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Abstract

In this thesis we are dealing with the operative planning of water supply networks. The task of an
operative planning is to create a pump and valve con�guration such that the water requirement
from consumers is ful�lled with necessary quality. An optimal operation corresponds to a
con�guration that minimizes the operation cost as well as potential water procurement cost.

There are di�erent ways to handle this problem. We solve it as an optimization problem
using mathematical programming.

On the one hand, the network problem contains some discrete variables, for example, the pump
or valve status; on the other hand, nonlinearities and nonconvexities from physical behaviors
make the mathematical model extremely di�cult. We model the optimization problem as a
mixed-integer nonlinear program (MINLP).

We choose MINLP solver SCIP, developed mainly at Zuse Insitute Berlin. We use two real-
world instances provided by industrial partner Siemens and a further real-world instance
obtained from the Department of Hydraulic Engineering of Tsinghua University.

In this thesis, we �rst show that our solver SCIP is able to solve the optimal operation problem
to global optimality in a �xed point of time. However, for a daily operation which contains
24 coupled time periods (hours), “good” solutions are usually found rapidly, but the dual gap
cannot verify the solution quality.

In a further chapter we show that a class of subnetworks which only contains pipes and
consumers, can be simpli�ed and the original nonlinear constraints can be replaced by few (or
single) nonlinear constraints, without changing the feasible region. Computation shows that
this simpli�cation makes the MINLP easier to solve.

The algorithm which solves our nonconvex MINLP generates at every iteration a convex
relaxation of the feasible region. A lot of theories and experiments showed that tighter convex
relaxation is quite relevant for the branch-and-bound approach.

In the objective of our model, we have bivariate polynomial term with degree 3. Based on
the default construction of convex relaxation, we want to �nd additional linear constrains
(“valid cuts”) to make the relaxation tighter. We investigate the graph of general polynomial
functions over a polytope in general dimension and develop theory to describe the convex hull
of the graph and to �nd halfspaces which contain the convex hull. After that we de�ne “tight”
halfspaces which denote the “e�cient” halfspaces when forming the convex hull. For bivariate
polynomial functions with degree 3, algorithms are designed to �nd such tight halfspaces.
After adding these halfspaces (linear constraints) into the MINLP, computation shows that both
primal and dual bound are de�nitively improved within the same time limit.
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Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit der operativen Planung von Wasserversorgungsnetzen.
Die Aufgabe einer operativen Planung ist eine Pump- und Ventilkon�guration zu erstellen, so
dass der Wasserbedarf von Verbrauchern mit notwendiger Qualität erfüllt wird.

Ein optimaler Betrieb entspricht einer Kon�guration, welche die Betriebskosten sowie
mögliche Wasserbescha�ungskosten minimiert. Es gibt verschiedene Möglichkeiten, dieses Prob-
lem zu lösen. Wir lösen es als ein Optimierungsproblem mit mathematischer Optimierung. Ein-
erseits enthält das Netzwerkproblem einige diskrete Variablen, zum Beispiel der Pumpen- oder
Ventilstatus; andererseits, machen Nichtlinearitäten und Nichtkonvexitäten aus physikalischem
Verhalten das mathematische Modell extrem schwierig. Wir modellieren das Optimierungsprob-
lem als ein gemischt-ganzzahliges nichtlineares Programm (MINLP).

Wir haben uns für den MINLP-Solver SCIP entschieden, der im Zuse Institut Berlin entwickelt
wird. Wir verwenden zwei reale Instanzen bereitgestellt von dem Industriepartner Siemens
und eine weitere reale Instanz versorgt von der Fakultät Hydraulic Engineering der Tsinghua-
Universität.

Wir zeigen zuerst, dass unser Solver SCIP in der Lage ist, das optimale Planungsproblem der
Wasserversorgungsnetzen in einem festen Zeitpunkt zu globaler Optimalität zu lösen. Allerd-
ings können zwar gute Lösungen für den täglichen Betrieb, welcher 24 gekoppelte Zeiträume
(Stunden) enthält, gefunden werden. Deren Qualität kann allerdings wegen der schwachen
dualen Schranke nicht bestätigt werden.

In einem weiteren Kapitel zeigen wir, dass eine Klasse von Teilnetzen, welche nur Wasser-
rohren und Verbraucher enthalten, vereinfacht werden kann. Mathematisch zeigen wir, dass die
ursprünglichen nichtlinearen Nebenbedingungen durch wenige (oder einzelne) Nebenbedin-
gungen ersetzt werden können ohne den zulässigen Bereich zu ändern. Numerische Ergebnisse
zeigen, dass diese Vereinfachung die MINLPs deutlich einfacher lösbar macht.

Der Algorithmus, welcher unser nichtkonvexes MINLP löst, erzeugt bei jeder Iteration eine
konvexe Relaxation des zulässigen Bereichs. Viele Theorien und Experimente zeigten, dass eine
engere konvexe Relaxation für den Branch-and-Bound-Ansatz ziemlich relevant ist.

In der Zielfunktion unseres Modells haben wir nichtlineare Funktionen in Form von bivariaten
Polynomen mit Grad 3. Basierend auf der Standardkonstruktion der konvexen Relaxation wollen
wir noch zusätzliche lineare Nebenbedingungen (gültige Schnitte) �nden, um die Relaxation
enger zu machen. Wir untersuchen den Graphen von allgemeinen Polynomfunktionen, der auf
einem Polytop de�niert ist, und entwickeln eine Theorie, um die konvexe Hülle des Graphen
zu beschreiben und um Halbräume zu �nden, welche die konvexe Hülle enthalten. Danach
de�nieren wir enge Halbräume, die die e�zienten Halbräume bei Darstellung der konvexen
Hülle bezeichnen. Für bivariate Polynomfunktionen mit Grad 3 werden Algorithmen entwickelt,
um solche engen Halbräume zu �nden. Nach dem Hinzufügen solcher engen Halbräume (lineare
Nebenbedingungen) in das MINLP, zeigen unsere weiteren numerischen Berechnungen, dass
sowohl die primale als die duale Schranke innerhalb derselben Zeitlimite de�nitiv verbessert
werden.
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Chapter 1

Introduction

Water is one of the most important substances in our life. Clean drinking water is essential to
human and other forms of life. Water also plays a signi�cant role in economies, for it works as
a solvent for many chemical substances, e.g., 70% of freshwater is consumed by agriculture.

Water treatment has been critical for a long time. Each country or city has its own require-
ments which determine treatment needs. A few hundred years ago, a good water supply system
was even one of the marks of an advanced civilization.

We introduce in Section 1.1 the de�nition of water supply and water supply networks,
while Section 1.2 contains details on the objective for optimal operation of water supply networks
(OOWSN). A literature survey for related problems follows in Section 1.3. Afterwards, we
give a short introduction to the mathematical method mixed integer nonlinear programming
in Section 1.4. At the end there is an outline of the thesis. Parts of this chapter have been
published in [Hua11].

1.1 Water supply networks

Water supply is a provision of public utilities, commercial organizations, communities etc. and
usually supplied by a system of pipes and pumps. One of the best-known examples is our
drinking water systems. In 2010, about 84% of the global population (6.74 billion people) had
access to a piped water supply through house connections or through an improved water source
other than in-house, including standpipes, “water kiosks”, protected springs and protected
wells1.

Water supply systems get water from a variety of locations, including groundwater, surface
water (lakes and rivers), and from the sea through desalination. These water sources cannot be
used directly in most cases. The water must be puri�ed, e.g., disinfected through chlorination
or sometimes �uoridated. Treated water then either �ows by gravity or is pumped to reservoirs.

Another key concept in water supply systems is the water pressure. Water pressure varies in
di�erent locations of a distribution system. In poorly managed systems, water pressure can
be so low as to result in only a trickle of water or so high that it leads to damaged plumbing

1Progress on Sanitation and Drinking-water: 2010 Update, UNICEF, WHO/UNICEF Joint Monitoring Programme
for Water Supply and Sanitation
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Chapter 1 Introduction

�xtures and waste of water. Pressure in an urban water system is typically maintained either
by a tank serving an urban area, by pumping the water up into a tower and relying on gravity
to maintain a constant pressure, or by pumps at the water treatment plant and repeater pump
stations.

A water supply system is infrastructure for the collection, transmission, treatment,
storage, and distribution of water for homes, commercial establishments, industry,
and irrigation, as well as for such public needs as �re �ghting and street �ushing. Of
all municipal services, provision of potable water is perhaps the most vital. People
depend on water for drinking, cooking, washing, carrying away wastes, and other
domestic needs. Water supply systems must also meet requirements for public,
commercial, and industrial activities. In all cases, the water must ful�ll both quality
and quantity requirements2.

A water supply system is also a system of engineered hydraulic components which provide
water supply. A water supply system typically includes:

1. Sources of raw water, e.g., from a lake, a river, or groundwater.

2. Water treatment facilities, which purify raw water to clean water, e.g., drinking water or
industrial water.

3. Pipelines, which are used to transfer treated water.

4. Water storage facilities, such as reservoirs, water tanks, or water towers.

5. Additional water pressurizing components, such as pumping stations.

6. A network for distribution of water to the consumers.

7. Valves, which can be active, partially active or inactive.

The water supply network that this thesis deals with is a part of the overall larger water
supply system. Firstly, we will assume that all water to be transferred is puri�ed and treated.
For our intended purposes, we need not know where the raw water comes from and how it is
puri�ed etc. The network can get water from reservoirs, some foreign water companies and
sometimes even protected springs and protected wells. However, if raw water is supplied, we
only add the purifying cost to its price.

Our water supply network contains the following six components:

1. Reservoirs, water companies, or protected springs and wells. These all contain treated
water. Water from companies is usually more expensive, but nearer to some consumers
or tanks.

2Encyclopedia Britannica. 2010. Encyclopedia Britannica Online. 13 Oct. 2010
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1.1 Water supply networks

2. Pump stations. A pump station contains at least one pump. Several pumps in the same
pump station can be connected in parallel or in series. Serially connected pumps increase
the pressure one after another, and pumps connected in parallel increase the total �ow
rate.

3. Tanks. Tanks are intermediate storages of water with limited capacity.

4. Consumers. Consumers are given with demand (�ow rate) which is estimated stochasti-
cally or empirically, usually given in a short time period, e.g., one hour.

5. Valves. An inactive (turned o�) valve shuts o� a subnetwork, i.e., controls the �ow direc-
tion. A partially active valve reduces the pressure between two connected components.

6. Pipelines. Water is transferred through pipelines, which experience pressure loss ac-
cording to material, length, and diameter of pipes and according to the �ow rate of
water.

Figure 1.1: An example of a possible water supply network

In Figure 1.1 there is an example of a hypothetical water supply network. In this network,
pump 𝐵1 and pump 𝐵2 have been connected in parallel and if at least one of these is active,
water will be pumped from reservoir 𝐵. The price of water from our water factory may be
more expensive than water from reservoirs 𝐴 and 𝐵. But sometimes, it could be bene�cial to
pump more required water from the water factory rather than from reservoirs 𝐴 or 𝐵. The
demands in our consumers 1, 2, 3 could deviate from the estimated amount, this may cause
either oversupply or undersupply. Such cases can be handled with water tanks of �exible height.

The main task of operative planning of a water supply network is �nding a pump con�guration
for all pumps in all pump stations so that the quantity requirements will be ful�lled. This problem
can be treated as a multiobjective optimization problem. The next section gives more details for
the multiple objectives.

3



Chapter 1 Introduction

1.2 Multiple objectives of optimal operation of water supply
networks

There are several objectives for optimal operation of water supply networks:

1. Safe operation. The entire system should be safe. Operating components according to the
manufacturer’s recommendations should lead to less problems and malfunctions.

2. Full supply of consumers (robust supply). For a complete con�guration, we should
estimate the amount of demand for several short time periods in the future. But it is
impossible to estimate them exactly. Thus we want to avoid situations in which water
supply is scheduled from water tanks that are empty at the planned supply time. We also
want to avoid situations in which tanks are over�lled due to overestimated consumer
demand. In addition, we should also consider circumstances such as broken pumps and
damaged pipes, under which the system as a whole must still function.

3. Minimal costs for water and energy. Pump con�gurations are executed by companies or
public utilities. The more they pay for water and energy, the less the companies earn and
the more �nancial problems the public utilities and communities have.

4. As few as possible pump switches. For technical reasons the pumps should not be switched
too frequently. Switching too frequently reduces the life cycle and the e�ciency of pumps.
The e�ciency of energy transformation from electrical energy to kinetic energy (�ow
rate) and potential energy (pressure) is extremely low during starting and ending.

1.3 Previous work

A systematic introduction to water supply and the distribution systems can be found in [WK07].
As described in Chapter 10 there, in the early days of water supply computer modeling, simula-
tions were primarily used to solve design problems. At that time, operators preferred measuring
pressures and �ows in the �eld rather than working with complicated computer programs.
Recent advances in software technology have made models more powerful and easier to use.
As a result, operations personnel have accepted computer as a tool to help them in keeping the
supply networks running smoothly.

From the literature point of view, a very early work with computer programs can be found
in [WS73]. In this work, a detailed convex NLP was formulated and the Jacobian Di�erential
Algorithm was developed to solve the NLP which is a generalized eliminating procedure and
computationally feasible. The team implemented the algorithm with 25 subroutines. However,
with the computational ability almost half of a century ago, very limited network size and
constraint type can be handled.

A little more recent work for large-scale water supply networks can be found in [DLMY95].
The results there indicated that the combination of using an LP procedure and a graph algorithm

4



1.3 Previous work

is a very versatile tool for solving operation of large-scale water supply networks. Note that this
work does not consider water pressure and pump scheduling. Meanwhile, a survey of research
on optimal operation of water supply networks can be found in [ZS89].

Including optimal operation of water supply networks, there are also works with additional
purposes, e.g., considering water quality [SM00] as well as considering preemptive priori-
ties [BZBY08].

The most similar model to which we detail in Chapter 2 can be found in Burgschweiger
et al. [BGS05]. In their work, the operative planning problem of water supply networks has
been modeled as a pure NLP without integer variables. After that, a NLP solver has been used
which usually ensures only locally optimal solutions. Very similar to this work, Blaszczyk et al.
[BMA14] have modeled the optimal operation problem using NLP as well and solved it with
the barrier method by extending solver Ipopt [Ipo].

Bragalli et al. [BDLLT06; BDLLT08; BDLLT12] published several related work to water supply
networks. They have an MINLP model to make the choice of a diameter for each pipe, while other
design properties are considered to be �xed, e.g., the network topology and pipe lengths. This
kind of water network design problem is another big class of water supply network problems
to compare with optimal operation problem. Their model contains discrete variables selecting
from a set of commercially-available diameters. Water �ows and pressures must respect the
hydraulic constraints, and the total cost which only depends on the selected diameters should be
minimized. In their work, they have tried several approaches to solve the MINLP, e.g., directly
with BONMIN or solving MIP approach using piecewise-linear approximations.

In addition, gas networks, which also contain pumps (or compressors) and valves and should
consider pressure, are very similar to the water supply networks. Martin et al. [MMM06]
developed an MINLP model to optimize the �ow of the gas and to use the compressors cost-
e�ciently such that all demands of the gas network are satis�ed. But instead of solving the
MINLP directly, techniques for a piecewise-linear approximation (see e.g., [BF76; LW01]) of
the nonlinearities have been used to the model resulting in a large MIP. The remaining work is
then to solve the MIP. The same approach has also be extended by [KLLMMOOR12] to solve
operation of water supply networks. Morsi [Mor13] has compared the two problems in his PhD
thesis in 2013.

For the most recent works, Perrière et al. [PJNN14] used an integer linear programming (ILP)
tool for the MINLP. Another work is [FT15] where a second-order cone relaxation for the
original MINLP model was proposed and solved to demonstrate the e�ectiveness in computing
the optimal pump schedules and water �ows.

Until now, we discussed mainly work with a focus on combinatorial aspects with a �nal
goal of global optimization. There is also research focusing on numerical mathematics and
continuous optimization by research group Martin and research group Lang [DGKLMM11;
DKL15; KLB10; DKL10; GKLLMM11]. In these works di�erential equations for simulation
purpose were underlying and should to be solved. In addition, sensitivity information for
gradient-based optimization tools were provided. As a member of the research group Lang,
Kolb [Kol11] �nished his PhD thesis in 2011.
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Chapter 1 Introduction

Indeed, MINLP is the most e�ective approach for water supply network problems recently.
Recalling all previous work mentioned in this section, on the one hand, some of them used
approximation already by modeling such that a subproblem, usually NLP. This reduces the solu-
tion quality due to the less precise model. ON the other hand, piecewise-linear approximations
reduced the MINLP to be a MIP. First of all, the MIP with much more binary variables is not
always easier solvable than the orgiginal MINLP. In addition, depending on the approximation
parameter, very similar approximated MIPs could have very di�erent optimal solutions. Other
approaches such as sequential quadratic programming (SQP) [DGKLMM11] which extended
a continuous treatment of binary control variables may handle the MINLP as well, but only
ensures local optima.

Due to the signi�cant improvement to mixed integer nonlinear programming solvers in
recent years, larger and larger problems can be solved to optimality or near-optimality. We have
then a chance of trying to develop an MINLP model as precise as possible, i.e., fewer relaxation
and approximation comparing with the previous works. In this thesis, we try to solve it directly
with our available MINLP solver and to get a global optimum if possible. To compare with
previous work, we model in a more precise way and solve the modeled MINLP directly. This
will de�nitely increase the solution quality for �nal operation. In addition, the approach with
global optimality with gap information always veri�es the solution quality numerically as well.

1.4 Introduction to mixed integer nonlinear programming

In this section we introduce de�nition, complexity, applications and solvers to mixed integer
nonlinear programming (MINLP).

1.4.1 Definition
De�nition 1.1 (Mixed Integer Nonlinear Program)
An optimization problem of the form

min 𝑑𝑇 𝑥

s.t. 𝑔𝑖(𝑥) ≤ 0 𝑖 ∈ 𝐼

𝐿𝑗 ≤ 𝑥𝑗 ≤ 𝑈𝑗 𝑗 ∈ 𝐽

𝑥𝑘 ∈ Z 𝑘 ∈ 𝐽 ′

(1.1)

is a Mixed Integer Nonlinear Program (MINLP), where 𝐼 is the index set of constraints with
|𝐼| = 𝑚, 𝐽 is the index set of all variables with |𝐽 | = 𝑛, 𝐽 ′ ⊆ 𝐽 is the index set of integer
variables, 𝑑 ∈ R𝑛, 𝑔𝑖 : R𝑛 ↦→ R, for all 𝑖 ∈ 𝐼 , and 𝐿 ∈ (R ∪ {−∞})𝑛, 𝑈 ∈ (R ∪ {∞})𝑛 are
lower and upper bounds on the variables.

We call this MINLP in standard form. Note that an MINLP can have a nonlinear objective func-
tion, but it can easily be transferred to the standard form by introducing additional constraint(s)
and variable(s).
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1.4 Introduction to mixed integer nonlinear programming

If all of the constraint functions 𝑔𝑖 are convex, the problem is known as a convex MINLP,
otherwise it is known as a nonconvex MINLP. When all of the 𝑔𝑖 are a�ne, we have a mixed
integer linear program (MIP). Since MIP-solving is 𝒩 𝒫-hard [Sch03, Volume A, Chapter 5] and
MIP is a special case of MINLP, solving MINLP is at least 𝒩 𝒫-hard. When 𝐽 ′ = ∅, i.e., there
are no integer variables, the problem becomes a nonlinear program (NLP). And if all of the 𝑔𝑖

are a�ne and 𝐽 ′ = ∅, we have a linear program (LP), which has been shown to be solvable in
polynomial time by the ellipsoid method (see Khachian [Kha79]) and by interior point methods
(see e.g., Karmarkar [Kar84]). Thus, both the integrality as well as the nonconvexity of 𝑔𝑖

increase the complexity of solving an MINLP.
However, MINLP can not be solved exactly in general. Since neither the input nor the

output of a Turing machine can be an irrational number, the solution of the simple constraint
𝑥2 = 2, 𝑥 ≥ 0, which is an irrational number

√
2, cannot be computed or recognized by the

Turing machine. On the other hand, no decimal presentation of a value of 𝑥 can be veri�ed to
be an exact solution.

Plenty of optimization problems can be modeled as mixed integer programming (MIP) prob-
lems. However, for some applications, in particular in the �eld of some physical engineering
systems, e.g., for gas network problems and for the operative planning of water supply networks,
linear constraints cannot model the physical behavior accurately enough. In these cases we
should model them as mixed integer nonlinear programming problems. MINLP has a wide range
of applications, such as computational biology, computational chemistry, engineering design,
etc. A survey of applications of MINLP can be found in Grossmann and Kravanja [GK97].

1.4.2 Solvers and algorithms

This overview is based on the presentation given in Bussieck and Vigerske [BV10]. One of
the earliest commercial softwares package that could solve MINLP problems was SCICONIC
in the mid 1970’s (see also Forrest and Tomlin [FT07]). Instead of handling nonlinearities
directly, Special-Ordered-Set constraints [BF76] were used to represent low dimensional non-
linear constraints by a piecewise linear approximation and thus allowed to use mixed integer
programming (MIP) to get solutions to an approximation of the MINLP. In the mid 1980’s
Grossmann and Kocis developed DICOPT, a general purpose algorithm for convex MINLP based
on the outer approximation method [DG86]. After that, a number of academic and commercial
codes for convex MINLP were released. To solve nonconvex MINLPs to global optimality, the
�rst general purpose solvers were alphaBB [AM95], BARON [TS02a; Sah96], and GLOP [SP99],
all based on convexi�cation techniques for nonconvex constraints.

As presented in [BV10], algorithms for solving MINLPs are often built by combining algo-
rithms from Linear Programming, Integer Programming, and Nonlinear Programming, e.g.,
branch-and-bound, outer-approximation, local search, and global optimization. Most of the
solvers implement one (or several) of the following three algorithmic ideas [BV10]:

• Branch-and-bound solvers that use NLP relaxations. These solvers are e.g., BONMIN [BBC-
CGLLLMSW08] (in B-BB mode), MINLP_BB [Ley01] and SBB [Oai]. For all these solvers,
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Chapter 1 Introduction

the NLP relaxation is obtained by relaxing the integrality conditions, thus it may be a
nonconvex NLP. Since the NLP solver used to solve the NLP relaxation usually ensures
only locally optimal solutions, these solvers work only as heuristics in case of a nonconvex
MINLP.

• (Sequential) MIP-based solvers that replace the nonlinear functions by a linear relaxation.
In an outer-approximation algorithm [DG86; FL94], a relaxation is obtained by using
(sub)gradient-based linearizations of 𝑔𝑖(𝑥) at solution points of NLP subproblems. The
resulting MIP relaxation is then solved by an MIP solver. Solvers in this class are e.g.,
BONMIN (in B-OA mode) and DICOPT [GVVRK02; Oai]. Since (sub)gradient-based
linearizations yield an outer-approximation only for convex MINLPs, these solvers are
only applicable for convex MINLPs. In contrast to outer-approximation based algorithms,
an extended cutting plane algorithm solves a sequence of MIP relaxations which encap-
sulate optimal solutions and are improved by using cutting planes. This algorithm is
implemented by the solver AlphaECP [WP95; WP02].

• Branch-and-cut solvers that integrate the linearization of 𝑔𝑖(𝑥) into a branch-and-cut
process. In this process, an LP relaxation is successively solved, new linearizations are
generated to improve the relaxation, and integrality constraints are enforced by branching
on integer variables. Solvers which use gradient-based linearizations are e.g., AOA [RB09],
BONMIN (in B-QG mode) and FilMINT [ALL06]. Gradient-based linearizations ensure
global optimality only for convex MINLPs.
For nonconvex MINLPs, convexi�cation techniques can be used to compute linear un-
derestimators of nonconvex functions. However, the additional convexi�cation step
may require branching on continuous variables in nonconvex terms (also called spatial
branching). Such a branch-and-cut algorithm is implemented by e.g., BARON [TS02a;
TS04], Couenne [BLLMW09] and SCIP [Ach07; BHV12; Vig12; BG12; Gle15].

1.5 Outline of the thesis

This thesis is structured as follows.
Chapter 2 gives a nonconvex MINLP model of the water supply network planning problem.

In Chapter 3 we give a description of the static model which is the static version of the dynamic
model introduced in Chapter 2. After that computational experiments show that the real-
world instances can be solved to global optimality. However, computational results at the end
of Chapter 4 and Chapter 5 show us that the instances with whole dynamic model are still very
hard to solve.

In Chapter 4 we present theory and algorithms to simplify the derived MINLP after detecting
passive sub-network. The simpli�ed MINLP is easier to solve.

After that, in Chapter 5 we investigate �rst the characteristics of the convex hull of graphs of
polynomial functions over a polytope. Based on the theoretical proofs, we develop algorithms
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1.5 Outline of the thesis

to �nd tighter convex relaxations for the nonconvex polynomial objective functions in the
MINLP model. The tighter convex relaxations improve the dual bound signi�cantly and also
helps solver to �nd better solution.

Finally in Chapter 6, we summarize our results and contributions and give a short outline of
possible future research.
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Chapter 2

Modeling Optimal Operation of Water
Supply Networks by Mixed Integer
Nonlinear Programming

In this chapter we present an MINLP model of our water supply network planning problem in
Section 2.1. In Section 2.2, we introduce some simpli�cation techniques as preprocessing steps
for the original model without changing the optimality.

2.1 Optimization model

The network abstraction of our model and the notation of variables are based on [BGS05]
and [Wal03]. The basic notation used in the model is given in Table 2.1.

2.1.1 Optimization horizon and network topology

Since our model is a time-expanded network which covers physical and technical network
behavior, we consider a planning period of length 𝑇 (typically one day, i.e., 24 hours) in discrete
time, 𝑡 = 1, 2, . . . , 𝑇 with start status 𝑡 = 0. We refer to the subinterval (𝑡 − 1, 𝑡) as period 𝑡
which has length Δ𝑡. In our model, typically we set Δ𝑡 = 1 hour, so there are 24 periods.

Our network model is based on a digraph 𝐺 = (𝒩 , 𝒜), where the nodes represent junctions
𝒥 , reservoirs ℛ and tanks 𝒯 , i.e.,

𝒩 = 𝒥 ∪ ℛ ∪ 𝒯 ,

and the arcs represent pipe segments 𝒮 , pump stations ℱ (facilities including pumps and
equipment for pumping �uids) and gate valves 𝒱 , i.e.,

𝒜 = 𝒮 ∪ ℱ ∪ 𝒱.

Furthermore, 𝒫 is the set of all pumps where every 𝑝 ∈ 𝒫 is contained in exactly one pump
station.

11



Chapter 2 Modeling Optimal Operation of Water Supply Networks by MINLP

Table 2.1: Notation for the optimization model.
Symbol Explanation Value Unit
𝑄 Volumetric �ow rate in arcs 𝑚3/𝑠
𝑄𝑟 Volumetric �ow rate out of reservoirs 𝑚3/𝑠
ℎ Pressure potential at nodes (head) 𝑚
ℎ𝑙 Water �ll level in tanks 𝑚
Δℎ Pressure increase at pumps, decrease at valves, pipes 𝑚
𝑥 Pump status {0, 1}
𝑦 Flow direction {0, 1}
𝑧 Variables that denote if the head is real or imaginary {0, 1}
𝐷 Demand �ow rate at junctions 𝑚3/𝑠
𝐻0 Geodetic elevation at nodes 𝑚
𝑉 Daily capacity at reservoirs 𝑚3

𝐿 Pipe length 𝑚
𝑑 Pipe diameter (bore) 𝑚
𝑘 Pipe roughness 𝑚
𝐴 Pipe cross-sectional area 𝑚2

𝑓 Pipe friction coe�cient −
𝜆 Pipe hydraulic loss coe�cient 𝑠2/𝑚5

Δ𝐻max Maximal possible pressure increase of pumps 𝑚
𝑐 Constant for characteristic curve of pumps 𝑠2/𝑚5

𝜂 E�ciency of pumps
𝜌 Water density 1000 𝑘𝑔/𝑚3

𝑔 Gravity constant 9.81 𝑚/𝑠2

Δ𝑡 Length of a time period 3600 𝑠
𝐶 Total daily operating cost Euro
𝐶𝑎 Total daily operating cost at pump 𝑎 Euro
𝐾𝑝 Cost of pump switch for pump 𝑝 Euro
𝜅𝑡 Price for electric energy at pump during period 𝑡 Euro/𝐽
𝜔𝑗 Price of water in reservoir 𝑗 Euro/𝑚3

We denote arcs as 𝑎 ∈ 𝒜 or as 𝑖𝑗, where 𝑖, 𝑗 are the tail and head with 𝑖, 𝑗 ∈ 𝒩 . For every
𝑗 ∈ 𝒩 , let 𝛿+(𝑗) be the set of arcs that have head 𝑗 and 𝛿−(𝑗) be the set of arcs that have tail 𝑗,
i.e.,

𝛿+(𝑗) := {𝑗𝑖 ∈ 𝒜 | 𝑖 ∈ 𝒩 },

and

𝛿−(𝑗) := {𝑖𝑗 ∈ 𝒜 | 𝑖 ∈ 𝒩 }.

For an arc 𝑖𝑗, a �ow from 𝑖 to 𝑗 is positive and a �ow from 𝑗 to 𝑖 is negative. Some arcs (e.g.,
pumps) may not permit negative �ow.
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2.1 Optimization model

2.1.2 Pressure

Since water is approximately not compressible, pressure 𝑝 in unit Pa can be expressed as

𝑝 = 𝜌𝑔Δℎ,

where 𝜌 and 𝑔 are constants and Δℎ is the height of water above the point of measurement
or the elevation di�erence between the two points within the water column. To simplify our
model, we can measure pressure only by the head ℎ, which is the sum of the elevation di�erence
Δℎ corresponding to the hydrostatic or hydraulic pressure and the geodetic elevation 𝐻0:

ℎ = Δℎ + 𝐻0.

The geodetic elevation is the height above a �xed reference point; here, the mean sea level.
If some water �ows from a reservoir without any external force, the head of this reservoir

corresponds to its geodetic elevation. Water can only �ow through a junction if the head is
no less than the geodetic elevation of the junction. More details are given in Section 2.1.3 and
Section 2.1.4.

2.1.3 Constraints

Junction. There are two kinds of junctions: junctions with demand (type 1) and junctions
without demand (type 2). Recall 𝒥 which is the set of all junctions, let 𝒥1 be the set of all
junctions with demand and 𝒥2 be the set of all junctions without demand. Junctions with
demand are actually the consumers. Junctions without demand are included in the network to
connect two arcs, e.g. a junction between a pump and a pipe. For junctions, the consumption
demands 𝐷𝑗𝑡 is a nonnegative constant (has value 0 for type 2) and has to be balanced,∑︁

𝑎∈𝛿−(𝑗)
𝑄𝑎𝑡 −

∑︁
𝑎∈𝛿+(𝑗)

𝑄𝑎𝑡 − 𝐷𝑗𝑡 = 0, (2.1)

for all 𝑗 ∈ 𝒥 , 𝑡 ∈ {1, . . . , 𝑇}.
Moreover, the head at every junction 𝑗 ∈ 𝒥 in every time period 𝑡 has a lower bound. There

are some complicated cases for junctions in the network, we discuss them in a separate section
intentionally, namely in Section 2.1.4.

Reservoir. Every reservoir 𝑗 ∈ ℛ has a limited daily capacity 𝑉𝑗 , from where the pure water
�ows out with �ow rate 𝑄𝑟:

Δ𝑡
𝑇∑︁

𝑡=1
𝑄𝑟

𝑗𝑡 ≤ 𝑉𝑗 , (2.2)

for all 𝑗 ∈ ℛ. The out�ow of every reservoir 𝑗 ∈ ℛ at every time period 𝑡 should be balanced:∑︁
𝑎∈𝛿+(𝑗)

𝑄𝑎𝑡 − 𝑄𝑟
𝑗𝑡 = 0. (2.3)
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Chapter 2 Modeling Optimal Operation of Water Supply Networks by MINLP

We assume that reservoirs have a constant pressure value 𝐻0
𝑗 ,

ℎ𝑗𝑡 − 𝐻0
𝑗 = 0, (2.4)

for all 𝑗 ∈ ℛ, 𝑡 ∈ {1, . . . , 𝑇}.

Tank. In our model all tanks are cylinders whose cross sections are invariant with area 𝐴𝑗 .
Flow balance equations at tank 𝑗 ∈ 𝒯 involve the tank in�ow, which depends on ℎ𝑗,𝑡−1 and
ℎ𝑗,𝑡,

Δ𝑡

⎛⎝ ∑︁
𝑎∈𝛿−(𝑗)

𝑄𝑎𝑡 −
∑︁

𝑎∈𝛿+(𝑗)
𝑄𝑎𝑡

⎞⎠
⏟  ⏞  

total volume of in�ow or out�ow

− 𝐴𝑗(ℎ𝑗,𝑡 − ℎ𝑗,𝑡−1)⏟  ⏞  
water volume di�erence

= 0, (2.5)

for all 𝑗 ∈ 𝒯 , 𝑡 ∈ {1, . . . , 𝑇}. For every tank 𝑗 ∈ 𝒯 in time 𝑡 ∈ {1, . . . , 𝑇} with actual water
�ll level ℎ𝑙

𝑗𝑡 ∈ [𝐹 min
𝑗 , 𝐹 max

𝑗 ] and geodetic elevation 𝐻0
𝑗 , the head ℎ𝑗𝑡 should ful�ll:

ℎ𝑙
𝑗𝑡 + 𝐻0

𝑗 = ℎ𝑗𝑡 (2.6)

Pipe. In every pipe 𝑎 = 𝑖𝑗 ∈ 𝒮 , the hydraulic friction causes a pressure loss,

ℎ𝑗𝑡 − ℎ𝑖𝑡 + Δℎ𝑎𝑡 = 0,

for all 𝑎 ∈ 𝒮, 𝑡 ∈ {1, . . . , 𝑇}.
The law of Darcy-Weisbach which has been expressed in [BGS05] and in [Wal03], presents

the pressure loss in water pipes

Δℎ𝑎𝑡 = 𝜆𝑎𝑄𝑎𝑡 |𝑄𝑎𝑡| = 𝜆𝑎sgn(𝑄𝑎𝑡)𝑄2
𝑎𝑡, (2.7)

where 𝜆𝑎 is the hydraulic loss coe�cient which depends on the length 𝐿𝑎, the diameter 𝑑𝑎, and
the friction coe�cient 𝑓𝑎 for every pipe 𝑎 ∈ 𝒮 :

𝜆𝑎 = 8𝐿𝑎

𝜋2𝑔𝑑5
𝑎

𝑓𝑎.

The friction coe�cient 𝑓𝑎 which has highly nonlinear dependency on the �ow rate 𝑄𝑎 is taken
into account by simulation software, see, e.g., EPANET [Epa], but appears to be too detailed for
an optimization model.

We use the law of Prandtl-Kármán

𝑓𝑎 =
(︁
2 log10

𝜀𝑎

3.71𝑑𝑎

)︁2
,

which eliminates the dependency on 𝑄𝑎 by assuming large Reynolds number and is a good
approximation for hydraulically rough pipes. It tends to underestimate the induced �ow for
small pressure di�erences, hence yielding conservative solutions. The roughness parameter 𝜀𝑎

only depends on the inner pipe surface. Since 𝑓𝑎 is �ow-independent, it follows 𝜆𝑎 is constant
for every pump 𝑎 ∈ 𝒮 . For more details on mathematical modeling of the physics of pressure
loss, see, e.g., [BGS04].
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(a) Connected in parallel (b) Connected in series

Figure 2.1: Example of pump stations

Pump station. In our model pump stations may contain one single pump or several pumps.
Pumps in the same pump station can be connected in parallel (Figure 2.1a) or in series (Fig-
ure 2.1b). Serially connected pumps increase the pressure one after another, and parallelly
connected pumps increase the total �ow rate and increase the pressure by an amount determined
by the weakest pump of the group.

In our model we only consider pump stations which connect pumps in parallel. If a pump
station has all pumps inactive, it functions as a completely closed valve: no �ow through it and
no pressure restriction. A pump station 𝑎 = 𝑖𝑗 ∈ ℱ that has more than one pump active in
time 𝑡 ∈ {1, . . . , 𝑇} increases the pressure by some nonnegative amount Δℎ𝑎𝑡,

ℎ𝑗𝑡 − ℎ𝑖𝑡 − Δℎ𝑎𝑡 = 0. (2.8)

For a given pump, the �ow rate depends on the di�erential pressure or head developed by the
pump. Such pumps have a curve of pump �ow rate versus pump head, called characteristic
curve, usually provided by the vendor. Let Δℎ𝑝𝑡 be the head of pump 𝑝 ∈ 𝒫 in time 𝑡 and 𝑄𝑝𝑡

be the �ow rate. The characteristic curve [Epa] for pumps with �xed speed can be approximated
by

Δℎ𝑝𝑡 = Δ𝐻max
𝑝 − 𝑐𝑝𝑄2

𝑝𝑡, (2.9)

where Δ𝐻max
𝑝 and 𝑐𝑝 are two positive constants derived from the characteristic curve. Note

that Δ𝐻max is the maximal possible pressure increase the pump can produce.
Let 𝑄min

𝑝 and 𝑄max
𝑝 be the lower and upper bound of the �ow rate of pump 𝑝 ∈ 𝒫 during

operation. If 𝑄min
𝑝 > 0, the variable 𝑄𝑝𝑡 is semi-continuous, i.e., we have 𝑄𝑝𝑡 ∈ {0} ∪

[𝑄min
𝑝 , 𝑄max

𝑝 ]. The main task of our operative planning problem is to decide the activity status
and further the �ow rate of all pumps 𝑝 ∈ ℱ during time period 𝑡 ∈ {1, . . . , 𝑇}. For every
pump we de�ne a binary variable 𝑥𝑖𝑡 ∈ {0, 1}, where 𝑥𝑝𝑡 = 1 if and only if pump 𝑝 is active in
time period 𝑡. The �ow rate 𝑄𝑝𝑡 of pump 𝑝 ∈ 𝒫 during time period 𝑡 ∈ {1, . . . , 𝑇} ful�lls

𝑥𝑝𝑡𝑄
min
𝑝 ≤ 𝑄𝑝𝑡 ≤ 𝑥𝑝𝑡𝑄

max
𝑝 . (2.10)
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The �ow rate in pump station 𝑎 ∈ ℱ in time 𝑡 is the sum of the �ow rate of every pump 𝑝 ∈ 𝒫𝑎:

𝑄𝑎𝑡 =
∑︁

𝑝∈ℱ𝑎

𝑄𝑝𝑡, (2.11)

where 𝒫𝑎 ⊂ 𝒫 is the set of all pumps contained in pump station 𝑎.
If pump 𝑝 in pump station 𝑎 is active, it should produce the same head Δℎ𝑎𝑡 as the head

between the two sides of 𝑎, but if it is inactive, it works just like a valve and its pressure
di�erential Δℎ𝑝𝑡 does not have to be equal to Δℎ𝑎𝑡. For this purpose and in order to model
them with linear constraints, we use a big-M formulation.
Remark 2.1
For clarity of presentation, we use the same constant 𝑀 in all big-M constraints of our model. In
our computations we choose 𝑀 for each constraint individually as small as possible, depending
on the bounds of the variables involved.

For every pump 𝑝 in pump station 𝑎 and every time 𝑡, we have

(𝑥𝑝𝑡 − 1)𝑀 ≤ Δℎ𝑝𝑡 − Δℎ𝑎𝑡 ≤ (1 − 𝑥𝑝𝑡)𝑀. (2.12)

If 𝑥𝑝𝑡 = 1, i.e., pump 𝑝 is active in time 𝑡, then Δℎ𝑎𝑡 = Δℎ𝑝𝑡, i.e., the pump generates the same
pressure increase as needed by the pump station. Otherwise if 𝑥𝑝𝑡 = 0, the constraint (2.12)
will be ful�lled by all means.

For technical reasons we should have as few pump switches as possible. Pump 𝑝 in time 𝑡
has been switched if and only if

|𝑥𝑝𝑡 − 𝑥𝑝,𝑡−1| = 1.

Fortunately, one part of our objective is to minimize the number of pump switches, hence we
can model the pump switch with two inequalities and an auxiliary variable Δ𝑥𝑝𝑡:

Δ𝑥𝑝𝑡 ≥ ±(𝑥𝑝𝑡 − 𝑥𝑝,𝑡−1). (2.13)

Apparently, since Δ𝑥𝑝𝑡 is not constrained by other constraints and has positive coe�cient in
the objective of a minimizing problem, an optimal solution ful�lls

Δ𝑥𝑝𝑡 = |𝑥𝑝𝑡 − 𝑥𝑝,𝑡−1| .

For a given pump 𝑝, the e�ciency 𝜂𝑝𝑡 in time 𝑡 depends on the �ow rate 𝑄𝑝𝑡. Similar to the
characteristic curve, every pump has an e�ciency curve of e�ciency versus �ow rate provided
by the vendor. The e�ciency curve can be approximated with three segments (see example in
Figure 2.2):

𝜂𝑝𝑡 =

⎧⎪⎪⎨⎪⎪⎩
𝑎𝑝1𝑄𝑝𝑡 + 𝑏𝑝1 0 ≤ 𝑄𝑝𝑡 ≤ 𝑄𝑝1,

𝑎𝑝2𝑄𝑝𝑡 + 𝑏𝑝2 𝑄𝑝1 < 𝑄𝑝𝑡 ≤ 𝑄𝑝2,

𝑎𝑝3𝑄𝑝𝑡 + 𝑏𝑝3 𝑄𝑝2 < 𝑄𝑝𝑡 ≤ 𝑄𝑝3

where 𝑎𝑝1, 𝑎𝑝2, 𝑎𝑝3, 𝑏𝑝1, 𝑏𝑝2, 𝑏𝑝3, 𝑄𝑝1, 𝑄𝑝2, 𝑄𝑝3 are given coe�cients for pump 𝑝.
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0 𝑄𝑝1 𝑄𝑝2 𝑄𝑝3

-1

𝜂𝑝𝑡

𝑄𝑝𝑢𝑚𝑝𝑝𝑡

Figure 2.2: An example of how the pump e�ciency depends on the �ow rate

Valve. The pressure in valve 𝑎 = 𝑖𝑗 ∈ 𝒱 is decreased by some controlled amount Δℎ𝑎𝑡,

ℎ𝑗𝑡 − ℎ𝑖𝑡 + Δℎ𝑎𝑡 = 0, (2.14)

for all 𝑎 = 𝑖𝑗 ∈ 𝒱, 𝑡 ∈ {1, . . . , 𝑇}, and the sign condition

Δℎ𝑎𝑡𝑄𝑎𝑡 ≥ 0, (2.15)

for all 𝑎 = 𝑖𝑗 ∈ 𝒱, 𝑡 ∈ {1, . . . , 𝑇} guarantees the consistency of the pressure decrease.
However, the algorithm in this thesis used to solve MINLP performs better if the given MINLP

has as few nonlinearities as possible. For this purpose, we replace the nonlinear constraints (2.15)
by including a binary variable 𝑦𝑎𝑡 ∈ {0, 1} to determine the direction of the �ow in valve 𝑎
and time 𝑡. The �ow rate 𝑄𝑎𝑡 is not negative if 𝑦𝑎𝑡 = 1 and not positive if 𝑦𝑎𝑡 = 0. Note that
in case of 𝑄𝑎𝑡 = 0, the both values for 𝑦𝑎𝑡 are allowed. Let [Δℎmin

𝑎 , Δℎmax
𝑎 ] be the domain of

Δℎ𝑎𝑡 and [𝑄min
𝑎 , 𝑄max

𝑎 ] be the domain of 𝑄𝑎𝑡 with 𝑄min
𝑎 < 0, 𝑄max

𝑎 > 0 (otherwise we need
no direction variable any more). Then (2.15) can be replaced by

Δℎmin
𝑎 (1 − 𝑦𝑎𝑡) ≤ ℎ𝑖𝑡 − ℎ𝑗𝑡 ≤ Δℎmax

𝑎 𝑦𝑎𝑡, (2.16a)
𝑄min

𝑎 (1 − 𝑦𝑎𝑡) ≤ 𝑄𝑎𝑡 ≤ 𝑄max
𝑎 𝑦𝑎𝑡. (2.16b)

In (2.16) we have Δℎ𝑎𝑡 = ℎ𝑖𝑡 − ℎ𝑗𝑡 ≥ 0, 𝑄𝑎𝑡 ≥ 0 if 𝑦𝑎𝑡 = 1 and Δℎ𝑎𝑡 = ℎ𝑖𝑡 − ℎ𝑗𝑡 ≤ 0, 𝑄𝑎𝑡 ≤ 0
if 𝑦𝑎𝑡 = 0. Hence (2.15) is equivalent to (2.14) and (2.16). In addition, in case of 𝑄𝑎𝑡 = 0, the
valve is closed completely and the head di�erence ℎ𝑖𝑡 − ℎ𝑗𝑡 is not constrained any more.

In our model valves have two types of functionalities:

• Gate valves.
For every valve the constraint (2.15) must be ful�lled. Assume in a solution we have
𝑄𝑎𝑡 = 0 but Δℎ𝑎𝑡 ̸= 0. In this case, we close the valve completely, and at the same time
the pressure di�erence is not controlled any more. It works like a gate to block the �ow.
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• Pressure decrease valves.
Again, the consistency constraint (2.15) must be ful�lled. Assume in a solution we have
Δℎ𝑎𝑡 and 𝑄𝑎𝑡 are both positive or both negative, i.e., water �ows through the valve with
some pressure loss. In this case, we close the valve partially in order to decrease the
pressure with |Δℎ𝑎𝑡|.

Remark 2.2
For those constraints in the following discussion which present the network in a single time
period, we omit time horizon to simplify the discussion. Note that they have the same form and
are appropriate for every time period.

2.1.4 Real and imaginary flow

In Section 2.1.2 we mentioned that we can measure pressure by head H on every node in the
network, and in Section 2.1.3 there are head variables ℎ𝑖𝑡 de�ned for the head at node 𝑖 and in
time 𝑡, where node 𝑖 can be a junction with demand (consumer), a junction with no demand,
a reservoir, or a tank. Note that pressure really exists in a node only if there is water �owing
through it (if it is a junction) or if there is water stored in it (if it is a reservoir or a tank). Since in
our model tanks1 and reservoirs are never empty, the pressure in tank and in reservoir always
exists.

As explained above, di�erent pressure levels at the ends of a pipe induce nonzero �ow
according to the law of Darcy-Weisbach as given by equation (2.7). However, this only holds
if water is indeed present at the high-pressure node. With active elements like closed valves
or inactive pumps, pipes have no water �ow. In this case, strict enforcement of (2.7) leads to a
physically unsound model.

As an example, consider the subnetwork shown in Figure 2.3 taken from the real-world
instance in Figure 3.3 introduced in Section 3.3.1. An elevated tank 𝑡1 is connected to the
network via valve 𝑘1. Pipe 𝑠3 leads downwards, i.e., 𝐻0

𝑗2 > 𝐻0
𝑗1 . Suppose now valve 𝑘1 is closed.

By �ow balance, 𝑄𝑠3 = 0, and for (2.7) to hold we need ℎ𝑗1 = ℎ𝑗2 , i.e., the head at 𝑗1 must lie
strictly above its geodetic height. In reality, however, the subnetwork functions as if 𝑠3, 𝑗2, 𝑘1,
and 𝑡1 were not present, hence ℎ𝑗1 = 𝐻0

𝑗1 might be a valid state.
We call head levels at nodes without �owing water and the �ow that would be induced by

these head levels according to the law of Darcy-Weisbach imaginary as opposed to real. In the
above example, the incorrect assumption was to enforce equation (2.7) although the head at 𝑗2
is imaginary in solutions with closed valve 𝑘1.
Remark 2.3
So far we have not seen this distinction being made in the literature. Although it may be that
depending on the structure of the network all head levels can be validly assumed to be real, we
believe this to be a potential source for harmful modeling gaps. Note that this distinction is

1Tanks could be empty in the reality, but in our model, we never let tanks be empty in order to safeguard against
the underestimation of consumers’ demands.
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Figure 2.3: Subnetwork with imaginary �ow for closed valve 𝑘1.

equally necessary for the full-scale operative planning problem and can be made by the same
constraints proposed here.

We introduce a binary variable 𝑧𝑗 at each node 𝑗 ∈ 𝒩 to distinguish between real (𝑧𝑗 = 1)
and imaginary (𝑧𝑗 = 0) heads. The variable 𝑧𝑗 is forced to be 1 if the head is strictly greater
than its geodetic height,

ℎ𝑗 6 𝐻0
𝑗 + 𝑀𝑧𝑗 , (2.17)

or if �ow passes through 𝑗, i.e.,

−𝑀𝑧𝑗 6 𝑄𝑎 6 𝑀𝑧𝑗 (2.18)

for all 𝑎 ∈ 𝛿(𝑗). Water supply networks are usually operated such that water sources such as
reservoirs and tanks are never completely empty and may be assumed as real, so we set 𝑧𝑗 = 1
for all 𝑗 ∈ ℛ ∪ 𝒯 .

Furthermore, we need to model how water is propagated along pipes. If a pipe 𝑖𝑗 is horizontal
then water is present at 𝑖 if and only if it is present at 𝑗, i.e.,

𝑧𝑖 = 𝑧𝑗 (2.19)

for all 𝑖𝑗 ∈ 𝒮 with 𝐻0
𝑖 = 𝐻0

𝑗 . For pipes with nonzero slope two implications hold. First, if the
geodetically higher node, node 𝑖, say, is real, so is the lower node 𝑗,

𝑧𝑖 6 𝑧𝑗 . (2.20)

Second, if the lower node 𝑗 is real and contains water with higher pressure than 𝐻0
𝑖 , then also 𝑖

must be real,
ℎ𝑗 6 𝐻0

𝑖 + 𝑀𝑧𝑖. (2.21)
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Finally, we enforce equation (2.7), the law of Darcy-Weisbach, between (and only between)
real nodes by

Δℎ𝑎 = 𝜆𝑎sgn(𝑄𝑎)𝑄2
𝑎

and
𝑀(𝑧𝑖 + 𝑧𝑗 − 2) 6 ℎ𝑖 − ℎ𝑗 − Δℎ𝑎 6 𝑀(2 − 𝑧𝑖 − 𝑧𝑗) (2.22)

for all pipes 𝑎 = 𝑖𝑗 ∈ 𝒮 .

Remark 2.4
Note that both in reality and in our model a node may be real in spite of zero �ow through the
node: 𝑧𝑗 = 1 and 𝑄𝑎 = 0 for all 𝑎 ∈ 𝛿(𝑗). As an example, imagine an additional, closed valve
at node 𝑗1 in Figure 2.3, while valve 𝑘1 is open. Then pipe 𝑠3 would be completely �lled with
water from the tank, hence nodes 𝑗1 and 𝑗2 would be real. At the same time, the water column
in the pipe yields pressure ℎ𝑗1 = ℎ𝑗2 and so the law of Darcy-Weisbach is satis�ed by zero �ow,
𝑄𝑠3 = 0.

2.1.5 Objective

Because of constraints (2.9), Δℎ𝑝𝑡 in objective (2.24) can be replaced by Δ𝐻max
𝑝 − 𝑐𝑝𝑄2

𝑝𝑡. The
energy cost per time unit (second) of pump 𝑝 in time 𝑡 is presented [Epa] as

𝐶𝑝𝑡 = 𝜅𝑡𝜌𝑔Δℎ𝑝𝑡𝑄𝑝𝑡

𝜂𝑝𝑡
=

𝜅𝑡𝜌𝑔
(︁
Δ𝐻max

𝑝 𝑄𝑝𝑡 − 𝑐𝑝𝑄3
𝑝𝑡

)︁
𝜂𝑝𝑡

(2.23)

Since 𝜅𝑡, 𝜌, 𝑔, Δ𝐻max
𝑝 and 𝑐𝑝 are constant and the value of 𝜂𝑝𝑡 depends only on 𝑄𝑝𝑡, 𝐶𝑝𝑡 is a

univariate function of 𝑄𝑝𝑡.
The goal is to minimize the sum of the energy cost from pumps and the cost of water from

reservoirs as well as the “cost”, i.e., the number of pump switches. The objective is therefore

𝐾 = Δ𝑡

𝑇∑︁
𝑡=1

∑︁
𝑗∈ℛ

𝜔𝑗𝑄𝑟
𝑗𝑡⏟  ⏞  

cost of water

+ Δ𝑡

𝑇∑︁
𝑡=1

∑︁
𝑝∈𝒫

𝜅𝑡𝜌𝑔Δℎ𝑝𝑡𝑄𝑝𝑡

𝜂𝑝𝑡⏟  ⏞  
cost of pumps

+
𝑇∑︁

𝑡=1

∑︁
𝑝∈𝒫

𝑘𝑝Δ𝑥𝑝𝑡⏟  ⏞  
“cost” of pump switches

(2.24)

Consider 𝜂𝑝𝑡 again, which is the denominator of 𝐶𝑝𝑡. The e�ciency curve of e�ciency versus
�ow rate can be approximated with three segments, see the example in Figure 2.2 again. If the
�ow rate is very small, e.g., < 𝑄𝑝1 or very big, e.g., > 𝑄𝑝2, the e�ciency is then very low which
implies that the energy cost 𝐶𝑝𝑡 is very high. For this purpose, we restrict the �ow rate further
into the interval [𝑄𝑝1, 𝑄𝑝2]. After that, we need only one segment for the e�ciency curve. Since
the segment is almost parallel to the x-axis, we can handle the e�ciency as a constant. For that,
we should make slight change to 𝑄min

𝑝 and 𝑄max
𝑝 which are the lower and upper bound of the

�ow rate and used in (2.10). Note that the �rst part and the third are linear, which are convex
and concave, with the concave function Δ𝐻max

𝑝 𝑄𝑝𝑡 − 𝑐𝑝𝑄3
𝑝𝑡, we have a concave objective.

20



2.1 Optimization model

Although the objective contains several parts, we need not to handle the optimization problem
as a multiobjective optimization problem, since there is real cost in every part of the objective.
More details about multiobjective optimization can be found in [Ehr05].

An equivalent objective to (2.24) is

𝐾 = Δ𝑡
𝑇∑︁

𝑡=1

∑︁
𝑗∈ℛ

𝜔𝑗𝑄𝑟
𝑗𝑡⏟  ⏞  

cost of water

+ Δ𝑡
𝑇∑︁

𝑡=1

∑︁
𝑝∈𝒫

𝐶𝑝𝑡⏟  ⏞  
cost of pumps

+
𝑇∑︁

𝑡=1

∑︁
𝑝∈𝒫

𝑘𝑝Δ𝑥𝑝𝑡⏟  ⏞  
“cost” of pump switches

, (2.25)

which is linear.

2.1.6 Summary of the model

Let TP = {1, . . . , 𝑇} be the set of all time periods. The complete nonconvex MINLP now reads

min Δ𝑡

𝑇∑︁
𝑡=1

∑︁
𝑗∈ℛ

𝜔𝑗𝑄𝑟
𝑗𝑡 + Δ𝑡

𝑇∑︁
𝑡=1

∑︁
𝑝∈ℱ

𝐶𝑝𝑡 +
𝑇∑︁

𝑡=1

∑︁
𝑝∈ℱ

𝑘𝑝Δ𝑥𝑝𝑡

s.t. ((2.1) − (2.13)), ((2.16) − (2.22)), (2.23),
𝑥𝑝𝑡 ∈ {0, 1}, 𝑄𝑝𝑡 ∈ [0, 𝑄max

𝑝 ], Δℎ𝑝𝑡 ∈ [0, Δ𝐻max
𝑝 ] for all 𝑝 ∈ 𝒫, 𝑡 ∈ TP,

𝑦𝑣𝑡 ∈ {0, 1}, 𝑄𝑣𝑡 ∈ [𝑄min
𝑣 , 𝑄max

𝑣 ] for all 𝑣 ∈ 𝒱, 𝑡 ∈ TP,

𝑧𝑗𝑡 ∈ {0, 1}, ℎ𝑗𝑡 ∈ [𝐻0
𝑗 , 𝐻max

𝑗 ] for all 𝑗 ∈ 𝒩 , 𝑡 ∈ TP,

𝑧𝑗𝑡 = 1 for all 𝑗 ∈ ℛ ∪ 𝒯 , 𝑡 ∈ TP,

𝑄𝑎𝑡 ∈ [𝑄min
𝑎 , 𝑄max

𝑎 ] for all 𝑎 ∈ 𝒮 ∪ ℱ , 𝑡 ∈ TP,

ℎ𝑙
𝑗𝑡 ∈ [𝐹 min

𝑗 , 𝐹 max
𝑗 ] for all 𝑗 ∈ 𝒯 , 𝑡 ∈ TP,

𝑄𝑟
𝑗𝑡 ∈ [𝑄min

𝑗 , 𝑄max
𝑗 ] for all 𝑗 ∈ ℛ, 𝑡 ∈ TP.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.26)

The original objective (2.24) is nonlinear, which is also nonconvex. The further nonlinear
constraints are quadratic constraints (2.7) as well as constraints (2.9). Except for these, all other
constraints are linear. For integrality conditions there are binary variables 𝑥𝑝𝑡 for pump status,
binary variables 𝑦𝑎𝑡 for �ow direction in valves as well as binary variables 𝑧𝑖𝑡 which denote if
the head is real or imaginary.
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2.2 Reformulation and presolving

This section outlines a set of straightforward problem-speci�c presolving steps that help to
reduce both size and di�culty of given instances of type (2.26). The reductions explained in
the following are exact in the sense that a feasible solution is cut o� only if another essentially
identical solution remains.

2.2.1 Contracting subsequent pipes

Suppose a zero demand junction 𝑗 is incident with two pipes, one entering 𝑖𝑗, and one leaving
𝑗𝑘. Flow balance enforces 𝑄𝑖𝑗 = 𝑄𝑗𝑘 =: 𝑄̃ and if nonzero �ow passes through 𝑗 the Darcy-
Weisbach equations read ℎ𝑖 − ℎ𝑗 = 𝜆𝑖𝑗sgn(𝑄̃)𝑄̃2 and ℎ𝑗 − ℎ𝑘 = 𝜆𝑗𝑘sgn(𝑄̃)𝑄̃2. These two
constraints are equivalent to

ℎ𝑖 − ℎ𝑘 = (𝜆𝑖𝑗 + 𝜆𝑗𝑘)sgn(𝑄̃)𝑄̃2

and
ℎ𝑗 = 𝜆𝑗𝑘ℎ𝑖 + 𝜆𝑖𝑗ℎ𝑘

𝜆𝑗𝑘 + 𝜆𝑖𝑗
.

We want to exploit this to replace pipes 𝑖𝑗 and 𝑗𝑘 by a new, aggregated pipe 𝑖𝑘 with friction
coe�cient 𝜆𝑖𝑗 + 𝜆𝑗𝑘 and consequently remove junction 𝑗 from the network.

In case nonzero �ow 𝑄̃ ̸= 0 is guaranteed to pass through the pipe, we only need to ensure
satis�ability of ℎ𝑗 > 𝐻0

𝑗 by
𝜆𝑗𝑘ℎ𝑖 + 𝜆𝑖𝑗ℎ𝑘

𝜆𝑗𝑘 + 𝜆𝑖𝑗
> 𝐻0

𝑗 . (2.27)

To account for 𝑄̃ = 0, however, we need to keep variable 𝑧𝑗 in the model, since it may be zero
even if 𝑧𝑖 = 𝑧𝑘 = 1. (As an example consider the case that junction 𝑗 is located much higher
than 𝑖 and 𝑘 and can hence block �ow even if water is available at 𝑖 and 𝑘.)

Darcy-Weisbach holds if and only if all three nodes 𝑖, 𝑗, and 𝑘 have real head, i.e., con-
straint (2.22) becomes

𝑀(𝑧𝑖 + 𝑧𝑗 + 𝑧𝑘 − 3) 6 ℎ𝑖 − ℎ𝑘 − Δℎ𝑖𝑘 6 𝑀(3 − 𝑧𝑖 − 𝑧𝑗 − 𝑧𝑘). (2.22a)

Constraints ((2.17)−(2.21)) involving 𝑧𝑗 remain unchanged. To ensure (2.27) if 𝑗 is real, we add
constraint

𝜆𝑗𝑘ℎ𝑖 + 𝜆𝑖𝑗ℎ𝑘

𝜆𝑗𝑘 + 𝜆𝑖𝑗
> 𝐻0

𝑗 − 𝑀(1 − 𝑧𝑗). (2.28)

The cases of two pipes entering or leaving a zero demand junction work analogously. Pipe
sequences with several inner nodes 𝑖𝑗1, 𝑗1𝑗2, . . . , 𝑗𝑁 𝑘 can be treated similarly – for each inner
node we only need to add its 𝑧 variable to ((2.22)a) and include constraint (2.28).

Note that these presolving steps do not just yield a smaller problem, but most importantly
removes nonlinear equations of type (2.7).
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(a) Before contracting (b) After contracting

Figure 2.4: Contracting pipe sequences

2.2.2 Breaking symmetry in pump stations

As we mentioned in Section 2.1, in our model we have only pump stations whose pumps are
connected in parallel, see example in Figure 2.1a. For pump 𝑝𝑖 and pump 𝑝𝑗 in the same pump
station, we say that 𝑝𝑖 can replace 𝑝𝑗 if 𝑝𝑖 and 𝑝𝑗 have the same characteristic curve and the
domain of the �ow rate of 𝑝𝑗 is contained in the domain of the �ow rate of 𝑝𝑖. Further if 𝑝𝑖 and
𝑝𝑗 have the same domain of �ow rate, they can replace each other, in this case we say 𝑝𝑖 and
𝑝𝑗 are equivalent. For an arbitrary pump con�guration Ψ1 which sets 𝑝𝑖 inactive and sets 𝑝𝑗

active in time 𝑡, we can easily �nd another pump con�guration Ψ2 which makes small changes
to Ψ1: set 𝑝𝑖 active and set 𝑝𝑗 inactive in time 𝑡. These two pump con�gurations are apparently
equivalent except for the pump status of 𝑝𝑖 and 𝑝𝑗 . In this case, we call Ψ1 and Ψ2 symmetric
pump con�gurations.

Let 𝑎 ∈ ℱ be a pump station which contains pumps ℱ𝑎 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, 𝑛 ≥ 2, 𝑛 ∈ N.
Let {𝑖1, 𝑖2, . . . , 𝑖𝑠} ⊆ {1, 2, . . . , 𝑛}, 2 ≤ 𝑠 ≤ 𝑛 be an index set of pumps (we call it also priority
set) in ℱ𝑎 and for each 𝑗, 1 ≤ 𝑗 ≤ 𝑠 − 1, pump 𝑝𝑖𝑗 can replace pump 𝑝𝑖𝑗+1 . In order to
avoid symmetric pump con�gurations, we set priority to these pumps: for every 𝑘 ∈ N with
1 ≤ 𝑘 ≤ 𝑠 − 1, pump 𝑝𝑖𝑘

can only be set to be active if at the same time all 𝑝𝑖𝑞 have been set to
be active, 𝑞 ∈ N, 𝑘 < 𝑞 ≤ 𝑠. Let 𝑥𝑝𝑖𝑗

𝑡 ∈ {0, 1} be the pump status of pump 𝑝𝑖𝑗 in time 𝑡 where
1 means active and 0 means inactive, after setting the priority of pump status we have

𝑥𝑝𝑖1 𝑡 ≤ 𝑥𝑝𝑖2 𝑡 ≤ . . . ≤ 𝑥𝑝𝑖𝑠 𝑡. (2.29)

In Model (2.26), one part of the objective (2.24) is to minimize the number of pump switches.
Since changing the pump status locally can change the number of pump switches, we are
concerned if the priority set of pumps can violate the optimality of Model (2.26).

Theorem 2.5
Let Ψ1 be a pump con�guration corresponding to an optimal solution 𝑠1 of Model (2.26). There
exists a pump con�guration Ψ2 which also corresponds to an optimal solution 𝑠2 and ful�lls all
priority requirements (2.29) of pumps.

Proof. We assume that Ψ1 does not ful�ll all priority requirements of pumps, otherwise we
need only to set Ψ2 := Ψ1.

Let 𝑡 be time with 𝑡 ∈ {1, . . . , 𝑇}. For every given priority set {𝑖1, 𝑖2, . . . , 𝑖𝑠} of pumps to a
pump station, we count how many of them in Ψ1 have been set to be inactive in time 𝑡. Let 𝑟

23



Chapter 2 Modeling Optimal Operation of Water Supply Networks by MINLP

be the number of inactive pumps in this priority set in time 𝑡, we then set the �rst 𝑟 pumps in
this priority set for Ψ2 to be inactive and the rest of them to be active. For pumps which appear
in none of the priority sets, we copy the status of Ψ1 into Ψ2. Thus Ψ2 is a pump con�guration
corresponding to a feasible solution 𝑠2 which may contain di�erent number of pump switches
to 𝑠1.

𝑡 :
𝑟1⏞  ⏟  

00 · · · 0
|𝑟1−𝑟2|⏞  ⏟  
11 · · · 1 11 · · · 1

𝑡 + 1 : 00 · · · 0 00 · · · 0⏟  ⏞  
𝑟2

11 · · · 1

Now we only need to prove that the number of pump switches in Ψ2 is not more than the
number of pump switches in Ψ1. For every time 𝑡 and every priority set {𝑖1, 𝑖2, . . . , 𝑖𝑠}, let 𝑟1
be the number of inactive pumps in this priority set in time 𝑡 and 𝑟2 be the number of inactive
pumps in this priority set in time 𝑡 + 1. Then the number of pump switches of all pumps in
this priority set is at least |𝑟1 − 𝑟2|. Since Ψ2 has set the �rst 𝑟1 pumps inactive in time 𝑡 and
set the �rst 𝑟2 pumps inactive in time 𝑡 + 1, the number of pump switches is exactly |𝑟1 − 𝑟2|.
Hence 𝑠2 has not more pump switches than 𝑠1, the optimality of 𝑠1 follows that 𝑠2 is optimal.2

As a result, solving Model (2.26) with priority sets does not a�ect its optimality and the priority
set (2.29) reduces the search space for feasible choices of active pumps signi�cantly from 2𝑠

to 𝑠 + 1. Solving MINLP needs branching on integer variables in general, the priority sets can
decrease the number of branching.

2.2.3 Contracting pipe-valve-sequences

Suppose a pipe 𝑖𝑗 ∈ 𝒮 and a valve 𝑗𝑘 ∈ 𝒱 are connected by a zero demand junction 𝑗. Flow
balance enforces 𝑄𝑖𝑗 = 𝑄𝑗𝑘 =: 𝑄̃. Figure 2.5 shows the feasible values of pressure loss ℎ𝑘 − ℎ𝑖

versus 𝑄̃. While the Darcy-Weisbach equation forces the pressure loss along the pipe onto the
dashed line, the valve allows for larger pressure loss in absolute value. The feasible region is
hence a union of two convex sets, the dotted area for backward �ow and the shaded area for
forward �ow.

This can be exploited replacing pipe 𝑖𝑗 and valve 𝑗𝑘 by a new arc 𝑎 = 𝑖𝑘 and relaxing valve
constraints (2.16a) and (2.16b) and pipe constraints (2.7) and (2.22) to

𝑀(𝑦𝑎 − 1) 6 𝑄𝑎 6 𝑀𝑦𝑎 (2.16c)

for �ow direction as before,
Δℎ𝑎 > 𝜆𝑖𝑗𝑄2

𝑎 (2.7a)

for the minimum pressure loss, and

𝑀(𝑧𝑖 + 𝑦𝑎 − 2) 6 ℎ𝑖 − ℎ𝑘 − Δℎ𝑎 (2.22b)
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q̃

hk − hi

1

Figure 2.5: Feasible values of pressure loss versus �ow through a pipe-valve-sequence 𝑖𝑗 ∈ 𝒮 , 𝑗𝑘 ∈ 𝒱 .

and
ℎ𝑖 − ℎ𝑘 + Δℎ𝑎 6 𝑀(1 − 𝑧𝑘 + 𝑦𝑎) (2.22c)

for the relaxed Darcy-Weisbach equation.
This reduction replaces the nonconvex, nonconcave constraint (2.7) by a convex quadratic

constraint ((2.7)a). Again, other combinations of arc directions work analogously.

2.2.4 Fixing and propagating 𝑧 variables

At junctions with nonzero demand, �ow balance requires nonzero �ow on at least one incident
arc. Trivially, (2.18) implies that the head is real:

𝑗 ∈ 𝒥 , 𝐷𝑗 > 0 =⇒ 𝑧𝑗 = 1.

Using these �xings and the water sources known to be real, some of the constraints ((2.19)−(2.21))
may then become redundant or can be used to �x further 𝑧 variables to one.

2.2.5 Handling special cases for junctions without demand

In Section 2.1.4 we mentioned that for a given zero demand junction 𝑖 we can only require that
its head 𝐻𝑖𝑡 is no less than its geodetic height 𝐻̄𝑖 if the head is real, i.e., there is nonzero �ow
through it. There is an example shown in Figure 2.3 that the constraint 𝐻𝑖𝑡 ≥ 𝐻̄𝑖 may change
the optimal value if 𝐻𝑖𝑡 is imaginary. For this, our solution is including a binary variable which
denotes if the head is real or imaginary and then using constraints ((2.17)-(2.22)). Now we want
to �nd some special cases for the given junction 𝑗 and prove in these cases binary variable 𝑧𝑗𝑡

as well as constraints ((2.17)-(2.22)) for junction 𝑗 from Model (2.26) are redundant:
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• Assume that we have a pipe 𝑎 whose two connected nodes are 𝑗1 and 𝑗2. Node 𝑗1 is a
zero demand junction and besides 𝑎, 𝑗1 is only connected with another arc that is not a
pipe. In addition, the geodetic height of 𝑗1 is not higher than the geodetic height of 𝑗2,
namely 𝐻0

𝑗1 < 𝐻0
𝑗2 . Otherwise, in case of 𝐻0

𝑗1 ≥ 𝐻0
𝑗2 , (2.20) is applicable.

Consider the case 𝑧𝑗2 = 1, 𝐻0
𝑗1 < 𝐻0

𝑗2 follows then �ow has enough pressure to reach
node 𝑗1. Then we have 𝑧𝑗1 = 1. On the other hand, if 𝑧𝑗2 = 0, �ow balance follows that
𝑄𝑎 = 0. In this case we have 𝑧𝑗1 = 0. Then we can add the valid constraint

𝑧𝑗1 = 𝑧𝑗2

to Model (2.26).

• Very similar to the case above, assume that we have a pipe 𝑎 whose two nodes are 𝑗1 and 𝑗2.
𝑗2 is a zero demand junction and besides 𝑎 𝑗2 is only connected with another arc but not
a pipe. We assume further that the geodetic height of 𝑗1 is much higher than the geodetic
height of 𝑗2, namely 𝐻0

𝑗1 ≫ 𝐻0
𝑗2 . “Much higher” means here 𝐻0

𝑗1 − 𝐻0
𝑗2 > (𝑄max

𝑎𝑡 )2 .
Assume for some reason we know that the �ow direction in 𝑎 must be from 𝑗1 to 𝑗2. If
the head in 𝑗1 is real with 𝑧𝑗1 = 1, then �ow is reachable to 𝑗2 which means 𝑧𝑗2 = 1. On
the other hand, if 𝑧𝑗2 = 0, �ow balance follows that 𝑄𝑎 = 0. In this case we have 𝑧𝑗1 = 0.
Then we can add the valid constraint

𝑧𝑗1 = 𝑧𝑗2

to Model (2.26).

The simpli�cation techniques above either focus on the reduction of network size which
leads to an MINLP with fewer constraints and variables, or focus on changing the structure of
integrality and nonlinearity of the Model. Both do not change the feasibility and the optimality
of the original model and make the MINLP easier to solve.
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Figure 2.6: Special cases for junctions without demand
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Chapter 3

Solving Optimal Operation of Water Supply
Networks in a Fixed Point of Time

The full-scale optimal operation task typically covers the time span of one day with hourly
demand forecasts for each consumer and comprises the decision when and which pumps are
switched on and o�, when and which tanks are �lled for storage (typically at low demand),
when they are de�ated again (typically at peak demand), and where water is obtained.

In this chapter, we focus on solving a stationary version of the planning problem to 𝜀-global
optimality: Given �xed starting levels of tanks and constant demands of consumers, compute a
pump con�guration and a feasible �ow through the network such as to minimize the variable
operational cost incurred by purchase of energy and water. Although this alone does not
address the full operative planning task, it arises naturally, e.g., as one-period subproblem in a
time-discretized formulation. In heuristic or decomposition-based solution approaches these
subproblems may have to be solved iteratively. Not least, the ability to compute proven optimal
solutions to these stationary models can help in evaluating and improving heuristic solution
techniques.

The content of Chapter 3 has already be published in [GHHV12]. This chapter is organized as
follows. Section 3.1 gives the static model of the optimal operation problem as a mixed-integer
nonlinear program (MINLP) which is the static version of the dynamic model introduced in
Section 2.1. Section 3.2 explains how this can be solved to globally proven optimality gaps.
Section 3.3 presents results of computational experiments conducted on real-world instances
provided by our industry partner Siemens AG, Corporate Technology, Modeling, Simulation &
Optimization.1 Finally, Section 3.4 contains concluding remarks.

3.1 The model in a fixed point of time

The goal of this chapter is to optimize the operation of a water supply network at a �xed point in
time. Given �lling levels of tanks and demands of consumers we wish to compute a feasible �ow
through the network such as to minimize the variable operational cost incurred by purchase
of energy and water. In the following, we model this problem as a nonconvex mixed-integer
nonlinear program (MINLP).

1http://www.ct.siemens.com/
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Table 3.1: Variables of the optimization model.
variable interpretation

ℎ𝑗 pressure potential (head) at node 𝑗 ∈ 𝒩 [𝑚]
Δℎ𝑎 pressure increase/decrease at pump or pipe 𝑎 ∈ 𝒫 ∪ 𝒮 [𝑚]
𝑄𝑎 volumetric �ow rate in arc 𝑎 ∈ 𝒜 [𝑚3/𝑠]
𝑄𝑤 volumetric out�ow rate from water source 𝑤 ∈ 𝒲 [𝑚3/𝑠]
𝑥𝑝 binary indicator whether pump 𝑝 ∈ 𝒫 is switched on
𝑦𝑣 binary indicator for direction of valve 𝑣 ∈ 𝒱
𝑧𝑗 binary indicator whether head at node 𝑗 ∈ 𝒩 is real

The main di�erence between the static model and the dynamic model introduced in Section 2.1
is the behavior of tanks. In the dynamic case we consider that the �lling level of tanks changes
by time and �ow. However, for the model in a �xed point of time, we assume that the �lling
level will not change, then it works as a reservoir. For that we de�ne then the set of water
sources 𝒲 = 𝒯 ∪ ℛ which contains all tanks and reservoirs. For every water source 𝑤 ∈ 𝒲 ,
𝑄𝑤 denotes the out�ow from 𝑤, then for the �ow balance we have

∑︁
𝑎∈𝛿+(𝑤)

𝑄𝑎 −
∑︁

𝑎∈𝛿−(𝑤)
𝑄𝑎 − 𝑄𝑤 = 0. (3.1)

Without consideration of time 𝑡, Table 3.1 summarizes the variables used in our static opti-
mization model. The complete nonconvex MINLP now reads

min
∑︁
𝑗∈ℛ

𝜔𝑗𝑄𝑟
𝑗 +

∑︁
𝑝∈ℱ

𝐶𝑝

s.t. (2.1), (2.4), ((2.6) − (2.13)), ((2.16) − (2.22)), (2.23), (3.1),
𝑥𝑝 ∈ {0, 1}, 𝑄𝑝 ∈ [0, 𝑄max

𝑝 ], Δℎ𝑝 ∈ [0, Δ𝐻max
𝑝 ] for all 𝑝 ∈ 𝒫,

𝑦𝑣 ∈ {0, 1}, 𝑄𝑣 ∈ [𝑄min
𝑣 , 𝑄max

𝑣 ] for all 𝑣 ∈ 𝒱,

𝑧𝑗 ∈ {0, 1}, ℎ𝑗 ∈ [𝐻0
𝑗 , 𝐻max

𝑗 ] for all 𝑗 ∈ 𝒩 ,

𝑄𝑎 ∈ [𝑄min
𝑎 , 𝑄max

𝑎 ] for all 𝑎 ∈ 𝒮 ∪ ℱ ,

𝑧𝑤 = 1, 𝑄𝑟
𝑤 ∈ [𝑄min

𝑤 , 𝑄max
𝑗 ] for all 𝑤 ∈ 𝒲.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

As we discussed before, it features two types of nonlinearities, the Darcy-Weisbach equation (2.7)
along each pipe and the energy consumption of pumps in (2.23), both of which are nonconvex.
Together with the discrete states encoded in the binary variables this yields a highly nonconvex
solution space.
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3.2 Global solution approach

The problem formulation given in the previous section is a nonconvex MINLP. Its combination
of discrete and continuous nonconvexities – binary decision variables for pump status, valve
direction, and imaginary �ow plus nonconvex nonlinear terms (2.7) and (2.23) – results in a
challenging optimization problem. In the following we describe how well-known algorithmic
techniques can be applied to solve them to 𝜀-global optimality.

3.2.1 Branch-and-bound

A common methodology to handle nonconvex optimization problems is branch-and-bound [LD60],
where the problem is successively divided into smaller subproblems until the individual sub-
problems are su�ciently easy to solve. Additionally, bounding is used to detect early whether
improving solutions can be found in a subproblem and avoid enumerating suboptimal parts
of the feasible region. Thereby, bounds on the optimal objective function value are computed
from a computationally tractable relaxation of the current subproblem.

For nonconvex MINLPs, typically an e�ciently solvable convex (linear or nonlinear) relaxation
is used for bounding, obtained by dropping integrality conditions and replacing nonconvex
nonlinear functions by convex estimators [TS04]. Branching (problem division) is done with
respect to either discrete variables that take a fractional value in the relaxation’s solution or
variables that appear in violated nonconvex constraints. The purpose of the latter is that a
reduction of a variable’s domain yields tighter convex estimators, which in turn may allow to
cut o� the infeasible solution from the relaxation.

Solvers that implement branch-and-bound algorithms for general MINLPs are BARON [TS04],
Couenne [BLLMW09], LINDO API [LS09], and SCIP [Ach09; Vig12] etc. By default, all of them
employ a linear relaxation.

We used the solver SCIP, a framework for solving constraint integer programs by a branch-and-
bound algorithm. Arguably, from the solvers listed above, it provides the strongest support for
solving mixed-integer programs (MIPs), which is necessary to address the combinatorial aspect
of our optimization problem. Its state-of-the-art MIP features include cutting plane separators,
primal heuristics, domain propagation algorithms, and support for con�ict analysis [Ach07;
Ach09]. SCIP has been extended to handle also nonlinear constraints since a few years [BHV12;
Vig12].

3.2.2 Outer approximation

For the nonlinear functions 𝑄𝑎 ↦→ 𝜆𝑎sgn(𝑄𝑎)𝑄2
𝑎 from constraint (2.7) and 𝑄𝑝 ↦→ Δ𝐻max

𝑝 𝑄𝑝 −
𝑐𝑝𝑄3

𝑝 from constraint (2.23), SCIP generates a linear outer approximation along their convex and
concave envelopes. If the relaxation’s solution violates nonlinear constraints, the outer approxi-
mation is tightened by branching on the �ow variables 𝑄𝑎 and 𝑄𝑝. For 𝑄𝑎 ↦→ 𝜆𝑎sgn(𝑄𝑎)𝑄2

𝑎,
this is illustrated in Figure 3.1. For further details, we refer to [Vig12].
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Figure 3.1: Linear outer approximation of the nonlinear function 𝑄𝑎 ↦→ 𝜆𝑎sgn(𝑄𝑎)𝑄2
𝑎 and the e�ect of

branching on 𝑄𝑎.

To improve performance, SCIP uses the constraints to propagate a reduction in one variable’s
domain to other variables. For example, if the bounds on variable Δℎ𝑎 in constraint Δℎ𝑎 =
𝜆𝑎sgn(𝑄𝑎)𝑄2

𝑎 are reduced to [Δℎ𝑎, Δℎ𝑎], the bounds of 𝑄𝑎 can be tightened to

[︁
sgn(Δℎ𝑎)

√︁
|Δℎ𝑎|/𝜆𝑎, sgn(Δℎ𝑎)

√︁
|Δℎ𝑎|/𝜆𝑎

]︁
,

which allows for a tighter linear outer approximation. Similarly, tighter bounds for Δℎ𝑎 may
be deduced from domain reductions for 𝑄𝑎.

3.2.3 Primal solutions

Although in theory, it su�ces to collect feasible solutions of the relaxation at leaves of the branch-
and-bound tree, in practice, it is highly bene�cial to apply heuristic procedures interleaved with
the global search. Finding good solutions early in the search allows the user to stop the solution
early if he is already satis�ed with the achieved solution quality. Algorithmically, better primal
bounds allow the branch-and-bound tree to be pruned earlier and can hence improve solver
performance.

SCIP uses several primal heuristics to �nd feasible solutions early in the search. First, SCIPs
default MIP primal heuristics [Ber06; Ber14] are applied to �nd a point that is feasible for
the linear relaxation plus the integrality requirements, but may violate some of the nonlinear
constraints. Subsequently, the binary variables (𝑥, 𝑦, 𝑧) are �xed to their value in this solution
and the resulting nonlinear program (NLP) is solved to local optimality using Ipopt [WB06]. If
the NLP is feasible, any solution is also feasible for the original MINLP.

Second, SCIP employs various large neighbourhood search heuristics extended from MIP
to MINLP [Ber06; BHPV11; Ber14] or speci�cally designed for MINLP [BG10; BG12]. These
heuristics use the relaxation solution or previously found feasible solutions to construct a
hopefully easier sub-MINLP by restricting the search space, e.g., via variable �xings. The
reduced problem is then partially solved by a separate SCIP instance.
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Figure 3.2: Schematic diagram of water supply networkn25p22a18with 25 nodes (1 reservoir, 4 tanks,
20 junctions), 4 consumers, 22 pipes, 12 pumps, and 6 valves.

3.3 Computational experiments

3.3.1 Instances

This section presents the results of our computational experiments on two networks provided by
our industry partner Siemens AG. Figure 3.2 shows a small water supply network n25p22a18
on 25 nodes (1 reservoir, 4 tanks, 20 junctions), 4 consumers, 22 pipes, 12 pumps, and 6 valves. The
second network n88p64a64 on 88 nodes (15 reservoirs, 11 tanks, 62 junctions), 22 consumers,
64 pipes, 55 pumps, and 9 valves is depicted in Figure 3.3. Each network comes with hourly
demand forecast for one day. Both are real-world water supply networks.

3.3.2 Experimental setup

The goal of our experiments was to investigate whether and how fast the stationary version
of the operative planning problem in form of the MINLP model (3.2) can be solved to 𝜀-global
optimality and to evaluate the computational impact of the presolving reductions described in
Section 2.2.

Exemplarily, we selected the demand forecasts for 0-1 am (low demand), 6-7 am (�rst peak
demand), 12-1 pm (medium demand), and 6-7 pm (second peak demand). The results for these
scenarios were representative for the other hours.

For the tank levels, we considered two scenarios. In the medium tank level scenario, we
assume all tanks to be half-full; in this case, a large portion of the demand may be satis�ed
by emptying the tanks only, without signi�cant pump activity. However, such a solution will
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Figure 3.3: Schematic diagram of water supply network instance n88p64a64 with 88 nodes (15 reser-
voirs, 11 tanks, 62 junctions), 22 consumers, 64 pipes, 55 pumps, and 9 valves.

be very greedy and also the di�culty of the MINLPs may be reduced. Therefore, for a second
test, we select the tanks that—if the �rst solution was implemented—would run empty �rst and
set them to their minimum �lling level, hence only allowing for in�ow into these tanks; for
network n25p22a18 we reset the �rst, for n88p64a64 we reset the �rst four tanks that
would run empty to their minimum �lling levels. We refer to this as low tank level scenario.

For our experiments we solely used academic software that is available in source code. We
ran SCIP 2.1.1 [Sci] with SoPlex 1.6.0 [Sop] as LP solver, Ipopt 3.10.1 [Ipo] as NLP solver,
CppAD 20110101.5 [Cpp] as expression interpreter for evaluating nonlinear functions, and
Zimpl 3.2 [Zim] as modeling language. SCIP was run with default settings and a time limit of one
hour. We conducted the experiments on an AMD Opteron 6174 with 2.2 GHz and 128 GB RAM.
Note that the computations were executed before the result has been published in [GHHV12].
Since all MINLP instances have been solved within time limit, we do not repeat the computations
again. All other computations in this thesis have been �nished with the recent version of SCIP.

3.3.3 Computational results

First, we evaluate the impact of the problem-speci�c presolving steps described in Section 2.2.
After these steps new MINLP instances are prepared. Table 3.2 shows how these help to
reduce the size of the problems in number of variables “vars”, binary variables “bin”, number of
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Table 3.2: Problem sizes without and with problem-speci�c presolving as described in Section 2.2.
network without presolving with presolving

vars bin cons nlin vars bin cons nlin

n25p22a18 145 28 332 42 139 24 322 40
n88p64a64 561 99 1098 171 542 81 982 170

constraints “cons” and number of nonlinear constraints “nlin”. Note that the problem reductions
apply to the structure of the network and are independent of demand forecast or tank levels.
The numbers given are computed before applying SCIP’s presolving. Fixed variables and bound
constraints are not counted. The largest reduction occurs in the number of binary variables,
which are reduced by 14% and 18%, respectively. The number of nonlinear constraints is only
slightly reduced.

Table 3.3 compares running times and number of branch-and-bound nodes explored by SCIP
when solving to optimality with a tolerance of 10−6. It can be seen that the scenarios for
the smaller instance n25p22a18 can all be solved within one second and can only improve
minimally when using presolving. The most di�cult instances are the low tank level scenarios
for the larger network n88p64a64. Here, both solution time and number of branch-and-
bound nodes decrease drastically when applying presolving. Due to smaller branch-and-bound
trees, the instances are solved faster by a factor between 3.8 and 89.5. The only slowdown
occurs on “0-1 am med” and “6-7 am med” because SCIP’s primal heuristics do not �nd the
optimal solution at the root node anymore. Nevertheless, these are solved within less than two
seconds. All in all, the presolving steps presented in Section 2.2 proved highly bene�cial in our
experiments.

Finally, Table 3.4 presents our computational results for the presolved instances in more
detail. From column “objval” listing the objective value of the optimal solution found, we can
con�rm the expectation that the low tank level scenarios always require more pumps being
active, except for demand “6-7 pm” in n25p22a18, where the objective value remains at the
same level. In all cases, the “low” scenarios take at least as long as the “med” scenarios. In
particular for n88p64a64, this seems to explain why the “med” scenarios are computationally
much easier: a solution with no active pumps is feasible and can be found and proven to be
optimal very fast.

The last three columns analyze the solution progress in more detail, giving the time to �nd
a �rst feasible solution, the time to achieve a proven primal-dual gap of 5%, and the time
until an optimal solution is found. A gap of 5% is always reached within 2.4 seconds except
for n88p64a64 “12-1 pm low”, where it takes 16.7 seconds. In almost all cases, the optimal
solution is found at the very end of the solution process. For the instance n88p64a64 “6-7 pm
low” with longest running time of 104 seconds, however, the situation is reversed: the optimal
solution is found already after 1.5 seconds and SCIP spends the remaining time to prove its
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Table 3.3: Running times and number of branch-and-bound nodes to optimal solution without and with
presolving as described in Section 2.2.

scenario without presolving with presolving

demands tanks time nodes time nodes
n
2
5
p
2
2
a
1
8

0-1 am med 0.7s 247 0.4s 67
low 0.9s 663 0.8s 85

6-7 am med 0.6s 219 0.4s 60
low 1.0s 478 0.8s 77

12-1 pm med 0.5s 76 0.6s 76
low 1.0s 239 0.9s 172

6-7 pm med 0.5s 54 0.5s 80
low 0.4s 54 0.5s 80

n
8
8
p
6
4
a
6
4

0-1 am med 0.4s 1 1.1s 75
low 11.2s 3518 1.1s 16

6-7 am med 0.6s 1 1.6s 181
low 595.4s 334128 12.8s 5495

12-1 pm med 3.6s 1044 2.4s 430
low 1941.4s 1195329 21.7s 6738

6-7 pm med 4.2s 1413 1.0s 85
low 399.8s 236966 104.0s 64940

optimality.

3.4 Concluding remarks

This chapter has presented a small contribution to the task of optimal, i.e., energy- and cost-
minimal, optimal operation of water supply networks. The research in this chapter has focused
on a stationary version of this challenging optimization problem and aimed at 𝜀-globally optimal
solution techniques. The MINLP model used is detailed in the sense that it incorporates the
nonlinear physical laws as well as the discrete decisions involved.

Through computational experiments on instances from industry, we demonstrated that the
stationary models presented can be solved to global optimality within small running times
using problem-speci�c presolving and a state-of-the-art MINLP solution algorithm. On one
hand, this veri�ed the correctness of instance data and the modeling; one the other hand, the
research in this chapter shows us that we can also hope that we my reach the global optimality
to the dynamic model (2.26).
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Table 3.4: Detailed computational results for water supply networks n25p22a18 and n88p64a64
after presolving as described in Section 2.2.

scenario optimality time

demands tanks objval time nodes �rst sol 5% gap best sol

n
2
5
p
2
2
a
1
8

0-1 am med 42.63 0.4s 67 0.2s 0.4s 0.4s
low 64.55 0.8s 85 0.5s 0.6s 0.8s

6-7 am med 42.51 0.4s 60 0.2s 0.2s 0.4s
low 62.82 0.8s 77 0.5s 0.7s 0.8s

12-1 pm med 60.54 0.6s 76 0.3s 0.6s 0.6s
low 72.78 0.9s 172 0.8s 0.8s 0.9s

6-7 pm med 60.54 0.5s 80 0.1s 0.2s 0.5s
low 60.54 0.5s 80 0.1s 0.2s 0.5s

n
8
8
p
6
4
a
6
4

0-1 am med 0 1.1s 75 1.1s 1.1s 1.1s
low 4.45 1.1s 16 0.7s 1.1s 0.7s

6-7 am med 0 1.6s 181 1.6s 1.6s 1.6s
low 118.76 12.8s 5495 0.6s 0.9s 12.8s

12-1 pm med 0 2.4s 430 2.4s 2.4s 2.4s
low 86.58 21.7s 6738 12.2s 16.7s 21.7s

6-7 pm med 0 1.0s 85 1.0s 1.0s 1.0s
low 51.24 104.0s 64940 0.8s 1.0s 1.5s
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Chapter 4

Acceleration of Solving MINLPs by
Symbolic Computation

This chapter is concerned with solving a subNLP of the MINLP model (2.26) which corresponds
to a subnetwork of the entire network for the optimal operation of pressurized water supply
networks. Subnetworks which contain only pipes and junctions yield a constrained nonlinear
system (CNS, a nonlinear program without objective). We show how the CNS can be replaced
by a single (or a few) nonlinear constraint(s) after variable elimination without changing the
feasible region and how faster the MINLPs can be solved after the replacement.

4.1 Introduction and motivation

Recall all components contained in a general water supply network. They are pumps in
pump stations, valves, pipes, junctions (some are related to customers), reservoirs and tanks.
Getting an operation which yields available and reliable water supply is the same as �nding a
con�guration for all pumps and values. From the point view of mathematical programming, a
con�guration corresponds to �xing those con�guration variables with reasonable values. We
call the other variables passive variables since we cannot set their values by con�gurations.
These are the variables for pipes, junctions, reservoirs and tanks. Furthermore, reservoirs are
usually connected to pumps directly, the out�ow from them depends actually on the status of
pumps which corresponds to con�guration variables. In addition, the �ll level of tanks varies
with time. It follows that a subnetwork that contains only pipes and junctions can be regarded
as a passive and static network. An example of such a subnetwork is shown in Figure 4.1. In this
subnetwork, only two junctions are connected with the rest of the network: we call them joint
junctions. Variables and constraints which are related to this subnetwork form a constrained
nonlinear system (CNS) and a subset of the MINLP for the optimal operation problem.

During the survey of literature we found some research for the similar subnetworks, mainly
focuses on uniqueness of solutions as well as algorithms. Birkho� et al. [BD56] have already
started to observe the uniqueness property in the 1950s. After that, Collins et al. [CCVHLKJL78]
presented a pair of di�erent optimization models both of which are equivalent to the CNS. Hence
solving CNS is equivalent to solving convex optimization problems. Similarly, Maugis [Mau77]
gave a reduction for this particular CNS to a strictly convex problem which always contains a
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s(in) t(out)

Figure 4.1: A semi-passive subnetwork

unique solution. Thus the property of unique solvablity has been shown to have a reasonable
complexity. Similarly, Ríos-Mercado et al. [RMWSB02] have proved the unique solvablity
property for gas networks. A most recent work about algorithmic results for general potential-
based �ows can be seen in [GPSSS17]. To compare with the literature above, we prove the
unique solvablity property in a topological way.

Note that the variables in the CNS which also appear in the other constraints of the MINLP
are only the variables for the joint junctions. The variables for other junctions and for pipes are
passive variables, if these can be eliminated, i.e., there exists an equivalent CNS which contains
all variables for the joint junctions while the original and the equivalent CNS both have the same
feasible region for the variables of joint junctions. Thus the current CNS can then be replaced
by the new CNS in the MINLP. If the new CNS has less variables or even less nonlinearities, the
replacement reduces the dimension or the complexity of the original MINLP. In the following
we show that we can always reduce the original MINLP by replacing CNSs which are related to
such subnetworks by their equivalent CNSs that have some variables eliminated and contain
therefore less constraints (nonlinearities). We call the new MINLP reduced MINLP.

Chapter 4 is organized as follows. Section 4.2 describes a CNS model related to these sub-
networks which forms a subproblem of the model introduced in Section 2.1. After that, we
prove that the CNS has exactly one unique solution by �xing the value of a selected variable. In
addition, for every variable of the CNS, there exists a function which maps the selected variable
to this variable. The proof is given in Section 4.2.

Section 4.3 employs symbolic computation to get these functions. In this section, we design
�rst an algorithm to split the original CNS in several similar polynomial equation systems
which are a precondition for symbolic computation. In the following, we eliminate all median
variables by computing the Gröbner bases of the corresponding polynomial equation systems
and get the function in symbolic form by computing the roots of univariate polynomials.

Section 4.4 presents results of computational experiments. Unfortunately, the exact functions
found in Section 4.3 are so complicated that the MINLP solver SCIP cannot use them directly.
However, polynomials with degree 2 can �t these exact univariate functions with quite accept-
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able errors. Instead of using totally exact CNSs to replace the original CNSs to get a reduced
MINLP, we use approximated CNSs to get an approximated MINLP. Our computations have
veri�ed the correctness of approximated MINLPs and shown that the new MINLPs are much
easier to solve.

4.2 Model

4.2.1 Network description and classification

The network we are observing in this chapter is a connected subnetwork of a water supply
network. Let 𝐺 = (𝒩 , 𝒜) be a given water supply network de�ned in Section 2.1.1. In
this chapter we work essentially with subnetworks 𝐺𝑠 = (𝒩𝑠, 𝒜𝑠) ⊂ 𝐺 with the following
properties:

• 𝒩𝑠 ⊂ 𝒥 ⊂ 𝒩 contains only junctions 𝑗 and 𝒜𝑠 ⊂ 𝒮 ⊂ 𝒜 contains only pipes 𝑎,

• For all 𝑖, 𝑗 ∈ 𝒩𝑠, if 𝑎 = (𝑖, 𝑗) ∈ 𝒜, then 𝑎 is a pipe and 𝑎 ∈ 𝒜𝑠,

• There are exactly two junctions, say in�ow note 𝑠 and out�ow note 𝑡, which are connected
to the remaining graph,

• 𝐺𝑠 is connected.

We call the graph 𝐺𝑠 a semi-passive subnetwork. Later we will give the reason for the name.
After that, we can de�ne the remaining graph 𝐺′ = (𝒩 ′, 𝒜′) with 𝒩 ′ = (𝒩 ∖ 𝒩𝑠) ∪ {𝑠, 𝑡}

and 𝒜′ = 𝒜 ∖ 𝒜𝑠.
An example of such a subnetwork is shown in Figure 4.1. In general, we regard the graph as an

undirected graph since the �ow direction in pipes is not determined. However, for formulating
the constraints with mathematical programming we want to de�ne a direction which does
not prescribe the direction of �ow through this element, but only indicates the meaning of a
positive �ow.

Recall the variables and constraints related to this subnetwork which have been introduced
in the full MINLP model in Section 2.1.1. Each pipe 𝑎 carries a signed �ow 𝑄𝑎 and on each
junction 𝑗, the pressure is measured by head ℎ𝑗 .
Remark 4.1
As a tradition for the discussion of the network �ow problems, we use 𝑠 to denote the source
node and 𝑡 for the sink node. As a result, we use 𝑡′ to denote time in this chapter.

Our model is a time-expanded network. We consider a planning period of length T (typically
one day, i.e., 24 hours) in discrete time, 𝑡′ = 1, 2, . . . , 𝑇 with start time 𝑡′ = 0. In general,
the variables 𝑄𝑎𝑡′ and ℎ𝑗𝑡′ are time-dependent. In this chapter, we restrict attention only to
these subnetworks. All related constraints are only related to one time period. Note that all
constraints which are discussed in this chapter are time-independent. Thus we omit the time 𝑡′

for all variables to simplify our discussion.
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At each junction 𝑗 ∈ 𝒩𝑠 except of the two special nodes 𝑠 and 𝑡, the �ow balance equation∑︁
𝑎∈𝛿−(𝑗)

𝑄𝑎 −
∑︁

𝑎∈𝛿+(𝑗)
𝑄𝑎 − 𝐷𝑗 = 0, (2.1)

has already been de�ned in Section 2.1. Junctions with positive demand 𝐷𝑗 > 0 correspond to
consumers, all others satisfy 𝐷𝑗 = 0.

In addition, the total in�ow 𝑄𝑠 into 𝑠 from the remaining graph can be de�ned as

𝑄𝑠 =
∑︁

𝑎=𝑖𝑠∈𝒜′

𝑄𝑎 −
∑︁

𝑎=𝑠𝑖∈𝒜′

𝑄𝑎.

Similarly, the total in�ow 𝑄𝑡 into 𝑡 from the remaining graph can be de�ned. With a slight
modi�cation of (2.1), we get the �ow balance equations for 𝑠 and 𝑡∑︁

𝑎=(𝑖,𝑗)∈𝒜
𝑄𝑎 −

∑︁
𝑎=(𝑗,𝑖)∈𝒜

𝑄𝑎 + 𝑄𝑗 = 𝐷𝑗 (4.1)

where 𝑗 = 𝑠 or 𝑗 = 𝑡 and 𝐷𝑗 a constant. Adding �ow balance equations (2.1) for all 𝑗 ∈
𝒩𝑠 ∖ {𝑠, 𝑡} and (4.1) for 𝑗 ∈ {𝑠, 𝑡}, it follows then

𝑄𝑠 + 𝑄𝑡 =
∑︁
𝑗∈𝒩

𝐷𝑗 =: 𝐷 ≥ 0.

Since 𝐷 is a nonnegative constant, either 𝑄𝑠 or 𝑄𝑡 should be nonnegative and one can decide
the value of the other. Usually, we regard a nonzero 𝑄𝑠 or 𝑄𝑡 to be in�ow if they are positive
or out�ow if they are negative.

To simplify our discussion, we call 𝑠 the in�ow node and 𝑡 the out�ow node without loss of
generality. Note that the signs of 𝑄𝑠 and 𝑄𝑡 are not restricted from the name of 𝑠 and 𝑡.

The �ow of water through a pipe 𝑎 = (𝑖, 𝑗) is a function of the pressure levels ℎ𝑖 and ℎ𝑗 at
its ends. The pressure loss along the pipe is described by the law of Darcy-Weisbach

ℎ𝑖 − ℎ𝑗 = 𝜆𝑎𝑄𝑎𝑡 |𝑄𝑎| = 𝜆𝑎sgn(𝑄𝑎)𝑄2
𝑎, (2.7)

which has been de�ned in Section 2.1.
In addition, the head at each node should be no less than its geodetic height 𝐻0

𝑗 if the head is
real:

ℎ𝑗 > 𝐻0
𝑗 . (4.2)

Consider the constraints ((2.1), (2.7), (4.1)) related to a given semi-passive subnetwork 𝐺𝑠,
the head variables ℎ𝑗 do not appear in ((2.1), (4.1)) and only appear pairwise in (2.7). For any
solution of constraints ((2.1), (2.7), (4.1), (4.2)), increasing the head at every node by ℎ′ > 0 will
construct a new solution since all increased ℎ𝑗 will ful�ll the constraints ((2.7), (4.2)) as well.
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Remark 4.2
To model the full water network we need additional constraints for the operation of compo-
nents pumps, valves, reservoirs and tanks. In this chapter, we �rst restrict our attention to
subnetworks that do not contain these components. Therefore the constraints above su�ce to
model the behavior of these subnetworks. For a full description of the overall subnetwork see
e.g., [GHHV12; Hua11; BGS05].

In the following discussion we ignore the constraints (4.2) �rst and consider them again at
the end of this section.

4.2.2 Unique solvability

In the following, we are concerned with solving the constrained nonlinear system CNS(𝐺𝑠).
De�nition 4.3 (CNS(𝐺𝑠))
Given a semi-passive network 𝐺𝑠, we de�ne CNS(𝐺𝑠) as a constrained nonlinear system
containing constraints ((2.1), (2.7), (4.1)) and set ℎ𝑠 = 0. They are summarized as∑︁

𝑎∈𝛿−(𝑗)
𝑄𝑎 −

∑︁
𝑎∈𝛿+(𝑗)

𝑄𝑎 − 𝐷𝑗 = 0 for all 𝑗 ∈ 𝒩𝑠 ∖ {𝑠, 𝑡},

∑︁
𝑎=(𝑖,𝑗)∈𝒜

𝑄𝑎 −
∑︁

𝑎=(𝑗,𝑖)∈𝒜
𝑄𝑎 + 𝑄𝑗 − 𝐷𝑗 = 0 for all 𝑗 ∈ {𝑠, 𝑡},

ℎ𝑖 − ℎ𝑗 = 𝜆𝑎𝑄𝑎𝑡 |𝑄𝑎| − 𝜆𝑎sgn(𝑄𝑎)𝑄2
𝑎 = 0 for all 𝑎 = (𝑖, 𝑗) ∈ 𝒜𝑠,

ℎ𝑠 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(CNS(𝐺𝑠))

As we discussed above, the head variables ℎ𝑗 appear pairwise in CNS(𝐺𝑠). To eliminate solutions
which have the same value of 𝑄𝑎, we �x ℎ𝑠 = 0. It follows then

ℎ𝑗 − ℎ𝑠 = ℎ𝑗

for every node 𝑗 ∈ 𝒩𝑠, which means that the value of ℎ𝑗 is the head di�erence between node 𝑗
and node 𝑠.

Consider a semi-passive subnetwork in the entire water supply network again. To operate
the water supply network means to �nd a feasible con�guration of pumps and valves. However,
the semi-passive subnetwork does not contain any pump and valve which we can control. From
the natural point of view, if the network operates with 𝑄𝑠 = 𝑄0

𝑠 for a constant 𝑄0
𝑠 ∈ R, there

has to be a unique solution for CNS(𝐺𝑠). We verify this mathematically with the following
theorem.
Theorem 4.4 (Unique Solvability of CNS(𝐺𝑠))
For a given semi-passive subnetwork 𝐺𝑠 and any constant 𝑄0

𝑠 ∈ R, CNS(𝐺𝑠) has a unique solution
with 𝑄𝑠 = 𝑄0

𝑠 . Furthermore, for every node 𝑗 there exists a continuous, decreasing or constant
function

𝑓𝑗 : R → R with ℎ𝑗 = 𝑓𝑗(𝑄𝑠)
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Figure 4.2: A semi-passive subnetwork in tree structure

which maps the in�ow 𝑄𝑠 into node 𝑠 from the remaining graph to the head ℎ𝑗 at node 𝑗; for every
arc 𝑎 there exists a continuous function

𝑔𝑎 : R → R with 𝑄𝑎 = 𝑔𝑎(𝑄𝑠)

which maps the in�ow 𝑄𝑠 into node 𝑠 from the remaining graph to the �ow 𝑄𝑎 through pipe 𝑎.
The function 𝑔𝑎 is either constant or monotonic. To be increasing or decreasing depends on the
de�nition of the direction for positive �ow.

Proof. Let 𝐺𝑠 be the given semi-passive subnetwork with 𝑚 := |𝒜𝑠| , 𝑛 := |𝒩𝑠|. Since 𝐺𝑠 is
connected we have 𝑚 ≥ 𝑛 − 1 which is equivalent to 𝑚 − 𝑛 + 1 ≥ 0. De�ne 𝑥 := 𝑚 − 𝑛 + 1
then we have 𝑥 ∈ N0, 𝑥 ≥ 0. Note that for connected graph, 𝑥 denotes the number of cycles.

Now we want to prove that all semi-passive subnetworks with 𝑚 − 𝑛 + 1 = 𝑥 = 0, 1, 2, . . .
possess the properties with mathematical induction over 𝑥.

The �rst step is to prove the theorem is true for the case 𝑥 = 0. Consider the subnetworks with
𝑚−𝑛+1 = 𝑥 = 0, i.e., 𝑚 = 𝑛−1. In this case the graph is a tree, see e.g., Figure 4.2. For every
arc 𝑎 ∈ 𝒜𝑠, removing 𝑎 yields two disjoint connected graphs: the left graph 𝐺𝑙

𝑎 = (𝒩 𝑙
𝑎, 𝒜𝑙

𝑎)
with 𝑠 ∈ 𝒩 𝑙

𝑎 and the right graph 𝐺𝑟
𝑎 = (𝒩 𝑟

𝑎 , 𝒜𝑟
𝑎). For every arc 𝑎, we discuss �rst how the

value of 𝑄𝑎 depends on 𝑄𝑠. Since the graph has a tree structure, this is a unique path from 𝑠 to
𝑡. For every arc 𝑎 in this graph there are two cases:

• Arc 𝑎 is not on the path from 𝑠 to 𝑡, see e.g., arc 𝑎 = 𝑖′𝑗′ in Figure 4.2. Due to �ow balance,
the �ow on arc 𝑎, i.e., from 𝑖′ to 𝑗′ has to be equal to the total demand of all nodes of 𝐺𝑟

𝑎.
It follows that

𝑄𝑎 =
∑︁

𝑛∈𝒩 𝑟
𝑎

𝐷𝑛 =: 𝐷𝑟
𝑎.

Flow 𝑄𝑎 is a constant since 𝐷𝑟
𝑎 is a constant.

• Arc 𝑎 is an arc on the path from 𝑠 to 𝑡, see e.g., arc 𝑎 = 𝑖𝑗 in Figure 4.2. The left graph 𝐺𝑙
𝑎

has in�ow 𝑄𝑠 and total demand 𝐷𝑙
𝑎 :=

∑︀
𝑛∈𝒩 𝑙

𝑎
𝐷𝑛, the remaining �ow from 𝐺𝑙

𝑎 which
�ows from 𝑖 to 𝑗 is then

𝑄𝑎 = 𝑄𝑠 − 𝐷𝑙
𝑎.
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Note that we may de�ne the �ow direction from 𝑗 to 𝑖 to be the positive direction, then
we would have

𝑄𝑎 = −(𝑄𝑠 − 𝐷𝑙
𝑎).

Obviously, for both cases there exists a function 𝑔𝑎 for every arc 𝑎 which ful�lls the correspond-
ing properties.

Now we discuss how the value of ℎ𝑗 depends on 𝑄𝑠. For every node 𝑗 ∈ 𝒩 , there is a unique
path from 𝑠 to 𝑗 since 𝐺𝑠 is a tree. Let the path be 𝑛0, 𝑛1, . . . , 𝑛𝑝 with 𝑛0 = 𝑠, 𝑛𝑝 = 𝑗 and
𝑝 ∈ N. The arcs on the path are 𝑎𝑟 = (𝑛𝑟−1, 𝑛𝑟) for all 𝑟 ∈ {1, . . . , 𝑝}. Moreover, we can split
the set 𝑆 := {1, . . . , 𝑝} into two sets 𝑆1 and 𝑆2 so that 𝑆1 ∪ 𝑆2 = 𝑆 and 𝑆1 ∩ 𝑆2 = ∅ and for
every 𝑟 ∈ 𝑆1 it holds 𝑡 ∈ 𝐺𝑙

𝑎𝑟
and for every 𝑟 ∈ 𝑆2 it holds 𝑡 ∈ 𝐺𝑟

𝑎𝑟
. The function 𝑓𝑗 can be

represented as

ℎ𝑗 = ℎ𝑗 − 0 = −(ℎ𝑠 − ℎ𝑗)
= −

(︀
(ℎ𝑠 − ℎ𝑛1) + (ℎ𝑛1 − ℎ𝑛2) + . . . + (ℎ𝑛𝑝−1 − ℎ𝑗)

)︀
= −

𝑝∑︁
𝑟=1

𝜆𝑎𝑟 sgn(𝑄𝑎𝑟 )𝑄2
𝑎𝑟

= −(
∑︁

𝑟∈𝑆1

𝜆𝑎𝑟 sgn(𝐷𝑟
𝑎𝑟

)(𝐷𝑟
𝑎𝑟

)2⏟  ⏞  
constant

+
∑︁

𝑟∈𝑆2

𝜆𝑎𝑟 sgn(𝑄𝑠 − 𝐷𝑙
𝑎𝑟

)(𝑄𝑠 − 𝐷𝑙
𝑎𝑟

)2⏟  ⏞  
increasing function of 𝑄𝑠

)

=: 𝑓𝑗(𝑄𝑠).

Note that 𝑓𝑗 is a decreasing function if 𝑆2 ̸= ∅ or a constant function otherwise.
Setting 𝑄𝑠 = 𝑄0

𝑠 yields the unique solution of CNS(𝐺𝑠). Until now we proved that the
theorem is true for 𝑥 = 𝑚 − 𝑛 + 1 = 0, i.e., for all graphs with 𝑚 = 𝑛 − 1. Suppose that the
theorem is true for all graphs with 𝑥 = 𝑘, i.e., 𝑚 = 𝑛 − 1 + 𝑘, 𝑘 ∈ N0. We need only to prove
that the theorem is also true for all graphs with 𝑥 = 𝑘 + 1, i.e., 𝑚 = (𝑛 − 1 + 𝑘) + 1 = 𝑛 + 𝑘.

Let 𝐺𝑠 be a semi-passive subnetwork of type 𝑚 = 𝑛 + 𝑘, then 𝐺𝑠 contains at least one circle
since connected networks are circle-free if and only if 𝑚 = 𝑛 − 1.

In general, 𝑠 does not have to be contained in a cycle, see e.g., Figure 4.4. All neighboring
arcs (𝑠, 𝑠𝑟) to 𝑠 are not contained in a circle, for 𝑟 = 1, . . . , 𝑛𝑐, 𝑛𝑐 is a constant with 𝑛𝑐 ≥ 1.
Consider all possible paths from 𝑠 to 𝑡. All of these contain exactly one of the arcs (𝑠, 𝑠𝑟) for
𝑟 = 1, . . . , 𝑛𝑐. Without loss of generality, (𝑠, 𝑠1) is contained in path(s) from 𝑠 to 𝑡. Since
every (𝑠, 𝑠𝑟) is not contained in a cycle, the �ow 𝑄(𝑠,𝑠𝑟) can be calculated to be a �xed value
as we have shown during proving the case of 𝑥 = 0. For any 𝑟 ̸= 1, removing (𝑠, 𝑠𝑟) leads to
two subgraphs. The subgraphs which contains node 𝑠𝑟 contains neither 𝑠 nor 𝑡. All �ow and
head variables can be solved trivially. After we remove all arcs (𝑠, 𝑠𝑟) with 𝑟 ̸= 1, node 𝑠 is
connected only to (𝑠, 𝑠1). Now we remove arc (𝑠, 𝑠1) and set 𝑠1 to be the new in�ow note with
𝑄𝑠1 = 𝑄𝑠 − 𝑄(𝑠,𝑠1) so that we generate an equivalent new CNS problem. Note that we moved
the in�ow node from 𝑠 to 𝑠1. After doing the procedure above recursively, we will move in�ow
note to a note which is contained in a cycle.
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Figure 4.3: Semi-passive subnetworks

Now we need only to discuss the case that 𝑠 is contained in a cycle. See an example in
Figure 4.3a, from 𝑠 there is an arc 𝑎 = (𝑠, 𝑠1) contained in a circle.

For any given network 𝐺𝑠 as shown in Figure 4.3a, we construct an auxiliary network 𝐺𝑜
𝑠 as

shown in Figure 4.3b by

• removing arc (𝑠, 𝑠1),

• setting the demand of (the original) 𝑡 for 𝐺𝑠 in 𝐺𝑜
𝑠 to be 𝐷 − 𝑄𝑠 with total demand 𝐷,

• setting 𝑠 for 𝐺𝑠 as 𝑠 for 𝐺𝑜
𝑠 with in�ow 𝑄𝑠 − 𝑞 by introducing new variable 𝑞 with 𝑞 ∈ R

and setting 𝑠1 as 𝑡 for 𝐺𝑜
𝑠 with in�ow 𝑞.

Note that 𝐺𝑜
𝑠 is still connected since (𝑠, 𝑠1) is contained in a circle. For any given 𝑄𝑠 ∈ R

(in�ow of 𝑠 in 𝐺), 𝐺𝑜
𝑠 is a semi-passive subnetwork of type 𝑚 = 𝑛 + 𝑘 − 1 with in�ow 𝑄𝑠 − 𝑞.

With the induction hypothesis, for the head ℎ𝑜
𝑠1 at 𝑠1 in 𝐺𝑜

𝑠 there exists a function 𝑓𝑜
𝑠1 with

ℎ𝑜
𝑠1 = 𝑓𝑜

𝑠1(𝑄𝑠 − 𝑞) which is a continuous, decreasing or constant function. With 𝑎 = (𝑠, 𝑠1) in
𝐺, let 𝑝𝑎 be the pressure loss function of pipe 𝑎 in 𝐺, then we have ℎ𝑠1 = −𝑝𝑎(𝑄𝑎). For 𝑞 ∈ R
a given constant, let 𝑄𝑠 − 𝑞 be the in�ow into 𝑠 for 𝐺𝑜

𝑠. The unique solution of CNS(𝐺𝑜
𝑠) is

equivalent to a solution of CNS(𝐺𝑠) if and only if

ℎ𝑜
𝑠1 = 𝑓𝑜

𝑠1(𝑄𝑠 − 𝑞) = −𝑝𝑎(𝑞) = ℎ𝑠1 and 𝑄𝑎 = 𝑞.

For a given 𝑄𝑠 the value of 𝑞 satis�es

𝐹 (𝑞) := 𝑓𝑜
𝑠1(𝑄𝑠 − 𝑞) + 𝑝𝑎(𝑞) = 0.

Since 𝑓𝑜
𝑠1 is a continuous, constant or decreasing function, then for a �xed given 𝑄𝑠, 𝑓𝑜

𝑠1(𝑄𝑠 −𝑞)
is then a continuous, constant or increasing function of 𝑞. Together with 𝑝𝑎 which is a continuous,
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Figure 4.4: No neighboring arcs of 𝑠 contained in a circle

strictly increasing function, then 𝐹 is a continuous, strictly increasing function of 𝑞. Because of
lim𝑞→∞ 𝐹 (𝑞) = ∞ and lim𝑞→−∞ 𝐹 (𝑞) = −∞, 𝐹 (𝑞) = 0 has one and only one solution. Note
that 𝐹 has an inverse function 𝐹 −1 which is also a continuous and increasing function. We
now set 𝑞 := 𝐹 −1(0), the unique solution of CNS(𝐺𝑜

𝑠) with in�ow 𝑄𝑠 − 𝑞 and 𝑄𝑎 = 𝑞 is the
unique solution of CNS(𝐺𝑠) with in�ow 𝑄𝑠.

Consider the function 𝐹 again. Since 𝑓𝑜
𝑠1 and 𝑝𝑎 both have inverse functions, there exists a

function 𝑓 such that
𝑄𝑠 = (𝑓𝑜

𝑠1)−1(−𝑝𝑎(𝑞)) + 𝑞 =: 𝑓(𝑞),

where 𝑓 is a continuous, increasing function that maps 𝑞 to 𝑄𝑠 and has the inverse function
𝑓−1. For 𝑞 with 𝐹 (𝑞) = 0 it follows

𝑄𝑠 − 𝑞 = (𝑓𝑜
𝑠1)−1(−𝑝𝑎(𝑓−1(𝑄𝑠))) =: 𝑓(𝑄𝑠).

Function 𝑓 is then a continuous, increasing function that maps 𝑄𝑠 to 𝑄𝑠 − 𝑞.
From our induction hypothesis, for every node 𝑗 in 𝐺𝑜

𝑠 there exists 𝑓𝑜
𝑗 that maps 𝑄𝑠 − 𝑞 to ℎ𝑗 ,

then 𝑓𝑗 := 𝑓𝑜
𝑗 ∘ 𝑓 maps 𝑄𝑠 to ℎ𝑗 which is continuous, decreasing or constant. Analogously, for

every arc 𝑎 in 𝐺𝑜
𝑠 there exists 𝑔𝑜

𝑎 that maps 𝑄𝑠 − 𝑞 to 𝑄𝑎 which is continuous, either constant
or monotonic. Then the function 𝑔𝑎 := 𝑔𝑜

𝑎 ∘ 𝑓 has the same property as 𝑔𝑜
𝑎.

For the arc 𝑎 = (𝑠, 𝑠1) which is not contained in 𝐺𝑜
𝑠, the function 𝑓−1 which maps 𝑄𝑠 to 𝑄𝑎

is continuous, increasing. Again, setting 𝑄𝑠 = 𝑄0
𝑠 yields the unique solution. 2

Until now we know that for a given semi-passive subnetwork 𝐺𝑠 with 𝑄𝑠 = 𝑄0
𝑠 ∈ R and

ℎ𝑠 = 𝐻𝑠 ∈ R, where 𝑄𝑠 and 𝐻𝑠 are constants, we can solve CNS(𝐺𝑠) �rst and then add 𝐻𝑠 to
ℎ𝑗 for all nodes 𝑗 to get the unique potential solution. The potential solution is a solution for
the subnetwork if it ful�lls all constraints (4.2). Otherwise there exists no solution. Note that
increasing 𝐻𝑠 may turn a violated potential solution into a solution, when 𝑄𝑠 is �xed. Only
with appropriate �ow at the in�ow node 𝐺𝑠 we will have at most one solution, this is why we
called 𝐺𝑠 a semi-passive network.

47



Chapter 4 Acceleration of Solving MINLPs by Symbolic Computation

Assume that all functions 𝑓𝑗 and 𝑔𝑎 in Theorem 4.4 are known for a semi-passive network 𝐺𝑠.
All constraints ((2.1), (2.7), (4.1), (4.2)) related to 𝐺𝑠 in the entire MINLP can be replaced by

ℎ𝑠 + 𝑓𝑗(𝑄𝑠)⏟  ⏞  
=ℎ𝑗

> 𝐻0
𝑗 (4.3)

for all junctions 𝑗 in 𝐺𝑠, the single constraint for the �ow

𝑄𝑠 + 𝑄𝑡 = 𝐷. (4.4)

and the single constraint for the head

ℎ𝑠 − ℎ𝑡 + 𝑓𝑡(𝑄𝑠) = 0. (4.5)

Note that there are only three variables 𝑄𝑠, 𝑄𝑡 and ℎ𝑠 in ((4.3), (4.4), (4.5)) which also appear
in the constraints related to the remaining graph. To solve the MINLP, we do not have to know
the value of 𝑄𝑎 for all arcs 𝑎 in 𝐺𝑠 if there are no other constraints on these variables.

Detection of redundant constraints In the entire MINLP every variable is bounded. Let
[𝑄min

𝑠 , 𝑄max
𝑠 ] be the domain of 𝑄𝑠. For every node 𝑗, 𝑓𝑗 is a continuous, decreasing or constant

function. Hence it follows that

𝑓𝑗(𝑄max
𝑠 ) ≤ 𝑓𝑗(𝑄𝑠) ≤ 𝑓𝑗(𝑄min

𝑠 ).

Note that 𝑓𝑗(𝑄max
𝑠 ) and 𝑓𝑗(𝑄min

𝑠 ) are constants which can be obtained by solving CNS(𝐺𝑠)
with 𝑄𝑠 = 𝑄max

𝑠 or 𝑄𝑠 = 𝑄min
𝑠 . The ful�llment of constraint (4.5) implies a lower bound of ℎ𝑠

by

ℎ𝑠 = ℎ𝑡 − 𝑓𝑡(𝑄𝑠)
≥ ℎ𝑡 − 𝑓𝑡(𝑄min

𝑠 )
≥ 𝐻0

𝑡 − 𝑓𝑡(𝑄min
𝑠 ).

With ℎ𝑠 ≥ 𝐻0
𝑠 , the constant max{𝐻0

𝑠 , 𝐻0
𝑡 − 𝑓𝑡(𝑄min

𝑠 )} is a lower bound of ℎ𝑠. With this, for
every node 𝑗 ∈ 𝒩\{𝑠, 𝑡}, a lower bound of ℎ𝑗 can be found by

ℎ𝑗 = ℎ𝑠 + 𝑓𝑗(𝑄𝑠) ≥ ℎ𝑠 + 𝑓𝑗(𝑄max
𝑠 ) ≥ max{𝐻0

𝑠 , 𝐻0
𝑡 − 𝑓𝑡(𝑄min

𝑠 )} + 𝑓𝑗(𝑄max
𝑠 )⏟  ⏞  

=:𝐻̄𝑗

.

As 𝐻̄𝑗 is a constant, we can compare it with 𝐻0
𝑗 . It is clear that for every node 𝑗 ∈ 𝒩𝑠\{𝑠, 𝑡},

the constraint
ℎ𝑠 + 𝑓𝑗(𝑄𝑠)⏟  ⏞  

=ℎ𝑗

> 𝐻0
𝑗

of type (4.3) is redundant if
𝐻̄𝑗 ≥ 𝐻0

𝑗 .
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4.3 Symbolic computation

As we discussed at the end of Section 4.2.2, to replace constraints ((2.1), (2.7), (4.1), (4.2)) by
constraints ((4.3), (4.4), (4.5)), we need to know the function 𝑓𝑗 for every node 𝑗 in a semi-passive
network 𝐺𝑠. Consider CNS(𝐺𝑠) again. For every arc 𝑎 there is a function 𝑔𝑎 with 𝑄𝑎 = 𝑔𝑎(𝑄𝑠),
where 𝑔𝑎 is continuous, decreasing, increasing or constant. The �ow direction through arc 𝑎,
which corresponds to the sign of 𝑄𝑎, is said to be decided with in�ow 𝑄𝑠 ∈ ℐ := [𝑄1

𝑠, 𝑄2
𝑠] if

𝑄𝑎 ≤ 0 or 𝑄𝑎 ≥ 0 for all 𝑄𝑠 ∈ ℐ . Since one of 𝑔𝑎(𝑄1
𝑠) and 𝑔𝑎(𝑄2

𝑠) is the maximum and the
other is the minimum of 𝑄𝑎, the �ow direction is decided if and only if

𝑔𝑎(𝑄1
𝑠) · 𝑔𝑎(𝑄2

𝑠) ≥ 0.

With this property we make the following de�nition.
De�nition 4.5 (Flow direction decided domain)
A domain ℐ := [𝑄1

𝑠, 𝑄2
𝑠] with two constants 𝑄1

𝑠, 𝑄2
𝑠 ∈ R is said to be a �ow direction decided

domain if for every arc 𝑎 ∈ 𝒜𝑠 it holds

𝑔𝑎(𝑄1
𝑠) · 𝑔𝑎(𝑄2

𝑠) ≥ 0.

Note that such a �ow direction decided domain always exists. Because for any 𝑄0
𝑠 ∈ R

a given constant, there exists an 𝜀 > 0 so that for every arc 𝑎, either 𝑄𝑎 = 𝑔𝑎(𝑄𝑠) ≤ 0 or
𝑄𝑎 = 𝑔𝑎(𝑄𝑠) ≥ 0 for all 𝑄𝑠 ∈ [𝑄0

𝑠, 𝑄𝑠 + 𝜀], i.e., the sign of 𝑄𝑎 for every arc 𝑎 is decided for
𝑄𝑠 ∈ [𝑄0

𝑠, 𝑄0
𝑠 + 𝜀]. Since CNS(𝐺𝑠) has a unique solution with �xed 𝑄𝑠, every NLP solver may

�nd the solution. For a given �ow direction decided domain [𝑄1
𝑠, 𝑄2

𝑠], the sign of 𝑄𝑎, which is
𝑆𝑎 ∈ {−1, 1}, can be determined as

𝑆𝑎 =
{︃

1 if 𝑔𝑎(𝑄1
𝑠) + 𝑔𝑎(𝑄2

𝑠) ≥ 0,

−1 otherwise.
(4.6)

With the sign assignment 𝑆𝑎 ∈ {−1, 1} for every 𝑎 ∈ 𝒜𝑠, CNS(𝐺𝑠) becomes∑︁
𝑎=𝑖𝑗∈𝒜𝑠

𝑄𝑎 −
∑︁

𝑎=𝑗𝑖∈𝒜𝑠

𝑄𝑎 − 𝐷𝑗 = 0 for 𝑗 ∈ 𝒩𝑠 ∖ {𝑠, 𝑡}

∑︁
𝑎=𝑖𝑗∈𝒜𝑠

𝑄𝑎 −
∑︁

𝑎=𝑗𝑖∈𝒜𝑠

𝑄𝑎 + 𝑄𝑗 − 𝐷𝑗 = 0 for 𝑗 ∈ {𝑠, 𝑡}

ℎ𝑖 − ℎ𝑗 − 𝑆𝑎𝜆𝑎𝑄2
𝑎 = 0 for 𝑎 = 𝑖𝑗 ∈ 𝒜𝑠

ℎ𝑠 = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(SPE𝑆(𝐺𝑠))

which is a system of polynomial equations SPE𝑆(𝐺𝑠). In this system, we regard 𝑄𝑠, 𝜆𝑎 and 𝑆𝑎

as constants or parameter and all 𝑄𝑎, ℎ𝑗 as variables. Note that 𝑄𝑡 can be eliminated since it
depends only on value of 𝑄𝑠.

Before we solve SPE𝑆(𝐺𝑠), we look at the de�nitions and theorems concerning varieties and
ideals. These are taken from the book of Cox et al. [CLO92].
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De�nition 4.6 (Ideal)
Let 𝑘 be a �eld. A subset 𝐼 ⊂ 𝑘[𝑥1, 𝑥2, . . . , 𝑥𝑛] of the polynomial ring 𝑘[𝑥1, 𝑥2, . . . , 𝑥𝑛] is an
ideal if it satis�es:

• 0 ∈ 𝐼 ;

• if 𝑓, 𝑔 ∈ 𝐼 , then 𝑓 + 𝑔 ∈ 𝐼 ;

• if 𝑓 ∈ 𝐼 and ℎ ∈ R[𝑥1, 𝑥2, . . . , 𝑥𝑛], then ℎ𝑓 ∈ 𝐼 .

De�nition 4.7 (A�ne variety and polynomial ideal)
Let 𝑘 be a �eld and 𝑓1, 𝑓2, . . . , 𝑓𝑠 be polynomials in 𝑘[𝑥1, 𝑥2, . . . , 𝑥𝑛]. Then we set

V(𝑓1, 𝑓2, . . . , 𝑓𝑠) = {(𝑎1, . . . , 𝑎𝑛) ∈ 𝑘𝑛 : 𝑓𝑖(𝑎1, . . . , 𝑎𝑛) = 0 for all 1 ≤ 𝑖 ≤ 𝑠}.

We call V(𝑓1, 𝑓2, . . . , 𝑓𝑠) the a�ne variety de�ned by 𝑓1, 𝑓2, . . . , 𝑓𝑠. Further we set

⟨𝑓1, . . . , 𝑓𝑠⟩ =
{︃

𝑠∑︁
𝑡=1

ℎ𝑡𝑓𝑡 : ℎ1, . . . , ℎ𝑠 ∈ 𝑘[𝑥1, 𝑥2, . . . , 𝑥𝑛]
}︃

.

Note that 𝐼 := ⟨𝑓1, . . . , 𝑓𝑠⟩ is an ideal, a proof can be found in the book of Cox et al. [CLO92].
We denote also V(𝐼) = V(𝑓1, 𝑓2, . . . , 𝑓𝑠) as the a�ne variety de�ned by 𝑓1, 𝑓2, . . . , 𝑓𝑠. From
that book we have also the following theorem.

Theorem 4.8 (Elimination and Extension Theory)
Let 𝐼 be a polynomial ideal with 𝐼 = ⟨𝑓1, . . . , 𝑓𝑠⟩ ⊂ C[𝑥1, 𝑥2, . . . , 𝑥𝑛] where V(𝐼) is not an
empty set. Assume there exists 𝑝𝑖(𝑥𝑖) ∈ C[𝑥𝑖] such that 𝑝𝑖(𝑥𝑖) ∈ 𝐼 for one 𝑖 ∈ {1, . . . , 𝑛}. It
follows then

• if 𝑥̄𝑖 ∈ C with 𝑝𝑖(𝑥̄𝑖) = 0, then there exists (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ V(𝐼) such that 𝑥𝑖 = 𝑥̄𝑖;

• for any (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ V(𝐼), it holds 𝑝𝑖(𝑥𝑖) = 0.

Furthermore, V(𝐼) is a �nite set if and only if there exists 𝑝𝑖(𝑥𝑖) ∈ C[𝑥𝑖] with 𝑝𝑖(𝑥𝑖) ∈ 𝐼 for any
𝑖 ∈ {1, . . . , 𝑛}.

Note that Theorem 4.8 may not be true if we replace C by R, since R is not algebraically
closed, e.g., the polynomial 𝑥2 + 1 ∈ R[𝑥] has no root in R but has a root in C. However, the
ideal 𝐼 can be selected so that all 𝑓𝑖 ∈ R[𝑥1, 𝑥2, . . . , 𝑥𝑛] ⊂ C[𝑥1, 𝑥2, . . . , 𝑥𝑛].

Consider the system of polynomial equations SPE𝑆(𝐺𝑠) with a given �ow direction decided
domain ℐ again. Let 𝑓1, 𝑓2, . . . , 𝑓𝑠 be all polynomials in SPE𝑆(𝐺𝑠) which generate an ideal
𝐼 = ⟨𝑓1, . . . , 𝑓𝑠⟩. The set 𝑉 (𝐼) is not an empty set since for parameter 𝑄𝑠 ∈ ℐ the corresponding
CNS(𝐺𝑠) has a solution which is also of solution of SPE𝑆(𝐺𝑠). According to Theorem 4.4, for
any �xed given 𝑄𝑠 the polynomial system SPE𝑆(𝐺𝑠) has a unique solution. We handle 𝑄𝑠 as
symbolic parameter but not a parameter. Then Theorem 4.8 implies that the corresponding set
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𝑉 (𝐼) is �nite while 𝐼 is generated by all polynomials in SPE𝑆(𝐺𝑠) Then for every variable ℎ𝑗

or 𝑄𝑎, polynomials of the form 𝑝𝑗(ℎ𝑗) or 𝑝𝑎(𝑄𝑎) can be found by computing the Gröbner bases
with appropriately chosen monomial orderings [Laz83]. There are several software packages,
e.g., Maple [Map] and Singular [DGPS12] which can compute Gröbner bases and can check
whether the a�ne variety of a given polynomial system is a �nite set. Examples of applications
using Maple can be found in [MG94; GDS94; Zac96; RlRmL14; GKZ90].

On the one hand, all of 𝑝𝑗(ℎ𝑗) and 𝑝𝑎(𝑄𝑎) can be regarded as univariate functions which
contain symbolic parameter 𝑄𝑠, every root of 𝑝𝑗(ℎ𝑗) and 𝑝𝑎(𝑄𝑎) is a function that maps 𝑄𝑠

to ℎ𝑗 or to 𝑄𝑎. On the other hand, for any �xed 𝑄𝑠 ∈ ℐ , the unique solution for CNS(𝐺𝑠) in
Theorem 4.4 is a solution for SPE𝑆(𝐺𝑠) as well. It implies that ℎ𝑗 = 𝑓𝑗(𝑄𝑠) is a root for 𝑝𝑗(ℎ𝑗)
for all 𝑄𝑠 ∈ ℐ and for all nodes 𝑗. Similarly, 𝑄𝑎 = 𝑔𝑎(𝑄𝑠) is a root for 𝑝𝑎(𝑄𝑎) for all 𝑄𝑠 ∈ ℐ
and for all arcs 𝑎. According to Abel-Ru�ni theorem [Sko11], there is no algebraic solution to
the general univariate polynomial equations of degree �ve or higher with arbitrary coe�cients.
It is clear that the roots for a general univariate polynomial can be found if and only if the
degree is no more than 4. Assume that the degree of 𝑝𝑗(ℎ𝑗) is 𝑑𝑗 ≤ 4 (in our instance we have
𝑑𝑗 = 4), then all 𝑑𝑗 roots 𝑟1, 𝑟2, . . . , 𝑟𝑑𝑗

can be found by using Maple or Singular. Note that
every 𝑟𝑖 can be regarded as a function that maps 𝑄𝑠 to ℎ𝑗 if all other parameters are given as
constants. With any �xed 𝑄̄𝑠 ∈ ℐ , the unique solution of CNS(𝐺𝑠) can be found by using any
NLP solver, e.g. SCIP.

Let 𝑟1, . . . , 𝑟𝑑𝑗
be the 𝑑𝑗 roots of polynomial 𝑝𝑗(ℎ𝑗). Since any 𝑟𝑗 can be regarded as univariate

function of 𝑄𝑠, Theorem 4.4 and Theorem 4.8 imply together that there exists exactly one
𝑗̄ ∈ {1, . . . , 𝑑𝑗} such that 𝑓𝑗(𝑄𝑠) = 𝑟𝑗̄(𝑄𝑠) in domain ℐ .

Now we can to �nd 𝑟𝑗̄ with an algorithm. Let 𝜀 ∈ R+ be the accuracy parameter of the NLP
solver and ℎ̄𝑗 be the value of ℎ𝑗 in the solution. If there exists a 𝑗̄ ∈ {1, 2, . . . , 𝑑𝑗} such that⃒⃒⃒

𝑟𝑗̄(𝑄̄𝑠) − ℎ̄𝑗

⃒⃒⃒
≤ 𝜀 and

⃒⃒⃒
𝑟𝑗(𝑄̄𝑠) − ℎ̄𝑗

⃒⃒⃒
> 𝜀 for all 𝑗 ∈ {1, 2, . . . , 𝑑𝑗}\{𝑗̄},

then we can set
𝑓𝑗(𝑄𝑠)|𝑄𝑠∈ℐ := 𝑟𝑗̄(𝑄𝑠)

since 𝑟𝑗̄ is the unique candidate. We call the solution with 𝑄𝑠 = 𝑄̄𝑠 a distinction solution. Simi-
larly, all other functions 𝑓𝑗 and 𝑄𝑎 in domain ℐ can be found if the degree of the corresponding
polynomial is no more than 4 and a distinction solution can be found.

Let [𝑄min
𝑠 , 𝑄max

𝑠 ] be the domain of 𝑄𝑠. Recall that all constraints ((2.1), (2.7), (4.1), (4.2))
related to 𝐺𝑠 in the entire MINLP can be replaced by constraints ((4.3), (4.4), (4.5)), where
only functions 𝑓𝑗 appear in these new constraints. We design algorithm 4.1 to compute 𝑓𝑗

symbolically for an arbitrarily selected node 𝑗. In this algorithm, in the �rst part, we split the
original domain [𝑄min

𝑠 , 𝑄max
𝑠 ] to a set of sub-domains such that in every sub-domain is a �ow

direction decided domain. After that, we compute 𝑓𝑗 in every sub-domain separately. The
correctness of the theorem is proved.
Theorem 4.9 (Correctness of Algorithm 4.1)
Algorithm 4.1 �nds 𝑓𝑗 as de�ned in Theorem 4.4 if the algorithm terminates with “success”.
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Algorithm 4.1: Symbolic computation to get 𝑓𝑗

Input: A semi-passive subnetwork 𝐺𝑠, domain [𝑄min
𝑠 , 𝑄max

𝑠 ] for 𝑄𝑠 and node 𝑗
Output: Function 𝑓𝑗 related to Theorem 4.4 for 𝑄𝑠 ∈ [𝑄min

𝑠 , 𝑄max
𝑠 ]

1 Initialize 𝒮 := {[𝑄min
𝑠 , 𝑄max

𝑠 ]} ;
2 Get the solution of CNS(𝐺𝑠) with 𝑄𝑠 = 𝑄min

𝑠 and 𝑄𝑠 = 𝑄max
𝑠 using an NLP solver. Let 𝑄́𝑎

and 𝑄̀𝑎 be the value of 𝑄𝑎 for every arc 𝑎 in the solution with 𝑄𝑠 = 𝑄min
𝑠 and 𝑄𝑠 = 𝑄max

𝑠 ,
respectively.

3 for 𝑎 ∈ 𝒜𝑠 do
4 if 𝑄́𝑎 · 𝑄̀𝑎 < 0 then
5 Solve CNS(𝐺𝑠) with additional constraint 𝑄𝑎 = 0, let 𝑄̄𝑠 be the value of 𝑄𝑠 in the

unique solution;
6 Get the interval ℐ𝑎 ∈ 𝒮 which is [𝑄1, 𝑄2) (or [𝑄1, 𝑄2]) and contains 𝑄̄𝑠;
7 if 𝑄̄𝑠 ∈ (𝑄1, 𝑄2) then
8 Replace ℐ𝑎 by [𝑄1, 𝑄̄𝑠) and [𝑄̄𝑠, 𝑄2) (or [𝑄̄𝑠, 𝑄2]) in 𝒮 ;
9 end

10 end
11 end
12 for every ℐ𝑖 ∈ 𝒮 do
13 Get sign assignment 𝑆 according to (4.6) for 𝑄𝑠 ∈ ℐ𝑖, construct the corresponding

SPE𝑆(𝐺𝑠) ;
14 Get 𝑝𝑗(ℎ𝑗) by computing Gröbner bases ;
15 if 𝑝𝑗(ℎ𝑗) does not exist then
16 Report “not a �nite set” and stop
17 end
18 Let 𝑑𝑗 be the degree ;
19 if 𝑑𝑗 > 4 then
20 Report “degree too high” and stop
21 end
22 Compute roots 𝑟1, . . . , 𝑟𝑑𝑗

;
23 while true do
24 Choose a 𝑄̄𝑠 ∈ ℐ𝑖 (randomly) and compute the solution of CNS(𝐺𝑠) with 𝑄𝑠 = 𝑄̄𝑠;
25 if the solution is a distinction solution then
26 Get 𝑗̄ and set 𝑓𝑗(𝑄𝑠)|𝑄𝑠∈ℐ𝑖

:= 𝑟𝑗̄(𝑄𝑠);
27 break
28 end
29 end
30 end
31 Report “success” and return 𝑓𝑗
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Proof. The algorithm initializes a set of domains which contains only the initial domain
[𝑄min

𝑠 , 𝑄max
𝑠 ]. The domain [𝑄min

𝑠 , 𝑄max
𝑠 ] may not be a �ow direction decided domain. It is not,

the sign of some 𝑄𝑎 has been changed. Due to the monotonicity of 𝑔𝑎, the sign can be changed
at most once, which is equivalent to 𝑄́𝑎 · 𝑄̀𝑎 < 0, where 𝑄́𝑎 and 𝑄̀𝑎 are de�ned and found
in Algorithm 4.1.

The �rst for-loop splits [𝑄min
𝑠 , 𝑄max

𝑠 ] into several domains which are disjoint, �ow direction
decided and their union is exactly [𝑄min

𝑠 , 𝑄max
𝑠 ].

Consider any arc 𝑎 with 𝑄́𝑎 · 𝑄̀𝑎 < 0. Note that 𝑔𝑎 has an inverse function which maps
𝑄𝑎 to 𝑄𝑠, CNS(𝐺𝑠) has a unique solution if we �x 𝑄𝑎 = 0. The solution can be computed by
any NLP solver. Let 𝑄̄𝑠 be the value of 𝑄𝑠 in the unique solution such that 𝑄𝑎 = 𝑔𝑎(𝑄̄𝑠) = 0.
There will be only one interval ℐ𝑎 ∈ 𝒮 which contains 𝑄̄𝑠. After splitting ℐ𝑎 into two intervals
according to 𝑄̄𝑠, the sign of 𝑄𝑎 is decided for all domains in 𝒮 for 𝑄𝑠.

The �rst for-loop terminates and 𝒮 contains at most |𝒜𝑠| domains.
The second for-loop computes the function 𝑓𝑗 . In every iteration, the function 𝑓𝑗 for 𝑄𝑠 ∈ ℐ𝑖

is computed separately. The termination with “success” indicates that the univariate polynomial
𝑝𝑗(ℎ𝑗) exists, its degree 𝑑𝑗 is not more than 4 and a distinction solution can be found for
every iteration. By composition of all 𝑓𝑗(𝑄𝑠)|𝑄𝑠∈ℐ𝑖

we get the continuous function 𝑓𝑗 for
𝑄𝑠 ∈ [𝑄min

𝑠 , 𝑄max
𝑠 ]. 2

4.4 Computational results

This section presents results of our computational experiments. For our experiments we ran
SCIP 5.0.1 [Sci] with SoPlex 3.1.0 [Sop] as LP solver, CppAD 20160000.1 [Cpp] as expression inter-
preter for evaluating nonlinear functions for our nonconvex NLPs and MINLPs, Ipopt 3.12 [Ipo]
as NLP solver. We used Maple 16 for all symbolic computations. SCIP was run with default
settings and a time limit of one hour and a gap limit of 10−5. We conducted the experiments on
an Intel(R) Xeon(R) CPU E5-1620 v4 with 3.5 GHz, 10240 KB cache, and 128 GB RAM.

Our computational experiments are based on the instance n25p22a18 which has been
introduced in Section 3.3.1 while Figure 3.2 shows the network topology.

Figure 4.5 shows a real-world semi-passive subnetwork which is contained in network
n25p22a18. For this subnetwork, without loss of generality, we de�ne junction01 to be the
node 𝑠 and then junction13 is the node 𝑡. In this subnetwork, there are only two junctions with
a nonzero demand 𝐷𝑗 . Let the demands be 𝐷1 and 𝐷2. For this subnetwork, as we discussed
before, we can replace constraints ((2.1), (2.7), (4.1), (4.2)) which are contained in the original
MINLP by constraints ((4.3), (4.4), (4.5)). First we can detect if some of the constraints of type (4.3)
are redundant, using the strategy described at the end of Section 4.2.2. In this subnetwork with
all given demand combinations (𝐷1, 𝐷2), for every node 𝑗 ∈ 𝒩𝑠 ∖ {𝑠, 𝑡}, the constraint (4.3)
is a redundant constraint. For the replacement we need only to get the function 𝑓𝑡. For this
subnetwork with all demand combinations, 𝑓𝑡 can be found successfully by using Algorithm 4.1
while Maple 16 has been used for all symbolic computations and SCIP has been used as a global
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solver. A part of 𝑓𝑡 for a demand combination is shown in Figure 4.6.
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Figure 4.5: A semi-passive subnetwork contained in water supply network n25p22a18

Figure 4.6: A part of function 𝑓𝑡

Unfortunately, these 𝑓𝑡 can not be used by our MINLP solver SCIP e�ciently. However, we
can use polynomials of 𝑄𝑠 to �t 𝑓𝑡 by using, e.g., the method of least squares. Since SCIP has
nice performance to handle quadratic constraints [BHV12], we �rst try quadratic polynomials
in the form of 𝑓𝑡 = 𝑐0 + 𝑐1𝑄𝑠 + 𝑐2𝑄2

𝑠 to �t 𝑓𝑡. The computed result is shown in Table 4.1.
Maple 16 needs less than 10 seconds to get all parameters (𝑐0, 𝑐1, 𝑐2).
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Table 4.1: Polynomial �tting of the function 𝑓𝑡 and the errors.

𝐷1 𝐷2 𝑐0 𝑐1 𝑐2 max error (-) max error (+)

90 25.2 0.067 -4.466 123.711 -0.0006 0.0005
90 36 0.076 -4.745 123.711 -0.0005 0.0005
90 43.2 0.083 -4.931 123.711 -0.0005 0.0005
90 46.8 0.087 -5.024 123.712 -0.0005 0.0005
90 86.4 0.134 -6.047 123.713 -0.0009 0.0010
90 111.6 0.170 -6.698 123.715 -0.0014 0.0017
90 115.2 0.176 -6.791 123.715 -0.0015 0.0018
90 122.4 0.188 -6.978 123.716 -0.0016 0.0020
90 126 0.193 -7.071 123.716 -0.0016 0.0020
90 133.2 0.206 -7.257 123.717 -0.0018 0.0022
90 147.6 0.232 -7.630 123.719 -0.0021 0.0029

After that, the maximal error of the polynomial �tting can be computed by solving the NLPs

min/max 𝑐0 + 𝑐1𝑄𝑠 + 𝑐2𝑄2
𝑠 − ℎ𝑡

s.t. CNS(𝐺𝑠)
𝑄𝑠 ∈ [𝑄min

𝑠 , 𝑄max
𝑠 ]

The maximal errors are shown in Table 4.1. The total maximal error is less than 0.003 meter
which can be ignored with comparison to the measurement errors. As a result, these polynomials
can replace 𝑓𝑡 in our further computations.

The test instance is given with a demand of 24 hours. Let 𝑃 [𝑖, 𝑗] denote the modeled operation
problem from hour 𝑖 to 𝑗 with 0 ≤ 𝑖 < 𝑗 ≤ 24. We call [𝑖, 𝑗] the planning period. In the
following, we want to compare the original MINLP model (2.26) which we have introduced in
Section 2.1 and the simpli�ed MINLP obtained by replacing constraints ((2.1), (2.7), (4.1), (4.2))
by constraints ((4.3), (4.4), (4.5)) in the original MINLP. Since the new MINLP has less variables
and constraints, we call it reduced MINLP. Table 4.2 shows how the replacement helps to reduce
the size of presolved MINLPs by SCIP in number of variables “vars”, binary variables “bin”,
number of constraints “cons” and number of nonlinear constraints “nlin” for selected planning
periods.

Finally, Table 4.3 presents the computational results for the 24 original MINLPs and the
corresponding simpli�ed and approximated MINLPs which model the operation problems for
the �rst 𝑖 hours with 𝑖 = 1, . . . , 24. For every MINLP we set a time limit of an hour. In column
“gap (time)” the time has been displayed if the gap limit has been reached within an hour;
otherwise the time limit has been reached, only the current gap needs to be displayed. From the
table we see that there are more simpli�ed MINLPs which can be solved to optimality within
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Table 4.2: Problem sizes for the original and reduced MINLPs for water supply network n25p22a18

MINLP without replacement with replacement

vars bin cons nlin vars bin cons nlin

P[0, 1] 101 14 135 39 80 13 113 32
P[0, 2] 222 29 304 79 180 27 260 65
P[0, 12] 1442 179 1994 479 1190 168 1730 395
P[0, 24] 2905 359 4021 958 2389 336 3481 790

MINLP without replacement with replacement

vars bin cons nlin vars bin cons nlin

one hour than original MINLPs. If both cannot be solved to optimality, the gap for the simpli�ed
MINLP is much less than the gap for the original MINLP.
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Table 4.3: Detailed computational results with the original and reduced MINLPs for water supply
network n25p22a18, computed by SCIP 5.0.1

MINLP original with replacement
primal dual (time) gap primal dual (time) gap

P[0, 1] 50.77 50.77 (0.44) 0 50.77 50.77 (0.1) 0
P[0, 2] 125.83 125.83 (1.42) 0 125.83 125.83 (0.96) 0
P[0, 3] 185.2 185.2 (5.61) 1.68e-08 185.2 185.2 (2.52) 1.23e-08
P[0, 4] 233.55 233.55 (350.97) 9.02e-08 233.55 233.55 (64.19) 2.35e-08
P[0, 5] 282.44 282.44 (20.23) 0 282.44 282.44 (547.32) 9.77e-08
P[0, 6] 341.15 341.15 (51.53) 0 341.15 341.15 (14.63) 7.24e-08
P[0, 7] 392.85 392.85 (26.57) 0 392.85 392.85 4.658e-07
P[0, 8] 448.79 448.79 (376.7) 3.91e-08 448.79 448.79 2.575e-07
P[0, 9] 534.48 534.48 (176.51) 0 534.48 534.48 (1056.9) 0
P[0, 10] 671.47 671.47 (465.89) 0 671.47 671.47 (230.46) 0
P[0, 11] 768.8 768.8 (1396.85) 0 768.8 768.8 (78.44) 8.05e-08
P[0, 12] 870.98 870.96 2.37186e-05 870.98 870.98 (112) 0
P[0, 13] 935.85 898.91 0.0411002 935.85 935.85 (578.07) 0
P[0, 14] 991.83 960.96 0.0321309 991.83 991.83 (183.54) 0
P[0, 15] 1055.73 949.15 0.112285 1055.73 1055.73 (553.88) 0
P[0, 16] 1130.53 1013.99 0.114935 1130.53 1130.53 (2535.95) 9.76e-08
P[0, 17] 1228.14 1128.73 0.0880757 1228.14 1228.14 (438.49) 0
P[0, 18] 1352.26 1158.17 0.167585 1352.09 1351.34 0.000553345
P[0, 19] 1401.82 1222.86 0.146347 1401.82 1400.89 0.000662269
P[0, 20] 1453.89 1280.42 0.135482 1453.89 1447.68 0.00428762
P[0, 21] 1547.68 1339.51 0.155409 1533.84 1514.23 0.0129535
P[0, 22] 1982.49 1383.74 0.4327 1701.89 1663.46 0.0231068
P[0, 23] 1909.44 1547.66 0.2338 1883.77 1818.38 0.0359563
P[0, 24] 2593.78 2227.87 0.16424 2590.18 2518 0.0286644
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Figure 4.7: Comparison of primal and dual bounds by solving the original and reduced MINLPs for
water supply network n25p22a18, computed by SCIP 5.0.1
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Chapter 5

Convex Hull of Graphs of Polynomial
Functions

In Chapter 3 we explained that the MINLP solver SCIP can handle nonlinear terms like 𝑥2

or 𝑥1 · 𝑥2. Based on that, SCIP may handle all types of polynomial functions since we may
substitute all the nonlinear terms into the form 𝑥2 or 𝑥1 · 𝑥2. However, the resulting outer
approximation could be very loose. We will show this by computations at the end of this chapter.
Vigerske [Vig12] gives a list of polynomial functions which can be directly handled by SCIP.
For a further instance which we will present later in this chapter, we use bivariate polynomial
functions to approximate energy cost of pumps. These polynomial functions do not ful�ll the
conditions mentioned in [Vig12]. Thus, SCIP does not generate outer approximation for them
directly. These functions appear however directly in the objective and bad outer approximations
lead to bad dual bounds.

In our MINLP algorithm we only add linear constraints into the LP relaxation such that the
original feasible region is contained in the corresponding outer-approximation. For constraints
with polynomial functions the feasible region corresponds to the graph of them. The research
motivation is that linear constraints getting directly by observing the feasible region of bivariate
polynomial constraints will be tighter than those getting for substituted nonlinear constraints.

Note that variables appearing in nonlinear terms in MINLP applications are usually box-
constrained. In this chapter, we investigate �rst the convex hull of graphs of polynomial
functions over a polytope. This convex hull is usually formed by in�nitely many halfspaces.
For these halfspaces we de�ne and show which of them are “e�cient” and which are not. This
study is for general polynomial functions of dimension 𝑛.

Based on the complete theory we go back to our application and design algorithms to compute
“e�cient” halfspaces and add them into our MINLP. Computations show that these halfspaces
improve the dual bounds signi�cantly.

5.1 Literature survey

Tawarmalani and Sahinidis [TS04; TS05] have shown that for the usual global branch-and-bound
approach for nonconvex MINLP, a construction of sharp relaxations is essential. Recalling the
de�nition, the tightest convex outer-approximation of a nonconvex set is obtained by the convex
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hull relaxation. A detailed theoretical observation on such relaxations has been achieved in
the 1970s [Roc70], and more recently in the current century [HUL01; Ber09]. Typically, these
convex relaxations are obtained by replacing each nonconvex term individually by convex
underestimators or concave overestimators. Plenty of computational results showed that the
tighter the convex relaxation is, the tighter the bound is. Consider a nonconvex feasible
region de�ned by a nonconvex function over a convex compact domain with a function type
that is frequently used for formulating MINLPs. By de�nition, �nding the convex hull of the
nonconvex graph is equivalent to �nding the convex and concave envelope of the function.
There is very limited availability of formulae for these envelopes due to the fact that the standard
representation of envelopes is equivalent to a nonconvex optimization problem that is intractable,
in general [JMW08]. Despite of the strong requirement of the quality of outer-approximations,
very little literature can be found, even only for general polynomial functions.

However, instead of handling general functions directly, there are several works on the
construction of the convex hulls for problems with special structures. Jach et al. [JMW08] have
shown how to reduce the problems of determining a convex envelope to lower-dimensional
optimization problems when the underlying function is inde�nite and (𝑛 − 1)-convex. This
allows to describe the convex envelope of a variety of two-dimensional functions. Boland et al.
[BDKMR17] have investigated the gap between the McCormick relaxation and convex hull
for bilinear functions. For bivariate functions with a �xed convexity behavior, Ballerstein et al.
[BMV13] have shown how to construct underestimators. Lundell et al. [LW09] have given
strategies to �nd convex underestimation for signomial functions. For supermodular functions
and disjunctive functions, Tawarmalani et al. [TRX13] have derived explicit characterizations of
their corresponding envelopes. In addition, convex envelopes of

• multilinear functions over a unit hypercube and over special discrete sets [She97],

• lower semi-continuous functions de�ned over compact convex sets [KS13],

• monomials of odd degree [LP03],

• edge-concave functions [MF05],

• low-dimensional quadratic forms [AB10],

• bilinear, fractional and other bivariate functions over general polytopes [Loc16],

• some quadratic functions over the n-dimensional unit simplex [Loc15],

• bivariate functions over polytopes [LS14],

• lower semi-continuous functions [TS02b],

• products of convex and component-wise concave functions [KS12],

• trilinear monomials with mixed sign domains [MF04]
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5.2 Basic ideas of this chapter

(a) The graph of a polynomial function and a piece of the boundary (b) A subgraph on the boundary

Figure 5.1: Investigating the boundary of the graph of a polynomial function

are presented, respectively. In this chapter, we focus on the characteristics of the convex hull of
graphs of general polynomial functions over a polytope.

5.2 Basic ideas of this chapter

Consider the following example in R3. Let 𝑓(𝑥, 𝑦) = 𝑥2 − 5𝑥𝑦 + 𝑦2 be a polynomial function
over the domain 𝑋 = {(𝑥, 𝑦) ∈ [−3, 10] × [−3, 10]}. For the constraint 𝑧 = 𝑥2 − 5𝑥𝑦 + 𝑦2,
the feasible region, denoted by 𝒮 , is shown in Figure 5.1a which corresponds to the graph of 𝑓
over domain 𝑋 . Recalling our MINLP algorithms, we add linear constraints to strengthen the
LP relaxation. For any hyperplane 𝐻 in R3 de�ned in the form {(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐}
with constants 𝑎, 𝑏, 𝑐 ∈ R, 𝐻 is said to be a linear underestimator to 𝑓 over 𝑋 if

𝒮 = {(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑋} ⊂ {(𝑥, 𝑦, 𝑧) | 𝑧 ≥ 𝑎𝑥 + 𝑏𝑦 + 𝑐}⏟  ⏞  
downward closed halfspace to 𝐻

.

Graphically, it means that the corresponding downward closed halfspace completely contains
the graph of 𝑓 over 𝑋 .

In contrast to general MINLP algorithms, we want to �nd such linear underestimators directly.
They are expected to strengthen the LP relaxation. The intuition is that we only want to consider
such hyperplanes 𝐻 that support the graph, otherwise we can move it upwardly until the new
generated hyperplane intersects the graph.

In other words, we say a linear underestimators 𝐻 is below (see De�nition 5.16) the graph 𝒮 .
Thus 𝐻 is said to be valid.
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(a) The view of the graph and a linear underestimator (b) The view from the other side

Figure 5.2: A linear underestimator which supports two boundary points of the graph of a polynomial
function

To �nd linear underestimators 𝐻 , we study the intersection points 𝐻 ∩𝒮 . After a series of pre-
liminary de�nitions in Section 5.3.1, we de�ne locally and globally convex points in Section 5.3.2.
A point (𝑥0, 𝑦0, 𝑧0) on the graph is said to be locally convex if there exists 𝐻 ∋ (𝑥0, 𝑦0, 𝑧0)
and 𝐻 is below the graph of 𝑓 over a neighborhood of (𝑥0, 𝑦0, 𝑧0). A point (𝑥1, 𝑦1, 𝑧1) on the
graph is said to be globally convex if there exists 𝐻 ∋ (𝑥1, 𝑦1, 𝑧1) and 𝐻 is below 𝒮 .

The hyperplane 𝐻𝑡 = {(𝑥, 𝑦, 𝑧) | 𝑧 = 9𝑥 − 30𝑦 − 90}, shown as the yellow hyperplane
in Figure 5.2, can be veri�ed to be a linear underestimator for 𝑓 over 𝑋 . The hyperplane
𝐻𝑡 intersects 𝒮 in two points (−3, −3, −27) and (10, 10, −300). Hence (−3, −3, −27) and
(10, 10, −300) both are globally convex points. Note that they both are boundary points of 𝒮 .

Consider further a point (𝑥0, 𝑦0, 𝑧0) such that the corresponding domain point (𝑥0, 𝑦0) is an
interior point of 𝑋 . As we will show in Section 5.3.2, to check if (𝑥0, 𝑦0, 𝑧0) is globally convex,
we need only to check if the corresponding tangent plane is below 𝒮 . However, in practice, it
is quite hard to �nd those globally convex points such that the corresponding domain points
are interior points of 𝑋 . In addition, the property of global convexity usually depends on the
domain. On the one hand, any locally convex point may become globally convex if the domain
size is small enough. On the other hand, a globally convex point with respect to the current
domain could be only locally convex for a larger domain. Note that in the example above 𝑓 is
neither convex nor concave over 𝑋 .

Now we move our attention to those globally convex points for which the corresponding
domain points are on the boundary of 𝑋 . Consider the subgraph with restriction 𝑦 = −3,
which is presented as

{(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑓(𝑥, 𝑦), −3 ≤ 𝑥 ≤ 10, 𝑦 = −3}.
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(a) Subtangent plane (b) Globally convex boundary point in R2

Figure 5.3: Example for a globally convex boundary point

This subgraph is shown as the red curve in Figure 5.1a. Since 𝑦 = −3 is satis�ed for any point
in the red subgraph, after projecting the space {(𝑥, −3, 𝑧)} ⊂ R3 to the space {(𝑥, 𝑧)} ⊂ R2,
we get an isomorphic two-dimensional curve in R2

{(𝑥, 𝑧) | 𝑧 = 𝑓(𝑥, −3) = 𝑥2 + 15𝑥 + 9 =: 𝑓(𝑥), −3 ≤ 𝑥 ≤ 10}.

In general, we show at the beginning of Section 5.3.3 that certain subgraphs on the boundary
can be projected to an isomorphic graph in a space with lower dimension. The one-dimensional
curve is shown as the red curve in Figure 5.1b. Note that the corresponding function 𝑓 is a
univariate function. Fortunately, the study of the convexity of univariate functions is much
easier than that for bivariate functions. In the example 𝑓 has domain [−3, 10] and is a convex
function over [−3, 10].

According to the de�nition of globally convex points, any point 𝑥* ∈ [−3, 10] in Figure 5.1b
is globally convex in the projected space R2. Theorem 5.12 implies that for any such 𝑥*, because
𝑥* is globally convex in the projected space, the boundary point (𝑥*, −3) in 𝑋 is also globally
convex in the original space. This means there exists a hyperplane 𝐻 ∋ (𝑥*, −3, 𝑓(𝑥*, −3)) and
𝐻 is below 𝒮 . Consider the case 𝑥* = 0. Then (0, −3, 9) is a globally convex point. Figure 5.3b
shows that in the projected space R2, the tangent plane, shown as the green line, is the unique
underestimator. The corresponding line in R3, shown as the green line in Figure 5.3a, is then
{(𝑥, −3, 15𝑥 + 9) | 𝑥 ∈ R} which is de�ned as subtangent plane in Section 5.3.3. Corollary 5.13
implies that every linear underestimator 𝐻 with 𝐻 ∋ (0, −3, 9) satis�es

𝐻 ⊃ {(𝑥, −3, 15𝑥 + 9) | 𝑥 ∈ R},

which means any valid hyperplane which contains (0, −3, 9) always contains the green line.
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The blue line {(𝑥, −3, 9𝑥) | 𝑥 ∈ R} in Figure 5.2a is a subtangent plane on (−3, −3, −27),
as de�ned in Section 5.3.3. We can verify that the yellow hyperplane is the a�ne hull of the
blue line and the point (10, 10, −300), i.e.,

𝐻𝑡 = {(𝑥, 𝑦, 𝑧) | 𝑧 = 9𝑥 − 30𝑦 − 90} = aff {{(𝑥, −3, 9𝑥) | 𝑥 ∈ R}, {(10, 10, −300)}} .

For any point (10, 10, 𝑧1) with 𝑧1 < −300, we can also verify that

𝐻 𝑙 = aff
{︁

{(𝑥, −3, 9𝑥) | 𝑥 ∈ R}, {(10, 10, 𝑧1)}
}︁

is also a linear underestimator. By comparing 𝐻𝑡 and 𝐻 𝑙 we have

𝐻𝑡 ∩ 𝒮 = {(−3, −3, −27), (10, 10, −300)} ) {(−3, −3, −27)} = 𝐻 𝑙 ∩ 𝒮.

From the intuition, we prefer 𝐻𝑡 since the resulting relaxation is tighter. For this purpose
we de�ne tight and loose hyperplanes in Section 5.3.4. In general, a valid hyperplane 𝐻 𝑙 is
de�nitely loose if there exists another valid hyperplane 𝐻𝑡 which preserves all intersection
points and intersects in additional point(s) with 𝒮 , which means

(𝐻𝑡 ∩ 𝒮) ) (𝐻 𝑙 ∩ 𝒮).

This is a su�cient but not necessary condition for loose hyperplanes. Using Lemma 5.26
in Section 5.3.4 we verify that the yellow hyperplane in Figure 5.2a is a tight hyperplane.

After that, in Section 5.3.5 we prove for every loose hyperplane 𝐻 𝑙 that there exists a tight
hyperplane 𝐻𝑡 that preserves intersection points with

(𝐻𝑡 ∩ 𝒮) ⊃ (𝐻 𝑙 ∩ 𝒮).

We call the corresponding halfspaces tight or loose halfspaces. Note that in the example above
we have 𝐻𝑡 ∩ 𝐻 𝑙 = {(𝑥, −3, 9𝑥) | 𝑥 ∈ R} which is the blue line in Figure 5.2a. Graphically,
we can rotate 𝐻 𝑙 around the blue line as axis to generate 𝐻𝑡. The rotation approach is the basic
idea of a few proofs in this section.

Finally, in Section 5.3.6, we prove that to form the convex hull of 𝒮 using halfspaces, we only
need tight hyperplanes. In other words, any loose hyperplane is proved to be redundant.

In Section 5.3 we only include theoretical results. We cannot use them to solve MINLP
directly. In Section 5.4 we develop algorithms to compute tight hyperplanes for the graph
of bivariate polynomial functions with degree up to 3 over a polygon in R2. Note that the
domain does not have to be box-constrained. In the algorithms, we �rst �nd all globally convex
domain points on the boundary. This is very tractable since we only need to �nd globally
convex points in the graph of univariate polynomial functions with degree 3 over a closed
interval in R. Based on those globally convex domain points, the algorithms �nd a series of
tight halfspaces. Computations in Section 5.5 show that these tight halfspaces improve the dual
bounds signi�cantly.
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5.3 Convex hull of graphs of polynomial functions over a polytope

5.3 Convex hull of graphs of polynomial functions over a
polytope

5.3.1 Preliminary definitions

Let 𝑚, 𝑛 ∈ N and 𝑋 ⊂ R𝑛 be a polytope de�ned by the intersection of �nitely many halfspaces,
i.e., 𝑋 := {x = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛 | 𝑎𝑇

𝑗 x ≤ 𝑏𝑗 , 𝑗 = 1, . . . , 𝑚}, where 𝑎𝑗 ∈ R𝑛, 𝑏𝑗 ∈ R
for 𝑗 = 1, . . . , 𝑚. Then, for a given polynomial function 𝑓 : 𝑋 → R with 𝑓 ∈ R[x], the
image of the function 𝐹 : 𝑋 → R𝑛+1, x ↦→ (x, 𝑓(x)) de�nes the graph of 𝑓 . Note that some
of de�nitions and properties are also suitable for general di�erentiable functions. But in this
chapter we focus on polynomial functions.

In this section, we study the convex hull of the set

𝒮 := {(x, 𝑧) | 𝑧 = 𝑓(x), x ∈ 𝑋} ⊂ R𝑛+1.

De�ne projection functions 𝜋x : R𝑛 × R → R𝑛, (x, 𝑧) ↦→ x and 𝜋𝑧 : R𝑛 × R → R, (x, 𝑧) ↦→ 𝑧.
For every point (x, 𝑓(x)) ∈ 𝒮 , x = 𝜋x((x, 𝑓(x))) is the corresponding domain point.
Theorem 5.1
Let 𝑆 ⊂ R𝑛+1 be a compact set. Then the convex hull of 𝑆 is a compact set which is the intersection
of all closed halfspaces containing 𝑆.

Proof. This can be directly derived from Corollary 5.33 and 5.83 of the book [AB06]. 2

Without loss of generality, we assume 𝑋 be to full-dimensional, otherwise we can reduce the
dimension by eliminating variables until the new equivalent 𝑋 is full-dimensional in R𝑑 for
𝑑 ≤ 𝑛. Furthermore, with suitable preprocessing, every hyperplane 𝑎𝑇

𝑗 x = 𝑏𝑗 in 𝑋 corresponds
to a facet of 𝑋 .

Let 𝜕𝑋 := {x ∈ 𝑋 | ∃𝑗, 𝑎𝑇
𝑗 x = 𝑏𝑗} denote the boundary of 𝑋 and let int 𝑋 := 𝑋 ∖ 𝜕𝑋

denote the interior of 𝑋 . For 𝑟 ∈ R+, denote the closed ball of radius 𝑟 centered at the point x0

by 𝐵𝑟(x0) = {x ∈ R𝑛 | ‖x − x0‖2 ≤ 𝑟}. A hyperplane in R𝑛+1 through point (x0, 𝑧0) with
𝑧0 = 𝑓(x0) and normal vector n0 ∈ R𝑛, n0 ̸= 0 can be de�ned as

𝐻(x0, n0) = {(x, 𝑧) | 𝑧 = 𝑧0 + n0 · (x − x0)}.

The tangent plane to 𝑓 at (x0, 𝑓(x0)) is 𝑇 (x0) := 𝐻(x0, ∇𝑓(x0)). The downward closed
halfspace associated with hyperplane 𝐻(x0, n0) is then

𝐻̌(x0, n0) = {(x, 𝑧) | 𝑧 ≥ 𝑧0 + n0 · (x − x0)}.

The upward closed halfspace 𝐻̂(x0, n0) is de�ned similarly.
Hyperplanes 𝐻(x0, n0) are called nonvertical (to space R𝑛), since 𝜋x(𝐻(x0, n0)) = R𝑛.

Analogously, a vertical hyperplane in R𝑛+1 through point (x0, 𝑧0) with 𝑧0 = 𝑓(x0) and normal
vector n0 ∈ R𝑛 can be de�ned as

𝐻⊥(x0, n0) = {(x, 𝑧) | n0 · (x − x0) = 0}.
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Then the left closed halfspace associated to 𝐻⊥(x0, n0) is de�ned by

𝐻́⊥(x0, n0) = {(x, 𝑧) | n0 · (x − x0) ≤ 0}

and the right closed halfspace 𝐻̀⊥(x0, n0) is de�ned similarly. For any halfspace 𝐻 in R𝑛+1,
let 𝑔𝐻 denote a map which maps a halfspace to its corresponding hyperplane.
Lemma 5.2
Let 𝑓 ∈ R[x] be a polynomial function over 𝑋 and let 𝒮 be the graph of 𝑓 as de�ned above. Let
conv(𝒮) be the convex hull of 𝒮 , then it holds

conv(𝒮) =

⎛⎝ ⋂︁
𝐻̌⊃𝒮

𝐻̌

⎞⎠ ∩

⎛⎝ ⋂︁
𝐻̂⊃𝒮

𝐻̂

⎞⎠ ∩

⎛⎝ ⋂︁
𝐻́⊥⊃𝒮

𝐻́⊥

⎞⎠ ∩

⎛⎝ ⋂︁
𝐻̀⊥⊃𝒮

𝐻̀⊥

⎞⎠ =: 𝑆′

=

⎛⎜⎜⎜⎝ ⋂︁
𝐻̌⊃𝒮

𝑔𝐻(𝐻̌)∩𝒮̸=∅

𝐻̌

⎞⎟⎟⎟⎠ ∩

⎛⎜⎜⎜⎝ ⋂︁
𝐻̂⊃𝒮

𝑔𝐻(𝐻̂)∩𝒮̸=∅

𝐻̂

⎞⎟⎟⎟⎠ ∩

⎛⎝ ⋂︁
1≤𝑗≤𝑚

{︁
(x, 𝑧) | 𝑎𝑇

𝑗 x ≤ 𝑏𝑗

}︁⎞⎠ =: 𝑆′′

Proof. Theorem 5.1 implies that conv(𝒮) = 𝑆′.
We discuss �rst halfspaces in 𝑆′ with corresponding hyperplanes which are nonvertical. For

every 𝐻̌1 there exists an a�ne function 𝑔1 : R𝑛 → R such that 𝐻̌1 = {(x, 𝑧) | 𝑧 ≥ 𝑔1(x)}.
Consider any 𝐻̌1 with 𝐻̌1 ⊃ 𝒮 , 𝐻1 = 𝑔𝐻(𝐻̌1) = {(x, 𝑧) | 𝑧 = 𝑔1(x)} and 𝐻1 ∩ 𝒮 = ∅, i.e.,
the corresponding hyperplane does not support 𝒮 . It implies that 𝑓(x) > 𝑔1(x) for all x ∈ 𝑋 .
The function 𝑓(x) − 𝑔1(x) attains a minimal value 𝑑1 ∈ R+ over 𝑋 since 𝑋 is compact. It
implies that 𝐻̌2 denoted by {(x, 𝑧) | 𝑔1(x) − 𝑑1 ≥ 0} ful�lls 𝐻̌2 ⊃ 𝒮 but 𝐻2 ∩ 𝒮 ≠ ∅ for
𝐻2 = {(x, 𝑧) | 𝑔1(x) − 𝑑1 = 0}. Note that 𝐻̌2 ( 𝐻̌1, which means to form 𝑆′, every 𝐻̌ is
redundant if the corresponding 𝐻 = 𝑔𝐻(𝐻̌) satis�es 𝐻 ∩ 𝒮 = ∅. This implies that⋂︁

𝐻̌⊃𝒮

𝐻̌ =
⋂︁

𝐻̌⊃𝒮
𝑔𝐻(𝐻̌)∩𝒮̸=∅

𝐻̌.

This is also true for every upward closed halfspaces.
Now we discuss halfspaces in 𝑆′ with corresponding hyperplanes which are vertical. Note

that for every 𝑗 ∈ {1, . . . , 𝑚}, {(x, 𝑧) | 𝑎𝑇
𝑗 x ≤ 𝑏𝑗} has the form of 𝐻́⊥ with 𝐻́⊥ ⊃ 𝒮 . For any

other 𝐻́⊥ with 𝐻́⊥ ⊃ 𝒮 or 𝐻̀⊥ with 𝐻̀⊥ ⊃ 𝒮 we have either

𝐻́⊥ ⊃

⎛⎝ ⋂︁
1≤𝑗≤𝑚

{︁
(x, 𝑧) | 𝑎𝑇

𝑗 x ≤ 𝑏𝑗

}︁⎞⎠
or

𝐻̀⊥ ⊃

⎛⎝ ⋂︁
1≤𝑗≤𝑚

{︁
(x, 𝑧) | 𝑎𝑇

𝑗 x ≤ 𝑏𝑗

}︁⎞⎠ .
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Together with the result for all halfspaces in 𝑆′ with corresponding hyperplanes which are
nonvertical, it implies that 𝑆′ = 𝑆′′. 2

In this section, we want to �nd a set of halfspaces that all contain 𝒮 and the intersection of
them is the convex hull of 𝒮 . Lemma 5.2 shows that we can restrict attention to nonvertical
halfspaces whose corresponding hyperplane intersects the graph.
Remark 5.3
Obviously, 𝒮 is bounded because of Theorem 5.1. Due to symmetry, we only need to consider
the downward closed part of the convex hull since the upward closed part is equivalent to the
downward closed part of function −𝑓 .

5.3.2 Locally and globally convex points
De�nition 5.4 (Locally convex points)
A point (x0, 𝑓(x0)) ∈ 𝒮 is a locally convex point if there exists 𝜀 > 0, n0 ∈ R𝑛 such that

{(x, 𝑧) | x ∈ 𝑋 ∩ 𝐵𝜀(x0), 𝑧 = 𝑓(x)}⏟  ⏞  
local graph

⊂ 𝐻̌(x0, n0). (5.1)

In this case, the domain point x0 is the corresponding locally convex domain point.
Let 𝒮 𝑙 ∈ 𝒮 denote the set of all locally convex points and 𝑋̌ 𝑙 = 𝜋x(𝒮 𝑙) the corresponding

domain points.

Lemma 5.5
Let x0 ∈ int 𝑋 . If x0 is a locally convex domain point, then the gradient vector ∇𝑓(x0) is the
unique normal vector n0 to x0 ful�lling (5.1).

Proof. Consider the function 𝑔n0(x) = 𝑓(x) − (n0 · (x − x0) + 𝑓(x0)) for n0 ∈ R𝑛 and
de�ned on 𝑋 . The point (x0, 𝑓(x0)) is locally convex if and only if there exists 𝜀 > 0 such that
𝑔n0(x) ≥ 0 over 𝑋 ∩ 𝐵𝜀(x0). Using “Taylor’s Formula in Several Variables” for 𝑔n0(x) at x0

(see the book [Edw94]), 𝑔n0(x) may attain a local minimum 0 at x0 if and only if n0 = ∇𝑓(x0).
This implies the result. 2

De�nition 5.6 (Globally convex points and valid halfspaces)
A point (x0, 𝑓(x0)) ∈ 𝒮 is a globally convex point if there exist an n0 ∈ R𝑛 such that

𝒮 = {(x, 𝑧) | x ∈ 𝑋, 𝑧 = 𝑓(x)}⏟  ⏞  
total graph

⊂ 𝐻̌(x0, n0). (5.2)

Furthermore, we call 𝐻̌(x0, n0) a valid halfspace, 𝐻(x0, n0) and n0 the corresponding valid
hyperplane and valid normal vector, respectively. The point x0 is the corresponding globally
convex domain point.

Further we de�ne 𝒮𝑔 as the set of all globally convex points and 𝑋̌𝑔 = 𝜋x(𝒮𝑔) the set of
corresponding domain points.
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Remark 5.7
The de�nition of globally convex points is actually equivalent to the de�nition of generating
sets, which can be found in Chapter 4 of the book [LS13]. Due to the di�erent point of view, we
keep on using the name de�ned above in this thesis.

Theorem 5.8
Let x0 ∈ int 𝑋 . Then x0 is a globally convex domain point if and only if the tangent hyperplane
𝑇 (x0) is valid.

Proof. It is clear that a globally convex domain point x0 must also be a locally convex domain
point. The result is then followed from Lemma 5.5, since n0 is the unique candidate normal
vector to satisfy (5.2). 2

For any x0 ∈ 𝑋 we seek a way to determine if it is a globally convex domain point. For
x0 ∈ int 𝑋 , we need only to check if 𝑇 (x0) is valid due to Theorem 5.8. On the other hand,
for a boundary domain point x0 ∈ 𝜕𝑋 , the situation is more complex. We require several
additional concepts in this case.

5.3.3 Globally convex boundary points
Remark 5.9
For polytope 𝑋 , every face 𝐹 possesses a maximal subset 𝐼𝐹 ⊂ {1, . . . , 𝑚} such that

𝐹 =
{︁

x ∈ 𝑋 | 𝑎𝑇
𝑗 x = 𝑏𝑗 , 𝑗 ∈ 𝐼𝐹

}︁
.

In this section, we assume that the vertices of 𝑋 are nondegenerate which means there is no
point x ∈ R𝑛 which satis�es 𝑛 + 1 of the given 𝑚 inequalities with equality. This implies two
properties:

• For any face 𝐹 it holds that dim 𝐹 = 𝑛 − |𝐼𝐹 |

• For any face 𝐹 with |𝐼𝐹 | = 𝑑 ≥ 2 and 𝐼𝐹 = {1, . . . , 𝑑} without loss of generality, it
implies that

𝐹−𝑖 =
{︁

x ∈ 𝑋 | 𝑎𝑇
𝑗 x = 𝑏𝑗 , 𝑗 ∈ 𝐼𝐹 ∖ {𝑖}

}︁
is also a face of 𝑋 with 𝐹 ( 𝐹−𝑖 and dim 𝐹 = dim 𝐹−𝑖 − 1 for any 𝑖 ∈ 𝐼𝐹 .

Note that the assumption that 𝑋 is vertex-nondegenerate is not a necessary condition for this
section. However, this assumption makes the notation and description easier. For a vertex-
degenerate 𝑋 , the dimension of any face can be determined by calculating the rank of an
auxiliary matrix. Since there are �nitely many faces, for any given face 𝐹 with dim 𝐹 ≤ 𝑛 − 2,
all faces that contain 𝐹 of dimension (dim 𝐹 + 1) can be determined as well.

Based on this remark, we have the following lemma. Example 5.11 following after its proof
illustrates the lemma in a graphical way.
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Lemma 5.10 (Complete Projection based on the smallest face containing x0)
Let x0 ∈ 𝜕𝑋 and de�ne the index set

𝐼x0 :=
{︁

𝑗 ∈ {1, . . . , 𝑚} | 𝑎𝑇
𝑗 x0 = 𝑏𝑗

}︁
which is nonempty. Let 𝑑′ = |𝐼x0 | be the cardinality with 1 ≤ 𝑑′ ≤ 𝑛. Then, the set

𝑃x0 := {x ∈ R𝑛 | 𝑎𝑇
𝑗 x = 𝑏𝑗 for all 𝑗 ∈ 𝐼x0}

de�nes an a�ne set in R𝑛 of dimension 𝑑 := 𝑛 − 𝑑′. Further, the set 𝐹x0 := 𝑃x0 ∩ 𝑋 is the
smallest face of 𝑋 which contains x0 and has dimension 𝑑.
By permuting variables in x if necessary, there exists a bijective linear map

𝑔𝑑 : 𝑃x0 → R𝑑, x ↦→ x𝑑

where x𝑑 = (𝑥1, . . . , 𝑥𝑑)𝑇 such that

• The set
𝒮𝑑 := {(x𝑑, 𝑧) | x𝑑 = 𝑔𝑑(x), 𝑧 = 𝑓(x), x ∈ 𝐹x0} ⊂ R𝑑+1

is the graph of some polynomial function over a polytope.

• Either (𝑔𝑑(x0), 𝑓(x0)) is an interior point of 𝒮𝑑 or 𝒮𝑑 = {(𝑔𝑑(x0), 𝑓(x0))}.

Proof. Without loss of generality, we assume 𝐼x0 = {1, . . . , 𝑑′}. It is clear that 𝐹x0 is a face
of 𝑋 with x0 ∈ 𝐹x0 . Assume that there exists another face 𝐹 of 𝑋 with x0 ∈ 𝐹 ( 𝐹x0 . Then
there exists 𝑗 ∈ {𝑑′ + 1, . . . , 𝑚} such that 𝑎𝑇

𝑗 x0 = 𝑏𝑗 . This is a contradiction to the de�nition
of 𝐼x0 . Hence 𝐹x0 is the smallest face of 𝑋 containing x0. Similar to the preprocessing of half
spaces which form 𝑋 , which shows that 𝐹x0 has dimension 𝑑.

Furthermore, we de�ne

𝐴x0 =

⎛⎜⎝ 𝑎𝑇
1
...

𝑎𝑇
𝑑′

⎞⎟⎠ ∈ R𝑑′×𝑛,

and 𝑏x0 = (𝑏1, 𝑏2, . . . , 𝑏𝑑′)𝑇 . Then we have

𝑃x0 = {x ∈ R𝑛 | 𝐴x0x = 𝑏x0}

and 𝑑′ = rank(𝐴x0) = 𝑛 − 𝑑. Via permuting variables, we may assume that the last 𝑑′ columns
of 𝐴x0 are linearly independent and form an invertible matrix 𝐴𝐵 . At the same time the �rst 𝑑
columns of 𝐴x0 form the matrix 𝐴𝑑. By setting x𝐵 = (𝑥𝑑+1, . . . , 𝑥𝑛)𝑇 , we have

𝐴x0x = (𝐴𝑑𝐴𝐵)(x𝑇
𝑑 x𝑇

𝐵)𝑇 = 𝐴𝑑x𝑑 + 𝐴𝐵x𝐵 = 𝑏x0 ,

69



Chapter 5 Convex Hull of Graphs of Polynomial Functions

and so
x𝐵 = 𝐴−1

𝐵 (𝑏x0 − 𝐴𝑑x𝑑) = 𝐴−1
𝐵 𝑏x0 − 𝐴−1

𝐵 𝐴𝑑x𝑑 =: 𝑏′ − 𝐴′x𝑑

for all x ∈ 𝑃x0 with

𝑥𝑑+𝑖 = 𝑏′
𝑖 − 𝐴

′
𝑖x𝑑 = 𝑏′

𝑖 +
𝑑∑︁

𝑗=1
𝑐𝑑+𝑖,𝑗𝑥𝑗 (5.3)

for all 𝑖 = 1, . . . , 𝑛 − 𝑑 where 𝑏′ = 𝐴−1
𝐵 𝑏x0 , 𝐴′ = 𝐴−1

𝐵 𝐴𝑑 and 𝐴
′
𝑖 is the 𝑖-th row of 𝐴′, 𝑐𝑑+𝑗,𝑗

are constants for 𝑖 = 1, . . . , 𝑛 − 𝑑 and 𝑗 = 1, . . . , 𝑑. Note that the 𝑑-dimensional a�ne set 𝑃x0

and R𝑑 are isomorphic. Consider the linear map

𝑔𝑑 : 𝑃x0 → R𝑑, x ↦→ x𝑑,

which is bijective since the inverse exists:

𝑔−1
𝑑 : R𝑑 → 𝑃x0 , x𝑑 ↦→

(︃
x𝑑

𝑏′ − 𝐴′x𝑑

)︃
.

In the following we investigate the graph of function 𝑓 under the restriction x ∈ 𝐹x0 . The
set 𝐹x0 , function 𝑓 and point x0 can be completely projected to 𝐹𝑑 = 𝑔𝑑(𝐹x0), x0

𝑑 = 𝑔𝑑(x0)
and 𝑓𝑑 = 𝑓(x𝑑, 𝑏′

1 − 𝐴
′
1x𝑑, . . . , 𝑏′

𝑥−𝑑 − 𝐴
′
𝑥−𝑑x𝑑) respectively. It is clear that 𝑓𝑑 ∈ R[x𝑑]

is a polynomial function and 𝐹𝑑 is a polytope of dimension 𝑑. By comparing coe�cients,
for every x ∈ 𝐹x0 it implies that 𝑓(x) = 𝑓𝑑(𝑔𝑑(x)) and for every x𝑑 ∈ 𝐹𝑑 it implies that
𝑓𝑑(x𝑑) = 𝑓(𝑔−1

𝑑 (x𝑑)). The graph of 𝑓𝑑 is thus

{(x𝑑, 𝑧) | 𝑧 = 𝑓𝑑(x𝑑), x𝑑 ∈ 𝐹𝑑} = {(x𝑑, 𝑧) | x𝑑 = 𝑔𝑑(x), 𝑧 = 𝑓(x), x ∈ 𝐹x0} = 𝒮𝑑,

which is the graph of the polynomial function 𝑓𝑑 over polytope 𝐹𝑑.
The domain point x0 is an extreme point of 𝑋 if 𝑑′ = |𝐼x0 | = 𝑛. In this case 𝑑 = 0 and

𝐹𝑑 = {x0
𝑑} which contains a single point. It implies that x0

𝑑 is also an extreme point of 𝐹𝑑.
Otherwise, we are in case of 𝑑′ < 𝑛. Note that every 𝐹𝑑 is isomorphic to a face of 𝑋 . Assume
x0

𝑑 is not an interior point of 𝐹𝑑. Then there exists a face of 𝐹𝑑 which contains x0
𝑑. It implies

there exists a face of 𝑋 which contains x0. This is a contradiction to the de�nition of 𝐼x0 . Thus
x0

𝑑 is an interior point in 𝐹𝑑. 2

Example 5.11
We look at an example with 𝑛 = 2, i.e., x = (𝑥, 𝑦). Consider the polynomial function

𝑓(𝑥, 𝑦) = −𝑥4 + 3𝑥3 + 10𝑥2𝑦 − 5𝑥2 + 3𝑥 − 2𝑦4 − 4𝑦2 : [−4, 4] × [−4, 4] → R.

For boundary point x0 = (1, 4) we get 𝐹x0 = {(𝑥, 𝑦) | −4 ≤ 𝑥 ≤ 4, 𝑦 = 4}, 𝑔𝑑 : (𝑥, 𝑦) ↦→ 𝑥
and 𝑔−1

𝑑 : 𝑥 ↦→ (𝑥, 4) and 𝑓𝑑(𝑥) = −𝑥4 + 3𝑥3 + 35𝑥2 + 3𝑥 − 576 as de�ned in Lemma 5.10.
Point (x0, 𝑓(x0)), set 𝒮 and a valid hyperplane {(𝑥, 𝑦, 𝑧) | 𝑧 = 78𝑥+134𝑦−1150} are shown

as the red point, the blue surface and the yellow plane in Figure 5.4a and the corresponding
(x0

𝑑, 𝑓𝑑(x0
𝑑)) and 𝒮𝑑 are shown as the red point and the blue curve in Figure 5.4b, respectively.♢
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(a) In space R𝑛+1 (b) In space R𝑑+1

Figure 5.4: Graph and hyperplane restricted on a face in Example 5.11 and the complete projections

Theorem 5.12 (Globally convex boundary points )
Let x0 ∈ 𝜕𝑋 . Then x0 is a globally convex domain point of 𝒮 if and only if x0

𝑑 = 𝑔𝑑(x0) is also a
globally convex domain point of 𝒮𝑑 with

𝒮𝑑 = {(x𝑑, 𝑧) | x𝑑 = 𝑔𝑑(x), 𝑧 = 𝑓(x), x ∈ 𝐹x0} ⊂ R𝑑+1.

We go back to Example 5.11. Point x0
𝑑 = 1 is a globally convex domain point of 𝒮𝑑 since the

tangent plane {(𝑥, 𝑧) | 𝑧 = 𝑓𝑑(𝑥) = 78𝑥 − 614} (shown as green line in Figure 5.4b) can be
veri�ed to be valid. Using the theorem above it implies that (1, 4) is also globally convex. This
is veri�ed by the valid hyperplane {(𝑥, 𝑦, 𝑧) | 𝑧 = 78𝑥 + 134𝑦 − 1150}.

We prove �rst the direction “⇒” and postpone the direction “⇐” after introducing a few
further de�nitions and auxiliary lemmas.

Proof (of “⇒”). Consider the case that x0
𝑑 and x0 are both an extreme point in 𝐹𝑑 and 𝑋 ,

respectively. Then the single point x0
𝑑 ∈ 𝐹𝑑 is surely a globally convex domain point since the

single point is a valid hyperplane in that space.

Otherwise x0
𝑑 is an interior point in 𝐹𝑑. Let v = (𝑣1, . . . , 𝑣𝑛)𝑇 ∈ R𝑛 be an arbitrary vector.
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De�ne a function 𝑔𝑐 : R𝑛 → R𝑑,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
...

𝑣𝑑

𝑣𝑑+1
...

𝑣𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
↦→

⎛⎜⎜⎜⎜⎝
𝑣1 +

∑︀𝑛
𝑖=𝑑+1 𝑐𝑖,1𝑣𝑖

𝑣2 +
∑︀𝑛

𝑖=𝑑+1 𝑐𝑖,2𝑣𝑖
...

𝑣𝑑 +
∑︀𝑛

𝑖=𝑑+1 𝑐𝑖,𝑑𝑣𝑖

⎞⎟⎟⎟⎟⎠ ,

where all 𝑐𝑖𝑗 are de�ned as in (5.3). We �rst give and prove the following claim.

Claim Let n ∈ R𝑛. The following two sets are a�nely isomorphic

{(x, 𝑧) | 𝑧 = 𝑧0 + n · (x − x0), x ∈ 𝑃x0} ∼= {(x𝑑, 𝑧) | 𝑧 = 𝑧0 + 𝑔𝑐(n) · (x𝑑 − x0
𝑑), x𝑑 ∈ R𝑑}. (5.4)

This implies

{(x, 𝑧) | 𝑧 ≥ 𝑧0 + n · (x − x0), x ∈ 𝑃x0} ∼= {(x𝑑, 𝑧) | 𝑧 ≥ 𝑧0 + 𝑔𝑐(n) · (x𝑑 − x0
𝑑), x𝑑 ∈ R𝑑}. (5.5)

Moreover, the tangent plane on x0
𝑑 de�ned as

𝑇𝑑(x0
𝑑) = {(x𝑑, 𝑧) | 𝑧 = ∇𝑓𝑑(x0

𝑑) · (x𝑑 − x0
𝑑) + 𝑧0, x𝑑 ∈ R𝑑}

satis�es

𝑇𝑑(x0
𝑑) ∼= 𝑇|𝑃x0 (x0) = {(x, 𝑧) ∈ 𝑇 (x0) | x ∈ 𝑃x0}. (5.6)
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We prove the above claim �rst. For any n = (n1, n2, . . . , n𝑛)𝑇 ∈ R𝑛,

n · (x − x0) + 𝑧0 =
𝑛∑︁

𝑖=1
n𝑖(𝑥𝑖 − 𝑥0

𝑖 ) + 𝑧0

=
𝑑∑︁

𝑖=1
n𝑖(𝑥𝑖 − 𝑥0

𝑖 ) +
𝑛∑︁

𝑖=𝑑+1
n𝑖(𝑥𝑖 − 𝑥0

𝑖 ) + 𝑧0

(5.3)=
𝑑∑︁

𝑖=1
n𝑖(𝑥𝑖 − 𝑥0

𝑖 ) +
𝑛∑︁

𝑖=𝑑+1
n𝑖

⎛⎝𝑏′
𝑖−𝑑 +

𝑑∑︁
𝑗=1

𝑐𝑖,𝑗𝑥𝑗 − 𝑏′
𝑖−𝑑 −

𝑑∑︁
𝑗=1

𝑐𝑖,𝑗𝑥0
𝑗

⎞⎠+ 𝑧0

=
𝑑∑︁

𝑖=1
n𝑖(𝑥𝑖 − 𝑥0

𝑖 ) +
𝑛∑︁

𝑖=𝑑+1
n𝑖

⎛⎝ 𝑑∑︁
𝑗=1

𝑐𝑖,𝑗(𝑥𝑗 − 𝑥0
𝑗 )

⎞⎠
⏟  ⏞  

change 𝑖 and 𝑗

+𝑧0

=
𝑑∑︁

𝑖=1
n𝑖(𝑥𝑖 − 𝑥0

𝑖 ) +
𝑛∑︁

𝑗=𝑑+1
n𝑗

(︃
𝑑∑︁

𝑖=1
𝑐𝑗,𝑖(𝑥𝑖 − 𝑥0

𝑖 )
)︃

+ 𝑧0

=
𝑑∑︁

𝑖=1
n𝑖(𝑥𝑖 − 𝑥0

𝑖 ) +
𝑑∑︁

𝑖=1

𝑛∑︁
𝑗=𝑑+1

𝑐𝑗,𝑖n𝑗(𝑥𝑖 − 𝑥0
𝑖 ) + 𝑧0

=
𝑑∑︁

𝑖=1

⎛⎝n𝑖 +
𝑛∑︁

𝑗=𝑑+1
𝑐𝑗,𝑖n𝑗

⎞⎠ (𝑥𝑖 − 𝑥0
𝑖 ) + 𝑧0

= 𝑔𝑐(n) · (x𝑑 − x0
𝑑) + 𝑧0

for all x ∈ 𝑃x0 , x𝑑 ∈ R𝑑 with x𝑑 = 𝑔𝑑(x). This implies (5.4) and (5.5) holds analogously.
To prove (5.6), it su�ces to show

𝑔𝑐(∇𝑓(x0)) = ∇𝑓𝑑(x0
𝑑),

which is true if for every 𝑥𝑗 with 𝑗 = 1 . . . , 𝑑 we have

𝜕𝑓𝑑

𝜕𝑥𝑗
(x0

𝑑) = 𝜕𝑓

𝜕𝑥𝑗
(x0) +

𝑛∑︁
𝑖=𝑑+1

𝑐𝑖𝑗
𝜕𝑓

𝜕𝑥𝑖
(x0). (5.7)

Since

𝑓𝑑(x𝑑) = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑑, 𝑏′
1 +

𝑑∑︁
𝑗=1

𝑐𝑑+1,𝑗𝑥𝑗 , . . . , 𝑏′
𝑛−𝑑 +

𝑑∑︁
𝑗=1

𝑐𝑛,𝑗𝑥𝑗),

we get (5.7) by using the chain rule when computing 𝜕𝑓𝑑
𝜕𝑥𝑗

(x0
𝑑).

Equation (5.4) says that for a given hyperplane 𝐻(x0, n), the graph with restriction x ∈ 𝑃x0

inR𝑛+1 which is {(x, 𝑧) | 𝑧 = n(x−x0)−𝑧0, x ∈ 𝑃x0} is a�nely isomorphic to the hyperplane
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𝐻(x0
𝑑, 𝑔𝑐(n)) in R𝑑+1. Equation (5.5) translates (5.4) to halfspaces, and (5.6) similarly for tangent

hyperplanes.
Now we are ready to prove the remaining part of “⇒”. Let 𝐻 = {(x, 𝑧) | 𝑧 = 𝑧0 + n0 · (x −

x0)} be the hypothesized hyperplane for showing globally convexity. Similar to the proof of
the claim above, it implies that

{x ∈ 𝐹x0 | 𝑓(x) ≥ n · (x − x0) + 𝑧0}⏟  ⏞  
=:𝐿1

∼= {x𝑑 ∈ 𝐹𝑑 | 𝑓𝑑(x𝑑) ≥ 𝑔𝑐(n) · (x𝑑 − x0
𝑑) + 𝑧0}⏟  ⏞  

=:𝑅1

.

Note that if 𝐻 is valid, then we have 𝐿1 = 𝐹x0 , which is equivalent to the case that 𝑇𝐼x0 (x0)
is below 𝒮 over 𝐹x0 and is isomorphic to 𝑅1 = 𝐹𝑑. This implies that x0

𝑑 is a globally convex
domain point in R𝑑. 2

Corollary 5.13
Let x0 ∈ 𝜕𝑋 with corresponding 𝐼x0 . De�ne 𝑇𝐼x0 (x0) = 𝑇 (x0) ∩ {(x, 𝑧) | 𝑎𝑇

𝑖 x = 𝑏𝑖, 𝑖 ∈ 𝐼x0}.

Every valid hyperplane 𝐻 through (x0, 𝑓(x0)) contains the a�ne set 𝑇𝐼x0 (x0), i.e.,

𝑇𝐼x0 (x0) ⊂ 𝐻.

Proof. We use all de�nitions and results from the proof of “⇒” of Theorem 5.12.
If x0

𝑑 and x0 are both an extreme point in 𝐹𝑑 and 𝑋 respectively, then we have

𝑇𝐼x0 (x0) = {(x0, 𝑓(x0))} ⊂ 𝐻.

Otherwise x0
𝑑 is an interior point in 𝐹𝑑. Similar to the proof of Equation (5.4) in the proof of

“⇒” of Theorem 5.12, it implies for 𝐻 = 𝐻(x0, n) that

{(x, 𝑧) | 𝑧 = n · (x − x0) + 𝑧0, x ∈ 𝑃x0}⏟  ⏞  
=:𝐿2

∼= {(x𝑑, 𝑧) | 𝑧 = 𝑔𝑐(n) · (x𝑑 − x0
𝑑) + 𝑧0, x𝑑 ∈ R𝑑}⏟  ⏞  

=:𝑅2

.

Note that 𝐿2 = 𝐻 ∩ {(x, 𝑧) | x ∈ 𝑃x0} and

𝐻 is valid ⇒ 𝐿1 = 𝐹x0

⇔ 𝑅1 = 𝐹𝑑

(*)⇔ 𝑔𝑐(n) = ∇𝑓(x0
𝑑)

⇔ 𝑅2 = 𝑇𝑑(x0
𝑑)

⇔ 𝐿2 = 𝑇𝐼x0 (x0)

and thus
𝑇𝐼x0 (x0) ⊂ 𝐻,

where (*) is followed from Theorem 5.8. 2
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Recall Example 5.11 again. We have 𝑇𝐼x0 (x0) = {(𝑥, 𝑦, 𝑧) | 𝑧 = 78𝑥 − 614, 𝑦 = 4} for the
globally convex point x0 = (1, 4), see the green line in Figure 5.4. Corollary 5.13 shows that
every valid hyperplane through (x0, 𝑓(x0)) contains 𝑇𝐼x0 (x0). Note that 𝑇𝐼x0 (x0) is an a�ne
set contained in the tangent plane 𝑇 (x0), we call it a subtangent plane. We give a general
de�nition of subtangent planes that are contained in a valid hyperplane.

De�nition 5.14 (Subtangent planes)
Let x0 ∈ 𝜕𝑋 with corresponding 𝐼x0 . For every 𝐼 ⊂ 𝐼x0 , a corresponding subtangent plane
𝑇𝐼(x0) is de�ned as

𝑇𝐼(x0) = 𝑇 (x0) ∩ {(x, 𝑧) | 𝑎𝑇
𝑖 x = 𝑏𝑖, 𝑖 ∈ 𝐼}.

A subtangent plane 𝑇𝐼(x0) is valid if there exists a valid hyperplane 𝐻 with 𝑇𝐼(x0) ⊂ 𝐻 .
Note that 𝑇 (x0) may not be valid and yet 𝑇𝐼(x0) is valid by choosing 𝐻 ̸= 𝑇 (x0). A valid
subtangent plane through (x0, 𝑓(x0)) is said to be maximally valid if there does not exist any
other valid subtangent plane 𝑇𝐼′(x0) such that 𝑇𝐼(x0) ( 𝑇𝐼′(x0).

We also extend the de�nition to x0 ∈ int 𝑋 since 𝐼x0 = ∅ and 𝑇∅(x0) = 𝑇 (x0).

Note that since |𝐼x0 | = 𝑑′ there are 2𝑑′ such subtangent planes and all of them are a�ne sets.
For every 𝐼1, 𝐼2 with 𝐼1, 𝐼2 ⊂ 𝐼x0 it implies that

aff{𝑇𝐼1(x0), 𝑇𝐼2(x0)} = 𝑇𝐼1∩𝐼2(x0)

and it is clear that
𝑇𝐼1(x0) ⊃ 𝑇𝐼2(x0)

for 𝐼1 ⊂ 𝐼2 ⊂ 𝐼x0 .
Corollary 5.13 shows that every valid hyperplane 𝐻 through a boundary point (x0, 𝑓(x0))

satis�es

𝐻 ⊃ 𝑇𝐼x0 (x0) =
(︁
𝑇 (x0) ∩ {(x, 𝑧) | x ∈ 𝑃x0}

)︁
⊃
(︁
𝑇 (x0) ∩ {(x, 𝑧) | x ∈ 𝐹x0}

)︁
.

Face 𝐹x0 of dimension less than 𝑛 − 1 is contained in a face of 𝑋 of higher dimension. Exam-
ple 5.15 below shows that there could exist another face 𝐹 1

x0 of 𝑋 such that 𝐹 1
x0 ) 𝐹x0 and

there exists also a valid hyperplane 𝐻1 with 𝐻1 ⊃ (𝑇 (x0) ∩ {(x, 𝑧) | x ∈ 𝐹 1
x0}).

Example 5.15
Consider the following example in R3. Let 𝑓(𝑥, 𝑦) = 𝑥2 − 5𝑥𝑦 + 𝑦2 be the polynomial function
over domain 𝑋 = {(𝑥, 𝑦) ∈ [−3, 10] × [−3, 10]}, shown in Figure 5.6. The inequalities for
the halfspaces of 𝑋 with 𝑥 ≥ −3, 𝑦 ≥ −3, 𝑥 ≤ 10 and 𝑦 ≤ 10 have corresponding index
1, 2, 3 and 4, respectively. The graph of 𝑓 in R3 is illustrated in Figure 5.5a. The domain point
x0 = (−3, −3) ∈ 𝑋 is a boundary point with 𝐼x0 = {1, 2}. Let 𝐹1 = {(𝑥, 𝑦) | 𝑥 = −3, −3 ≤
𝑦 ≤ 10} and 𝐹2 = {(𝑥, 𝑦) | −3 ≤ 𝑥 ≤ 10, 𝑦 = −3} be two faces of 𝑋 containing x0. The
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(a) The graph and graph on face(s) (b) 𝑇{1}(x0) and 𝐻1

(c) 𝑇{2}(x0) and 𝐻2 (d) 𝑇{1,2}(x0) and 𝐻3

Figure 5.5: Example 5.15 for valid subtangent planes and corresponding valid hyperplanes

graph of 𝑓 with restriction x ∈ 𝐹1 is the red curve in Figure 5.5a and the graph of 𝑓 with
restriction x ∈ 𝐹2 is the blue curve in Figure 5.5a. In addition, the 22 = 4 subtangent planes are

𝑇∅(x0) = {(𝑥, 𝑦, 𝑧) | 𝑧 = 9𝑥 + 9𝑦 + 27} = 𝑇 (x0),
𝑇{1}(x0) = 𝑇 (x0) ∩ {(𝑥, 𝑦, 𝑧) | 𝑥 = −3} = {(𝑥, 𝑦, 𝑧) | 𝑧 = 9𝑦, 𝑥 = −3},

𝑇{2}(x0) = 𝑇 (x0) ∩ {(𝑥, 𝑦, 𝑧) | 𝑦 = −3} = {(𝑥, 𝑦, 𝑧) | 𝑧 = 9𝑥, 𝑦 = −3},

𝑇{1,2}(x0) = 𝑇 (x0) ∩ {(𝑥, 𝑦, 𝑧) | 𝑥 = −3, 𝑦 = −3} = {(−3, −3, −27)}.

Consider the point x1 = (10, 10) with 𝑓(x1) = −300. In the following, we investigate whether
𝑇∅(x0) is valid. It is clear that the point (10, 10, 9 · 10 + 9 · 10 + 27) = (10, 10, 207) ∈ 𝑇∅(x0).
Note that the point 𝑃 1 = (x1, 𝑓(x1)) = (10, 10, −300) is below 𝑇∅(x0) because 𝑃 1 is below
the point (10, 10, 207). Hence 𝑇∅(x0) is not valid. The subtangent plane 𝑇{1}(x0) (red line
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−4 −2 0 2 4 6 8 10

0
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10

Figure 5.6: Domain 𝑋 = {(𝑥, 𝑦) ∈ [−3, 10] × [−3, 10]}

in Figure 5.5b and in Figure 5.5d) is valid since the hyperplane 𝐻1 (green plane in Figure 5.5b)
with

𝐻1 = aff{𝑇{1}, {𝑃 1}} = {(𝑥, 𝑦, 𝑧) | 𝑧 = −30𝑥 + 9𝑦 − 90}
can be veri�ed to be valid and 𝑇{1}(x0) ⊂ 𝐻1. Similarly, 𝑇{2}(x0) (blue line in Figure 5.5c and
in Figure 5.5d) is valid since the hyperplane 𝐻2 (green plane in Figure 5.5c) with

𝐻2 = aff{𝑇{2}, {𝑃 1}} = {(𝑥, 𝑦, 𝑧) | 𝑧 = 9𝑥 − 30𝑦 − 90}

can be veri�ed to be valid and 𝑇{2}(x0) ⊂ 𝐻2. Let

𝐻3 = {(𝑥, 𝑦, 𝑧) | 𝑧 = −10.5𝑥 − 10.5𝑦 − 90}

with {(−3, −3, −27)} ⊂ 𝐻3 and {𝑃 1} ⊂ 𝐻3. The a�ne set 𝐻3 (green plane in Figure 5.5d)
can also be veri�ed to be valid. The subtangent plane 𝑇{1,2}(x0) (black point in Figure 5.5d) is
valid since 𝑇{1,2}(x0) ⊂ 𝐻3.

Note that 𝑇{1}(x0) and 𝑇{2}(x0), both through (x0, 𝑓(x0)), are maximally valid subtangent
planes. Hence a maximally valid subtangent plane does not have to be unique. ♢

De�nition 5.16
Let 𝑆1, 𝑆2 ⊂ R𝑛+1 be two sets. For a given domain 𝐷 ⊂ R𝑛, 𝑆1 is said to be (strictly) below 𝑆2
over 𝐷 if 𝜋x(𝑆1) ∩ 𝜋x(𝑆2) ∩ 𝐷 ̸= ∅ and for every x0 ∈ 𝜋x(𝑆1) ∩ 𝜋x(𝑆2) ∩ 𝐷 and 𝑧1, 𝑧2 ∈ R
with (x0, 𝑧1) ∈ 𝑆1 and (x0, 𝑧2) ∈ 𝑆2, we have

𝑧1 ≤ 𝑧2(𝑧1 < 𝑧2).

In this case we also call 𝑆2 is (strictly) above 𝑆1 over 𝐷. We omit “over 𝐷” if

𝐷 ⊃ (𝜋x(𝑆1) ∩ 𝜋x(𝑆2)) .
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Figure 5.7: Example of half hyperplanes for Lemma 5.18 and Lemma 5.19

Remark 5.17
In the de�nition above, the comparison below or above allows the compared sets to have
intersection points. Note that for the special case 𝑆1 = 𝑆2, we also have 𝑆1 is above 𝑆2 as well
as 𝑆1 is below 𝑆2.

Note that a hyperplane 𝐻 is valid if and only if it is below 𝒮 . In the example shown in
Figure 5.11a, 𝐻 𝑖 is below 𝐻𝑗 over [𝑙, 𝑢] for all 𝑖, 𝑗 with 1 ≤ 𝑖 < 𝑗 ≤ 4 and 𝐻 𝑖 is below 𝒮 for all
𝑖 ∈ {1, 2, 3, 4}. Note that for any 𝑆1, 𝑆2, 𝑆3 ⊂ R𝑛+1 with 𝑆1 is below 𝑆2 over 𝐷1 ⊂ R𝑛 and
𝑆2 is below 𝑆3 over 𝐷2 ⊂ R𝑛, 𝑆1 is below 𝑆3 over 𝐷1 ∩ 𝐷2.
Lemma 5.18 (Half hyperplanes)
Let

𝐻1 = 𝐻(x0, n1) = {(x, 𝑧) | 𝑧 = 𝑧0 + n1 · (x − x0)}

with the normal vector n1 ∈ R𝑛 and

𝐻2 = 𝐻(x0, n2) = {(x, 𝑧) | 𝑧 = 𝑧0 + n2 · (x − x0)}

with the normal vectorn2 ∈ R𝑛 be two nonvertical and nonparallel hyperplanes with an intersection
point (x0, 𝑧0) ∈ 𝐻1 ∩ 𝐻2. Let

𝜋x(𝐻1∩𝐻2) = {x ∈ R𝑛|𝑧0+n1·(x−x0) = 𝑧0+n2·(x−x0)} = {x ∈ R𝑛|(n1−n2)·(x−x0) = 0}.
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Then 𝐻1 is below 𝐻2 over 𝐿 := {x ∈ R𝑛|(n1 − n2) · (x − x0) ≤ 0}.
In addition, for any set 𝑆 with 𝑆 ⊂ 𝐿 or 𝑆 ⊂ 𝑅 := {x ∈ R𝑛|(n1 − n2) · (x − x0) ≥ 0}, either

𝐻1 is below 𝐻2 over 𝑆 or 𝐻2 is below 𝐻1 over 𝑆.

Proof. For any x ∈ 𝐿 we compare (x, 𝑧1) ∈ 𝐻1 and (x, 𝑧2) ∈ 𝐻2 with

𝑧1 − 𝑧2 = (𝑧0 + n1 · (x − x0)) − (𝑧0 + n2 · (x − x0)) = (n1 − n2) · (x − x0) ≤ 0,

which means 𝐻1 is below 𝐻2 over 𝐿.
After that, the second part is trivial to prove. 2

Note that if we write 𝜋x(𝐻1 ∩ 𝐻2) = {x ∈ R𝑛|(n2 − n1) · (x − x0) = 0}, then 𝐻1 is above
𝐻2 over {x ∈ R𝑛|(n2 − n1) · (x − x0) ≤ 0} = {x ∈ R𝑛|(n1 − n2) · (x − x0) ≥ 0} = R. An
example is shown in Figure 5.7.

Lemma 5.19
Consider the set 𝑃 𝑛−1 = {(x, 𝑧) | 𝑧 = 𝑧0 + n1 · (x − x0), (n1 − n2) · (x − x0) = 0}
for n1, n2 ∈ R𝑛, n1 ̸= n2 and x0 ∈ 𝑋, 𝑧0 ∈ R. Then 𝑃 𝑛−1 is an a�ne set of dimension
(𝑛 − 1). For any compact set 𝑆 ∈ R𝑛+1 with 𝜋x(𝑆) ⊂ {x | (n1 − n2) · (x − x0) < 0} or
𝜋x(𝑆) ⊂ {x | (n1 − n2) · (x − x0) > 0}, there exists a hyperplane 𝐻 ⊃ 𝑃 𝑛−1 which is below 𝑆.

Proof. The set 𝑃 𝑛−1 can be equivalently written as

𝑃 𝑛−1 = {(x, 𝑧) | 𝑧 = 𝑧0 + n1 · (x − x0)} ∩ {(x, 𝑧) | 𝑧 = 𝑧0 + n2 · (x − x0)},

which is an intersection of two nonparallel hyperplanes. Hence it is an a�ne set of dimension
(𝑛 − 1).

Note that for any (x, 𝑧) ∈ 𝑆, we have x ̸∈ 𝜋x(𝑃 𝑛−1). The a�ne set aff{𝑃 𝑛−1, {(x, 𝑧)}}
is then a nonvertical hyperplane. We take an arbitrary �xed point x𝑟 ∈ 𝜋x(𝑆) as a reference
point, with an a�ne set {(x𝑟, 𝑧) | 𝑧 ∈ R}. For any (x, 𝑧) ∈ 𝑆, aff{𝑃 𝑛−1, {(x, 𝑧)}} has exactly
one intersecting point with the a�ne set {(x𝑟, 𝑧) | 𝑧 ∈ R}, see examples in Figure 5.7 with
(x, 𝑧) = (x1, 𝑧1) or (x, 𝑧) = (x2, 𝑧2) . Denoting the intersection point by (x𝑟, 𝑓x𝑟 (x)) with

{(x𝑟, 𝑓x𝑟 (x))} = aff{𝑃 𝑛−1, {(x, 𝑧) ∈ 𝑆}} ∩ {(x𝑟, 𝑧) | 𝑧 ∈ R}

and 𝑓x𝑟 : 𝜋x(𝑆) → R. Function 𝑓x𝑟 is continuous since the a�ne function above is continuous.
Let (x1, 𝑧1) ∈ 𝑆 and (x2, 𝑧2) ∈ 𝑆. Then the hyperplane aff{𝑃 𝑛−1, {(x1, 𝑧1)}} is below

aff{𝑃 𝑛−1, {(x2, 𝑧2)}} over 𝑆 if and only if 𝑓x𝑟 (x1) ≤ 𝑓x𝑟 (x2), see an example in Figure 5.7.
Due to the Weierstrass Theorem, we can �nd (x*, 𝑧*) ∈ 𝑆 such that 𝑓x𝑟 attains a minimum

at x*. Then we have aff{𝑃 𝑛−1, {(x*, 𝑧*)}} is below aff{𝑃 𝑛−1, {(x𝑖, 𝑧𝑖)}} for any (x𝑖, 𝑧𝑖) ∈ 𝑆.
This implies that aff{𝑃 𝑛−1, {(x*, 𝑧*)}} is below any (x𝑖, 𝑧𝑖) ∈ 𝑆. Hence the hyperplane
𝐻 := aff{𝑃 𝑛−1, {(x*, 𝑧*)}} is below 𝑆. 2
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Figure 5.8: A point sequence in the neighborhood of x0

With the following lemma we prove that a hyperplane 𝐻 is valid if and only if 𝐻 is below 𝒮
over 𝑋̌𝑔 .
Lemma 5.20
The hyperplane 𝐻(x0, n0) is below 𝒮 over 𝑋 if and only if 𝐻(x0, n0) is below 𝒮 over 𝑋̌𝑔 , which
means for every x ∈ 𝑋̌𝑔 it satis�es

𝑓(x) ≥ 𝑓(x0) + n0 · (x − x0). (5.8)

Proof. Direction ”⇒“ simply follows since 𝑋 ⊃ 𝑋̌𝑔 .
For the proof of ”⇐“, �rst consider the optimization problem

min
x∈𝑋

𝑓(x) − 𝑓(x0) − n0 · (x − x0), (5.9)

which has a continuous objective function over a compact feasible region. Since 𝑋 is compact,
an optimum always exists due to the Weierstrass Theorem. Due to x0 ∈ 𝑋 , we have

min
x∈𝑋

𝑓(x) − 𝑓(x0) − n0 · (x − x0) ≤ 𝑓(x0) − 𝑓(x0) − n0 · (x0 − x0) = 0.

The hyperplane 𝐻(x0, n0) is valid if and only if the optimization problem (5.9) has optimal
value 0. Note that by assumption, every x ∈ 𝑋̌𝑔 satis�es (5.8) . The hyperplane 𝐻(x0, n0) is
valid if the inequality holds also for every x ∈ 𝑋 ∖ 𝑋̌𝑔 . We assume there exists an x− ∈ 𝑋 ∖ 𝑋̌𝑔

with
𝑓(x−) < 𝑓(x0) + n0 · (x− − x0).

Then the optimization problem (5.9) possesses an optimal solution (x*, 𝑧*) with value < 0, i.e.,

𝑓(x*) < 𝑓(x0) + n0 · (x* − x0).

Note that x* is a globally convex domain point since 𝐻(x*, n0) is valid. This is a contradiction
to (5.8) for every x ∈ 𝑋̌𝑔 . It implies then x− does not exist and (5.8) is also satis�ed for every
x ∈ 𝑋 ∖ 𝑋̌𝑔 . Hence 𝐻(x0, n0) is a valid hyperplane. 2
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Proof idea of direction “⇐” of Theorem 5.12. Recall Example 5.11. As shown in Figure 5.4b,
for 𝒮𝑑, (x0

𝑑, 𝑓𝑑(x0
𝑑)) = (1, −536) is globally convex. To show Theorem 5.12, we need to prove

that there exists a valid hyperplane through (x0, 𝑓(x0)) = (1, 4, −536), which is the red point
in Figure 5.4a. According to Corollary 5.13, every such hyperplane should contain 𝑇𝐼x0 (x0)
which is the green line in Figure 5.4a. Note that in this example 𝑇𝐼x0 (x0) is an a�ne set of
dimension 1. According to Lemma 5.19, by setting 𝑃 𝑛−1 = 𝑇𝐼x0 (x0), for any subset 𝑋 ′ ⊂ 𝑋

with 𝑋 ′ ∩ 𝐹x0 = ∅, there exists a hyperplane 𝐻 ⊃ 𝑇𝐼x0 (x0) such that 𝐻 is below 𝒮 over 𝑋 ′.
The proof idea is as follows. After �nding a set 𝑃 𝑛−1 as described in Lemma 5.19, we split 𝑋

into two compact sets 𝑋𝑀 and 𝑋Δ such that 𝜋x(𝑃 𝑛−1) ⊂ 𝑋𝑀 and 𝑋Δ ∩ 𝜋x(𝑃 𝑛−1) = ∅ as
well as 𝑋 = 𝑋𝑀 ∪ 𝑋Δ. After that we �rst �nd 𝐻* ⊃ 𝑃 𝑛−1 such that 𝐻* is below 𝒮 over 𝑋𝑀 .
In addition, we �nd 𝐻** ⊃ 𝑃 𝑛−1 such that 𝐻** is below 𝒮 over 𝑋Δ. According to Lemma 5.18,
𝐻* is below 𝐻** over 𝑋 or 𝐻** is below 𝐻* over 𝑋 . If 𝐻* is below 𝐻** over 𝑋 , then 𝐻* is
below 𝒮 over 𝑋Δ. Together with 𝐻* is below 𝒮 over 𝑋𝑀 , 𝐻* is then below 𝒮 over 𝑋𝑀 ∪ 𝑋Δ,
hence it is valid. Otherwise if 𝐻** is below 𝐻* over 𝑋 , 𝐻** is then valid.

The following lemma helps us to �nd 𝑋𝑀 and 𝐻* as mentioned in the proof idea.

Lemma 5.21
For every x0 ∈ 𝑋̌𝑔 , there exists an 𝜀 > 0 such that 𝑇 (x0) is below 𝒮 over 𝑋̌𝑔 ∩ 𝐵𝜀(x0).
Furthermore, every valid hyperplane 𝐻 through (x0, 𝑓(x0)) is below 𝑇 (x0) over 𝑋 .

Proof. Note that for any x0 ∈ int 𝑋 this lemma is clear due to Lemma 5.5 and Theorem 5.8.
We need only to consider the case x0 ∈ 𝜕𝑋 . For a given globally convex domain point
x0 ∈ 𝜕𝑋 ∩ 𝑋̌𝑔 , we want to capture the globally convex domain points in its neighborhood.

Let 𝐴, 𝐵 ⊂ R𝑛+1 be two subsets, then

𝜋x(𝐴 ∩ 𝐵) = 𝜋x(𝐴) ∩ 𝜋x(𝐵) (5.10)

if 𝜋𝑧(𝐴) = R or 𝜋𝑧(𝐵) = R.
For a given x0 ∈ 𝜕𝑋 , every subtangent plane 𝑇𝐽(x0), 𝐽 ⊂ 𝐼x0 ful�lls

𝜋x(𝑇𝐽(x0)) =

⎛⎝⋂︁
𝑗∈𝐽

{x | 𝑎𝑇
𝑗 x = 𝑏𝑗}

⎞⎠ ∩ 𝜋x(𝑇 (x0))⏟  ⏞  
=R𝑛

=
⋂︁
𝑗∈𝐽

{x | 𝑎𝑇
𝑗 x = 𝑏𝑗}

by using (5.10) iteratively.
It implies that 𝜋x(𝑇𝐽(x0)) ∩ 𝑋 is a face of 𝑋 for 𝐽 ̸= ∅, denoting by

𝐹𝐽(x0) := 𝜋x(𝑇𝐽(x0)) ∩ 𝑋.

We de�ne additionally 𝐹∅(x0) := 𝜋x(𝑇 (x0)) ∩ 𝑋 = 𝑋 .
For every 𝐼 ⊂ 𝐼x0 we have

𝑇𝐼(x0) = 𝑇 (x0) ∩ {(x, 𝑧) | 𝑎𝑇
𝑖 x = 𝑏𝑖, 𝑖 ∈ 𝐼} = 𝑇 (x0) ∩ {(x, 𝑧) | x ∈ 𝜋x(𝑇𝐼(x0)}
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which follows directly from the de�nition of subtangent planes.
For any 𝑇𝐼(x0) which is below 𝒮 , 𝑇 (x0) is then below 𝒮 over 𝑋̌𝑔 ∩ 𝐵𝜀(x0) ∩ 𝜋x(𝑇𝐼(x0))

for any 𝜀 > 0. It implies that 𝑇 (x0) is below 𝒮 over⋃︁
𝐼⊂𝐼x0

𝑇𝐼(x0) is below 𝒮

𝑋̌𝑔 ∩ 𝐵𝜀(x0) ∩ 𝜋x
(︁
𝑇𝐼(x0)

)︁
.

Note that
𝑋̌𝑔 ∩ 𝐵𝜀(x0) =

⋃︁
𝐼⊂𝐼x0

𝑋̌𝑔 ∩ 𝐵𝜀(x0) ∩ 𝜋x
(︁
𝑇𝐼(x0)

)︁
.

In the following we need only to prove that for a su�ciently small 𝜀 > 0 it holds⋃︁
𝐼⊂𝐼x0

𝑇𝐼(x0) is below 𝒮

𝑋̌𝑔 ∩ 𝐵𝜀(x0) ∩ 𝜋x
(︁
𝑇𝐼(x0)

)︁
=

⋃︁
𝐼⊂𝐼x0

𝑋̌𝑔 ∩ 𝐵𝜀(x0) ∩ 𝜋x
(︁
𝑇𝐼(x0)

)︁
(5.11)

which implies the �rst consequence that 𝑇 (x0) is below 𝒮 over 𝑋̌𝑔 ∩ 𝐵𝜀(x0).
Before proving (5.11) we �rst prove that for every x0 ∈ 𝑋̌𝑔 there exists an 𝜀𝐽 > 0 such that

any subtangent plane 𝑇𝐽(x0), 𝐽 ⊂ 𝐼x0 that does not ful�ll the condition 𝑇𝐽(x0) is below 𝒮
satis�es

𝑋̌𝑔 ∩ 𝐵𝜀𝐽 (x0) ∩ relint
(︁
𝐹𝐽(x0)

)︁
= ∅. (5.12)

Assume that there does not exist an 𝜀𝐽 for which (5.12) holds. Then there exists 𝐽 ⊂ 𝐼x0

such that 𝑇𝐽(x0) does not ful�ll 𝑇𝐽(x0) is below 𝒮 and for every 𝜀𝐽 > 0

𝑋̌𝑔 ∩ 𝐵𝜀𝐽 (x0) ∩ relint
(︁
𝐹𝐽(x0)

)︁
̸= ∅.

Recall that 𝐹𝐽(x0) is a compact set. There exists then a point sequence (x𝑖)𝑖∈N ⊂ 𝑋̌𝑔 , as
shown in Figure 5.8, such that

lim
𝑖→∞

x𝑖 = x0 and {((x𝑖)𝑖∈N)} ⊂
(︁
𝑋̌𝑔 ∩ 𝐵𝜀𝐽 (x0) ∩ relint

(︁
𝐹𝐽(x0)

)︁)︁
for 𝜀𝐽 > 0. The point x𝑖 for any 𝑖 ∈ N is a globally convex domain point and a relative interior
point in 𝐹𝐽(x0). Denoting x𝑖 by y, the function

𝐺y(x) = 𝑓(x) − (∇𝑓(y) · (x − y) + 𝑓(y))

evaluates the validity of the tangent plane 𝑇 (y) through (y, 𝑓(y)): Tangent plane 𝑇 (y) is
valid if and only if 𝐺y(x) ≥ 0 for all x ∈ 𝑋 ; subtangent plane 𝑇𝐽(y) is below 𝒮 if and only if
𝐺y(x) ≥ 0 for all x ∈ 𝐹𝐽(y). Consider the function

ℎ : 𝐹𝐽(x0) → R, y ↦→ min
x∈𝐹𝐽 (y)

𝐺y(x).
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With “⇒” of Theorem 5.12, y ∈ 𝑋̌𝑔 implies that 𝑇𝐽(y) is below 𝒮 which is equivalent to
𝑇 (y) is below 𝒮 over 𝐹𝐽(y). Thus, ℎ(x𝑖) ≥ 0 for every 𝑖 ∈ N. For any y function 𝐺y(x) is
a continuous function, it implies ℎ is also continuous since it maps from a compact set to the
minimum of 𝐺y(x). Together with lim𝑖→∞ x𝑖 = x0 it implies that ℎ(x0) ≥ 0. This implies
that 𝑇𝐽(x0) is below 𝒮 . This is a contradiction to our assumption. Hence there exists an 𝜀𝐽 > 0
such that

𝑋̌𝑔 ∩ 𝐵𝜀𝐽 (x0) ∩ relint
(︁
𝐹𝐽(x0)

)︁
= ∅.

Since we have �nitely many subtangent planes through (x0, 𝑓(x0)), there exists an 𝜀 > 0
which is the minimum of all 𝜀𝐽 such that (5.12) holds for every such subtangent plane through
(x0, 𝑓(x0)).

Recall (5.11) that we are now ready to prove. For any 𝐽 ⊂ 𝐼x0 with 𝐽 ̸= 𝐼x0 , we study now
the point set 𝐹𝐽(x0) ∩ 𝐵𝜀(x0). For any x ∈ 𝐹𝐽(x0) ∩ 𝐵𝜀(x0) we have two cases, either

x ∈ relint
(︁
𝐹𝐽(x0) ∩ 𝐵𝜀(x0)

)︁
or

x ∈ 𝜕
(︁
𝐹𝐽(x0) ∩ 𝐵𝜀(x0)

)︁
.

Since 𝐽 ⊂ 𝐼x0 with 𝐽 ̸= 𝐼x0 , we have 𝐼x0 ∖ 𝐽 ̸= ∅. For any x ∈ 𝜕
(︀
𝐹𝐽(x0) ∩ 𝐵𝜀(x0)

)︀
, there

exists 𝑖 ∈ 𝐼x0 ∖ 𝐽 such that x ∈
(︀
𝜋x(𝑇𝐽 ′(x0)) ∩ 𝑋 ∩ 𝐵𝜀(x0)

)︀
with 𝐽 ′ = 𝐽 ∪ {𝑖}. Together

with 𝜋x(𝑇𝐽 ′(x0)) ⊂ 𝜋x(𝑇𝐽(x0)) for any 𝐽 ⊂ 𝐽 ′ and the de�nition

𝑆𝜀
𝐽(x0) := 𝐹𝐽(x0) ∩ 𝐵𝜀(x0),

it implies then

𝑆𝜀
𝐽(x0) = relint

(︁
𝑆𝜀

𝐽(x0)
)︁

∪

⎛⎜⎜⎜⎝ ⋃︁
𝑖∈𝐼x0 ∖𝐽

𝐽 ′=𝐽∪{𝑖}

(︁
𝑆𝜀

𝐽 ′(x0)
)︁⎞⎟⎟⎟⎠

⏟  ⏞  
=𝜕𝑆𝜀

𝐽 (x0)

. (5.13)

Note that for any sets 𝐴, 𝐵, 𝐶 it holds

𝐶 ∩ (𝐴 ∪ 𝐵) = (𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵) .

For any 𝑇𝐽 which does not ful�ll 𝑇𝐽 is below 𝒮 , we have then

𝑆𝜀
𝐽(x0) ∩ 𝑋̌𝑔 =

(︁
relint

(︁
𝑆𝜀

𝐽(x0)
)︁

∩ 𝑋̌𝑔
)︁

⏟  ⏞  
(5.12)

= ∅

∪

⎛⎜⎜⎜⎝ ⋃︁
𝑖∈𝐼x0 ∖𝐽

𝐽 ′=𝐽∪{𝑖}

(︁
𝑆𝜀

𝐽 ′(x0) ∩ 𝑋̌𝑔
)︁⎞⎟⎟⎟⎠ (5.14)
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Using (5.14) iteratively and together with (5.12), it implies that

𝑋̌𝑔 ∩ 𝑆𝜀
𝐽(x0) =

⋃︁
𝐽⊂𝐼⊂𝐼x0

𝑇𝐼(x0) is below 𝒮

𝑋̌𝑔 ∩ 𝑆𝜀
𝐼 (x0)

for every 𝐽 ⊂ 𝐼x0 . This implies 𝑇 (x0) is below 𝒮 over⋃︁
𝐼⊂𝐼x0

𝑇𝐼(x0) is below 𝒮

𝑋̌𝑔 ∩ 𝑆𝜀
𝐼 (x0) =

⋃︁
𝐼⊂𝐼x0

𝑋̌𝑔 ∩ 𝑆𝜀
𝐼 (x0) = 𝑋̌𝑔 ∩ 𝐵𝜀(x0).

Now it remains only to prove that every valid hyperplane 𝐻 through (x0, 𝑓(x0)) is below
𝑇 (x0) over 𝑋 . Assume that 𝐻 ̸= 𝑇 (x0), otherwise we are done. An example for 𝑛 = 1 is
shown in Figure 5.9. Let 𝑋 = [𝑙, 𝑢] and 𝑙, 𝑥𝑚 and 𝑢 be globally convex points. Tangent plane
𝑇 (𝑙), shown as the green line, is not valid. However, the example in Figure 5.9 shows that every
valid hyperplane through (𝑙, 𝑓(𝑙)) is below 𝑇 (𝑙) over 𝑋 ; it also shows that every hyperplane
through (𝑙, 𝑓(𝑙)) which is above 𝑇 (𝑙) over 𝑋 cannot be valid. For interior domain point 𝑥𝑚,
there does not exist another hyperplane through (𝑥𝑚, 𝑓(𝑥𝑚)) which is below 𝑇 (𝑥𝑚), thus there
exists at most one valid hyperplane through (𝑥𝑚, 𝑓(𝑥𝑚)) which is also implied by Theorem 5.8.
For domain point 𝑢, 𝑇 (𝑢) is valid. In addition, every hyperplane through (𝑢, 𝑓(𝑢)) which is
below 𝑇 (𝑢) over 𝑋 is also valid; every hyperplane through (𝑢, 𝑓(𝑢)) which is not 𝑇 (𝑢) and
above 𝑇 (𝑢) over 𝑋 is not valid.

We go back to the proof for general 𝑛. Under the assumption 𝐻 ̸= 𝑇 (x0), hyperplanes 𝐻
and 𝑇 (x0) are not parallel due to the intersection point (x0, 𝑓(x0)). Similar to the notation in
Lemma 5.18, denote

𝜋x(𝐻 ∩ 𝑇 (x0)) = {x ∈ R𝑛|n0 · (x − x0) = 0},

and
𝐿 := {x ∈ R𝑛|n0 · (x − x0) ≤ 0}, 𝑅 := {x ∈ R𝑛|n0 · (x − x0) ≥ 0}

with n0 ∈ R𝑛. Note that since x0 is a boundary point of 𝑋 , we have either 𝜋x(𝐻 ∩ 𝑇 (x0)) ∩
int 𝑋 ̸= ∅ or 𝜋x(𝐻 ∩ 𝑇 (x0)) ∩ int 𝑋 = ∅. If 𝜋x(𝐻 ∩ 𝑇 (x0)) ∩ int 𝑋 ̸= ∅, then we have
𝐿 ∩ int 𝑋 ̸= ∅ and 𝑅 ∩ int 𝑋 ̸= ∅. Lemma 5.18 implies 𝐻 is above 𝑇 (x0) over 𝐿 or 𝑅. Without
loss of generality, 𝐻 is above 𝑇 (x0) over 𝐿. Consider the graph of 𝑓 over 𝐿∩𝐵𝜀(x0)∩int 𝑋 ̸= ∅
for any 𝜀 > 0. There always exists a point x1 ∈ 𝐿 ∩ 𝐵𝜀(x0) ∩ int 𝑋 such that (x1, 𝑓(x1)) is
below 𝐻 . Thus 𝐻 cannot be valid if 𝜋x(𝐻 ∩ 𝑇 (x0)) ∩ int 𝑋 ̸= ∅.

Now we consider the case 𝜋x(𝐻 ∩ 𝑇 (x0)) ∩ int 𝑋 = ∅. There are two cases, either 𝑋 ⊂ 𝐿 or
𝑋 ⊂ 𝑅. Without loss of generality, let 𝑋 ⊂ 𝐿. Lemma 5.18 implies that 𝐻 is either below 𝑇 (x0)
or above 𝑇 (x0) over 𝑋 . If 𝐻 is above 𝑇 (x0) over 𝑋 , as we discussed above, using Taylor’s
formula, there always exists a point x1 ∈ 𝐵𝜀(x0) ∩ int 𝑋 such that (x1, 𝑓(x1)) is below 𝐻 .
Thus 𝐻 cannot be valid if 𝐻 is above 𝑇 (x0) over 𝑋 . 2
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Figure 5.9: Examples to compare hyperplanes and the tangent plane both through a common point

Now we are ready to prove the direction “⇐” of Theorem 5.12.

Proof (of “⇐” of Theorem 5.12). For x0 ∈ 𝜕𝑋 , as we discussed before, there exists a small-
est face 𝐹x0 ⊂ 𝑋 with x0 ∈ 𝐹x0 . At the end of the proof of “⇒” we showed that x0

𝑑 = 𝑔𝑑(x0)
is a globally convex domain point of 𝒮𝑑 if and only if 𝑇𝐼x0 (x0) is below 𝒮 over 𝐹x0 . We want to
show that there exists a valid hyperplane 𝐻 ⊃ 𝑇𝐼x0 (x0). An example can be seen in Figure 5.10.

Since 𝐹x0 is a face of 𝑋 , there exists vector 𝐶 ∈ R𝑛 ∖ {0} such that

𝐹x0 = argmin
{︁

𝐶𝑇 x | x ∈ 𝑋
}︁

,

see [Sch86]. We de�ne the a�ne set

𝑋𝑛−1
x0 = {x | 𝐶𝑇 x − 𝐶𝑇 x0 = 0, x ∈ R𝑛} ⊂ R𝑛

with 𝐹x0 ⊂ 𝑋𝑛−1
x0 and dimension 𝑛 − 1 and the set

𝑋𝐿 = {x | 𝐶𝑇 x − 𝐶𝑇 x0 ≥ 0, x ∈ R𝑛}

which satis�es 𝑋𝐿 ⊃ 𝑋 .
Besides (x0, 𝑓(x0)), the subtangent plane 𝑇𝐼x0 (x0) may have other intersection points with

𝒮 , we denote the set of all intersection points by

𝒮𝒯x0 := 𝒮 ∩ 𝑇𝐼x0 (x0) = {(x, 𝑧) | 𝑧 = 𝑓(x), x ∈ 𝐹x0} ∩ 𝑇 (x0)
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with the corresponding domain set 𝑋𝒯x0 = 𝜋x(𝒮𝑇x0 ). For any x1 ∈ 𝑋𝒯x0 , x1 ̸= x0 with
(x1, 𝑓(x1)) ∈ 𝑇 (x0), we want to prove 𝑇 (x0) is below 𝑇 (x1) over 𝐹x0 . Let 𝑔0 : R𝑛 → R and
𝑔1 : R𝑛 → R be two a�ne functions such that

𝑇 (x0) = {(x, 𝑔0(x)) | x ∈ R𝑛} and 𝑇 (x1) = {(x, 𝑔1(x)) | x ∈ R𝑛}.

Assume that the statement 𝑇 (x0) is below 𝑇 (x1) over 𝐹x0 is not true, then for any 𝜀1 > 0
there exists

x2 ∈ 𝐵𝜀1(x1) ∩ 𝐹x0

with 𝑔0(x2) < 𝑔1(x2). Using “Taylor’s Formula in Several Variables”(see the book [Edw94]),
there exists x3 which is a linear combination of x1 and x2 such that 𝑔0(x3) > 𝑓(x3). This is a
contradiction to the condition that 𝑇 (x0) is below 𝒮 over 𝐹x0 . Hence 𝑇 (x0) is below 𝑇 (x1)
over 𝐹x0 .

Consider the a�ne set

𝑃 𝑛−1
𝐻 = 𝑇 (x0) ∩ {(x, 𝑧) | x ∈ 𝑋𝑛−1

x0 , 𝑧 ∈ R}.

For any point (x𝑓 , 𝑧𝑓 ) with x𝑓 ∈ 𝑋 ∖ 𝐹x0 , aff{𝑃 𝑛−1
𝐻 , {(x𝑓 , 𝑧𝑓 )}} is a nonvertical hyperplane.

Consider the linear convex set {(x, 𝑧) ∈ 𝑇 (x1) | x ∈ 𝑋, 𝑧 ∈ R}. For any x1 ∈ 𝑋𝒯x0 ∖ {x0},
there exists a 𝑧𝑓

1 such that aff{𝑃 𝑛−1
𝐻 , {(x𝑓 , 𝑧𝑓

1 )}} is below 𝑇 (x1) over 𝑋 . As a consequence,
there exists 𝑧𝑓 such that 𝐻* = aff{𝑃 𝑛−1

𝐻 , {(x𝑓 , 𝑧𝑓 )}} is below 𝑇 (x*) over 𝑋 for any x* ∈
𝑋𝒯x0 . Due to Lemma 5.21, there exists a su�ciently small 𝜀1 such that 𝐻* is below 𝒮 over
𝑋̌𝑔 ∩ 𝐵𝜀1(x*) for any x* ∈ 𝑋𝒯x0 . As a result, 𝐻* is below 𝒮 over⋃︁

x*∈𝑋𝒯x0

𝑋̌𝑔 ∩ 𝐵𝜀1(x*).

For the set
𝑋𝑀1 =

⋃︁
x*∈𝑋𝒯x0

𝐵𝜀1(x*),

the point (x2, 𝑓(x2)) is below 𝑇𝐼x0 (x0) for any x2 ∈ 𝐹x0 ∖ 𝑋𝑀1 . Then there exists an 𝜀2 such
that 𝐻* is below 𝒮 over 𝐵𝜀2(x2) for any x2 ∈ 𝐹x0 ∖ 𝑋𝑀1 . By de�ning a new set

𝑋𝑀2 =

⎛⎜⎝ ⋃︁
x*∈𝑋𝒯x0

𝐵𝜀1(x*)

⎞⎟⎠ ∪

⎛⎜⎝ ⋃︁
x2∈𝐹x0 ∖𝑋𝑀1

𝐵𝜀2(x2)

⎞⎟⎠ ,

as well as
𝑋𝑀 = 𝑋𝑀2 ∩ 𝑋,

it implies that 𝐻* is below 𝒮 over 𝑋𝑀 ∩ 𝑋̌𝑔 .
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Consider now 𝑋Δ = 𝑋 ∖ int 𝑋𝑀2 Then we have 𝑋 = 𝑋Δ ∪ 𝑋𝑀 . Using 𝑋Δ as 𝑆
in Lemma 5.19, there exists a hyperplane 𝐻** which is below 𝒮 over 𝑋Δ.

Finally, since we have 𝐻* ⊃ 𝑃 𝑛−1
𝐻 and 𝐻** ⊃ 𝑃 𝑛−1

𝐻 , together with Lemma 5.18, we have
two cases by comparing 𝐻* and 𝐻**. If 𝐻* is below 𝐻** over 𝑋 , then 𝐻* is below 𝒮 over(︁

(𝑋𝑀 ∩ 𝑋̌𝑔) ∪ 𝑋Δ
)︁

⊃ 𝑋̌𝑔.

Due to Lemma 5.20 we have then 𝐻* is a valid hyperplane through (x0, 𝑓(x0)). Otherwise
𝐻** is below 𝐻* over 𝑋 . With the same reason 𝐻** is a valid hyperplane through (x0, 𝑓(x0)).
Until now we �nish the proof. 2

Figure 5.10: Example for the proof of Theorem 5.12

Note that for every extreme point x𝑒 ∈ 𝑋𝑒 ⊂ 𝜕𝑋 , the corresponding x𝑒
𝑑 satis�es 𝒮𝑑 = {x𝑒

𝑑}.
As the single point in that set, x𝑒

𝑑 is globally convex which implies the following corollary.
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Corollary 5.22
Every extreme domain point x𝑒 ∈ 𝑋𝑒 is globally convex.

5.3.4 Tight and loose hyperplanes

Until now, we observed valid subtangent planes through a �xed given point (x0, 𝑓(x0)). From
now on we restrict our attention to valid subtangent planes through (x0, 𝑓(x0)) that are
contained in a �xed given valid hyperplane 𝐻 .

De�nition 5.23 (𝐻-contained subtangent planes through (x0, 𝑓(x0)))
Let x0 ∈ 𝜕𝑋 and 𝐻 be a valid hyperplane containing (x0, 𝑓(x0)). A valid subtangent plane
𝑇𝐼(x0) ⊂ 𝐻 is said to be an 𝐻-contained subtangent plane through (x0, 𝑓(x0)). Such a 𝑇𝐼(x0)
is said to be maximally valid if there does not exist any other 𝐻-contained subtangent plane
𝑇𝐼′(x0) through (x0, 𝑓(x0)) such that 𝑇𝐼(x0) ( 𝑇𝐼′(x0).

In Example 5.15, 𝑇{1}(x0) is an 𝐻1-contained subtangent plane, 𝑇{2}(x0) is an 𝐻2-contained
subtangent plane and 𝑇{1,2}(x0) is an 𝐻1-contained, 𝐻2-contained and 𝐻3-contained subtan-
gent plane.

We may wonder for which faces 𝐹 ∋ x0 of 𝑋 there exists a valid hyperplane 𝐻 such that
𝐻 ⊃ (𝑇 (x0) ∩ {(x, 𝑧) | x ∈ 𝐹}). We start to answer the question with the following lemma.

Lemma 5.24 (Unique maximally valid 𝐻-contained subtangent plane)
For any x0 ∈ 𝜕𝑋 with a valid hyperplane 𝐻 through (x0, 𝑓(x0)), there always exists a unique
maximally valid 𝐻-contained subtangent plane through (x0, 𝑓(x0)), denoted by 𝑇 max

𝐻 (x0).

Proof. We begin the proof with a few de�nitions. We de�ne �rst a set of index sets

ℐ𝐻
x0 =

{︁
𝐼 ⊂ 𝐼x0 | 𝑇𝐼(x0) ⊂ 𝐻

}︁
.

The set ℐ𝐻
x0 is not empty since we have 𝐼x0 ∈ ℐ𝐻

x0 . In addition, we de�ne

𝐼max
𝐻 =

⋂︁
𝐼∈ℐ𝐻

x0

𝐼.

Now we want to prove that 𝑇𝐼max
𝐻

(x0) is the unique maximally valid 𝐻-contained subtangent
plane. On the one hand, as we proved before, for any 𝐼1 ⊂ 𝐼x0 , 𝐼2 ⊂ 𝐼x0 , it holds

𝑇𝐼1∩𝐼2(x0) = aff{𝑇𝐼1(x0), 𝑇𝐼2(x0)}.

Since 𝑇𝐼1(x0) ⊂ 𝐻 and 𝑇𝐼2(x0) ⊂ 𝐻 , then we have also 𝑇𝐼1∩𝐼2(x0) ⊂ 𝐻 . Using this iteratively,
it implies that 𝑇𝐼max

𝐻
(x0) ⊂ 𝐻 .

One the other hand, for any 𝐼1 ⊂ 𝐼2 ⊂ 𝐼x0 we have 𝑇𝐼1(x0) ⊃ 𝑇𝐼2(x0). It implies then for
any 𝐼 ⊂ 𝐼x0 with 𝑇𝐼(x0) ⊂ 𝐻 , we have also 𝑇𝐼(x0) ⊂ 𝑇𝐼max

𝐻
(x0) since 𝐼max

𝐻 ⊂ 𝐼 .
As a result 𝑇𝐼max

𝐻
(x0) is a maximally valid 𝐻-contained subtangent plane.
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Assume there exists another maximally valid 𝐻-contained subtangent plane 𝑇𝐽(x0). Then
there exists 𝑗 ∈ 𝐼max

𝐻 ∖ 𝐽 . Recall the de�nition of ℐ𝐻
x0 , for every 𝐼 ⊂ 𝐼x0 with 𝑇𝐼(x0) ⊂ 𝐻 we

must have 𝑗 ∈ 𝐼 . It is a contradiction that 𝑇𝐽(x0) ⊂ 𝐻 . Hence 𝑇𝐼max
𝐻

(x0) =: 𝑇 max
𝐻 (x0) is the

unique maximally valid 𝐻-contained subtangent plane.
qed 2

In Example 5.15, 𝑇{1}(x0) is the maximally valid 𝐻1-contained subtangent plane, 𝑇{2}(x0)
is the maximally valid 𝐻2-contained subtangent plane and 𝑇{1,2}(x0) is the maximally valid
𝐻3-contained subtangent plane. 𝑇{1,2}(x0) is an 𝐻1-contained and 𝐻2-contained subtangent
plane, but neither is maximally valid.

In Example 5.15, 𝐻1, 𝐻2 and 𝐻3 are three di�erent valid hyperplanes with corresponding
halfspaces 𝐻̌1, 𝐻̌2 and 𝐻̌3. Recall that the convex hull of 𝒮 is the intersection of all halfspaces
containing 𝒮 . Observe that

𝐻̌3 ⊃ (𝐻̌1 ∩ 𝐻̌2) ⇒ (𝐻̌1 ∩ 𝐻̌2) = (𝐻̌1 ∩ 𝐻̌2 ∩ 𝐻̌3).

It implies that to form the convex hull of 𝒮 , we do not have to use 𝐻̌3. Hence 𝐻̌3 can be
regarded as an “ine�cient” halfspace. To discuss which halfspaces are e�cient and which are
not, we make the following de�nition.

De�nition 5.25 (Tight and loose hyperplanes)
Let 𝐻 be a valid hyperplane and 𝑋𝐻 := 𝜋x(𝐻 ∩ 𝒮) be its associated set of domain points with
𝑋𝐻 ̸= ∅. Let

𝑆𝐻 := aff
{︁

𝑇 max
𝐻 (x0) : for all x0 ∈ 𝑋𝐻

}︁
⊂ 𝐻

be the a�ne hull of the corresponding maximally valid subtangent planes for every x0 ∈ 𝑋𝐻 .
Note that 𝑆𝐻 ⊂ 𝐻 with dim 𝑆𝐻 ≤ 𝑛 since 𝑇 max

𝐻 (x0) ⊂ 𝐻 for any x0 ∈ 𝑋𝐻 . The hyperplane
𝐻 is said to be a tight hyperplane if dim 𝑆𝐻 = 𝑛. Otherwise, in case of dim 𝑆𝐻 < 𝑛, 𝐻 is said
to be a loose hyperplane. The corresponding valid halfspace is also said to be tight or loose,
respectively.

For every tight hyperplane 𝐻 we have 𝑆𝐻 = 𝐻 ; for every loose hyperplane 𝐻 we have
𝑆𝐻 ( 𝐻 . Then we can also compute the dimension of 𝑆𝐻 by using the following lemma.

Lemma 5.26
Let 𝐻 be a valid hyperplane, de�ne

𝑋𝑒
𝐻 =

⋃︁
x0∈𝜋x(𝐻∩𝒮)

𝜋x
(︁
𝑇 (x0) ∩ 𝐻

)︁
∩ 𝑋𝑒⏟  ⏞  

=:𝑋𝑒
𝐻(x0)

,

where 𝑋𝑒 is the set of all extreme points of 𝑋 . Then we have

dim 𝑆𝐻 = dim aff{𝑋𝑒
𝐻}.
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Consider Example 5.15 again before we start the proof. De�ne four points x0 = (−3, −3),
x1 = (10, 10), x2 = (−3, 10) and x3 = (10, −3). Then we have 𝑋𝑒 = {x0, x1, x2, x3}. Note
that 𝜋x(𝐻 𝑖 ∩ 𝒮) = {x0, x1} for 𝑖 = 1, 2, 3. However, the computations

𝑋𝑒
𝐻1 = 𝑋𝑒

𝐻1(x0) ∪ 𝑋𝑒
𝐻1(x1) = {x0, x2} ∪ {x1} = {x0, x1, x2},

𝑋𝑒
𝐻2 = 𝑋𝑒

𝐻2(x0) ∪ 𝑋𝑒
𝐻2(x1) = {x0, x3} ∪ {x1} = {x0, x1, x3},

𝑋𝑒
𝐻3 = 𝑋𝑒

𝐻3(x0) ∪ 𝑋𝑒
𝐻3(x1) = {x0} ∪ {x1} = {x0, x1}.

show that 𝐻1 and 𝐻2 are tight but 𝐻3 is loose.

Proof. It is clear that 𝑆𝐻 ⊂ 𝐻 and 𝐻 are nonvertical. It implies that

dim 𝑆𝐻 = dim 𝜋x(𝑆𝐻) = aff
{︁

𝜋x(𝑇 max
𝐻 (x0)) : for all x0 ∈ 𝑋𝐻

}︁
.

We prove
𝜋x(𝑇 max

𝐻 (x0)) ∩ 𝑋 = 𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋.

From the de�nition of 𝑇 max
𝐻 (x0) we know that there exists 𝐼max ⊂ 𝐼x0 with

𝑇 max
𝐻 (x0) = 𝑇𝐼max(x0) = 𝑇 (x0) ∩

⎛⎝ ⋂︁
𝑗∈𝐼max

{︁
(x, 𝑧) | 𝑎𝑇

𝑗 x = 𝑏𝑗

}︁⎞⎠ .

Using (5.10) recursively, we have

𝜋x(𝑇 max
𝐻 (x0)) =

⎛⎝ ⋂︁
𝑗∈𝐼max

{x | 𝑎𝑇
𝑗 x = 𝑏𝑗}

⎞⎠ ∩ 𝜋x(𝑇 (x0))⏟  ⏞  
=R𝑛

=
⋂︁

𝑗∈𝐼max
{x | 𝑎𝑇

𝑗 x = 𝑏𝑗},

which implies that 𝜋x(𝑇 max
𝐻 (x0)) ∩ 𝑋 is a face of 𝑋 . Note that we have

𝜋x(𝑇 max
𝐻 (x0)) ∩ 𝑋 ⊂ 𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋,

since 𝑇 max
𝐻 (x0) ⊂ (𝑇 (x0) ∩ 𝐻). Assume that there exists x1 ∈ 𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋 but

x1 ̸∈ 𝜋x(𝑇 max
𝐻 (x0)). It implies that there exists another face

𝐹 1 = aff

⎧⎨⎩ ⋂︁
𝑗∈𝐼max

{︁
(x, 𝑧) | 𝑎𝑇

𝑗 x = 𝑏𝑗

}︁
, {x1}

⎫⎬⎭ ∩ 𝑋

of 𝑋 with 𝜋x(𝑇 max
𝐻 (x0)) ( 𝐹 1 and 𝐹 1 ⊂ 𝜋x(𝑇 (x0) ∩ 𝐻). Then there exists a subtangent

plane 𝑇𝐼(x0) with 𝜋x(𝑇𝐼(x0)) = 𝐹 1 and 𝑇 max
𝐻 (x0) ( 𝑇𝐼(x0) ⊂ 𝐻 . This is a contradiction to

𝑇 max
𝐻 (x0) is the maximally valid 𝐻-contained subtangent plane. Hence we have

𝜋x(𝑇 max
𝐻 (x0)) ∩ 𝑋 = 𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋.
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As we discussed, 𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋 is a face of 𝑋 , which implies

𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋 = conv{𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋 ∩ 𝑋𝑒} = conv{𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋𝑒}.

We then have

aff{𝜋x(𝑇 max
𝐻 (x0))} = aff{𝜋x(𝑇 max

𝐻 (x0)) ∩ 𝑋} = aff{𝜋x(𝑇 (x0) ∩ 𝐻) ∩ 𝑋𝑒}

for every x0 ∈ 𝑋𝐻 = 𝜋x(𝐻 ∩ 𝒮). It implies

dim 𝑆𝐻 = dim aff
{︁

𝜋x(𝑇 max
𝐻 (x0)) : for all x0 ∈ 𝜋x(𝐻 ∩ 𝒮)

}︁
= dim aff

⎧⎨⎩ ⋃︁
x0∈𝜋x(𝐻∩𝒮)

𝜋x
(︁
𝑇 (x0) ∩ 𝐻

)︁
∩ 𝑋𝑒

⎫⎬⎭ = dim aff{𝑋𝑒
𝐻}.

2

5.3.5 Extendability

Recall Example 5.15 again. Halfspaces 𝐻̌1 and 𝐻̌2 are tight and 𝐻̌3 is loose. We can check that
𝐻̌3 ( (𝐻̌1 ∪ 𝐻̌2) which implies that 𝐻̌3 is redundant to form the convex hull of 𝒮 . We may
have the intuition that to form the convex hull of 𝒮 by intersecting halfspaces containing 𝒮 , we
need only to choose the tight ones. We will verify this hypothesis later.

The following theorem provides a relation between loose and tight hyperplanes.

Theorem 5.27 (Extendability)
Let 𝐻 𝑙 be a loose hyperplane. Then there exists a tight hyperplane 𝐻𝑡 such that

𝑋𝐻𝑙 ⊂ 𝑋𝐻𝑡
,

where 𝑋𝐻𝑙 := 𝜋x(𝐻 𝑙 ∩ 𝒮) and 𝑋𝐻𝑡 := 𝜋x(𝐻𝑡 ∩ 𝒮).

Before we prove the theorem, consider �rst the simplest case of dimension 𝑛 = 1. Let 𝑋 = [𝑙, 𝑢].
Note that 𝑋 has only two boundary domain points. A valid hyperplane can only be loose if it
intersects the graph of 𝑓 either at (𝑙, 𝑓(𝑙)) or at (𝑢, 𝑓(𝑢)). An example is shown in Figure 5.11a,
𝐻1, 𝐻2 and 𝐻3 are loose hyperplanes through (𝑙, 𝑓(𝑙)) while 𝐻4 is their corresponding tight
hyperplane ful�lling Theorem 5.27 since

1 ≥ dim 𝑆𝐻4 ≥ dim aff{𝑙, 𝑥*} = 1

implies dim 𝑆𝐻4 = 1. Actually there are in�nitely many loose hyperplanes through (𝑙, 𝑓(𝑙)).
Before we give the details for the proof of Theorem 5.27 for the general case in space R𝑛+1,

we prove �rst the special case of 𝑛 = 1. With this proof we illustrate the proof idea for the
general case. We give the proof at the end after a few preliminaries.
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(a) In�nitely many loose hyperplanes through (𝑙, 𝑓(𝑙)) (b) Case 1

(c) Case 2𝑎 (d) Case 2𝑏

Figure 5.11: Example for the proof of Theorem 5.27 for 𝑛 = 1: loose hyperplanes through (𝑙, 𝑓(𝑙)) in
dimension 𝑛 = 1 and the corresponding tight hyperplanes

Proof (of Theorem 5.27 for 𝑛 = 1). For any interior domain point 𝑥 ∈ (𝑙, 𝑢), if a hyper-
plane 𝐻 ∋ (𝑥, 𝑓(𝑥)) is valid then Lemma 5.5 implies that 𝐻 = 𝑇 (𝑥). It is clear that 𝑇 (𝑥) is
tight if it is valid, thus we only need to consider the boundary domain points. Without loss
of generality we consider only loose hyperplanes through (𝑙, 𝑓(𝑙)). Actually we need only to
prove that there always exists a tight hyperplane through (𝑙, 𝑓(𝑙)). Consider the three di�erent
examples shown in Figure 5.11b, Figure 5.11c and Figure 5.11d. The three red hyperplanes (lines)
𝐻 𝑙 are all loose hyperplanes since dim 𝑆𝐻𝑙 = 0 < 1.

For any 𝑥 ∈ (𝑙, 𝑢] we de�ne 𝐻(𝑥) := aff{(𝑥, 𝑓(𝑥)), (𝑙, 𝑓(𝑙))} which is a nonvertical hy-
perplane. Consider any point (𝑥0, 𝑓(𝑥0)) ̸= (𝑙, 𝑓(𝑙)) on the graph. The hyperplane 𝐻(𝑥0) is
below the point set {(𝑥0, 𝑓(𝑥0))}. For a �xed given 𝑥̄ ∈ (𝑙, 𝑢), 𝐻(𝑥0) has exactly one inter-
section point with the vertical line {(𝑥, 𝑦) | 𝑥 = 𝑥̄}. Thus, there exists a continuous function
𝑔 : (𝑙, 𝑢] → R such that for any 𝑥0 ∈ (𝑙, 𝑢], (𝑥̄, 𝑔(𝑥0)) is the intersection point of 𝐻(𝑥0) and
{(𝑥, 𝑦)|𝑥 = 𝑥̄} (black points). Then for any 𝑥1, 𝑥2 ∈ (𝑙, 𝑢], 𝑔(𝑥1) ≤ 𝑔(𝑥2) implies that 𝐻(𝑥1)
is below {(𝑥2, 𝑓(𝑥2))}. For any 𝑙′ ∈ (𝑙, 𝑢], there exists

𝑥* ∈ arg min
𝑥∈[𝑙′,𝑢]

𝑔(𝑥).

92



5.3 Convex hull of graphs of polynomial functions over a polytope

It implies then 𝐻(𝑥*) is below the graph of 𝑓 over [𝑙′, 𝑢].
Recall that 𝑓 is a polynomial function. Since the second derivative 𝑓 (2) is a continuous

function, there exists an 𝜀 > 0 such that 𝑓 (2) ≤ 0 or 𝑓 (2) ≥ 0 for all 𝑥 ∈ [𝑙, 𝑙 + 𝜀]. It implies 𝑓
is either a concave or a convex function over [𝑙, 𝑙 + 𝜀]. After �nding

𝑥* ∈ arg min
𝑥∈[𝑙+𝜀,𝑢]

𝑔(𝑥),

𝐻(𝑥*) is then below the graph of 𝑓 over [𝑙+𝜀, 𝑢] as discussed above. We then have the following
cases all based on 𝐻(𝑥*):

• Case 1, 𝑓 is concave over [𝑙, 𝑙 + 𝜀]. An example is shown in Figure 5.11b. Note that the
nonvertical hyperplane aff{(𝑙, 𝑓(𝑙)), ((𝑙 + 𝜀), 𝑓(𝑙 + 𝜀))} is below the graph of 𝑓 over
[𝑙, 𝑙+𝜀] and 𝐻(𝑥*) is below aff{(𝑙, 𝑓(𝑙)), ((𝑙+𝜀), 𝑓(𝑙+𝜀))} over [𝑙, 𝑙+𝜀] by Lemma 5.18.
It implies that 𝐻(𝑥*) is below the graph of 𝑓 over [𝑙, 𝑙 + 𝜀] ∪ [𝑙 + 𝜀, 𝑢], thus 𝐻(𝑥*) is
valid. The hyperplane 𝐻(𝑥*) is tight since

1 ≥ dim 𝑆𝐻(𝑥*) ≥ dim aff{𝑙, 𝑥*} = 1 ⇒ dim 𝑆𝐻(𝑥*) = 1.

• Case 2𝑎, 𝑓 is convex over [𝑙, 𝑙 + 𝜀] and the tangent plane 𝑇 (𝑙) is below 𝐻(𝑥*) over
[𝑙, +∞). An example is in Figure 5.11c. The tangent plane 𝑇 (𝑙) is below the graph of
𝑓 over [𝑙, 𝑙 + 𝜀] due to convexity. The tangent plane 𝑇 (𝑙) is below the graph of 𝑓 over
[𝑙 + 𝜀, 𝑢] since 𝑇 (𝑙) is below 𝐻(𝑥*) over [𝑙, +∞) and 𝐻(𝑥*) is below the graph of 𝑓
over [𝑙 + 𝜀, 𝑢]. It implies then 𝑇 (𝑙) is valid and 𝑇 (𝑙) is tight since 𝑇 max

ℎ (𝑙) = 𝑇 (𝑙) has
dimension 1.

• Case 2𝑏, 𝑓 is convex over [𝑙, 𝑙 + 𝜀] and 𝐻(𝑥*) is below 𝑇 (𝑙) over [𝑙, +∞). An example is
in Figure 5.11d. Similar to the analysis in Case 2𝑎, 𝐻(𝑥*) is valid. As discussed in Case 1,
𝐻(𝑥*) is tight if it is valid.

We have only the three cases above since 𝑇 (𝑙) is either below 𝐻(𝑥*) or above 𝐻(𝑥*) over
[𝑙, +∞) due to Lemma 5.18. 2

Proof idea of Theorem 5.27. Now we go back to Theorem 5.27 with an arbitrary 𝑛 ∈ N.
For any loose hyperplane 𝐻 𝑙, we only need to prove that there always exists another valid
hyperplane 𝐻𝑚 with dim 𝑆𝐻𝑚

> dim 𝑆𝐻𝑙 and 𝜋x(𝐻 𝑙 ∩ 𝒮) = 𝑋𝐻𝑙 ⊂ 𝑋𝐻𝑚 = 𝜋x(𝐻𝑚 ∩ 𝒮).
The corresponding tight hyperplane 𝐻𝑡 can then be found iteratively.

To �nd such an 𝐻𝑚 with (𝐻𝑚 ∩ 𝒮) ⊃ (𝐻 𝑙 ∩ 𝒮) we �rst construct an a�ne set 𝑃 of
dimension 𝑛 − 1 with 𝑆𝐻𝑙 ⊂ 𝑃 ⊂ 𝐻 𝑙. Note that for every valid hyperplane 𝐻 ⊃ 𝑃 we have
dim 𝑆𝐻 ≥ dim 𝑆𝐻𝑙 . We can conclude the proof if we can �nd a valid hyperplane 𝐻𝑚 ⊃ 𝑃
with dim 𝑆𝐻𝑚

> dim 𝑆𝐻𝑙 .
Similar to the proof for the special case 𝑛 = 1, we split the domain 𝑋 into two compact sets

𝑋1 and 𝑋2 with 𝑋 = 𝑋1 ∪ 𝑋2, 𝜋x(𝑃 ) ∩ 𝑋1 = ∅ and 𝜋x(𝑃 ) ⊂ 𝑋2. Note that in the proof of
the special case 𝑛 = 1 above we have 𝑃 = {(𝑙, 𝑓(𝑙))}, 𝑋1 = [𝑙 + 𝜀, 𝑢] and 𝑋2 = [𝑙, 𝑙 + 𝜀].
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For every point x0 ∈ 𝑋1, 𝐻(x0) = aff{𝑃, {(x0, 𝑓(x0))}} is a nonvertical hyperplane. By
solving an optimization problem we get x* ∈ 𝑋1 such that 𝐻(x*) is below the graph of 𝑓 over
𝑋1.

On the other hand, we want to �nd a hyperplane which is below the graph of 𝑓 over 𝑋2.
Lemma 5.20 yields that a hyperplane is valid if and only if it is below the graph over all globally
convex domain points. It is enough to �nd a hyperplane which is below the graph of 𝑓 over
𝑋2 ∩ 𝑋̌𝑔 . For that we �nd a hyperplane 𝐻𝐵 ⊃ 𝑃 such that 𝐻𝐵 is below 𝒮 over 𝑋2 ∩ 𝑋̌𝑔 .

At the end, we prove that one of 𝐻(x*) and 𝐻𝐵 is valid. Taking the valid one as 𝐻𝑚, we
prove that it satis�es dim 𝑆𝐻𝑚

> dim 𝑆𝐻𝑙 and 𝑋𝐻𝑙 ⊂ 𝑋𝐻𝑚 .

L
R

Figure 5.12: Example for Extendability

We are now ready to prove Theorem 5.27.

Proof (of Theorem 5.27). We only need to prove that for any loose hyperplane 𝐻 𝑙 there
always exists a valid hyperplane 𝐻𝑚 with dim 𝑆𝐻𝑚

> dim 𝑆𝐻𝑙 and 𝜋x(𝐻𝑚∩𝒮) ⊃ 𝜋x(𝐻 𝑙∩𝒮).
As we discussed in proof idea of Theorem 5.27 above, we �rst �nd a corresponding a�ne set 𝑃
of dimension 𝑛 − 1 and split the domain 𝑋 into 𝑋1 and 𝑋2.
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Since 𝑆𝐻𝑙 ⊂ 𝐻 𝑙 is an a�ne set but not a hyperplane inR𝑛+1, there exists an a�ne set 𝑃 𝑛−1
𝐻𝑙 of

dimension 𝑛−1 with 𝑆𝐻𝑙 ⊂ 𝑃 𝑛−1
𝐻𝑙 ( 𝐻 𝑙 as well as (𝜋x(𝑃 𝑛−1

𝐻𝑙 )∩𝑋𝑒) ⊂ 𝜋x(𝐻 𝑙 ∩𝒮). For every
point (x0, 𝑧0) ∈ R𝑛+1 with x0 ̸∈ 𝜋x(𝑃 𝑛−1

𝐻𝑙 ) and 𝑧0 ∈ R, 𝐻(x0, 𝑧0) = aff{𝑃 𝑛−1
𝐻𝑙 , {(x0, 𝑧0)}} is

a nonvertical hyperplane in R𝑛+1. Note that there are in�nitely many such 𝑃 𝑛−1
𝐻𝑙 if dim 𝑆𝐻𝑙

<

𝑛 − 1. The set 𝑋𝑒 ∖ 𝜋x(𝐻 𝑙 ∩ 𝒮) contains �nitely many extreme points of 𝑋 . The property
(𝜋x(𝑃 𝑛−1

𝐻𝑙 ) ∩ 𝑋𝑒) ⊂ 𝜋x(𝐻 𝑙 ∩ 𝒮) implies that 𝜋x(𝑃 𝑛−1
𝐻𝑙 ) ∩ (𝑋𝑒 ∖ 𝜋x(𝐻 𝑙 ∩ 𝒮)) = ∅. This makes

sure that for any point (x𝑒, 𝑧) with x𝑒 ∈ 𝑋𝑒 ∖ 𝜋x(𝐻 𝑙 ∩ 𝒮) and 𝑧 ∈ R, 𝐻(x𝑒, 𝑧) is a nonvertical
hyperplane.

Now we want to split 𝑋 into two compact sets 𝑋1 and 𝑋2 with 𝜋x(𝑃 𝑛−1
𝐻𝑙 ) ∩ 𝑋1 = ∅,

𝜋x(𝑃 𝑛−1
𝐻𝑙 ) ⊂ 𝑋2 and 𝑋 = 𝑋1 ∪ 𝑋2. For that we �rst consider the following claim that we will

prove later.

Claim 𝑎 There exists a compact set 𝑋𝑀 with 𝑋∩𝜋x(𝑃 𝑛−1
𝐻𝑙 ) ⊂ int 𝑋𝑀 such that a nonvertical

hyperplane 𝐻 ⊃ 𝑃 𝑛−1
𝐻𝑙 is below 𝒮 over 𝑋𝑀 ∩ 𝑋̌𝑔 if 𝐻 is below 𝑇 (x0) over 𝑋 for every

x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮).

Let (x𝑃 , 𝑓(x𝑃 )) ∈ 𝑃 𝑛−1
𝐻𝑙 . Then there exists a normal vector n𝑃 ∈ R𝑛 such that 𝜋x(𝑃 𝑛−1

𝐻𝑙 ) =
{x | n𝑃 · (x − x𝑃 ) = 0}. We de�ne

𝑋𝐿 = {x | n𝑃 · (x − x𝑃 ) ≤ 0} and 𝑋𝑅 = {x | n𝑃 · (x − x𝑃 ) ≥ 0}

as well as

𝑋 𝑙 = {x | n𝑃 · (x − x𝑃 ) < 0} and 𝑋𝑟 = {x | n𝑃 · (x − x𝑃 ) > 0}.

An example for 𝑛 = 2 is shown in Figure 5.12.
Recall the de�nition of 𝑋𝑒

𝐻𝑙 in Lemma 5.26. We have either 𝑋𝑒 ∖ (𝑋𝐿 ∪ 𝑋𝑒
𝐻𝑙) ̸= ∅ or

𝑋𝑒 ∖ (𝑋𝑅 ∪ 𝑋𝑒
𝐻𝑙) ̸= ∅. Due to symmetry, it su�ces to consider the case 𝑋𝑒 ∖ (𝑋𝐿 ∪ 𝑋𝑒

𝐻𝑙) ̸= ∅
. After that we set 𝑋1 = 𝑋𝐿 ∖ int 𝑋𝑀 and 𝑋2 = 𝑋𝑅 ∪ 𝑋𝑀 . We have then 𝑋 = 𝑋1 ∪ 𝑋2,
𝜋x(𝑃 𝑛−1

𝐻𝑙 ) ∩ 𝑋1 = ∅ and 𝜋x(𝑃 𝑛−1
𝐻𝑙 ) ⊂ 𝑋2. Note that 𝑋1 and 𝑋2 are both compact.

Claim 𝑏 There exists a hyperplane 𝐻* ⊃ 𝑃 𝑛−1
𝐻𝑙 that is valid over 𝑋𝑀 . In addition, if 𝐻* is

valid over 𝑋 then we have dim 𝑆𝐻*
> dim 𝑆𝐻𝑙 .

Claim 𝑐 There exists a hyperplane 𝐻** ⊃ 𝑃 𝑛−1
𝐻𝑙 that is valid over 𝑋1. In addition, if 𝐻** is

valid over 𝑋 then we have dim 𝑆𝐻**
> dim 𝑆𝐻𝑙 .

Claim 𝑑 Either 𝐻* or 𝐻** is valid. The valid one is the hyperplane 𝐻𝑚 we are looking for.
Now we prove these claims in a sequence, starting with Claim 𝑎. According to Lemma 5.21,

every valid hyperplane 𝐻 through (x0, 𝑓(x0)) is below 𝑇 (x0) over 𝑋 . Let 𝑔𝐻 denote the a�ne

95



Chapter 5 Convex Hull of Graphs of Polynomial Functions

function such that 𝐻 = {(x, 𝑧) | 𝑧 = 𝑔𝐻(x), x ∈ R𝑛}. Consider 𝜋x(𝐻 𝑙 ∩ 𝒮) which is a
compact set since 𝐻 𝑙 ∩ 𝒮 = {(x, 𝑧) | 𝑧 = 𝑔𝐻𝑙(x), x ∈ 𝑋} ∩ 𝒮 is a compact set. It it clear that
𝜋x(𝐻 𝑙 ∩𝒮) ⊂ 𝑋̌𝑔 . According to Lemma 5.21, there exists a function 𝑔𝜀 : 𝜋x(𝐻 𝑙 ∩𝒮) → R such
that for any x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮), 𝑇 (x0) is below 𝒮 over 𝑋̌𝑔 ∩ 𝐵𝜀x0 (x0), where we abbreviate
𝜀x0 = 𝑔𝜀(x0). The function 𝑔𝜀 possesses a minimum over 𝜋x(𝐻 𝑙 ∩𝒮). Let 𝜀min be the minimum.
It implies that that for any x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮), 𝑇 (x0) is below 𝒮 over 𝑋̌𝑔 ∩ 𝐵𝜀min(x0). De�ne
the set

𝐵𝜀min(𝜋x(𝐻 𝑙 ∩ 𝒮)) =
⋃︁

x0∈𝜋x(𝐻𝑙∩𝒮)
𝐵𝜀min(x0)

which is a compact set with 𝜋x(𝐻 𝑙 ∩ 𝒮) ⊂ relint 𝐵𝜀min(𝜋x(𝐻 𝑙 ∩ 𝒮)). Further consider the
compact set (︁

𝑋 ∩ 𝜋x(𝑃 𝑛−1
𝐻𝑙 )

)︁
∖ relint 𝐵𝜀min(𝜋x(𝐻 𝑙 ∩ 𝒮)).

Let 𝑔𝑃 be the a�ne function such that 𝑃 𝑛−1
𝐻𝑙 = {(x, 𝑧) | 𝑧 = 𝑔𝑃 (x), x ∈ 𝜋x(𝑃 𝑛−1

𝐻𝑙 )}. The
validity of 𝐻 𝑙 implies that 𝑔𝑃 (x) ≤ 𝑓(x) for all x ∈ 𝑋 ∩ 𝜋x(𝑃 𝑛−1

𝐻𝑙 ), 𝑔𝑃 (x) = 𝑓(x) for
all x ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮) and 𝑔𝑃 (x) < 𝑓(x) for all x ∈

(︁
𝑋 ∩ 𝜋x(𝑃 𝑛−1

𝐻𝑙 )
)︁

∖ 𝜋x(𝐻 𝑙 ∩ 𝒮). Thus,

𝑔𝑃 (x) < 𝑓(x) for all x ∈
(︁
𝑋 ∩ 𝜋x(𝑃 𝑛−1

𝐻𝑙 )
)︁

∖ relint 𝐵𝜀min(𝜋x(𝐻 𝑙 ∩ 𝒮)). For every valid
hyperplane 𝐻 ⊃ 𝑃 𝑛−1

𝐻𝑙 , there exists a function

𝑔𝑀 :
(︁
𝑋 ∩ 𝜋x(𝑃 𝑛−1

𝐻𝑙 )
)︁

∖ relint 𝐵𝜀min(𝜋x(𝐻 𝑙 ∩ 𝒮)) → R

such that 𝑔𝐻(x) < 𝑓(x) for all x ∈ 𝐵𝜀𝑀
x0

(x0), where 𝜀𝑀
x0 = 𝑔𝑀 (x0). Note that 𝑔𝑀 possesses a

minimum 𝜀min
𝑀 over

(︁
𝑋 ∩ 𝜋x(𝑃 𝑛−1

𝐻𝑙 )
)︁

∖ relint 𝐵𝜀min(𝜋x(𝐻 𝑙 ∩ 𝒮)). After that we de�ne

𝑋𝑀 =

⎛⎜⎜⎜⎝ ⋃︁
x0∈
(︁

𝑋∩𝜋x(𝑃 𝑛−1
𝐻𝑙

)
)︁

∖relint 𝐵𝜀min (𝜋x(𝐻𝑙∩𝒮))

𝐵𝜀min
𝑀

(x0)

⎞⎟⎟⎟⎠ ∪ 𝐵𝜀min(𝜋x(𝐻 𝑙 ∩ 𝒮)).

Analyzing all points in 𝑋𝑀 shows Claim 𝑎.
Now we prove Claim 𝑏, 𝑐 and 𝑑 successively. We �rst construct a hyperplane 𝐻* ⊃ 𝑃 𝑛−1

𝐻𝑙 with
the property that if 𝐻* is valid over 𝑋 then there exists x𝑒* such that x𝑒* ∈

(︀
𝑋𝑒 ∩ 𝑋1)︀ ∖ 𝑋𝑒

𝐻𝑙

and x𝑒* ∈ 𝑋𝑒
𝐻* . This implies dim 𝑆𝐻*

> dim 𝑆𝐻𝑙 . If 𝐻* is valid we are done. Otherwise we
�nally prove that we are always able to �nd a hyperplane 𝐻** ⊃ 𝑃 𝑛−1

𝐻𝑙 which is valid and there
exists x** ∈ 𝑋1 such that (x**, 𝑓(x**)) ∈ 𝐻**. This implies also dim 𝑆𝐻*

> dim 𝑆𝐻𝑙 .
In the following, we �rst �nd an 𝐻* ⊃ 𝑃 𝑛−1

𝐻𝑙 which is below 𝒮 over 𝑋𝑀 ∩ 𝑋̌𝑔 . According
to Lemma 5.21 above, we only need to �nd an 𝐻* which is below 𝑇 (x0) over 𝑋 for every
x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮). Hyperplane 𝐻 is below 𝑇 (x0) over 𝑋 for every x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮) if
and only if 𝐻 is below 𝑇 (x0) over 𝑋𝑒 for every x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮). This is equivalent to
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the statement that for every x𝑒 ∈ 𝑋𝑒 it holds 𝑔𝐻(x𝑒) ≤ ∇𝑓(x0) · (x𝑒𝑖 − x0) + 𝑓(x0) for
all x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮). Recall the de�nition of 𝑋𝑒

𝐻 de�ned in Lemma 5.26 with dim 𝑆𝐻 =
dim aff{𝑋𝑒

𝐻} for a valid hyperplane 𝐻 . Any x𝑒 ∈ 𝑋𝑒 satis�es x𝑒 ∈ 𝑋𝑒
𝐻 if and only if there

exists x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮) such that 𝑔𝐻(x𝑒) = ∇𝑓(x0) · (x𝑒 − x0) + 𝑓(x0). We only need to
�nd an 𝐻* such that for every x𝑒 ∈ 𝑋𝑒 𝑔𝐻*(x𝑒) ≤ ∇𝑓(x0) · (x𝑒𝑖 − x0) + 𝑓(x0) holds for all
x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮) and there exists x𝑒* ∈ 𝑋𝑒 ∖ 𝑋𝑒

𝐻𝑙 such that there exists x0 ∈ 𝜋x(𝐻 𝑙 ∩ 𝒮)
such that 𝑔𝐻*(x𝑒) = ∇𝑓(x0) · (x𝑒 − x0) + 𝑓(x0). Due to Lemma 5.26, if 𝐻* is valid, we have
then dim 𝑆𝐻* = dim aff{𝑋𝑒

𝐻*} > dim aff{𝑋𝑒
𝐻𝑙} = dim 𝑆𝐻𝑙 since 𝑋𝑒

𝐻* ⊃ 𝑋𝑒
𝐻𝑙 ∪ {x𝑒*}.

Note that 𝑋𝑒 ∖ ({𝑋𝑒
𝐻𝑙}) ∪ 𝜋x(𝑃 𝑛−1

𝐻𝑙 )) ̸= ∅. Thus we assume (𝑋 𝑙 ∩ 𝑋𝑒) ∖ 𝑋𝑒
𝐻𝑙 ̸= ∅ without

loss of generality. For every x𝑒𝑖 ∈ 𝑋 𝑙 ∩ 𝑋𝑒 and every x0 ∈ 𝑋 , (x𝑒𝑖
, 𝑧𝑒𝑖) is a point on 𝑇 (x0)

with 𝑧𝑒𝑖 = ∇𝑓(x0) · (x𝑒𝑖 − x0) + 𝑓(x0). The a�ne set 𝐻 𝑖
0 = aff{𝑃 𝑛−1

𝐻 , {(x𝑒𝑖
, 𝑧𝑒𝑖)}} is then a

hyperplane denoted by 𝐻 𝑖
0 = {(x, 𝑧) | 𝑧 = 𝑔𝐻𝑖

0
(x)} that depends on x𝑒𝑖 ∈ (𝑋 𝑙 ∩ 𝑋𝑒) ∖ {𝑋𝑒

𝐻𝑙}
and x0 ∈ 𝑋 . For a �xed given y* ∈ 𝑋 𝑙 and x𝑒𝑖 ∈ (𝑋 𝑙 ∩𝑋𝑒)∖{𝑋𝑒

𝐻𝑙}, there exists a continuous
function

𝑔𝑒𝑖

𝑓 : 𝜋x(𝑃 𝑛−1
𝐻 ) ∩ 𝑋 → R with 𝑔𝐻𝑖

0
(y*) = 𝑔𝑒𝑖

𝑓 (x0).

Since 𝜋x(𝐻 𝑙 ∩ 𝒮) ⊂ 𝜋x(𝑃 𝑛−1
𝐻 ) ∩ 𝑋 is a compact set, the extreme value theorem of Weierstrass

yields that 𝑔𝑒𝑖

𝑓 possesses a minimum over 𝜋x(𝐻 ∩ 𝒮). We set

𝑧𝑒𝑖

𝑓 = min
x∈𝜋x(𝐻𝑙∩𝒮)

𝑔𝑒𝑖

𝑓 (x).

Since we have �nitely many x𝑒𝑖 ∈ (𝑋 𝑙 ∩ 𝑋𝑒) ∖ 𝑋𝑒
𝐻𝑙 , we further set

𝑧min
𝑓 = min

x𝑒𝑖 ∈(𝑋𝑙∩𝑋𝑒)∖{𝑋𝑒
𝐻𝑙

}
𝑧𝑒𝑖

𝑓 (x𝑒𝑖)

and
x𝑒𝑖

min ∈ arg min
x𝑒𝑖 ∈(𝑋𝑙∩𝑋𝑒)∖{𝑋𝑒

𝐻𝑙
}
𝑧𝑒𝑖

𝑓 (x𝑒𝑖)

as well as 𝐻* = aff{𝑃 𝑛−1
𝐻𝑙 , {(x𝑒𝑖

min, 𝑧min
𝑓 )}}. We then have that 𝐻* is above 𝐻 𝑙 over 𝑋𝐿

and below 𝐻 𝑙 over 𝑋𝑅. Furthermore, for every x0 ∈ 𝜋x(𝐻 ∩ 𝒮), 𝐻* is below 𝑇 (x0) over
𝑋 since 𝐻* is below (x𝑒𝑖

, 𝑔𝑇 (x0)(x𝑒𝑖)) for every x𝑒𝑖 ∈ 𝑋𝑒. If 𝐻* is valid, then we have
𝑋𝑒

𝐻* ⊃ 𝑋𝑒
𝐻𝑙 ∪ {x𝑒𝑖

min} with x𝑒𝑖

min ̸∈ 𝑋𝑒
𝐻𝑙 which implies dim 𝑆𝐻*

> dim 𝑆𝐻𝑙 and we are done.
Otherwise 𝐻* is not valid. Then there exists x𝑓 ∈ 𝑋1 such that 𝑔𝐻*(x𝑓 ) > 𝑓(x𝑓 ). Note

that for every y ∈ 𝑋1, 𝐻(y) = aff{𝑃 𝑛−1
𝐻𝑙 , {(y, 𝑓(y))}} is a hyperplane in R𝑛+1 written as

{(x, 𝑧) | 𝑔𝐻(y)(x)}, where 𝑔𝐻(y) is an a�ne function depending on y. Function 𝑔(y) :=
𝑔𝐻(y)(x𝑓 ) is then a continuous function of y. Since 𝑋1 is a compact set, 𝑔(y) possesses a
minimum 𝑔(y**) over 𝑋1. The corresponding hyperplane 𝐻** = aff{𝑃 𝑛−1

𝐻𝑙 , {(y**, 𝑓(y**))}}
is then below 𝒮 over 𝑋1 since for every other y ∈ 𝑋1, 𝐻** is below aff{𝑃 𝑛−1

𝐻𝑙 , {(y, 𝑓(y))}}
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over 𝑋1 which implies (y, 𝑓(y)) ∈ aff{𝑃 𝑛−1
𝐻𝑙 , {(y, 𝑓(y))}} is above 𝐻**. Second, note that

𝑔𝐻*(x𝑓 ) > 𝑓(x𝑓 ) ≥ 𝑔𝐻**(x𝑓 ) implies 𝐻** is below 𝐻* over 𝑋𝐿. Since 𝐻* is valid over
𝑋𝑀 ∩ 𝑋̌𝑔 , 𝐻** is valid over 𝑋𝐿 ∩ 𝑋𝑀 ∩ 𝑋̌𝑔 . Finally, with Lemma 5.18, 𝐻** is above 𝐻 𝑙 over
𝑋𝐿 since

𝑔𝐻**(y**) = 𝑓(y**) > 𝑔𝐻𝑙(y**).

Thus 𝐻** is below 𝐻 𝑙 over 𝑋𝑅. Since 𝐻 𝑙 is valid, 𝐻** is valid over 𝑋𝑅. As a consequence,
𝐻** is valid since 𝐻** is valid over 𝑋1 ∪ (𝑋𝐿 ∩ 𝑋𝑀 ∩ 𝑋̌𝑔) ∪ 𝑋𝑅 ⊃ 𝑋̌𝑔 .

We discussed above that if 𝐻* is valid then dim 𝑆𝐻*
> dim 𝑆𝐻𝑙 . Otherwise 𝐻** is valid,

(y**, 𝑓(y**)) ∈ 𝐻** ∩ 𝒮 and (y**, 𝑓(y**)) ̸∈ 𝑆𝐻𝑙 together imply that dim 𝑆𝐻**
> dim 𝑆𝐻𝑙 .

In both cases we set 𝐻𝑚 as the valid hyperplane and we have dim 𝑆𝐻𝑚
> dim 𝑆𝐻𝑙 and

𝜋x(𝐻𝑚 ∩ 𝒮) ⊃ 𝜋x(𝐻 𝑙 ∩ 𝒮). 2

This theorem means that every loose hyperplane can be extended to be a tight hyperplane
with the intersecting points preserved. Recall that due to Theorem 5.1, the convex hull of 𝒮 is
the intersection of all closed halfspaces containing 𝒮 . In the following section we show that we
need only those halfspaces whose corresponding hyperplanes are tight.

5.3.6 Convex hull that only consists of tight halfspaces
Theorem 5.28 (Convex hull of the graph of polynomial functions)
Let 𝑓 ∈ R[x] be a polynomial function and 𝒮 the graph of 𝑓 over 𝑋 de�ned as

𝒮 := {(x, 𝑧) | 𝑧 = 𝑓(x), x ∈ 𝑋} ⊂ R𝑛+1.

The downward closed part ˇconv(𝒮) = conv({(x, 𝑧) | 𝑧 ≥ 𝑓(x), x ∈ 𝑋}) of the convex hull
conv(𝒮) of 𝒮 can be represented as

ˇconv(𝒮) =

⎛⎜⎜⎝ ⋂︁
𝐻 is downward valid

and tight

𝐻̌

⎞⎟⎟⎠ ∩ ({(x, 𝑧) | x ∈ 𝑋}) . (5.15)

Analogously, we de�ne the upward closed part ^conv(𝒮) = conv({(x, 𝑧) | 𝑧 ≤ 𝑓(x), x ∈ 𝑋}).
Then

conv(𝒮) = ˇconv(𝒮) ∩ ^conv(𝒮). (5.16)

Before we prove Theorem 5.28 we need the following lemma.

Lemma 5.29
For every point x0 ∈ 𝑋 , there exists a downward valid hyperplane 𝐻 such that

x0 ∈ conv (𝜋x(𝐻 ∩ 𝒮)) .
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5.3 Convex hull of graphs of polynomial functions over a polytope

Proof. First we introduce a few de�nitions and notes from Jach et al. [JMW08]. The convex
envelope of 𝑓 over 𝑋 can be de�ned as

vex𝑋 [𝑓 ](x) = sup { 𝜂(x) | 𝜂 : 𝑋 → R with
𝜂(x) ≤ 𝑓(x) for all x ∈ 𝑋, and 𝜂 convex }.

For any x0 ∈ 𝑋 , the value vex𝑋 [𝑓 ](x0) can be represented by

vex𝑋 [𝑓 ](x0) = min {𝜇 | (x0, 𝜇) ∈ conv(𝒮)}.

The value 𝜇0 = vex𝑋 [𝑓 ](x0) can be obtained by solving the nonlinear optimization problem
(OPx0)

vex𝑋 [𝑓 ](x0) = min 𝜇

s.t.
𝑛+1∑︁
𝑘=1

𝜆𝑘x𝑘 = x0,

𝑛+1∑︁
𝑘=1

𝜆𝑘𝑓(x𝑘) = 𝜇,

𝑛+1∑︁
𝑘=1

𝜆𝑘 = 1,

𝜆𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑛 + 1,

x𝑘 ∈ 𝑋, 𝑘 = 1, . . . , 𝑛 + 1.

Without loss of generality, this optimization problem has an optimal solution with 𝜆𝑘 > 0 for
𝑘 = 1, . . . , 𝑡′ and 𝜆𝑘 = 0 for 𝑘 = 𝑡′ + 1, . . . , 𝑛 + 1, where 𝑡′ is an integer with 1 ≤ 𝑡′ ≤ 𝑛 + 1.
Then

x0 ∈ conv
(︁
{x1, . . . , x𝑡′}

)︁
=: 𝑋x0 .

Consider the a�ne set

𝑃 = aff{(x1, 𝑓(x1)), . . . , (x𝑡′
, 𝑓(x𝑡′))}.

If 𝑃 is a hyperplane, we prove that 𝑃 is valid. If 𝑃 is not valid, then there exists (x𝑏, 𝑓(x𝑏))
which is below 𝑃 . Consider �rst the case x𝑏 ∈ 𝑋x0 , then there exist 𝜆′

𝑘 ≥ 0 for 𝑘 = 1, . . . , 𝑡′

such that

x𝑏 =
𝑡′∑︁

𝑘=1
𝜆′

𝑘x𝑘

with

1 =
𝑡′∑︁

𝑘=1
𝜆′

𝑘
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and

𝑓(x𝑏) <
𝑡′∑︁

𝑘=1
𝜆′

𝑘𝑓(x𝑘),

since (x𝑏, 𝑓(x𝑏)) is below 𝑃 . We set further

𝛽 := min
𝜆′

𝑘 ̸=0
𝑘∈{1,...,𝑡′}

𝜆𝑘

𝜆′
𝑘

.

Since the 𝜆𝑘 are all positive and at least one of 𝜆′
𝑘 is nonzero, we have 𝛽 > 0. Without loss of

generality, we have 𝛽 = 𝜆1/𝜆′
1, then it holds 𝛽𝜆′

1 = 𝜆1 and 𝛽𝜆′
𝑘 ≤ 𝜆𝑘 for any 𝑘 ∈ {2, . . . , 𝑡′}.

Note that

x0 =
𝑡′∑︁

𝑘=1
𝜆𝑘x𝑘

= 𝜆1x1 +
𝑡′∑︁

𝑘=2
𝜆𝑘x𝑘

= 𝛽𝜆′
1x1 +

𝑡′∑︁
𝑘=2

(𝜆𝑘 − 𝛽𝜆′
𝑘 + 𝛽𝜆′

𝑘)x𝑘

= 𝛽
𝑡′∑︁

𝑘=1
𝜆′

𝑘x𝑘 +
𝑡′∑︁

𝑘=2
(𝜆𝑘 − 𝛽𝜆′

𝑘⏟  ⏞  
≥0

)x𝑘

= 𝛽x𝑏 +
𝑡′∑︁

𝑘=2
(𝜆𝑘 − 𝛽𝜆′

𝑘⏟  ⏞  
=:𝜆′′

𝑘

)x𝑘.

Hence (OPx0) has a new solution using x𝑏, x2, . . . , x𝑡′ with coe�cients 𝛽, 𝜆′′
2, . . . , 𝜆′′

𝑡′ and
objective

𝑢′ = 𝛽𝑓(x𝑏) +
𝑡′∑︁

𝑘=2
(𝜆𝑘 − 𝛽𝜆′

𝑘)𝑓(x𝑘).
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We compare now 𝑢′ and 𝑢 by computing

𝑢′ − 𝑢 = 𝛽𝑓(x𝑏) +
𝑡′∑︁

𝑘=2
(𝜆𝑘 − 𝛽𝜆′

𝑘)𝑓(x𝑘) −
𝑡′∑︁

𝑘=1
𝜆𝑘𝑓(x𝑘) + (𝜆1 − 𝛽𝜆′

1⏟  ⏞  
=0

)𝑓(x1)

= 𝛽𝑓(x𝑏) +
𝑡′∑︁

𝑘=1
(𝜆𝑘 − 𝛽𝜆′

𝑘)𝑓(x𝑘) −
𝑡′∑︁

𝑘=1
𝜆𝑘𝑓(x𝑘)

= 𝛽(𝑓(x𝑏) −
𝑡′∑︁

𝑘=1
𝜆′

𝑘𝑓(x𝑘))

< 0.

It means that there exists a new solution that decreases the current optimal value strictly which
is a contradiction. Hence 𝑃 is valid. Analogously, for the case x𝑏 ̸∈ 𝑋x0 we can also prove that
𝑃 is valid. With the same proof approach it implies that every x𝑖 is a globally convex domain
point.

Consider the case 𝑃 is not a hyperplane with dim(𝑃 ) ≤ 𝑛−1. Now we prove that there exists
a valid 𝐻 satisfying 𝑃 ⊂ 𝐻 . Due to Corollary 5.13, for 𝑖 ∈ {1, . . . , 𝑡′}, any valid hyperplane
𝐻 which contains (x𝑖, 𝑓(x𝑖)), satis�es also 𝑇𝐼x𝑖 (x𝑖) ⊂ 𝐻 . We only need to consider the case
that the points x1, . . . , x𝑡′ are all boundary domain points. Otherwise for any x𝑖 ∈ int 𝑋 ,
𝐻 = 𝑇 (x𝑖) is the hyperplane we are looking for. In this case we only have two sub-cases to
prove, x0 ∈ 𝜕𝑋 or x0 ∈ int 𝑋 . Both cases imply that 𝑋x0 is a face of 𝑋 .

First consider the case x0 ∈ 𝜕𝑋 . Due to Theorem 5.12, by setting 𝐹x0 = 𝑋x0 there, we �nd
a valid hyperplane 𝐻 with 𝐹x0 ⊂ 𝐻 . This implies the result.

Second, the case x0 ∈ int 𝑋 remains to be proved. This implies that x0 ∈ relint(𝑋x0).
The de�nition of valid hyperplanes can be easily extended to “valid a�ne spaces”. An a�ne

space 𝑃 ∈ R𝑛+1 of dimension 𝑛′ < 𝑛 is said to be valid if 𝑃 is below 𝒮 over 𝑋 ∩ 𝜋x(𝑃 ).
It is clear that 𝑃

′ is a valid a�ne set. Otherwise we can improve the found optimum. Now
we only need to prove that there exists a valid plane 𝑃

′′ with 𝑃
′ ⊂ 𝑃

′′ and dim(𝑃 ′′) = 𝑛′ + 1
since then we can �nd the valid hyperplane 𝐻 with required conditions recursively.

Consider the set 𝑋
′

x0 = 𝜋x(𝑃 ′) with dim(𝑋 ′

x0) = 𝑛′ − 1. There exists 𝑛 − 𝑛′ a�ne sets
𝐻

′
1, . . . , 𝐻

′
𝑛−𝑛′ such that it can be represented as

𝑋
′

x0 = 𝐻
′
1⏟ ⏞ 

={x∈R𝑛|𝑔1(x)=0}

⋂︁
. . .
⋂︁

𝐻
′
𝑛−𝑛′ ,

where there exists a function 𝑔1 such that 𝐻
′
1 = {x ∈ R𝑛 | 𝑔1(x) = 0} .

Similarly, we de�ne

𝑋𝐿
x0 = {x ∈ R𝑛 | 𝑔1(x) ≤ 0}

⋂︁
𝐻

′
1
⋂︁

. . .
⋂︁

𝐻
′
𝑛−𝑛′
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and
𝑋𝑅

x0 = {x ∈ R𝑛 | 𝑔1(x) ≥ 0}
⋂︁

𝐻
′
1
⋂︁

. . .
⋂︁

𝐻
′
𝑛−𝑛′

as well as
𝑋

′
𝐿 = 𝑋

⋂︁
𝑋𝐿

x0 and 𝑋
′
𝑅 = 𝑋

⋂︁
𝑋𝑅

x0 .

Note that x0 is now a boundary point for 𝑋
′
𝐿 and for 𝑋

′
𝑅. Due to Theorem 5.12, there exist

hyperplanes 𝐻𝐿 and 𝐻𝑅 such that

• 𝑃
′ ⊂ (𝐻𝐿 ∩ 𝐻𝑅)

• 𝐻𝐿 is below 𝒮 over 𝑋
′
𝐿, i.e., 𝐻𝐿 is valid over 𝑋

′
𝐿,

• any 𝐻𝐿′ ⊃ 𝑃
′ which is above 𝐻𝐿 over 𝑋

′
𝐿 is not valid over 𝑋

′
𝐿,

• 𝐻𝑅 is below 𝒮 over 𝑋
′
𝑅,

• any 𝐻𝑅′ ⊃ 𝑃
′ which is above 𝐻𝑅 over 𝑋

′
𝑅 is not valid over 𝑋

′
𝑅.

Let x𝐿 ∈ relint 𝑋
′
𝐿 and x𝑅 ∈ relint 𝑋

′
𝑅 be two arbitrary points with (x𝐿, 𝑧𝐿) ∈ 𝐻𝐿 and

(x𝑅, 𝑧𝑅) ∈ 𝐻𝑅 points on the hyperplanes, respectively. We further denote

𝑃
′′
𝐿 = aff

{︁
𝑃

′
, {(x𝐿, 𝑧𝐿)}

}︁
and 𝑃

′′
𝑅 = aff

{︁
𝑃

′
, {(x𝑅, 𝑧𝑅)}

}︁
.

A graphic example is shown in Figure 5.13.
According to Lemma 5.18, by comparing 𝑃

′′
𝐿 and 𝑃

′′
𝑅 we have only two cases:

1. The a�ne set 𝑃
′′
𝐿 is below 𝑃

′′
𝑅 over 𝑋

′
𝑅. This is equivalent to 𝑃

′′
𝑅 is below 𝑃

′′
𝐿 over 𝑋

′
𝐿.

2. The a�ne set 𝑃
′′
𝐿 is above 𝑃

′′
𝑅 over 𝑋

′
𝑅. This is equivalent to 𝑃

′′
𝑅 is above 𝑃

′′
𝐿 over 𝑋

′
𝐿.

In case 1, both 𝑃
′′
𝐿 and 𝑃

′′
𝑅 are valid a�ne sets and we are �nished.

To conclude the proof we show that case 2 is not possible. In case 2, 𝑃
′′
𝑅 is above 𝑃

′′
𝐿 over

𝑋
′
𝐿. Take any a�ne set 𝑃

′′
𝑀 with dim(𝑃 ′′

𝑀 ) = 𝑛′ + 1, 𝑃
′ ⊂ 𝑃

′′
𝑀 and 𝑃

′′
𝑅 being above 𝑃

′′
𝑀 over

𝑋
′
𝐿 as well as 𝑃

′′
𝑀 being above 𝑃

′′
𝐿 over 𝑋

′
𝐿. Since 𝑃

′′
𝑀 is neither valid in 𝑋

′
𝐿 nor valid in 𝑋

′
𝐿,

there exist intersection points x𝑙′ ∈ relint 𝑋
′
𝐿 with (x𝑙′ , 𝑓(x𝑙′)) ∈ 𝑃

′′
𝑀 and x𝑟′ ∈ relint 𝑋

′
𝑅

with (x𝑟′
, 𝑓(x𝑟′)) ∈ 𝑃

′′
𝑀 .

Let 𝑔𝑀 be a function denoting 𝑃
′′
𝑀 = {x | 𝑔𝑀 (x) = 0}. There exist x𝑙 ∈ relint 𝑋

′
𝐿∩𝐵𝜀𝐿(x𝑙′)

and x𝑟 ∈ relint 𝑋
′
𝑅 ∩ 𝐵𝜀𝑅(x𝑟′), where 𝐵𝜀𝐿(x𝑙′) and 𝐵𝜀𝑅(x𝑟′) are neighborhoods of x𝑙′ and

x𝑟′ for 𝜀𝐿 > 0 and 𝜀𝑅 > 0, respectively, such that

• 𝑓(x𝑙) < 𝑔𝑀 (x𝑙), i.e., point (x𝑙, 𝑓(x𝑙)) is below 𝑃
′′
𝑀 ,

• 𝑓(x𝑟) < 𝑔𝑀 (x𝑟), i.e., point (x𝑟, 𝑓(x𝑟)) is below 𝑃
′′
𝑀 .
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See the graphic example in Figure 5.13 again.
Recall that 𝜇0 is the optimal value of OPx0 , then we have 𝑓(x0) > 𝜇0. Consider the new

polytope de�ned by

𝑆0 = conv
(︁
{(x0, 𝑓(x0)), (x1, 𝑓(x1)), . . . , (x𝑡′

, 𝑓(x𝑡′), (x𝑙, 𝑓(x𝑙)), (x𝑟, 𝑓(x𝑟))}
)︁

.

It is clear that 𝑆0 ⊂ conv(𝒮) and (x0, 𝜇0) ∈ relint 𝑆0. Consider the LP

min
{︁

𝜇 | (x, 𝜇) ∈ 𝑆0, x = x0
}︁

,

the optimal objective function value 𝜇1 ful�lls 𝜇1 < 𝜇0 which is a contradiction to the optimum
of OPx0 since 𝑆0 ⊂ conv𝒮 . Thus either 𝑃

′′
𝐿 or 𝑃

′′
𝑅 is valid. 2

L

R

Figure 5.13: Example for the proof of Lemma 5.29

103



Chapter 5 Convex Hull of Graphs of Polynomial Functions

Proof (of Theorem 5.28). We show that the following sets are equivalent:

ˇconv(𝒮) = conv({(x, 𝑧) | 𝑧 ≥ 𝑓(x), x ∈ 𝑋})

=
(︃ ⋂︁

𝐻 is downward valid
𝐻̌

)︃
∩ ({(x, 𝑧) | x ∈ 𝑋}) =: 𝑆′

=

⎛⎜⎜⎝ ⋂︁
𝐻 is downward valid

and 𝐻∩𝒮̸=∅

𝐻̌

⎞⎟⎟⎠ ∩ ({(x, 𝑧) | x ∈ 𝑋}) =: 𝑆′′

=

⎛⎜⎜⎝ ⋂︁
𝐻 is downward valid

and tight

𝐻̌

⎞⎟⎟⎠ ∩ ({(x, 𝑧) | x ∈ 𝑋}) =: 𝑆′′′.

Theorem 5.1 and Lemma 5.2 then imply ˇconv(𝒮) = 𝑆′ = 𝑆′′.
Note that every tight hyperplane 𝐻 ful�lls 𝐻 ∩ 𝒮 ≠ ∅. For every loose hyperplane 𝐻 with

𝐻 ∩ 𝒮 ≠ ∅, there exists a tight hyperplane which we proved in Theorem 5.27. Thus,

∅ ≠ {𝐻 | 𝐻 is downward valid and tight} ⊂ {𝐻 | 𝐻 is downward valid and 𝐻 ∩ 𝒮 ≠ ∅}

and
𝑆′′ ⊂ 𝑆′′′.

For any x0 consider the optimization problem

min{𝑧 | (x0, 𝑧) ∈ 𝑆′′}. (OPx0
1 )

By Lemma 5.29 there exists 𝐻0 which is downward valid with

x0 ∈ conv
(︁
𝜋x(𝐻0 ∩ 𝒮)

)︁
.

Let (x0, 𝑧0) ∈ 𝐻0. Then (OPx0
1 ) has the minimum 𝑧0 since every downward valid hyperplane

𝐻 is below 𝐻0 ∩ 𝒮 and (x0, 𝑧0) ∈ conv(𝐻0 ∩ 𝒮).
Consider the optimization problem

min{𝑧 | (x0, 𝑧) ∈ 𝑆′′′}. (OPx0
2 )

If 𝐻0 is tight, (OPx0
2 ) also has the minimum 𝑧0. Otherwise Theorem 5.27 implies that there

exists a tight and valid hyperplane 𝐻1 such that

𝐻0 ∩ 𝒮 ⊂ 𝐻1.

This implies that (x0, 𝑧0) ∈ conv(𝐻1 ∩ 𝒮) and 𝑧0 is the minimum of (OPx0
2 ) since every

downward valid hyperplane 𝐻 is below 𝐻1 ∩ 𝒮 .
Now we proved for every �xed x0 ∈ 𝑋 that (OPx0

1 ) and (OPx0
2 ) both have the same minimum.

𝑆′′ and 𝑆′′′ are both formed by downward closed halfspaces, 𝑆′′ = 𝑆′′′ holds.
Equation (5.15) implies then (5.16) due to the symmetry. 2
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Let ℋ̌◁▷ be the set of all downward valid and tight hyperplanes and ℋ̂◁▷ be the set of all
upward valid and tight hyperplanes. Let ℋ̌◇ ⊂ ℋ̌◁▷ and ℋ̂◇ ⊂ ℋ̂◁▷ be two �nite sets.

Corollary 5.30 (Polyhedral relaxation)
The set

𝑆(ℋ̌◇, ℋ̂◇) =

⎛⎝ ⋂︁
𝐻̌∈ℋ̌◇

𝐻̌

⎞⎠ ∩

⎛⎝ ⋂︁
𝐻̂∈ℋ̌◇

𝐻̂

⎞⎠
is a polyhedral set which ful�lls

conv(𝒮) ⊂ 𝑆(ℋ̌◇, ℋ̂◇).

So far, we gave a description of the convex hull of the graph of polynomial functions. Recalling
the de�nitions and theorems, our work focused mainly on theoretical point of view. Instead of
obtaining algorithms to compute valid hyperplanes, we dealt with proof of existence. Indeed,
algorithmically, it is very hard to verify if a given hyperplane is valid in a general dimension
and for a general degree of polynomial functions.

In the next section, we concentrate on bivariate polynomial functions with a limited degree.
Algorithms are developed to �nd tight hyperplanes. Computations show that these tight
hyperplanes accelerate MINLP solving processes.

5.4 Bivariate polynomial functions: a case study

In this section we design algorithms to �nd �nitely many tight valid hyperplanes for the graph of
bivariate polynomial functions with degree up to 3. Every given bivariate polynomial function
with degree up to 3 has the form

𝑓(𝑥, 𝑦) =
∑︁

0≤𝑖,𝑗≤3
0≤𝑖+𝑗≤3

𝑎𝑖𝑗𝑥𝑖𝑦𝑗 , (5.17)

where all 𝑎𝑖𝑗 ∈ R are constants and 𝑋 ⊂ R2 is the domain which is a polytope. Then 𝑋 is a
convex polygon with 𝑚 ≥ 3 edges and vertices. Every edge is a line segment as well as a facet
of 𝑋 and every vertex is an extreme point of 𝑋 .

Again, we only consider the downward closed part. Recall that 𝑋̌𝑔 is the set of all globally
convex domain points and 𝑋̌ 𝑙 is the set of all locally convex domain points. Theoretically, for
any x0 ∈ int 𝑋 we need only to check if 𝑇 (x0) is valid. However, in practice, this is not easy
even for 𝑓 given as in (5.17). Instead of getting valid hyperplanes starting from interior domain
points, we pay more attention to those boundary domain points.

Using the result from Section 5.3, the graph of the bivariate polynomial function 𝑓 on a
facet of 𝑋 is isomorphic to the graph of a univariate polynomial function on a corresponding
projected domain. We show later that �nding 𝑋̌𝑔 for univariate polynomial functions with

105



Chapter 5 Convex Hull of Graphs of Polynomial Functions

degree ≤ 3 is tractable. Thus we can easily �nd the set 𝑋̌𝑔 ∩ 𝜕𝑋 for bivariate polynomial
functions with degree ≤ 3. In the following we design algorithms which �rst compute a few
hyperplanes that are below 𝒮 over 𝑋̌𝑔 ∩ 𝜕𝑋 . For each of the hyperplanes which are below the
boundary of 𝒮 , we solve a NLP globally either to verify if the hyperplane is valid or to �nd a
valid hyperplane which is parallel to this hyperplane. These NLPs contain only two variables
and can be globally solved by SCIP in less than one second.

Going back to our applications, all of these hyperplanes can be found in an o�ine way,
i.e., before we start to solve the MINLPs. For every instance we need only to calculate these
hyperplanes once. Every globally solved NLP above yields a tight valid hyperplane.

Remark 5.31
In this section we discuss hyperplanes and graphs of polynomial functions in R3. As before, we
use (𝑥, 𝑦, 𝑧) to denote a point in R3. Similar to Section 5.3, we use x = (𝑥, 𝑦) ∈ R2 to denote
domain points and use e.g., x0 = (𝑥0, 𝑦0) ∈ R2 to denote a certain domain point.

For a boundary point (𝑥, 𝑦) ∈ 𝜕𝑋 there exists at least one facet 𝐹𝑖 of 𝑋 with (𝑥, 𝑦) ∈ 𝐹𝑖.
Since 𝐹𝑖 is a line segment, it must be contained in a line denoted by

{(𝑥, 𝑦) | 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖 = 0} =: aff{𝐹𝑖},

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ R are constants and at least one of 𝑎𝑖 and 𝑏𝑖 is nonzero. Without loss of
generality we assume 𝑏𝑖 ̸= 0 (otherwise permute 𝑥 and 𝑦) and set 𝑏𝑖 = 1 (otherwise scale 𝑎𝑖, 𝑏𝑖

and 𝑐𝑖). Facet 𝐹𝑖 can be then be represented as

𝐹𝑖 = {(𝑥, 𝑦) | 𝑦 = −𝑎𝑖𝑥 − 𝑐𝑖, 𝑥 ∈ [𝑥min
𝑖 , 𝑥max

𝑖 ]},

where 𝑥min
𝑖 , 𝑥max

𝑖 ∈ R are constants with 𝑥min
𝑖 < 𝑥max

𝑖 . Recalling the de�nitions in Section 5.3
and using the same notations, we have the projection map

𝑔𝑑 : aff{𝐹𝑖} → R, (𝑥, 𝑦) ↦→ 𝑥

and its inverse map

𝑔−1
𝑑 : R → aff{𝐹𝑖}, 𝑥 ↦→

(︃
𝑥

−𝑎𝑖𝑥 − 𝑐𝑖

)︃
as well as

𝑓𝑖(𝑥) = 𝑓(𝑥, −𝑎𝑖𝑥 − 𝑐𝑖) =
∑︁

0≤𝑖,𝑗≤3
0≤𝑖+𝑗≤3

𝑎𝑖𝑗𝑥𝑖(−𝑎𝑖𝑥 − 𝑐𝑖)𝑗 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑,

where 𝑎, 𝑏, 𝑐, 𝑑 are constants depending on 𝑎𝑖, 𝑐𝑖 and all 𝑎𝑖𝑗 . An example has been shown in
Figure 5.4 and discussed in Section 5.3.
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Corollary 5.32
A boundary domain point (𝑥0, 𝑦0) on facet 𝐹𝑖 of 𝑋 is globally convex for 𝒮 if and only if 𝑥0 is
globally convex for the graph of 𝑓𝑖(𝑥) over [𝑥min

𝑖 , 𝑥max
𝑖 ].

Proof. The result is a special case of Theorem 5.12. 2

Let 𝑋̌ 𝑙
𝑖 ⊂ [𝑥min

𝑖 , 𝑥max
𝑖 ] denote the set of all locally convex domain points for the graph of

𝑓𝑖(𝑥) and 𝑋̌𝑔
𝑖 ⊂ 𝑋̌ 𝑙

𝑖 the set of the globally convex domain points. Note that 𝑋̌𝑔 ∩𝐹𝑖 = 𝑔−1
𝑑 (𝑋̌𝑔

𝑖 ).
Thus, �nding 𝑋̌𝑔

𝑖 for every 𝑖 ∈ {1, . . . , 𝑚} will �nd 𝑋̌𝑔 ∩ 𝜕𝑋 .

Lemma 5.33
The set of globally convex domain points 𝑋̌𝑔

𝑖 ⊂ [𝑥min
𝑖 , 𝑥max

𝑖 ] has one of the four following forms

1. {𝑥min
𝑖 , 𝑥max

𝑖 },

2. [𝑥min
𝑖 , 𝑥max

𝑖 ],

3. [𝑥min
𝑖 , 𝑥mid

𝑖 ] ∪ {𝑥max
𝑖 },

4. {𝑥min
𝑖 } ∪ [𝑥mid

𝑖 , 𝑥max
𝑖 ].

In the two latter cases, 𝑥mid
𝑖 is a constant with 𝑥min

𝑖 < 𝑥mid
𝑖 < 𝑥max

𝑖 .

Proof. If 𝑎 = 0, then 𝑓𝑖(𝑥) is a convex function (if 𝑏 ≥ 0) or a concave function (if 𝑏 ≤ 0). For
this reason, we only need to consider the case 𝑎 ̸= 0. We �rst seek the locally convex points 𝑥0
since every globally convex point is also locally convex. Let 𝑓

(𝑛)
𝑖 denote the 𝑛th derivative of

𝑓𝑖. We have
𝑓

(1)
𝑖 (𝑥) = 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐,

𝑓
(2)
𝑖 (𝑥) = 6𝑎𝑥 + 2𝑏,

𝑓
(3)
𝑖 (𝑥) = 6𝑎 ̸= 0,

𝑓
(𝑛)
𝑖 (𝑥) = 0 for all 𝑛 ≥ 4.

Similar to the proof of Lemma 5.5, using Taylor’s Formula, we can easily prove that for any
𝑥 ∈ (𝑥min

𝑖 , 𝑥max
𝑖 ), 𝑥 is locally convex if 𝑓

(2)
𝑖 (𝑥) = 6𝑎𝑥 + 2𝑏 > 0. Note that the extreme points

𝑥min
𝑖 and 𝑥max

𝑖 are globally convex and thus locally convex which is implied by Corollary 5.22.
Since 𝑓

(2)
𝑖 (𝑥) = 6𝑎𝑥 + 2𝑏 is a monotonic function and has at most one root, depending on the

value of 𝑎, 𝑏 𝑥min
𝑖 and 𝑥max

𝑖 , the set of locally convex domain 𝑋̌ 𝑙
𝑖 has one of the following four

forms:

1. {𝑥min
𝑖 , 𝑥max

𝑖 },

2. [𝑥min
𝑖 , 𝑥max

𝑖 ],

3. [𝑥min
𝑖 , −𝑏/3𝑎) ∪ {𝑥max

𝑖 },
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4. {𝑥min
𝑖 } ∪ (−𝑏/3𝑎, 𝑥max

𝑖 ].

We now discuss the set 𝑋̌𝑔
𝑖 with the four cases above.

1. It is clear that 𝑋̌𝑔
𝑖 = {𝑥min

𝑖 , 𝑥max
𝑖 } if 𝑋̌ 𝑙

𝑖 = {𝑥min
𝑖 , 𝑥max

𝑖 }.

2. If 𝑋̌ 𝑙
𝑖 = [𝑥min

𝑖 , 𝑥max
𝑖 ], then 𝑓

(2)
𝑖 (𝑥) ≥ 0 for all 𝑥 ∈ [𝑥min

𝑖 , 𝑥max
𝑖 ] which implies that 𝑓𝑖(𝑥)

is a convex function with domain [𝑥min
𝑖 , 𝑥max

𝑖 ]. Since 𝑓𝑖(𝑥) is di�erentiable, the tangent
plane {(𝑥, 𝑦) | 𝑦 = (3𝑎𝑥2

0 + 2𝑏𝑥0 + 𝑐)(𝑥 − 𝑥0) + 𝑓𝑖(𝑥0)} at point (𝑥0, 𝑓𝑖(𝑥0)) for every
𝑥0 ∈ 𝐹𝑖 is below the graph of 𝑓𝑖 over 𝐹𝑖. Hence 𝑋̌𝑔

𝑖 = [𝑥min
𝑖 , 𝑥max

𝑖 ].

3. Examples of this case can be seen in Figure 5.14. Note that 𝑋̌𝑔
𝑖 ⊂ [𝑥min

𝑖 , −𝑏/3𝑎)∪{𝑥max
𝑖 }

and {𝑥min
𝑖 , 𝑥max

𝑖 } ⊂ 𝑋̌𝑔
𝑖 . Theorem 5.8 implies that 𝑥0 ∈ (𝑥min

𝑖 , −𝑏/3𝑎) is globally convex
if and only if the corresponding tangent plane

𝑇𝑑(𝑥0) = {(𝑥, 𝑦) | 𝑦 = (3𝑎𝑥2
0 + 2𝑏𝑥0 + 𝑐)(𝑥 − 𝑥0) + 𝑓𝑖(𝑥0)}

is valid. Note that 𝑇𝑑(𝑥0) is below the graph of 𝑓𝑖 in [𝑥min
𝑖 , −𝑏/3𝑎]. With 𝑋̌𝑔

𝑖 ⊂
[𝑥min

𝑖 , −𝑏/3𝑎) ∪ {𝑥max
𝑖 }, Lemma 5.20 implies that 𝑥0 ∈ (𝑥min

𝑖 , −𝑏/3𝑎) is globally convex
if and only if 𝑇𝑑(𝑥0) is below the point (𝑥max

𝑖 , 𝑓𝑖(𝑥max
𝑖 )). De�ne

𝑔max(𝑥) = (3𝑎𝑥2 + 2𝑏𝑥 + 𝑐)(𝑥max
𝑖 − 𝑥) + 𝑓𝑖(𝑥)

such that point (𝑥max
𝑖 , 𝑔max(𝑥)) ∈ 𝑇𝑑(𝑥) for any 𝑥 ∈ [𝑥min

𝑖 , −𝑏/3𝑎]. The tangent
plane 𝑇𝑑(𝑥0) for 𝑥0 ∈ [𝑥min

𝑖 , −𝑏/3𝑎] is below the point (𝑥max
𝑖 , 𝑓𝑖(𝑥max

𝑖 )) if and only
if 𝑔max(𝑥0) ≤ 𝑓𝑖(𝑥max

𝑖 ). Thus we only need to compare 𝑔max(𝑥0) and 𝑓𝑖(𝑥max
𝑖 ). Con-

sider the �rst derivative of 𝑔max(𝑥)

𝑔(1)
max(𝑥) = (𝑥max

𝑖 − 𝑥)(6𝑎𝑥 + 2𝑏𝑥) − (3𝑎𝑥2 + 2𝑏𝑥 + 𝑐) + 𝑓
(1)
𝑖 (𝑥)

= (𝑥max
𝑖 − 𝑥)(6𝑎𝑥 + 2𝑏𝑥).

Thus, 𝑔max is strictly increasing on [𝑥min
𝑖 , −𝑏/3𝑎) since we have 𝑔

(1)
max(𝑥) > 0 for any 𝑥 ∈

[𝑥min
𝑖 , −𝑏/3𝑎); similarly 𝑔max is strictly decreasing on (−𝑏/3𝑎, 𝑥max

𝑖 ) since 𝑔
(1)
max(𝑥) < 0

for any 𝑥 ∈ [𝑥min
𝑖 , −𝑏/3𝑎). It is then clear that

𝑔max(−𝑏/3𝑎) > 𝑔max(𝑥max
𝑖 ) = 𝑓𝑖(𝑥max

𝑖 ).

Now we compare 𝑔max(𝑥min
𝑖 ) and 𝑓𝑖(𝑥max

𝑖 ). If 𝑔max(𝑥min
𝑖 ) > 𝑓𝑖(𝑥max

𝑖 ), see an example
in Figure 5.14a, we have 𝑔max(𝑥) > 𝑓𝑖(𝑥max

𝑖 ) for all 𝑥 ∈ (𝑥min
𝑖 , −𝑏/3𝑎). Hence no point

in (𝑥min
𝑖 , −𝑏/3𝑎) is globally convex, which implies 𝑋̌𝑔

𝑖 = {𝑥min
𝑖 , 𝑥max

𝑖 }.
Otherwise we have 𝑔max(𝑥min

𝑖 ) ≤ 𝑓𝑖(𝑥max
𝑖 ), see an example in Figure 5.14b. Consider the

strictly increasing function 𝑔max(𝑥) − 𝑓𝑖(𝑥max
𝑖 ) over (𝑥min

𝑖 , −𝑏/3𝑎), with 𝑔max(𝑥min
𝑖 ) −

𝑓𝑖(𝑥max
𝑖 ) ≤ 0 and 𝑔max(−𝑏/3𝑎) − 𝑓𝑖(𝑥max

𝑖 ) > 0. This function has exactly one real root
over [𝑥min

𝑖 , −𝑏/3𝑎), say 𝑥mid
𝑖 . Then we have 𝑋̌𝑔

𝑖 = [𝑥min
𝑖 , 𝑥mid

𝑖 ] ∪ {𝑥max
𝑖 } if 𝑥min

𝑖 < 𝑥mid
𝑖

and 𝑋̌𝑔
𝑖 = {𝑥min

𝑖 , 𝑥max
𝑖 } if 𝑥min

𝑖 = 𝑥mid
𝑖 .
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4. Similar to case 3, we need only to know whether the polynomial function of 𝑥

(3𝑎𝑥2 + 2𝑏𝑥 + 𝑐)(𝑥min
𝑖 − 𝑥) + 𝑓𝑖(𝑥)⏟  ⏞  

=:𝑔min(𝑥)

−𝑓𝑖(𝑥min
𝑖 )

has a real root over 𝑥 ∈ (−𝑏/3𝑎, 𝑥max
𝑖 ). If the root exists, say 𝑥mid

𝑖 , then we have
𝑋̌𝑔

𝑖 = {𝑥min
𝑖 } ∪ [𝑥mid

𝑖 , 𝑥max
𝑖 ]; otherwise, we have 𝑋̌𝑔

𝑖 = {𝑥min
𝑖 , 𝑥max

𝑖 } as well. 2

(a) Case 1 (b) Case 2

Figure 5.14: Examples for globally and locally convex domain points

Considering the four cases, the set of globally convex points 𝑋̌𝑔
𝑖 ⊂ [𝑥min

𝑖 , 𝑥max
𝑖 ] has either

two points, or is an interval plus a point, or an interval. Since the projection function 𝑔−1
𝑑 is

bijective, the set of globally convex points on 𝐹𝑖, denoted by 𝑋̌𝑔 ∩ 𝐹𝑖 = 𝑔−1
𝑑 (𝑋̌𝑔

𝑖 ), also consists
of either two extreme points, or is a line segment in R2 plus an extreme point, or a line segment
in R2. Note that every extreme point of 𝑋 is globally convex. We call an extreme point an
isolated extreme point if it is not contained in a line segment that consists of globally convex
boundary domain points only. We then get the following lemma easily.

Lemma 5.34
The set 𝑋̌𝑔 ∩ 𝜕𝑋 of globally convex boundary domain points for the graph of 𝑓(𝑥, 𝑦) over
the polytope 𝑋 ∈ R2 is a union of 𝑚1 line segments and 𝑚2 isolated extreme points with
𝑚1, 𝑚2 ∈ N0, 𝑚1 ≤ 𝑚 and 𝑚2 ≤ 𝑚.

Let 𝐿1, 𝐿2, . . . , 𝐿𝑚1 be the 𝑚1 line segments and x𝑒
1, x𝑒

2, . . . , x𝑒
𝑚2 be the 𝑚2 isolated extreme

points. With this notation we have

𝑋̌𝑔 ∩ 𝜕𝑋 = 𝐿1 ∪ · · · ∪ 𝐿𝑚1 ∪ {x𝑒
1, . . . , x𝑒

𝑚2}.

Furthermore, let 𝒮𝐿𝑖 be the graph of 𝑓(𝑥, 𝑦) on 𝐿𝑖 with

𝒮𝐿𝑖 = {(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐿𝑖}
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Figure 5.15: Hyperplane that intersects 𝒮𝐿𝑖 , 𝒮𝐿𝑗 and below them

for every 𝑖 ∈ {1, . . . , 𝑚} and let

𝒮𝑋𝑒 = {(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑋𝑒}.

In the following, for any (𝑥0, 𝑦0) ∈ 𝐿𝑖, we show that there exists a hyperplane 𝐻 through
(𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) such that 𝐻 is below 𝒮𝐿𝑖 over 𝑋̌𝑔 ∩𝜕𝑋 . In Lemma 5.36 we have more details
included. We show later in Theorem 5.37 that either 𝐻 is a tight valid hyperplane or a tight
valid hyperplane 𝐻* can be found very easily which is parallel to 𝐻 .

To �nd the hyperplane 𝐻 with the properties described above, we �rst prove Lemma 5.35,
which implies that for any 𝐿𝑗 there exists a hyperplane 𝐻𝑗

𝑖 which is below 𝒮 over 𝐿𝑖 ∪ 𝐿𝑗

with 𝑖, 𝑗 ∈ {1, . . . , 𝑚1}, 𝑖 ̸= 𝑗. Using this result, we show that a hyperplane 𝐻 through
(𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) exists such that 𝐻 is below 𝒮𝐿𝑗 for any 𝑗 ∈ {1, . . . , 𝑚1}, 𝑖 ̸= 𝑗. In addition,
a hyperplane 𝐻 can be found that it is below (x𝑒

𝑘, 𝑓(x𝑒
𝑘)) for any 𝑘 ∈ {1, . . . , 𝑚1}.

Lemma 5.35
For any 𝐿𝑖 and 𝐿𝑗 with 𝑖, 𝑗 ∈ {1, . . . , 𝑚1}, 𝑖 ̸= 𝑗 and for any (𝑥0, 𝑦0) ∈ 𝐿𝑖, there exists a
hyperplane 𝐻 through (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) with 𝐻 ∩ 𝒮𝐿𝑗 ̸= ∅ and 𝐻 is below 𝒮𝐿𝑖 and 𝒮𝐿𝑗 .
Moreover, such a hyperplane 𝐻 is unique for any (𝑥0, 𝑦0) ∈ 𝐿𝑖 ∖ 𝑋𝑒.
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Proof. An example is shown in Figure 5.15. The two blue curves are 𝒮𝐿𝑖 and 𝒮𝐿𝑗 . We need
to �nd a hyperplane 𝐻 through (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) that intersects both 𝒮𝐿𝑖 and 𝒮𝐿𝑗 and at the
same time 𝐻 is below them.

For the special case (𝑥0, 𝑦0) ∈ 𝐿𝑗 , we can easily check that 𝐻 = 𝑇 (𝑥0, 𝑦0), i.e., the tangent
plane at (𝑥0, 𝑦0) ful�lls all the conditions. In this case 𝐻 is not unique.

Assume that (𝑥0, 𝑦0) ̸∈ 𝐿𝑗 . We discuss the case (𝑥0, 𝑦0) ∈ 𝐿𝑖 ∖ 𝑋𝑒, e.g., (𝑥0, 𝑦0) = (𝑥1, 𝑦1)
in Figure 5.15. Corollary 5.13 implies that a hyperplane 𝐻 through (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) which is
below 𝒮𝐿𝑖 contains the subtangent plane

Ł(𝑥0, 𝑦0) = 𝑇 (𝑥0, 𝑦0) ∩ {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦) ∈ aff{𝐿𝑖}} (5.18)

which is the lower left green line in Figure 5.15. Denote 𝑃0 = (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)). For every
point 𝑃𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) ∈ 𝒮𝐿𝑗 , we de�ne 𝐻(Ł(𝑥0, 𝑦0), 𝑃𝑗) = aff{Ł(𝑥0, 𝑦0), {𝑃𝑗}} which is a
hyperplane below 𝑃𝑗 . Similar to the proof of Theorem 5.27, there exists a point 𝑃 * ∈ 𝒮𝐿𝑗 such
that 𝐻* = 𝐻(Ł(𝑥0, 𝑦0), 𝑃 *) is below 𝒮𝐿𝑗 . Note that 𝐻* is unique since it is associated to the
objective value of an optimization problem introduced in Theorem 5.27 which always has an
optimum.

Finally, we discuss the case (𝑥0, 𝑦0) ∈ 𝐿𝑖 ∩ 𝑋𝑒, e.g., (𝑥0, 𝑦0) = (𝑥2, 𝑦2) in Figure 5.15.
Consider a line Ł𝑙(𝑥0, 𝑦0) ⊂ {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦) ∈ aff{𝐿𝑖}} through (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) which is
below Ł(𝑥0, 𝑦0) de�ned by (5.18) such that (𝑥, 𝑦) ∈ 𝐿𝑖. In the example in Figure 5.15, Ł𝑙(𝑥0, 𝑦0)
is the red line and Ł(𝑥0, 𝑦0) is the upper right green line. Every hyperplane 𝐻 which contains
Ł𝑙(𝑥0, 𝑦0) is through (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) and below 𝒮𝐿𝑖 . Similar to the discussion above, there
exists a point 𝑃 * ∈ 𝒮𝐿𝑗 such that 𝐻* = aff{Ł𝑙(𝑥0, 𝑦0), {𝑃𝑗}} is below 𝒮𝐿𝑗 . Note that for every
�xed chosen Ł𝑙(𝑥0, 𝑦0) there exists a unique 𝐻*. However, we have in�nitely many Ł𝑙(𝑥0, 𝑦0)
to choose. 2

Now we discuss how to algorithmically �nd 𝐻 which ful�lls Lemma 5.35. Note that for
(𝑥0, 𝑦0) ∈ 𝐿𝑖∩𝑋𝑒 we may choose Ł𝑙(𝑥0, 𝑦0) = Ł(𝑥0, 𝑦0) which can be computed easily. For any
(𝑥0, 𝑦0) ∈ 𝐿𝑖 we compute a hyperplane 𝐻 that ful�lls Lemma 5.35 and satis�es 𝐻 ⊃ Ł(𝑥0, 𝑦0)
which is a line de�ned in (5.18). This is equivalent to �nding a point (𝑥*, 𝑦*) ∈ 𝐿𝑗 such that
𝐻 = aff{Ł(𝑥0, 𝑦0), {((𝑥*, 𝑦*), 𝑓(𝑥*, 𝑦*))}} is below 𝒮𝐿𝑗 . Consider the two lines aff{𝐿𝑖} and
aff{𝐿𝑗}. They are either not parallel or parallel. Examples for both cases are in Figure 5.16.

As mentioned before, for the case (𝑥0, 𝑦0) ∈ 𝐿𝑗 , we set 𝐻 = 𝑇 (𝑥0, 𝑦0) and we are done.
Otherwise, let

𝐿𝑖 = {(𝑥, 𝑦) | 𝑦 = 𝑎𝑖𝑥 + 𝑏𝑖, 𝑥 ∈ [𝑥min
𝑖 , 𝑥max

𝑖 ]}

and
𝐿𝑗 = {(𝑥, 𝑦) | 𝑦 = 𝑎𝑗𝑥 + 𝑏𝑗 , 𝑥 ∈ [𝑥min

𝑗 , 𝑥max
𝑗 ]}.

De�ne 𝑓𝐿𝑖(𝑥) = 𝑓(𝑥, 𝑎𝑖𝑥 + 𝑏𝑖) for 𝑥 ∈ [𝑥min
𝑖 , 𝑥max

𝑖 ] and de�ne 𝑓𝐿𝑗 (𝑥) = 𝑓(𝑥, 𝑎𝑗𝑥 + 𝑏𝑗)
for 𝑥 ∈ [𝑥min

𝑗 , 𝑥max
𝑗 ]. 𝑓𝐿𝑖(𝑥) and 𝑓𝐿𝑗 (𝑥) are univariate functions with degree up to 3. The
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(a) aff{𝐿𝑖} and aff{𝐿𝑗} are not parallel (b) aff{𝐿𝑖} and aff{𝐿𝑗} are parallel

Figure 5.16: Two lines aff{𝐿𝑖} and aff{𝐿𝑗} can be parallel or not parallel

line Ł𝑖(𝑥0, 𝑦0) = 𝑇 (𝑥0, 𝑦0) ∩ {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦) ∈ aff{𝐿𝑖}} for 𝑥0 ∈ [𝑥min
𝑖 , 𝑥max

𝑖 ] with 𝑦0 =
𝑎𝑗𝑥0 + 𝑏𝑗 can also be represented as

Ł𝑖(𝑥0, 𝑦0) = {(𝑥, 𝑦, 𝑧) | 𝑥 ∈ R, 𝑦 = 𝑎𝑖𝑥 + 𝑏𝑖, 𝑧 = 𝑓 ′
𝐿𝑖

(𝑥0)(𝑥 − 𝑥0) + 𝑓𝐿𝑖(𝑥0)}. (5.19)

Analogously, for every 𝑥1 ∈ [𝑥min
𝑗 , 𝑥max

𝑗 ] and 𝑦1 = 𝑎𝑗𝑥1 + 𝑏𝑗 , we get

Ł𝑗(𝑥1, 𝑦1) = {(𝑥, 𝑦, 𝑧) | 𝑥 ∈ R, 𝑦 = 𝑎𝑗𝑥 + 𝑏𝑗 , 𝑧 = 𝑓 ′
𝐿𝑗

(𝑥1)(𝑥 − 𝑥1) + 𝑓𝐿𝑗 (𝑥1)}.

First we discuss the case that aff{𝐿𝑖} and aff{𝐿𝑗} are not parallel, see an example in Fig-
ure 5.16a. Since 𝑎𝑖 ̸= 𝑎𝑗 , the intersection of aff{𝐿𝑖} and aff{𝐿𝑗} is (𝑥𝑖𝑗 , 𝑦𝑖𝑗) with

𝑥𝑖𝑗 = 𝑏𝑗 − 𝑏𝑖

𝑎𝑖 − 𝑎𝑗
and 𝑦𝑖𝑗 = 𝑏𝑗𝑎𝑖 − 𝑏𝑖𝑎𝑗

𝑎𝑖 − 𝑎𝑗
.

Consider the point 𝑃𝑖𝑗 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗) with 𝑧𝑖𝑗 = 𝑓 ′
𝐿𝑖

(𝑥0)(𝑥𝑖𝑗 − 𝑥0) + 𝑓𝐿𝑖(𝑥0). We can check
that 𝑃𝑖𝑗 ∈ Ł𝑖(𝑥0, 𝑦0) which implies that 𝑃𝑖𝑗 ∈ 𝐻 for every 𝐻 that ful�lls Lemma 5.35. Since 𝐻
also intersects 𝒮𝐿𝑗 , �nding 𝐻 ful�lling Lemma 5.35 is equivalent to �nding a point 𝑃 * ∈ 𝒮𝐿𝑗

such that aff{Ł𝑖(𝑥0, 𝑦0), {𝑃 *}} is below 𝒮𝐿𝑗 . Consider the function

𝑔𝑗(𝑥) = 𝑓 ′
𝐿𝑗

(𝑥)(𝑥𝑖𝑗 − 𝑥) + 𝑓𝐿𝑗 (𝑥)

for 𝑥 ∈ [𝑥min
𝑗 , 𝑥max

𝑗 ]. Note that the point (𝑥1, 𝑎𝑗𝑥1 + 𝑏𝑗 , 𝑔𝑗(𝑥1)) lies in line Ł𝑗(𝑥1, 𝑦1) for
𝑥1 ∈ [𝑥min

𝑗 , 𝑥max
𝑗 ]. As we analyzed before by considering the sign of the �rst derivative,

𝑔𝑗(𝑥) is a strictly decreasing function if 𝑥𝑖𝑗 < 𝑥min
𝑗 and is a strictly increasing function if
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(a) For case 𝑧𝑖𝑗 < 𝑔𝑗(𝑥min
𝑗 ) < 𝑔𝑗(𝑥max

𝑗 ) (b) For case 𝑔𝑗(𝑥max
𝑗 ) < 𝑔𝑗(𝑥min

𝑗 ) < 𝑧𝑖𝑗

(c) For case 𝑧𝑖𝑗 < 𝑔𝑗(𝑥max
𝑗 ) < 𝑔𝑗(𝑥min

𝑗 ) (d) For case 𝑔𝑗(𝑥min
𝑗 ) < 𝑔𝑗(𝑥max

𝑗 ) < 𝑧𝑖𝑗

Figure 5.17: Example for the 4 cases in the proof of Lemma 5.35

𝑥𝑖𝑗 > 𝑥max
𝑗 . There are no other cases since 𝑥𝑖𝑗 ̸∈ [𝑥min

𝑗 , 𝑥max
𝑗 ]. In both cases we have 𝑔𝑗(𝑥min

𝑗 ) ̸=
𝑔𝑗(𝑥max

𝑗 ). We compare 𝑧𝑖𝑗 , 𝑔𝑗(𝑥min
𝑗 ) and 𝑔𝑗(𝑥max

𝑗 ). If 𝑧𝑖𝑗 is between 𝑔𝑗(𝑥min
𝑗 ) and 𝑔𝑗(𝑥max

𝑗 ), i.e.,
𝑔𝑗(𝑥min

𝑗 ) ≤ 𝑧𝑖𝑗 ≤ 𝑔𝑗(𝑥max
𝑗 ) or 𝑔𝑗(𝑥max

𝑗 ) ≤ 𝑧𝑖𝑗 ≤ 𝑔𝑗(𝑥min
𝑗 ), then the increasing or decreasing

function 𝑔𝑗(𝑥) − 𝑧𝑖𝑗 has a unique root 𝑥* ∈ [𝑥min
𝑗 , 𝑥max

𝑗 ] with 𝑔𝑗(𝑥*) − 𝑧𝑖𝑗 = 0. Note that since
𝑔𝑗(𝑥) is a polynomial function of degree up to 3, 𝑥* can be computed very easily. It implies that
the line Ł𝑗(𝑥*, 𝑦*) with 𝑦* = 𝑎𝑗𝑥* + 𝑏𝑗 contains also 𝑃𝑖𝑗 and

𝐻 = aff{Ł𝑖(𝑥0, 𝑦0), Ł𝑗(𝑥*, 𝑦*)}

is a hyperplane which ful�lls Lemma 5.35.
Otherwise, if 𝑧𝑖𝑗 is not between 𝑔𝑗(𝑥min

𝑗 ) and 𝑔𝑗(𝑥max
𝑗 ), we have the following four cases

1. 𝑧𝑖𝑗 < 𝑔𝑗(𝑥min
𝑗 ) < 𝑔𝑗(𝑥max

𝑗 ),

2. 𝑔𝑗(𝑥max
𝑗 ) < 𝑔𝑗(𝑥min

𝑗 ) < 𝑧𝑖𝑗 ,
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3. 𝑧𝑖𝑗 < 𝑔𝑗(𝑥max
𝑗 ) < 𝑔𝑗(𝑥min

𝑗 ),

4. 𝑔𝑗(𝑥min
𝑗 ) < 𝑔𝑗(𝑥max

𝑗 ) < 𝑧𝑖𝑗 .

Examples for the four cases are shown in Figure 5.17. In the �rst two cases we set

𝑃 * = (𝑥min
𝑗 , 𝑎𝑗𝑥min

𝑗 + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥min
𝑗 )).

In the last two cases we set

𝑃 * = (𝑥max
𝑗 , 𝑎𝑗𝑥max

𝑗 + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥max
𝑗 )).

For all four cases, the line aff{𝑃 *, 𝑃 𝑖𝑗}, shown as the red line in the corresponding subgraphs,
is below 𝒮𝐿𝑗 (the corresponding blue curve). We then have 𝐻 = aff{Ł𝑖(𝑥0, 𝑦0), {𝑃 *}} ⊃
aff{𝑃 *, 𝑃 𝑖𝑗} which ful�lls Lemma 5.35 and is the hyperplane we are looking for.

Now it only remains to discuss the case that aff{𝐿𝑖} and aff{𝐿𝑗} are parallel, see an example
in Figure 5.16b. Note that 𝑎𝑖 = 𝑎𝑗 and for any 𝑥1 ∈ [𝑥min

𝑗 , 𝑥max
𝑗 ] with 𝑦1 = 𝑎𝑗𝑥1 + 𝑏𝑗 ,

Ł𝑗(𝑥1, 𝑦1) is contained in the hyperplane {(𝑥, 𝑦, 𝑧) | 𝑦 = 𝑎𝑗𝑥 + 𝑏𝑗}. The other hyperplane
{(𝑥, 𝑦, 𝑧) | 𝑦 = 𝑎𝑖𝑥+𝑏𝑖} which contains Ł𝑖(𝑥0, 𝑦0) is parallel to the hyperplane {(𝑥, 𝑦, 𝑧) | 𝑦 =
𝑎𝑗𝑥 + 𝑏𝑗}. It implies that aff{Ł𝑖(𝑥0, 𝑦0), Ł𝑗(𝑥1, 𝑦1)} is a hyperplane if and only if Ł𝑖(𝑥0, 𝑦0)
and Ł𝑗(𝑥1, 𝑦1) are parallel. This is equivalent to 𝑓 ′

𝐿𝑗
(𝑥1) = 𝑓 ′

𝐿𝑖
(𝑥0). Note that 𝑓𝐿𝑗 (𝑥) is a

convex function for 𝑥 ∈ [𝑥min
𝑗 , 𝑥max

𝑗 ] and is a polynomial function with degree up to 3. Then
𝑓 ′

𝐿𝑗
(𝑥) is an increasing function with 𝑓 ′

𝐿𝑗
(𝑥min

𝑗 ) < 𝑓 ′
𝐿𝑗

(𝑥max
𝑗 ). Compare 𝑓 ′

𝐿𝑖
(𝑥0), 𝑓 ′

𝐿𝑗
(𝑥min

𝑗 )
and 𝑓 ′

𝐿𝑗
(𝑥max

𝑗 ). If 𝑓 ′
𝐿𝑗

(𝑥min
𝑗 ) ≤ 𝑓 ′

𝐿𝑖
(𝑥0) ≤ 𝑓 ′

𝐿𝑗
(𝑥max

𝑗 ), then the function 𝑓 ′
𝐿𝑗

(𝑥) − 𝑓 ′
𝐿𝑖

(𝑥0)
has a unique root 𝑥* for 𝑥 ∈ [𝑥min

𝑗 , 𝑥max
𝑗 ]. The function 𝑓 ′

𝐿𝑗
(𝑥) is a polynomial function

with degree up to 2, for which we can easily compute the root 𝑥*. In this case we set 𝑃 * =
(𝑥*, 𝑎𝑗𝑥* + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥*)). See the example in Figure 5.16b again. Otherwise if 𝑓 ′

𝐿𝑖
(𝑥0) <

𝑓 ′
𝐿𝑗

(𝑥min
𝑗 ) we set 𝑃 * = (𝑥min

𝑗 , 𝑎𝑗𝑥min
𝑗 + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥min

𝑗 )) and if 𝑓 ′
𝐿𝑖

(𝑥0) > 𝑓 ′
𝐿𝑗

(𝑥max
𝑗 ) we set

𝑃 * = (𝑥max
𝑗 , 𝑎𝑗𝑥max

𝑗 + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥max
𝑗 )). Examples for both cases are shown in Figure 5.18. We

can easily prove that the line aff{Ł𝑖(𝑥0, 𝑦0), {𝑃 *}} ∩ {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦) ∈ aff{𝐿𝑗}}, shown as
the red line in the corresponding subgraphs, is below 𝒮𝐿𝑗 (the corresponding blue curve). Thus
𝐻 = aff{Ł𝑖(𝑥0, 𝑦0), {𝑃 *}} ful�lls the requirements of Lemma 5.35 and is the hyperplane we
are looking for.

Consequently, for all cases above, we can always �nd a unique point 𝑃 * ∈ 𝒮𝐿𝑗 such that 𝐻 =
aff{Ł𝑖(𝑥0, 𝑦0), {𝑃 *}} ful�lls Lemma 5.35. Note that 𝑃 min

𝑖 = (𝑥min
𝑖 , 𝑎𝑖𝑥

min
𝑖 + 𝑏𝑖, 𝑓𝐿𝑖(𝑥min

𝑖 ))
and 𝑃 max

𝑖 = (𝑥max
𝑖 , 𝑎𝑖𝑥

max
𝑖 + 𝑏𝑖, 𝑓𝐿𝑖(𝑥max

𝑖 )) are two di�erent points on 𝒮𝐿𝑖 . Since 𝑃 min
𝑖 , 𝑃 max

𝑖

and 𝑃 * do not lie on the same line, we set 𝐻 = aff{𝑃 min
𝑖 , 𝑃 max

𝑖 , 𝑃 *}. We can compute 𝐻 by
solving a system of linear equations. The algorithm is summarized in Algorithm 5.1.

De�ne 𝜕𝒮 = {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦) ∈ 𝜕𝑋, 𝑧 = 𝑓(𝑥, 𝑦)} and for each 𝑖 ∈ {1, . . . , 𝑚} and the
corresponding facet 𝐹𝑖 we further de�ne 𝒮𝐹𝑖 = {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦) ∈ 𝐹𝑖, 𝑧 = 𝑓(𝑥, 𝑦)} .
Lemma 5.36
For any 𝐿𝑖 ⊂ 𝑋̌𝑔 ∩ 𝜕𝑋 with 𝑖 ∈ {1, . . . , 𝑚1} and for any (𝑥0, 𝑦0) ∈ 𝐿𝑖 ⊂ 𝐹𝑖, there exists a
hyperplane 𝐻
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Algorithm 5.1: Algorithm that computes a hyperplane that intersects 𝒮𝐿𝑖 , 𝒮𝐿𝑗 and is below
them
Input: Line segments 𝐿𝑖 and 𝐿𝑗 with 𝑖, 𝑗 ∈ {1, . . . , 𝑚1}, a point x0 = (𝑥0, 𝑦0) ∈ 𝐿𝑖

Output: The unique hyperplane 𝐻(x0, 𝐿𝑖, 𝐿𝑗) with 𝐻 ⊃ Ł𝑖(𝑥0, 𝑦0), 𝐻 ∩ 𝒮𝐿𝑗 ̸= ∅ and 𝐻
is below 𝒮𝐿𝑖 and 𝒮𝐿𝑗

1 if aff{𝐿𝑖} and aff{𝐿𝑗} are not parallel then
2 if x0 ∈ 𝐿𝑗 then
3 return 𝑇 (x0)
4 end
5 Compute the intersection point (𝑥𝑖𝑗 , 𝑦𝑖𝑗), value 𝑔𝑗(𝑥min

𝑗 ) and 𝑔𝑗(𝑥max
𝑗 );

6 Compute 𝑧𝑖𝑗 = 𝑓 ′
𝐿𝑖

(𝑥0)(𝑥𝑖𝑗 − 𝑥0) + 𝑓𝐿𝑖(𝑥0) and set 𝑃𝑖𝑗 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗);
7 if 𝑔𝑗(𝑥min

𝑗 ) ≤ 𝑧𝑖𝑗 ≤ 𝑔𝑗(𝑥max
𝑗 ) or 𝑔𝑗(𝑥max

𝑗 ) ≤ 𝑧𝑖𝑗 ≤ 𝑔𝑗(𝑥min
𝑗 ) then

8 Compute the unique root 𝑥* of 𝑔𝑗(𝑥) − 𝑧𝑖𝑗 = 0 for 𝑥 ∈ [𝑥min
𝑗 , 𝑥max

𝑗 ];
9 Set 𝑃 * = (𝑥*, 𝑎𝑗𝑥* + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥*))

10 end
11 if 𝑧𝑖𝑗 < 𝑔𝑗(𝑥min

𝑗 ) < 𝑔𝑗(𝑥max
𝑗 ) or 𝑔𝑗(𝑥max

𝑗 ) < 𝑔𝑗(𝑥min
𝑗 ) < 𝑧𝑖𝑗 then

12 Set 𝑃 * = (𝑥min
𝑗 , 𝑎𝑗𝑥min

𝑗 + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥min
𝑗 ))

13 end
14 if 𝑧𝑖𝑗 < 𝑔𝑗(𝑥max

𝑗 ) < 𝑔𝑗(𝑥min
𝑗 ) or 𝑔𝑗(𝑥min

𝑗 ) < 𝑔𝑗(𝑥max
𝑗 ) < 𝑧𝑖𝑗 then

15 Set 𝑃 * = (𝑥max
𝑗 , 𝑎𝑗𝑥max

𝑗 + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥max
𝑗 ))

16 end
17 end
18 else
19 Compute 𝑓 ′

𝐿𝑗
(𝑥min

𝑗 ), 𝑓 ′
𝐿𝑗

(𝑥max
𝑗 ) and 𝑓 ′

𝐿𝑖
(𝑥0);

20 if 𝑓 ′
𝐿𝑗

(𝑥min
𝑗 ) ≤ 𝑓 ′

𝐿𝑖
(𝑥0) ≤ 𝑓 ′

𝐿𝑗
(𝑥max

𝑗 ) then
21 Compute the unique root 𝑥* of 𝑓 ′

𝐿𝑗
(𝑥) − 𝑓 ′

𝐿𝑖
(𝑥0) for 𝑥 ∈ [𝑥min

𝑗 , 𝑥max
𝑗 ];

22 Set 𝑃 * = (𝑥*, 𝑎𝑗𝑥* + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥*)).
23 end
24 if 𝑓 ′

𝐿𝑖
(𝑥0) < 𝑓 ′

𝐿𝑗
(𝑥min

𝑗 ) then
25 Set 𝑃 * = (𝑥min

𝑗 , 𝑎𝑗𝑥min
𝑗 + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥min

𝑗 ))
26 end
27 if 𝑓 ′

𝐿𝑗
(𝑥max

𝑗 ) < 𝑓 ′
𝐿𝑖

(𝑥0) then
28 Set 𝑃 * = (𝑥max

𝑗 , 𝑎𝑗𝑥max
𝑗 + 𝑏𝑗 , 𝑓𝐿𝑗 (𝑥max

𝑗 ))
29 end
30 end
31 Compute Ł𝑖(𝑥0, 𝑦0)
32 Compute 𝐻((𝑥0, 𝑦0), 𝐿𝑖, 𝐿𝑗) = aff{Ł𝑖(𝑥0, 𝑦0), {𝑃 *}} and return 𝐻((𝑥0, 𝑦0), 𝐿𝑖, 𝐿𝑗)
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(a) For the case 𝑓 ′
𝐿𝑖

(𝑥0) < 𝑓 ′
𝐿𝑗

(𝑥min
𝑗 ) (b) For the case 𝑓 ′

𝐿𝑖
(𝑥0) > 𝑓 ′

𝐿𝑗
(𝑥max

𝑗 )

Figure 5.18: Two cases by 𝑓 ′
𝐿𝑖

(𝑥0) ̸∈ [𝑓 ′
𝐿𝑗

(𝑥min
𝑗 ), 𝑓 ′

𝐿𝑗
(𝑥max

𝑗 )] in Algorithm 5.1

1. either with 𝐻 = 𝑇 (𝑥0, 𝑦0)

2. or with (𝐻 ∩ 𝜕𝒮) ∖ 𝒮𝐹𝑖 ̸= ∅

such that 𝐻 ⊃ Ł𝑖(𝑥0, 𝑦0). In addition, 𝐻 is below 𝒮 over (𝑥, 𝑦) ∈ 𝑋̌𝑔 ∩ 𝜕𝑋 .

Proof. We develop an algorithm to �nd the hyperplane 𝐻 .
Denote aff{𝐹𝑖} = {(𝑥, 𝑦) | 𝑎𝑖𝑥 + 𝑏𝑖𝑥 = 𝑐𝑖} with three constants 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ R. Since

𝐹𝑖 is a facet of 𝑋 , we have 𝑋 ⊂ {(𝑥, 𝑦) | 𝑎𝑖𝑥 + 𝑏𝑖𝑥 ≥ 𝑐𝑖} or 𝑋 ⊂ {(𝑥, 𝑦) | 𝑎𝑖𝑥 + 𝑏𝑖𝑥 ≤
𝑐𝑖}. Lemma 5.18 implies that for any two nonvertical 𝐻1, 𝐻2 with 𝐻1 ⊃ Ł𝑖(𝑥0, 𝑦0) and
𝐻2 ⊃ Ł𝑖(𝑥0, 𝑦0), either 𝐻1 is below 𝐻2 over 𝑋 or 𝐻2 is below 𝐻1 over 𝑋 . Recall that
𝑋̌𝑔 ∩ 𝜕𝑋 = 𝐿1 ∪ · · · ∪ 𝐿𝑚1 ∪ {x𝑒

1, . . . , x𝑒
𝑚2}. For every 𝐿𝑗 with 𝑗 ̸= 𝑖 and 𝑗 ∈ {1, . . . , 𝑚1},

compute 𝐻𝐿
𝑗 = 𝐻((𝑥0, 𝑦0), 𝐿𝑖, 𝐿𝑗) as output of Algorithm 5.1. For every x𝑒

𝑗 with x𝑒
𝑗 ̸∈ 𝐹𝑖

and 𝑗 ∈ {1, . . . , 𝑚2}, compute 𝐻𝑒
𝑗 = aff{Ł𝑖(𝑥0, 𝑦0), {(x𝑒

𝑗 , 𝑓(x𝑒
𝑗))}} which is a nonvertical

hyperplane since (x𝑒
𝑗 , 𝑓(x𝑒

𝑗)) ̸∈ Ł𝑖(𝑥0, 𝑦0) and x𝑒
𝑗 ̸∈ 𝐹𝑖. Consider the set

ℋ(𝑥0, 𝑦0) = {𝐻𝐿
𝑗 | 𝑗 ̸= 𝑖, 𝑗 ∈ {1, . . . , 𝑚1}} ∪ {𝐻𝑒

𝑗 | x𝑒
𝑗 ̸∈ 𝐹𝑖, 𝑗 ∈ {1, . . . , 𝑚2}}

of �nitely many hyperplanes that all contain Ł𝑖(𝑥0, 𝑦0). There exists 𝐻* ∈ ℋ(𝑥0, 𝑦0) such
that 𝐻* is below 𝐻 over 𝑋 for every 𝐻 ∈ ℋ(𝑥0, 𝑦0). The hyperplane 𝐻* is below 𝒮𝐹𝑖 since
Ł𝑖(𝑥0, 𝑦0) ⊂ 𝐻* which is below 𝒮𝐹𝑖 . The hyperplane 𝐻* is below every 𝒮𝐹𝑗 with 𝑗 ̸= 𝑖 since
𝐻* is below 𝐻𝐿

𝑗 over 𝐹𝑗 ⊂ 𝑋 and 𝐻𝐿
𝑗 is below 𝒮𝐹𝑗 . Similarly, 𝐻* is below every (x𝑒

𝑗 , 𝑓(x𝑒
𝑗))

since 𝐻* is below 𝐻𝑒
𝑗 over 𝑋 ∋ x𝑒

𝑗 . Thus 𝐻* is below 𝒮 over (𝑥, 𝑦) ∈ 𝑋̌𝑔 ∩ 𝜕𝑋 .
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If 𝐻* = 𝐻𝐿
𝑘 for some 𝑘 ∈ {1, . . . , 𝑚1}, Algorithm 5.1 implies that either 𝐻* = 𝑇 (𝑥0, 𝑦0)

or there exists a point x𝑘 ∈ 𝐿𝑘 with x𝑘 ̸∈ 𝐹𝑖 and (x𝑘, 𝑓(x𝑘)) ∈ 𝐻*. Otherwise if 𝐻* = 𝐻𝑒
𝑘 ,

there exists a point x𝑘 ∈ 𝑋𝑒 with x𝑘 ̸∈ 𝐹𝑖 and (x𝑘, 𝑓(x𝑘)) ∈ 𝐻*.
In all cases either 𝐻 = 𝑇 (𝑥0, 𝑦0) or (x𝑘, 𝑓(x𝑘)) ∈ (𝐻 ∩ 𝜕𝒮) ∖ 𝒮𝐹𝑖 ̸= ∅. 2

Theorem 5.37
For any 𝐿𝑖 ⊂ 𝑋̌𝑔 ∩ 𝜕𝑋 with 𝑖 ∈ {1, . . . , 𝑚1} and for any (𝑥0, 𝑦0) ∈ 𝐿𝑖 ⊂ 𝐹𝑖, a hyperplane 𝐻*

which ful�lls Lemma 5.36 is either a tight valid hyperplane or there exists a tight valid hyperplane
𝐻** which is parallel to 𝐻*. Furthermore, 𝐻* is always a tight valid hyperplane if the Hessian
matrix is negative semide�nite, i.e., it satis�es

𝐻(𝑓)(𝑥, 𝑦) =
(︃

𝜕2

𝜕𝑥2 𝑓 𝜕2

𝜕𝑥𝜕𝑦 𝑓
𝜕2

𝜕𝑥𝜕𝑦 𝑓 𝜕2

𝜕𝑦2 𝑓

)︃
⪯ 0 (5.20)

for all (𝑥, 𝑦) ∈ int 𝑋 .

Proof. Denote 𝐻* = {(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖} with 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ R. Consider the
optimization problem

min
(𝑥,𝑦)∈𝑋

𝑓(𝑥, 𝑦) − (𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖) (OPmin
𝐻* )

that has a minimum 𝑧*, since 𝑋 is a compact set and 𝑓(𝑥, 𝑦) − (𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖) is a continuous
function. Note that 𝑧* ≤ 0 since 𝒮 ∩ 𝐻* ̸= ∅. The hyperplane 𝐻* is valid if and only if 𝑧* = 0.
The maximally valid subtangent plane 𝑇 max

𝐻 (𝑥0, 𝑦0) is Ł𝑖(𝑥0, 𝑦0) and there exists another point
(𝑥1, 𝑦1, 𝑧1) ∈ 𝒮 ∩ 𝐻* with (𝑥1, 𝑦1, 𝑧1) ̸∈ aff{Ł𝑖(𝑥0, 𝑦0)}. Recalling the de�nition of tight valid
hyperplanes in Section 5.3, we have

aff{Ł𝑖(𝑥0, 𝑦0), {(𝑥1, 𝑦1, 𝑧1)}} ⊂ aff
{︁

𝑇 max
𝐻* (x0) : for all x0 ∈ 𝑋𝐻*}︁ =: 𝑆𝐻*

which implies

2 = dim aff{Ł𝑖(𝑥0, 𝑦0), {(𝑥1, 𝑦1, 𝑧1)}} ≤ dim 𝑆𝐻* ≤ 2.

Hence 𝑆𝐻* is a hyperplane which implies 𝐻* is a tight valid hyperplane. Otherwise we have
𝑧* < 0 with solution (𝑥*, 𝑦*). Note that (𝑥*, 𝑦*) must be an interior point of 𝑋 since 𝐻* is
below 𝒮 over 𝑋̌𝑔 ∩ 𝜕𝑋 . We have then 𝑇 (𝑥*, 𝑦*) = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖 + 𝑧* which is a tight valid
hyperplane and is parallel to 𝐻*.

Every globally convex interior point is also a locally convex interior point. According
to [Edw94] and Lemma 5.5, (𝑥0, 𝑦0) satis�es 𝐻(𝑓)(𝑥0, 𝑦0) ⪰ 0. If (5.20) is satis�ed for all
(𝑥, 𝑦) ∈ int 𝑋 then we have 𝑋̌𝑔 ∩ int 𝑋 = ∅ which implies that 𝐻* is below 𝒮 over 𝑋̌𝑔 .
Lemma 5.20 implies that 𝐻* is valid. As we discussed above, 𝐻* is tight if it is valid. 2
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The hyperplanes ful�lling Lemma 5.36 are potentially tight valid hyperplanes since we only
need to check if the corresponding optimization problem (OPmin

𝐻* ) has the minimum 𝑧* = 0.
Until now we have only considered potentially tight valid hyperplanes that contain Ł𝑖(𝑥0, 𝑦0) for
an (𝑥0, 𝑦0) in an 𝐿𝑖. In order to show that there exists other potentially tight valid hyperplanes
𝐻 which are below 𝑓(𝑥, 𝑦) over 𝑋̌𝑔 ∩ 𝜕𝑋 we give the following de�nition.

De�nition 5.38 (Potentially tight valid hyperplanes of type 𝐴 and type 𝐵)
A hyperplane which ful�lls Lemma 5.36 is a potentially tight valid hyperplanes of type 𝐴. A
hyperplane 𝐻 is a potentially tight valid hyperplane of type 𝐵 if

• 𝐻 is below 𝑓(𝑥, 𝑦) over 𝑋̌𝑔 ∩ 𝜕𝑋 ,

• it satis�es 𝜋x(𝐻 ∩ 𝜕𝒮) ⊂ 𝑋𝑒 and |𝐻 ∩ 𝜕𝒮| ≥ 3 and

• there does not exist 𝐿𝑖 with x𝑒 ∈ 𝐿𝑖 and x𝑒 ∈ 𝜋x(𝐻 ∩ 𝜕𝒮) such that 𝐻 ⊃ Ł𝑖(x𝑒).

Due to the last condition in the de�nition of potentially tight valid hyperplanes of type 𝐵,
the set of potentially tight valid hyperplanes of type 𝐴 and the set of type 𝐵 are disjoint.

Corollary 5.39
Let 𝐻* be a potentially tight valid hyperplane of type 𝐵. Then 𝐻* is either a tight valid hyperplane
or there exists a tight valid hyperplane 𝐻** which is parallel to 𝐻*. Furthermore, 𝐻* is always a
tight valid hyperplane if every (𝑥, 𝑦) ∈ int 𝑋 satis�es (5.20).

Proof. The proof is the same as the proof of Theorem 5.37. 2

Now we discuss how to compute potentially tight valid hyperplanes 𝐻** of type 𝐵 algo-
rithmically. Note that every such 𝐻 satis�es 𝜋x(𝐻 ∩ 𝜕𝒮) ⊂ 𝑋𝑒 and |𝐻 ∩ 𝜕𝒮| ≥ 3. As every
three points x𝑖, x𝑗 , x𝑘 ∈ 𝑋𝑒 with 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑚 do not lie on a same line, it implies
that 𝐻 𝑖𝑗𝑘 = aff{(x𝑖, 𝑓(x𝑖), (x𝑗 , 𝑓(x𝑗), (x𝑘, 𝑓(x𝑘)} is a hyperplane. There are

(︀𝑚
3
)︀

such hyper-
planes 𝐻 𝑖𝑗𝑘. We can easily prove that a given 𝐻 𝑖𝑗𝑘 is a potentially tight valid hyperplane 𝐻**

of type 𝐵 if and only if

• for every x𝑙 ∈ 𝑋𝑒, 𝐻 𝑖𝑗𝑘 is below (x𝑙, 𝑓(x𝑙));

• for every 𝐿𝑖, 𝐻 𝑖𝑗𝑘 is below 𝒮𝐿𝑖 , for this we need only to compare the curve 𝒮𝐿𝑖 de�ned
by a polynomial of degree up to 3 and the line segment 𝐻 𝑖𝑗𝑘 ∩ {(x, 𝑧) | x ∈ 𝐿𝑖};

• for any 𝐿𝑘 containing x𝑠, 𝑠 ∈ {𝑖, 𝑗, 𝑘}, check if it ful�lls Ł𝑖(x𝑙) ̸⊂ 𝐻 𝑖𝑗𝑘 .

All the three conditions above can be checked easily. Thus we design Algorithm 5.3 to compute
potentially tight valid hyperplanes of type 𝐵.

The proof of Lemma 5.36 describes an algorithm to compute the unique potentially tight
valid hyperplane 𝐻* of type 𝐴 that contains Ł𝑖(x0), denoted by 𝐻*(x0, 𝐿𝑖). Note that we
cannot omit 𝐿𝑖 in the notation since there may exist x𝑘 ∈ 𝑋𝑒 with x𝑘 ∈ 𝐿𝑖, x𝑘 ∈ 𝐿𝑗 , 𝑖 ̸= 𝑗
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and 𝐻*(x𝑘, 𝐿𝑖) ̸= 𝐻*(x𝑘, 𝐿𝑗). For any x1 ∈ 𝐿𝑗 with x1 ̸= x0, 𝐻*(x0, 𝐿𝑖) = 𝐻*(x1, 𝐿𝑗)
if and only if 𝐻*(x0, 𝐿𝑖) ⊃ Ł𝑗(x1). On the other hand, for every three points x𝑖, x𝑗 , x𝑘 ∈
𝑋𝑒, we use the algorithm above to check if 𝐻 𝑖𝑗𝑘 = aff{(x𝑖, 𝑓(x𝑖), (x𝑗 , 𝑓(x𝑗), (x𝑘, 𝑓(x𝑘)}
is a potentially tight valid hyperplane 𝐻** of type 𝐵. If yes, denote it by 𝐻**(𝑖, 𝑗, 𝑘). Let
x𝑖′

, x𝑗′
, x𝑘′ ∈ 𝑋𝑒 be three points such that 𝐻 𝑖′𝑗′𝑘′ is a potentially tight valid hyperplane of

type 𝐵 with {x𝑖′
, x𝑗′

, x𝑘′} ≠ {x𝑖, x𝑗 , x𝑘}. Then 𝐻**(𝑖, 𝑗, 𝑘) = 𝐻**(𝑖′, 𝑗′, 𝑘′) if and only if all
the points {(x𝑙, 𝑓(x𝑙)) | 𝑙 ∈ {𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′}} are on a same hyperplane.

De�nition 5.40 (Tight valid hyperplanes of type 𝐴 and type 𝐵)
A tight valid hyperplane 𝐻* is a tight valid hyperplane of type 𝐴 if 𝐻* is also a potentially
tight valid hyperplane of type 𝐴 or 𝐻* is parallel to a potentially tight valid hyperplanes of
type 𝐴. Similarly, a tight valid hyperplane 𝐻** is a tight valid hyperplane of type 𝐵 if 𝐻** is
also a potentially tight valid hyperplane of type 𝐵 or 𝐻** is parallel to a potentially tight valid
hyperplane of type 𝐵.

For any 𝑖 ∈ {1, . . . , 𝑚1}, let 𝑋𝑖 ⊂ 𝐿𝑖 be a set of �nitely many points. Algorithm 5.2 computes
a set of tight valid hyperplanes of type 𝐴. Let 𝑁2 ∈ N be the upper bound of the number of
tight valid hyperplanes of type 𝐵 we want to have. Algorithm 5.3 computes a set of tight valid
hyperplanes of type 𝐵.

5.5 Computational results

Recall the complete MINLP model (2.26) introduced in Section 2.1. All nonlinearities and
integrality conditions can be handled by the solver SCIP directly. Note that in that model,
we just consider pumps with �xed speed because of the two real-world instances introduced
in Section 3.3.

In many water supply networks, there are variable speed pumps. For them the character-
istic diagrams often involve the relative speed 𝜔. In [Hae08; Kol11], the pressure increase is
approximated by

Δℎ𝑝𝑡 = 𝜔2
𝑝𝑡𝛼0𝑝 − 𝜔𝑝𝑡𝛼1𝑝𝑄𝑝𝑡 − 𝛼2𝑝𝑄2

𝑝𝑡, (5.21)

where 𝛼0𝑝, 𝛼1𝑝 and 𝛼2𝑝 are constants derived from the characteristic curve for pump 𝑝.
Figure 5.19 shows the characteristic curves for pump 𝑝 with variable speed, in cases of 𝜔1 = 1,

𝜔1 = 0.8 and 𝜔1 = 0.6.
Similar to (2.23), the power consumption of pump 𝑝 can be approximated as

𝐶𝑝𝑡 = 𝜅𝑡𝜌𝑔Δℎ𝑝𝑡𝑄𝑝𝑡

𝜂𝑝𝑡
=

𝜅𝑡𝜌𝑔
(︁
𝜔2

𝑝𝑡𝛼0𝑝𝑄𝑝𝑡 − 𝜔𝑝𝑡𝛼1𝑝𝑄2
𝑝𝑡 − 𝛼2𝑝𝑄3

𝑝𝑡

)︁
𝜂𝑝𝑡(𝑄𝑝𝑡, 𝜔𝑝𝑡)

=: 𝑔(𝑄𝑝𝑡, 𝜔𝑝𝑡) (5.22)

Note that the e�ciency 𝜂𝑝𝑡 also depends on 𝑄𝑝𝑡 and 𝜔𝑝𝑡 and there exists a function to present
it, hence there exists a function 𝑔(𝑄𝑝𝑡, 𝜔𝑝𝑡) to approximate 𝐶𝑝𝑡.
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Algorithm 5.2: Algorithm that computes a set of tight valid hyperplanes of type 𝐴

Input: A polynomial function in form (5.17), polytope 𝑋 ⊂ R2 as the domain set, the
corresponding 𝐿1, 𝐿2, . . . , 𝐿𝑚1 and {x𝑒

1, . . . , x𝑒
𝑚2}, point sets 𝑋1, 𝑋2, . . . , 𝑋𝑚1

Output: Set ℋ𝐴 of tight valid hyperplanes for 𝒮
1 Initialize ℋ𝐴 = ℋ* = ∅
2 for every 𝐿𝑖 ∈ {𝐿1, 𝐿2, . . . , 𝐿𝑚1} do
3 Compute 𝐻* := 𝐻(x0, 𝐿𝑖, 𝐿𝑖′) for an 𝐿𝑖′ ̸= 𝐿𝑖 using Algorithm 5.1;
4 for every x0 ∈ 𝐿𝑖 do
5 for every 𝐿𝑗 ∈ {𝐿1, . . . , 𝐿𝑚1} with 𝐿𝑗 ̸= 𝐿𝑖 and 𝐿𝑗 ̸= 𝐿𝑖′ do
6 Compute 𝐻(x0, 𝐿𝑖, 𝐿𝑗) using Algorithm 5.1;
7 if 𝐻(x0, 𝐿𝑖, 𝐿𝑗) is below 𝐻* over 𝑋 then
8 Set 𝐻* = 𝐻(x0, 𝐿𝑖, 𝐿𝑗)
9 end

10 end
11 Compute Ł𝑖(x0) de�ned by (5.19);
12 for every x𝑒

𝑖 ∈ {x𝑒
1, . . . , x𝑒

𝑚2} with x𝑒
𝑖 ̸∈ 𝐹𝑖 do

13 Compute 𝐻 ′ = aff{Ł𝑖(x0), {(x𝑒
𝑖 , 𝑓(x𝑒

𝑖 ))}};
14 if 𝐻 ′ is below 𝐻* over 𝑋 then
15 Set 𝐻* = 𝐻 ′

16 end
17 end
18 Set ℋ* = ℋ* ∪ {𝐻*}
19 end
20 end
21 if every x int 𝑋 satis�es (5.20) then
22 Set ℋ𝐴 = ℋ*

23 end
24 else
25 for every 𝐻* = {(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐} ∈ ℋ* do
26 Solve (OPmin

𝐻* ) and get optimum 𝑧*;
27 if 𝑧* = 0 then
28 Set ℋ𝐴 = ℋ𝐴 ∪ {𝐻*}
29 end
30 else
31 Set ℋ𝐴 = ℋ𝐴 ∪ {{(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐 + 𝑧*}}
32 end
33 end
34 end
35 Return ℋ𝐴
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Algorithm 5.3: Algorithm that computes a set of tight valid hyperplanes of type 𝐵

Input: A polynomial function in form (5.17), domain set 𝑋 ⊂ R2 and 𝑁2 ∈ N
Output: A set ℋ of up to 𝑁2 tight (downward closed) valid hyperplanes for 𝒮

1 Initialize ℋ𝐵 = ℋ** = ∅
2 for every x𝑖, x𝑗 , x𝑘 ∈ 𝑋𝑒 with 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑚 and |ℋ**| < 𝑁2 do
3 Compute 𝐻 𝑖𝑗𝑘 = aff{(x𝑖, 𝑓(x𝑖), (x𝑗 , 𝑓(x𝑗), (x𝑘, 𝑓(x𝑘)} and set ℋ′ = {𝐻 𝑖𝑗𝑘};
4 for every x𝑙 ∈ 𝑋𝑒 do
5 if “𝐻 𝑖𝑗𝑘 is below (x𝑙, 𝑓(x𝑙))” is false then
6 Set ℋ′ = ∅ and Goto line 23
7 end
8 end
9 for every 𝐿𝑖 ∈ {𝐿1, 𝐿2, . . . , 𝐿𝑚1} do

10 if “𝐻 𝑖𝑗𝑘 is below 𝒮𝐿𝑖” is false then
11 Set ℋ′ = ∅ and Goto line 23
12 end
13 if (𝐻 𝑖𝑗𝑘 ∩ 𝒮𝐿𝑖) ⊂ 𝒮𝑋𝑒 then
14 Compute the potential unique point (x*, 𝑓(x*)) ∈ 𝐻 𝑖𝑗𝑘 ∩ 𝒮𝐿𝑖 ;
15 if (x*, 𝑓(x*)) exists and 𝐻 𝑖𝑗𝑘 ⊃ Ł𝑖(x*) then
16 Set ℋ′ = ∅ and Goto line 23
17 end
18 end
19 else
20 Set ℋ′ = ∅ and Goto line 23
21 end
22 end
23 Set ℋ** = ℋ** ∪ ℋ′

24 end
25 if every x ∈ int 𝑋 satis�es (5.20) then
26 Set ℋ𝐵 = ℋ**

27 end
28 else
29 for every 𝐻* = {(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐} ∈ ℋ** do
30 Solve (OPmin

𝐻* ) and get optimum 𝑧*;
31 if 𝑧* = 0 then
32 Set ℋ𝐵 = ℋ𝐵 ∪ {𝐻*}
33 end
34 else
35 Set ℋ𝐵 = ℋ𝐵 ∪ {{(𝑥, 𝑦, 𝑧) | 𝑧 = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐 + 𝑧*}}
36 end
37 end
38 end
39 Return ℋ𝐵

121



Chapter 5 Convex Hull of Graphs of Polynomial Functions

Figure 5.19: Example of characteristic curve for a pump with variable speed

Our solver SCIP can solve general nonconvex MIQCP [VG18; BHV12]. As a consequence,
constraints consisting of any polynomial function can be handled by SCIP, e.g., by substituting
them recursively until they contain only nonlinear terms in form of 𝑥 · 𝑦 or 𝑥2. 1

To enable that SCIP can handle the constraints like (5.22), we try to approximate function 𝑔
with a polynomial function. Note that characteristic diagrams are usually given by the vendor
with a set of measured points.

For polynomial �tting, on the one hand, we want to keep the degree of polynomials as low
as possible. This is very helpful for the outer-approximation algorithms. On the other hand, the
degree of polynomials should be high enough so that the approximation error is acceptable.
For the computation we got a third real-world instance from Tsinghua University, Department
of Hydraulic Engineering. Figure 5.20 shows a small water supply network n9p3a11 in the
suburbs of Beijing that contains 9 nodes (1 reservoir, 3 tanks, 5 junctions), 2 consumers, 3 pipes,
9 pumps, and 2 valves. Similar to the other 2 instances showed in Section 3.3.1, the network
contains hourly demand forecast for one day.

All pumps in n9p3a11 are variable speed pumps. With given data for the characteristic
diagrams, we get approximated polynomials for energy consumption in form

𝐶𝑝𝑡 = 𝑓𝑝(𝑄𝑝𝑡, 𝜔𝑝𝑡) = 𝐶0𝑝𝜔3
𝑝𝑡 + 𝐶1𝑝𝜔2

𝑝𝑡𝑄𝑝𝑡 + 𝐶2𝑝𝜔𝑝𝑡𝑄
2
𝑝𝑡 + 𝐶3𝑝𝑄3

𝑝𝑡 (5.23)

with very acceptable approximation errors. Constants 𝐶0𝑝, 𝐶1𝑝, 𝐶2𝑝 and 𝐶3𝑝 are found by
solving an NLP for every pump 𝑝.

For every constraint of the form 𝐶𝑝𝑡 ≥ 𝑓𝑝(𝑄𝑝𝑡, 𝜔𝑝𝑡), variables 𝑄𝑝𝑡 and 𝜔𝑝𝑡 are box-constrained.
The polynomial function 𝑓𝑝(𝑄𝑝𝑡, 𝜔𝑝𝑡) is exactly in the form of (5.17). Thus, Algorithm 5.2 and
Algorithm 5.3 are applicable. For every of the four facets forming the box-constrained domain,
we �rst compute the globally convex domain boundary points on that facet according to the

1Note that SCIP is already able to handle more complex nonlinear constraints directly, as explained in the
latest user manual under http://scip.zib.de
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Figure 5.20: Schematic diagram of water network instance n9p3a11 with 9 nodes (1 reservoir, 3 tanks,
5 junctions), 2 consumers, 3 pipes, 9 pumps, and 2 valves.

algorithm introduced in the proof of Lemma 5.33. By case 2 of Lemma 5.33 we compute tight
valid hyperplanes of type A based on point 𝑥min

𝑖 , 𝑥max
𝑖 and (𝑥min

𝑖 + 𝑥max
𝑖 )/2. By case 3 we

compute tight valid hyperplanes of type A based on points 𝑥min
𝑖 and 𝑥mid

𝑖 . By case 4 we compute
tight valid hyperplanes of type A based on points 𝑥mid

𝑖 and 𝑥max
𝑖 . In addition, since we have

�xed four extreme points, two tight valid hyperplanes of type B are also computed. Finally,
depending on the structure of the globally convex domain boundary points, six to eight linear
constraints corresponding to tight valid hyperplanes are added for every constraint in the form
of 𝐶𝑝𝑡 ≥ 𝑓𝑝(𝑄𝑝𝑡, 𝜔𝑝𝑡). In the following we show a numerical example for n9p3a11.

Example 5.41
In n9p3a11 there is a pump 𝑝 with energy consumption constraint in the form of (5.23)

𝐶𝑝𝑡 = 𝑓𝑝(𝑄𝑝𝑡, 𝜔𝑝𝑡) = 25.9267 𝜔3
𝑝𝑡 + 18.1348 𝜔2

𝑝𝑡𝑄𝑝𝑡 + 22.1276 𝜔𝑝𝑡𝑄
2
𝑝𝑡 − 42.6895 𝑄3

𝑝𝑡

with domain 𝑋𝑝 := {(𝜔𝑝𝑡, 𝑄𝑝𝑡) ∈ [0.85, 1.0] × [0.4, 0.7]}. The graph of 𝑓𝑝(𝑄𝑝𝑡, 𝜔𝑝𝑡) over 𝑋𝑝,
denoted by 𝒮𝑝 is shown as the white surface in Figure 5.21. Algorithms in Section 5.4 found six
tight hyperplanes in the form of

𝐻 = {(𝜔𝑝𝑡, 𝑄𝑝𝑡, 𝐶𝑝𝑡) | 𝐶𝑝𝑡 = 𝑎𝜔𝑝𝑡 + 𝑏𝑄𝑝𝑡 + 𝑐},

where 𝑎, 𝑏, 𝑐 are coe�cients. The coe�cients for the six tight hyperplanes are shown in Table 5.1.
Note that the validity of each hyperplane has been veri�ed by solving the corresponding NLP
(OPmin

𝐻* ) at the end of Algorithm 5.2 and Algorithm 5.3, respectively. In addition, each tight
hyperplane to 𝒮𝑝 found above is shown as the yellow hyperplane in Figure 5.21, respectively.♢
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(a) Graph 𝒮𝑝 and tight hyperplane 𝐻1
𝑝 (b) Graph 𝒮𝑝 and tight hyperplane 𝐻2

𝑝

(c) Graph 𝒮𝑝 and tight hyperplane 𝐻3
𝑝 (d) Graph 𝒮𝑝 and tight hyperplane 𝐻4

𝑝

(e) Graph 𝒮𝑝 and tight hyperplane 𝐻5
𝑝 (f) Graph 𝒮𝑝 and tight hyperplane 𝐻6

𝑝

Figure 5.21: Original feasible region and linear underestimators in Example 5.41
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Table 5.1: Tight hyperplanes to 𝒮𝑝 and the corresponding coe�cients in Example 5.41

Tight hyperplane 𝑎 𝑏 𝑐

𝐻1
𝑝 72.068325 -5.909471 -37.453828

𝐻2
𝑝 95.828520 -0.365311 -61.693424

𝐻3
𝑝 84.30486 -4.255828 -49.012439

𝐻4
𝑝 88.619212 -2.912092 -53.620247

𝐻5
𝑝 114.01154 2.774008 -81.132173

𝐻6
𝑝 101.726218 1.355564 -68.27948

The experimental setup is the same as introduced in Section 4.4. Table 5.2 presents the
computational results for the 24 original MINLPs and the corresponding MINLPs with extended
pump cost relaxation constraints.

MINLP 𝑃 [0, 𝑖] denotes the operation problems for the �rst 𝑖 hours with 𝑖 = 1, . . . , 24. For
every MINLP we set a time limit of one hour and gap limit with 10−5. In column “(time) gap”
the time is displayed if the gap limit has been reached within an hour. Otherwise the time
limit has been reached, only the current gap needs to be displayed. Note that we only need to
calculate the linear constraints one time before we start solving MINLP. This preprocessing only
takes a few seconds in total. From the table we see that not only the dual bounds are improved
signi�cantly, most primal bounds are also improved for unsolved MINLP for operation of more
than 14 hours.

Recall pump energy consumption constraint 𝐶𝑝𝑡 ≥ 𝑓𝑝(𝑄𝑝𝑡, 𝜔𝑝𝑡), variable 𝐶𝑝𝑡 is contained in
the objective. Better outer-approximation as well as tighter relaxation will improve the dual
bound directly. Our computational results have veri�ed it. A graphic comparison of the primal
and dual bounds is shown in Figure 5.22.
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Table 5.2: Detailed computational results for MINLPs with extended pump cost relaxation constraints
and the original MINLPs for n9p3a11, computed by SCIP 5.0.1

MINLP original with ext. pump cost rel. cons.
primal dual (time) gap primal dual (time) gap

P[0, 1] 19.46 19.46 (0.48) 0 19.38 19.38 (0.42) 0
P[0, 2] 39.57 39.57 (1.38) 0 39.5 39.5 (1.22) 0
P[0, 3] 215 215 (1857.85) 0 215 215 (260.7) 0
P[0, 4] 247.63 247.63 (2797.98) 0 247.63 247.63 (1366.6) 0
P[0, 5] 324.33 214.13 0.514659 314.94 314.8 0.000470589
P[0, 6] 456 163.65 1.78649 404.81 343.41 0.178792
P[0, 7] 586.42 237.08 1.47354 586.28 407.72 0.437932
P[0, 8] 822.62 253.84 2.24071 782.35 558.13 0.401734
P[0, 9] 1113.14 238.28 3.67158 1115 727.98 0.531645
P[0, 10] 1494.42 423.74 2.52677 1518.81 940.26 0.615304
P[0, 11] 1914.45 379.87 4.03972 1934.06 1146.68 0.686657
P[0, 12] 2603.85 461.55 4.64152 2669.16 1451.5 0.838896
P[0, 13] 3174.84 546.05 4.81419 3197.05 1690.12 0.891608
P[0, 14] 4127.24 442.67 8.3235 3674.65 1882.28 0.952236
P[0, 15] 4373.83 526.89 7.30122 4056.38 2073.05 0.956725
P[0, 16] 4806.56 643.72 6.46681 4757.25 2354.57 1.02043
P[0, 17] 5190.04 736.59 6.04607 5023.09 2616.48 0.919789
P[0, 18] 5909.72 504.07 10.724 5636.12 2970.92 0.897098
P[0, 19] 6731.29 575.39 10.6987 6393.88 3071.39 1.08175
P[0, 20] 7491.98 642.96 10.6524 7014.98 3543.4 0.979729
P[0, 21] 7831.22 476.56 15.4329 7439.11 3636.75 1.04554
P[0, 22] 8785.58 523.11 15.7948 7998.55 3823.91 1.09172
P[0, 23] 8147.78 571.52 13.2562 8124.75 3791.95 1.14263
P[0, 24] 8380.79 454.64 17.434 8271.19 4070.3 1.03208
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Figure 5.22: Comparison of primal and dual bounds by solving MINLPs with extended pump cost
relaxation constraints and the original MINLPs for n9p3a11
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Chapter 6

Conclusion and Outlook

This thesis deals with planning problems for the optimal operation of water supply networks.
At the beginning, accompanying a literature survey we argue why we use the MINLP approach
to model and to solve the problem.

Our contribution starts from Chapter 2. In the �rst part we present a detailed MINLP model.
During the veri�cation of computed solutions by our solver we detect modeling errors that
cannot be found in any other literature. For that we add additional variables and constraints to
correct the model. In the �rst part we present several reformulation and presolving techniques.
These techniques can be utilized once the corresponding network properties are detected.

For such a nonconvex MINLP problem, there are plenty of works for solutions to local
optimality. Our �nal goal is to reach 𝜀-global optimality since the solution quality is expected to
be veri�ed. In Chapter 3 we reduce the dynamic version of the operation problem for 24 hours
to a version of a �xed point of time. This helps us to verify the model and the data of instances.

The �rst major academic contributions of the thesis appear in Chapter 4. There we work on
subnetworks that only contain pipes and junctions. These subnetworks appear very commonly
since nowadays network design pipes that are contained in cycles are used as backups. This is
necessary if a part of the subnetworks have technical interruptions. For a general subnetwork
de�ned there, we prove that the corresponding nonlinear constraints which consist of a nonlinear
feasibility problem can always be uniquely solved. Based on the derived theorem, we show that
the unique solvability is reached by symbolic computation for our instance using Maple [Map].
However, the exact symbolic solution cannot be used by SCIP directly. Instead, we approximate
the functions for the solution above with polynomial �tting. The approximated polynomial
function can be handled by SCIP and has very little approximative error. The simpli�ed MINLPs
are easier to solve, proved by computational results.

Although the exact symbolic solution cannot help SCIP directly, it can be very useful e.g., for
developing simulation tools. The property of unique solvability may also contribute to develop
algorithms to check feasibility of the entire network.

The second major scienti�c contribution of the thesis can be found in Chapter 5. The idea
comes from the very early computational results for instancen9p3a11, presented in Section 5.5.
Even the instance is much smaller and structurally easier than n88p64a64 and n25p22a18,
primal solutions cannot always be found rapidly and the dual bounds are also very “bad”. The
only di�erence is that the pumps in this instance can be operated with a variable speed. Due
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to one more dimension in the characteristic curve, nonconvexities are increased both in the
constraints and especially in the objective. Hence the low quality of dual bounds is expectable.
During seeking a method to generate better outer-approximation for the nonlinear terms, we
found very little literature which can help us. As a consequence, we decide to investigate the
description of the convex hull of graphs of polynomial functions over a polytope in the thesis,
in particular for dimension 𝑛.

An additional remark is that we only generate additional linear constraints (we call “valid
3D cuts”) before we start solving MINLP. Note that during the branch-and-bound approach
the new subproblem contains changed and tighter variable bounds, new valid 3D cuts can be
generated adaptively and integrated into the MINLP solving process. We prefer to leave the
implementation to be done for real industrial requirement rather than in this research thesis.

At the end, in addition to the promising results presented in this thesis, we think there are
still a lot of topics we can continue the research. First of all, we need better primal solutions.
Instead of using general MINLP heuristics, we can try to �nd special heuristics for our certain
problem. Furthermore, according to our computational results, there is still much room for the
improvement of dual bounds to verify the quality of solutions. Besides the idea of adaptive
re�nement of out-approximation of polynomial constraints, decomposition techniques based
on Lagrangian relaxation should also help us to improve the dual bounds.
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