure 3.14 shows the power flow on branches as a

percent of the branch rated capacity.

From Figure 3.13, we can observe that the bus frequencies decline after

the attack at second 1 except for very few buses that are connected to the
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Figure 3.13: Frequency Response to 1% System Load Increase

region outside of the system with DC tie lines and thereby remain less affected.

The system frequency declines from 60 Hz to 59.875 Hz in about 9 seconds

and is settling towards a new stable state towards the end of the transient

simulation. As indicated in Table 3.3 and Table 3.4, the system frequency

doesn’t violate any thresholds of frequency protections on generators and loads.

Notice that we focus our study in a short time window, since 30 seconds of

transient simulation is enough to display the moving trends of the frequency

in this case. In Figure 3.13 we can see the how the frequency is affected after

the attack; however, as long as the bus frequency converges to a stable level,

driving the frequency back to 60Hz can be accomplished either automatically

or manually over a longer time scale.
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Figure 3.14: Branch Flow after 1% System Load Increase

In Figure 3.14, we can see that the power flow of some branches slightly

increases after the attack at second 1. However, no transmission line is over-

loaded due to the IoT 1% load increase attack alone. Note that some branches

are initially overloaded before the simulation and remain unchanged during

the simulation and the overload outage checker is not activated on those lines

under the assumption that protection in the actual system would not have

been activated under these conditions.

The results show that 1% of load increase attack does not interrupt

any generator or load in the system. In addition, in the end of the simulation,

there is no transmission line that is overloaded above its initial loading due to

this load increase attack.
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In contrast to our results showing fairly small changes to our system,

Soltan et al. [361] find that with a 1% increase in load there could be cascading

outages in the summer peak of the Polish grid. We are surprised that a sudden

1% increase is load can lead to cascades in a power system. The reason for

our surprise is the N-1 security criterion.

The N-1 criterion requires that electricity systems be operated to be

able to withstand sudden step changes in the supply-demand balance due to

outages of generation. The NERC disturbance control performance standard

[285] requires any system to be able to withstand “the most severe single

contingency” which may include certain common-model double outages. For

ERCOT, for example, (the Power Grid of Texas) this amounts to always having

2700 MW or more of reserves to cope with a simultaneous outage of nuclear

units having total production of around 2700 MW. To put that in perspective,

peak load in ERCOT is around 70GW, and 1% of 70GW is 700MW, which is

much smaller than the 2700MW of reserves carried in ERCOT.

While an increase by 700MW in load due to an IoT attack (and the

reaction by generation reserves) would result in somewhat different changes in

transmission flows compared to the effect of a 700MW decrease in generation

(and the reaction by generation reserves), it is unlikely that an increase in

load of 1% would result in any unacceptably adverse conditions on the trans-

mission system. This is because load is geographically distributed around the

system, so that it is unlikely for there to be a more than a 1% increase in most

transmission flows, and it is unlikely that the system is operating such that a
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1% increase in current would immediately trigger the overload protection.

In the Eastern and Western Interconnections of North America, the

total load is much larger (several hundred GW) but even 1% of this would

only amount to slightly more than the double outage of a nuclear unit. To

summarize, the results of the Polish power grid reported by Soltan et al. [361]

imply that the system being modeled is not N-1 secure. Since this is not an

allowable operating condition sunder NERC standards, we believe that a result

analogous to that in [361] is not credible for a North American System.

IoT Demand 10% System Demand Increase Attack

Ten percent of system load in our case study is equivalent to 8,227.3

MW, which would be equivalent to an adversary controlling approximately

over 8 million air conditioners. Figure 3.15 shows the bus frequency responses

after 10% of a load increase attack at 1s and Figure 3.16 shows the power flow

on branches as a percent of the branch rated capacity.

To better understand the variations of power flow depicted in Figure

3.16, consider Figure 3.15. From Figure 3.15, we can observe that the bus

frequencies plummet after the attack begins (1s). The only lines that are

not affected are the few buses that connect the power grid to another region

outside the system with DC tie lines. UFLSs are then activated at second 3.5

and reverse the system frequency decline by shedding 5% of the system load.

Again, as long as the bus frequency converges to a stable level, the differences

between the converged value and its initial value of 60 Hz can be made up
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Figure 3.15: Frequency Response to 10% System Load Increase

either automatically or manually over a longer time scale. Although the under

frequency shedding has no deliberate time delay as indicated in Table 3.4, a

0.02 second of relay operation time is included in the simulation. Therefore,

the load shedding occurs 0.02 second after the time frequency falls below the

first UFLS threshold of 59.3 Hz.

In Figure 3.16, we can find the power flows of some branches increase

after the attack at second 1. However, the power flows of those branches

drop to or gradually decrease to roughly their initial values after the action

of under frequency load shedding at 3.5 second. Therefore, at the end of

the simulation, there is no additional transmission line overloaded due to the

IoT load increase attack. Note that some branches are initially overloaded
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Figure 3.16: Branch Flow after 10% System Load Increase

before the simulation and remain unchanged during the simulation and so ,as

previously, the overload outage checker is not activated for those lines.

Thus, even with an assumption of 10% of load compromised and in-

creased by adversaries, our case study doesn’t suggest a major threat of cas-

cading failure on transmission lines. The simulation results show that the

quick action of under frequency load shedding after the load increase plays

a critical role in relieving the negative effects of the attack. The amount of

UFLS is intended to reflect ERCOT standards. The Eastern and Western In-

terconnections may have overall lower levels of UFLS than ERCOT; however,

they have much larger levels of inertia than ERCOT. We have not investigated

the situation in detail for the Eastern and Western Interconnections.
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3.4.2.3 IoT Demand Increase and Decrease Attack

One of the characteristics of an IoT attack is that the attack is highly

distributed and it is hard to detect. Once the load is compromised, it is

difficult to clear the threats in a short time after the adversaries launch their

first attack.

From the study in section 3.4.2.2, under frequency load shedding suc-

cessfully prevents cascading failures of transmission lines from a single load

increase attack. However, under an IoT demand attack, the adversary may be

able to reduce the compromised load again after the system under frequency

load shedding reverses the frequency decline in order to cause a frequency over-

shoot that may trigger over frequency relays on the generators and disconnect

generators.

Based on the simulation shown in Figure 3.15 and Figure 3.16, we

create an experiment of an IoT demand increase and then decrease attack.

The bus frequency responses are displayed in Figure 3.17. To make the highest

frequency overshoot from the load decrease, we choose to decrease the load at

second 20 where the bus frequencies roughly reaches to and stabilizes at the

maximum observed from Figure 3.15.

A straightforward approach in this experiment is to increase the load

in the first attack and decrease the same amount of load in the second at-

tack. However, we investigate a worse scenario where in the second attack,

we decrease by twice the amount of the load increase in the first attack. A
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Figure 3.17: Frequency Response to a Cycle of Load Increase and Decrease

scenario for this experiment is the attackers have control of some AC loads,

they may decide to run half of the AC loads until peak hour and then suddenly

increase to full capacity. The reason attackers might not want to keep the load

at zero before increasing to maximum capacity can be interpreted as follows:

First, the attacker may pick the peak hour when the system has the least

spare generation capacity in a day to launch this attack to stress the system

the most with a given amount of compromised load. Second, holding the AC

load at zero means keeping the AC off, and this would expose the attackers

to discovery. Therefore, holding the compromised load capacity at 50% be-

fore increasing them into the maximum during the peak hours is a proxy to

something the attackers may want to do to create larger impacts.

The result in Fig. 3.17 shows that the frequency does overshoot af-
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ter the loads decrease at second 20, however the system frequency tends to

stabilize at 61.7 Hz, which happens about 10 seconds later. From Table 3.3,

we can observe that 61.7 Hz will not cause an immediate generation trip by

the generators’ frequency protections. Again, it should be emphasized that

these protection parameters are intended to reflect ERCOT. The Eastern and

Western Interconnection may perform differently.

As mentioned in Section 3.4.2.2, 10% system load compromised by the

adversary is already a significant assumption. We take this even further to

20% of the system load in this simulation to see if the IoT attack can cause

a worse result. However, we still do not observe an immediate generation trip

after this demand increase and decrease attack in a system that is intended to

reflect ERCOT standards for UFLS.

3.4.2.4 Under Frequency Load Shedding in a Repeated IoT Attack

In section 3.4.2.3, we explored the attack of a “cycle” of load increase

and decrease. The adversary could repeat the attack cycle of increasing and

reducing the compromised load as long as their capabilities are not disabled.

The under frequency load shedding would disconnect some amount of de-

mand each time when the IoT attack causes the frequency drop below any

thresholds. Once the load is disconnected by Under-Frequency Load Shedding

(UFLS) systems, the restoration of shed load is coordinated between the Inde-

pendent System Operator (ISO), Transmission Service Providers (TSPs) and

Distribution Service Providers (DSPs) [123]. As discussed in Section 2.7, such
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restoration associated with coordinations between different entities may take

30 minutes to an hour to complete. Therefore, a potential negative effect of

such repeated attacks is that it can deplete the under frequency load shedding

resources before they are restored, which might eventually lead to a system

frequency failure.

However, it may take many cycles of IoT demand increase and decrease

attacks to deplete the UFLS resources. Therefore, the efficiency, even the

feasibility of the approach of using up the UFLS by such repeated IoT demand

attack remains unclear. The result in Fig. 3.15 shows that although the system

frequency needs additional measures to be brought back to its initial frequency

of 60 Hz, the frequency decline caused by 10% of system load increase can be

stopped by only 5% of system load shedding. From Table 3.4, in ERCOT 25%

of the system load is contracted with the ISO as UFLS and this level is modeled

in this study. Under this condition, the adversary needs to apply the attack

at least five times to deplete the UFLS resources. What is more, additional

under-frequency relays may be installed on transmission facilities with the

approval of the ISO provided the relays are set at 58.0 Hz or below [123].

That means, in reality, the adversary may need to apply the attack even more

times to deplete the UFLS and cause a possible system failure.

3.4.2.5 Over/Under Frequency Generator Tripping

In Section 3.4.2.3, we briefly discussed the potential threats of generator

disconnections caused by over frequency protections. In this section, we extend
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this discussion to IoT attacks that specifically target disturbing frequency and

causing generator disconnections by frequency protection. In order to observe

the response of frequency protection at generators, we studied the IoT attack

of load increase or decrease by 30% as suggested in [361].

Figure 3.18: Frequency Response to 30% System Load Increase

Fig. 3.18 shows the system frequency response to an IoT attack that

increase the system load by 30% at second 1. First, we can observe that due to

the sudden load increase, the bus frequencies decline dramatically and some

of them drop quickly below the first UFLS threshold of 59.3 Hz. Then 5%

of system load are disconnected by UFLS. We notice that the frequency at

some buses decline slower at the instant of the attack (potentially with no

direct connection of load before the attack) and haven’t reached any UFLS

thresholds. For convenience, we name this group of buses as Group 1. The
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buses with DC tie lines that are less affected as mentioned in section 3.4.2.2 is

Group 2. The group of buses such that their frequencies decline faster and drop

below UFLS thresholds are named Group 3. The group names are indicated

in Fig. 3.18. Notice that, even within a group, the frequency responses are not

exactly the same. Because of the first UFLS action, the frequency deviation

between buses increases. After 5% of system load shed, the frequency at Group

1 potentially with more generation in the region starts to increase while the

frequency at Group 3 with insufficient generation keeps declining.

Shortly afterwards, the frequency at Group 3 declines to be below the

second and third UFLS thresholds - 58.9 Hz and 58.3 Hz at around second 2.6

and second 5.6, respectively. An additional 10% of system load is disconnected

on each occasion. The frequency deviation between Group 1 and Group 3 gets

larger after the two UFLSs. What is more, the frequency deviation between

buses in a group, especially in Group 1, increases after the actions of UFLS.

After the three UFLSs that disconnect a total 25% of system load, the fre-

quency decline at Group 3 is stopped. Because there is no additional load

shedding, the frequency at Group 1 stops increasing as well. Thus, although

the bus frequencies haven’t converged at the end of the simulation, they stop

further diverging and prevent frequency protections disconnecting generators.

Fig. 3.19 shows the system frequency response to an IoT attack that

decreases the system load by 30% at second 1. We can find the bus frequencies

increase fast after the attack and few of them go above the threshold of im-

mediate over frequency protections at generators - 61.8 Hz within 5 seconds.
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Figure 3.19: Frequency Response to 30% Load Decrease

The over frequency protections then disconnect generators that result in 25%

reduction of system generation. After the tripping of generators, the bus fre-

quencies reduce and converge to a value close to 60 Hz and no more protection

actions or failures are observed.

Compared to the system frequency response to an IoT attack that in-

creases the system load, we find that the bus frequencies react differently to

the IoT attack that decreases the system load. In Fig. 3.19, although the

frequencies of some buses increase faster than those in some other buses, the

frequencies gradually converge after 25% of the system generation is tripped.

One of the conclusions we can draw from this comparison is that a quick pro-

tection reaction in big scales like the generation tripping in Fig. 3.19 performs
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better than the gradual protection actions like the load shedding in Fig. 3.18

in terms of the system frequency restoration.

We also find that the tripped generations in this simulation consist of

a significant amount of wind generation. The benefit of disconnecting the

wind generation or any generation that doesn’t provide inertia in this condi-

tion is that the system loses less inertia after the over frequency protection

action. Therefore, the system doesn’t become weaker in terms of maintaining

frequency stability. This phenomenon suggests that generation that doesn’t

provide inertia could be included in the over frequency protection to protect

the system against any following attacks targeting at disturbing the system

frequency after an IoT attack.

3.5 Conclusion and Future Work

By implementing the COA model into a North American regional in-

terconnection system, we demonstrate that this method can be used to assess

the effects of different types of cyber attacks.

3.5.1 Conclusion

From the simulation results of cyber attacks target on grid control

centers, we find that the number of transmission lines outaged at a given

voltage level in the attacked TDSP is critical as a predictor of an algorithmic

non-convergence. There exists a threshold at each voltage level such that

an algorithmic non-convergence will happen when the attacked TDSP has
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more branches tripped than the threshold. We also observe that if the system

survived from the contingency, then an attack on a TDSP with more branches

at the lower voltage levels would cause more load lost.

From the simulation results of IoT demand attacks, we show that, 1%

of load increase attack does not interrupt any generator, load, or transmission

line in the system. We also find that, thanks to under frequency load shedding

protections, a 10% of sudden IoT load increase does not cause a cascading

failure on the transmission lines. In addition, a “frequency swing attack”

is defined as a cycle of load increase and decrease IoT attack that aims to

push the frequency swing to violate the frequency protection thresholds in

the system. However, the frequency swing attack doesn’t show an ability to

cause an immediate disconnection of generators. A possible repeated frequency

swing attack has been discussed. The impacts of depleting the UFLS resources

are discussed. The analysis shows the effectiveness of such attack would be

impacted by any additional frequency protection measures in the system.

Last but not the least, a single IoT attack targeted at disturbing the

system frequency is presented. The simulation results show that, load shedding

by UFLS would split the frequencies at buses under a sudden IoT attack

increasing 30% of the system demand. The same amount of IoT load decrease

attack would cause swift frequency increases and make some bus frequencies

pass the thresholds of the over frequency protections that result in generator

disconnections. The simulation shows the actions of UFLS and over frequency

protection are sufficient to prevent an immediate system failure over a short

81



time after the attack. Additional actions may be needed over a longer time

scale to restore the stable operation of the system, but the main point is that a

system blackout will likely not occur in this situation. In addition, we discover

that including generations that are not providing inertia in the over-frequency

protections would benefit the system in case of following IoT attacks targeting

at disturbing the system frequency.

3.5.2 Future Work

The results from simulation with rotor angle checker cannot be vali-

dated since the data is generic and not specific to the real system generators.

However, for the cyber attacks targets on grid control center, we expect that

with accurate transient data, the intensity (number or amount) of algorith-

mic non-convergence cases and load lost may be changed, but the general

observation, for example, that tripping equal amount of generations and loads

would not cause an algorithmic non-convergence, may still be valid. There-

fore, results qualitatively similar to the outcomes in this study are expected

if accurate transient data were available. We hope to be able to utilize more

accurate transient data in the future.

The model developed to simulate the IoT demand attack is not perfect.

As discussed in 3.2 and above, there are certain limitations in the studies.

Particularly, the results from transient simulations can be more precise if a

detailed transient data for a large system becomes available. We believe the

type of protections considered in this study is the subset of the protections
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in power systems that would contribute to a cascading outage the most after

a disturbance in the system. However, future work can be done to explore

the impacts from other protections that are commonly equipped in the power

systems e.g. different protections on buses [149]. In addition, in this study,

we considered only an IoT demand attack that is evenly distributed across all

the load points in the system. However, in the future work, we will consider

IoT demand attacks targeting only a part of the system.
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Chapter 4

Power System Interdiction Problem

4.1 Introduction

In this chapter, an interaction problem between a defender (e.g. sys-

tem operator) and an attacker (e.g. terrorist) in a power system is presented.

The electric system is designed to satisfy the N-1 security criterion, which

means the system could lose any one of its N components (such as generators,

transmission lines) and continue operating within emergency limits. However,

when multiple, simultaneous contingencies occur, the system might experience

various stability problems, which might lead to the large cascading events de-

scribed in Chapter 2. Outages are typically caused by storms or other extreme

weather conditions but could also be carried out deliberately by knowledge-

able attackers with little risk of detection. The cyber attacks on power systems

studied in chapter 3 are good examples. Further well-planned and coordinated

attacks by terrorists could leave the electric power system in a large region of

the country at least partially disabled for a very long time [95].

In [338], an interdiction problem is formulated as a bi-level mixed-

integer programming problem. A decomposed heuristic algorithm was devel-

oped. The algorithm starts with the defender solving a DC-OPF problem
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(with no attack), the “sub-problem.” The result is an optimal power flow and

generation dispatch that minimize generation costs without any load shed-

ding. A “value” is assigned to each interdictable asset based on, for example,

the power flow on it. Based on the result of the “sub-problem,” the attacker

solves a “master problem” to identify an interdiction plan that maximizes the

estimated value of interdicted assets while not exceeding available interdiction

resources. With this plan, the constraints of the DC-OPF problem are modi-

fied and the new “sub-problem” is solved. Given the interdictions, the result of

the DC-OPF problem minimizes generation costs and the penalty associated

with load shedding. Typically, some load will be shed in the new solution since

valuable assets have been removed from the grid. The process continues by

finding alternative interdiction plans and by evaluating load shedding and sys-

tem operation cost for each of them. The heuristic algorithm has the drawback

that it can require many iterations to obtain a close-to-optimal solution.

Salmeron et al. [339] introduced Global Benders Decomposition (GLBD)

to solve the same problem described in [338] and observed convergence toward

the optimal solution even with a non-linear sub-problem. Like Benders De-

composition(BD) [39], the algorithm does build a concave piecewise-linear ap-

proximating function to the function being maximized. Unlike BD, However,

the function being approximated need not be concave. The key advantage of

GLBD over a single level MILP formulation is that the algorithm’s subprob-

lems represent simple, familiar instances of the primal linear program OPF.

Thus, the user need not maintain a problem that involves unfamiliar con-
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structs from the dual of the OPF model that are complicated by interactions

with binary variables as in Mixed-Integer LP procedure in [276] and as in the

KKT method to solve the subproblem described in [428].

The Cascading Outage Analysis (COA) model analyzes both transient

and steady state system responses to contingencies. These are “short-term”

effects of an attack, but may have various implications. Therefore, to better

represent the system responses to an attack, the COA model is incorporated as

a sub-problem in the interdiction framework in [398] in addition to DC-OPF

used in [338] and [339]. Because of the non-linearity brought by COA model,

the problem in [398] is solved through a heuristic method that is similar to the

algorithm in [338].

In this chapter, the efficiency of the application of the GLBD method

on the bi-level system interdiction problem with DC-OPF as the sub-problem

is first presented. Then work will be proposed to use the same method to

solve the problem with COA model incorporated in the sub-problem. The

test systems are built on a PowerWorld 7 bus OPF case and a PowerWorld 37

bus system with transient stability model and generic costs for OPF.

4.2 Problem Formulation

The problem is first formulated as a bi-level model to maximize the

load shedding and medium-term system operational costs as in [339]. The DC

Optimal Power Flow (DC-OPF) problem is included as a “sub-problem.” The

DC-OPF problem is a linear optimization problem run by the system operator
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to economically dispatch the system generations. The objective of DC-OPF

is to minimize the total system generation costs. The cost of any unserved

load is also included as a penalty in the DC-OPF problem. Based on the DC-

OPF solution, the integer interdiction problem is formulated as the “master

problem.” The objective of the master problem is to maximize the minimum

objective value of the sub-problem over choices of interdiction plan.

4.2.1 Sub-problem

Indices:

i ∈ I set of buses;

g ∈ G set of generating units connected to bus i;

l ∈ L set of transmission lines;

o(l) origin bus of line l;

d(l) destination bus of line l.

Data [units]:

Hg generation cost of unit g [$/MWh];

Qi load shedding cost at bus i [$/MWh];

P̄G
g maximum output from generating unit g [MW];

P̄L
l transmission capacity for line l [MW];

Bl series susceptance of line l [ohm−1];

Dl load at bus i [MW];
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δLl attack on transmission line l provided by the master problem;

δGg attack on generator g provided by the master problem;

δLl attack on transmission line l provided by the master problem;

δIi attack on bus i provided by the master problem;

Variables [units]:

θi phase angle at bus i [radians];

pLl power flow on line l [MW];

pGg generation from unit g [MW];

si load shed at bus i [MW];

Formulation: OPF (L,G, I;D).

min
pG,pL,s,θ

∑
g∈G

Hgp
G
g +

∑
i∈I

Qisi. (OPF.1)

pLl = Bl(θo(l) − θd(l)), ∀l ∈ L. (OPF.2)

∑
g∈Gi

pGg −
∑

l∈L|o(l)=i

pLl +
∑

l∈L|d(l)=i

pLl = Di − si, ∀i ∈ I. (OPF.3)

−P̄L
l (1−δLl )(1−δIo(l))(1−δId(l)) ≤ pLl ≤ P̄L

l (1−δLl )(1−δIo(l))(1−δId(l)), ∀l ∈ L.

(OPF.4)
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0 ≤ pGg ≤ P̄G
g (1− δGg )(1− δIi ), ∀g ∈ G. (OPF.5)

0 ≤ si ≤ Di, ∀i ∈ I. (OPF.6)

θ|I| = 0. (OPF.7)

The objective function (OPF.1) minimizes generation costs and load-

shedding costs in $/h. Constraints (OPF.2) are linearized admittance con-

straints that approximate active power flows on AC lines. Constraints (OPF.3)

maintain power-balance at the buses. Constraints (OPF.4) and constraints

(OPF.5) set maximum power flows for lines and maximum generating-unit

outputs, respectively. Constraints (OPF.4) represents that when line l or the

bus at either end of line l is attacked given by the master problem (δLl = 1,

δIo(l) = 1 or δId(l) = 1), power flow on line l (pLl ) has to be zero. The same

for constraints (OPF.5), it forces the power output of a generator g to be

zero when the generator is attacked or the bus the generator connected to

is attacked. Constraints (OPF.6) ensure that load-shedding does not exceed

demand. Equation (OPF.7) sets the phase angle at the reference bus to 0.

4.2.2 Master Problem

Formulation : IPF.

max
δK∈4

min
p∈P(δK ;D)

f̄(p). (IPF.1)
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δK ∈ 4 ⊆ {0, 1}|K|. (IPF.2)

K = I ∪ L ∪G. (IPF.3)

In (IPF.1) min
p∈P(δK ;D)

f̄(p) denotes OPF in shorthand, with the vector p in-

corporating all decision variables in the sub-problem, with P(δK ;D) represent-

ing (OPF.2)-(OPF.7), and with f̄(.) representing (OPF.1). Constraint (IPF.2)

represents resource-limited, binary interdiction plans defined on generic com-

ponents k ∈ K, and p ∈ P(δK ;D) represents feasible operation of the power

grid with demand vector D and with operating components that are dictated

by δK . More precisely, for δKk ∈ 4, δKk = 1 if component k (i.e. a line, a bus

or a generator) is attacked and disabled, and δKk = 0, otherwise.

4.3 Methods and Algorithms to Solve the Problem

4.3.1 Mixed-Integer-Programming

The difficulty of formulating this problem as a standard mixed-integer

program (MIP) comes from the non-convex, max-min nature of the problem

[341]. If we combine two problems into a standard MIP, then the original

sets L, I and G in the sub-problem are modified to L(δL), I(δI) and G(δG)

respectively. Therefore, in constraints (OPF.4) and (OPF.5), δKk ∀k ∈ K are

no longer given data but decision variables.
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Therefore, these non-linear terms make MIP even harder to solve. Pre-

vious researches have tried to solve the MIP by linearizing those terms. How-

ever, empirical results suggest that it is not an efficient way to solve the prob-

lem. For a 48-bus scenario, the method takes up to three minutes to solve on

a personal computer [341].

4.3.2 Bi-level Optimization and Heuristic Method

The optimal solution of the bi-level problem can be reached through a

heuristic method by solving series of sub-problems and master problems. The

master-problem introduced in section 4.2.2 is reformulated to [339]:

Formulation : IPF (K; M̄).

Data [units]:

αnk index or value of each element k at iteration n [MW];

M̄ limit of attacks on elements [NA];

Variable:

δKk binary interdiction decision variables on element k.

max
δK

∑
k∈K

αnkδ
K
k . (IPF.1’)

s.t. :
∑
k∈K

δKk ≤ M̄. (IPF.2’)

δK ∈ {0, 1}|K|. (IPF.3’)
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The index vector αnk is calculated based on the operation solution from

sub-problem as coefficients of elements in the system. The calculation of co-

efficients aims to capture the attackers’ “interest” in each element or the “im-

portance” of each element. For example, the coefficients for transmission lines

can be the power flow on the lines. Then, the objective function (IPF.1’) max-

imize the “importance” of selected elements. Constraint (IPF.2’) indicates the

maximum number of elements can be attacked due to the resource limits.

The heuristic method is straightforward. Starting with δK = 0, the

product terms introduced in section 4.3.1 become constants. Then, the sub-

problem described in section 4.2.1 will provide a feasible operation solution

p ∈ P(δK ;D). Using p, a index vector αnk is calculated. The master problem

(IPF.1’) is solved and provides a new interdiction plan. These attacked ele-

ments are disconnected in the system topology and the sub-problem is solved

under the new attacking plan. The system cost (including cost of load shed-

ding) gained at each iteration is recorded. The heuristic procedure continues

for a fixed number of iterations or until a time limit is reached. Then the inter-

diction plan associated with the maximum system cost is the optimal solution

of the problem. The heuristic procedure can handle large-scale models be-

cause both the DC-OPF sub-problem and MIP master problem can be solved

quickly, even at large scale.

One thing we need to handle in the heuristic method is that we need

to prevent the master problem from repeating the same interdiction solutions

that appeared in any previous iteration in order to speed up the convergence.
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Therefore, logical constraints are added:

∑
k∈K|δ̂Kk =1

δKk +
∑

k∈K|δ̂Kk =0

(1− δKk ) ≤ |K| − 1. (IPF.4’)

where δ̂Kk is any interdiction solution that has already been evaluated. This

constraint forces any new solution δK to differ from δ̂K in at least one com-

ponent; such a “super-valid inequality” [194] guarantees not to eliminate any

optimal solution unless the incumbent solution is already optimal.

4.3.3 Global Benders Decomposition

The heuristic procedures need to go through all solutions to guaran-

tee convergence. It normally takes a very large number of iterations to reach

the optimal in a big system. Reference [260] proposed a new method called

Global Benders Decomposition (GLBD). The algorithm alternates between

an integer-programming master problem and one or more linear-programming

sub-problems. Like Benders Decomposition and Generalized Benders Decom-

position [9], the GLBD does build a concave, piecewise-linear approximating

function to the function being maximized [260]. The decomposition relies on

a sequence of upper-bounding piecewise-linear functions for the interdictor’s

objective. The maximum of those functions must converge to the optimal so-

lution of the master problem IPF since only a finite number of interdiction

plans exist; however, practical use of the decomposition is more interested in

finding verifiable close-to-optimal solutions quickly.
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GLBD Algorithm

Initialization : ε ≥ 0 optimality tolerance;

δ̂K = 0 initial interdiction plan;

4̂ ← {δ̂K}initial subset of feasible interdiction plans;

δ̂K∗ ← δ̂K current best plan for the interdictor;

z∗ ← 0 lower bound on cost of the best plan;

z̄ ←∞ upper bound on cost of the best plan;

Sub− problem :

Solve the problem with current iteration plan δ̂K , OPF (δ̂K), receive

solution p(δ̂K) and objective value f(δ̂K).

If f(δ̂K) ≥ z∗, then z∗ ← f(δ̂K) and δ̂K∗ ← δ̂K ;

If z̄−z∗ ≤ εz∗, then report (δ̂K∗, z∗) as the ε-optimal solution and halt;

Otherwise 4̂ ← 4̂ ∪ {δ̂K} and go to Master Problem;

Master Problem :

Add following generalized Benders cuts and formulate MP (4̂) as:

MP (4̂) : z(4̂) = max
δK∈4,z

z. (MP.1)

S.t. z ≤ f(δ̂K) +
∑
k∈K

αk(δ̂
K)(δKk − δ̂Kk ), ∀δ̂K ∈ 4̂. (MP.2)
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Solve MP (4̂) for new interdiction plan δ̂K and for objective value

z(4̂), and set z̄ ← z(4̂);

If z̄−z∗ ≤ εz∗, then report (δ̂K∗, z∗) as the ε-optimal solution and halt;

Otherwise, return to Sub-problem step.

4.3.4 Short-term Effects and Cascading Outage Analysis

While the DC-OPF problem used in the interdiction models represents

the economical operation (medium-term) of the power system and maximizes

the amount of load that can be served, it is a steady-state optimization frame-

work that does not consider short-term cascading outage effects. “Short-term”

means the time window of seconds to minutes while “medium-term” indicates

minutes to hours or even days.

Many large blackouts are caused by a consecutive series of various out-

ages following an initial disturbance as described in Chapter 2. Therefore, the

amount of short-term load shed should be calculated to evaluate the short-

term impacts of an attack. The details of the COA model is shown in Chapter

2. Then, the DC-OPF model can be replaced by the COA model as the sub-

problem in the GLBD method to consider the short term effects of an attack

in the interdiction problem. In the GLBD algorithm, the COA model will take

the current interdiction plan δ̂K and give system operation solutions under the

attack p(δ̂K) and system operating cost f(δ̂K)COA at each iteration. After the

COA model is implemented, as expected, the load shedding due to an attack

is more intense than the medium term effects. In a 37 bus test system with
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total of 57 transmission lines, tripping 10 of them would easily cause half of

the total load to be shed in the short term. However, it should be recognized

that in the medium term, some of this load can be restored since only some of

the lines may have been damaged. The medium term model can be interpreted

as evaluating how much of the load can be restored after any initial cascade.

In the GLBD algorithm, a valid Bender’s cut (IPF.4’) at each iteration

in the Master Problem is easier to determine when the sub-problem is a con-

vex problem such as the DC-OPF problem. Because the cost of load lost is

usually larger than the system operation cost, we can use this information to

generate a usually valid upper bound for the master problem for an attack on

a transmission line. However, this is not always true with the COA model.

The line outages in the transient simulation would cause variations on both

system frequency and generator rotor angles. It is possible that the cascading

outages after the initial line outages cause more load shedding than the power

flow on the tripped lines.

Although the Bender’s cuts generated by COA may not be valid due

to the cascading effects, it is still plausible to find a close to optimal solution

for the interdiction problem. From our previous study of cyber attacks in the

power systems, we discovered some approximate linear correlations between

the total disrupted power flows in an attack and the load lost post the attack

under the simulation with COA model. For example, this is shown in Fig.

3.6. A similar correlation is observed from the simulation results of attacks on

69 kV transmission lines in the 37 Bus system as shown Fig. 4.1. Given the
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Figure 4.1: Load Lost of Attacks on 69kV Lines.

power flow of attacked transmission lines, we can approximate the load lost

using the experimental linear regression results that can be generated before

the GLBD algorithm starts. Then, the “importance” index for each attack can

be calculated as αk(δ̂
K)COA. With the system operating cost updated from the

COA simulation f(δ̂K)COA, the benders cut generated at each iteration in a

master problem is shown in (MP.2’) and the structure of the GLBD algorithm

remains unchanged.

z ≤ f(δ̂K)COA +
∑
k∈K

αk(δ̂
K)COA(δKk − δ̂Kk ), ∀δ̂K ∈ 4̂. (MP.2’)
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4.4 Numerical Results

In this section, we first show the results of a case study of interdiction

problem considering only the medium-term effects with the optimal power flow

problem (OPF) as the sub-problem.

4.4.1 Medium-term Effects

To generate an illustrative example, we limit the attack to only trans-

mission lines. The Medium-term effects of attacks on transmission lines of a

7 bus test system are evaluated. The Heuristic method is implemented first

and then the Global Benders Decomposition (GLBD) is applied. The results

show the effectiveness of GLBD on finding the optimal or close to optimal

interdiction plans on transmission lines.

Table 4.1: Results of Transmission Line Attacks on a 7 Buses System

Attack Limit GLBD Heuristic

M̄ Iteration Cost Iteration Cost

2 12 17,597 45 17,930

3 42 20,134 120 20,919

4 46 21,073 210 21,073

Table 4.1 shows the performance details of both methods. M̄ denotes

the limit on the number of lines can be attacked. There are total 10 lines in

the test system. Given the attack limit, the number of iterations in Heuristic is

the number of possible attack combinations. Therefore, the optimal objective

value provided by the Heuristic is chosen to be the global optimal value in the
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problem. Given ε = 0.8, it can be observed that the ε-optimal solution from

GLBD are close to or even equal to the global optimal solution from Heuristic

methods. However, the number of iterations in GLBD is much less than for

the Heuristics method.

Table 4.2: Contrast Between GLBD and Heuristics

Attack Limit Iteration Increase Obj Improvement

M̄=2 375 % 1.9 %

M̄=3 286 % 3.8 %

M̄=4 456 % 0.0 %

Using the results from Table 4.1, the number of iterations and the

objectives are further compared in Table 4.2. Results in Table 4.2 indicate

that applying GLBD to the problem will save two to four times of iterations

by sacrificing only less than 4% on the optimal objective values. It should be

understood that, for practical problems, the computational time for checking

all combinations with the heuristic is impractical.

4.4.2 Short-term Effects

Then, we show the results of a case study of interdiction problem con-

sidering short-term effects with the cascading outage analysis (COA) as the

sub-problem. The correlations between the power flow on transmission lines

and load shedding shown in Fig. 4.1 are included in the global benders decom-

position (GLBD) method to generate benders cut at each iteration as described

in Section 4.3.4.
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The short-term effects of attacks on 69 kV transmission lines are studied

in a 37 bus system. To test the intuition of GLBD method in an interdiction

problem with COA, we limit the size of the attacks to two and three.

The Heuristic method is applied to be a benchmark. The results show

the effectiveness of GLBD on finding the optimal or a close to optimal inter-

diction plan.

Table 4.3: Results of Transmission Line Attacks on a 37 Buses System

Attack Limit GLBD Heuristic

M̄ Iteration Cost Iteration Cost

2 26 3,877 378 3,877

3 329 3,914 3276 3,914

Table 4.3 shows the performance details of both methods. M̄ denotes

the limit on the number of 69 kV transmission lines can be attacked. There

are total 28 of 69 kV transmission lines in the test system. Given the attack

limit, the number of iterations in Heuristic is the number of possible attack

combinations. Therefore, the optimal objective value received in Heuristic is

the global optimal value in the problem. Given ε = 2, it can be observed that

the ε-optimal solution from GLBD are equal to the global optimal solution

from Heuristic methods. However, the number of iterations in GLBD is much

less than the Heuristics method.

The number of iterations and the objectives are further compared in

Table 4.4. Results in Table 4.4 indicate the proposed method in the interdic-
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Table 4.4: Contrast Between GLBD and Heuristics

Attack Limit Iteration Increase Obj Improvement

M̄=2 14.53 0 %

M̄=3 9 0 %

tion problem considering short-term effects can save more than ten times of

iterations.

4.4.3 Discussion of Computation Effects

To the best of our knowledge, there is no general theory about the size

of system effects on the computations for Benders’ Decomposition or Global

Benders’ Decomposition method. However, Benders’ Decomposition has been

applied in a wide range of problems in the literature and the efficiency of

Benders’ Decomposition has been demonstrated.

In the interdiction problem discussed in this chapter, the majority com-

putation efforts of the proposed method are from the sub-problem which is the

simulation of cascading outage analysis (COA) which involved with the solver,

PowerWorld, solving differential equations for the system dynamic in the stud-

ied time window. However, the size of the sub-problem remains unchanged in

each iteration. Compare to the sub-problem, the master problem can be solved

much faster. The master problem starts with only few constraints as described

in Section 4.3.3. The number of constraints in the master problem grows along

with iterations due to one benders cut is added each time. However, we expect

the algorithm converge before it reaches too many iterations. Therefore, we
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are expecting a close to linear growth on computational efforts with number

of iterations. For a small system shown in Section 4.4.2 , in Table 4.3, the

computation time when M̄ = 2 with GLBD is 520 seconds and 8844 seconds

with Heuristic.

4.5 Summary

In this chapter, the Global Benders Decomposition method is discussed

and implemented. First, the efficiency of the GLBD method in solving the bi-

level system interdiction problem with DC-OPF sub-problem is confirmed and

presented with a 7 bus illustrative system.

The work is extended to include the COA model to consider the short-

term impacts of attacks. The GLBD algorithm with the COA model as the

sub-problem is implemented in a 37 bus test system. Because of the cascading

effects, it is difficult to find valid Bender’s cuts. However, with a good “im-

portance” measurement for elements in the master problem, it is still feasible

to find a close to optimal solution. From our previous study on the cyber

attacks in the power systems, we discovered some approximate linear correla-

tions between the total disrupted power flows in an attack and the load lost

post attack under the simulation with COA model. A similar correlation is

observed in the 37 Bus system. This correlation is used for generating Ben-

der’s cuts in the GLBD algorithm. Case studies and tests in the 37 Bus system

shown the efficiency of the proposed method and the computational effects of

the proposed method is discussed. Case studies on a large system is ongoing.
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Part II

Power System Unit
Commitment Problem
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Chapter 5

Combined Cycle Unit Formulation

5.1 Introduction

In the first part of this dissertation, we introduced cascading outage

analysis and cyber attacks on power systems in Chapter 2 and Chapter 3.

The model and knowledge learned in the two chapters are applied in a power

system interdiction problem as described and discussed in Chapter 4. The

interdiction problem is formulated as a mixed-integer programming (MIP) in

Chapter 4.

In the second part of this dissertation, we focus on another typical

mixed-integer programming problem in power systems – the unit commitment

problem. The unit commitment (UC) problem in a power system determines

the start-up and shut down schedules of generating units to meet forecast de-

mand in a short term future (few hours to few days). The objective of a UC

problem is to minimize the total generation costs; that, is to maximize the so-

cial welfare assuming demand is fixed in each time interval. Unit commitment

decisions (binary variables) and unit dispatch levels (continuous variables) are

determined for each future time interval considered. A large set of operational

constraints also has to be met in the problem. Therefore, the UC problem
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is a complex optimization problem that can be formulated as a mixed-integer

programming problem.

There are new features in electricity markets that may involve for-

mulation modifications and potentially add computational complexity to the

UC problem. One such new feature is the participation of combined cycle

gas power plants. A combined cycle power plant has a combination of gas and

steam turbine units. The exhaust heat from a gas turbine is utilized in a steam

turbine to generate more electricity. Combined cycle units (CCUs) have higher

efficiency, lower CO2 emission, better flexibility, and faster response than many

other more traditional thermal generators. Therefore, there is an increasing

trend of installing combined cycle units [201], [52].

Consequently, optimization models have been proposed to determine

the configuration and operation of CCUs in the electricity market. However,

there are assumptions made in existing models that are often violated in prac-

tice. In this chapter, we will first address a one interval transition assumption

made in the existing models. A mixed-integer programming formulation that

represents the transition ramping of CCUs and removes the invalid assump-

tions of one interval transitions is proposed in [181]. A set of configuration-wise

ramping constraints are formulated with the transition ramping model. Nu-

merical studies are performed on a MISO system. The work in this chapter

builds on the work in [181].
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5.2 Background and Motivation

CCUs have many advantages compared to traditional thermal units

including shorter installation time, lower levelized cost of electricity, faster

response time, less CO2 emissions, as well as higher operation efficiency and

reliability [201] and [238]. In addition, because of the new horizontal drilling

and hydraulic fracturing techniques, huge shale gas reserves have been discov-

ered in the U.S. and natural gas has become available with a price comparable

to that of coal [98]. Therefore, CCUs have made up the majority of the new

generation capacities in the last decade, and an even higher share of CCUs is

expected in the near future [300].

The operation of a CCUs is different compared to a traditional thermal

unit. There is at least one combustion turbine (CT) and one steam turbine

(ST) in a CCU. The exhaust gas from CTs can be used by a heat recovery

steam generator to produce steam and drive STs to achieve an overall higher

efficiency in the plant compared to a pure combustion gas plant. A CCU can

work on different configurations incurring various on/off status combinations of

CTs and STs, which have different physical and economic features, e.g., ramp

rates, operation cost, feasible transitions between configurations, etc. These

complicated operation characteristics in CCUs lead to major challenges to the

market modeling and clearing processes. Currently, six CCUs models exist

in academic research and industry practice, namely aggregate model, pseudo

unit model, component-based model, configuration-based model, edge-based

model and configuration-component hybrid model. In [98], Dai et al. provide
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a summary of the first five models and discuss the configuration-component

based model in detail.

For example, in a configuration based CCU model, each specific com-

bination of turbines in a CCU is a configuration and the CCU is committed

to operate in exactly one of these configurations in any given time interval.

Certain rules have to be followed in the operations due to the physical limits.

For instance, a ST has to be dependent on at least one CT and cannot be op-

erated independently. Fig. 5.1 shows an example of feasible configurations and

transitions between different configurations for a CCU with one CT and one

ST, known as a 1-on-1 CCU. Also, at any given time only one configuration in

a CCU can be committed, where we recognize that the “alloff” configuration

corresponds to the CCU being out of service.

Figure 5.1: Configurations and feasible transitions of a 1-on-1 CCU.

With high shares of variable renewable energy sources and increasing
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supply variability, thermal power plants have seen more frequent start-ups

and shut-downs [344]. In particular, many combined cycle units (CCUs) have

been operated to provide flexibility to the power systems. In the past, CCUs

might run for lengthy periods of time and serve as base load generation. How-

ever, they now increasingly are being required to respond quickly to variations

caused by intermittent supply and demand. The fast output response from a

CCU would result in more frequent transitions between configurations in the

CCU.

Therefore, it becomes more important to solve the UC problem and

optimize the social welfare considering the operation of CCUs with different

configurations. Some system operators have already implemented the opti-

mization of CCU configurations in day-ahead unit commitment. In addition,

optimizing their configurations in real time (e.g., through “look-ahead” com-

mitment) can pre-position CCUs to cope with the variability in the system.

However, most existing CCU models assume that the transition be-

tween any configurations can be completed within one time interval. This

assumption is invalid. First, some transitions, especially the transition that

involves starting a new turbine, that can take several hours. It is invalid to

assume transitions occur within one interval in look-ahead commitment and

dispatch models where the length of the time interval is fifteen minutes or even

as short as five minutes. To accurately model the transitions, a mixed-integer

programming model for the transition ramping processes in a CCU is proposed

in [181].
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5.3 Contribution

Our contributions to the CCU transition ramping model compared to

the formulation in [181] are:

1. A set of configuration-wise ramping constraints are formulated and

compared to the plant-wise ramping constraints in [181].

2. The CCU transition ramping formulation [181] along with different

ramping constraints is implemented in a MISO prototype UC model.

3. Numerical tests on a MISO system is presented. The results show

that there is a moderate increase in computational complexity when

transition ramping modeling.

4. Computational impacts of different ramping constraints in the tran-

sition ramping model is discussed and presented in the case study.

5.4 Literature Review

The literature review of existing modeling approaches for combined

cycle units and the discussion of the issues with the existing models for CCU

transitions are presented in [181, Section 5.2], thereby is summarized here.

Currently, many ISOs in the US (e.g., MISO, PJM, and ISO-NE) use

an aggregated modeling approach for CCUs in their UC model [128]. The

aggregated approach assumes that at each time interval each CCU may either

be on or off, which is only a rough approximation for CCUs that have multiple

configurations. Besides the aggregated approach, there are mainly two types
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of modeling approaches of CCUs in the unit commitment problem. The first

approach is the component-based (or physical-unit-based) modeling [86]: each

of the physical units of a CCU is represented by a set of commitment and

dispatch variables. This approach has been recognized as more suitable for

security analysis than for market-clearing [189], in part because many technical

parameters would have to be submitted to the ISO had this approach been

adopted. Another approach is the configuration-based modeling in which each

configuration of a CCU is represented by a set of commitment and dispatch

variables [69,230]. This approach is viewed as suitable for market clearing and

bid/offer processing [11, 189], and is adopted by CAISO and ERCOT [272].

However, as pointed out by [128], the standard configuration-based approach

cannot describe the minimum up/down time constraints of each individual CT

and ST in a CCU. To this end, an edge-based formulation is proposed in [128]

and [129] in which the minimum run time constraints of each individual turbine

are captured, at the cost of introducing more variables into the formulation.

In addition, a new configuration-based model is proposed in [98] where the

minimum run time constraints of individual turbines are formulated in the

configuration-based variables via projection.

Most of the existing CCU models make a hidden assumption that all

transitions are completed within a single interval. As a result, the CCU is

modeled as dispatchable during any interval. This assumption may lead to a

discrepancy between the model and the reality, as well as suboptimal commit-

ment and dispatch decisions.

110



A CCU’s electrical output is reasonably predictable during the non-

dispatchable startup and transition process [13]. Therefore, the transition

ramping can be modeled as a fixed power trajectory. The start-up and shut-

down trajectories of simple-cycle units have been studied in [271]. A mixed-

integer programming model for CCUs where the invalid assumption is removed

and the power output of CCUs in transition is modeled as a fixed trajectory

is proposed in [181].

5.5 Mathematical Formulation of Transition Ramping
Model

In this section, we first introduce a standard configuration-based for-

mulation for CCU that has appeared in previous literature and which assumes

the completion of any transition within a single interval. Next, a transition

ramping model is built upon the standard formulation [181] and the aforemen-

tioned assumption is removed. For brevity, we only show the constraints that

define the feasible region of a single CCU. Embedding these equations into a

complete MIP formulation of unit commitment problem is straightforward.

5.5.1 Standard Configuration-Based Formulation

We show a standard configuration-based formulation from [272]. Let y

index the set of configurations Y. Let t ∈ {1, . . . , T} index the time intervals.
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Decision Variables In configuration-based modeling, each configuration

has a set of binary variables x, and each feasible transition has a set of bi-

nary variables v. The decision variables are:

xyt Binary variable for whether configuration y ∈ Y is on at t;

vy,y
′

t Binary variable for transition between y ∈ Y and y′ ∈ Y from

t− 1 to t;

pyt Continuous variable for power output from configuration y ∈ Y

at t;

pt Continuous variable for power output of the CCU at t.

Constraints

• Bounds on the power output of each configuration:

pyxyt ≤ pyt ≤ pyxyt , ∀t, ∀y ∈ Y, (5.1)

where py and py are, respectively, the lower and upper bound of

power output from configuration y.

• Total power output of the CCU:

pt =
∑
y∈Y

pyt , ∀t. (5.2)

• Configurations are mutually exclusive:

∑
y∈Y

xyt = 1, ∀t. (5.3)
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• Logical relationship between configuration and transition variables:

xyt − x
y
t−1 =

∑
y′∈MT,y

vy
′y
t −

∑
y′∈MF,y

vyy
′

t , ∀t,∀y ∈ Y. (5.4)

where MF,y is the set of reachable configurations from y ∈ Y, and

MT,y is the set of configurations that can reach y ∈ Y.

• At most one transition in each interval:

∑
yy′∈M

vyy
′

t ≤ 1, ∀t, (5.5)

where M is the set of all feasible transitions.

We note that there might be additional constraints characterizing the

feasible set of a CCU, including ramping and minimum run time of each con-

figuration or turbine. However, since these constraints are irrelevant to the

representation of the transition between configurations, we omit them here.

The feasible set of a CCU under the single-interval transition assumption is

defined by constraints (5.1)–(5.5).

5.5.2 Transition Ramping Formulation

The CCU transition model that removes the assumption of single time

interval transition is summarized in this section and a full representation with

details can be found in [181, Section 5.3.2].

Nomenclature

Additional Data:
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TP yy′

i the total power output from the CCU in transition at the end

of the i-th interval of the transition process between y and y′.

TDyy′ the duration (number of intervals) of the transition process

between y and y′.

Where (TP yy′

1 , TP yy′

2 , . . . , TP yy′

TDyy′ ) is a vector that describes the tran-

sition power-trajectory.

Decision Variables:

wyt Binary variable for whether configuration y is dispatchable at

t;

xyt Binary variable for whether configuration y is either 1) dis-

patchable or 2) in an ongoing transition to other configurations

at t;

vy,y
′

t Binary variable for transition from y at t − 1 to y′ at t. The

transition variable becomes one when a new configuration be-

comes dispatchable;

pyt Continuous variable for power output from configuration y ∈ Y

at t;

pt Continuous variable for power output of the CCU at t.

Constraints Constraints (5.3)–(5.5) are kept from the standard formulation.

In addition, the following are included:
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• Bounds on the power output of each configuration:

pywyt ≤ pyt ≤ pywyt , ∀t,∀y. (5.6)

• Constraints that define wyt :

wyt = xyt −
∑
yy′∈M

TDyy′∑
i=1

vyy
′

t−i+1+TDyy′ , ∀t,∀y. (5.7)

– The last term forces wyt to zero when CCU is transitioning

away from configuration y.

• Total power output of CCU:

pt =
∑
y∈Y

pyt +
∑
yy′∈M

TDyy′∑
i=1

TP yy′

i vyy
′

t−i+1+TDyy′ , ∀t. (5.8)

– The last term represents the output from the transition power-

trajectory.

Minimum up/down time constraints are omitted in this section. The

feasible set of a CCU with representation of transition ramping is defined by

constraints (5.3)–(5.8). The discussion of the tightness and compactness of

this formulation can be found in [181, Section 5.3.3].

5.6 Different Ramping Constraints

In the existing literature such as [272], both intra-configuration and

inter-configuration ramp rates are defined. However, the inter-configuration

ramp rate is only a rough proxy to the transition trajectories.
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5.6.1 Plant-wise Ramping Constraints

A set of plant-wise ramping constraints is proposed in [181, Section

5.3.3.3]:

pt − pt−1 ≤
∑
y∈Y

Ry
Ux

y
t , ∀t, (5.9)

pt−1 − pt ≤
∑
y∈Y

Ry
Dx

y
t , ∀t, (5.10)

where Ry
U and Ry

D are respectively the ramp-up and ramp-down rate limits of

configuration y when the CCU is dispatchable.

Constraints (5.9) and (5.10) assume that the ramp rate of the power-

trajectories are within the limit on the ramp rates when the CCU is dispatch-

able. If this assumption is not satisfied, additional terms are needed on the

right hand side that relax these constraints when the CCU is in transition.

5.6.2 Configuration-wise Ramping Constraints

The plant-wise ramping constraint is straightforward and easy to im-

plement. However, we notice from empirical experiences that the plant-wise

ramping constraints involve some limitations.

First, the ALLOFF configuration (the configuration indicating that

the CCU is turned off) should not be limited by ramping constraints. Under

the transition ramping model, the ALLOFF configuration would not have

a positive output except for when it is involved in transitions. However, the

output during transitions are fixed in the transition ramping. Thus, it is better

to remove the ramping constraints on the ALLOFF configurations to reduce
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the size of the problem and prevent potential conflicts in data. However, it is

not trivial to achieve this in the plant-wise ramping constraints presented in

(5.9) and (5.10).

Secondly, the power output variable and unit commitment variable of

each of the configurations in the CCU are involved in the plant-wise ramping

constraints of the CCU. This would result in more non-zeros in the constraint

matrix and increase the computational expense.

We propose additional and optional configuration-wise ramping con-

straints:

pyt − p
y
t−1 ≤ Ry

Ux
y
t +

∑
y′∈MT,y

vy
′y
t A(y′, y) ∀t,∀y. (5.11)

−pyt + pyt−1 ≤(Ry
D −H

y)xyt +Hyxyt−1

−
∑

y′∈MT,y

vy
′y
t [A(y′, y)−Hy] ∀t,∀y, (5.12)

where each entry (y′, y) in the matrix A is the power output in the last time

step in the transition curve from configuration y′ to configuration y in the CC

unit. Hy is picked as the largest output of configuration y in a time interval

during transitions to the other reachable configurations in the CC unit.

Notice that, for each configuration y, ramping constraints (5.11) and

(5.12) are equivalent to (5.9) and (5.10), respectively, when there is no tran-

sition but the terms in the summation change the ramp whenever there is a

transition.
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When configuration y starts up at t, constraints (5.11) and (5.12) be-

come:

pyt ≤ Ry
U +

∑
y′∈MT,y

vy
′y
t A(y′, y). (5.11’)

pyt ≥
∑

y′∈MT,y

vy
′y
t A(y′, y)−Ry

D. (5.12’)

Constraint (5.11’) indicates the maximum power output of configura-

tion y at the start up time t is its ramp rate plus the power output in the

last time step of the transition. Constraint (5.11’) is relevant if the CCU is

ramping up in the transition. An example is the output of configuration 2 in

the transition from configuration 1 to configuration 2 between t = 5 and t = 6

as described in Fig. 5.2.

Constraint (5.12’) requires that the minimum power output of configu-

ration y at the start up time t is the power output in the last time step of the

transition minus a ramp down rate. Constraint (5.12’) is relevant if the CCU

is ramping down in the transition. An example is the output of configuration

1 at t = 13 has to be greater than or equal to the fixed output of configuration

2 at t = 12 minus the ramp down rate of configuration y as described in Fig.

5.2.

When configuration y shuts down at t, constraints (5.11) and (5.12)

become:
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Figure 5.2: Illustration of the ramping constraints with commitment variable x
and dispatchable variable w [181].

pyt−1 ≥ 0. (5.11”)

pyt−1 ≤ Hy. (5.12”)

With the transition ramping model, there shouldn’t be an active con-

straint when a configuration shuts down since the configuration is always in a

transition curve when it shuts down and the outputs in the transition curve

are fixed. Ideally, in order to have a tight formulation, Hy can be picked as
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the output of the last time step in the transition curve of the configuration

y. However, since the transition curve varies with different configurations, the

transition variables vyy
′

t for each the transition to each configuration y′ will

be involved in the selection of Hy and it will bring nonlinearity to constraint

(5.12).

Compared to a plant-wise ramping constraint, one of the benefits of

the proposed configuration-wise ramping constraint is it creates less non-zeros

in each of the constraints. However, since the configuration-wise ramping

constraint is applied at each CCU configuration, it generates more constraints

in total. The impacts of this trade off on the problem size are presented and

further discussed in the computation results in section 5.7.

5.7 Numerical Results

An illustrative two units test case is presented in [181, Section 5.4] to

demonstrate the CCU transition ramping model. In this section, the CCU

transition ramping model described in Section 5.5.2 with two different ramp-

ing constraints described in Section 5.6 is implemented with a configuration-

component hybrid combined cycle model [98] of CCUs in the MISO system.

The computational performance of the proposed model is presented and com-

pared with the configuration-component hybrid CCU model.

MISO has collected combined cycle data from market participants since

2012 for the study of an enhanced combined cycle model [80]. These data has

been used for the study of configuration based CC model [79] and configuration-
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component hybrid CC models [98]. In total, 31 configuration based combined

cycle units are modeled using the data and there are 122 configurations under

the 31 CC units. Because of the lack of transition ramping data, a transition

ramping curve is approximated as a piece wise linear ramping curve given the

transition time and the minimum and maximum outputs of the two configu-

rations in each of the transitions. An example of the approximated transition

curve between two configurations is shown in Table 5.1. A 36-hour-ahead load

profile is randomly selected from historical load data. All test cases are per-

formed on a 2.2-GHz quad-core Intel Xeon CPU E5-2699 with 32-GB RAM;

all optimization problems are solved with Gurobi 8.0.

Table 5.1: An Example of Approximated Transition Curves

Configuration
py py

(MW) (MW)

1CT+1ST 20 50

2CT+1ST 70 80

Transition
Duration Trajectory

(Interval) (MW)

1CT+1ST to 2CT+1ST 3 [50, 60, 70]

2CT+1ST to 1CT+1ST 3 [70, 60, 50]

A configuration-component hybrid combined cycle model [98] is adopted

and tested with the MISO system [80]. Therefore, this hybrid combined cy-

cle model is used as benchmark to present the computation results of the

proposed formulations. Two transition ramping models with different ramp-

ing constraints are implemented in the MISO prototype day-ahead security-
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constrained unit commitment tool [133]. The computational results are com-

pared in Table 5.2.

• CCH: A configuration-component hybrid CCU model that ignores

transition rampings [98];

• CCH+TRP: CCH with transition ramping modeling and plant-wise

ramping constraints (5.9)–(5.10);

• CCH+TRC: CCH with transition ramping modeling and configuration-

wise ramping constraints (5.11)–(5.12).

In the CCU data, the transition time between configurations in some

CCUs are given zero values indicating the starting up configuration is “in-

stantly” dispatchable at the transition hour. A substitution of constants in

the ramping constraints of CCH+TRC in (5.11)–(5.12) is needed to keep the

formulation valid when the transition time is zero. While this situation is likely

to occur in practice, since the formulation is the same after the substitution

and it doesn’t affect the computations, the discussion of this issue is included

in Appendix B.

5.7.1 Computational Performance of CCU Transition Ramping Model

The objective value increases when we consider transition ramping.

This is expected because the combined cycle units are modeled as being more

flexible than they actually are if we ignore transition ramping. We assume

the energy costs during transition ramping are not included as part of the

transition costs in the current data. Therefore, we consider both energy costs
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Table 5.2: Computational Performance

Model
MIP Gap MIP Gap Root Relaxation Best

at 1200s at 1800s Time(s) Objective

CCH 0.17 % 0.10 % 122.5 12,709,826

CCH+TRP 0.28 % 0.15 % 153.4 13,012,604

CCH+TRC 0.28 % 0.15 % 169.6 13,011,413

and transition costs in the objective when a transition occurs in a combined

cycle. Since the transition cost was collected from market data without the

explicit consideration of transition ramping, it may include some incremental

energy costs during the transitions. Therefore, the objective with the transi-

tion ramping model may be less than what is shown in Table 5.2 when accurate

data is obtained.

In addition, the “root relaxation” [163] time increases when transition

ramping is included. This is because the problem size grows when we introduce

the variables and constraints related to transition ramping. As a result, the

integer relaxation of the UC problem becomes harder to solve.

Despite the increased problem size, computational performance of the

models with transition ramping are close to the model without transition ramp-

ing. As shown in Table 5.2, the MIP gaps of the two models with transition

ramping are only slightly higher than the benchmark model. According to the

MISO operating guide, the day-ahead optimization will be stopped at 1200

second if the MIP gap is below 1%; if the MIP gap is above 1%, the optimiza-

tion will continue for another 600 seconds. From Table 5.2, we find that the
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MIP gaps of CCH+TRP and CCH+TRC are very close to the MIP gap of

CCH at 1800 seconds and all three models have MIP gaps below 0.2%; that

is, the results of all three models can be considered acceptable. This suggests

that introducing transition ramping modeling in [181] does not significantly

increase the computational complexity.

5.7.2 Problem Sizes with Different Ramping Constraints

Table 5.3: Problem Size

Problem Size CCH CCH+TRP CCH+TRC

Original Problem

# of nonzero 4,622,554 4,656,582 4,668,482

After Pre-solve

# of nonzeros 2,704,544 2,789,274 2,769,778

# of continuous variables. 297,451 298,140 298,093

# of integer variables 74,251 75,074 74,499

Next, we compare two formulations of ramping constraints. Table 5.2

shows that the MIP gaps of CCH+TRC and CCH+TRP at both 1200s and

1800s are very close (below 0.01%). Table 5.3 shows that CCH+TRC re-

sults in more non-zeros before pre-solving. As mentioned in Section 5.6.2,

configuration-wise ramping constraints lead to an increased number of con-

straints. For this test system, we observe that the configuration-wise ramping

constraints (CCH+TRC) lead to more nonzeros than the plant-wise ramping

constraints.

After pre-solving, however, the number of nonzeros in CCH+TRC be-
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comes less than that in CCH+TRP; the number of variables in CCH+TRC also

becomes smaller than CCH+TRP. Although it is difficult to identify the cause

of such differences, it is reasonable to speculate that, since each configuration-

wise ramping constraint involves less variables and parameters, this alternative

formulation enables the pre-solving process to identify more redundancy. Al-

though more test cases are needed to have a comprehensive conclusion, results

from this study show that modeling the ramping constraints on the configu-

rations in a CCU transition ramping model will potentially provide a smaller

problem.

5.8 Summary

Most existing combined-cycle unit (CCU) models assume that any tran-

sition completes within a single interval. This assumption is not satisfied

by the operating characteristics of most CCUs, and may lead to suboptimal

commitment and dispatch solutions. This chapter first summarizes a mixed-

integer programming formulation that represents the transition ramping of

CCUs [181]. Configuration-wise ramping constraints are formulated and com-

pared with the plant-wise ramping constraints in [181]. The transition ramp-

ing model is implemented with configuration-component hybrid CC model in

a MISO prototype UC tool. Computational results on a MISO system show a

moderate increase in computational complexity when transition ramping mod-

eling is considered. The problem sizes of the transition ramping model with

different ramping constraints are presented and discussed.
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Chapter 6

Pumped-Storage Hydro Unit Formulation

6.1 Introduction

Inspired by the work on modeling the configurations of combined cycle

units in the unit commitment problem, this chapter proposes a configuration

based pumped-storage hydro (PSH) model for the day-ahead market, in or-

der to enhance the use of pumped-storage hydro resources in the system. By

introducing three “configurations,” namely, pumping, generating and “alloff”

or off-line, in a pumped-storage hydro unit, the proposed model can more ac-

curately reflect the practical operations of pumped-storage hydro units in the

day-ahead market. A comprehensive review of the existing pumped-storage

hydro models and industry practices is presented. The definition of configura-

tions of a pumped-storage hydro unit and the transitions between the config-

urations during operation are revealed and discussed in detail to describe the

proposed model.

6.2 Background and Motivation

Pumped-storage hydro plants use power to pump water uphill to an

elevated reservoir when the electricity price is low. The water is released
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to a lower reservoir and drives the turbine to generate electricity when it is

needed. There are now 22.8 GW of pumped-storage capacities in the United

States [404]. However, it becomes harder to obtain significant land area with

suitable topography for reservoirs not only because many of the best sites are

taken, but also due to the opposition from environmental groups. Significant

investment and long lead times are important factors limiting further deploy-

ment of conventional pumped-storage hydro plants [343].

In the traditional operation of a power system, energy storage has been

treated as a way to shave peaks and improve the capacity factor of base-load

generation. However, there are a range of energy storage technologies that have

been developed that can also provide value by supplying ancillary services such

as reserves and frequency control. Therefore, the energy storage unit is not

only playing the role of shifting load and generation but also playing a much

broader role as an extended and flexible energy management tool.

The effects of stockpiling excess electricity in energy storage has histor-

ically been used to avoid the need for some of the peaking generation capacity

and also enables more base-load generators to stay on line and generate elec-

tricity in the time when demand is low, thereby lowering the system overall

operation cost. For example, with energy storage, more base-load generators

are able to keep generating in the night with their low cost and avoid the costs

of shutting down and starting up. The costs of peaking generation is thereby

also avoided.

This load/generation-shifting effects is also particularly useful for en-
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Table 6.1: Storage Technologies and Applications (Source: data is from [36])

Full Power

Duration

of Storage

Applications

of Storage

Compressed

Air Energy

Storage (CAES)

Pumped

-Storage

Hydro

Battery Flywheel

3 Days

Weekly smoothing

of loads and most

weather variations

Y Y

8 Hours

Daily load cycle

PV, Wind,

transmission line

repair

Y Y Y

2 Hours

Peak load lopping,

standing reserve,

wind power

smoothing

Y Y Y

20 Minutes

Spinning reserve,

wind power

smoothing,

clouds on PV

Y Y Y Y

3 Minutes

Spinning reserve,

wind power

smoothing of gusts

Y Y Y

20 Seconds

Line or local faults,

voltage and

frequency control,

governor controlled

generation

Y Y

hancing the integration of renewable generation plants. In the past two decades,

because of the concerns about the environmental impacts of generating elec-

tricity by burning fossil fuels, there are enormous interests and ambitious tar-

gets for integrating renewable energy to supply the electricity demand. The
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function of energy stockpiling provided by energy storage units would allow

renewable resources to get more value in daily operation.

As shown in Table 6.1, as one of the mature technologies for energy

storage, pumped-storage hydro is able to provide service in a time range from

minutes to days. The services in this time range include spinning reserve and

load or generation shifting.

On the one hand, pumped-storage hydro can, in principle, provide a

wide range of important and valuable services to the system which, nowadays,

is exposed to a greater scale of uncertainties on both generation and demand

sides. On the other hand, however, the pumped-storage hydro units have not

deeply participated in the market. Currently, many of the pumped-storage hy-

dro units in the footprint of the Midcontinent Independent System Operator

(MISO) do not participate in the day-ahead market clearing process. There-

fore, their decisions of whether to pump or generate and how much to pump

or generate are made under their own forecast of market prices.

This practice of pumped-storage hydro technology is not efficient in

two aspects: First, as a market participant with limited information about

the market, the forecast of market prices can deviate significantly from the

realization. Therefore, the decisions made based on the forecast would impair

profits for the pumped-storage hydro units in long-term and this would dis-

courage the further development and investment in the pumped-storage hydro

technology; Secondly, the decisions made by pumped-storage hydro unit is

also suboptimal to the system welfare. That is, the benefits and the flexibility
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provided by pumped-storage hydro technology is not fully exploited under the

current practice.

To overcome the drawbacks of the current practice, introducing the

pumped-storage hydro units into MISO’s day-ahead unit commitment model

is a first step. Therefore, a suitable model for pumped-storage hydro units in

the UC model is studied in this chapter.

6.3 Literature Review

6.3.1 Pumped-storage Hydro Units

Because of the benefits of renewable power smoothing provided by

pumped-storage units introduced in Table 6.1, the model of a pumped-storage

unit has been explicitly developed in the operation of a renewable plus pumped-

storage power plant. For example, in [66] and [118], a profit maximization

problem is formulated for a single wind farm together with a pumped-storage

hydro plant. A wind plus storage plant model is presented in [213]. This gen-

eral energy storage model is similar to [66]. In these works, a pumped-storage

plant is modeled as two individual units: a pump and a generator. Both

pumping and generating have upper and lower limits for every time slot. In

addition, generation at every time slot is upper bounded by the total energy

stored in the system. The energy stored in the pumped-storage hydro system

is modeled as an energy balance constraint with efficiencies for pumping and

generating. The total energy stored in the first hour and the last hour is spec-

ified. The energy stored in the system is greater than or equal to zero and less
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than or equal to its upper limit in all hours. This upper limit represents the

maximum energy stored in the system and is derived from the water stored in

the reservoir.

The impact of energy storage sizing on wind-hydro system operation

and economics has been studied in [67], [213] and [56]. A general energy

storage model is defined by its energy capacity, charging efficiency, discharging

efficiency, charging power capacity, and discharging power capacity.

In [56], the pumped-storage plant is modeled in a similar way as to

[66] but considers the constraints of meeting spinning reserve requirements or

frequency regulation unit commitment requirements. Consequently, the model

allows the possibility of spilling water without using it to generate electricity

by including a variable for spilled energy in the pumped-storage hydro energy

balance constraints.

The bidding and scheduling of a pumped-storage unit is studied as

part of a generating company with hydro, thermal, and pumped-storage units

in [288]. The quantity of pumping and generating is modeled in a single

variable representing water discharged (positive) from or pumped (negative) to

the upper reservoir assuming one hundred percent efficiency in both processes.

The robust unit commitment problem with wind power and pumped-

storage hydro is studied in [196]. A binary variable is introduced to indi-

cate whether the unit absorbs (pumping) or generates electricity. The big-M

method is used to prevent the unit from generating and pumping at the same
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time.

In [145], stochastic joint optimization is used to maximize the profit

of wind generation and pumped-storage units in an electricity market. In

[145], each pumped-storage unit is modeled as N identical turbines and each

of them can function as either a generator or a pump. An integer variable

is introduced to indicate the total number of turbines that are in pumping

mode among the N identical turbines in the pumped-storage hydro unit. The

generating / pumping mutually exclusive constraint is well handled with the

integer variables without using the big-M method. In addition, the start up

and shut down costs are considered in this study.

The feasibility of combined solar pumped-storage hydro and solar wind

pumped-storage hydro is studied in [249] and [248]. Because the studies focus

on the standalone island condition, they provide a way to model the energy

stored in the system with a consideration of the available static head in the

studied island and how much water volume is used for pumping or generating.

Also, the water evaporation and leakage loss are considered in their work.

Although the model of a pumped-storage hydro unit has been studied

in the operation of a renewable plus pumped-storage hydro plant explicitly,

the model of a pumped-storage hydro unit in the day-ahead unit commitment

problem remained obscure. In [66], [118], [213], [67], [56] and [288], the market

prices are taken as an input for the plants’ profit maximization problem and

the generating/pumping level of each unit is defined as a continuous variable.

A binary variable is introduced in [196] to represent the generating/pumping
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status of a pumped-storage hydro unit in the system. The binary variables

for a pumped-storage hydro unit is split into N pairs for each pumped-storage

hydro turbine in [145]. References [248] and [249] focused on the study in an

island mode, therefore the dispatching of pumped-storage hydro unit in the

power system is not their major concern.

In the above works, the pumped-storage hydro unit has to be either

pumping or generating at a given time. However, due to the physical limits

from pumping/generating turbines, there are usually minimum outputs for the

generating mode and minimum consumptions for the pumping mode. These

model features imply that, a pumped-storage hydro unit is forced to operate

at one of the two limits in some cases if the current model is used in a unit

commitment and economic dispatch problem. These conditions would result

in inefficient operations. That is, because of the minimum limits of genera-

tion and consumption, the pumped-storage hydro unit is either generating or

pumping at least at its minimum output or consumption limit, respectively,

if it is operating. However, at certain times in the day it may be best to

neither pump or generate. In other words, constantly charging or discharg-

ing the pumped-storage hydro unit is not always the best strategy for system

operation.

In [202], the coordinated hourly scheduling of wind and pumped-storage

units is modeled in the problem of day-ahead scheduling of power systems.

Three modes, pumping, generating, and idle are modeled for each of the

pump storage units. However, without explicitly modeling the transition of
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the modes, it is not clear how to include some operation features e.g. transi-

tion time between modes and min up/down time for each mode. In [202], the

transition between modes are assumed to be able to complete within one time

interval. Nevertheless, this is not a general case, particularly in the context of

real-time markets where the interval may be only five or fifteen minutes.

In order to represent the operational features of pumped-storage hydro

in a day-ahead market, we explored the model used for combined cycle gas

turbines (CCGTs) in the unit commitment problem and found the configura-

tion based model used for CCGTs [79] and [181] can be extended to better

represent a pumped-storage hydro unit in the day-ahead market.

6.3.2 Combined Cycle Gas Turbines

We find the CCU configuration based model described in [79], [48], [189]

and [181, Section 5.4] is particularly fit for the operation of a pumped-storage

hydro unit. In the configuration based model of a CCU, the configurations

which are different combinations of CTs/STs are modeled as individual units.

Besides all the operational configurations, there is an “alloff” configuration in-

dicating the off state of the plant. All the configurations including the “alloff”

configurations are mutually exclusive indicating that there is only one configu-

ration on at any time of the operation of the plant. Therefore, the complicated

operations, such as operation costs, output limits and feasibility of transitions

between configurations, can be specifically dealt with.

Similar to CCGTs, a pumped-storage hydro unit can also be modeled
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with two operational configurations namely pumping and generating. In or-

der to allow the unit to stay idle (neither pumping or generating), an “alloff”

configuration can be introduced as with the CCGT. The transition between dif-

ferent modes are modeled using transition variables. Thus the operational fea-

tures such as the constraints on transition time between modes, min up/down

time of each mode can be handled well. In addition, compared to the model

in [202], the configuration based pumped-storage hydro model is more scalable.

It can be easily extended if necessary to have operational modes considering

different components in a pump hydro unit as discussed in [145], which poten-

tially can provide more flexibility to the operation of a pumped-storage hydro

unit.

The other CCGT models besides the configuration based model are less

suitable for modeling PSH. For example, the aggregate model is not applicable

for a pumped-storage hydro unit because the pumping/generating operation

features cannot be represented. The other models discussed in [98] are designed

to address the operational features of individual turbines in a configuration,

e.g., min up/down time of each ST or CT in a 1CT+1ST configuration etc.

However, the operation configuration in a pumped-storage hydro unit would

be composed from a single unit or a group of identical units operating in the

same mode. Therefore, it is not necessary to explicitly distinguish each of the

units in a configuration of a pumped-storage hydro model.
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6.3.3 Contributions

In order to accurately represent the operation features of a pumped-

storage hydro unit in day-ahead market, we extend the configuration based

model in [79] with a representation of operation features of a pumped-storage

hydro unit to propose a novel configuration based pumped-storage hydro model

in this chapter. The contributions are:

• The proposed model can reflect the physical features accurately and

enhance the operational flexibility of a pumped-storage hydro unit

by introducing an additional “alloff” configuration.

• A numerical example is presented to demonstrate the effectiveness

of the proposed pumped-storage hydro model. The impacts of bid

prices for pump loads on the pumped-storage hydro owner’s profits

and system social welfare are discussed in the case study.

• The implementation of the proposed pumped-storage hydro formu-

lation and a computational study in a MISO prototype unit commit-

ment model is ongoing.

6.4 Problem Formulation

The configuration based modeling of pumped-storage hydro unit repre-

sents all feasible operation modes of a pumped-storage hydro unit. We assume

that, at each pumped-storage hydro unit, either there is only one pumping and

one generating turbine or there are multiple identical turbines. Based on this
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Figure 6.1: Mode transition diagram of a pumped-storage hydro unit in two con-
secutive periods.

assumption, there are only three operation modes in each of the turbines in a

pumped-storage hydro unit and transitions are allowed between each pair of

the modes, as shown in Fig. 6.1. The “Mode 0” represents the state when the

pumped-storage hydro turbine is offline.

Nomenclature

Sets and indices:

g ∈ Gsh set of pumped-storage hydro units;

g ∈ Gsh,r set of pumped-storage hydro units that share the same

reservoir r;

g ∈ G set of rest of generating units;

m ∈Mg set of configurations, m = 0 :all off,

m = s : storage / pumping,

m = h : hydro / generating ;
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n ∈MF,m
g set of configurations that configuration m can feasibly transit

to;

r ∈ R set of reservoirs.

Data [units]:

Dt system demand at period t [$/MW];

P h
gt minimum power output of configuration h at unit g at period

t in economic mode [MW];

P
h

gt maximum power output of configuration h at unit g at period

t in economic mode [MW];

P s
gt minimum power storage of configuration s at unit g at period

t in economic mode [MW];

P
s

gt maximum power storage of configuration s at unit g at period

t in economic mode [MW];

ηsg pumping efficiency of the pumped-storage hydro unit g [NA];

ηhg generating efficiency of the pumped-storage hydro unit g [NA];

Er,1 initial energy levels of the reservoir r [MW];

Er,T+1 final energy levels of the reservoir r [MW];

Er maximum energy levels of the reservoir r [MW].

Variables [units]:
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er,t energy stored in the reservoir r at time t [MW];

umgt binary variable, commitment variable of unit g configuration

m at period t [NA];

vmngt binary variable, transition variable between configuration m

and configuration n of generator g at period t [NA];

qhgt continuous variable, amount of energy production of

configuration h at unit g at time period t [MW];

qsgt continuous variable, amount of energy consumed in

configuration s at unit g at time period t [MW];

qgt continuous variable, amount of energy production of other

generating unit g at time period t [MW].

Derived Data [units]:

Hk,h
gt the piecewise cost of the kth segment of piecewise

approximation of the production cost or bid price of

configuration h at generator g at period t [$/MW];

P k,h
gt the break point of the kth segment of piecewise approximation

of the production cost of configuration h at generator g at

period t [MW].

Cs
g,t the bid pumping price of unit g at time t [$/MW].
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Auxiliary Variables [units]:

fhgt continuous variable, energy cost of h configuration at unit of

configuration at unit of s configuration of unit g at period t

[$ /hr];

C(qgt) cost function of generating unit g [$ /hr].

6.4.1 Objective Function

The objective of the day-ahead unit commitment problem is to mini-

mize the system operating costs. The operation costs related to a pumped-

storage hydro unit is the offer costs of the generating mode minus the bid

prices of the pumping mode which is reflected as negative costs in (6.1). Note

that the offer costs and bid prices from a PSH can be zero. The third term in

(6.1) represents the generation costs of the rest of generators in the system.

min
q,u,v,e

∑
g∈Gsh

∑
t∈T

(fhgt − Cs
gtq

s
g,t) +

∑
g∈G

∑
t∈T

C(qgt) (6.1)

6.4.2 Piece-wise Costs Function

The operation costs of the generating mode of a pumped-storage hydro

unit is modeled as a piece-wise linear function in (6.2). Notice that this is

a generalized way to represent the production cost of a generating unit, and

that the generation costs from a PSH unit could be zero.
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s.t. : fhgt ≥H
k,h
gt (qhgt − P

k−1,h
gt )

+ uhgt

θ=k−1∑
θ=1

Hθ,h
gt (P θ,h

gt − P
θ−1,h
gt )

∀k = 1, ..., K,∀g ∈ Gsh,∀t ∈ T

(6.2)

6.4.3 System Energy Balance Constraints

The generation has to be balanced with demand in the system at all

time. In (6.3), the total generation in the system including the generation

from pumped-storage hydro units on the left should be balanced with the sum

of the fixed demand and the pumping demand from the pumped-storage hydro

units on the right.∑
g∈G

qgt +
∑
g∈Gsh

qhgt = Dt +
∑
g∈Gsh

qsgt ∀t ∈ T (6.3)

6.4.4 State and Transition Logic Constraints

Constraints (6.4) guarantee that the unit commitment variables of each

mode in a pumped-storage hydro plant described in Fig. 6.1 are mutually

exclusive, which is also modeled for CCGTs in [238]:

∑
m∈Mg

umgt = 1 ∀g ∈ Gsh, ∀t ∈ T (6.4)

The transition between two modes m,n in one pumped-storage hydro

plant g at time t is defined as a binary variable vmngt . Notice that the start up
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and shut down of a mode are modeled as the transition between the mode and

the “alloff” mode. These constraints are modeled for CCGTs in [272].

umgt − umg t−1 =
∑

n∈MF,m
g

vnmgt −
∑

n∈MF,m
g

vmngt

∀g ∈ Gsh, ∀m ∈M, ∀t ∈ T
(6.5)

In addition to the mutually exclusive constraints on commitment vari-

able of each configurations, there should be at most one feasible transition at

any time [79].

∑
m∈Mg

∑
n∈MF,m

g

vmngt ≤ 1

∀g ∈ Gsh,∀t ∈ T
(6.6)

6.4.5 Box constraints

The amount of generation at each time from the pumped-storage hydro

unit is constrained not only by the physical features of the turbine but also

by the amount of energy stored in the system as shown in (6.7). However, the

right side of the inequality is a product of a binary variable and the minimum

of a constant and a continuous variable. The linearization of this constraint is

shown in Appendix A. The amount of energy stored in the pumped-storage

hydro system is only limited by the features of the turbine as shown in (6.8).

P h
gu

h
gt ≤ qhg,t ≤ uhgt min{P h

g , η
h
g er,t}

∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T
(6.7)
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P s
gu

s
gt ≤ qsg,t ≤ usgtP

s

g ∀g ∈ Gsh ∀t ∈ T (6.8)

6.4.6 Storage Energy Balance and State of Charge Constraints

The energy stored in a reservoir shared by multiple pumped-storage

hydro units is balanced at each consecutive hour shown in (6.9). Parameters ηhg

and ηsg are the efficiencies of generating and pumping indicating energy losses

in both modes. The energy stored in the reservoir at the beginning of each day

is given by (6.10) and the energy stored in the reservoir at the end of each day

is constrained in (6.11). The inequalities in (6.12) constrain the total energy

stored in the reservoir at each time interval. These constraints are modeled in

a pumped-storage hydro unit based on [66], [118], [213], [67], [56], [288], [196]

and [145].

er,t+1 = er,t +
∑

g∈Gsh,r

ηsgq
s
g,t −

∑
g∈Gsh,r

qhg,t
ηhg
∀r ∈ R ∀t ∈ T (6.9)

er,1 = Er,1 ∀r ∈ R (6.10)

er,T+1 = Er,T+1 ∀r ∈ R (6.11)

Er ≤ er,t ≤ Er ∀r ∈ R ∀t ∈ T (6.12)

The start up/down time, transition time and the minimum up/down

time are not listed here. They can be easily handled by the configuration
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based model. The security constraints are not included, the details can be

found in [79].

6.5 Numerical Results

Table 6.2 shows the units considered in this case study. Two thermal

generators with different capacities and different costs are included to repre-

sent the generations besides pumped-storage hydro units in the system and

to generate prices. The two pumped-storage hydro units in a pumped-storage

hydro plant namely PSH1 and PSH2 share a reservoir. The bid prices for

pumping load are initially specified as 27$/MWh and there are no generating

costs for both units. We will further discuss the impacts of the bidding price

to the social welfare of the system in this chapter. For a simple presentation,

the marginal generation costs and bid prices are constants over feasible gen-

eration and consumption levels and independent of time for all units. Notice

that pumping in both units are “block loads” meaning that the pumping load

is either at a predetermined level or zero. This is a typical operating feature

of the pumped-storage hydro units in the MISO system. The energy efficiency

of the pumping and generating processes are identical in both units.

The minimum and maximum energy allowed to be stored in the reser-

voir along with the state of charge of the reservoir at the beginning and the end

time interval are described in Table 6.3. Notice that the state of charge at the

end time interval is required to equal that at the beginning time interval, any

energy used for generations from the pumped-storage hydro has to be stored
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Table 6.2: Unit Parameters

Unit
Cost/Price qm qm ηmg

$/MWh MW MW

1: PSH1 Pump 27 200 200 0.9

2: PSH1 Gen 0 100 200 0.9

3: PSH2 Pump 27 200 200 0.9

4: PSH2 Gen 0 100 200 0.9

5: Thermal Gen 1 30 0 400 NA

6: Thermal Gen 2 20 0 900 NA

earlier or recharged later within the studied time range.

Table 6.3: Reservoir

Er Er Er,1 Er,T+1

MWh MWh MWh MWh

Reservoir 350 3500 1000 1000

A day ahead unit commitment (UC) and economic dispatch (ED) prob-

lem is solved with a 24 hours net-load scenario in the system. Reserve require-

ments, ramp constraints, and transmission security constraints are ignored in

the problem. The energy price at each node in the transmission network or

locational marginal price (LMP) is the dual value at the energy balance con-

straint in (6.3) after the problem been solved. Notice that, since there is no

transmission network constraint in this case study, there is a single LMP for

the whole system at each time interval.

145



6.5.1 Bid Price for Pump Load

The bid prices for pump loads submitted by the pumped-storage unit

owners represent their willingness to purchase and consume the electricity in

the pumping modes. However, the bid prices are calculated based on the

owner’s information and forecast of the system LMP that would likely to be

deviate from a realization. Thus, the bid prices will cause the solution of

the UC and ED problem to deviate from maximizing social welfare. The

compromised system objective by the pump bid prices will in turn impair the

benefits to the pumped-storage hydro unit owners.

Figure 6.2: Unit Dispatches with Bid Prices for Pump Loads.
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Net-load is defined in the section as the system constant load minus

the renewable generations not including pumped-storage hydro (PSH). Fig.

6.2 shows the UC and ED solutions of the dispatches of the two pumped-

storage units on top of the system net-load when bid prices for pump loads

are considered and set to 27$/MWh as shown in Table 6.2.

The net-load is an emulation of the California “Duck Curve” where

solar generation boosts in the middle of the day and creates a deep drop in

the net-load. The LMP is therefore lower and the PSH units are expected

to pump in those hours (11-15). However, we observed that there are several

hours (1,3-10,16,21-23) when one PSH unit is pumping and the other PSH

unit is generating. Fig. 6.3 shows the outputs of PSH units on top of the state

of charge of the reservoir. We can observe that at the hours when the PSH

units pump and generate at the same time (particularly hours between 3-10),

PSH units gradually deplete the state of charge of the reservoir by their round

loop efficiency.

The simultaneous pumping and generating is due to the non-zero bid

prices for pumping. In particular, because a positive bid price is submitted

and included in the objective of the problem in (6.1) (boxed term), the system

encourages PSH units to pump to reduce the objective function. At the same

time, the generation and pump loads of the PSH appear at the left and right

side of (6.3) (boxed terms). Because the generation cost from the PSH unit

is zero, the “free” generation from one PSH unit will balance the pumping

load from the other PSH unit as indicated in (6.3). The results shown in this
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Figure 6.3: Reservoir State of Charges with Bid Prices for Pump Loads.

example is a clear demonstration that a positive pump bid price would damage

the social welfare.

min
q,u,v,e

∑
g∈Gsh

∑
t∈T

fhgt −Cs
gtq

s
g,t +

∑
g∈G

∑
t∈T

C(qgt) (6.1)

∑
g∈G

qgt +
∑
g∈Gsh

qhgt = Dt +
∑
g∈Gsh

qsgt ∀t ∈ T (6.3)
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6.5.2 Eliminate Bid Price for Pump Loads

Alternatively, we suggest to eliminate the bid price for pump loads from

the system objective as shown in (6.1’). Assuming the non-water generation

costs for a PSH unit is zero, the objective only contains the generation costs of

the rest of the generators besides the PSHs in the system. The price charged

to the pump load is the system LMP instead of their self-bid prices.

min
q,u,v,e

∑
g∈G

∑
t∈T

C(qgt) (6.1’)

With the updated objective, the dispatch solutions are presented in

Fig. 6.4. The first change we observe is that the PSH units no longer pump

and generate at a same time interval. Pumping from PSH units appears at

midnight (hour 0-4) and middle of the day (hour 10-14 and 16) when the net

load is low. The PSH units are dispatched to generate at morning peak (hour

8) and evening peak (hour 17-20) when the net load is high. The PSH units

don’t pump at every time interval when net-load is low because the state of

charge in the reservoir at the end of the day is required to return to its initial

level.

First, from the system operator point of view, the results in Fig. 6.4

show the effectiveness of pump hydro storage units shaving the peak and filling

the sink of the net-load shape. Therefore, the PSH units positively contribute

to reduce the system generation costs and to maximize the social welfare. A

flatter net-load including the outputs from the PSH units is also good for
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Figure 6.4: Unit Dispatches with Bid Prices for Pump Loads Eliminated.

relieving the system and preventing generation shortage and price spikes.

Second, in Fig. 6.4, it is clearly observed that PSH units pump when

the net-load is low corresponding to a lower LMP when pumping. So, the PSH

units will be charged less for their pumping load. In contrast, it is also clear

that PSH units generate when the net-load is high corresponding to a higher

LMP when the hydro generating. The PSH units will be paid more for their

generations in those time intervals. After the bid prices for pump loads been

removed, the PSH owners should expect higher profits.

In Table 6.4, the PSH owner’s profits are further compared to the so-
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Table 6.4: PSH Owner Profits and Social Welfare

With non-zero pump bid price With zero pump bid price

$ $

PSH Profits -32,000 1,160

System Costs 402,048 380,858

lutions where positive bid prices for pump loads are considered. From Table

6.2, the bid price for pump loads in this study is 27$/MWh. It falls into the

range between the cost of the two thermal generators and it is a reasonable

price that a PSH owner might bid in this system.

The results show that the bid prices for the pump loads can cause

wrong incentives in the problem and result in lost profits for PSH owners.

The system generation costs represent the social welfare in the UC and ED

problem. Therefore, the wrong incentives caused by the bid prices for pump

loads lead the problem to a solution that deviates from the maximum social

welfare. As shown in Table 6.4, after we eliminate the bid prices for pump

loads, both the PSH owners’ profits and the social welfare are improved.

The reservoir state of charge is presented in Fig 6.5. It is straightfor-

ward to see that the PSH units store energy into the reservoir at the beginning

and the middle of the day and charge the reservoir in the evening. The move-

ment of the stored energy in the reservoir is also a demonstration that social

welfare is maintained.
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Figure 6.5: Reservoir State of Charges with Bid Prices for Pump Loads Eliminated.

6.5.3 Sensitivity Analysis on the Generation and Pump Efficiencies

In this section, we discuss the effects of efficiency lost at generation

and pump modes in a PSHU to the dispatch solutions in the unit commitment

problem. The formulation that removes the non-zero bid prices for pump load

described in Section 6.5.2 is used in this study. The parameters for the case

study remain the same from Table 6.2 except for the efficiency at PSH1 which

is highlighted in Table 6.5.

With the changed efficiency at PSH1 in Table 6.5, PSH1 has a lower

pumping efficiency and a higher generating efficiency compare to PSH2 while
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Table 6.5: Unit Parameters

Unit
Cost/Price qm qm ηmg

$/MWh MW MW

1: PSH1 Pump 27 200 200 0.81

2: PSH1 Gen 0 100 200 1

3: PSH2 Pump 27 200 200 0.9

4: PSH2 Gen 0 100 200 0.9

the round loop efficiency for both units are still the same.

Figure 6.6: Reservoir State of Charges with Sensitivity Analysis on PSH Efficien-
cies.

Figure 6.6 shows the state of charges of the reservoir in dispatch results.

153



We observe that PSH1 only generates and all the pump loads are from unit

PSH2. The results indicate that the system is using the best of the high

efficiencies of pump at PSH1 and generation at PSH2. Therefore, the system

objective is reduced to $378,436. The profits of the PSH units would be

increased if both units belong to a single owner for the same reason. However,

if the two units belong to two separate owners, then the PSH1 would make

more profits by its high efficient generation and PSH2 may lose profits because

its high efficient pump even if their round loop efficiencies are the same.

In the proposed formulation, we removed the generation costs and bid

prices of a pumped-storage hydro unit in the objective function as discussed

in Section 6.5.1 and Section 6.5.2. Then the only cost from a pumped-storage

hydro unit in the proposed model is from its efficiency lost presented in the

state of charge constraints in (6.9). This accurately reflects the operational

characteristics of a pumped-storage unit and serve the purpose of maximizing

the social welfare. The sensitivity analysis in this section also shows that the

proposed formulation creates incentives for the owners who share a reservoir to

install PSH units with a high generation efficiency and a low pump efficiency.

6.6 Summary

In this chapter, a configuration based pumped-storage hydro model in

the day-ahead market is presented. Because of the pump “block load” feature

and the minimum limit of the generations, the operation of a pump storage

hydro unit is difficult to fit into a model that requires the unit to be either
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pumping or generating at any given time. Introducing the three configurations

model with generating, pumping, and “alloff” configurations can resolve this

issue. In addition, the proposed formulation is flexible to model the transition

between any pair of configurations if the transition takes more than one time

interval or incurs with additional costs.

A numerical study is presented with two identical PSH units in a PSH

plant sharing a reservoir. The effectiveness of the pumped-storage hydro

units in the proposed model are demonstrated with examples. The bid prices

for pump loads are discussed. The disadvantages of including positive bid

prices for pump loads and their negative effects on social welfare are presented

with quantified simulation results. Sensitivity analysis on the efficiency of a

pumped-hydro unit is presented.

The implementation of the proposed formulation in a MISO prototype

UC model is ongoing. Future work will be done with case studies in the MISO

system. The compactness of the formulation will be further discussed and the

computational results will be presented with MISO large case studies.
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Chapter 7

Conclusions and Future Work

This dissertation has proposed mixed-integer programming formula-

tions of two power system problems, namely the interdiction problem and the

unit commitment problem. We present the conclusion in two sections, each

correspond to a part of this dissertation.

7.1 Interdiction Problem

7.1.1 Cascading Outage Analysis (COA)

Comprehensive outage studies in power systems are described before

the presentation of an interdiction problem. An enhanced COA model is il-

lustrated in a case study of a test system. The model provides a way to

evaluate the short term impacts of an attack, e.g. the amount of short-term

load shed. The COA model applies four outage checkers, namely Transient

Stability Checker, Frequency Outage Checker, Overload Outage Checker, and

Voltage Outage Checker to simulate the system behavior after an initial distur-

bance, i.e. an attack. The contributions of this work are as follows. First, the

cascading outage analysis model is converted to the Python environment and

it is easier to connect the COA to other models or other software. Second, the
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current COA code is fully automated and can directly read initiating events

from a database, modify the case study, and run transient and steady state

analysis. Third, the frequency checker (as under and over frequency protec-

tion relays) is incorporated into the transient analysis. It gives two advantages

to the model, namely, actual frequency response is used by relays instead of

system wide approximation, and since it is part of the transient analysis, if

the protection relay takes any action, the impact of that action on transient

analysis is automatically considered.

Nevertheless, the cascading outage analysis still has several limitations.

Potential improvements include:

• The cascading outage analysis model uses a set of predetermined pa-

rameters and settings for protection devices. In the industry applica-

tions, different coordinations and settings among various protection

schemes may lead to different system behavior.

• There are some control schemes in power systems, including con-

trolled islanding schemes and automatic tap changers, etc that are

not modeled in the cascading outage analysis tool. These sophisti-

cated models could be incorporated and studied to make the simu-

lation results more reflective of reality.

7.1.2 Cyber Attack

Using the developed COA model, different cyber attacks in power

sytems have been studied. From the simulation results of cyber attacks tar-
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geted on grid control centers, we find that the number of transmission lines

outaged at a given voltage level in the attacked TDSP is critical as a predictor

of algorithmic non-convergence. There exists a threshold at each voltage level

such that an algorithmic non-convergence will occur when the attacked TDSP

has more branches tripped than the threshold. We also observe that if the

system survives from the contingency, then an attack on a TDSP with more

branches at the lower voltage levels would cause more load lost.

We simulated of IoT demand increase attacks at different scales includ-

ing a 1% of load increase attack, a 10% of sudden load increase attack and

a 30% of sudden load increase attack. The simulation shows the actions of

UFLS and over frequency protection are sufficient to prevent an immediate

system failure or cascading failures in the transmission system in short time

scales after the attack. Additional actions may be needed at longer time scales

after a 30% load increase attack to restore the stable operation of the system,

but a system blackout will likely not occur in these situations.

In addition, a “frequency swing attack” is defined as a cycle of load

increase and decrease IoT attack that aims to push the frequency swing to vio-

late the frequency protection thresholds in the system. However, the frequency

swing attack doesn’t show an ability to cause an immediate disconnection of

generators. A possible repeated frequency swing attack has been discussed.

The impacts of depleting the UFLS resources are discussed. The analysis

shows the effectiveness of such attack would be impacted by any additional

frequency protection measures in the system.
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The cyber attack simulations have certain limitations and future work

can be done to extend this work:

• The results from transient simulations can be more precise if a de-

tailed transient data for a large system becomes available.

• The protections considered in this study is a subset of the protections

in power systems that would contribute to a cascading outage after

a disturbance in the system. However, future work can be done

to explore the impacts from other protections that are commonly

equipped in the power systems.

• In the study of IoT demand attacks, we considered only an IoT

demand attack that is evenly distributed across all the load points

in the system. However, in the future work, we will consider IoT

demand attacks targeting only a part of the system.

7.1.3 Interdiction Problem with COA Model

Based on the knowledge learned from the comprehensive study of cas-

cading outages and cyber attacks in power systems, an interdiction problem

is reformulated to include the COA model to consider the short-term impacts

of attacks. The Global Benders Decomposition method with the COA model

as the sub-problem is implemented in a 37 bus test system. Because of the

cascading effects, it is difficult to find valid Bender’s cuts. However, with a

good “importance” measurement for elements in the master problem, it is still

feasible to find a close to optimal solution.
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We discovered some approximate linear correlations between the total

disrupted power flows in an attack and the load lost post attack under the

simulation with COA model. A similar correlation is observed in the 37 Bus

system. This correlation is used for generating Bender’s cuts in the GLBD

algorithm. Case studies and tests in the 37 Bus system shown the efficiency

of the proposed method. The computational effects of the proposed method

is discussed.

7.2 Unit Commitment Problem

7.2.1 Combined Cycle Unit Formulation

A mixed-integer programming formulation that represents the transi-

tion ramping of CCUs and removes an invalid assumption of single interval

transition is summarized from [181]. Configuration-wise ramping constraints

are formulated and compared with the plant-wise ramping constraints that

were developed in [181]. The transition ramping model is implemented with

configuration-component hybrid CC model in a MISO prototype UC tool.

Computational results on a MISO system show a moderate increase in com-

putational complexity when transition ramping modeling is considered. The

problem sizes of the transition ramping model with different ramping con-

straints are presented and discussed.

Although the formulation and discussion of the transition ramping

model in this dissertation are dedicated to a combined cycle unit, they can

be extended and applied to the modeling of units with similar features in the
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system. This will be discussed for pumped-storage hydro.

7.2.2 Pumped Storage Hydro Unit

A configuration based pumped storage hydro model in the day-ahead

market is presented. Because of the pump “block load” feature and the min-

imum limit of the generations, the operation of a pump storage hydro unit

is difficult to fit into a model that requires the unit to be either pumping or

generating at a given time. Introducing the three configurations model with

generating, pumping and “alloff” configurations can resolve this issue. In ad-

dition, the proposed formulation is flexible to model the transition between

any pair of configurations if the transition takes more than one time interval

or involves additional costs.

A numerical study is presented with two identical PSH units in a PSH

plant sharing a reservoir. The effectiveness of the pumped storage hydro units

in the proposed model are demonstrated with examples. The disadvantages of

including positive bid prices for pump loads and their negative effects on social

welfare are discussed with quantified simulation results. Sensitivity analysis

on the efficiency of a pumped-hydro unit is discussed.

The implementation of the proposed formulation in a MISO prototype

UC model is ongoing. Future work will be done with case studies in the MISO

system. The compactness of the formulation will be further discussed and the

computational results will be presented with MISO large case studies.
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Appendix A

Capacity Constraints at Pumped Storage

Hydro Model

We formalize the linerization of the capacity constraint for a pumped

storage hydro unit in the following remark.

Remark 1. By definition of efficiency, ηhg ≥ 0. Note that eg,t ≥ 0 from (6.12).

Then, the capacity constraints described in the right-hand side of (6.7) is

equivalent to (A.1) and thereby can be linearized as (A.2).

qhg,t ≤ min{P h

gu
h
gt, η

h
g er,t} ∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T (A.1)

qhg,t ≤ P
h

gu
h
gt qhg,t ≤ ηhg er,t ∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T (A.2)

Proof of Remark 1

Linearize (A.1) to (A.2) is a standard linearization on a minimum oper-

ation and it is straightforward. The proof would show the equivalence between

right-hand side of (6.7) and (A.1).

We would show the equivalence of two conditions based on the binary

variable uhgt:

163



uhgt = 1:

right-hand side of (6.7) = (A.1) ⇒

qhg,t ≤ min{P h

g , η
h
g er,t} ∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T,

uhgt = 0:

right-hand side of (6.7) ⇒ qhg,t ≤ 0 ∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T,

(A.1) ⇒ qhg,t ≤ min{0, ηhg er,t} ∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T,

∵ ηhg ≥ 0 and er,t ≥ 0 ∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T,

⇒ ηhg er,t ≥ 0 ∀r ∈ R ∀g ∈ Gsh,r,

⇒ min{0, ηhg er,t} = 0 ∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T,

∴ right-hand side of (6.7) = (A.1)⇒

qhg,t ≤ 0 ∀r ∈ R ∀g ∈ Gsh,r ∀t ∈ T.
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Appendix B

Discussion of the Transition with Zero

Transition Time

When the transition time is zero in a CCU plant, there is no transition

ramping curves. Transitions between two configurations is shown in Fig. B.1.

Figure B.1: Illustration of transitions with zero transition time.
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For the units with zero transition time, the plant-wise ramping con-

straints (5.9) and (5.10) are valid with no need for alterations. However,

the constants A(y′, y) and Hy of those units with zero transition time in

configuration-wise ramping constraints (5.11) and (5.12) are changed.

Two conditions, namely CCU plant ramp up from configuration B to

A and CCU plant ramp down from configuration A to B shown in Fig. B.1,

are considered respectively in the calculation of A(y′, y):

A(y′, y) = I(y′, y)py + (1− I(y′, y))py ∀y′ ∈MT,y. (B.1)

where:

I(y′, y) =

{
1, if py

′
< py, CCU ramp up

0, if py
′
> py, CCU ramp down

∀y′ ∈MT,y.

Hy = py ∀y. (B.2)

After the substitution, when a transition between configurations occurs,

the configuration-wise ramping constraints (5.11) and (5.12) applied on the

start up configuration are in two conditions:

• When the CCU ramps up (e.g. configuration A starts up when the

plant ramps up in Fig. B.1):

pyt ≤ Ry
U + py ∀t,∀y. (5.11’)

pyt ≥ py −Ry
D ∀t,∀y. (5.12’)

Constraint (5.11’) indicates that, due to the ramping constraints, the

maximum output of the start up configuration is its lower bound plus
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the ramp up rate. Constraint (5.12’) would limit the output of the

start up configuration to be greater than its lower bound minus the

ramp down rate. However, since the output of the configuration is

always greater than its lower bound, constraint (5.12’) would never

be active.

• When the CCU ramps down (e.g. configuration B starts up when

the plant ramps down in Fig. B.1):

pyt ≤ Ry
U + py ∀t,∀y. (5.11”)

pyt ≥ py −Ry
D ∀t,∀y. (5.12”)

Constraint (5.12”) indicates that, due to the ramping constraints,

the minimum output of the start up configuration is its upper bound

minus the ramp down rate. Constraint (5.11”) would limit the output

of the start up configuration to be less than its upper bound plus the

ramp up rate. However, since the output of the configuration is

always less than its upper bound, constraint (5.11”) would never be

active.

After the substitution, when a transition between configurations occurs,

the configuration-wise ramping constraints (5.11) and (5.12) applied on the

shut down configuration become:

• Shut down configuration:

qyt−1 ≥ 0 ∀t,∀y. (5.11”)

167



qyt−1 ≤ qy ∀t,∀y. (5.12”)

That is, when a configuration shuts down in a transition, constraints

(5.11”) and (5.12”) would never apply additional limits to the output

of the configuration.

Notice that, the transition data required for this calculation and sub-

stitution of the constants is available off-line. Therefore, the operation of sub-

stituting the constants of the unit with zero transition time will not impact

the formulation and computation in the optimization.
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[105] Andrés Delgadillo, José Manuel Arroyo, and Natalia Alguacil. Analysis

of electric grid interdiction with line switching. IEEE Transactions on

Power Systems, 25(2):633–641, May 2010.

[106] S. Dempe and J. Dutta. Is bilevel programming a special case of a

mathematical program with complementarity constraints? Mathemati-

cal Programming, 131(1-2):37–48, February 2010.

[107] S. Dempe and S. Franke. On the solution of convex bilevel optimization

184



problems. Computational Optimization and Applications, 63(3):685–

703, September 2016.

[108] Stephan Dempe. Discrete Bilevel Optimization Problems. Technical

report, 2001.

[109] Stephan Dempe. Annotated bibliography on bilevel programming and

mathematical programs with equilibrium constraints. Optimization,

52(1):333–359, 2003.

[110] Scott DeNegre. Interdiction and discrete bilevel linear programming.

PhD thesis, Lehigh University, 2011.

[111] Tamara Denning, Tadayoshi Kohno, and Henry M Levy. Computer

security and the modern home. Communications of the ACM, 56(1):94–

103, 2013.

[112] Mark Dickison, S. Havlin, and H. E. Stanley. Epidemics on intercon-

nected networks. Physical Review E, 85(6):066109, June 2012.

[113] Jody Dillon, Daniel J. Burke, Mark J. O’Malley, and Aidan Tuohy.

Should unit commitment be endogenously included in wind power trans-

mission planning optimisation models? IET Renewable Power Genera-

tion, 8(2):132–140, March 2014.

[114] Pia Domschke, Bjorn Geißler, Oliver Kolb, Jens Lang, Alexander Martin,

and Antonio Morsi. Combination of nonlinear and linear optimization of

185



transient gas networks. INFORMS Journal on Computing, 23(4):605–

617, November 2011.

[115] Y Dong and HR Pota. Fast transient stability assessment using large

step-size numerical integration. In IEE Proceedings C (Generation,

Transmission and Distribution), volume 138, pages 377–383. IET, 1991.

[116] C A Dorao and M Fernandino. Simulation of transients in natural gas

pipelines. Journal of Natural Gas Science and Engineering, 3(1):349–

355, 2011.

[117] Duke Energy. Peak Time Rebate Pilot Program.
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[253] Alexander Martin, Markus Möller, and Susanne Moritz. Mixed integer

models for the stationary case of gas network optimization. Mathemat-

ical Programming, 105(2-3):563–582, November 2005.

[254] Alberto Martinez-Mares and Claudio R. Fuerte-Esquivel. A Unified Gas

and Power Flow Analysis in Natural Gas and Electricity Coupled Net-

works. IEEE Transactions on Power Systems, 27(4):2156–2166, Novem-

ber 2012.

[255] Andreu Mas-Colell, Michael Dennis Whinston, and Jerry R Green. Mi-

croeconomic Theory. Oxford University Press, 1995.

205



[256] Drago Matko, Gerhard Geiger, and Withold Gregoritza. Verification

of various pipeline models. Mathematics and computers in simulation,

53(4):303–308, 2000.

[257] Alan W. McMasters and Thomas M. Mustin. Optimal interdiction of

a supply network. Naval Research Logistics Quarterly, 17(3):261–268,

September 1970.

[258] A C G Melo, G C Oliveira, M Morozowski, and M V F Pereira. A hy-

brid algorithm for Monte Carlo/enumeration based composite reliability

evaluation. In Probabilistic Methods Applied to Electric Power Systems,

1991, Third International Conference on, pages 70–74.

[259] A C G Melo, M V F Pereira, and A M da Silva. Frequency and du-

ration calculations in composite generation and transmission reliability

evaluation. Power Systems, IEEE Transactions on, 7(2):469–476, 1992.

[260] Lamine Mili, Qun Qiu, and Arun G Phadke. Risk assessment of catas-

trophic failures in electric power systems. International Journal of Crit-

ical Infrastructures, 1(1):38–63, 2004.

[261] V Miranda, L de Magalhaes Carvalho, M A da Rosa, A M Leite Da

Silva, and C Singh. Improving Power System Reliability Calculation

Efficiency With EPSO Variants. IEEE Trans. Power Syst., 24(4):1772–

1779, 2009.

[262] MISO. Convex Hull Workshop 3. Technical report, 2010.

206



[263] Sidhant Misra, Michael W Fisher, Scott Backhaus, Russell Bent, Michael

Chertkov, and Feng Pan. Optimal compression in natural gas networks:

a geometric programming approach. arXiv preprint arXiv:1312.2668,

2013.

[264] Alexander Mitsos. Global solution of nonlinear mixed-integer bilevel

programs. Journal of Global Optimization, 47(4):557–582, October

2009.

[265] Alexander Mitsos, Panayiotis Lemonidis, and Paul I. Barton. Global

solution of bilevel programs with a nonconvex inner program. Journal

of Global Optimization, 42(4):475–513, December 2007.

[266] Jerry L Modisette, Jason P Modisette, and Others. Transient and

Succession-of-Steady-States Pipeline Flow Models. Pipeline Simulation

Interest Group, 2001.

[267] Saeed Mohajeryami, Milad Doostan, and Peter Schwarz. The impact of

Customer Baseline Load (CBL) calculation methods on Peak Time Re-

bate program offered to residential customers. Electric Power Systems

Research, 137:59–65, August 2016.

[268] Amir-Hamed Mohsenian-Rad and Alberto Leon-Garcia. Distributed

internet-based load altering attacks against smart power grids. IEEE

Transactions on Smart Grid, 2(4):667–674, 2011.

207



[269] J. T. Moore and J. F. Bard. The mixed integer linear bilevel program-

ming problem. Operations Research, 38(5):911–921, 1990.

[270] M.S. Morais and J.W. Marangon Lima. Combined natural gas and

electricity network pricing. Electric Power Systems Research, 77(5-

6):712–719, April 2007.

[271] German Morales-España, Jesus M. Latorre, and Andres Ramos. Tight

and Compact MILP Formulation of Start-Up and Shut-Down Ramping

in Unit Commitment. IEEE Transactions on Power Systems, 28(2):1288–

1296, May 2013.

[272] Germán Morales-España, Carlos M Correa-Posada, and Andres Ramos.

Tight and compact mip formulation of configuration-based combined-

cycle units. IEEE Transactions on Power Systems, 31(2):1350–1359,

2016.

[273] Germán Morales-España, Jesus M. Latorre, and Andres Ramos. Tight

and compact MILP formulation for the thermal unit commitment prob-

lem. IEEE Transactions on Power Systems, 28(4):4897–4908, 2013.

[274] Susanne Moritz. A mixed integer approach for the transient case of gas

network optimization. PhD thesis, TU Darmstadt, 2007.

[275] David P. Morton, Feng Pan, and Kevin J. Saeger. Models for nuclear

smuggling interdiction. IIE Transactions, 39(1):3–14, January 2007.

208
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[296] André Ortner and Daniel Huppmann. Modeling competitive equilibrium

prices for energy and balancing capacity in electricity markets involving

211



non-convexities, 2016.

[297] A. Osiadacz. Optimal numerical method for simulating dynamic flow of

gas in pipelines. International Journal for Numerical Methods in Fluids,

3(2):125–135, March 1983.

[298] Andrzej J Osiadacz. Simulation and analysis of gas networks. Gulf

Publishing Company, Houston, 1987.

[299] James Ostrowski, Miguel F. Anjos, and Anthony Vannelli. Tight Mixed

Integer Linear Programming Formulations for the Unit Commitment

Problem. IEEE Transactions on Power Systems, 27(1):39–46, 2012.

[300] Annual Energy Outlook. With projects to 2050. Washington, DC: US

Energy Information Administration, 2017.

[301] Thomas J Overbye. Fostering intuitive minds for power system design.

IEEE Power and Energy Magazine, 99(4):42–49, 2003.

[302] N.P. Padhy. Unit CommitmentA Bibliographical Survey. IEEE Trans-

actions on Power Systems, 19(2):1196–1205, May 2004.

[303] Bryan Palmintier and Mort Webster. Impact of unit commitment con-

straints on generation expansion planning with renewables. In 2011

IEEE Power and Energy Society General Meeting, pages 1–7. IEEE,

2011.

212



[304] Bryan S. Palmintier. Incorporating Operational Flexibility into Elec-

tric Generation Planning - Impacts and Methods for System Design and

Policy Analysis. PhD thesis, Massachusetts Institute of Technology,

2013.

[305] Bryan S. Palmintier and Mort D. Webster. Heterogeneous unit cluster-

ing for efficient operational flexibility modeling. IEEE Transactions on

Power Systems, 29(3):1089–1098, 2014.

[306] Bryan S. Palmintier and Mort D. Webster. Impact of Operational Flex-

ibility on Electricity Generation Planning With Renewable and Carbon

Targets. IEEE Transactions on Sustainable Energy, 7(2):672–684, 2016.

[307] Kai Pan and Yongpei Guan. A Polyhedral Study of the Integrated

Minimum-Up/-Down Time and Ramping Polytope. Technical report,

University of Florida, 2015.
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[422] Rafael Zárate-Miñano, Thierry Van Cutsem, Federico Milano, and Anto-

nio J Conejo. Securing transient stability using time-domain simulations

within an optimal power flow. IEEE Transactions on Power Systems,

25(1):243–253, 2010.

[423] Victor M Zavala. Stochastic optimal control model for natural gas

networks. Computers & Chemical Engineering, 64:103–113, 2014.

[424] Bo Zeng. Easier than we thought—a practical scheme to compute pes-

simistic bilevel optimization problem. Technical report, University of

Pittsburgh, 2015.

229



[425] Bo Zeng and Yu An. Solving bilevel mixed integer program by refor-

mulations and decomposition. Technical report, University of South

Florida, 2014.

[426] Bo Zeng and Long Zhao. Solving two-stage robust optimization prob-

lems using a column-and-constraint generation method. Operations Re-

search Letters, 41(5):457–461, September 2013.

[427] Qiaozhu Zhai, Xiaohong Guan, Jinghui Cheng, and Hongyu Wu. Fast

Identification of Inactive Security Constraints in SCUC Problems. IEEE

Transactions on Power Systems, 25(4):1946–1954, 2010.

[428] Jiazi Zhang and Lalitha Sankar. Physical system consequences of unob-

servable state-and-topology cyber-physical attacks. IEEE Transactions

on Smart Grid, 7(4), 2016.

[429] Tong Zhang, Ross Baldick, and Thomas Deetjen. Optimized generation

capacity expansion using a further improved screening curve method.

Electric Power Systems Research, 124:47–54, 2015.

[430] Xi Zhang, Dong Liu, Choujun Zhan, and K Tse Chi. Effects of cyber

coupling on cascading failures in power systems. IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, 7(2):228–238,

2017.

[431] Long Zhao and Bo Zeng. Vulnerability analysis of power grids with

line switching. IEEE Transactions on Power Systems, 28(3):2727–2736,

230



August 2013.

[432] Junyang Zhou and Michael A Adewumi. Simulation of transients in

natural gas pipelines using hybrid TVD schemes. International journal

for numerical methods in fluids, 32(4):407–437, 2000.

[433] Yunan Zhu, Jinbao Jian, Jiekang Wu, and Linfeng Yang. Global Opti-

mization of Non-Convex Hydro-Thermal Coordination Based on Semidef-

inite Programming. IEEE Transactions on Power Systems, 28(4):3720–

3728, November 2013.

[434] E Zio and N Pedroni. Estimation of the functional failure probability

of a thermal–hydraulic passive system by Subset Simulation. Nuclear

Engineering and Design, 239(3):580–599, 2009.

[435] George Kingsley Zipf. The P1 P2/D Hypothesis: On the Intercity

Movement of Persons. American Sociological Review, 11(6):pp. 677–

686, 1946.

[436] Konstantin M Zuev, James L Beck, Siu Kui Au, and Lambros S Katafy-

giotis. Bayesian post-processor and other enhancements of Subset Simu-

lation for estimating failure probabilities in high dimensions. Computers

& Structures, 92:283–296, 2012.

231


