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Denis Aßmann

Exact Methods for  
Two-Stage Robust Optimization
with Applications in Gas Networks

Natural gas is an important source of energy that is regarded as essential for achieving the 
politically set climate goals. In particular, gas-fired power plants are valued as flexible buffers 
to compensate for fluctuations in renewable electricity generation. Moreover, gas network 
operators face new challenges due to the liberalization of the European gas market. Under 
the newly introduced entry-exit market regime, gas network operators have to ensure that 
all possible market outcomes can be transported over the network.

Hence, the operators of gas networks require new aids for decision-making under uncertain 
conditions such as load fluctuations or inaccuracies in physical parameters.

To this end, this thesis investigates a general class of two-stage robust optimization  
problems using the example of gas network operations under uncertainty. Three general 
solution methods are developed for this problem class. The first two approaches use ideas 
from polynomial optimization to decide robust feasibility or infeasibility. Both procedures 
consider polynomial formulations that are approximated by semidefinite programs via  
the Lasserre relaxation hierarchy. The third approach is based on a transformation of  
the two-stage robust problem into a number of single-stage optimization problems. The  
resulting subproblems are approximated by mixed-integer linear programs. By combining 
this method with additional preprocessing and aggregation steps, it is demonstrated that 
real-world problems can be solved efficiently within a short time.
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Zusammenfassung

Erdgas ist heutzutageeinerderwichtigsten Energieträgerundgilt als Schlüssel-

technologie zum Erreichen der politisch gesteckten Klimaziele. Hierbei gelten

Gaskraftwerke als flexible Puffer, um Schwankungen der Stromerzeugung

aus regenerativen Energiequellen kurzfristig auszugleichen. Darüber hinaus

stehendieGasnetzbetreiber in Folgeder Liberalisierung des europäischenGas-

marktes vor zusätzlichen Herausforderungen. Im neuen Entry-Exit-Modell

ist es Aufgabe der Gasnetzbetreiber, die Transportierbarkeit aller möglichen

Marktergebnisse über das Netz zu gewährleisten. Der Betrieb von Gasnetzen

unter unsicheren Bedingungen erfordert daher zunehmend neue Entschei-

dungshilfen.

Zu diesem Zweck wird in dieser Arbeit eine Klasse allgemeiner zweistufiger

robuster Optimierungsprobleme untersucht, deren Variablen der zweiten Stu-

fe eindeutig durch nicht-konvexeNebenbedingungen bestimmtwerden. Diese

Struktur findet sich beispielsweise im Gasnetzbetrieb unter Unsicherheit.

Drei allgemeine Lösungsmethoden werden für diese Problemklasse entwi-

ckelt. Die ersten beiden Ansätze nutzen Ideen aus der polynomiellen Optimie-

rung, um Zulässigkeit oder Unzulässigkeit einer Problemvariante mit leerer

erster Stufe zu entscheiden. Beide Ansätze verwenden polynomielle Formu-

lierungen, die mittels der Lasserre Relaxierungshierarchie durch semidefinite

Programme approximiert werden. Die Effektivität der Methoden wird an zy-

klischen Gasnetzen untersucht. Es zeigt sich, dass robuste Zulässigkeit oder

Unzulässigkeit oft bereits auf einem niedrigen Niveau der Lasserre Hierarchie

entschieden werden kann.

Der dritte Ansatz basiert auf einer Transformation des zweistufigen Pro-

blems in ein normales, einstufiges Optimierungsproblem. Dazu werden meh-

rere Subprobleme gelöst, deren Optimalwerte die rechte Seite des transfor-

mierten Problems bilden. Die Anzahl der zu lösenden Subprobleme kann

dabei durch einen zusätzlichen Aggregationsschritt signifikant verringert wer-

den. Für eineAnwendung auf Gasnetzproblemewerden gemischt-ganzzahlige

Relaxierungen der Subprobleme entwickelt. Abschließend wird die Leistungs-

fähigkeit des Ansatzes durch Benchmarks an mehreren Gasnetzinstanzen

verdeutlicht, darunter ein realistisches Modell des griechischen Erdgasnetzes.

Insgesamtkönnensomit robuste Lösungen fürgroßeNetzeunterUnsicherheit

innerhalb kurzer Zeit gefunden werden.
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Abstract

Today, natural gas is one of the most important sources of energy and is

regarded as a key instrument for achieving the politically set climate goals.

Gas-fired power plants are valued as flexible buffers to compensate for fluctu-

ations in electricity generation from renewable energy sources at short notice.

Additionally, gas network operators face new challenges as a result of the

liberalization of the European gas market. In the new entry-exit model, the

gas network operators have to ensure that all possible market outcomes can

be transported over the network. Hence, the operation of gas networks under

uncertain conditions increasingly requires new aids for decision-making.

To this end, this thesis investigates a class of general two-stage robust opti-

mization problems whose second-stage variables are uniquely determined by

non-convex constraints. This structure occurs, e.g., in gas network operations

under uncertainty.

Three general solution methods are developed for this problem class. The

first two approaches use ideas from polynomial optimization to decide fea-

sibility or infeasibility of a problem variant with an empty first stage. Both

procedures use polynomial formulations that are approximated by semidefi-

nite programs using the Lasserre relaxation hierarchy. The effectiveness of the

methods is investigated on cyclic gas networks. It can be observed that often

a low level of the Lasserre hierarchy is sufficient to decide robust feasibility or

infeasibility.

The third approach is based on a transformation of the two-stage problem

into a normal, single-stage optimization problem. To this end, several sub-

problems have to be solved whose optimal values form the right-hand side of

the transformed problem. An additional aggregation step can significantly

reduce the number of subproblems that have to be considered. For a prac-

tical application to real-world gas network instances, mixed-integer linear

relaxations of the subproblems are developed. Finally, the performance of the

approach is demonstrated by benchmarks on several gas network instances,

including a realistic model of the Greek natural gas network. Overall, robust

feasible solutions for large networks under uncertainty can be found within a

short time.
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Notation

Number spaces and special sets LetN = {1, 2, . . .} and N0 = {0, 1, . . .}
be the set of natural numbers excluding and including zero, respectively. Let

R (C) be the set of real (complex) numbers. We write R≥0, R≤0, R>0 for

the sets of nonnegative, nonpositive, and (strictly) positive real numbers,

respectively. Sets are generally written in a calligraphic font, e.g., S ⊆ R. We

denote with S1 \ S2 := {x ∈ S1 | x 6∈ S2} the set difference of two sets S1,S2.

Vectors and matrices We typeset scalars in a normal font, e.g., x ∈ R. A

bold font is used for multi-dimensional objects such as vectors, matrices, and

vector-valued functions. For example, an n-dimensional real vector is written

as x = (xi)i=1,...,n ∈ Rn with individual elements xi in normal font. Let

B ⊂ {1, . . . , n} be a subset of indices. We write xB = (xi)i∈B ∈ R|B| for the
subvector that arises from restricting x to the indices in B.

Matrices are treated similarly. LetA ∈ Rm×n be a realm× nmatrix. We

writeA·1, . . . ,A·n ∈ Rm for the columns andA1·, . . . ,Am· ∈ Rn for the rows

of A. Individual entries are given by A = (Aij)i=1,...,m, j=1,...,n. We write

AB = (A·j)j∈B for the submatrix that contains all columns indexed by B.

Graphs Let G = (V,A) be a digraph with nodes V = {v1, . . . , vn} and arcs

A = {a1, . . . , am} ⊆ V × V . A path of length k ∈ N0 in G is an alternating

sequence of nodes and arcs, i.e., vi1 , ai1 , vi2 , . . . , aik−1 , vik
, where either aij =

(vij , vij+1) or aij = (vij+1 , vij ) for j = 1, . . . , k − 1. Furthermore, all nodes in

the path are pairwise distinct. A cycle is a path where we allow the first and

the last node to be identical, i.e., vi1 = vik
.

Paths (and cycles) are represented as vectors in R|A| that are indexed by

the set of arcs A. The entries of a path’s incidence vectorP = (Pa)a∈A ∈ R|A|

are Pa = 0 if a is not part of the path and Pa = +1 (resp. −1), if a appears in

the path and its direction agrees (resp. disagrees) with the path’s direction.

We call G connected if a path exists between all pair of nodes v, w ∈ V . A

graph that is connected and contains no cycles is called a tree. A subgraph of

G = (V,A) is a graph G′ = (V ′,A′) where V ′ ⊆ V and A′ ⊆ A. Any subgraph

of G that is a tree and whose vertex set is equal to V is called a spanning tree.

We would like to point out that in the end, we treat graphs as if they were

undirected; the direction of the arcs is only needed for the direction of the

flow.
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1 Introduction

In the modern world, more and more data is being collected in all areas of life

and used as a basis fordecision-making. However, thisdata is often incomplete

or represents reality only inaccurately. It is therefore all the more challenging

to make good decisions for the real situation while taking these uncertain

data into account. There are numerous mathematical approaches such as

robust optimization that can be used for decision-making under uncertainty.

In this thesis, we develop solutions for a class of two-stage robust optimization

problems and exemplarily apply them to the operation of gas networks under

uncertainty.

The energy transition is one of the major political and societal challenges

of the 21st century. It is characterized by a structural change of energy supply

away from fossil or nuclear fuels towards more environmental-friendly renew-

able energy sources. Energy production from renewable energy sources has

increased sixfold in the period from 2000 to 2017 and now amounts to about

30 % of total generation; see AG Energiebilanzen e.V. (2019a). In the same

period, coal and nuclear power generation decreased while energy production

using natural gas increased steadily. Germany is committed to phasing out

nuclear power generation until the end of 2022 (Bundesgesetzblatt 2011), and

recently proposals have been made to phase out coal by 2038 (Kommission

WSB 2019). Due to the decline of coal and nuclear power generation, the

importance of natural gas, which is a comparatively clean fossil fuel, will

continue to increase during this transition towards renewable energies.

Renewable energies such as wind or solar power are characterized by strong

seasonal fluctuations. Gas-fired power plants can be operational at very short

notice and hence can compensate these fluctuations. Once a high proportion

of renewable energy sources is reached (60 % to 70 %), large amounts of

surplus electricity will be generated on a regular basis. In order for the surplus

energy to be used at a later point in time, efficient energy storage systems are

required, e.g., by using power-to-gas technologies (Varone and Ferrari 2015).

These technologies produce methane or hydrogen from electrical energy and

store them in existing pipeline networks or regular storage facilities. Gases

stored in this way can then be extracted again and used to generate electricity.

Closely linked to all these new challenges is the transport and trading of

natural gas on the German and European level. As Germany can only produce

about 7 % of its natural gas demand, it depends on imports from abroad;

see AG Energiebilanzen e.V. (2019b) and BAFA (2019). Being located in the

1



1 Introduction

heart of Europe, Germany also serves as an important transit country for

natural gas. Recently, the liberalization of the natural gas market in Europe

has led to a separation between transport infrastructure and gas traders;

see Hewicker and Kesting (2009) and Gotzes et al. (2015) for a summary.

In the past, trading was almost exclusively carried out directly between the

pipeline operators and their customers. In the new entry-exit system, market

participants trade gas without taking the physics of gas transport into account.

The roleof gas networkoperators is toensure thatanypossiblemarketoutcome

can be transported through the network. On the whole, the lower market

entry barrier and the higher flexibility favor a dynamic market situation with

more frequent trades between a growing number of consumers and producers;

see WEC (2016) and ACER (2015).
Hence, gas network operators are facing novel challenges such as more

dynamic network usage and a greater influence of uncertain factors due to the
transition to renewable energies. We consider a setting where a gas network
has to be operated without full knowledge of all parameters. Situations like
this arise, e.g., when the fluctuation of future demand is uncertain, when the
precise gas composition is not known due to power-to-gas usage, or when in-
tangible aging effects of the pipelines affect the gas flow. Hence, the following
question is the focus of this work:

Is there a configuration of the gas network such that feasible operation can be
guaranteed for all parameters from a set of likely values?

Mathematical challenges and research goals This question, even with-

out uncertain parameters, leads to a rich set of mathematical problems and

models; see Koch et al. (2015) and Ríos-Mercado and Borraz-Sánchez (2015).

The behavior of gas in a pipeline network is described by the Euler equations,

a set of partial differential equations (PDEs). Solutions of these equations are

usually nonlinear and non-convex, even under simplified conditions. Addi-

tionally, there are other network elements besides pipes such as compressors

and control valves, which are often expressed as a mixture of continuous and

discrete variables. All these aspects lead to mathematical formulations that

can be very difficult to solve, even in the nominal setting, i.e., in the absence

of uncertainties.

Integrating uncertainties into these already established models leads to a

variety of new mathematical challenges. Here, we study uncertain problems

in the sense of robust optimization; see Ben-Tal, El Ghaoui, and Nemirovski

(2009). That is, wewant to give strong guarantees that a solution is in a certain

sense immunized against all possible realizations from a previously specified

set of parameters.

2



1 Introduction

A mathematical model of the considered gas network problem under un-

certainty leads to a class of two-stage robust optimization problems with

a non-convex second stage and a uniqueness property of the second-stage

variables. We investigate this problem family in a general and abstract setting.

Problems of this kind are challenging for two reasons: First, there is no

general theory for robust treatment of non-convex models. Second, the two-

stage structure leads to additional complexities that are NP-hard even for

linear programs (LPs); see Ben-Tal et al. (2004).

Our goal is to find solution approaches for the indicated type of problem in

the robust optimization sense and to guarantee that all solutions are feasible

for the original nonlinear and non-convex formulation.

To this end, we develop three distinct methods and demonstrate their

feasibility in practice on gas network problems under uncertainty. First, we

study a feasibility variant of two-stage problem with an empty first stage. We

show how polynomial optimization can be used for deciding robust feasibility

and infeasibility. This leads to twodistinctpolynomial problems thataresolved

in practice using the Lasserre relaxation hierarchy. Numerical experiments

on small cyclic gas networks show that often a low level of the relaxation

hierarchy is sufficient to successfully detect robust feasibility or infeasibility.

Second, we investigate a two-stage robust problem whose constraints have

a certain structural property. In this setting, we present a reformulation

approach thatallowsa transformationof the two-stageproblem intoastandard

single-stage optimization problem. We also show how feasible solutions

for the original nonlinear program (NLP) can be obtained from a relaxed

problem formulation. In our case, we propose to use a well-known piecewise-

linear relaxation technique that can be formulated as a mixed-integer linear

program (MILP). Finally, we demonstrate the feasibility of this approach by

solving a series of real-world problems on the natural gas network of Greece.

Incorporationof jointworkwithotherauthors The results of this thesis
have been developed in collaborationwith other researchers. In particular, the
author was supervised by Prof. Liers and Prof. Stingl within subproject B06 of
the CRC1541. The results have been published in the following two articles.
Chapter 4 on polynomial methods is joint work with Prof. Vera2; a preliminary
version of this chapter has appeared as

1 CRC/Transregio 154—Mathematical modelling, simulation and optimization using the exam-

ple of gas networks (trr154.fau.de)
2 Tilburg University, Tilburg, The Netherlands.
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1 Introduction

D. Aßmann, F. Liers, M. Stingl, and J. C. Vera. 2018. “Deciding robust feasibility
and infeasibility using a set containment approach: an application to stationary
passive gas network operations”. SIAM Journal on Optimization 28 (3): 2489–
2517. doi:10.1137/17M112470X.

The subsequent chapter 5 on the reformulation approach is mainly based on

D. Aßmann, F. Liers, and M. Stingl. 2019. “Decomposable robust two-stage
optimization: An application to gas network operations under uncertainty”.
Networks 74 (1): 40–61. doi:10.1002/net.21871.

At the beginning of each chapter, we indicate in more detail which results

originate from the author of this thesis.

The structure of this thesis This thesis is organized into six chapters.

Chapter 2 provides an introduction to the modeling of gas networks. We

also present some of the known properties such as uniqueness and existence

of solutions and extend these results to our context.

Chapter 3 is dedicated to robust optimization. We introduce the robust

optimization methodology, formulate the two-stage gas network problem,

and discuss the limitations of known approaches in this setting.

Chapter 4 addresses the polynomial optimization methods for deciding

robustness of a two-stage robust problem without a first stage. In particular,

wedeveloponeapproach fordeciding feasibility and oneapproach fordeciding

infeasibility. Moreover, we show how to eliminate absolute values from the gas

network problem and present some benchmarks of both methods on small

instances.

Chapter 5 presents a reformulation approach that allows a transformation of

a two-stage robust problem to an ordinary single-stage optimization problem.

We discuss the influence of using relaxations for this problem and showcase

an aggregation idea that can be used to reduce the number of subproblems.

Together with well-known piecewise linearization techniques, we show how

the gas network problem can be solved with a series of MILPs. Using the real-

world gas network of Greece, we finally demonstrate the practical viability of

our method.

Chapter 6 concludes this thesis with a discussion and comparison of the

developed methods.

4
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2 Stationary gas network operations

The practical feasibility of the methods developed in this thesis for solving

challenging, two-stage robust optimization problems is demonstrated using

the example of gas network problems under uncertainty. Problems of this

kind are well suited for this purpose as they lead to models with a two-stage

structure and non-convex constraints. As they arise from a real-world context,

they also offer several possibilities for robust treatment. This chapter gives

a brief introduction to the modeling of gas transport problems, highlights

some important mathematical properties of these models, and finally gives a

literature review of existing solution methods.

Most of the material in this chapter stems from the book Koch et al. (2015),

the survey article by Ríos-Mercado and Borraz-Sánchez (2015), and from

references in these two sources.

This chapter is structured as follows. Section 2.1 gives a brief introduction

to the mathematical models of components found in natural gas transport

networks. Based on thesemodels, section 2.2 derives a stationarygas transport

problem with linear models for compressors and control valves. Section 2.3

then shows how this optimization problem can be transformed into an alter-

native form with fewer variables. Section 2.4 is dedicated to the existence of

unique solutions for the considered problem. The chapter concludes with

section 2.5, which provides a literature review of existing solutions methods

for nominal gas network problems.

2.1 Network components

Anatural gas transport network consists of a seriesof interconnected pipes and

various other network elements such asWe provide a brief overview of models

for pipes, compressors, (control) valves, and short pipes. The descriptions

here are derived from Fügenschuh et al. (2015).

Pipes

Fluid dynamics is a branch of physics that deals with the motion of fluids,

i.e., gases, liquids, and plasmas. A mathematical model for fluids in motion

is given by the Navier-Stokes equations, a set of nonlinear PDEs that can be

used to model phenomena ranging from very large scale weather dynamics

and ocean currents to very small scale effects like the blood flow in the blood

vessels. In particular, the flow of gas along a pipeline can be described by the

5



2 Stationary gas network operations

Euler equations, a special case of the Navier-Stokes equations for an inviscid

fluid. A derivation of the mentioned PDE models and their mathematical

properties is beyond the scope of this work. For a general introduction to fluid

dynamics, we refer to the textbooks Kundu, Cohen, and Dowling (2015) and

Landau and Lifshitz (1987). More specialized treatment of fluid flows in gas

pipelines can be found in the books by Lurie (2008), Koch et al. (2015), Menon

(2005), Saleh (2002), and Zucker and Biblarz (2002) as well as the article by

Brouwer, Gasser, and Herty (2011).

The time-dependent Euler equations are a system of nonlinear, hyperbolic

PDEs. As gas pipes have a negligible diameter when compared to their length,

a common modeling choice is to average all quantities over the pipe’s cross

sectionanduseaone-dimensional spatial variable. Following thepresentation

given in Brouwer, Gasser, and Herty (2011), the Euler equations are used in

the following form to model gas dynamics in a pipe:

∂

∂t
ρ+ ∂

∂x
(ρv) = 0, (2.1a)

∂

∂t
(ρv) + ∂

∂x
(p+ ρv2) = − λ

2Dρv|v| − gρh′, (2.1b)

∂

∂t

(
ρ(1

2v
2 + e)

)
+ ∂

∂x

(
ρv(1

2v
2 + e) + pv

)
= −kw

D
(T − Tw). (2.1c)

The system models the conservation of mass in (2.1a), the conservation of

impulse in (2.1b), and the conservation of energy in (2.1c). The unknown

functions represent gas density ρ(x, t) ∈ R (in kg m−3), gas velocity v(x, t) ∈
R (inm s−1), gas pressure p(x, t) ∈ R (inPa), and gas temperatureT (x, t) ∈ R
(in K). All unknown functions depend on time t ∈ R and space x ∈ R. The

constants in (2.1a)–(2.1c) are the friction factor λ (dimensionless), which

models the friction between gas and pipeline wall; the pipe diameterD (in m);

the gravitational constant g (in m s−2); the inclination of the pipe h′ = h′(x)
(dimensionless) as a derivative of the pipe’s absolute height h = h(x) (in m);

the pipe wall surface temperature Tw = Tw(x) (in K); and the heat transfer

coefficient kw (in W m−2 K−1), which influences the heat exchange between

gas and pipeline wall. Moreover, the variable e := cwT + gh is introduced to

describe the internal energy of the gas as a sum of heat energy and potential

energy, where cw (in J kg−1 K−1) denotes the specific heat capacity of the gas.

The system above is supplemented by an equation of state for gas. An ideal

gas follows the ideal gas law, see, e.g., Menon (2005), that relates pressure p
(in Pa = J m−3), volume V (in m3), and temperature T (in K) of a specified

amount ñ (in mol) of gas:
pV = ñRT, (2.2)
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2.1 Network components

whereR = 8.314 J K−1 mol−1 denotes the universal gas constant. The ideal

gas law (2.2) can be formulated in terms of gas density instead of gas volume.

First, we express the chemical amount as ñ = m
M , wherem denotes mass of

the gas (in kg) andM the molar mass of the gas (in kg mol−1). Next, we recall

that the volume of a substance (in m3) is the fraction of its mass and density,

i.e., V = m
ρ . Plugging both equations into the ideal gas law (2.2) yields

p = R

M
ρT = RsρT, (2.3)

where we denote the specific gas constant with Rs = R
M (in J kg−1 K−1).

In this form, the ideal gas law (2.2) is more appropriate for (2.1a)–(2.1c) as it

links three of the four unknowns—pressure, density, and temperature—while

being independent of the quantity of the considered gas. The ideal gas law

is derived under the assumption of no intermolecular attraction between

gas molecules as well as a point-like gas model. Many real gases—including

natural gas—show considerable deviation from the ideal gas law, especially in

high-pressure situations that can be present in high-throughput gas transport

pipelines. To compensate for this deviation, a dimensionless compressibility

factor z = z(p, T ) ∈ R is added to (2.2). The factor depends on the chemical

composition of the gas as well as its temperature and pressure. This leads to

the real gas law:

p = RsρTz(p, T ). (2.4)

The compressibility factor of an ideal gas is z = 1. There are several empiric

formulas for the calculation of z(p,T ) for real gases. Amongst others, there

is the formula of the American Gas Association, see, e.g., Králik et al. (1988),

which is accurate up to 70 bar:

z(p, T ) = 1 + 0.257 p
pc

− 0.533 p
pc

Tc
T
, (2.5)

wherewe denotewith Tc the pseudocritical temperature (in K) and with pc the

pseudocritical pressure (in Pa) of the gas mixture. Another formula for the

compressibility factor is due to Papay (1968); see also Saleh (2002, chapter 2):

z(p, T ) = 1 − 3.52 p
pc

exp
(
−2.26 T

Tc

)
+ 0.247

(
p
pc

)2
exp

(
−1.878 T

Tc

)
. (2.6)

Papay’s formula can be used up to 150 bar.
Under the assumption of one-dimensional flow in pipe direction x along a

cylindrical pipe with diameter D (in m) and cross-sectional area A = (D
2 )2π

(in m2), we introduce the mass flow rate q (in kg s−1) as

q = Aρv. (2.7)
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2 Stationary gas network operations

Frictional forces between the flowing gas and the pipelinewall are described

by the flow-dependent friction factor λ(q). There are several empiric formulas

for λ(q) described in the literature; see e.g., Lurie (2008) and Saleh (2002).

The occurring frictional forces are highly dependent on the flow regimewhich

can be characterized by the dimensionless Reynolds number

Re(q) = D

Aη
|q|, (2.8)

where we denote with η the dynamic viscosity of the gas (in kg s−1 m−1).
Typically, one distinguishes between laminar flow at low Reynolds numbers

and turbulent flow for Reynolds numbers exceeding a certain critical value

Re(q) ≥ Recrit ≈ 2300; see Fügenschuh et al. (2015). Laminar flow is charac-

terized by a smooth, constant motion in parallel layers where the dominating

factor is the viscous force of the fluid. Turbulent flow, on the other hand,

features chaotic flow patterns like swirling and vortices that are accompanied

by rapid changes in pressure and density. In this regime, the viscous forces

are not strong enough to provide sufficient damping of the medium’s inertial

forces.

For laminar flows, the friction factor is inverse proportional to the Reynolds

number:

λ(q) = 64
Re(q) . (2.9)

This relation is known as the Hagen-Poisseuille formula; see, e.g., Franzini

and Finnemore (1997).

The friction factor of turbulent flows in gas pipes can be modeled with the

implicit equation of Prandtl-Colebrook-White; see Saleh (2002, chapter 9):

1√
λ(q)

= −2 log10

(
2.51

Re(q)
√
λ(q)

+ k

3.71D

)
, (2.10)

where we denote with k the integral roughness (in m) of the pipe. An approxi-

mation of (2.10) in explicit form is given by theHofer equation; see Mischner

(2012) and Hofer (1973):

λ(q) =
(

−2 log10

( 4.518
Re(q) log10

(Re(q)
7

)
+ k

3.71D

))−2
. (2.11)

Adifferent approximationof (2.10) forvery large Reynolds numbers is obtained

by letting Re → ∞:

λ =
(

2 log10

(
D

k

)
+ 1.138

)−2
. (2.12)
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2.1 Network components

This empirical equation has been found by Nikuradse (1933). We remark

that this formula provides a flow-independent approximation of the friction

factor λ and hence leads to simpler models. Since the considered flowing gas

typically follows a turbulent regime, we use this formula for the calculation of

λ.

An approximation for the stationary, isothermal case Under certain

circumstances, an explicit solution of the PDE system (2.1a)–(2.1c) can be

derived. We closely follow the approach in Fügenschuh et al. (2015). First of

all, we assume a stationary gas flow, i.e., all derivatives with respect to time t
vanish. Moreover, we assume an isothermal model, i.e., the gas temperature

T and the temperature of the pipeline Tw are constant and equal to some

mean temperature Tm. This assumption is supported by the fact that—at

least in Germany—most pipelines are laid underground and thus the pipeline

temperature is not subject to strong fluctuations. Concerning the pipeline

itself, we consider a straight, cylindrical pipe without slope that has length L
(in m) and diameterD. Furthermore, a constant mean compressibility factor

zm is assumed for the gas. We use Papay’s formula (2.6) for the computation

of zm = zm(pm, Tm). The calculation of the mean pressure pm follows Geißler,

Martin, et al. (2015):

pm = 1
2
(
max{pin, pout} + min{pin, pout}

)
, (2.13)

where pin, pin and pout, pout are lower and upper bounds on the gas pressure

at a pipe’s inlet and outlet, respectively. According to Wilkinson et al. (1965),

the ram pressure term ∂
∂x(ρv2) contributes only very little and thus can be

neglected.

Taking all this into account, we simplify the PDE system (2.1a)–(2.1c). Due

to constant mean temperature, we remove (2.1c). Setting all time derivatives

to zero, we obtain

∂

∂x
(ρv) = 0, (2.14a)

∂

∂x
p = −λ(q)

2D ρv|v|. (2.14b)

The stationary continuity equation (2.14a) implies a constant product of gas

density and gas velocity and therefore a constant mass flow q = Aρv along

the pipe. Plugging the definition of q and the mean real gas law

p = RsρTmzm (2.15)
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2 Stationary gas network operations

into the stationary mass conservation equation (2.14b) yields

∂

∂x
p = −λ(q)

2Dρρv|ρv| = −λ(q)
2Dρ

q

A

∣∣∣∣ qA
∣∣∣∣

= − λ(q)
2DA2

RsTmzm
p

q|q|.
(2.16)

Multiplying both sides by 2p yields the ordinary differential equation (ODE)(
∂

∂x
p

)
2p = ∂

∂x
p2 = −λ(q)RsTmzm

DA2 q|q| = −Λq|q|, (2.17)

where we define Λ := λ(q)RsTmzm
DA2 . This is a first-order nonlinear ODE that can

be solved easily.

Lemma 2.1.1 (Koch et al. 2015, lemma 2.2). The solution p(x) to (2.17) with

initial value p(0) = pin is given by

p2(x) = p2
in − xΛ|q|q. (2.18)

Proof. The solution can be verified by derivation of p(x).

We refer once more to Fügenschuh et al. (2015) and Lurie (2008), where

solutions for the respective ODE on non-horizontal pipes are derived.

By evaluating (2.18) at the end of the pipe (x = L) and defining a pressure

drop coeffiecient l := ΛL, we obtain a pressure drop formula for horizontal

pipes:

p2
out = p2

in − ΛL|q|q = p2
in − l|q|q, (2.19)

where pout, pin ∈ R≥0 denote the pressure of the gas at the pipe’s inlet and

outlet, respectively. This relation between ingoing pressure, outgoing pres-

sure, and mass flow along the pipe is also known as theWeymouth equation

(Weymouth 1912).

Compressors

Compressors are used to increase gas pressure. They are one of the most

complex network components in gas networks as a change in pressure is a

thermodynamic process that is accompanied by changes in other physical pa-

rameters such as density, compressibility factor, and temperature. Increasing

pressure can serve multiple ends. Since the gas flow is driven by a pressure

gradient, gas is transportedover longdistances by regularly increasing thepres-

sure with compressors, thereby compensating for the friction-based pressure

10



2.1 Network components

loss. Compressors are also needed when injecting gas into a higher-pressure

network. Other applications include tasks related to gas storage, e.g., when

filling an underground storage facility or when the pressure in a pipeline sec-

tion is selectively increased in order to store gas in the pipeline itself (so-called

line-pack). However, as storage-related aspects of gas network operations are

typically transient problems, they are out of scope for this work. In our context

compressors are mainly used for gas transport or to meet some pressure level

for injection into another network.

There are several compressor models used in the literature, ranging from

very simple to highly complex. Dynamic programming approaches like Lall

and Percell (1990) and Wong and Larson (1968a) typically use a discretized

set of possible compression ratios. A compressor model that allows a linear

increase in pressure is proposed by Gollmer, Schultz, and Stangl (2015). Even

less structured, the article by Wolf and Smeers (2000) allows an arbitrary

pressure increase. More complex models like the one in Zavala (2014) arise

from the physical process of gas compression as a relative pressure increase

that also depends on the flow rate. The most sophisticated models take the

feasible operation range of the compressor machines into account (Rose et

al. 2016), as well as the combination of multiple compressors into compressor

groups as in Geißler, Martin, et al. (2015) and Wu et al. (2000).

The physical functioning of a compressor machine can be modeled as an

adiabatic thermodynamic process, i.e., there is no heat or mass exchange be-

tween the compressor and its surroundings. By supplying mechanical energy,

an input volumeVin of gas is compressed to a smaller output volumeVout. This
increases the pressure pout as well as temperature Tout of the outgoing gas

stream. For a comprehensive derivation of the compressor equations from the

fundamental laws of thermodynamics, we refer to Fügenschuh et al. (2015).

Here, we will briefly present a model for turbo compressors. In terms of

thermodynamics, when gas is compressed from an initial state with pressure

pin and temperature Tin to a final state with pressure pout, its specific adiabatic
enthalphy—the sumof the systems internal energyand theproductof pressure

and volume—increases. This change ∆Had in adiabatic enthalpy (in J kg−1)
can be approximated with

∆Had = zinTinRs
κ

κ− 1

((
pout
pin

)κ−1
κ

− 1
)
, (2.20)

where we denote with κ the isentropic exponent, with zin the compressibility

factor of the inflowing gas, and with Rs the specific gas constant of the in-

flowing gas; see Fügenschuh et al. (2015). The parameter κ depends on the
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2 Stationary gas network operations

gas pressure and temperature during the entire process. While there are sev-

eral approximations for κ available, see e.g., Schmidt, Steinbach, and Willert

(2015b) for a brief discussion, in practice a constant value of κ = 1.29 is often

used.

Not every change ∆Had in adiabatic enthalpy can be realized by a com-

pressor machine. Let the volumetric flow Q (in m3 s−1) entering the gas

compressor be given by

Q = q

ρ
. (2.21)

The achievable compression is constrained by the compressor’s operation

range. It is given as a set of feasible pairs of volumetric flowQ and change in

adiabatic enthalpy ∆Had. Figure 2.1 shows an exemplary operation range of

a turbo compressor. The gray area represents the set of possible compressor

controls. We point out that this diagram is obtained from extrapolations

of experimental measurements. A more comprehensive explanation of this

diagram can be found in Schmidt, Steinbach, and Willert (2015b).

The required power P (in W) for the compression process follows

P = ∆Hadq

ηad
, (2.22)
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Figure 2.1: An exemplary characteristic diagram of a turbo compressor. The gray area denotes
the feasible operation range, i.e., the set of viable combinations of volumetric flow and change
in adiabatic energy. Reprinted/adapted by permission from RightsLink: Springer Nature
Optim. and Eng. by Schmidt, Steinbach, and Willert (2015b), © 2014.
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2.1 Network components

where the efficiency of the compressor machine is modeled with a dimen-

sionless efficiency parameter ηad ∈ (0, 1). Compressor machines are typically

driven by electric drives, or by gas engines or gas turbines whose fuel is taken

directly from the pipeline.

Valves and control valves

Valves are used to regulate gas flow and pressure. We distinguish several

different types of valves. The most basic valve has two states: closed and open.

When closed, gas flow is prevented and the gas pressures at the inlet and

outlet are decoupled. When open, there are no restrictions and the gas flow is

unhindered:

closed valve: q = 0 and pin, pout decoupled, (2.23)

open valve: q unrestricted and pin = pout. (2.24)

So-called check valves allow gas flow to pass the valve in one direction and

restrict flow in the other direction. Valves and check valves are typically used

to close off parts of the network like e.g., gas storage facilities, or to force the

gas flow along a specific path.

Sometimes the gas pressure has to be reduced to a certain level, e.g., if

gas from a high-pressure transport network is to be fed into a low-pressure

regional distribution network. In this case control valves, also known as

pressure regulators, are used. Control valves can be equipped with a remote

control or work autonomously. Valves that cannot be remotely controlled are

set up once to regulate the pressure of the outflowing gas to some fixed value

pset
out.
In this work, only remote-controlled control valves are used. Control valves

with remote access are either closed or active. As with normal valves, closed

control valves allow no flow, and the inlet and outlet pressures pin, pout are

decoupled. An active valve decreases the inlet pressure pin by some amount

within the range [∆,∆] ⊆ R. This leads to the following model:

closed control valve: q = 0 and pin, pout decoupled; (2.25)

active control valve: q ≥ 0 and 0 ≤ ∆ ≤ pin − pout ≤ ∆. (2.26)

Similar to compressors, gas can only flow through control valves in one direc-

tion. If a bidirectional traversal is desired, an open mode for control valves is

sometimes modeled as well.
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2 Stationary gas network operations

Short pipes

Short pipes are network elements that do not exist in reality and are only

introduced for modeling purposes. They follow no physical laws and their

function is to set their inlet pressure pin and their outlet pressures pout to the

same value:

pin = pout. (2.27)

Moreover, gas flow along a short pipe is not influenced in any way. A short

pipe between two points is virtually equivalent to merging those two points

into one.

Short pipes are used, for example, to model pipes with negligible pressure

drop, such as those inside a compressor station. Another application is the

modeling of agas storage tank, where separate injection andwithdrawal points

are connected to the gas storage node via short pipes.

We use short pipes mainly during the construction of test instances. Since

the real-world gas network topologies from GĆĘLĎć (Schmidt et al. 2017)

contain network components such as resistors or valves that are outside the

scope of this work, all these elements are replaced by short pipes.

2.2 Gas transport with linear active elements

The gas networks under consideration in this work consist of pipes and

pressure-modifying elements. We restrict ourselves to compressors and con-

trol valves as active elements. The network topology is represented by a

finite directed graph G = (V,A) with nodes V = {1, 2, . . . , n} and arcs

A = {a1, . . . , am} ⊆ V × V . We assume that G is connected and contains no

self-loops. Let |V| = n ∈ N and |A| = m ∈ N be the number of nodes and

arcs in G, respectively.

The physical state of the gas in the network is described by the nonnegative

pressure pv ∈ R≥0 at each node v ∈ V and the mass flow rate qa ∈ R along

each arc a ∈ A. A positive sign of qa for arc a = (v, w) ∈ A indicates gas flow

in arcdirection, i.e., fromnode v to nodew. A negative sign of qa implies a flow

in reverse arc direction. Since the pressure variables in our models are always

squared, we introducea newnonnegativevariableπv := p2
v that is used in place

of the squared pressures. Let π = (πv)v∈V ∈ Rn
≥0 and q = (qa)a∈A ∈ Rm be

the respective vectors of squared pressures and mass flow rates within the

network.
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2.2 Gas transport with linear active elements

Gas can be fed into or withdrawn from the network at specific points. Let

dv ∈ R be the gas demand at node v ∈ V (in kg s−1) and let d = (dv)v∈V ∈ Rn

be the vector of demands for the whole network. The vector d of nodal

demands is also known as the nomination vector. As is usual for network flow

problems, the demand has to be balanced, i.e.,
∑

v∈V dv = 0.
Due to technical, legal, or contractual obligations, the squared pressure πv

is bounded at each node v ∈ V from below by πv ∈ R≥0 and from above by

πv ∈ R≥0:
πv ∈ [πv, πv] for all v ∈ V. (2.28)

We denote with π = (πv)v∈V ∈ Rn
≥0 and π = (πv)v∈V ∈ Rn

≥0 the vectors of

lower squared pressure bounds and upper squared pressure bounds, respec-

tively. As a short form of (2.28), we writeπ ∈ [π,π].
Similar to linear network flow problems, conservation of mass holds at each

node: ∑
a=(v,w)∈A

qa −
∑

a=(w,v)∈A
qa = dv for all v ∈ V. (2.29)

This set of constraints can be concisely written using the node-arc incidence

matrixA ∈ Rn×m. For all combinations v ∈ V and a ∈ A, the entries of A
are given by

Ava =


+1 if a = (w, v) ∈ A for somew ∈ V,
−1 if a = (v, w) ∈ A for somew ∈ V,

0 otherwise.

(2.30)

With the node-arc incidence matrix, the constraints (2.29) can be stated as

Aq = d. (2.31)

The set of arcsA is partitioned into a set of pipesApi ⊆ A and a set of pressure-

modifying elements Apm ⊆ A. Both subsets Api and Apm are disjoint and

their union is the set of arcs A = Api ∪ Apm.

Pipes are so-called passive network elements, whereas pressure-modifying

elements are active elements, as an operator can control their state. A gas

network consisting only of pipes, i.e., A = Api, is also referred to as a passive

network. Similarly, a network is called active if Apm 6= ∅, i.e., the network

contains pressure-modifying elements.

Based on the descriptions in section 2.1, we now define the constraints for

the individual network components.
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2 Stationary gas network operations

Gas flowing along apipe experiences a pressuredrop. This aspect ismodeled

using the Weymouth equation (2.19). In the following, let |x|∗ := x|x| be the

signed square function. The Weymouth equation is given by

πw − πv = −laqa|qa| = −la|qa|∗ for all (v, w) = a ∈ Api, (2.32)

where

la = LaΛa = λ(qa)RsTmz
(a)
m La

DaA2
a

, (2.33)

using Nikuardse’s approximation (2.12) of the friction factor

λa ≡ λ(qa) =
(
2 log10

(
Da
ka

)
+ 1.138

)−2
, (2.34)

Papay’s approximation (2.6) of the compressibility factor

z(a)
m ≡ zm(p(a)

m , Tm)

= 1 − 3.52p
(a)
m
pc

exp
(
−2.26Tm

Tc

)
+ 0.247

(
p

(a)
m
pc

)2
exp

(
−1.878Tm

Tc

)
,

(2.35)

and a mean pressure (2.13) of

p(a)
m = 1

2
(
max{pv, pw} + min{pv, pw}

)
. (2.36)

We assume that themean pressure can be approximated a priori, e.g., by using

the supplemented pressure bounds π and π. The other symbols refer to the

following quantities.

Parameters of the gas mixture:

Rs specific gas constant, Tm mean gas temperature,

pc pseudocritical temperature, Tc pseudocritical pressure.

Parameters of each pipe a ∈ Api:

la pressure drop coefficient, La pipe length,

Da pipe diameter, Aa pipe cross-sectional area,

ka integral roughness, λa friction factor,

z(a)
m mean compressibility factor, p(a)

m mean gas pressure.
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2.2 Gas transport with linear active elements

The magnitude of the pressure loss scales with the magnitude of the mass

flow rate qa and the pressure drop coefficient la ∈ R>0. Let l = (la)a∈Api ∈
R

|Api|
>0 be the vector of all pressure drop coefficients in the network.

Pressure-modifying elements act on the squared pressure difference be-

tween two connected nodes (v, w) ∈ Apm and may change this difference

linearly by some amount xpm
a ∈ [xpm

a , xpm
a ] ⊆ R:

πw − πv = xpm
a for all (v, w) = a ∈ Apm. (2.37)

Note that we allow xpm
a ∈ R ∪ {−∞} and xpm

a ∈ R ∪ {∞}.
We divide the group of pressure-modifying elements into three types: sim-

plified linear compressors that can increase pressure, control valves that can

decrease pressure, and abstract pressure controllers that can manipulate the

pressure as desired. The mathematical descriptions of the three types differ

only by the permitted pressure change:

abstract pressure controller xpm
a ∈ R, (2.38a)

compressor xpm
a ≥ 0, (2.38b)

control valve xpm
a ≤ 0. (2.38c)

Throughout this thesis, we sometimes use “compressor” as a collective term

for all pressure-modifying elements Apm, since all three types of pressure

modifying element follow the same mathematical model.

The abstract pressure controller is a virtual element that has no counterpart

in reality. As it allows arbitrary pressure changes, it can be used to control

the pressure at injection or withdrawal points. By passing the injected or

withdrawn gas over this virtual element, the pressure at this point can be

adjusted as an exogenous controllable variable.

Compressors are used to increase the gas pressure. We use a linear com-

pressor model (2.37) where the increase in pressure is independent of the flow

through the compressor. In general, compressors can only increase pressure

if the passing gas flows through them in the correct direction. As is shown

later on in section 5.2.3, tight flow bounds for our setting can be calculated

easily with (5.46). The obtained bounds can be used to verify the direction

constraint.

Control valves are used to decrease the gas pressure. This is importantwhen

gas from a larger transport network operating at a higher pressure is to be fed

into a subnet operating at a lower pressure.

Let xpm = (xpm
a )a∈Apm ∈ R|Apm| be the vector of all pressure modifying

“power levels” within the network. Moreover, let xpm = (xpm
a )a∈Apm ∈ R|Apm|
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2 Stationary gas network operations

and xpm = (xpm
a )a∈Apm ∈ R|Apm| be the vectors of the lower and upper limits

of the squared pressure change.

Next, wedescribe the squared pressure changecaused bypipes and pressure-

modifying elements in the network by a combined set of constraints. Let

ψ = (ψa)a∈A be a vector-valued function whose entries describe the change

in squared pressure at all arcs a ∈ A:

ψ : R|Api| ×R|A| ×R|Apm| → R|A|,

ψa(l, q,xpm) =
{

−laqa|qa| = −la|qa|∗ if a ∈ Api,

xpm
a if a ∈ Apm.

(2.39)

Since the pressure drop coefficients l will be treated as uncertain later on, the

definition of ψ includes l as an argument. However, if l is constant, we omit

this parameter from ψ to avoid complicating the notation unnecessarily.

With ψ, the squared pressure change caused by a network component can

be written as

πw − πv = ψa(q,xpm) for all a ∈ A. (2.40)

Using the node-arc incidence matrixA, constraint (2.40) for all arcs amounts

to

A>π = ψ(q,xpm). (2.41)

Typically, we seek to minimize the cost of pressure changes that arise, e.g., due

to compressor fuel consumption. As described in section 2.1, a compressor’s

energy consumption is directly related to the degree of compression of the

gas. Given a vectorxpm of pressure modifications, we model the total energy

cost with a linear function

xpm 7→ c>xpm, (2.42)

where c = (ca)a∈Apm ∈ R|Apm| is a cost vector associated with the given

pressure-modifying elements. We note that for control valves and abstract

energy controllers, it typically holds that ca = 0.
A combination of flow conservation (2.31), squared pressure changes at

each arc (2.41), bounds for nodal pressure, pressure-modifying elements,
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2.2 Gas transport with linear active elements

and total energy cost objective (2.42) yields the stationary compressor cost

minimization problem:

min
π,q,xpm

c>xpm (2.43a)

s.t. Aq = d, (2.43b)

A>π = ψ(q,xpm), (2.43c)

π ∈ [π,π], (2.43d)

q ∈ Rm, (2.43e)

xpm ∈ [xpm,xpm]. (2.43f)

Clearly, this is a nonlinear, non-convex optimization task. If the focus is on

checking the satisfiability of a particular nomination, this problem is also

referred to as the stationary nomination validation problem. In this thesis,

both terms are used interchangeably.

Over the years, many approaches have been developed to solving this and

other related problems in gas; we give a brief survey in section 2.5.

Remark 2.2.1. We briefly discuss the appearing units of the variables in prob-

lem (2.43). In the previous section, we carefully supplemented all appearing

values and constants with their appropriate units. Hence the mass flow rate

variables q are in kg s−1 and the squared pressure variablesπ are in Pa.
For our practical applications, however, we follow a different convention

that is more common in natural gas network operations. The flow variables q
are given in thousand normal cubic meters per hour (1000 N m3 h−1), where

one normal cubic meter of gas is the amount of gas that fills one cubic meter

under normal conditions1. The squared pressure variables π as well as the

compressor power variables xpm are given in bar2.

Remark 2.2.2. The presented model for the gas flow in natural gas networks

uses the Weymouth equation. It is an example of the more general class of

potential driven networks; see, e.g., Gross et al. (2018) for an introduction.

In such a network, the flow qa along an arc (v, w) = a ∈ A depends on the

potential difference at the incident nodes:

πw − πv = ξaφ(qa), (2.44)

where φ : R → R is a continuous, strictly Increasing function that satisfies

φ(−qa) = −φ(qa) and ξa ∈ R is a constant. Other examples for potential

driven networks include lossless direct current electricity networks where

1 Standard atmosphere: 15 ◦C, 1.013 25 bar
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2 Stationary gas network operations

φDC(q) = q and water networks where φw(q) = sgn(q)|q|1.852. We note that

many properties of stationary gas networks still hold for a general potential

driven network. This includes, e.g., the uniqueness of solutions and the

decomposable structure we investigate in chapter 5.

2.3 Reduction of variables

In the recent work by Gotzes et al. (2016), the authors show how the nomi-

nation validation problem (2.43) for a passive network can be converted into

an equivalent formulation by eliminating variables. Similar results have also

been discovered by Osiadacz and Pienkosz (1988) and Mallinson et al. (1993).

In fact, some of the ideas are already present in Kirchhoff’s laws for electrical

circuits; see Kirchhoff (1847).

More precisely, all squared pressure variables and all but |V| − 1 flow vari-

ables are removed from the model. In this section, we extend the result of

Gotzes et al. (2016) for gas networks consisting exclusively of pipes to networks

with active elements. A similar result for networks with active elements is

derived in Gollmer, Schultz, and Stangl (2015). We note that besides changing

the notation to include pressure-modifying elements, no new major math-

ematical steps are necessary to extend their result to active networks in our

setting.

The central idea of the reformulation is to express feasible flows within the

network as a combination of a flow along a spanning tree of the graph and a

flow along cycles of the graph. This is a well-known decomposition that is

used, e.g., in the network simplex algorithm; see Ahuja, Magnanti, and Orlin

(1993).

While the linear flow part is straightforward, the difficulty lies in translating

the pressures correctly into this description. The squared pressure at each

node v ∈ V is expressed relative to an arbitrarily chosen root node r ∈ V by

defining an aggregated pressure change along the unique path from r to v in

a fixed spanning tree. Moreover, similar to Kirchhoff’s loop rule in electrical

circuits, the total pressure change along each cycle must sum up to zero.

In the following, we introduce the reduced model of Gotzes et al. (2016)

and derive a graph-theoretical interpretation. This graph-centric view allows

us to use a simpler notation and will also be useful for later results.

Graphmatrices We present properties of the node-arc incidence matrix

and introduce the path and cycle matrices of a graph. The material in this

paragraph is based on Bapat (2014, ch. 2, ch. 5). A short summary of the
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2.3 Reduction of variables

conventions we use in connection with graphs can be found in the notation

chapter on page xi. In particular, we would like to point out that we treat all

graphs as if they were undirected; the direction of the edges is only relevant

for the sign of the flow direction in the gas network context.

In the following, let G = (V,A) be a connected digraphwith V = {1, . . . , n}
and A = {a1, . . . , am}. Let B ⊆ A denote the arcs of a spanning tree T =
(V,B) of G and let N = A \ B denote the remaining arcs. We call T the

B-induced spanning tree or the spanning tree induced by B. W.l.o.g., we select

r = 1 ∈ V as root node. Furthermore, we assume that B = {a1, . . . , an−1}
and N = {an, . . . , am}. This situation can always be achieved by renaming

nodes and edges.

First, we consider the node-arc incidence matrix A ∈ Rn×m of G. The

rows of A are indexed by the nodes V and the columns of A are indexed

by the arcs A. We recall the previously given definition that the entries of

A satisfy Ava = +1 if a = (w, v) ∈ A, Ava = −1 if a = (v, w) ∈ A, and

Ava = 0 otherwise. Since G is connected, A has rank n − 1, and hence an

arbitrary row can be removed without changing the solution space; see, e.g.,

Ahuja, Magnanti, and Orlin (1993). After removing the rowAr· corresponding
to a root node r from A, we obtain the reduced node-arc incidence matrix

Ã ∈ R(n−1)×m with full rank.

Every spanning tree T of G corresponds to a basis B of Ã and vice versa;

see Ahuja, Magnanti, and Orlin (1993, p. 442). Taking the B-induced span-

ning tree into account, we partition Ã into a nonsingular basic submatrix

ÃB ∈ R(n−1)×(n−1) and a nonbasic submatrix ÃN ∈ R(n−1)×(m−n+1):

A =
[
Ar·

Ã

]
=
[
ArB ArN

ÃB ÃN

]
. (2.45)

While the basic part ÃB corresponds to the spanning tree T , the nonbasic part

ÃN can be seen as a representation of fundamental cycles in G. A fundamental

cycle is the unique cycle that emerges after adding arc a to the B-induced

spanning tree T . We assume that the orientation of this cycle follows the

orientation of a = (v, w), i.e., the nodes in the cycle occur in order v,w, . . . , v.
Altogether, each arc a ∈ N corresponds to one fundamental cycle and vice

versa.

Next, we present two results from Bapat (2014) that relate submatrices of

the reduced node-arc incidence matrix to paths and cycles in the graph.

The first lemma shows how the inverse of the basic submatrix of the node-

arc incidence matrix encodes paths in the corresponding spanning tree. We

define a reduced path matrix that encodes the unique paths from the root
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2 Stationary gas network operations

node to all other nodes in the B-induced spanning tree. Since all paths in a

tree are uniquely determined, this matrix is well-defined once a spanning tree

of G is selected. Let P̃ ∈ R(n−1)×(n−1) be a matrix whose rows are indexed

by v ∈ V \ {r} and whose columns are indexed by a ∈ B. Each row P̃v· of
P̃ contains the incidence vector of the unique path from root node r to a

different node v ∈ V \ {r}. We abbreviate v → w as a symbol for the (unique)

path from v to w in T . Hence, the reduced path matrix P̃ is defined as

P̃v,a =


+1 if a is on r → v and in path direction,

−1 if a is on r → v and in reverse path direction,

0 otherwise,

(2.46)

where v ∈ V \ {r} and a ∈ B.

Similarly, we introduce a (full) path matrix that encodes the paths between

two pairs of nodes v, w ∈ V in the spanning tree. Let P ∈ Rn2×m be a matrix

whose rows are indexed by pairs of nodes v, w ∈ V and whose columns are

indexed by arcs a ∈ B. A rowPvw,· of P is the incidence vector of the unique

path from v to w in the B-induced spanning tree T . Hence, the path matrix

is defined as

Pvw,a =


+1 if a is on v → w and in path direction,

−1 if a is on v → w and in reverse path direction,

0 otherwise,

(2.47)

where v, w ∈ V and a ∈ B. A path from v to w can be constructed by taking

the path from v to r followed by taking the path from r to w. Deleting all arcs

that are shared by both paths leads to the unique path from v to w. Therefore,

the incidence vector Pvw,· of the path v → w satisfies

Pvw,· = −P̃v,· + P̃w,·, (2.48)

where we let P̃r,· = (0, . . . , 0) for the sake of convenience.

We point out thatPvv,· = (0, . . . , 0) for all v ∈ V . While this leads to a more

convenient notation, these rows are usually ignored in the upcoming practical

applications.

The following lemma characterizes P̃ in terms of the node-arc incidence

matrix.

Lemma 2.3.1 (Bapat 2014, thm. 2.10). Let G = (V,A) be a connected digraph
and let B ⊆ A induce a spanning tree T of G with root r ∈ V as defined above.
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2.3 Reduction of variables

Let Ã be the corresponding reduced node-arc incidence matrix of G and let P̃
be the corresponding reduced path matrix as defined above.

Then the columns
(
Ã−1

B
)

·v of Ã
−1
B are the incidence vectors of the (unique)

paths from root node r to all other nodes v ∈ V \ {r} in T , i.e.,

P̃ =
(
Ã−1

B
)>
. (2.49)

Remark 2.3.2. We give a short explanation of this result. Let v ∈ V with v 6= r
be given. A column

(
Ã−1

B
)

·v of Ã−1
B that corresponds to v ∈ V is the solution

of the linear equation system

ÃB
(
Ã−1

B
)

·v = ev, (2.50)

where ev ∈ R|V|−1 is the v-th standard basis vector. We can interpret this

system as a linear flow network problem. Hence,
(
Ã−1

B
)

·v denotes a linear

flow in the B-spanning tree T that transports one unit from the root node r
to the node v. Other nodes in the network have a demand of zero. All paths

between pairs of nodes are uniquely determined in a tree and thus the flow

along each arc is either zero or a unit flow in positive or negative arc direction.

Thus the columns of Ã−1
B only contain values in {0,±1} and are the incidence

vectors of paths in the spanning tree T .

The second lemma gives a full description of the fundamental cycles in

G after a spanning tree T is selected. It was already mentioned that given

a B-induced spanning tree of G, the fundamental cycles of G are uniquely

determined. In the following, we refer to the fundamental cycle that is defined

by a ∈ N as the a-fundamental cycle. The direction of a fundamental cycle

is determined by the direction of a ∈ N . We define a cycle matrix C ∈
R(m−n+1)×m whose rows encode the fundamental cycles of G. The rows of C
are indexed by the set of arcs N that are not in the spanning tree; the columns

of C are indexed by the set of arcs A of G. We define

Ca,a′ =


+1 if a′ is on a-fund. cycle and in cycle direction,

−1 if a′ is on a-fund. cycle and in reverse cycle dir.,

0 otherwise,

(2.51)

where a ∈ N and a′ ∈ A.

The following result shows how the cycle matrix can be computed from the

node-arc incidence matrix. The lemma is based on Bapat (2014, thm. 5.6) and

is modified to fit our notation.
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2 Stationary gas network operations

Lemma 2.3.3 (Bapat 2014, thm. 5.6). Let G = (V,A) be a connected digraph.
Let B ⊆ A induce a spanning tree T of G with root r ∈ V . Let Ã be the

corresponding reduced node-arc incidence matrix of G and letC be the corre-

sponding cycle matrix.

Then the cycle matrix can be written as

C =
[
CB |CN

]
=
[
−(Ã−1

B ÃN )> | I
]
, (2.52)

i.e., CB = −(Ã−1
B ÃN )> and CN = I, where CB (CN ) denotes the basic

(nonbasic) part of C and where I denotes the (m − n + 1) × (m − n + 1)
identity matrix.

Remark 2.3.4. Again we give a short explanation of this result. For a fixed

spanning tree T , every nonbasic arc a ∈ N induces a single fundamental cycle

and by definition every a ∈ N can only be contained in one fundamental

cycle. Hence, CN = I .
For ease of explanation let us assume that |N | = 1, i.e., G contains a single

fundamental cyle. Then ÃN is a column vector corresponding to the single

arc a = (v, w) ∈ N . Let us further assume that v,w 6= r. From the definition

ofA, we recall that

(ÃN )v = −1, (ÃN )w = +1, and (ÃN )x = 0 for x ∈ V \ {v, w}. (2.53)

Thus we can interpret the vector −Ã−1
B AN = Ã−1

B (−AN ) as the solution of a

linear network flowproblem that transports one unit of flow fromw to v in the

B-induced spanning tree of G. Again, this solution contains only values from

{±1, 0} and is the incidence vector of the unique path from w to v in T . We

observe that the nonbasic partCN = I adds the arc (v,w) to this w, v-path
in B and hence gives rise to a cycle in G that is encoded inC =

[
CB |CN

]
.

Flow decomposition into spanning tree and cycles After presenting

some general results on graph matrices, we return to the gas network set-

ting and introduce the reduced model. With basis B and nonbasis N , let

(ψB,ψN ) and (qB, qN ) be the respective partitions of ψ and q into basic

and nonbasic components. In the reduced model, all but the nonbasic flow

variables qN ∈ R|N | can be eliminated. We call the remaining variables

qN ∈ R|N | cycle flows or cycle flow variables.

In the same way as the reduced node-arc incidence matrix Ã is created by

removing a row from A, we create a reduced demand vector d̃ ∈ Rn−1 by

removing the entry belonging to the root node r. From basic linear algebra,

we known that the solution space of the linear equation system

Ãq = d̃ (2.54)
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2.3 Reduction of variables

can be parameterized by the nonbasic variables qN :

qB = Ã−1
B (d̃− ÃNqN ) = Ã−1

B d̃︸ ︷︷ ︸
flow on

spanning tree

− Ã−1
B ÃNqN︸ ︷︷ ︸
flow along

cycles

. (2.55)

A closer look at this equation reveals the structure of feasible flows.

The first summand of the right-hand side is the unique solution of the linear

equation system ÃBqB = d̃. Since ÃB represents the B-induced spanning

tree, this linear equation system describes the unique flow qB on the spanning

tree that satisfies demand d̃.
Next, we consider the second summand of the right-hand side. We ap-

ply lemma 2.3.3 to rewrite

−Ã−1
B ÃNqN = (−Ã−1

B ÃN )qN = C>
B qN (2.56)

and observe that this expression denotes a linear combination of flows along

the fundamental cycles of G when restricted to the B-induced spanning tree.

In total, theparameterization (2.55) can be interpreted as theuniqueflowon

a spanning tree in G that satisfies thedemand, towhich a linear combinationof

flows along cycles of G are added. This structural result is well-known in linear

network flow theory and is used, for example, in the network simplex method

to solve minimum-cost network flow problems; see, e.g., Ahuja, Magnanti,

and Orlin (1993, ch. 11).

Based on (2.55), we define a vector-valued function qext(·) that maps a

nonbasic flow vector qN to flows in the whole network. Each entry qext
a (qN )

denotes the flow at arc a ∈ A resulting from the cycle flow vector qN :

qext : R|V| ×R|N | → R|A|,

qext
a (d, qN ) =

{(
Ã−1

B (d̃− ÃNqN )
)

a
if a ∈ B,

(qN )a if a ∈ N .

(2.57)

Since the demand d will be treated as an uncertain parameter later on, the

definitionof qext includesd as an argument. However, if d is constant, weomit

this parameter from qext to avoid complicating the notation unnecessarily.

By construction, the flow extension map satisfies q = qext(qN ). Inserting
this equation into the gas network problem eliminates all flowvariables except

qN .
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2 Stationary gas network operations

Pressurechangealongpaths An important aspectof the reducedmodel is

the total pressure change along paths in the B-induced spanning tree in G. For

this purpose, we define a vector-valued function g̃ whose entries (g̃v)v∈V\{r}
denote the aggregated pressure change between root node r and all other

nodes in G. We call g̃ the reduced aggregated pressure change function:

g̃ : R|B| ×R|Apm∩B| → R|V|−1,

g̃(qB,x
pm
B ) = (Ã−1

B )>ψB(qB,x
pm
B )

= P̃ψB(qB,x
pm
B ),

(2.58)

where P̃ denotes the path matrix of the spanning tree as it appears in

lemma 2.3.1. The function has a simple interpretation. Let v 6= r be given.

Then

g̃v(qB,x
pm
B ) =

[
(Ã−1

B )>]
v·ψB(qB,x

pm
B ) (2.59)

= P̃v·ψB(qB,x
pm
B ) (2.60)

=
∑
a∈B

P̃vaψa(qa, x
pm
a ) (2.61)

=
∑

a∈B∩Api

P̃vaψa(qa) +
∑

a∈B∩Apm

P̃vaψa(xpm
a ) (2.62)

= −
∑

a∈B∩Api

P̃vala|qa|∗ +
∑

a∈B∩Apm

P̃vax
pm
a (2.63)

denotes thesumof all pressurechangesalong theuniquepath in theB-induced

spanning tree from root node r to node v. When taking (2.40) into account,

we observe that (2.61) is a telescopic sum of squared pressure differences.

Hence, it follows that

πv − πr = g̃v(qB,x
pm
B ) for all v ∈ V \ {r}, (2.64)

since only the squared pressure variables of the first and last node of the path

are preserved.

Finally, we plug qext into g̃ and incorporate the root node r ∈ V to obtain

the general aggregated pressure change function:

g : R|N | ×R|Apm∩B| → R|V|,

gv(qN ,x
pm
B ) =

{
0 if v = r,

g̃v
(
qext

B (qN ),xpm
B
)

if v 6= r,
for all v ∈ V.

(2.65)
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2.3 Reduction of variables

Similar to (2.64), function gv satisfies

πv − πr = gv(qN ,x
pm
B ) for all v ∈ V. (2.66)

Next, we will use g to calculate the aggregated pressure between any pair of

nodes in the graph.

Pressure changesonarbitrarypaths in the spanning tree The pressure

change between two arbitrary nodes v, w ∈ V in the network can be obtained

by combining the pressure change from r to v with the pressure change from

r to w. We already established in (2.66) that

πv − πr = gv(qN ,x
pm
B ), (2.67a)

πw − πr = gw(qN ,x
pm
B ). (2.67b)

Taking the difference of the previous two equations yields

πw − πv = gw(qN ,x
pm
B ) − gv(qN ,x

pm
B ). (2.67c)

Recalling the definition of g in (2.65) and property (2.48) of the full path

matrix, we rewrite the previous equation and obtain

πw − πv = P̃w·ψB
(
qext

B (qN ),xpm
B
)

− P̃v·ψB
(
qext

B (qN ),xpm
B
)

(2.68)

= (P̃w· − P̃v·)ψB(qB,x
pm
B ) (2.69)

= Pvw,·ψB(qB,x
pm
B ), (2.70)

where we let P̃r· = (0, . . . , 0) for the sake of convenience.

As a final piece of notation we introduce upper bounds on pressure change

along a path. Let π,π ∈ Rn denote the vectors of lower and upper squared

pressures at each node, respectively. Let ∆π ∈ Rn2 = (∆πvw)v,w∈V be a

vector that is indexed by pairs of nodes. The entries of this vector are defined

as

∆πvw = πw − πv for all v, w ∈ V. (2.71)

The elements of ∆π arise from (2.68) by taking the maximum of the left-

hand side when considering the pressure bounds πv ∈ [πv, πv]. Therefore, we

deduce from (2.68) and (2.71) that any feasible network solution has to satisfy

Pvw,·ψB(qB,x
pm
B ) = πw − πv ≤ ∆πvw for all v, w ∈ V. (2.72)

These inequalities impose upper bounds on the pressure change along all

paths in the B-induced spanning tree.
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2 Stationary gas network operations

The reducedmodel With this preparatorywork, we can establish an equiv-

alent formulation of the constraint system of the gas network problem (2.43).

We first give this result in an algebraic notation that is more close to the origi-

nal result for passive networks by Gotzes et al. (2016). Afterward, we present a

more compact variant using the path and cycle matrices.

Theorem 2.3.5 (Aßmann, Liers, and Stingl 2019). Let G = (V,A) be a con-
nected digraph with nodes V and arcs A, where A = Api ∪ Apm is partitioned

into a set of pipes Api and a set of pressure-modifying elements Apm. Let

d ∈ RV be a balanced vector of demands and let l ∈ RApi
≥0 be a the vector of

pressure loss coefficients. Let π,π ∈ R|V| and xpm,xpm ∈ R|Apm| denote the
squared pressure bounds and compressor power bounds, respectively. Let Ã be

the node-arc incidence matrix of G after removing the row corresponding to an

arbitrary root node r ∈ V , with a partition (ÃB, ÃN ) into basis and nonbasis
as described above. Letψ be defined as in (2.39). Let (ψB,ψN ) and (qB, qN ) be
the corresponding partitions of ψ and q, respectively. Let g be the aggregated
pressure drop function as defined in (2.65).

Then (2.43) has a feasible point if and only if the following reduced system in

variables qN , xpm has a solution:

Ã>
N g̃(qN ,x

pm
B ) = ψN (qN ,x

pm
N ), (2.73a)

gw(qN ,x
pm
B ) − gv(qN ,x

pm
B ) ≤ πw − πv for all v, w ∈ V, (2.73b)

xpm ∈ [xpm,xpm] ⊆ R|Apm|, (2.73c)

qN ∈ R|N |. (2.73d)

Moreover, any solution q∗
N ,x

pm∗ of (2.73) is feasible for (2.43) by calculating

q∗
B = Ã−1

B (d̃− ÃNq
∗
N ) and π∗

v = π∗
r + gv(q∗

N ,x
pm∗
B ) for v ∈ V . The value of

π∗
r is an arbitrary given element of[

max
v∈V

{
πv − gv(q∗

N ,x
pm∗
B )

}
, min

v∈V

{
πv − gv(q∗

N ,x
pm∗
B )

}]
. (2.74)

Conversely, given a feasible q∗,π∗,xpm∗ for (2.43), the vectors q∗
N and xpm∗

are feasible for (2.73).

Proof. The original result of Gotzes et al. (2016) is established for pipe-only

networks, i.e., for Apm = ∅. However, the form of the pressure drop law is

never exploited explicitly. Therefore, it is not difficult to see that their result

still holds for networks with compressors or more general constraints of the

form

πw − πv = αa(qa) for all (v, w) = a ∈ A, (2.75)

where αa is some scalar-valued function of the flow qa.
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2.3 Reduction of variables

Remark 2.3.6. Next, we write system (2.73) in a compact fashion using the

previously introduced path and cycle matrices. With lemma 2.3.3, equation

system (2.73a) can be written in terms of the cycle matrix C as follows. The

left-hand side of (2.73a) is equal to

Ã>
N g̃(qN ,x

pm
B ) = Ã>

N
(
Ã−1

B
)>︸ ︷︷ ︸

=−CB

ψB
(
qext

B (qN ),xpm
B
)

(2.76)

= −CBψB
(
qext

B (qN ),xpm
B )

)
. (2.77)

Similarly, we write the right-hand side of (2.73a) as

ψN (qN ,x
pm
N ) = IψN (qN ,x

pm
N ) = CNψN (qN ,x

pm
N ), (2.78)

where we denote with I an identity matrix of appropriate dimension. Com-

bining (2.76) and (2.78), and again with lemma 2.3.3, we obtain

−CBψB
(
qext

B (qN ),xpm
B
)

= CNψN (qN ,x
pm
N ) (2.79)

⇐⇒ Cψ
(
qext(qN ),xpm) = 0. (2.80)

This system enforces that the pressure loss along the fundamental cycles of G
is zero.

The inequalities (2.73b) can be written using the full path matrix of the

B-induced spanning tree as was shown in (2.72):

gw(qN ,x
pm
B ) − gv(qN ,x

pm
B ) ≤ πw − πv for all v, w ∈ V (2.81)

⇐⇒ PψB
(
qext

B (qN ),xpm
B
)

≤ ∆π. (2.82)

This set of inequalities limits the pressure change along each path.

Altogether, system (2.73) can be formulated equivalently as

Cψ
(
qext(qN ),xpm) = 0, (2.83a)

PψB
(
qext

B (qN ),xpm
B
)

≤ ∆π, (2.83b)

qN ∈ R|N |, (2.83c)

xpm ∈ [xpm,xpm] (2.83d)

Example 2.3.7. Since the reduced formulation is of central importance for

our later results, we exemplify the reformulation here on the basis of a small

network.

Let G = (V,A) be a graph that models a passive gas network with nodes V =
{v1, v2, v3} and arcs A = Api = {a12, a23, a31} = {(v1, v2), (v2, v3), (v3, v1)};
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2 Stationary gas network operations

see fig. 2.2 for a visualization. Let d ∈ R|V| be a balanced vector of demands,

let π, π ∈ R|V| be the respective vectors of lower and upper squared pressure

bounds and let l ∈ R|A|
≥0 be the vector of pressure drop coefficients.

1

2

3

q12

q23

q31

Figure 2.2: Network with three nodes and one cycle.

We select r = v1 as root node and choose a basis B = {a12, a23} and

nonbasis N = {a31}. As already mentioned, we observe that the arcs in B form

a spanning tree of G.
In this setting, the corresponding node-arc incidence matrixA ∈ R|V|×|A|

and its partitions are given by

A =

a12 a23 a31


v1 −1 0 1

v2 1 −1 0

v3 0 1 −1

=:
[
ArB ArN

ÃB ÃN

]
(2.84)

and thus Ã−1
B = ( 1 1

0 1 ).
The reduced path matrix is given by

P̃ = (Ã−1
B )> =

a12 a23( )
v1v2 1 0
v1v3 1 1

. (2.85)
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2.3 Reduction of variables

We notice that the first row of P̃ encodes the path from v1 to v2 whereas the
second row encodes the path from v1 to v3. The full path matrix is given by

P> =
v1v1 v1v2 v1v3 v2v1 v2v2 v2v3 v3v1 v3v2 v3v3( )

a12 0 1 1 −1 0 0 −1 0 0
a23 0 0 1 0 0 1 −1 −1 0

.

(2.86)

Finally, the cycle matrix is given by

C =
[
CB |CN

]
=
[
−(Ã−1

B ÃN )> | I
]

=
(
1 1 1

)
. (2.87)

We observe that the single fundamental cycle in G denotes the only row ofC.

As in (2.55), we parameterize the basic flows by the nonbasic flows:

qB = Ã−1
B (d̃− ÃNqN ) =

(
d2 + d3

d3

)
+
(

1
1

)
q31, (2.88)

and thus the flow extension map (2.57) is given by

qext(q31) =

q12
q23
q31

 =

 d2 + d3
d3
0

+

1
1
1

 q31. (2.89)

Next, we formulate the aggregated pressure drop (2.65). For a more concise

presentation, let |x|∗ := |x|x. The basic aggregated pressure change function
is given by

g̃(q) = (Ã−1
B )>ψB(q) =

(
ψ12(q12)
ψ12(q12) + ψ23(q23)

)
(2.90)

=
(

−l12|q12|∗
−l12|q12|∗ − l23|q23|∗

)
. (2.91)

After adding the flow extension map (2.89), we obtain the full aggregated

pressure change function

g(q31) =

g1(q31)
g2(q31)
g3(q31)

 =

 0
−l12|d2 + d3 + q31|∗
−l12|d2 + d3 + q31|∗ − l23|d3 + q31|∗

 . (2.92)
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2 Stationary gas network operations

With these preparations, we formulate the constraints of the reduced sys-

tem (2.73):

l12|d2 + d3 + q31|∗ + l23|d3 + q31|∗ + l31|q31|∗ = 0, (2.93a)

π2 − π1 ≤ −l12|d2 + d3 + q31|∗ ≤ π2 − π1, (2.93b)

π3 − π2 ≤ −l23|d3 + q31|∗ ≤ π3 − π2, (2.93c)

π1 − π3 ≤ l12|d2 + d3 + q31|∗ + l23|d3 + q31|∗ ≤ π1 − π3. (2.93d)

We observe that the equation (2.93a) sets the pressure loss along the only cycle

to zero. The subsequent inequalities (2.93b)–(2.93d) bound the pressure drop

along all possible paths by the squared pressure bounds at the first and last

node of the path.

An equivalent formulation using the path and cycle matrices is given by

Cψ
(
qext(q23)

)
= 0, (2.94a)

PψB
(
qext

B (q23)
)

≤ ∆π, (2.94b)

where ∆π is defined as in (2.71).

2.4 Existence and uniqueness of flows

Results concerning the existence and uniqueness of flows and pressures in

connected passive gas networks with algebraic pressure drop have been estab-

lished multiple times in the literature; see Collins et al. (1977), Maugis (1977),

and Ríos-Mercado et al. (2002). In the recent work by Gugat, Schultz, and

Wintergerst (2018), the results for the algebraic model are generalized to a

network of coupled Euler equations.

First, we reproduce results from the literature concerning uniqueness by

Collins et al. (1977), and existence by Ríos-Mercado et al. (2002). A closer

look at the employed proof techniques is worthwhile as they reveal other

interesting structural properties of the gas transport problem. Afterward, an

extension to networks with active elements is presented.

Existence and uniqueness for pipe-only networks

We consider a model for passive gas transport without pressure bounds:

Aq = d, (2.95a)

A>π = ψ(q), (2.95b)

π ∈ R|V|, (2.95c)

q ∈ R|A|. (2.95d)
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2.4 Existence and uniqueness of flows

Note that we also allow negative squared pressure values, even though these

have no real-world interpretation. We sometimes refer to this formulation

as the problem of state or the state equations, as it purely represents the

physical model without exogenous pressure bounds. The (physical) state of

the network is given by the flow rate along the arcs and the pressures at the

nodes.

Collins et al. (1977) and Maugis (1977) show that if a feasible flow with

admissible pressures exists for the physical state problem, then the flow solu-

tion is unique. Their result is derived from properties of an auxiliary linear

network flow problem with a strictly convex objective function. In their proof,

they utilize that the Karush–Kuhn–Tucker (KKT) optimality conditions of

this problem are equivalent to the state problem (2.95). The dual variables in

this system can be identified with the squared pressure variables of the state

problem (2.95).

Lemma 2.4.1 (Collins et al. 1977; Maugis 1977). Suppose q∗ ∈ R|A| and π∗ ∈
R|V| solve (2.95). Then q∗ is unique and the set X ⊆ R|A| × R|V| of feasible
flow, squared pressure solutions (q,π) can be written as

X =
{
(q,π)

∣∣ (q,π) feasible for (2.95)
}

(2.96)

=
{
(q∗,π)

∣∣ π = π∗ + η1, η ∈ R
}
, (2.97)

where 1 = (1, . . . , 1)> ∈ R|V| is a vector of ones.

Proof. This proof follows the presentation in Humpola et al. (2015), which in

turn is adapted from Collins et al. (1977). It uses basic results from convex

optimization that is found in any textbook on the subject, e.g., Boyd and

Vandenberghe (2004).

To show uniqueness of q∗ we introduce an auxiliary optimization problem

min
q∈R|A|

−
∑
a∈A

∫ qa

0
ψa(t) dt (2.98a)

s.t. Aq = d. (2.98b)

The pressure drop functions ψa(qa) = −la|qa|qa for each arc a ∈ Api are

strictly decreasing and continuous, and hence the integral
∫ qa

0 ψa(t) dt exists
and is a strictly concave function in qa. Since the objective (2.98a) is the

negative sumof these integrals, it is a strictly convex function in q. With (2.98)

being a strictly convex minimization problem, a standard result in convex

optimization implies that there is at most one optimal solution q∗.
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2 Stationary gas network operations

As a first step, we establish that the state problem (2.95) is in fact the

Lagrange multiplier optimality condition system of the strictly convex prob-

lem (2.98). The squared pressure variables arise naturally as the Lagrange

multipliers of the auxiliary problem (2.98). Since the Lagrange multiplier op-

timality conditions are necessary and sufficient for convex minimization prob-

lems, we conclude that (2.98) has an optimal solution q∗ if and only if there

are Lagrange multipliers (sq. pressures) π∗ such that (q∗,π∗) solves (2.95).

Let

L(q,π) = −
∑
a∈A

∫ qa

0
ψa(t) dt+ π>(Aq − d) (2.99)

be the corresponding Lagrange function, where we denote with π ∈ R|V| the
Lagrangemultipliers. We know fromconvexoptimization that the stationarity

condition ∇qL = 0 is necessary and sufficient for any optimal point of the

convex minimization problem (2.98):

∇qL = −ψ(q) + π>A = 0. (2.100)

We observe that is this in fact the pressure drop constraint (2.95b)

A>π = ψ(q). (2.101)

Therefore any minimizer q∗ of (2.98) together with admissible Lagrange mul-

tipliers π solves the state problem (2.95).

Next, we look at the structure of the squared pressure solutions. As the

pressure variables are unbounded and only appear in the pressure drop

model (2.95b), their values are determined solely by this equation system.

The set of feasible squared pressure values is thus given by the solution space

of the linear equation system

A>π = ψ(q∗). (2.102)

A basic result from graph theory states that the rank of the |V| × |A| node-arc
incidence matrix A of a connected graph G = (V,A) is equal to |V| − 1;
see, e.g., Ahuja, Magnanti, and Orlin (1993). Therefore the null space ofA>

is one-dimensional. By construction of A its columns sum up to zero and

thus the vector 1 = (1, . . . , 1)> of ones satisfies A>1 = 0. Summarizing

our observations, we conclude that all solutions of (2.102) can be written as

π∗ + η1 for η ∈ R.

While the preceding lemma provides insight into the structure of the feasi-

ble set, it is unclear whether solutions exist at all. This is where Ríos-Mercado
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2.4 Existence and uniqueness of flows

et al. (2002) comes into play. Besides a similar result regarding uniqueness of

flows and structure of the set of feasible squared pressures, they also give a

proof for the existence of a feasible flow in a pipe-only network.

The result by Ríos-Mercado et al. (2002) uses the cycle equations (2.83a)

Cψ
(
qext(qN )

)
= 0 (2.103)

of the reduced model (2.83) as a starting point. By exploiting some mono-

tonicity propertieswithin this equation system, it can be shown that a solution

exists and is unique. In fact, this is already evident in example 2.3.7, where the

left-hand side of the cycle equation (2.93a) is a strictly increasing, continuous

function that tends from −∞ to +∞ and thus has a unique root. Due to

equivalence of the formulations, existence of a solution for the state problem

follows immediately.

Theorem 2.4.2 (Ríos-Mercado et al. 2002). Let

Cψ
(
qext(qN )

)
= 0 (2.104)

be the cycle equation system (2.83a) of the reduced model corresponding to the

state problem (2.95) of a passive network. Then there exists a unique q∗
N ∈ R|N |

that solves (2.104).

Since the derivation of this result is substantive and employs concepts

from operator theory, we will not reproduce it here and instead refer to Ríos-

Mercado et al. (2002).

Remark 2.4.3. As a flow solution always exists for the state problem, feasibility

of the passive nomination validation problem with pressure bounds only

depends on whether a pressure solution exists that does not violate the given

bounds. The fact that a unique flow solution always exists and that only the

pressure bounds are decisive for the overall feasibility will play an important

role in the robust methods presented in chapters 4 and 5.

For easier referencing, we summarize the obtained results in the following

proposition.

Proposition 2.4.4. Let A ∈ R|V|×|A| be the node-arc incidence matrix of a

connected, passive gas network represented by the digraph G = (V,A) with
balanced demand d ∈ R|V| and without pressure bounds. Then the set

X =
{
(q,π) ∈ R|A| ×R|V| ∣∣Aq = d, A>π = ψ(q)

}
(2.105)

of feasible flow, squared pressure pairs has the following properties:
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2 Stationary gas network operations

1. A flow solution always exists and is unique, i.e.,∣∣{q ∣∣ ∃π with (q,π) ∈ X
}∣∣ = 1. (2.106)

2. Given a flow solution q∗, the set X of feasible points has the form

X =
{
(q∗,π)

∣∣ π = π∗ + η1, η ∈ R
}
, (2.107)

where π∗ can be computed with π∗
v = π∗

r + gv(q∗
N ) for all v ∈ V after

fixing the pressure π∗
r at the root node to an arbitrary value.

Existence and uniqueness for networks with linear active
elements

We extend proposition 2.4.4 to networks with pressure-modifying elements.

The physical state of such a network is described by the system

Aq = d, (2.108a)

A>π = ψ(q,xpm), (2.108b)

xpm ∈ [xpm,xpm], (2.108c)

π ∈ [π,π], (2.108d)

q ∈ Rm. (2.108e)

For our proof, we require the mild assumption that no active element is part

of a cycle.

Assumption 1. Let a gas network problem with compressors over a digraph G
be given. Then no pressure-modifying element is part of a cycle in G.

This assumption merits further discussion. From a stationary point of view,

cycles with pressure-modifying elements are not very useful. We consider a

simple example network that has one cycle with one compressor; see fig. 2.3.

v1 v2

compressor

pipe

inflow:
d

outflow:
d

Figure 2.3: A compressor as an element of a two-node cycle.
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2.4 Existence and uniqueness of flows

Gas is injected at the compressor’s inlet v1 and withdrawn at the compres-

sor’s outlet v2. After compression, the pressure at v2 is larger than the pressure

at v1. As we know, gas flows from points of higher pressure to points of lower

pressure. Thus, gas is flowing back from v2 to v1 over the parallel pipe. This

backflow causes an inefficient situation where gas circulates on the whole

cycle.

In real-world networks, e.g., the ones provided by GĆĘLĎć, active elements

in fact do occur in cycles. There are several reasons why this is may not

be problematic. Real gas networks contain a richer set of active elements

than we consider here. For example, valves can restrict flow in one or both

direction of an arc. Essentially, these elements modify the graph topology

since closing an arc with a valve may break a cycle and convert the network to

a tree topology. Thus, by carefully placing and combining active elements, a

network operator can indeed use compressors within a cycle without causing

backflows. Furthermore, compressors may be beneficial in an instationary

setting where gas is compressed, e.g., only for a short timespan.

Altogether, our methods cannot deal with the full range of active elements

that would be necessary for using compressors in cycles. For this reason, we

only allow the use of pressure-modifying elements outside cycles.

Next, we extend proposition 2.4.4 to networks with active elements.

Theorem 2.4.5 (Aßmann, Liers, and Stingl 2019). We consider a connected

gas network with a fixed compressor power vector xpm∗. Suppose assumption 1

is satisfied, i.e., no pressure-modifying element is part of a cycle. Then proposi-

tion 2.4.4 still holds.

Proof. The proof here is an alternative to the one given in Aßmann, Liers, and

Stingl (2019). While using similar ideas, it is more elementary and hence a bit

easier to follow.

We prove the theorem by induction over the number k = |Apm| ∈ N0 of

pressure-modifying elements.

For k = 0 the network consists only of pipes and the statement follows from

proposition 2.4.4.

Suppose theorem 2.4.5 holds for networks with k ∈ N0 active elements.

We consider a connected gas network with |Apm| = k+ 1 pressure-modifying

elements. Let G = (V,A) denote the corresponding graph and let d ∈ R|V|

denote the balanced vector of demands. Thus, the feasibility system is given

by

Aq = d, A>π = ψ(q,xpm∗),
π ∈ R|V|, q ∈ R|A|.

(P )
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2 Stationary gas network operations

Weselect anarbitraryactiveelementaact = (σ, τ) ∈ Apm and remove it from G.

Due to assumption 1, no active element is part of a cycle and thus removing

arc aact leads to a partition of G into two separate graphs G1 = (V1,A1) and

G2 = (V2,A2). W.l.o.g., we assume σ ∈ V1 and τ ∈ V2.
Since aact is not part of a cycle, it is the only arc that connects the two sets

of nodes V1 and V2. As the total demand in each Vi may not be balanced, the

surplus or missing quantity must be satisfied by the flow over aact in G:

q∗
act =

∑
v∈V2

dv = −
∑

v∈V1

dv. (2.109)

Let di = (dv)v∈Vi ∈ R|Vi|, i = 1, 2, denote a partition of the demand vector d
according to Vi. With this and the flow along aact we construct balanced

demand vectors

d̄1 = d1 + q∗
acteσ and d̄2 = d2 − q∗

acteτ , (2.110)

where we denote with ei the standard i-th basis vector of suitable dimension.

We consider the two gas problems for i = 1, 2 on Gi with demand d̄i:

Aiqi = d̄i, A>
i πi = ψi(qi, x

pm∗
i ),

πi ∈ R|Vi|, qi ∈ R|Ai|,
(Pi)

where xpm∗
i andψi denote their respective counterparts in Gi. By construction,

each graph Gi is connected, has a balanced demand vector and contains at

most k active elements. Due to the induction hypothesis, theorem 2.4.5 holds

andweobtain solutions q∗
i and π∗

i for each problem (Pi). As a feasible squared

pressurevector remains feasibleafteradding aconstant to the squared pressure

at each node, we further assume that the solutions satisfy

(π∗
1)σ = 0 and (π∗

2)τ = xpm∗
aact . (2.111)

Next, we show that a combination of the solutions of (Pi) is feasible for the

original problem (P ). Let

q∗ :=

 q∗
1
q∗

2
q∗

act

 and π∗ :=
(
π∗

1
π∗

2

)
. (2.112)
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2.4 Existence and uniqueness of flows

We recall thatA,A1,A2 denote the node-arc incidence matrices of G,G1,G2,
respectively. We observe that the column inA corresponding to aact can be

written asA·aact = −eσ + eτ . Then

Aq∗ =
(
A1 0
0 A2

A·aact

) q∗
1
q∗

2
q∗

act

 =
(
d̄1
d̄2

)
+A·aactq

∗
act (2.113)

=
(
d̄1
d̄2

)
+ (−eσ + eτ )q∗

act
(2.110)=

(
d1
d2

)
= d (2.114)

and

A>π∗ =


A>

1 0
0 A>

2

A>
·aact


(
π∗

1
π∗

2

)
=

 A>
1 π

∗
1

A>
2 π

∗
2

A>
·aactπ

∗

 =

ψ1(q∗, xpm∗
1 )

ψ2(q∗, xpm∗
2 )

−π∗
σ + π∗

τ


(2.115)

(2.111)=

ψ1(q∗, xpm∗
1 )

ψ2(q∗, xpm∗
2 )

xpm∗
aact

 = ψ(q∗,xpm∗). (2.116)

Hence, the solution (q∗,π∗) are feasible for the original problem (P ).

Moreover, uniqueness of q∗ follows from the observation that q∗
aact is

uniquely determined by (2.109) and that any other feasible solution (q∗)′

for (P ) would lead todifferent flow solutions for the partitioned problems (Pi),

a contradiction to the induction hypothesis.

SinceA is a |V|× |A| node-arc incidence matrix with rank |V|− 1, the set of

all feasible squared pressures is again given by
{
π∗ +(1, . . . , 1)>η

∣∣η ∈ R
}
.

Remark 2.4.6. We give a few observations regarding the consequences of

sections 2.3 and 2.4. Firstly, we note that a flow solution on a tree-shaped

network is already uniquely determined by the demand vector and the lin-

ear flow system (2.43b) alone. This is not the case for networks with cycles,

where uniqueness of flow solutions only holds true by taking the cycle equa-

tions (2.73a) into account as well.

Secondly, considering the gas transport problem without pressure bounds,

i.e., (2.43b)–(2.43e), we found that not only the flow solutions are unique, but

also the squared pressures up to a constant shift. In essence, all squared pres-

sures are determined uniquely relative to the squared pressure at an arbitrarily

selected node. Thus, byfixing thepressureatonenode inaconnected network,

the remaining degree of freedom given by the pressure shift is eliminated and

the flow and pressure solution is unique.
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2 Stationary gas network operations

2.5 Solving nominal gas transport problems

Before introducing uncertainties into the nomination validation problem, we

give an overview of the solution approaches for the nominal setting. This is a

crucial step on theway to a robust treatment of the problem, as robust models

often arise from an extension or reformulation of the nominal models. Often

the typeof thechosen nominalmodel—e.g., linearornonlinear, convexornon-

convex, continuous or mixed-integer, algebraic or PDE-based—determines

the applicable robustness approaches.

The overview of the literature given here follows the broader setting of

this thesis, i.e., the stationary nomination validation problem. In particular,

we omit results used exclusively for the simulation of gas networks. While

transient optimization problems in gas are interesting and relevant in a vari-

ety of real-world as well as academic problems, we see the treatment of the

stationary case as a necessary first step towards more complex models. Hence,

we mention work that deals with transient problems only marginally.

For a comprehensive treatment of (optimization) problems in natural gas

transportation networks, we refer to the survey article by Ríos-Mercado and

Borraz-Sánchez (2015) and the book by Koch et al. (2015).

One of the first approaches for the optimization of natural gas transport

networks is dynamic programming (DP). A summary of the results up un-

til 1998 is given by Carter (1998). DP approaches are used to minimize fuel

consumption in networks consisting only of pipes and compressors. For these

approaches, the feasible operating range of each compressor is discretized

and modeled as a finite set of achievable pressure changes. Besides providing

global optimal compressor controls, DP has the additional advantage that the

nonlinear pressure drop aspects can be handled easily. A disadvantage of these

approaches is the “curse of dimensionality”, which can lead to computational

costs that increase rapidly with the number of elements in the network.

The first use of DP in gas network operations is described by Wong and Larson

(1968a), where linear or gun barrel networks are optimized. Subsequent im-

provements to tree-structured networks appear in Wong and Larson (1968b)

and Lall and Percell (1990). An extension to networkswith cycles is considered

by Gilmour, Luongo, and Schroeder (1989). They derive a hybrid approach

where tree-shaped subnetworks are treated with DP and the remaining net-

work by enumeration. Another extension for series-parallel graphs is given

by Borraz-Sánchez and Ríos-Mercado (2004), who use non-sequential DP to

aggregate compressors and subnetworks into virtual units.

Another large group of solution approaches uses MILP models to tackle

gas transport problems. Since gas physics is inherently nonlinear, an essen-
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2.5 Solving nominal gas transport problems

tial part of all MILP models is how the nonlinearities are modeled. Typical

strategies include linear or piecewise-linear approximations and outer approx-

imation schemes. The main strength of these methods is that combinatorial

aspects arising from active elements, e.g., the binary decision of switching

a compressor on or off, can be incorporated easily into an integrated model.

Moreover, contemporary MILP solvers are very stable and performant, so that

even large-scale networkswith hundreds of nodes and pipes can be solved reli-

ably; see Pfetsch et al. (2015). On the other hand, using anMILP in this setting

has a number of drawbacks. Since all nonlinearities have to be expressed with

linear or mixed-integer linear constraints, there is always some approximation

error. Although many models allow arbitrary fine approximations, this may

quickly lead to largeMILPs that aredifficult to solve. Expressingmorecomplex

aspects of gas physics, like the implicit dependence of the friction factor on

the Reynolds number, variable gas temperature, or mixing of different gases,

can also be challenging as this often requires multivariate nonlinear functions.

Therefore MILP-based approaches typically use simplified gas physics.

In one of the first articles that use linear techniques for gas, Pratt and Wil-

son (1984) combine binary variables that model switching decisions for the

compressors with a consecutive linearizations schema until convergence is

attained. In Wolf and Smeers (2000), the Belgian natural gas network is mod-

eled with the convex problem (2.98) that is subsequently approximated by a

series of linear underestimators. Taylor expansions at the endpoints of the

pressure drop equations’ domains are used by Rømo et al. (2009) to construct

outer approximations. Their approach also incorporates gas mixing aspects as

a multi-commodity flow problem. Martin, Möller, and Moritz (2006) develop

anMILPmodel where the non-convexWeymouth equations are approximated

by piecewise-linear functions. This idea is further refined and extended in

the following articles. A transient piecewise-linear model has been derived

in Mahlke, Martin, and Moritz (2010). By modeling the nonlinearities with

piecewise-linear over- and underestimators, Geißler et al. (2012) introduce

a systematic way of constructing relaxations for nonlinear functions. This

makes it easier to control the error, and infeasible instances can be detected

early on by an infeasible relaxation. Mixed-integer models for a wide range of

active elements, such as compressors, compressor stations, (control-) valves,

and resistors, were introduced in Geißler, Martin, et al. (2015). While the

piecewise-linear modeling techniques allow an arbitrarily small error by using

a finer discretization, this can also lead to intractable models due to a large

number of binary variables that are required. To mitigate this, Geißler, Morsi,

and Schewe (2013) and Burlacu, Geißler, and Schewe (2019) develop adaptive
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2 Stationary gas network operations

refinement strategies for general mixed-integer nonlinear programs (MINLPs)

that are demonstrated on gas network problems. Recent works by Gugat

et al. (2018b) and Sirvent (2018) investigate how nonlinear functions without

an algebraic representation—e.g., arising as solutions of PDEs—can be incor-

porated into an MILP. This allows the use of more complex models for gas

physics. Another model extension appears in Geißler, Morsi, Schewe, and

Schmidt (2015), where an alternating direction method is used to include gas

mixing by tracking the heat power of the different gases.

There are also many results that aim to solve a nonlinear—and typically

non-convex—formulation of the gas transport problem as-is. This offers

several advantages. Compared to the previous group of MILP-based methods,

many of the NLP-approaches can use their respective models of gas physics

without further approximations. Hence, using more complex models for gas

physics is often easier compared to the MILP approaches. Disadvantages of

NLP-based methods are the inherent difficulty of finding globally optimal

solutions and the inclusion of binary decision variables.

BothFurey (1993) and Ehrhardtand Steinbach (2003) applysequential quadratic

programming to the gas network problem. Interior point methods are used

by Steinbach (2007). In Schmidt, Steinbach, and Willert (2015a) the gas

transport problem is formulated as a mathematical programwith equilibrium

constraints. High-detail models for stationary gas physics and active elements

are derived in Schmidt, Steinbach, and Willert (2015b). In the subsequent

article Schmidt, Steinbach, and Willert (2016), their accuracy is evaluated

by comparison with a simulation tool. The publications by Hamam and

Brameller (1971), Mallinson et al. (1993), and Ríos-Mercado et al. (2002) first

describe a reduction technique and then solve the resulting problems with

nonlinear programming methods. In the same spirit, Wu et al. (2000) propose

different relaxations for modeling the feasible compressor operation range

and compressor cost. An MINLP formulation is considered in Humpola and

Fügenschuh (2015). The resulting problem is solved by spatial branching to-

getherwith convex relaxations that are considered once all binary variables are

fixed. Finally, Misra et al. (2015) present a geometric programming approach

with a focus on compressor operations.

Comparing both the two groups of MILP and NLP-based methods, it is

evident that they complement each other well. While mixed-integer linear

approaches suffer from a comparatively coarse representation of the physi-

cal properties of the gas, incorporating combinatorial aspects that arise in

switchable active elements is straightforward. On the other hand, nonlinear

programming methods allow very detailed physical models but have diffi-
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2.5 Solving nominal gas transport problems

culties with discrete elements. Altogether, this has motivated a combined

approach. Domschke et al. (2011) propose a combination of piecewise-linear

mixed-integer models with a sequential quadratic programming approach for

a transient gas transport problem. A similar approach is described in Pfetsch

et al. (2015) and Koch et al. (2015) for the stationary case. In a first step, a coarse

MILP approximation is used as a heuristic to find candidate solutions for the

binary decision variables. In a second step, the binary decision variables are

fixed to these candidate solutions, and their feasibility is validated with a

high-detail nonlinear model.

Convex relaxations are used in the context of expansion planning for gas

networks by Babonneau, Nesterov, and Vial (2012) and Borraz-Sánchez et

al. (2016).

Optimal control questions in transient gas transportation networks are

also studied in several articles. We mention Baumrucker and Biegler (2010),

who use mathematical programming with equilibrium constraints. Zlotnik,

Chertkov, and Backhaus (2015) optimize a dynamic gas flow setting with

varying injections and withdrawals. A stochastic line-pack problem is studied

by Zavala (2014). The recent work by Gugat et al. (2018a) solves a transient

instantaneous optimal control problem with a series of MILPs.

Over the years many heuristic approaches have also been developed. We

mention simulated annealing by Mahlke, Martin, and Moritz (2007), tabu

search by Borraz-Sánchez and Ríos-Mercado (2009), ant colony optimization

by Chebouba et al. (2009), and a heuristic two-stage approach that repeatedly

optimize pressure and flow solutions by Ríos-Mercado, Kim, and Boyd (2006).
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3 Robust treatment of gas transport

Mathematical models for real-world problems often include uncertain data.

As these uncertainties can have a significant influence on the quality and

feasibility of the solutions, the question arises how these effects can be treated

appropriately. The aim of such a treatment can be, for example, minimizing

the influence of uncertainties on the solutions, giving guarantees regarding

the solution quality, or finding solutions that are entirely immune to small

fluctuations of the data. Depending on the available information, e.g., from

previous observations or expert knowledge, fundamentally different solution

paradigms can be pursued.

One of these solution paradigms is robust optimization, which is explained

in more detail here. Robust optimization in the broadest sense aims to find

solutions that are in some way safeguarded against all parameter realizations

from an a priori selected set of likely values. We explain this methodology and

the motivation behind it in more detail using the gas network problem (2.43)

under uncertainty. Afterward, the general aspects and ideas of robust opti-

mization are formalized in an abstract setting. Taking the previous discussion

of uncertainties in gas into account, we ultimately model the gas transport

problem under uncertainty as a two-stage robust optimization problemwith a

non-convex second stage. This formulation, as well as its abstract counterpart,

serve as a basis for the approaches developed in the following chapters. We

give a short literature review of the general solution methods for robust opti-

mization and highlight some of the challenges arising from the application of

known methods to the gas network problem.

This chapter is structured as follows. In section 3.1, the sources and influ-

ences of uncertainties in real-world problems and their possible treatment

are discussed using the gas network problem as an example. In addition,

we give a brief overview of previously investigated gas transport problems

under uncertainty in the literature. Section 3.2 introduces the robust opti-

mization methodology, including a short literature review on general solution

approaches In section 3.3, we apply the robust optimization methodology to

the gas network transport problem with linear pressure-modifying elements,

leading to a two-stage robust problem with a non-convex second stage. We

close the chapter with section 3.4, outlining the challenges and limitations of

using standard approaches to solve the gas transport problem.

45



3 Robust treatment of gas transport

3.1 Motivation

This section aims to motivate at a high level the reasons for choosing a two-

stage robust optimization problem to model gas transport under uncertainty.

A rigorous mathematical introduction to general robust optimization and the

two-stage model for gas transport follow in sections 3.2 and 3.3, respectively.

Optimization problems that arise from real-world settings can often only

be formulated with a loss of accuracy. This may be due to, e.g., an incomplete

or empirical description of the underlying processes, model simplifications,

or inaccurate knowledge of model parameters; see Ben-Tal, El Ghaoui, and

Nemirovski (2009) for some concrete examples. Typically, all three of the

previously mentioned factors occur in gas transport problems. For example,

several model simplifications and empirical laws are used for our model of

the gas transport problem; see chapter 2.

There are several strategies for dealing with these inaccuracies. Often, a

main goal is to characterize the impact of theuncertainties and, if necessary, to

adapt themathematical model in such away that their influence is minimized.

Investigating the discrepancy between mathematical models with different

degrees of detail can be done experimentally by comparing them with a more

precise model or real-world data. In the same way, the influence of empirical

laws on the overall system can be evaluated; see Schmidt, Steinbach, and

Willert (2015b, 2016) for such a comparison in gas network operations. While

the previous methods aremore experimental in nature, it may also be possible

to analytically derive error estimators between differentmathematical models,

e.g., between a simplified and a non-simplified ODE or PDE model. Error

estimators for gas networks are studied in, e.g., Mehrmann, Schmidt, and

Stolwijk (2018) and Domschke, Kolb, and Lang (2015).

In this thesis, however, we are not dealing with uncertainties due to model-

ing decisions, but rather with uncertainties in the given data and parameters.

These inaccuracies in the data are present in many real-world applications

and may arise from a variety of factors; see Ben-Tal and Nemirovski (2002) for

a more in-depth discussion. For example, every physical quantity can only be

measured up to a certain precision, and some parameters may only be measur-

able with great effort or have to be estimated. If these inaccurate parameters

are used in an optimization model, mathematical solutions might arise that

are infeasible in reality because of the differences between the measured or

estimated data and the “real” data. Similarly, mathematical models can lead

to solutions with too much precision, e.g., too many decimal digits, which

in reality cannot be implemented with the necessary accuracy. The frequent

occurrence of infeasible solutions caused by uncertainties was studied in Ben-
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Figure 3.1: Influence of the integral roughness k on the pressure loss along a 100 km long
pipeline. Other parameters: diameter D = 50 cm, volumetric flow q = 250 × 1000 N m3 h−1.

Tal and Nemirovski (2000) by using perturbed LPs. It is thus desirable to find

solutions that are in a certain sense immunized or robust against fluctuations

in the models’ parameters.

We consider two parameters of the gas transport problem as uncertain: the

pressuredropcoefficient l ∈ R|Api|
>0 occurring in theWeymouthequation (2.32)

and the demand vector d ∈ R|V|.
We briefly recall that the Weymouth equation

πw − πv = −laqa|qa| (3.1)

models the pressure drop between two connected nodes (v, w) = a ∈ Api.
Themagnitude of the pressure change depends on the flow along the pipe and

the pressure drop coefficient la. The pressure drop coefficient is influenced

by various physical properties of the pipe such as length, diameter, integral

roughness, as well as the chemical properties of the gas mixture. This thesis

is inspired by uncertainties in pipe roughness since this parameter increases

over time as the pipe ages and deteriorates. Measuring the current value of this

parameter can be difficult or even impossible. It can therefore often only be

estimated on the basis of the age of the pipe or its use; see Farshad, Rieke, and

Garber (2001). Since no other information such as a probability distribution

is known, a robust treatment of this parameter is appropriate. As we consider

the entire pressure drop coefficient to be uncertain, any uncertainty in one of

the aforementioned parameters can also be treated with our methods.

The pressure loss in a pipeline depending on pipeline length and integral

roughness factor is illustrated in fig. 3.1. We observe that the pressure loss is

strongly influenced by the length of the pipeline and the integral roughness.
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3 Robust treatment of gas transport

We note that the selected pipeline parameters and flow rate are similar to

situations found in GĆĘLĎć-134, i.e., the natural gas network of Greece. This

observation is confirmed by Osiadacz and Chaczykowski (2010), who deter-

mine from a comparison with a real-world pipeline that the friction factor has

a high impact on the state of the network.

The demand dv at each node v ∈ V is another quantity that can be affected

by uncertainty. For example, gas consumption in cities is highly temperature-

dependentdue to heating; seeHeitsch et al. (2015). Although thereare stochas-

tic forecast models based on past climate data, the exact future consumption

is naturally unknown and can only be estimated. Another source of uncer-

tainty in demand is associated with the energy turnaround and the increasing

presence of renewable energy sources in the power grid. The energy produc-

tion from some renewable energy sources such as wind and solar is strongly

dependent on the weather. To mitigate this unreliable energy production,

gas-fired power plants are valued as a flexible energy source to compensate

for fluctuations in renewable energy production; see Chertkov, Backhaus,

and Lebedev (2015). The gas consumption of these power plants can thus be

modeled as an uncertain quantity.

Depending on the available data and the desired protection against un-

certainties, there are different modeling approaches for problems affected

by uncertainty. If probability distributions for the uncertain parameters are

known or can be estimated, stochastic programming approaches may be fea-

sible; see, e.g., Birge and Louveaux (2011) and references therein. For example,

the aim can be to optimize the expected value of an objective function given

an underlying probability distribution. Another stochastic approach is chance

constraints, where a constraint only has to be fulfilled with a certain probabil-

ity. Clearly, all these approaches require a suitable model of the underlying

probability distribution. For example, a probability distribution for the gas

demand of a city can be determined well from historical data, as it depends

mainly on the ambient temperature; see Heitsch et al. (2015). However, this

typically does not apply to gas entering the network, as this quantity of gas is

more price- and market-oriented. If the probability distribution is difficult

or impossible to determine, robust optimization approaches may be more

appropriate. The same applies if a probabilistic guarantee is not sufficient and

instead protection against all possible scenarios is required. Finally, the inclu-

sion of complex distribution information can quickly lead to very challenging

stochastic problems. In comparison, robust approaches are often simpler

and hence easier to solve, but also often lead to more conservative solutions

compared to sophisticated stochastic models.
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We now introduce the basic ideas of robust optimization. In the robust

optimization paradigm, the values of uncertain parameters are assumed to be

in apredefined compact set, the so-called uncertainty set oruncertainty region;

see Ben-Tal, El Ghaoui, and Nemirovski (2009). Elements of this set are also

called scenarios. For example, uncertainties in one-dimensional parameters

such as the integral roughness factor can bemodeled as a simple interval. This

reflects the notion that all realizations of this parameter lie between some

(typically estimated) lower and upper bound. While uncorrelated parameters

lead to an uncertainty region in the form of a hyperrectangle, correlated

parameters can be expressed with differently shaped sets such as ellipsoids.

The idea of robust optimization is to find solutions that are immune against

all possible realizations of uncertain data from the uncertainty set. Feasible

points with this property are said to be robust feasible. Optimizing over the

set of robust feasible points yields solutions that provide the best possible

objective function value for the worst scenario.

Problems under uncertainty often deal with making decisions under incom-

plete information. Manyapplications haveamultilevel structurewherephases

in which information is revealed alternate with phases in which decisions are

made; see, e.g., Ben-Tal et al. (2004) for a robust optimization perspective

and Bard (1998) for a more general bilevel point of view. For example, betting

on the outcome of a soccer match is typically a single-stage process. The

bet must be placed without knowledge of the final outcome before the game

begins. However, there are so-called “live bets” where the placed wager can

be modified after the game has started. If, for example, this is permitted at

halftime, a customer can use her knowledge about the course of the game

so far and adjust her bet accordingly. Her second decision on the half-time

break fundamentally depends on the information observed so far. This is an

example of a two-stage problem. Depending on the stage in which a decision

is taken, we further distinguish the problem variables into first-stage variables

and second-stage variables. These variables are also called here-and-now and

wait-and-see variables. While first-stage variables do not depend on the actual

realization of the uncertainty, second-stage (or further stage variables) can

depend on all information that has been revealed in previous stages.

From the point of view of the gas network operator, the nomination valida-

tion problem under uncertainty is a single-stage problem: the decision how

the active elements are configured has to be taken without exact knowledge

of the uncertain parameters. However, not all problem variables are decisions

that can be taken by the operator. All auxiliary variables that model physi-

cal quantities like pressure or flow within the network cannot be controlled
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3 Robust treatment of gas transport

directly by the network operator but arise as the network’s state from nature.

These variables of state depend on the (uncertain) physical parameters and

on the decisions of the network operator. Therefore, a two-stage structure is

appropriate for the nomination validation problem under uncertainty. The

operator’s configuration of the active elements is a first-stage variable, as it

has to be decided without prior knowledge of the uncertainty. On the other

hand, the physical state of the network, i.e., pressures and flows, is a result of

the operator’s decision as well as the laws of physics that have perfect knowl-

edge of the uncertain parameters. As such, these quantities depend on the

uncertainty and are best modeled as second-stage variables.

Gas transport under uncertainty

More specifically in the gas context, uncertainties have been considered in

several publications.

We distinguish between stochastic and robust applications and begin with

stochastic approaches. Gotzes et al. (2016) derive an analytic description of

the set of feasible load scenarios for a given network in a stationary setting.

The authors use this description together with a procedure called spheric-

radial decomposition to estimate the probability that a load scenario arising

from given probability distribution is feasible. They demonstrate that their

method outperforms a standard Monte Carlo method for probability esti-

mation. Chertkov, Backhaus, and Lebedev (2015) examine the influence of

unreliable wind energy generation on pressure fluctuations in a connected

natural gas pipeline system. To this end, they study the effect of varying gas

injections as well as pressure levels at all points along a straight pipeline. The

authors identify points of peak fluctuations within the pipeline and propose

to factor this information into compressor operations.

Transientmodels combinedwith stochastic aspects have been studied in the

context of line-pack problems. Hedging a transient line-pack problem against

a discrete set of future scenarios is studied in Carter and Rachford (2003).

A similar problem is considered by Zavala (2014). Starting from a transient

PDE model together with a finite set of time-dependent demand profiles,

the author develops a discretized stochastic optimal control model for a line-

pack problem. The presented approach generates policies for the operator to

control the compressors within the network. Moreover, the objective function

is supplemented with a risk metric to help operators reduce volatility within

the system.
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Next, we consider robust optimization approaches. Mostly, these publica-

tions focus on uncertainties in demand. Vuffray, Misra, and Chertkov (2015)

present a robust treatment of load fluctuations in a stationary gas network.

The demand at a subset of nodes is allowed to fluctuate within a given hyper-

cube. The authors develop a two-stage robust optimization problem whose

objective is to find a cost-minimal injection pattern such that all possible

fluctuations can be satisfied by the network. By exploiting monotonicity

properties of the feasible flows, they show how this task can be tackled by

replacing the robust constraints by a finite number of inequalities. Robinius

et al. (2019) study a network design problem under uncertainty. It consists

of selecting pipe diameters for a tree-shaped network such that all demands

from a box uncertainty set intersected with a balancing hyperplane can be

satisfied. By exploiting monotonicity, the authors derive a combinatorial

polynomial-time algorithm that generates a finite set of critical load scenarios.

It is shown that optimal pipe dimensioning for this finite scenario set is also

optimal for theoriginal robust optimization task under the boxuncertainty set.

Labbé, Plein, and Schmidt (2018) investigate the booking validation problem

on tree-shaped gas networks. In essence, the problem is to decide whether a

gas network can satisfy all demands from a given box uncertainty intersected

with a balancing hyperplane set. Similar to Robinius et al. (2019), the authors

develop a combinatorial polynomial-time method that identifies critical sce-

narios. Subsequently, these critical scenarios are used to answer the booking

validation question.

Finally, there is research concerned with a combination of robust and

stochastic aspects. In González Grandón, Heitsch, and Henrion (2017), the

previously discussed work by Gotzes et al. (2016) has been extended to incor-

porate uncertain pressure drop coefficients. The authors analytically derive

a robust counterpart for a tree-shaped network where the pressure drop co-

efficient of each pipe can fluctuate within a given interval. By including this

counterpart in the probability estimation approach of Gotzes et al. (2016), the

probability of a feasible load scenario for a robust problem can be estimated.

Adelhütte et al. (2018) present a new class of robust/stochastic so-called pro-

bust optimization tasks using the example of gas networks. They study a gas

network problem where a robust constraint regarding the demand has to be

satisfied with high probability. In particular, the outflow at withdrawal nodes

is subject to a stochastic model while the inflow at injection nodes is subject to

the robust/stochastic constraint. The robust aspect represents an uncertainty

in the inflowing gas quantity: while the total amount is known, the gas can

be distributed (almost) arbitrarily among a set of input nodes. The authors
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3 Robust treatment of gas transport

propose a procedure that uses the spheric radial decomposition combined

with an MILP penalty function approach to estimate the overall probability

for feasibility in this setting.

3.2 The robust optimizationmethodology

Before diving deeper into the mathematical model for the gas transport prob-

lem under uncertainty, we briefly review the general robust optimization

setting. For a more comprehensive treatment, we refer the reader to the book

by Ben-Tal, El Ghaoui, and Nemirovski (2009) or the review articles by Goris-

sen, Yanıkoğlu, and Hertog (2015), Bertsimas, Brown, and Caramanis (2011),

and Gabrel, Murat, and Thiele (2014).

The first basic ideas of robust optimization appear in Soyster (1973). In

this article, an LP whose columns are subject to parameter uncertainties is

considered. Additionally, the notion of “robustness”, i.e., finding solutions

that are feasible for all parameter realizations, is also present. Similar ideas are

also investigated in robust optimal control; see, e.g., Zhou, Doyle, and Glover

(1996). In the 1990s, the foundations formodern optimizationwere laid in the

articles by El Ghaoui and Lebret (1997), El Ghaoui, Oustry, and Lebret (1999),

and Ben-Tal and Nemirovski (1998, 1999). Since then intensive research has

been carried out in this area. The material in this section follows Ben-Tal,

El Ghaoui, and Nemirovski (2009).

A robust optimization task is a family of optimization problems that is

parameterized by an uncertainty set U ⊆ Rnu , nu ∈ N:{
min
z∈Rnz

{
f(z)

∣∣ h(u, z) = 0, g(u, z) ≤ 0
}}

u∈U
. (PU )

In addition to the problem variables z ∈ Rnz with nz ∈ N, the constraint

functions h : Rnu ×Rnz → Rmh and g : Rnu ×Rnz → Rmg formh,mg ∈ N0
accept an additional data vector u ∈ U . We assume that the uncertainty

region U is a compact convex set that comprises all meaningful realizations

of the uncertain parameters. Without loss of generality, we assume an ob-

jective function f : Rnz → R that is certain, see Ben-Tal et al. (2004) for a

justification.

The goal of robust optimization is to find solutions for (PU ) which are

immunized against all possible choices u ∈ U . In the most basic setting, all

problem variables have to be fixed before the uncertainty becomes known.

This leads to the static robust counterpart (Ben-Tal and Nemirovski 2002)

min
z

{
f(z)

∣∣ h(u, z) = 0, g(u, z) ≤ 0 ∀u ∈ U
}
, (RC)
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where the feasible region is the set of all z that are feasible for all possible

realizations of the uncertaintyu ∈ U . Since the uncertainty set parameterizes

infinitelymanyconstraints, (RC) is a semi-infinite problem. Solving these kinds

of problems in practice requires a strategy to deal with the infinite number

of constraints. We highlight two general ways to solve robust counterparts.

If (RC) is an LP with a polyhedral uncertainty set, duality-based arguments

allow a reformulation of (RC) as a finite LP; see Ben-Tal, El Ghaoui, and

Nemirovski (2009, chapter 1). Moreover, the size of the resulting problem is

polynomial in the size of the original problem under uncertainty. The book

by Ben-Tal, El Ghaoui, and Nemirovski (2009) provides similar reformulation

strategies for linear, conic quadratic, or semidefinite problems over different

types of uncertainty sets. These results are generalized in Ben-Tal, Hertog, and

Vial (2015) to convex nonlinear constraints that are concave in the uncertain

parameter. Under some mild regularity conditions, the authors describe a

systematic way to construct a finite robust counterpart over a convex and

bounded uncertainty region.

A different solution idea for robust problems is the adversarial approach,

where the continuous uncertainty set U is replaced by a finite set Û ⊆ U of

critical scenarios; see Bienstock and Özbay (2008) and Gorissen, Yanıkoğlu,

and Hertog (2015) for more details. This set is then perpetually extended with

more scenarios until robust feasibility of the whole problem can be proven.

However, dependingon theproblemstructureand theshapeof theuncertainty

set, this procedure may only be exact at the limit. For example, the adversarial

approach terminates in a finite number of steps for linear constraints over

a polyhedral uncertainty set, as the critical scenarios are the finitely many

vertices of the polyhedron. In Bertsimas, Dunning, and Lubin (2016), the

adversarial approach is compared with a reformulation approach by a series

of numerical experiments for different combinations of problem structure

and type of the uncertain region. In general, the adversarial approach is

very flexible and can be applied to a broader range of problems compared to

duality-based arguments. However, it may be required to solve subproblems

to global optimality, which can be difficult if the problem is non-convex.

For some applications, static robustness is the wrong modeling choice, e.g.,

when problem variables can adjust to the revealed uncertainty. In this case, a

two-stageapproach has to beused. Here, theproblemvariables arepartitioned

into first-stage and second-stage variables: z = (x,y) ∈ Rnz = Rnx+ny with

nx, ny ∈ N0. First-stage or here-and-now variables x ∈ Rnx have to be fixed

before the uncertainty becomes known, whereas second-stage orwait-and-see

variables y ∈ Rny can be decided with knowledge of the revealed uncertainty.
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Since the second-stage variables thus depend on the uncertain parameter,

they are also called adjustable variables. The notion of different actions hap-

pening at different points in time or under different information directly leads

to the adjustable robust counterpart (Ben-Tal et al. 2004)

min
x

{
f(x)

∣∣ ∃x ∀u ∈ U ∃y with h(u,x,y) = 0, g(u,x,y) ≤ 0
}
. (ARC)

W.l.o.g., the objective only depends on here-and-now variables.

We notice that in (ARC), the condition “∀u ∈ U ∃y” merely is the defini-

tion of a function y : U → Rny that maps the uncertainty set to the space of

the second-stage variables. Thus we rewrite the adjustable robust counter-

part (ARC) by introducing a functional dependency between second-stage

variables and uncertain parameters:

min
x, y(·)

{
f(x)

∣∣ h(u,x,y(u)
)

= 0, g
(
u,x,y(u)

)
≤ 0 ∀u ∈ U

}
. (ARC-DR)

The function y(·) is an a priori unknown variable and is determined endoge-

nously as part of the optimization task. It is also called a decision rule. By

stating the (ARC) in such a way, the two-stage structure is converted into a

single-stage structure similar to (RC). In principle, the previously discussed

techniques for single-stage problems can then be applied. However, unlike the

static robust counterpart, one of the unknowns is a function, making (ARC)

an infinite-dimensional problem over an infinite number of constraints. In

general, this problem is NP-hard; see Guslitser (2002).

Next, we give a brief overview of some important results and aspects con-

cerning adjustable robust optimization. For a more in-depth survey, we refer

to Yanıkoğlu, Gorissen, and Hertog (2018). A typical solution approach for

solving multi-stage robust problems is to constrain the decision rules y(·) to a

predefined class of functions. For example, Ben-Tal et al. (2004) introduce an

affinely adjustable robust counterpart by enforcing an affine linear decision

rule structure on an uncertain LP. If no uncertain parameter appears as a

coefficient of a second-stage variable, the problem is said to have fixed recourse

and can be reformulated as an LP. On the other hand, problems with random

recourse, i.e., where products of uncertain parameters and second-stage vari-

ables appear, are NP-hard; see Ben-Tal et al. (2004). For this case, Ben-Tal

et al. (2004) propose an approximation using a semidefinite program (SDP);

see also Kuhn, Wiesemann, and Georghiou (2011). Many classes of decision

rules have been studied in the literature, wemention piecewise-lineardecision

rules (Chen and Zhang 2009) as well as polynomial decision rules (Bertsi-

mas, Iancu, and Parrilo 2011). The predefined function class is often not rich
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enough to contain the best possible, i.e., the fully adjustable decision rule

y∗(·). Hence, this solution approach generally produces more conservative

solutions when compared to the fully-adjustable solution. Nevertheless, there

are some simple problem classes where “optimal” decisions rules are known;

see Bertsimas, Iancu, and Parrilo (2010).

The decision rule approach becomes more challenging once adjustable

binary (or integer) variables are introduced. In Bertsimas and Georghiou

(2015, 2018), binary variables for adjustable MILPs are modeled as piece-

wise functions with a fixed number of pieces. For purely binary problems,

K-adaptability is a concept that allows the binary decision rule vector to take

on any ofK values. This idea was first studied in Bertsimas and Caramanis

(2010) and later by Hanasusanto, Kuhn, and Wiesemann (2015) who provide a

MILP reformulation. Another idea that has generated some research interest

is to approximate arbitrary decision rules through partitioning of the uncer-

tainty set. By allowing each partition to have its own (constant) decision rule,

arbitrary piecewise (constant) functions can be expressed. The question of

how good partitions can be selected during an iterative procedure was studied

by Bertsimas and Dunning (2016), Postek and Hertog (2016), and Romeijnders

and Postek (2018).

There are also some alternative solution approaches without the need for

decision rules. For example, a Fourier-Motzkin elimination is used in Zhen,

Hertog, and Sim (2018) to convert an adjustable LP with fixed recourse to a

static robust optimization problems. A different approach by Takeda, Taguchi,

and Tütüncü (2008) shows that under a certain quasiconvexity property, two-

stage NLPs can be reduced to static robust problems. Finally, Zeng and Zhao

(2013) proposes a general constraint-and-columngeneration algorithm for two-

stage problems with linear constraints. The presented Benders-style cutting

plane method relies on solving bilinear subproblems to global optimality.

This concludes the general overview of the “standard” approaches of robust

optimization. Adirect applicationof thesegeneral methods to thegas network

problem is challenging; the reasons for this are discussed in greater detail

in section 3.4.

3.3 A two-stage robust model for gas transport

Weconsider the gas transport problemwith uncertainties in the pressure drop

coefficients l and with uncertainties in the demand vector d. Let L ⊆ R
|Api|
>0

denote the uncertainty set of the pressure drop coefficients, and let D ⊆
R|V| denote the uncertainty set of the demands. When not explicitly stated
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3 Robust treatment of gas transport

otherwise, the considered problems are affected by both types of uncertainty,

i.e., by a combined uncertainty set

U = L × D. (3.2)

In the following, we introduce a canonical definition of each uncertainty set

and formulate the two-stage robust problem.

Uncertain pressuredrop coefficients This is an arc-wise uncertainty and

influences thepressuredropbetween two incident nodes. Forall pipes a ∈ Api,
let la, la ∈ R>0 with 0 < la ≤ la be given. This leads to the uncertainty set

L :=
{
l ∈ R|Api|

>0
∣∣ la ≤ la ≤ la for all a ∈ Api

}
, (3.3)

which is also known as a box uncertainty.

Uncertain demand This node-wise uncertainty has an impact on the so-

lution space of the linear network flow problem. For all nodes v ∈ V , let

dv, dv ∈ R with dv ≤ dv be given. As the overall demand always has to be

balanced, the uncertainty set includes a balancing constraint:

D :=
{
d ∈ R|V|

∣∣∣∣∣ dv ≤ dv ≤ dv for all v ∈ V∑
v∈V dv = 0

}
. (3.4)

A polyhedral set of the form D is called hose polytope; see Duffield et al. (1999).

Remark 3.3.1. Our methods are in general also applicable to other types of

uncertainty sets. The shapeof theuncertainty set typicallydetermines the type

of the resulting robust counterparts. For example, polyhedral uncertainty

sets are described by linear functions and therefore lead to LPs or MILPs.

Similarly, ellipsoidal uncertainty sets defined over the Lorentz cone lead to

(mixed-integer) convex quadratic problems.

We already established in section 3.1 that a robust treatment of the gas net-

work problem (2.43) requires a two-stage model. Starting from the nominal

problem (2.43), we formulate the two-stage nomination validation problem

with a linear compressor model under uncertainty. The compressor power

variables xpm can be controlled by an operator and hence are first-stage vari-
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3.3 A two-stage robust model for gas transport

ables, whereas the physical state of the network, i.e., squared pressure vectorπ
and flow vector q are second-stage variables:

min
xpm

c>xpm (3.5a)

s.t. xpm ∈ [xpm,xpm], (3.5b)

s.t. for all (l,d) ∈ U there is q,π with

Aq = d, (3.5c)

A>π = ψ(l, q,xpm), (3.5d)

π ∈ [π,π], (3.5e)

q ∈ R|A|. (3.5f)

We apply theorem 2.3.5 to obtain a reduced version of (3.5):

min
xpm

c>xpm (3.6a)

s.t. xpm ∈ [xpm,xpm], (3.6b)

s.t. for all (l,d) ∈ U there is qN ∈ R|N | with

Cψ
(
l, qext(d, qN ),xpm) = 0, (3.6c)

PψB
(
lB, q

ext
B (d, qN ),xpm

B
)

≤ ∆π. (3.6d)

Both problem formulations will later be useful in different contexts.

Remark 3.3.2. As is outlined in theorem 2.3.5, any choice of root node pressure

from the interval (2.74) leads to a feasible solution. Thequestion now is how to

select a suitable element and how to treat this additional degree of freedom in

the light of a two-stage robust formulation. The point of view here is that the

network operator is satisfied with the guarantee that a feasible statewithin the

pressure bounds of the network exists and thus a further selection a root node

pressure is not necessary. It is important to understand that by formulating

the state equation in the form (3.6c) and (3.6d), the remaining degree of

freedom present in the parameter η of proposition 2.4.4 is eliminated and

hence does not appear as a second-stage variable.

On the other hand, if for some reason a unique pressure solution is required,

an arbitrary value of the interval (2.74) has to be chosen for the root node

pressure πr. This is equivalent to fixing the parameter η.
Setting the root node pressure can be accomplished either a priori bymeans

of a boundary condition, or by an extra controllable variable modeled as an

abstract pressure controller, or by a decision that has to be taken after the

uncertainties are revealed. We note that the latter case is beyond the scope of

this thesis.
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3 Robust treatment of gas transport

Remark 3.3.3. The booking validation problem in gas network operations

is a two-stage robust optimization problem that is very similar to the two-

stage problem developed here; see Labbé, Plein, and Schmidt (2018) and

Hiller et al. (2015). It is an important task for gas network operators and

consists in deciding whether a certain set of demands (a booking) can always

be transported by the network or not. However, there is a crucial difference

compared to problem (3.5). While we consider all active elements as first-

stage variables, the booking validation treats all active elements as second-

stage variables. This reflects the fact that a gas network operator exhausts

all available means in order to satisfy a given supply and demand situation.

As the active elements are modeled as second-stage variables, the booking

validation is therefore a more general version of problem (3.5).

3.4 Limits of known robust optimization approaches

As we have seen, the nomination validation problem under uncertainty natu-

rally leads to a two-stage nonlinear robust problem (3.5). More precisely, the

problem is continuous with an infinite number of non-convex constraints and

an infinite number of variables.

Often, robust optimization approaches rely on strong duality or global

optimality to solve the robust counterpart. Due to the non-convex nature of

gas physics, these concepts cannot be directly applied here.

At this point, two basic ideas can be pursued. Both approaches differ in

the order of robustification and problem transformation. On the one hand,

we can seek to construct a piecewise-linear approximation of the nonlinear

model (3.5) so that the standard techniques of linear robust optimization

can be applied. On the other hand, we can essentially keep the nonlinear

structure, formulate a robust counterpart, and then look for tractablemethods

for this type of problem. Both approaches were thoroughly explored for this

thesis. While the second idea leads to two fruitful solutionapproachesdetailed

in chapters 4 and 5, the first idea quickly leads to several challenging problems

and drawbacks. The rest of this section is dedicated to a discussion of these

challenging factors arising from the first idea.

We start with the method of Geißler et al. (2012) to construct a piecewise-

linear relaxationwith an a priori chosen error bound ε > 0. An approximation

of (3.5) is constructed by replacing the nonlinear constraint functions with re-

laxations based on piecewise-linear functions. For each nonlinear constraint,

two piecewise-linear functions are constructed that respectively underesti-

mate and overestimate the nonlinear function on its domain. Taking these

58



3.4 Limits of known robust optimization approaches
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Figure 3.2: A piecewise-linear relaxation (gray area) of the Weymouth equation (blue line).
The nonlinear function is bounded by piecewise-linear functions (dark gray lines) from above
and below.

two functions as the boundary of a new feasible region, a relaxation for the

original nonlinear constraint is obtained; see fig. 3.2 for a visualization of this

idea. Moreover, by an appropriate selection of sampling points as presented in

Geißler et al. (2012), a relaxation with an approximation quality is constructed

in the sense that the distance between any relaxation point and the nearest

value of the nonlinear function is bounded by the a priori given error ε.
By construction, the piecewise-linearmodel has twoproperties: theoriginal

nonlinear constraints are never violated by more than ε, and an infeasible

relaxation indicates an infeasible NLP. This approach has already been suc-

cessfully applied to the gas transport problem and allows solving the nominal

problem for comparatively large networks; see Pfetsch et al. (2015) and Geißler,

Martin, et al. (2015). Its successful use in the nominal setting and the fact that

the relaxed model can be formulated as a linear MILP makes it very attractive

as a starting point for robust treatment. We note that one advantage of this

approach is that any active elements can be handled if it can be modeled by

mixed-integer constraints. This includes, e.g., more complexmodels for valves

and compressors as described in section 2.1.

In Aßmann (2014), a single-stage MILP variant of (3.5) with complex active

elements under uncertain roughness was investigated. A single-stage model

forces a feasible pressure and flow solution for all elements of the uncertainty

set. As was argued earlier, this is not a feasible modeling choice for the gas

network problem as the physical state adjusts to the uncertain parameters.

Consequently, the resulting robust counterparts are very conservative and

allow only very small uncertainty sets.
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3 Robust treatment of gas transport

Next, the two-stageMILP variantof (3.5)was investigated. A typical strategy

in this setting is to model the second-stage variables using decision rules;

see, e.g., Ben-Tal et al. (2004). We observe that the mixed-integer linear

approximation introduces auxiliary binary variables to model the piecewise-

linear functions. Hence, in order to introduce decision rules for all second-

stage variables, decision rules for binary variables are required. However,

designing binary decision rules is still very challenging and can drastically

increase model complexity. As a simplification, one can treat the binary

variables as first-stage variables. The auxiliary binary variables are required to

choose the segments of the piecewise-linear functions, thus treating these

helper variables as non-adjustable leads to an artificial restriction on the

adjustable second-stage variables. We were able to observe this effect in a

prototypical implementation where the feasibility of the robust counterpart

was very sensitive to the position of the sampling points.

In order to deal with the remaining continuous second-stage variables,

affine lineardecision ruleswere introduced into the problem. As the uncertain

roughness parameters appear as coefficients of the second-stage variables, the

problem has random recourse. In general this is an NP-hard problem to solve

exactly, however, there is an SDP-approximation that can be used instead; see

Ben-Tal et al. (2004). With the auxiliary binary variables in mind, this leads

to a mixed-integer semidefinite program (MISDP), which can be challenging

to solve in practice. Using the software by Gally, Pfetsch, and Ulbrich (2018),

we were able to solve small toy instances with no more than ten nodes and

without active elements. However, the conservative nature due to first-stage

binary variables and possible due to the SDP relaxation were often evident.

Another conceptual difficulty arises due to the fact that already for passive

networks, proposition 2.4.4 implies that the constraints of (3.5) uniquely

determine the flowwithin the network. Thus, there is precisely one optimal

decision rule q∗(·). As a solution function of a polynomial system this decision

rule is in general not contained in any of the treatable classes of decision rules,

e.g., affine linear, piecewise linear, or polynomial functions. If q∗(·) is not

contained in the employed family of decision rules, no connection can be

made between infeasibility of the robust counterpart and infeasibility of the

nonlinear robust model. Let us assume for amoment that affine decision rules

are used and that the resulting problem turns out to be infeasible. Unlike

in the nominal case, where infeasibility of the piecewise-linear relaxation

implies infeasibility of the original problem, this is not the case for the affinely

adjustable robust counterpart. Such a conclusion is only valid if the optimal

decision rule is an affine linear function, which is not true in this case.
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3.4 Limits of known robust optimization approaches

To conclude, an attempt to solve (3.5) with affine linear decision rules raises

several obstacles that are each very challenging on their own: necessity for

binary decision rules, using an MISDP approximation instead of an exact

reformulation, uniquely determined second-stage variables in the nonlinear

case, no connection between an infeasible robust counterpart of the piecewise-

linear model and infeasibility of the NLP.

Consequently, the idea of solving a robust counterpart of the piecewise-

linearproblemhas not beenpursued furtherand insteadwehaveconcentrated

on a direct treatment of the nonlinear robust counterpart. We exploit certain

structures present in the gas problem, e.g., the unique dependence between

uncertain parameters and the physical state of the network. This allows us to

derive two alternative approaches for solving an active and a passive version

of (3.5) that are detailed in the following chapters.
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4 A general approach for two-stage robust
optimization with an empty first stage

We investigate feasibility and infeasibility of nonlinear two-stage robust fea-

sibility problems with an empty first stage. It is further assumed that the

considered sets, i.e., the uncertainty set and the feasible region, are described

by polynomials. Without first stage variables, the feasibility question is equiva-

lent to deciding whether the uncertainty set is contained within the projection

of the feasible region onto the uncertainty-space. Compared to set contain-

ment problems where the constraintwise description of each set is known,

the description of the projection is typically not available or too expensive to

compute. A main contribution of this work is how to address the projected

set in our methods without an explicit construction thereof.

Wedevelop twogeneral approaches for answering the set containment ques-

tion, one for showing feasibility and one for showing infeasibility. While the

infeasibility approach has no additional requirements, the feasibility approach

requires a uniqueness assumption for the second-stage variables. Given these

abstract ideas, we show how they can be approximated in practice by using

techniques from polynomial optimization. Afterward, an application of the

well-known Lasserre relaxation hierarchy (Lasserre 2000; Parrilo 2003) leads

to SDP relaxations of the resulting problems that can be solved in practice.

Two separate approaches for feasibility and infeasibility are necessary as the

developed methods are based on relaxations of exact problem formulations.

For example, due to the relaxation, a problem might give a negative answer

although the problem is, in fact, feasible.

The effectivity of our methods is tested on a variety of cyclic gas network

instances. We observe that for instances where robust feasibility or infeasi-

bility can be decided successfully, level 2 or level 3 of the Lasserre relaxation

hierarchy typically is sufficient.
The idea of using polynomial optimization to show robust feasibility via set

containmentwas conceived in discussions between Prof. Vera, Prof. Liers, and
theauthorduring a research stayat theUniversityof Tilburg (NL). Inparticular,
the ideas for the infeasibility method and the number of flow directions in
a graph both arose similarly. The further development and implementation
of these ideas was primarily carried out by the author of this work under the
supervision of Prof. Liers and Prof. Stingl. The main results of this chapter
have been published in

D. Aßmann, F. Liers, M. Stingl, and J. C. Vera. 2018. “Deciding robust feasibility
and infeasibility using a set containment approach: an application to stationary
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4 An approach for two-stage robust optimization with empty first stage

passive gas network operations”. SIAM Journal on Optimization 28 (3): 2489–
2517. doi:10.1137/17M112470X.

In the following, we repeat and extend these results as well as their presenta-

tion.

This chapter is structured as follows. Section 4.1 introduces the studied

two-step robust problem and the set containment idea. A short introduction

to polynomial optimization in section 4.2 establishes the necessary back-

ground knowledge for this chapter. In section 4.3, the polynomial methods

for deciding between robust feasibility and robust infeasibility are developed.

An application to a passive gas transport problem follows in section 4.4. We

show that a tree-shaped network can be decided by linear programming and

wedevelop techniques to remove the absolute value functions arising from the

gas context. Finally, the practical applicability of themethods is demonstrated

in section 4.5 with a series of numerical experiments.

4.1 Problem setting and the projection idea

In this chapter, we focus on a satisfiability variant of the general two-stage

robust optimization problem (ARC) as introduced in section 3.2. The goal is

to answer positively or negatively, whether

∀u ∈ U ∃y ∈ Rny such that h(u,y) = 0, g(u,y) ≥ 0, (4.1)

that is, the question whether for all u ∈ U there is always a feasible second-

stage variable y(u) that satisfies the constraints. If this question can be

answered positively, we call the problem “robust feasible” andwe call it “robust

infeasible” otherwise.

We briefly recall the relevant definitions. Let U ⊆ Rnu with nu ∈ N be the

uncertainty set; let y ∈ Rny with ny ∈ N be the second-stage variables; and

let h : Rnu ×Rny → Rmh withmh ∈ N as well as g : Rnu ×Rny → Rmg with

mg ∈ N be the vector-valued constraint functions. Moreover, we assume that

the uncertainty region U is defined by polynomials and that all entries of the

constraint functions are polynomials, i.e., h1, . . . , hmh
, g1, . . . , gmg ∈ R[u,y].

Let Y ∈ Rnu ×Rny be the set of all feasible pairs of uncertain data u and

second-stage variables y:

Y :=
{
(u,y) ∈ Rnu ×Rny

∣∣ h(u,y) = 0, g(u,y) ≥ 0
}
. (4.2)

With this definition, we observe that robust feasibility (4.1) is equivalent to

the set containment question

U ⊆ Proju(Y), (4.3)
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U

Proju(Y)

Y = {(u,y) | (u,y) feasible}

u

y

Figure 4.1: Robust feasibility is equivalent to the set containment question U ⊆ Proju(Y).

where we denote with Proju : (u,y) 7→ u the projection map. Since set

containment implies that each value of u ∈ U is associated with at least one

feasible solution y(u), the expression in (4.1) is satisfied. A visualization of

the set containment idea is displayed in fig. 4.1. The gray area denotes the

set Y of feasible (u,y) pairs, the green line represents the uncertainty set, and

the orange line represents the projection of Y onto the uncertainty-space.

In the next subsection, the set containment idea is further explored using

the example of a simple linear network flow problem over a tree.

Introductory example: linear flow problem over a tree We want to il-

lustrate the problemand its possible solution approaches bymeans of a simple

example. Let a linear flow problem over a tree with lower and upper edge

capacities be given. We denote the vector of flows over the tree by y and the

vector of demands by u. We assume that the demand u of all nodes except

some fixed root node fluctuates within a hyperrectangle U intersected with a

balancing hyperplane. The data appears as an uncertain right-hand side of

the flow balance equations. Then, the model can be stated as

∀u ∈ U ∃y :
{
Ãy = u,

y ≤y ≤ y
(4.4)

for some nonsingular matrix Ã; see section 2.3 for details. Our goal is to

decide whether the network can satisfy all possible realizations of demand

from U .

After substituting y = Ã−1u, the problem is to check whether

∀u ∈ U : y ≤ Ã−1u ≤ y, (4.5)

or equivalently

U ⊆ Proju
({

(u,y)
∣∣ Ãy = u, y ≤ y ≤ y

})
= {u | y ≤ Ã−1u ≤ y}, (4.6)
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4 An approach for two-stage robust optimization with empty first stage

when stated as a set containment problem. This question can be decided by

optimizing over the constraint functions: if

max
u∈U

{
(Ã−1u)i

}
≤ yi and min

u∈U

{
(Ã−1u)i

}
≥ yi (4.7)

hold for all i = 1, . . . , ny, so does the set containment condition. By using

linear duality, these inequalities can be checked with one linear optimization

problem, see lemma 4.4.1.

In the linear flow example, we were able to exploit the simple structure to

directly construct the projected set in (4.6). For more complicated linear or

nonlinear constraints, this may not always be possible or may be computa-

tionally too expensive. For treating the arising problems, we will use ideas

from polynomial optimization.

Set containment problems

Concerning the problem of set containment between sets defined by poly-

nomials (basic semialgebraic sets), the general purpose doubly exponential

cylindrical algebraic decomposition algorithm by Collins (1975) can be used.

The algorithm allows an elimination of quantifiers from polynomial systems.

Hence, it could be used for the combination of projection and set containment.

Regarding the general computational complexity of set containment prob-

lems with convex sets, we refer to Gritzmann and Klee (1994). A more practi-

cal treatment for polyhedra and special convex sets is given by Mangasarian

(2002). Furthermore, an investigation of set containment regarding polytopes

and spectrahedra can be found in Kellner, Theobald, and Trabandt (2013).

This work is further extended in Kellner (2015) to encompass projections of

polytopes and spectrahedra.

The framework of Magron, Henrion, and Lasserre (2015) for approximating

image sets of compact semialgebraic sets under a polynomial map can also be

used to find outer approximations of projected sets. Nevertheless, the robust

question cannot be decided with their method as an outer approximation of

the projected set in (4.3) could lead to a false positive conclusion regarding

robust feasibility. On the other hand, outer approximations can be used

for deciding robust infeasibility. However, then for each approximation a

certificate against set containment still has to be derived. This would result in

an algorithm with two nested optimization tasks, where each task is solved

via a sum of squares based hierarchy. In this respect, our approach seems to

be more direct; in particular, one of our key contributions is to avoid using an

explicit description of the projection.
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Optimal control is another field where the problem of set containment of

basic semialgebraic sets occurs. It can be treated through relaxations of the

real Positivstellensatz; see Jarvis-Wloszek et al. (2003). This approach is in a

certain sense similar to the techniques presented here but cannot be applied

to the projected problem.

4.2 Introduction to polynomial optimization

In this section we will briefly describe the required background knowledge

from polynomial optimization. A very accessible introduction with a focus

on sum of squares (SOS) polynomials is given by Parrilo (2003). For a more

comprehensive treatment of the subject, we refer to Laurent (2009).

Terms and definitions We denote withR[x] := R[x1, . . . , xn] the ring of

multivariate polynomials with real coefficients in n ∈ N variables x1, . . . , xn.

For a tupleα = (α1, . . . , αn) ∈ Nn
0 of nonnegative integers, the corresponding

monomial is the product xα :=
∏n

i=1 x
αi
i .

A polynomial p ∈ R[x] is a linear combination

p(x) =
∑
α∈Nn

0

pαx
α (4.8)

of monomials and real coefficients pα ∈ R with only finitely many non-

zero coefficients. With |α| :=
∑n

i=1 αi, we define the degree of p as deg(p) :=
max

{
|α|
∣∣pα 6= 0

}
. Sometimes, we identify a polynomial p of degree deg(p) =

d with the vector (pα)|α|≤d of its coefficients. Let R[x]d =
{
p ∈ R[x]

∣∣
deg(p) ≤ d

}
denote the set of polynomials with degrees up to d.

A set K ⊆ Rn that can be defined by finitely many polynomial equalities

and inequalities is called basic semialgebraic. W.l.o.g., we assume that all

basic semialgebraic sets can be written as

K =
{
x ∈ Rn

∣∣ g1(x) ≥ 0, . . . , gm(x) ≥ 0
}
, (4.9)

where g1, . . . , gm ∈ R[x] are polynomials.

Nonnegative polynomials Certificates and characterizations regarding

nonnegativity of polynomials are closely connected to polynomial optimiza-

tion. Let

P[K] :=
{
p ∈ R[x]

∣∣ p(x) ≥ 0 for all x ∈ K
}

(4.10)
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denote the set of polynomials in n variables that are nonnegative on some

basic semialgebraic subset K ⊆ Rn. We denote with P[K]d := P[K] ∩R[x]d
the subset of nonnegative polynomials with degree up to d. We abbreviate

Pn := P[Rn] and Pn,d := P[Rn]d.
In general, checking nonnegativity of a polynomial is NP-hard; see Murty

and Kabadi (1987). However, there is a class of polynomials where nonnega-

tivity can be efficiently determined by semidefinite programming.

Definition 4.2.1. A polynomial p ∈ R[x] is called sum of squares (SOS) if

there exist σ1, . . . , σk ∈ R[x] such that p(x) = σ2
1(x) + · · · + σ2

k(x).

In the following, the set of all SOS polynomials in n variables is denoted by

Σn :=
{
p ∈ R[x]

∣∣ p is SOS
}
. (4.11)

Furthermore, let Σn,d := Σn ∩ R[x]d be the set of SOS polynomials in n
variables with degree up to d.

Clearly, every SOS polynomial is nonnegative by definition and thus

Σn ⊆ Pn as well as Σn,d ⊆ Pn,d. (4.12)

However, not all nonnegative polynomials are SOS. In 1888, Hilbert gave the

following characterization:

Theorem4.2.1 (Hilbert 1888). The set relationΣn,d ⊆ Pn,d holds with equality

if and only if n = 1, or d = 2, or n = 2 and d = 4.

This result implies that nonnegative polynomials are generally not necessar-

ily SOS polynomials. In caseswhere strict set inclusion holds, i.e., Σn,d ⊂ Pn,d,

the question arises as to what the extent of the difference between the two

sets is.

On the one hand, SOS polynomials are dense within the set of nonnegative

polynomials; see Lasserre and Netzer (2007). Therefore, any nonnegative

polynomial can be approximatedwith arbitrary precision by a SOS polynomial

as long as thedegreeof the SOS polynomial is unrestricted. On theother hand,

there are significantly more nonnegative polynomials than SOS polynomials

when thedegree is fixed. Indeed, Blekherman (2006) shows thatas thenumber

of variables tends to infinity, the ratio of the cross sectional volumes of Σn,d

and Pn,d tends to 0.
An important quality of SOS polynomials compared to general nonnegative

polynomials is that deciding whether p ∈ Σn holds can be done efficiently in

practice using SDPs.
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Let Sn denote the vector space of real symmetric n × n matrices. For a

symmetric matrix Q ∈ Sn, the notation Q � 0 indicates that Q is positive

semidefinite, i.e., x>Qx ≥ 0 for all x ∈ Rn.

The next result was published independently by Shor (1987) and Choi, Lam,

and Reznick (1995).

Lemma 4.2.2. Let p(x) =
∑

|α|≤2d pαx
α ∈ R[x]2d be polynomial of degree

up to 2d. Then the following are equivalent:

1. p is SOS.

2. There exists a symmetric matrixQ such that

p(x) = z>Qz and Q � 0, (4.13)

where z = (1, x1, x2, . . . , xn, x1x2, . . . , x
d
n)> =: (xα)|α|≤d is a vector

containing all monomials with degree up to d.

Proof. We give a proof that is based on Laurent (2009, lemma 3.8, p. 180f).

Suppose p(x) =
∑k

i=1 σ
2
i (x). Since deg(p) = 2d, deg(σi) ≤ d and hencewe

can write σi(x) =
∑

|α|≤d(σi)αxα = vec (σi)>z, where we denote the vector

of coefficients of σi with vec (σi). It follows that

p(x) =
k∑

i=1
σ2

i (x) =
k∑

i=1

(
vec(σi)>z

)2
= z>

( k∑
i=1

vec(σi)> vec(σi)
)

︸ ︷︷ ︸
=:Q

z.

(4.14)

As a sum of positive semidefinite matrices,Q is positive semidefinite as well.

The reverse direction follows the same argument. Since Q is positive

semidefinite and symmetric, there exists a matrix L such that Q = L>L.

Hence,

p(x) = z>Qz = (Lz)>Lz =
∑

i

(Li·z)2 is SOS, (4.15)

where Li· denotes the i-th row of L. We note that L can be obtained from a

Cholesky decomposition ofQ.

The proof of lemma 4.2.2 shows how to find a SOS decomposition of a poly-

nomial given a corresponding positive semidefinite matrix. Problem (4.13)is

a standard positive SDP, i.e., a (convex) problem over the cone of positive

semidefinite matrices subject to affine linear constraints; see Vandenberghe

and Boyd (1996) and Wolkowicz, Saigal, and Vandenberghe (2000) for an
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4 An approach for two-stage robust optimization with empty first stage

introduction. We index the matrix Q with the tuples β and γ, i.e., Q =
(Qβ,γ)|β|≤d,|γ|≤d. The semidefinite satisfiability problem

pα =
∑

|β|≤d,|γ|≤d
α=β+γ

Qβ,γ for all |α| ≤ 2d,

Q � 0

(4.16)

follows from comparison of coefficients of p(x) = z>Qz. There are
(n+d

d

)
linear constraints andQ has dimension

(n+d
d

)
×
(n+d

d

)
. Hence, the size of the

SDP is polynomial if either n or d remains constant.

Example 4.2.3. We consider p(x, y) = 1 + 2x+ 2y − 2xy + 5x2 + 3y2, i.e., a
bivariate polynomial of degree two. The vector of monomials with degree one

is given by z = (1, x, y). We compare the coefficients of

p(x, y) = 1 + x+ 2y − xy + x2 + 3y2 (4.17)

with the coefficients of

p(x, y) =

1
x
y


>Q11 Q12 Q13

Q12 Q22 Q23
Q13 Q23 Q33


1
x
y

 (4.18)

= Q11 + 2Q12x+ 2Q13y + 2Q23xy +Q22x
2 +Q33y

2 (4.19)

and obtain

Q11 = 1, Q12 = 1, Q13 = 1, (4.20)

Q23 = −1, Q22 = 5, Q33 = 3. (4.21)

For ease of presentation, p(x, y) has a small number of variables and small

degree. As a coincidence, there is no need to solve a semidefinite feasibility

problem as the resulting constraints are sufficient to uniquely define matrixQ.

In general, this is not the case. Application of a Cholesky decomposition to the

positive symmetric matrixQ leads to

Q =

 1 1 1
1 5 −1
1 −1 3

 =

 1 1 1
0 2 −1
0 0 1


> 1 1 1

0 2 −1
0 0 1

 = L>L. (4.22)

Hence the SOS decomposition of p is

p(x, y) = (1 + x+ y)2 + (2x− y)2 + y2. (4.23)
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A SOS decomposition is an easily obtainable certificate that a polynomial

is nonnegative on Rn. Next, we consider the related question of when a

polynomial is nonnegative on a basic semialgebraic subset of the domain.

Problems of this kind are major topics in (real) algebraic geometry; see e.g.,

Cox, Little, and O’Shea (2015) for an introduction. Of interest for polynomial

optimization are first of all the so-called Stellensätze, which are structural

statements about the set of polynomials that satisfy certain properties over

subsets ofRn orCn (whereC denotes the complex numbers). Oneof themost

famous Stellensätze is Hilbert’s Nullstellensatz that establishes a connection

between a systemof (complex) polynomials and the set of their common roots.

In particular, Hilbert’s result can be used to derive a certificate that a system

of complex polynomials has no solution, i.e., there is no point in Cn where all

polynomials are zero.

An analogous result concerning a system of real polynomial equations and

inequalities and their solutions in Rn is known as Stengle’s Positivstellensatz;

see Stengle (1974) and Krivine (1964). Similar to Hilbert’s result, it states

that either the system of real polynomials has a solution in Rn or there is a

certificate that no solution exists. There are several variants and refinements

of this result, in particular the theorems by Schmüdgen (1991) and Putinar

(1993).

The variant of Putinar is particularly interesting for polynomial optimiza-

tion, as it gives a characterization under mild additional assumptions that has

a comparatively simple structure. Before presenting Putinar’s Positivstellen-

satz, we introduce a special set of polynomials that are nonnegative on a given

basic semialgebraic set.

Definition 4.2.2. Let g = (g1, . . . , gm) with gi ∈ R[x] for i = 1, . . . ,m be

given. Then

M[g] = M[g1, . . . , gm] (4.24)

:=
{
σ0(x) +

m∑
i=1

σi(x)gi(x)
∣∣∣ σ0, . . . , σm ∈ Σn

}
(4.25)

is called quadratic module of g.
Similarly, the truncated quadratic module of level t ∈ N of g is given by

Mt[g] :=
{
σ0(x) +

m∑
i=1

σi(x)gi(x)
∣∣∣∣ σ0, . . . , σm ∈ Σn,2t

deg(σ0) ≤ 2t, deg(σigi) ≤ 2t

}
. (4.26)

For ease of notation, wewrite M[K] (resp. Mt[K]) for the quadraticmodule

(resp. truncated quadratic module) associated with the basic semialgebraic

set defined by g1, . . . , gm as in (4.9).
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4 An approach for two-stage robust optimization with empty first stage

We observe that by definition, any element p ∈ M[K] (resp. p ∈ Mt[K]) is

nonnegative on the set K, i.e., Mt[K] ⊆ P[K]. In addition, the chain of subset

conditions

M1[K] ⊆ M2[K] ⊆ · · · ⊆ Mt[K] ⊆ · · · ⊆ P[K] (4.27)

holds. The condition p ∈ Mt[K] can be formulated as an SDP with m + 1
semidefinite constraints similarly as in lemma 4.2.2; see Shor (1987) for details.

With this we formulate Putinar’s Positivstellensatz.

Theorem 4.2.4 (Putinar 1993). Let g1, . . . , gm ∈ R[x] be a given series of

polynomials and let K =
{
x ∈ Rn

∣∣ g1(x) ≥ 0, . . . , gm(x) ≥ 0
}
. Suppose there

exists a constant R ∈ N such that

R− (x2
1 + · · · + x2

m) ∈ M[K]. (4.28)

If p ∈ R[x] with p(x) > 0 on K, then p ∈ M[K].

In essence, this theorem states that if M[K] satisfies (4.28), all polynomials

that are positive on a basic semialgebraic subset K are elements of M[K].
Hence, by definition of M[K], all positive polynomials p on K admit a decom-

position

p(x) = σ0(x) + σ1(x)g1(x) + · · · + σm(x)gm(x), (4.29)

where σ0, σ1, . . . , σm are SOS.

The requirement (4.28) is also known as the archimedean condition. In

particular, this condition implies compactness of K. This property can be

ensured for any K by adding (4.28) to the polynomial inequality functions gi.

For real-world optimization tasks, the archimedean condition is usually non-

restrictive since it is equivalent to the feasible region K being contained in an

n-dimensional ball.

Putinar’s Positivstellensatz allows us to search algorithmically for a de-

composition of the form (4.29). After restricting the degrees of the SOS

polynomials appearing in M[K], the condition

p ∈ Mt[K] (4.30)

can be checked with a semidefinite feasibility problem. This observation is

one of the key points for constructing a SOS relaxation hierarchy, which we

will introduce next.
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4.2 Introduction to polynomial optimization

A relaxation hierarchy for polynomial optimization problems A poly-

nomial optimization problem is an optimization problem where objective

function and constraints are polynomials:

inf
x∈Rn

p(x)

s.t. gi(x) ≥ 0 for all i = 1, . . . ,m,
(Poly)

with p, g1, . . . , gm ∈ R[x]. Problem (Poly) can be written equivalently as

inf
x∈K

p(x), (4.31)

where we let K :=
{
x ∈ Rn

∣∣ g1(x) ≥ 0, . . . , gm(x) ≥ 0
}
.

The class of polynomial optimization problems contains many common

convex and non-convex optimization problems. For example, if objective and

constraint functions p, g1, . . . , gm are linear, (Poly) is an LP. By extending this

LP with additional polynomial constraints of the form xi = x2
i , the variables

are restricted to 0/1, thus modeling an integer linear program (ILP). It is

well-known that ILPs are NP-hard, making polynomial programs NP-hard as

well.

We observe the following property of (Poly):

p∗ := inf
x∈Rn

p(x) = sup
λ∈R

λ

s.t. x ∈ K s.t. p(x) − λ ∈ P[K],
(4.32)

i.e., the infimum p∗ of p(x) over K has the same value as the largest λ ∈ R
such that the polynomial p(x) − λ is nonnegative on K. Lasserre (2000) and

similarly Parrilo (2003) introduced a hierarchy of relaxations for (Poly) by

replacing the set of nonnegative polynomials P[K] by a truncated quadratic

module Mt[K]. Let

p∗
t := sup

λ∈R
λ

s.t. p(x) − λ ∈ Mt[K]
(SOSt)

denote the optimal value associated with the quadratic module of level t ∈ N.

This problem is commonly referred toas the SOS-relaxationof level t for (Poly).
As was already mentioned, (SOSt) can be formulated as an SDP (Shor 1987)

and thus is a convex relaxation of the polynomial optimization problem (Poly).

Given the chain of subset relations

Mt[K] ⊆ Mt+1[K] ⊆ · · · ⊆ P[K], (4.33)
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4 An approach for two-stage robust optimization with empty first stage

we observe that

p∗
t ≤ p∗

t+1 ≤ · · · ≤ p∗. (4.34)

Lasserre (2000) shows that undermild conditions, this series of optimal values

converges to the optimal value p∗ over P[K]. We state the convergence result

in a slightly more general form. To this end, for any pair of polynomials

p(x) =
∑
α pαx

α and q(x) =
∑
α qαx

α, we let p ◦ q :=
∑
α pαqα. The

following proposition is due to Prof. Vera.

Proposition 4.2.5. Let g0, g1, . . . , gm ∈ R[x] be polynomials in n variables.

Let K =
{
x ∈ Rn

∣∣ g1(x) ≥ 0, . . . , gm(x) ≥ 0
}
be a basic semialgebraic subset

that satisfies the archimedean condition (4.28).

We consider the optimization problem p∗ = sup
{
g0 ◦ p

∣∣ p ∈ P[K]
}
and the

sequence of relaxations p∗
t = sup

{
g0 ◦ p

∣∣ p ∈ Mt[K]
}
.

Then with Putinar (1993)

M1[K] ⊆ M2[K] ⊆ · · · ⊆ Mt[K] ⊆ · · · ⊆ P[K] (4.35)

and
{
p ∈ R[x]

∣∣ p(x) > 0 for all x ∈ K
}

⊆
⋃

t∈N
Mt[K] (4.36)

and using the same ideas as Lasserre (2000)

p∗
1 ≤ p∗

2 ≤ · · · ≤ p∗
t ≤ · · · ≤ p∗ and p∗

t → p∗ as t → ∞. (4.37)

The proposition shows how the Lasserre hierarchy can be used to find arbitrar-

ily close approximations of the global optimal value of a general polynomial

optimization problem. The hierarchy consists of a series of SDPs with increas-

ing size of the semidefinite matrices and increasing number of constraints.

Remark 4.2.6. Our brief introduction focused solely on SOS relaxations for

polynomial problems that are formed using tools form (real) algebraic geom-

etry. However, there is another way to construct relaxations by formulating

the polynomial problem as a moment problem; see Lasserre (2000). Essen-

tially, the problem of moments is the question of whether a sequence of

values (mα)α∈Nn denotes the moments of a Borel measure µ, i.e., whether

mα =
∫
xα dµ.

By carefully reformulating (Poly) in terms of a moment problem and after

a subsequent truncation, another hierarchy of SDPs arises. Lasserre (2000)

shows that the SDPs of matching levels in the SOS, respectively moment

hierarchy are dual to each and that strong duality holds if, e.g., K has non-

empty interior.
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4.3 Deciding robust feasibility and infeasibility for the general case

4.3 Deciding robust feasibility and infeasibility for
the general case

In this section, two approaches for deciding robustness are developed. We

present amethod for certifying infeasibility in section 4.3.1 as well as amethod

for proving feasibility in section 4.3.2.

4.3.1 A set containment approach for certifying infeasibility

A robust optimization problem is said to be infeasible if a scenario û ∈ U
exists whose corresponding problem is infeasible. We first introduce an ab-

stractmodel involving arbitrary functions for solving the infeasibility problem.

The model is then adapted to the considered case of polynomial functions.

With this approach, negative certificates for set containment of two basic

semialgebraic sets can be found.

For a subset S ⊆ Rn, let

F [S] :=
{
f : Rn → R

∣∣ f(x) ≥ 0 for all x ∈ S
}

(4.38)

be the set of all functions that are nonnegative on K. The set F [S] is non-

empty since it always contains f(x) ≡ 0, regardless of the particular choice

of S.

Let S, T be subsets ofRn. It is clear that

S 6⊆ T ⇐⇒ ∃x ∈ S with x 6∈ T ⇐⇒ S \ T 6= ∅, (4.39)

where we denote with S \ T = {x ∈ S | x 6∈ T } the set difference of S and T .

With this definition, (4.39) can be extended to

S \ T 6= ∅ ⇐⇒ ∃ f ∈ F [T ] and x ∈ S such that f(x) < 0. (4.40)

A visualization of this idea is displayed in fig. 4.2, where a certificate for

S 6⊆ T is shown. The function f (blue line) is nonnegative on the superset

T (orange line). Moreover, the subset S (green line) contains a point x̂ ∈ S
with f(x̂) < 0. Taking both together, f and x̂ form a certificate against set

containment. Later on we will use the uncertainty set U as the subset S and

the projected set of feasible pairs Proju(Y) as superset T to obtain certificates

for robust infeasibility.

The previous expression (4.40) can be rewritten using an optimization

problem. Let the abstract separation problem (ASep) be defined as

f∗ := inf
x,f

f(x)

s.t. x ∈ S,
f ∈ F [T ].

(ASep)
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4 An approach for two-stage robust optimization with empty first stage

We use the common convention that infx∈S f(x) = +∞ if S = ∅. For the

optimal value of (ASep), it holds that

f∗ =


+∞ if S = ∅,
0 if S 6= ∅ and S ⊆ T ,
−∞ if S 6= ∅ and S 6⊆ T .

(4.41)

Combining the first two cases yields

S 6⊆ T ⇐⇒ f∗ = −∞. (4.42)

In order to tackle this optimization task in practice, the abstract problem

is approximated by a polynomial optimization problem. From this point

onwards, we assume that S and T are basic semialgebraic. We first replace

the set of functions F [T ] by the set

P[T ] =
{
p ∈ R[x]

∣∣ p(x) ≥ 0 for all x ∈ T
}

(4.43)

of polynomials that are nonnegative on T . Since both p and x are variables,

p(x) cannot be cast directly as part of a polynomial optimization problem.

Therefore, instead of minimizing p(x), we minimize the Lebesgue integral

of p over S:

inf
p

∫
S
p dµ (4.44a)

s.t. p ∈ P[T ]. (4.44b)

A negative integral value implies the existence of some x̂ ∈ S with p(x̂) < 0.

f(x) ≥ 0 on T

f(x̂) < 0

x̂
x

f(x)

T (superset)
S (subset)
f(x)

Figure 4.2: A certificate for S 6⊆ T consists of a function f and a point x̂ ∈ S such that
f(x) ≥ 0 on T and f(x̂) < 0.
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Using the definition p(x) =
∑
α pαx

α, we write the objective in terms of the

moments of µ:

inf
p

∑
α

pα

∫
S
xα dµ

s.t. p ∈ P[T ].
(PolySep)

The moments mα =
∫

S x
α dµ can be calculated in advance and hence the

objective of (PolySep) is a linear function in the coefficients of p. We call this

problem the polynomial separation problem. If there exists p, such that the

integral over S is negative, there must be some point x ∈ S with p(x) < 0.
Then, by definition of p, it holds that x 6∈ T .

The integration is a weaker test for the existence of an x ∈ S with p(x) < 0
than just evaluating p(x) (see lemma 4.3.1). For practical applications, the

moments
∫

S x
α dµ need to be available. With respect to our application to the

robust gas network problem, this is no limitation since we assume that S = U
is a hyperrectangle. In a similar context, precomputed moments of a simple

superset, such as a sphere or a box, are used to approximate the volume of a

basic compact semialgebraic set in Henrion, Lasserre, and Savorgnan (2009).

The next lemma identifies conditions for S,T such that a polynomial p ∈
P[T ] exists with

∫
S p(x) dµ < 0. Under these conditions, problems (ASep)

and (PolySep) are equivalent in the sense that a negative objective value

of (ASep) implies a negative objective value of (PolySep) and hence (PolySep)

can be used to certify infeasibility as well.

Lemma 4.3.1. Let S, T ⊆ Rn be two bounded sets with S \ T 6= ∅. Suppose
that S \ T contains an open subset.

Then there exists a polynomial p ∈ P[T ] with
∫

S p(x) dµ < 0.

Proof. Since S \ T contains an open subset, there exist x0 ∈ Rn and r > 0
such that S \ T ⊇ Br(x0) :=

{
x ∈ Rn

∣∣ ‖x − x0‖2 < r
}
. Without loss of

generality, we assume that x0 = 0. This can always be guaranteed by applying

a simple translation to S and T . Due to both sets being bounded, there exists

anR > r such that T ,S ⊆ BR(0).
We prove this lemma by constructing a polynomial p : Rn → R that is

nonnegative on BR(0) \ Br(0) ⊇ T and satisfies
∫

BR(0) p dµ < 0. If such a p
exists, it holds that∫

S
pdµ =

∫
S\Br(0)

p dµ+
∫

Br(0)
p dµ (4.45)

≤
∫

BR(0)\Br(0)
p dµ+

∫
Br(0)

pdµ =
∫

BR(0)
p dµ < 0. (4.46)

77



4 An approach for two-stage robust optimization with empty first stage

In order to construct p, let

q(t) := [c1(t− c2)]2 (4.47)

be a univariate polynomial with constants c1 := 2
R2−r2 , c2 := R2+r2

2 . By

construction, the following hold:

q(c2) = 0, (4.48a)

q(t2) = 1 iff t ∈ {r,R}, (4.48b)

q(t2) ≥ 1 for t ∈ [0, r], (4.48c)

0 ≤ q(t2) ≤ 1 for t ∈ [r,R]. (4.48d)

Taking the l-th (l ∈ N) power of q preserves properties (4.48a)–(4.48d).

Furthermore, the polynomial

pl(t) := 1 − ql(t) (4.49)

satisfies

pl(c2) = 1, (4.50a)

pl(t2) = 0 iff t ∈ {r,R}, (4.50b)

pl(t2) ≤ 0 for t ∈ [0, r], (4.50c)

0 ≤ pl(t2) ≤ 1 for t ∈ [r,R]. (4.50d)

Next, we show that there is some l ∈ N such that the radial symmetric

polynomial pl

(
‖x‖2

2
)
is nonnegative on BR(0) \ Br(0) ⊇ T and satisfies∫

BR(0) pl

(
‖x‖2

2
)

dµ < 0:∫
BR(0)

pl

(
‖x‖2

2
)

dµ =
∫

BR(0)\Br(0)
pl

(
‖x‖2

2
)

dµ+
∫

Br(0)
pl

(
‖x‖2

2
)

dµ (4.51)

≤
∫

BR(0)\Br(0)
1 dµ+

∫
Br(0)

1 − ql(‖x‖2
2
)

dµ (4.52)

=
∫

BR(0)
1 dµ−

∫
Br(0)

ql(‖x‖2
2
)

dµ. (4.53)

In order to complete the proof, we show that liml→∞
∫

Br(0) q
l
(
‖x‖2

2
)

dµ = ∞.

Using a substitution of variables and exploiting the radial symmetry, the

integral over the n-dimensional ball can be transformed into a univariate

integral:

∫
Br(0)

ql(‖x‖2
2
)

dµ =

=:Γ>0︷ ︸︸ ︷
n

∫
B1(0)

1 dµ
∫ r

0
ql(t2)tn−1 dt. (4.54)

78



4.3 Deciding robust feasibility and infeasibility for the general case

Now we calculate the difference between two integrals in the sequence while

omitting the positive coefficient Γ:∫ r

0
ql+1(t2)tn−1 dt−

∫ r

0
ql(t2)tn−1 dt (4.55)

=
∫ r

0

≥1︷ ︸︸ ︷
ql(t2)

≥0︷︸︸︷
tn−1

≥0︷ ︸︸ ︷(
q(t2) − 1

)
dt (4.56)

≥
∫ r

0
tn−1

(
q(t2) − 1

)
dt = c > 0. (4.57)

Since thedifference between twoconsecutiveelementsof the series is bounded

from below by a strictly positive constant c, the series diverges to +∞. This

implies the existence of some l ∈ N such that
∫

BR(0) pl

(
‖x‖2

2
)

dµ < 0.

Next, we apply (PolySep) to the set containment question (4.3), i.e.,

U ⊆ Proju(Y). (4.58)

Using p(u) =
∑
α pαu

α, the corresponding optimization problem to certify

infeasibility of the robust problem is

inf
p

∑
α

pα

∫
U
uα dµ

s.t. p ∈ P
[
Proju(Y)

]
.

(PolySepProj)

Without explicit knowledge of the projection Proju(Y), it is unclear how

the set P
[
Proju(Y)

]
can be expressed as part of a polynomial optimization

problem. We present an equivalent model which expresses this constraint

by introduction of additional linear constraints over the coefficients of the

unknown polynomial.

Lemma 4.3.2. We consider the two optimization problems

(PP) inf
p

∑
α

pα

∫
U
uα dµ

s.t. p ∈ P
[
Proju(Y)

] and (PP’) inf
p̃

∑
α,β

p̃α,β

∫
U
uα dµ

s.t. p̃α,β = 0 for all β 6= 0,
p̃ ∈ P[Y],

where p(u) =
∑
α pαu

α is a polynomial in u and p̃(u,y) =
∑
α,β p̃α,βu

αyβ

is a polynomial in both u and y.
Then, any feasible point p∗ of (PP) can be extended to a feasible point p̃∗ of

(PP’) and vice versa. Furthermore, the feasible points p∗ and p̃∗ have the same

objective values.
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Proof. Let p∗ be any feasible point of (PP) that has objective value z∗ =∑
α p

∗
α

∫
U u

α dµ. Consider the inclusion map from R[u] to R[u,y], which

maps p∗ to p̃∗ where p̃∗(u,y) =
∑
α,β p̃

∗
α,βu

αyβ and

p̃∗
α,β :=

{
p∗
α if β = 0,

0 if β 6= 0.
(4.59)

By construction, for any u ∈ Proju(Y) and y ∈ Rny , we have p̃∗(u,y) =
p∗(u) ≥ 0. Therefore, p̃∗ ∈ P

[
Proju(Y) ×Rny

]
⊆ P[Y]. That is, p̃∗ is feasible

for (PP’).

Let p̃∗ be any feasible point of (PP’). Since all coefficients p̃∗
α,β with β 6= 0

are zero, p̃∗ is independent of y and it holds that p̃∗ ∈ P
[
Proju(Y) × Rny

]
.

Let p∗(u) =
∑
α p

∗
αu

α be the remaining polynomial in u. Together with

p̃∗ ∈ P
[
Proju(Y) ×Rny

]
, this implies p∗ ∈ P

[
Proju(Y)

]
.

For the remainder of this section, we assume that the problem is robust

infeasible, i.e., Ũ := U \ Proju(Y) is non-empty. In order to apply lemma 4.3.1,

Ũ has to contain an open subset. The next proposition shows that for the

given sets, this is no restriction since such a subset always exists. Given a

set S ⊆ Rn, we denote with cl(S), int(S), ∂ S, and SC the closure, interior,

boundary, and complement of S, respectively. In this work, the uncertainty

set U is assumed to be a full-dimensional hyperrectangle or full-dimensional

polyhedron. Therefore, U = cl
(
int(U)

)
always holds for our choices of U .

Proposition 4.3.3. Let U ⊆ Rnu be a set with U = cl
(
int(U)

)
. Let Y ⊆

Rnu ×Rny be a compact set and let Ũ = U \ Proju(Y) 6= ∅. Then Ũ contains

an open subset.

Proof. We need to show that int(Ũ) = int(U) ∩ (Proju(Y))C 6= ∅. Since Y is

compact, Proju(Y) is closed and thus (Proju(Y))C is an open set.

Pick any u ∈ Ũ = U ∩ (Proju(Y))C. If u ∈ int(U), then u ∈ int(Ũ) holds

as well since (Proju(Y))C is an open set.

Otherwise, assume that u ∈ ∂U . With u ∈ (Proju(Y))C, there exists ε > 0
such that Bε(u) ⊆ (Proju(Y))C. Since U = cl(int(U)), there exists u′ ∈
int(U) ∩ Bε(u) ⊆ (Proju(Y))C. Therefore, u′ ∈ int(Ũ).

This concludes that for the given sets, Ũ always contains an open subset

if Ũ is non-empty.
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4.3 Deciding robust feasibility and infeasibility for the general case

With proposition 4.3.3 and lemma 4.3.1, the separation problem (PolySep)

can certify infeasibility if the assumptions of proposition 4.3.3 are satisfied.

In practice, this optimization problem is then approximated by some finite

relaxation of the Lasserre hierarchy using proposition 4.2.5. The question

remains whether for sufficiently large levels of the hierarchy, the separation

polynomial as given by lemma 4.3.1 can always be found. After all, not all pos-

itive polynomials can be expressed by SOS polynomials. This is no restriction

as the following proposition shows.

Proposition 4.3.4. There is some finite level of the Lasserre hierarchy for

which the corresponding SDP approximation of (PolySep) yields a negative

objective if Ũ 6= ∅.

Proof. By proposition 4.3.3, Ũ 6= ∅ implies the existence of some open subset

in Ũ . Then lemma 4.3.1 guarantees the existence of a polynomial pwith strictly

negative objective value for the abstract polynomial optimization problem.

Consider then the SDP approximation of (PolySep). Since SOS polynomials

are dense (Lasserre and Netzer 2007) in the set of nonnegative polynomials

and by the continuity of the integral, there is always a SOS polynomial close

to the p with a negative objective value.

4.3.2 A set containment approach for certifying feasibility

In the setting of this chapter, deciding robust feasibility is equivalent to an-

swering the set containment question

U ⊆ Proju(Y). (4.60)

Since an explicit description of Proju(Y) is typically not available, we show

how the question above can be decided equivalently using nonprojected sets

under an additional assumption. The set Y of all feasible pairs of uncertain

data and second-stage variables can be written naturally as an intersection in

the following way. Let

Y = H ∩ G (4.61a)

with

H :=
{
(u,y) ∈ Rnu ×Rny

∣∣ h(u,y) = 0
}
, (4.61b)

G :=
{
(u,y) ∈ Rnu ×Rny

∣∣ g(u,y) ≥ 0
}
. (4.61c)
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4 An approach for two-stage robust optimization with empty first stage

In our approach, we require that the equation systemh(û,y) = 0 has a unique

solution in y given an arbitrary û ∈ U . Let

HU :=
{
(u,y) ∈ U ×Rny

∣∣ h(u,y) = 0
}

(4.62)

be the restriction of H to the pairs containing elements of the uncertainty set.

Now we can write the above requirement formally:

Assumption 2. For all û ∈ U , the system h(û,y) = 0 has exactly one solu-

tion ŷ ∈ Rny .

If the previous assumption is satisfied, let y∗ : U → Rny be the (unique)

function that maps elements of the uncertainty set to solutions. That is, for

all û ∈ U , let y∗(û) ∈ Rny be the unique solution y∗ of h(û,y) = 0 with a

fixed û. Using the uncertainty-to-solution function y∗, the set HU can be

rephrased as HU =
{(
u,y∗(u)

) ∣∣ u ∈ U
}
.

Remark 4.3.5. Uniqueness of solutions as in assumption 2 is a feature of many

physical systems that are modeled as a system of PDEs. For instance, for a

wide class of boundary value problems the uniqueness of the solution follows

from the famous lemma of Lax and Milgram (1954) for arbitrary right-hand

sides using a coercivity assumption. This directly implies that uniqueness

and assumption 2 also hold for PDEs with uncertain coefficients, as long as

the coercivity is maintained on the whole uncertainty set.

The set HU comprises all uncertainty-dependent solutions of the state equa-

tion h(u,y) = 0, whereas the set G is described by the given state constraints.

Moreover, we remark that an explicit construction of the function y∗(·) is

never required; we merely introduce y∗ to simplify the presentation.

The next lemma shows how the unique dependency between u and y leads

to an equivalent projectionless formulation of the set containment question

U ⊆ Proju(Y).

Lemma 4.3.6. Let U ⊆ Rnu with nu ∈ N, and let y∗ : U → Rny with ny ∈ N.
Let HU :=

{(
u,y∗(u)

)
∈ Rnu ×Rny

∣∣ u ∈ U
}
, and let G ⊆ Rnu ×Rny .

Then

U ⊆ Proju(HU ∩ G) ⇐⇒ HU ⊆ G. (4.63)

Proof. Suppose U ⊆ Proju(HU ∩ G). Pick any (u,y) ∈ HU . Due to the

projection, there exists y′ with (u,y′) ∈ HU ∩ G. The variable y is uniquely

determined for any u ∈ U . Therefore, y = y′ = y∗(u) holds and thus

(u,y) ∈ G.

Suppose HU ⊆ G. Pick anyu ∈ U , and let y = y∗(u). Then (u,y) ∈ HU ⊆
G and thus (u,y) ∈ HU ∩ G. This implies u ∈ Proju(HU ∩ G).
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4.3 Deciding robust feasibility and infeasibility for the general case

This lemma can be applied to all problemswhere a subset of the constraints

defines a unique solution for each possible realization of the data. Even if

y∗(·) is only given implicitly by the solution of some (in)equality system, the

lemma is still applicable.

If assumption 2 holds, lemma 4.3.6 allows us to answer the original set con-

tainment problem (4.3) by deciding the equivalent set containment problem

HU ⊆ G. (4.64)

This set containment problem can be decided with the i = 1, . . . ,mg opti-

mization problems
inf
u,y

gi(u,y)

s.t. (u,y) ∈ HU .
(MinConsi)

The objective values of allmg problems are nonnegative, if and only if HU ⊆ G.

In cases where global optimality cannot be obtained easily, the criterion can

be weakened by replacing the optimization problems (MinConsi) with relax-

ations since nonnegative objective values of the relaxations imply nonnegative

objective values of the original problems. However, this a sufficient but not

necessary criterion since HU ⊆ G might hold but at the same time some opti-

mization problems can have negative objective values due to the relaxation.

The next lemma shows how the set containment question can still be de-

cided if the considered sets are partitioned into subsets. Thiswill be important

when eliminating the absolute values of the gas transport problem later.

Lemma 4.3.7. Let U ⊆ Rnu with nu ∈ N, and let y∗ : U → Rny with ny ∈ N.
Let HU :=

{(
u,y∗(u)

)
∈ Rnu × Rny

∣∣ u ∈ U
}
, and let G ⊆ Rnu × Rny .

Let Si, i ∈ I, be a collection of sets with Si ⊆ Rnu ×Rny such that
⋃

i∈I Si =
Rnu ×Rny .

Then

U = Proju(HU ) ⊆ Proju(HU ∩ G) (4.65)

⇐⇒
Proju(HU ∩ Si) ⊆ Proju(HU ∩ G ∩ Si) for all i ∈ I. (4.66)

Proof.

U = Proju(HU ) ⊆ Proju(HU ∩ G) (4.67)

lemma 4.3.6⇐⇒ HU ⊆ G ⇐⇒ HU ∩ Si ⊆ G ∩ Si for all i ∈ I. (4.68)
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4 An approach for two-stage robust optimization with empty first stage

Let U ′
i := Proju(HU ∩ Si). Rewriting HU ∩ Si yields

HU ∩ Si =
{
(u,y)

∣∣ y = y∗(u), u ∈ U , (u,y) ∈ Si
}

(4.69)

=
{
(u,y)

∣∣ y = y∗(u), u ∈ U ,
(
u,y∗(u)

)
∈ Si

}
(4.70)

=
{
(u,y)

∣∣ y = y∗(u), u ∈
{
u
∣∣ u ∈ U ,

(
u,y∗(u)

)
∈ Si

}}
(4.71)

=
{
(u,y)

∣∣ y = y∗(u), u ∈ Proju(HU ∩ Si)
}

(4.72)

= HProju(HU ∩Si) = HU ′
i
. (4.73)

Then

HU ∩ Si = HU ′
i

⊆ G ∩ Si for all i ∈ I (4.74)

lemma 4.3.6⇐⇒ (4.75)

U ′
i = Proju(HU ′

i
) ⊆ Proju(HU ′

i
∩ G)

= Proju(HU ∩ G ∩ Si) for all i ∈ I.
(4.76)

Forpractical applications theoptimization problems (MinConsi) need to be

solved to global optimality. As mentioned earlier, if global optimality cannot

be ensured, a relaxation of the given problem can also suffice. The structure of

theoptimizationproblemsdependson thedefining functionsof HU ,G. For the

gas networkproblem, these typicallyarepolynomialsorpiecewisepolynomials.

Using the ideas of section 4.4.3, the piecewise polynomial functions can be

reformulated in terms of pure polynomials. Instead of solving the resulting

polynomial optimization problems (MinConsi), SOS or moment relaxation

of these problems can be applied. These relaxations form a hierarchy of SDPs;

see Parrilo (2003) and Lasserre (2000), respectively.

4.4 Deciding robustness for the passive gas network
problem

In this section, we apply our methods to a variant of the gas network prob-

lem under uncertainty. While using the same general structure as (3.5), we

consider a version without first-stage variables, i.e., a passive network with-

out compressors. Moreover, we only deal with uncertainties in the pipes’

roughness values, i.e., in the pressure drop coefficients. Since the gas network

problem is modeled by piecewise polynomial functions due to the occuring

absolute value functions, we discuss how a purely polynomial formulation

can obtained through case distinctions. The resulting polynomial feasibility

system will be tackled using methods from section 4.3.
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4.4 Deciding robustness for the passive gas network problem

4.4.1 The passive gas network problem under uncertainty

We consider a stationary passive gas network without compressors under

uncertainty. It is assumed that the pressure drop coefficient of each pipe is

uncertain and lies within some a priori known interval

la ∈ [la, la] for all a ∈ A, (4.77)

where la, la ∈ R and 0 < la ≤ la. Hence, the uncertainty set U ⊆ R
|Api|
>0 is a

hyperrectangle of the form (3.3):

U := L = {l ∈ R|Api| | la ≤ la ≤ la for all a ∈ Api}, (4.78)

with l, l ∈ R|Api| and 0 < l ≤ l.
The gas network problem under consideration is a variant of problem (3.5)

as defined in section 3.3 without active elements and no objective function.

For reference, we restate this feasibility problem in its reduced form:

Decide whether for all l ∈ U there is qN ∈ R|N | with

Cψ
(
l, qext(qN )

)
= 0, (4.79a)

PψB
(
lB, q

ext
B (qN )

)
≤ ∆π. (4.79b)

Mirroring (4.61a) and (4.62), we introduce the sets defined by the equality

and inequality constraints:

H :=
{
(l, qN ) ∈ R|Api| ×R|N | ∣∣Cψ(l, qext(qN )

)
= 0

}
, (4.80)

HU :=
{
(l, qN ) ∈ H

∣∣ l ∈ U
}
, (4.81)

G :=
{
(l, qN ) ∈ R|Api| ×R|N | ∣∣ PψB

(
lB, q

ext
B (qN )

)
≤ ∆π

}
, (4.82)

and with that Y := H ∩ G.

The set H (resp., HU ) contains all feasible combinations l,qN (resp., with

l ∈ U) arising from the cycle flow equations. The set G can be seen as all

combinations l, qN that are feasible for the given pressure bounds. Taking the

intersection of H and G yields Y , the set of all feasible uncertainty/solution

pairs of the given gas transport problem.

Moreover, we observe that equality system (4.79a) satisfies assumption 2,

since a unique flow solution q∗
N (l) always exists for any l ∈ U due to proposi-

tion 2.4.4

The task is nowtodecidewhether thenetwork hasa feasibleflow forall l ∈ U .

LetProjl(Y) be theprojectionof the feasible pairs of pressuredropcoefficients

and flows onto the space of the uncertainty set. This set contains all pressure
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4 An approach for two-stage robust optimization with empty first stage

drop coefficientswhich admit a feasible flow in the corresponding problem. In

this context, deciding robustness with respect to U is equivalent to checking

whether the uncertainty set U is contained in the projection Projl(Y):

U ⊆ Projl(Y) =
{
l
∣∣ ∃ qN : (l, qN ) ∈ Y

}
. (4.83)

4.4.2 Deciding robust feasibility on tree networks

First, we consider the special case of a network whose underlying topology is a

tree. Since there are no cycles, we have B = A and N = ∅. Consequently, the

description of Y does not contain any cycle flow variables qN and no equality

constraints. Moreover, with nonbasic variables, we have q = qB, ψ = ψB,
and l = lB. We note that the flow solution q∗ = Ã−1

B d̃ is constant and can

be precomputed. Recalling the definition of ψa(q∗
a, la) = −la|q∗

a|q∗
a, we infer

that ψa is a linear function of la for all a ∈ Api.
With this in mind, we observe that the set

Y =
{
l ∈ R|Api| ∣∣ Pψ(l, q∗) ≤ ∆π

}
(4.84)

is defined by linear inequalities in l and hence is a polyhedron.

In this case, checking robust feasibility with respect to a given polyhedral

uncertainty set U is equivalent to deciding the set containment problem

U ⊆ Projl(Y) = Y (4.85)

for two polyhedral sets U and Y . As the following lemma by Mangasarian

(2002) shows, this can be done efficiently with LP duality.

Lemma 4.4.1 (Mangasarian 2002). Let S := {x ∈ Rn | Sx ≥ s} and let

T := {x ∈ Rn | Tx ≤ t} 6= ∅ be two polyhedral sets, whereS ∈ Rm×n, s ∈ Rn

and T ∈ Rk×n, t ∈ Rn with k,m, n ∈ N.
Then the following statements are equivalent:

1. T ⊆ S; that is:
Tx ≤ t =⇒ Sx ≥ s. (4.86)

2. For i = 1, . . . ,m, them LPs are solvable and satisfy:

min
x

{(Sx)i | Tx ≤ t} ≥ si. (4.87)

3. There exists a matrixW ∈ Rm×k such that

S +WT = 0, s+Wt ≤ 0, W ≥ 0, (4.88)

whereW ≥ 0 means that all entries ofW are nonnegative.
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4.4 Deciding robustness for the passive gas network problem

Corollary 4.4.2. Let U = {l ∈ R|Api| | T l ≤ t} be a polyhedral uncertainty

set. Let Y = {l ∈ R|Api| | Sl ≥ s} be the polyhedral set of feasible pressure

drop coefficients l for a gas transport problem over a tree-shaped network.

Then robustness with respect to U can be decided by solving an LP.

Robust feasibility of tree networks as a function of a node’s pressure

Corollary 4.4.2 allows us to characterize robustness of a tree network in terms

of the pressure at an arbitrary chosen node. W.l.o.g., we select the tree’s root

node r ∈ V as the basis of our considerations. Suppose the squared pressure

at this node is fixed, i.e., πr := πr = πr. Our aim is to specify all πr such that

the gas network problem is robust feasible.

As can be inferred from (4.84), the pressure boundsonly appearas constants

in the linear inequality constraints. With the conventions of the previous

corollary, the set of feasible pressure drop coefficients can thus be expressed

in terms of the root node’s pressure πr:

Y(πr) :=
{
l
∣∣ Sl ≥ s(πr)

}
. (4.89)

Considering πr as a variable, the right-hand side s of the linear inequality

system is a linear function s : R → R|Api| of πr. Applying lemma 4.4.1 to the

set containment question U ⊆ Y(πr) yields

U = {l | T l ≤ t} ⊆
{
l
∣∣ Sl ≥ s(πr)

}
= Y(πr) (4.90)

⇐⇒ W(πr) :=
{
W ∈ Rm×k

≥0

∣∣∣∣∣ S +WT = 0
s(πr) +Wt ≤ 0

}
6= ∅. (4.91)

Lemma 4.4.3. Given a tree network G = (V,A) with root node r and a poly-
hedral uncertainty set U . Then the network is robust feasible if and only if the

root node’s squared pressure satisfies

πr ∈ [π∗
r , π

∗
r ] (4.92)

with π∗
r , π

∗
r being optimal values of the LPs

π∗
r := min

πr,W
πr s.t. W ∈ W(πr),

π∗
r := max

πr,W
πr s.t. W ∈ W(πr),

(4.93)

where W(πr) is defined as in (4.91).
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4 An approach for two-stage robust optimization with empty first stage

Proof. The set
{
(πr,W )

∣∣W ∈ W(πr)
}
is polyhedral and thus convex. There-

fore, the set of all feasible πr can be described by the interval

[π∗
r , π

∗
r ], (4.94)

whose endpoints are the optimal values of the LPs (4.93).

4.4.3 Eliminating the absolute value functions

In order to apply tools from polynomial optimization to a general gas network

problem with cycles, the constraining functions of Y have to be converted to

a polynomial representation. Currently, the pressure drop equations

πw − πv = −la|qa|qa = ψa(qa) for all (v, w) ∈ Api (4.95)

introduce absolute values into the problem. After elimination of the absolute

values, Y is transformed from a piecewise polynomial representation to an

equivalent but purely polynomial description. Depending on the topology

of a given instance, it may be possible to eliminate a lot of absolute values in

advance since all arcs which are not part of a cycle have fixed flow direction.

For example, in the case of tree networks, all directions are known in advance.

Apart from that, the flow direction can be fixed by other preprocessing algo-

rithms, e.g., flow/pressure propagation or bound tightening methods. Further

discussion on that topic can be found in Geißler (2011) and in section 5.2.3.

This chapterpresents threedifferentmethods for theeliminationof absolute

values. First, a technique from mixed-integer linear optimization is employed

to model absolute values using binary variables. With this method, both the

feasibility and the infeasibility method can be used. Next, the implications of

straightforward case distinction are discussed. In general, this technique can

only be used for the feasibility method, as will be explained later. Finally, the

casedistinction idea is further investigated for networkswhich contain a single

cycle. In this setting, the absolute values can be eliminated by restricting the

uncertainty set to polyhedral subsets. It is shown how the overall problem can

be decomposed into linearly many subproblems which can be decided with

both methods.

Elimination by auxiliary binary variables

By introducing additional binary variables, the absolute value functions can

be eliminated. This technique is very similar towhat is typically done inmixed-

integer linear optimization. We demonstrate the idea using the example of
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x|x|, where x ∈ R is a scalar variable. First, assume that |x| is bounded by

someM ∈ R: |x| ≤ M . This is a natural assumption since the flows within

the network cannot become arbitrarily large. By adding the constraint b = b2

for b ∈ R, we model a binary variable b ∈ {0, 1}. Then, the signed-square

expression y = x|x| can be stated equivalently using polynomials via

y = (2b− 1)x2, (4.96a)

(−1 + b)M ≤ x ≤ bM, (4.96b)

b = b2. (4.96c)

Applying this construction to each absolute value function on each arc a ∈ Api
yields a purely polynomial description of Y that can be used in the feasibility

and infeasibility methods.

Elimination by case distinction: the general case

Considering the original, non-reduced problem definition (3.5), each pipe

a ∈ Api introduces an absolute value from its pressure drop equation. In

general, one might expect that by eliminating each absolute value function,

the problem would be split into 2|Api| cases. This paragraph shows how the

number of cases mainly depends on the number of fundamental cycles in the

graph and thus can bemuch smaller than 2|Api|. We remark that the following

results identify the feasible flow directions in a linear network flow model

instead of the gas transport problem. However, this is no restriction since

adding constraints concerning the gas physics reduces the number of possible

cases even further.

Due to lemma 4.3.7, the overall set containment problem can be decided by

splitting the problem into a series of subproblems. Each subproblem arises by

restricting theoriginal problem to certain subsets, e.g., to orthants ofR|Api| for
the absolute value case distinction. Let {O1, . . . ,O2|Api|} = {R≥0,R≤0}|Api|

be the set of orthants inR|Api|. In the non-reduced model (3.5), the additional

constraint q ∈ Oi restricts the flow to a specific orthant and allows the elimi-

nation of all absolute value functions. In the reduced model, the variables qB
are replaced by qB = Ã−1

B (d̃− ÃNqN ). The transformed case distinction is(
qB
qN

)
=
(
Ã−1

B (d̃− ÃNqN )
qN

)
∈ Oi. (4.97)

By considering the reduced model, the next proposition shows that the num-

ber of case distinctions mainly depends on the number of fundamental cycles

in the graph.
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Proposition 4.4.4. Let G = (V,Api) be a connected digraph with |Api| arcs
and |N | fundamental cycles. Then there can be at most

|N |∑
i=0

(
|Api|
i

)
∈ O

(
|Api||N |) (4.98)

many feasible flow directions in the network. The corresponding subproblems

can be constructed in running time O
(
|Api||N |).

Proof. The problem of finding all feasible flow directions can be reduced to a

problem concerning the arrangement of hyperplanes. For ease of exposition,

consider the nonnegative orthant O+ = R
|Api|
≥0 . Using the flow function

qext as defined in (2.57), fixing the flow direction to this orthant amounts

to the constraint qext(qN ) ∈ O+, i.e., qext(qN ) ≥ 0. Each entry (qext
a )a∈Api

of qext defines a hyperplane in R|N |. Consider the regions that can arise by

segmentingR|N | using the hyperplanes in qext. For all a ∈ Api, each region is

a subset of either qext
a (qN ) < 0 or qext

a (qN ) > 0. Therefore, the flow direction

on all arcs in the graph is constant on each region. The total number of

regions that can be constructed inR|N | using |Api| hyperplanes is bounded by∑|N |
i=0

(|Api|
i

)
∈ O

(
|Api||N |); see Zaslavsky (1975). Furthermore, constructing

all regions can be achieved in running time O
(
|Api||N |) using the algorithm

of Edelsbrunner, O’Rourke, and Seidel (1986).

However, there is an issue arising when using lemma 4.3.7 as the subprob-

lems are of the type

Projl(HU ∩ Oi) ⊆ Projl(HU ∩ G ∩ Oi). (4.99)

The feasibilitymethod can be employed as is, sinceoptimizing over a projected

set poses no restriction. On the other hand, the infeasibility method cannot

be applied as easily since it requires the moments over the uncertainty set. In

case of the given subproblems, this is the set Projl(HU ∩ Oi). In general, it is

unclear how themoments can be obtained without explicitly constructing the

projection. Nevertheless, this is possible for networkswith one cycle. The next

section gives the description of Projl(HU ∩ Oi) for this case. In this setting,

the infeasibility method can be applied since the projected set is polyhedral.

Elimination by case distinction: a shortcut for networks with one

cycle

On networks with only one cycle, a considerable simplification can be applied.

The absolute values can be eliminated by restricting the problem to certain
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subsets of the uncertainty set. In contrast, the previous case distinction

method relied on restricting the flowvariables. Theadvantageof using subsets

of the uncertainty set for this purpose is that the infeasibility method can be

applied as well since it requires explicit knowledge of the uncertainty set.

For the purpose of this chapter, we assume a directed cyclic graph where

each arc points to a different node:

Assumption 3. LetG = (V,Api) be a directed cyclic graphwithV = {1, . . . , n},
Api =

{
(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)

}
, and non-zero demand d ∈ R|V|.

Due to the cyclic structure, the arcs can be uniquely identified by their

first node. We assume the last edge to be part of the nonbasis; thus there

is only one problem variable qn ∈ R with qN ≡ qn. Employing a similar

construction as that in Gotzes et al. (2016, ch. 6.1), we obtain the set H of

feasible (l, qn)-combinations and the associated cycle flow equation.

Proposition 4.4.5. Let assumption 3 be satisfied.

Then H =
{
(l, qn) ∈ R|Api|

>0 ×R
∣∣ h(l, qn) = 0

}
with

h(l, qn) :=
∑

a∈Api
ψa(la, qa) =

∑
a∈Api

ψa(la, qn − βa) (4.100)

=
∑

a∈Api
−la|qa|∗ =

∑
a∈Api

−la|qn − βa|∗ (4.101)

for some βa ∈ R for a ∈ Api. The constraint h(l, qn) = 0 is the cycle flow

equation.

Using h, a characterization of the set of all pressure drop coefficients l,
which lead to the flow qn being bounded in some interval can be found:

Lemma 4.4.6. Let assumption 3 be satisfied. Let qn, qn ∈ R, l ∈ R|Api|
>0 and

let h be as in proposition 4.4.5. Then

{
l ∈ R|Api|

>0
∣∣ h(l, qn) = 0 and qn ≤ qn ≤ qn

}
=
{
l ∈ R|Api|

>0
∣∣ h(l, qn) ≤ 0, h(l, qn) ≥ 0

}
. (4.102)

Proof. For constant l ∈ R|Api|
>0 , the function h(l, qn) is monotonically decreas-

ing in qn since

d
dqn

h(l, qn) =
n∑

i=0

d
dqn

ψa(qn − βi) = −
n∑

i=0
li2|qn − βi| ≤ 0. (4.103)

Furthermore, limqn→±∞ h(l, qn) = ∓∞.
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4 An approach for two-stage robust optimization with empty first stage

Let

S1 :=
{
l ∈ R|Api|

>0
∣∣ h(l, qn) = 0, qn ≤ qn

}
(4.104)

S2 :=
{
l ∈ R|Api|

>0
∣∣ h(l, qn) ≥ 0

}
. (4.105)

We show S1 = S2 first.

Pick l ∈ S1. By definition of S1, there is qn ≤ qn with h(l, qn) = 0. Since

h(l, ·) is monotonically decreasing, h(l, qn) ≥ h(l, qn) = 0. Therefore, l ∈ S2.
Pick l ∈ S2. Since h is continuous in qn, and limqn→∞ h(l, qn) = −∞

together with h(l, qn) ≥ 0, the intermediate value theorem implies that there

exists qn with h(l, qn) = 0. Therefore, l ∈ S1.
This shows S1 = S2. There is a similar result where the inequalities in the

definitions of S1, S2 are flipped. Together, both results prove that

{
l ∈ R|Api|

>0
∣∣ h(l, qn) = 0 and qn ≤ qn ≤ qn

}
=
{
l ∈ R|Api|

>0
∣∣ h(l, qn) ≤ 0, h(l, qn) ≥ 0

}
. (4.106)

With this lemma, restricting qn to a given interval can be expressed equiva-

lently by restricting the considered pressure drop coefficients l. Furthermore,

the constraints for l are hyperplanes in R|Api| as h(l, qn) is linear in l.
An exemplary application of this lemma is depicted in fig. 4.3. We consider

a three-node cyclic network with nodes V = {v1, v2, v3} as shown on the

right side of the figure. Furthermore, let two arcs be affected by uncertain

0

U1

U2

l1

l2

v2

v1 v3

v2

v1 v3

q ≤ 0

q ≥ 0
l ∈ U1

l ∈ U2

Figure 4.3: Lemma 4.4.6 characterizes flow directions on a cycle by subsets of the uncertainty
region U = U1 ∪ U2.
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4.4 Deciding robustness for the passive gas network problem

pressure drop coefficients l1 and l2. These uncertain parameters arise from a

rectangular uncertainty set U as shown on the left. Let q denote the flow along

the arc from v2 to v3. We apply lemma 4.4.6 to the bound q ≥ 0 and obtain a

hyperplane in l-space. This hyperplane partitions U into two polyhedra U1
(green) and U2 (red). Again by lemma 4.4.6, we know that restricting l ∈ U1
implies that q ≥ 0 and hence the absolute function can be eliminated from

the pressure drop equation on that arc.

We adapt a procedure from Gotzes et al. (2016, prop. 5) to our setting

in order to identify intervals for the flow qn that guarantee constant flow

direction on all arcs of the network. Once the possible subsets are identified,

we apply lemma 4.4.6 to relate the obtained flow intervals to subsets in the

space of the uncertainty.

The absolute value functions only occur in the form la|qa|∗ = la|qa|qa.

From proposition 4.4.5, the flow qa is given by

qext
a (qn) = qn − βa for all a ∈ Api. (4.107)

Therefore, the absolute value
∣∣qext

a (qn)
∣∣ = |qn − βa| can be eliminated by

restricting the flow qn to either qn ≥ βa or qn ≤ βa.

Next, we reorder β1, β1, . . . , βn such that βi1 ≤ βi2 ≤ · · · ≤ βin . With this

in mind, taking any consecutive pair βij , βij+1 yields an interval for qn such

that the flow over the whole network has constant direction. Due to Gotzes

et al. (2016) and the non-zero demand from assumption 3, the solutions of

h(l, qn) = 0 can only bewithin [βi1 , βin ] for any fixed l. Therefore, the absolute

values can be eliminated by restricting qn to the intervals

[βi0 , βi1 ], [βi1 , βi2 ], . . . [βin−1 , βin ]. (4.108)

Applying lemma 4.4.6 to these intervals yields an equivalent condition for

constant flow directions in the space of the uncertainty.

Proposition 4.4.7. Let assumption 3 be satisfied, and let

Uj := U ∩
{
l ∈ R|Api|

>0
∣∣ h(l, βij+1) ≤ 0, h(l, βij ) ≥ 0

}
(4.109)

for all j = 1, . . . n− 1.
Then the set containment question U ⊆ Projl(Y) = Projl(HU ∩ G) can be

decided by solving the subproblems

Uj ⊆ Projl(HUj ∩ G) for all j = 1, . . . n− 1. (4.110)

Finally, we remark that if U is polyhedral then Uj is polyhedral as well.
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4 An approach for two-stage robust optimization with empty first stage

4.5 Numerical experiments

In this section, some practical results of the feasibility and infeasibility ap-

proaches on a set of small gas networks under uncertainty are presented.

Instead of considering arbitrary gas networks, we focus on highlighting our

methods’ performance on the core problem: deciding a single cycle under un-

certainty. Using lemma 4.4.3, the feasibility of any subtree in a given network

can be reduced if the pressure at the root node is contained in a precom-

puted interval. This allows us to remove any subtree by updating the pressure

bounds at the intersecting nodewith the remaining network. Assuming there

is only one remaining cycle, lemma 4.4.6 is then used to split the problem

into subproblems on subsets of the uncertainty set while eliminating all abso-

lute values. Since this just increases the number of problems to consider but

does not fundamentally change their nature, we start with a single cycle and

uncertainty sets that guarantee constant flow direction on all arcs.

The example networks are cyclic over graph G = (V,Api) with nodes

V = {1, 2, . . . , n} for n ∈ {2, 3, . . . , 7} and arcs Api = {(1, 2), (2, 3), . . . ,
(n− 1, n), (n, 1)}. A family of uncertainty sets is considered:

U(c) = ×
a∈Api

[1, c], where we let c ∈ [2, 4]. (4.111)

Furthermore, we define two special uncertainty sets,

Ufeas := U(2) and Uinfeas := U(4), (4.112)

which wewant to investigate regarding easibility and infeasibility, respectively.

Table 4.1 shows the parameters of the considered instances. The columns

denote the nodes within the network. Each row denotes the specific instance

with n nodes. Within each row, the demand and bounds of the squared

pressure πv at each node are displayed in the first and second lines, respec-

tively. Every network’s G-set (see (4.80)) is made up of n(n− 1) non-trivial

inequalities gi, where i ∈ I. Each inequality is checked for feasibility us-

ing (MinConsi); all inequalities are checked at once for infeasibility using

(PolySepProj). Both optimization tasks are solved using SDP relaxations of

the problems. We remark that (PolySepProj) could be applied to all con-

straints individually. However, experiments show that solving the problem

for a single constraint individually is only marginally faster than solving the

problem for all constraints at once. Therefore, we solve the infeasibility prob-

lem once with all constraints combined rather than up to |I| subproblems by

considering each constraint on its own.

94



4.5 Numerical experiments

Table 4.1: Demand and squared pressure bounds per node v for each test network.

node v ∈ V
1 2 3 4 5 6 7

n=2 demand dv −10 10
bounds πv [0, 200] [140, 200]

n=3 demand dv −10 2 8
bounds πv [0, 200] [0, 200] [130, 200]

n=4 demand dv −10 2 6 2
bounds πv [0, 200] [0, 200] [115, 200] [0, 200]

n=5 demand dv −10 1 1 6 2
bounds πv [0, 200] [0, 200] [0, 200] [100, 200] [0, 200]

n=6 demand dv −10 1 1 6 1 1
bounds πv [0, 200] [0, 200] [0, 200] [70, 200] [0, 200] [0, 200]

n=7 demand dv −10 1 1 1 4 2 1
bounds πv [0, 200] [0, 200] [0, 200] [0, 200] [50, 200] [0, 200] [0, 200]

All experiments were carried out on a machine with a quad core Intel Xeon

E3-1240 v5 CPU running at 3.5 GHz each and 16 GB of RAM.The methods

were implemented using MATLAB R2016b. GloptiPoly 3.8 (Henrion, Lasserre,

and LöƟerg 2009) was used for the feasibility models since it provides a

straightforward interface for solving polynomial optimizationproblems. Since

the infeasibility method exceeds the capabilities of GloptiPoly, this approach

was implemented using the SOS-module of YALMIP R20160930 (LöƟerg

2009). The resulting SDP problems were solved with MOSEK 8 (MOSEK 2011)

using 4 threads.

Some problems were not solvable with the desired precision. This hap-

pened although we evaluated the problems on a variety of solvers including

SeDuMi (Sturm 1999) and SDPT3 (Toh, Todd, and Tütüncü 1999) as well as

on a third modeling tool, SOSTOOLS (Papachristodoulou et al. 2013). The

ultimately selected combination of MOSEK with GloptiPoly and YALMIP

offered the most robust behavior amongst all considered possibilities.

4.5.1 Effectiveness of themethods

The effectiveness of both methods can be measured in the typical running

times of the semidefinite subproblems as well as in hierarchy level at which

set containment can be decided.

First, the results of both methods on a fixed network are presented. Ta-

ble 4.2 shows the outcome of both methods for the n = 3 instance over

Uinfeas. The columns are separated into groups concerning the feasibility

95



4 An approach for two-stage robust optimization with empty first stage

Table 4.2:Objectives of the feasibility method solving (MinConsi) and infeasibility method
solving (PolySepProj) for the three node instance over Uinfeas. Each row in the feasibility group
denotes the subproblem with objective function gi.

feasibility infeasibility

i level 2 level 3 level 2 level 3

1 216.89 217.39

0.00 unbnd

2 53.09 -

3 228.63 228.63
4 −116.79 -

5 201.67 -

6 −35.99 20.34

method (MinConsi) and the infeasibility method (PolySepProj) with a further

distinction into the employed hierarchy level. The rows in the feasibility part

denote the constraint gi which is minimized. Since the infeasibility method is

applied to all constraints at once, there is only one row of results in the infea-

sibility part of the table. Cells marked by “-” indicate numerical difficulties,

i.e., we were unable to solve the specific problem to the desired precision.

The feasibility approach has a positive objective for five out of six subproblems,

thus confirming set containment for those constraints. Out of these five prob-

lems, four were decided on the second hierarchy level while one required a

level 3 solution. When applying the infeasibility approach, the level 3 model is

unbounded, thereby refuting set containment. Overall, the instance therefore

is not robust feasible.

Next, the required levels of the relaxation hierarchy are evaluated. For this

purpose, each constraint of each instance is considered for set containment

while gradually increasing the hierarchy level from two to four. Once a sub-

problem is solved successfully, the corresponding number of solved problems

on this specific level is incremented in the table.

Table 4.3 contains the feasibility methods’ results for all instances on the

smaller uncertainty set Ufeas. Each row denotes the considered instance with

n nodes and a total of |I| subproblems. The columns indicate how many of

the feasibility problems were solved successfully on the respective level. For

any subproblem, only the first success is counted; thus the sum of each row

can be at most |I|. If the rowwise sum is less than |I|, this implies that some

problems were not solvable with the desired precision.

It can be observed that the feasibility approach almost exclusively confirms

set containment at the second level. At most one subproblem per instance
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4.5 Numerical experiments

Table 4.3: For a given instance with n nodes, count how many subproblems out of I were
solved successfully using the feasibility method. Positive outcomes of each subproblem are
counted only once on the smallest level. All instances were solved over the Ufeas uncertainty
set.

n |I| level 2 level 3 level 4

2 2 1 1 0
3 6 5 1 0
4 12 11 1 0
5 20 19 1 0
6 30 29 1 0
7 42 42 0 0

required solving of a level 3 problem. As suspected, all instances are robust

feasibly with this uncertainty region.

Using the larger uncertainty set Uinfeas, both the feasibility and the infeasi-

bility method were applied to all instances. Table 4.4 summarizes all results.

Each row denotes the considered instance with n nodes. The columns are sep-

arated into groups according to the employed method with further distinction

for the used hierarchy level. Each column in the feasibility group indicates

how many of the feasibility problems were solved successfully. For any sub-

problem, only the first success is counted; therefore the sum of each row in

the feasibility group can be at most |I|. The columns in the infeasibility group

denote the status of the corresponding problem. Cells marked with “zero obj.”

indicate global optimality of the considered problem but an objective value of

Table 4.4: For a given instance with n nodes, the left group of column counts how many
subproblems of I were solved successfully using the feasibility method. For each subproblem,
a positive outcome is counted only once on the smallest level. The results of the infeasibility
method are displayed in the right column group. All instances were solved over the Uinfeas

uncertainty set.

feasibility infeasibility

n |I| level 2 level 3 level 4 level 2 level 3 level 4

2 2 1 0 0 zero obj. X X
3 6 4 1 0 zero obj. X X
4 12 9 1 0 zero obj. X X
5 20 16 1 0 zero obj. X X
6 30 25 1 0 zero obj. X X
7 42 36 2 0 zero obj. - -
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4 An approach for two-stage robust optimization with empty first stage

zero, which is insufficient to show certify infeasibility. Cells marked with a

checkmark (X) represent an unbounded objective and thus a negative answer

to the set containment question. As usual, “-” marks numerical difficulties.

Many feasibility problems were solved successfully at the second hierarchy

level. Set containment of some constraints could not be confirmed with

the feasibility method using the given levels. This is due either to numerical

problemsor to negative objective values. However, for almost all instances, the

infeasibility method was able to provide a certificate against set containment

using the third hierarchy level relaxation. This shows that Uinfeas is robust

infeasible for the n = 2, . . . , 6 instances.

To conclude this set of test runs, tables 4.5 and 4.6 show the characteristic

running timeswhere each rowdenotes the n-node instance. For the feasibility

approach, the columns show mean running time and standard deviation

using the specific relaxation hierarchy level. All values are aggregated over all

subproblems of the given instance and hierarchy level. Since the infeasibility

approach is a single problem when instance and hierarchy level are fixed, no

aggregation is possible and we show the running time as-is. It can be observed

that the running times are quite small for the level 2 problems but increase

quickly for higher levels and larger instances.

Table 4.5:Mean value and standard deviation of the feasibility method’s running time on Ufeas.
Each row shows the aggregated values for all subproblems of the n-node instance per hierarchy
level.

level 2 level 3 level 4

n mean std mean std mean std

2 0.054 s 0.043 s 0.030 s 0.000 s 0.079 s 0.009 s
3 0.027 s 0.006 s 0.075 s 0.008 s 0.460 s 0.057 s
4 0.034 s 0.008 s 0.238 s 0.014 s 2.969 s 0.115 s
5 0.055 s 0.015 s 0.893 s 0.143 s 18.600 s 2.064 s
6 0.099 s 0.024 s 3.159 s 0.399 s 97.197 s 5.473 s
7 0.178 s 0.044 s 10.750 s 1.257 s 480.710 s 40.487 s

4.5.2 Evaluation of the gap betweenmethods

The proposed methods are based on semidefinite relaxations of polynomial

problems; see section 4.2. Since the objective values of relaxed problems are

smaller than or equal to the non-relaxed optimal values (for minimization

problems), it is expected that the feasibility and infeasibility approaches can
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Table 4.6: Running time of the infeasibility method on Uinfeas where each row denotes the
n-node instance and each column the respective level.

n level 2 level 3 level 4

2 0.031 s 0.028 s 0.057 s
3 0.013 s 0.073 s 0.373 s
4 0.019 s 0.264 s 2.723 s
5 0.035 s 1.102 s 14.602 s
6 0.067 s 3.634 s 97.197 s
7 0.117 s 7.769 s 576.219 s

decide a smaller number of problems than their non-relaxed counterparts.

The aim of this section is to investigate how large the “gap” between the

feasibility and infeasibility approaches is. After fixing a hierarchy level, all

problems which cannot be decided by either the feasibility or the infeasibility

approach are said to fall into this relaxation gap. In order to compare both

methods, we need to apply the infeasibility approach to the same constraint

as the feasibility method. This is different from all previous tests where the

infeasibility method was solved for all constraints at once.

Consider the parameterized uncertainty set U(c) for increasing c ∈ [2, 4].
From table 4.3, it can be derived that all subproblems are feasible for Ufeas =
U(2). On the other hand, as table 4.4 shows, all instances are infeasible for

the larger Uinfeas = U(4). This implies that there is always at least one violated

constraint gi when using U(4).
For this test set, we select one subproblem per instance that is infeasible for

the larger uncertainty set. Then, the feasibility and infeasibility approaches

are solved for the selected subproblems over all twenty uncertainty sets U(c)
for c = 2+ i 1

10 , i = 0, . . . , 20. Section 4.5.2 shows the results in more detail for

the four-node instance. We consider the subproblem that is marked as infea-

sible in table 4.4. The objective values of the feasibility problem (MinConsi)

are marked with blue (level 2) and orange (level 3) triangles in the figure. Ad-

ditionally, the values of solving (PolySepProj) are marked using green (level 3)

and red (level 4) circles. We remark that the outcome of the infeasibility

method for level 2 is omitted since as all subproblems were feasible but had

objective value of zero. Unbounded subproblems of the infeasibility method

are marked with an objective value of fifteen times their level. Missing data

points can be attributed to numerical difficulties of the SDP solver.

As can be observed, no instance can be decided on the second hierarchy

level since all solutions of the feasibilitymethod have negative objective values
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2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

−100

−50

0

feasibility (level 2)
feasibility (level 3)

infeasibility (level 3)
infeasibility (level 4)

level 3 gap
level 4 gap

Figure 4.4: Objective values of the feasibility and infeasibility method for uncertainty sets
U(c) with c ∈ {2.0, 2.1, . . . , 4} on the four-node instance.

and all solutions of the infeasibility method have objective value zero (not

shown in the figure). On the third hierarchy level, the feasibility approach

confirms set containment for c ∈ {2.0, 2.1, . . . , 2.5} as these problems have

positive objective value. With the same level, the infeasibility approach finds

certificates against set containment for c ∈ {3.4, . . . , 4.0}. For the problems

with c ∈ {2.6, . . . , 3.3}, neither of the methods was able to decide set con-

tainment successfully (disregarding numerical difficulties). In this range, the

feasibility method only returns negative objective values and all objective

values of the infeasibility method were zero.

Increasing the hierarchy level to four leads to numerical problems for all

feasibility models, but also increases the number of successfully solved infea-

sibility models by two (c = 3.2 and c = 3.3). This confirms the expectation

that increasing the hierarchy level can lead to more certificates for non–set

containment.

The results over all instances is summarized in table 4.7. For each hierarchy

level, it shows both the largest value for c (indicated by cfeas) such that the

feasibility approach confirms set containment and the smallest value for c
(indicated by cinfeas) where a certificate for infeasibility could be obtained.

Note that these bounds on c take all smaller hierarchy levels into account as

well. The gap column is the difference cinfeas − cfeas and indicates the range of

problems which could not be solved successfully with either the feasibility or

the infeasibility approach. Again it can be observed that the gap is reduced
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Table 4.7: Extreme values for c where the feasibility (cfeas) and infeasibility (cinfeas) methods
can solve the problem. “Gap” represents the length of the experimentally determined interval
where neither feasibility nor infeasibility could be decided.

level 3 level 4

n cfeas cinfeas gap cfeas cinfeas gap

2 2.4 3.3 0.9 2.4 2.9 0.5
3 2.4 3.2 0.8 2.4 3.1 0.7
4 2.5 3.4 0.9 2.5 3.2 0.7
5 2.4 3.4 1.0 2.4 3.3 0.9
6 2.6 3.7 1.1 3.1 3.6 0.5
7 3.0 3.3

after increasing the hierarchy level as this leads to a tighter relaxation for the

feasibility approach and admits a richer set of polynomials for the infeasibility

certificate.
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5 A reformulation approach for two-stage
robust optimization with a non-empty 
first stage

We show how a general two-stage robust optimization problem can be trans-

formed into a regular single-stage problem under certain assumptions. The

necessary structural properties consist of uniquely determined second-stage

variables and a weak connection between first-stage and second-stage vari-

ables. By exploiting these properties, the original problem is transformed into

a normal, non-robust optimization problem whose right-hand side can be

precalculated by solving a series of optimization problems to global optimality.

Based on this formulation it is shown howmultiple elements of the right-hand

side can be combined into a single optimization task. We also show that solv-

ing the subproblems to global optimality is not necessary. Using relaxations of

the original description allows us to apply the presented methods to problems

where obtaining globally optimal solutions can be a significant challenge. This

is the case, e.g., for many non-convex problems.

The developed method is then applied to a gas transport problem under

uncertainty with linear pressure-modifying elements. Since the subproblems

to be solved are non-convex, we use a well-known technique to construct

piecewise linear relaxations of the problems. These can then be formulated

as MILPs and solved to global optimality. Since our approach requires the

solution of a potentially large number of subproblems, it is crucial for the

overall running time that the problem size is reduced as much as possible. To

this end, we describe a variety of preprocessing techniques taken from litera-

ture and adapt them to problems with uncertain parameters. The practical

feasibility and effectivity of our approach is demonstrated by benchmarks on

several gas network instances, including a realistic model of the Greek natural

gas network. Overall, aggregation and preprocessing allow us to solve large

gas network instances under uncertainty quickly and effectively at the price

of more conservative solutions.
The author of this thesis conceived all ideas within this chapter. The further

development and implementation of these ideas was primarily carried out by
the author of this work under the supervision of Prof. Liers and Prof. Stingl.
The main results of this chapter have been published in

D. Aßmann, F. Liers, and M. Stingl. 2019. “Decomposable robust two-stage
optimization: An application to gas network operations under uncertainty”.
Networks 74 (1): 40–61. doi:10.1002/net.21871.
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5 A reformulation for two-stage robust optimization with a first stage

In the following, we repeat and extend these results as well as their presenta-

tion.

This chapter is structured as follows. The problem is studied in an abstract

setting in section 5.1. In this section, the transformation to single-stage prob-

lem and the aggregation idea are developed. An application to gas network

operations follows in section 5.2. Besides discussing the piecewise-linear

relaxation idea, we also present preprocessing methods that can be used to

obtain smaller model formulations. Section 5.3 concludes this chapter with a

series of benchmarks. We show how preprocessing can reduce computation

time by an order of magnitude and discuss the effects of the relaxation. Finally,

using the example of the Greek natural gas network, we demonstrate how

a combination of all the presented ideas leads to a very effective solution

approach.

5.1 A decomposable two-stage robust optimization
problem

We study a general adjustable robust problem (ARC) as introduced in sec-

tion 3.2:

min
x

{
f(x)

∣∣ ∃x ∀u ∈ U ∃y with h(u,x,y) = 0, g(u,x,y) ≤ 0
}
. (ARC)

We briefly recall the definitions.. Let U ⊆ Rnu with nu ∈ N be the convex

and compact uncertainty set; let x ∈ Rnx and y ∈ Rny with nx, ny ∈ N

be the first- and second-stage variables; and let h : Rnu ×Rny → Rmh and

g : Rnu × Rny → Rmg with mh,mg ∈ N be the vector-valued constraint

functions.

The necessary conditions for our approach are summarized as:

Assumption 4. (a) The equation system

h(u,x,y) = 0 (5.1)

does not depend on x and admits a unique solution y∗(u) for all u ∈ U .

(b) The function g is separable, i.e., there exist functions σ : Rnx → Rmg

and τ : Rnu ×Rny → Rmg such that

g(u,x,y) = σ(x) + τ (u,y) (5.2)

for all (u,x,y) ∈ Rnu ×Rnx ×Rny .
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5.1.1 Transformation to single-stage problem

The next lemma shows how the abstract two-stage problem (ARC) can be

transformed into to a single-stage problem given assumption 4.

Lemma 5.1.1. Under assumption 4, the set of feasible first-stage decisions x
of the adjustable robust counterpart (ARC) is given by

X =
{
x ∈ Rnx

∣∣ σ(x) ≤ β
}
, (5.3)

where β = (βi)i=1,...,mg ∈ Rmg with

βi := − max
u,y

τi(u,y) (5.4a)

s.t. h(u,y) = 0, (5.4b)

u ∈ U , (5.4c)

y ∈ Rny . (5.4d)

Proof. Due to assumption 4, the equality constraints of (ARC) only depend

on u and y, i.e., h(u,x,y) ≡ h(u,y). Furthermore the inequality constraints

are separable: g(u,x,y) = σ(x) + τ (u,y). Therefore, the set of feasible

first-stage decisions x of (ARC) can be written as{
x ∈ Rnx

∣∣ ∀u ∈ U ∃y with h(u,y) = 0, σ(x) + τ (u,y) ≤ 0
}
. (5.5)

From assumption 4 it follows that there is a function y∗(u) thatmaps valuesu
of the uncertainty set U to solutions of h(u,y) = 0. This function exists and

is well-defined since solutions of the equality system exist for all u ∈ U and

are unique. Consequently, the condition ∀u ∈ U ∃y ∈ Rny with h(u,y) = 0
in (5.5) is encoded by the function y∗(u) on U . By plugging y∗(u) into the

remaining inequality system, we obtain the feasible region of a single-stage

robust optimization problem of form (RC) as introduced in section 3.2:{
x ∈ Rnx

∣∣ σ(x) + τ
(
u,y∗(u)

)
≤ 0 ∀u ∈ U

}
. (5.6)

This semi-infinite problem can be reformulated by maximizing the left-hand

side of the inequality:

σ(x) + τ
(
u,y∗(u)

)
≤ 0 for all u ∈ U , (5.7)

⇐⇒ max
u∈U

{
σi(x) + τi

(
u,y∗(u)

)}
≤ 0 for all i = 1, . . . ,mg, (5.8)

⇐⇒ σi(x) + max
u∈U

{
τi
(
u,y∗(u)

)}
≤ 0 for all i = 1, . . . ,mg. (5.9)
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After rewriting the solution function y∗ in terms of h and letting

βi := −max
u∈U

{
τi(u,y)

∣∣h(u,y) = 0, y ∈ Rny
}

for all i = 1, . . . ,mg, (5.10)

we obtain

σi(x) + max
u∈U

{
τi
(
u,y∗(u)

)}
= σi(x) − βi ≤ 0 (5.11)

and thus set of feasible first-stage decisions x of (ARC) is equivalent to{
x ∈ Rnx

∣∣ σ(x) ≤ β
}
. (5.12)

5.1.2 Improvements by relaxation and aggregation

Wewant to highlight twoproperties of (5.3)whichmay be beneficial for solving

such problems in practice.

Calculating βi involves solving an optimization task to global optimality.

In situations where this is not possible or where it can only be done with great

effort, e.g., due to non-convex constraints, relaxations of the problem can be

used instead. We propose to use convex orMILP relaxations as they lead to

optimization tasks which can be solved to global optimality using available

software. We consider the definition of βi:

βi = − max
u∈U

{
τi(u,y)

∣∣ h(u,y) = 0, y ∈ Rny
}

︸ ︷︷ ︸
(?)

. (5.13)

Replacing (?) by a relaxed optimization problem leads to an optimal value

β′
i ≤ βi. Plugging β′ into (5.12) yields a smaller feasible region for the first-

stage decision variables x:{
x ∈ Rnx

∣∣ σ(x) ≤ β′} ⊆
{
x ∈ Rnx

∣∣ σ(x) ≤ β
}
. (5.14)

Since the feasible regionof the relaxed problem’s first-stagevariables is a subset

of theoriginal feasible region, solutions obtained in this fashion are still robust

feasible. Depending on the quality of used relaxations, solutions obtained in

this way can be more conservative, i.e., have a worse objective function value.

On the other hand, using relaxations of non-convex problems typically allows

us to solve much larger instances compared to using the original problem

formulation.
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5.2 An application to gas network operations

The second observation shows how multiple optimization problems (5.10)

for the calculation of the right-hand side βi can be aggregated into one op-

timization task. Suppose there are two inequality constraints gi(u,x,y) =
σi(x) + τi(u,y) ≤ 0 for i = 1, 2 which are reformulated as σ1(x) ≤ β1 and

σ2(x) ≤ β2 due to lemma 5.1.1. If the functions σ1 and σ2 are identical, both

constraints can be aggregated into one constraint by setting

σ1(x) = σ2(x) ≤ min{β1, β2}. (5.15)

In order to implement reduction (5.15), one can solve a single optimization

problem rather than two separate ones:

min{β1, β2} (5.10)= min
i=1,2

{
− max
u∈U

{
τi(u,y)

∣∣ h(u,y) = 0, y ∈ Rny
}}

(5.16)

= min
i=1,2

{
min
u∈U

{
−τi(u,y)

∣∣ h(u,y) = 0, y ∈ Rny
}}

(5.17)

= min
u∈U

{
min
i=1,2

{
−τi(u,y)

∣∣ h(u,y) = 0, y ∈ Rny
}}
. (5.18)

Compared to (5.10), the aggregated optimization problem (5.18) has the same

feasible set but a different objective function. For MILPs, this minimum-of-

functions objective structure can be modeled with binary variables.

This can be generalized to any finite number of constraints g1, . . . , gmg . We

want to emphasize that this situation may not be that uncommon in practice.

For example, all bounds of second-stage variables σi(x) + τi(u,y) != yi ≤ yi

are independent of x and can therefore be reduced to one constraint of the

form σk(x) = 0 ≤ c for some c ∈ R.

5.2 An application to gas network operations

By exploiting structural properties of the gas network problem, we show how

the two-stage problem (3.5) can be transformed to a single-stage problem. In

particular, we exploit separability of the constraints (see (5.2)) and the weak

connection between first-stage and second-stage variables.

Problems with a similar structure include, e.g., direct current electricity

networks, water networks, and other potential driven networks. We refer to,

e.g., Gross et al. (2018) and the references therein for further details.

5.2.1 The two-stage robust gas transport setting

We consider the two-stage gas transport problem (3.5) for a network with

active elements under uncertainty as defined in section 3.3. The problem is
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5 A reformulation for two-stage robust optimization with a first stage

affected both by uncertain demand as in (3.3) and by uncertain pressure drop

coefficients as in (3.4). Thus, the uncertainty set is given by

U = L × D ⊆ R|V| ×R|A|. (5.19)

Furthermore, let assumption 1 be satisfied, i.e., no compressor is part of a

cycle.

For a clearer exposition, we briefly restate the reduced problem formula-

tion (3.6) of the adjustable robust gas transport problemwith active elements:

min
xpm

c>xpm (5.20a)

s.t. xpm ∈ [xpm,xpm], (5.20b)

s.t. for all (l,d) ∈ U there is qN ∈ R|N | with

Cψ
(
l, qext(d, qN ),xpm) = 0, (5.20c)

PψB
(
lB, q

ext
B (d, qN ),xpm

B
)

≤ ∆π. (5.20d)

Decomposing the uncertain gas transport problem

In order to apply lemma 5.1.1 to problem (5.20) and reformulate it as a single-

stage problem, we first have to show that assumption 4 is satisfied.

Theorem 5.2.1. Suppose that assumption 1 holds. Then the constraints of the

two-stage gas network problem (5.20) satisfy assumption 4.

Proof. We consider equation system (5.20c):

Cψ
(
l, qext(d, qN ),xpm) = 0. (5.21)

From the definition of the cycle matrix (2.51), we know that each row of C
is the incidence vector of a fundamental cycle in G. Due to assumption 1,

no compressor is part of a cycle and thus the system is independent of the

first-stage variables xpm.

Moreover, uniqueness and existence of a solution q∗
N holds due to theo-

rem 2.4.5. In total, the equality constraint system (5.20c) satisfies the first

part of assumption 4.

With the assumption’s second part in mind, we take a closer look at inequal-

ity system (5.20d):

PψB
(
lB, q

ext
B (d, qN ),xpm

B
)

≤ ∆π. (5.22)
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5.2 An application to gas network operations

We recall that each row of the path matrix P is the incidence vector of a path

in the B-induced spanning tree and each column corresponds to an arc a ∈ A.

Let Bpi := B ∩ Api and Bpm := B ∩ Apm, i.e., the set of pipes in B and the set

pressure-modifying elements in B. With this we split the path matrix

P =
[
PBpi | PBpm

]
(5.23)

into one part PBpi that corresponds to pipes and one part PBpm that cor-

responds to compressors. We observe that every entry of ψB corresponds

to either a pipe and depends on qN or a compressor and depends on xpm.

Partitioning ψ similarly asP , we write (5.22) as

PψB
(
lB, q

ext
B (dB, qN ),xpm

B
)

(5.24)

= PBpiψBpi

(
lBpi , q

ext
Bpi(d, qN )

)
+ PBpmψBpm(xpm

Bpm
) ≤ ∆π. (5.25)

From this, we let

s(xpm) := PBpmψBpm(xpm
Bpm

) (5.26)

and

t(lBpi ,d, qN ) := PBpiψBpi

(
lBpi , q

ext
Bpi(d, qN )

)
− ∆π. (5.27)

Altogether, this allows us to write the inequality system (5.22) as

s(xpm) + t(lBpi ,d, qN ) ≤ 0 (5.28)

and therefore the second part of the assumption is also satisfied.

Wenote that thevector-valued functions s = (svw)v,w∈V and t = (tvw)v,w∈V
are indexed like the rows of the path matrix P , i.e., by pairs of nodes.

After applying lemma 5.1.1 to the two-stage robust gas transport prob-

lem (5.20), we obtain the single-stage problem

min
xpm

c>xpm (5.29a)

s.t. s(xpm) ≤ b, (5.29b)

xpm ∈ [xpm,xpm], (5.29c)

where the entries of b = (bvw)vw are precomputed by

bvw := − max
l,d,qN

tvw(lBpi ,d, qN ) (5.30a)

s.t. Cψ
(
l, qext(d, qN )

)
= 0, (5.30b)

(l,d) ∈ U , (5.30c)

qN ∈ R|N |, (5.30d)
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5 A reformulation for two-stage robust optimization with a first stage

for v, w ∈ V . Assuming (5.30) is precomputed, (5.29) reduces to an LP.

As (5.30) is a non-convex optimization task, we next explain how relaxations

can be computed effectively in this context.

5.2.2 Using piecewise-linear relaxations for computing bvw

In order to solve the robust gas network problem via the LP (5.29), one first

needs to compute bvw by solving a series of nonlinear and non-convex opti-

mization problems to global optimality. Since this is a difficult task in general,

we first replace all nonlinear terms by piecewise-linear relaxations and use

this surrogate model to compute the right-hand side b. As is discussed in sec-

tion 5.1.2, using relaxations for computing b (resp. β in the abstract notation)

can lead to a smaller feasible region but preserves robust feasibility of the

obtained solution.

For ease of explanation, we show how b can be computed using the orig-

inal problem formulation (3.5). We express the pressure drop in each pipe

equivalently by defining sets of feasible pressure dropsZla for each pipe a ∈ A:

(qa, λa) ∈ Zla =
{
(q, λ)

∣∣ λ = −la|q|∗, q ∈ R
}
, (5.31)

which is equivalent to

πw − πv = λa = −la|qa|∗. (5.32)

Lemma 5.2.2. Let v, w ∈ V be two given nodes and let Pvw,· ∈ R|V|−1 de-

note the row of the path matrix P that corresponds to the path from v to w.
Furthermore, let Zla be defined for all a ∈ Api as in (5.31).

Then, bvw of (5.30) is the optimal value of the following optimization problem:

bvw := − max
l,d,q,π,λ

Pvw,·λB − ∆πvw (5.33a)

s.t. Aq = d, (5.33b)

A>π = λ, (5.33c)

(qa, λa) ∈ Zla for all a ∈ Api, (5.33d)

λApm = 0, (5.33e)

q ∈ R|A|,π ∈ R|V|,λ ∈ R|A|, (5.33f)

(l,d) ∈ U . (5.33g)

Proof. The reduced and non-reduced model of the gas network problem are

equivalent due to theorem 2.3.5. Therefore, we replace the constraints of the
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5.2 An application to gas network operations

reduced model (5.30) by their non-reduced counterparts (5.33b)–(5.33g). As

the compressor powerxpm has no influence on (5.30) due to assumption 1, the

compressor power in the non-reduced model (5.33) is set to zero in (5.33e).

Starting from the objective function (5.33a), we transform:

Pvw,·λB − ∆πvw = Pvw,BpiλBpi + Pvw,BpmλBpm − ∆πvw. (5.34)

Due to (5.33e) all compressors are set to zero, λBpm = 0, and thus

Pvw,·λB − ∆πvw = Pvw,BpiλBpi − ∆πvw. (5.35)

Next, we note that (5.33d) implies λBpi = ψBpi

(
lBpi , q

ext
Bpi

(d, qN )
)
and hence

Pvw,·λB = Pvw,BpiψBpi

(
lBpi , q

ext
Bpi(d, qN )

)
− ∆πvw = tvw(lBpi ,d, qN ) (5.36)

holds in problem (5.33).

Remark 5.2.3. The reformulation of lemma 5.2.2 is optional. It is just as

well possible to calculate bvw directly from problem (5.30) or a relaxation

thereof. However, problem (5.33) of lemma 5.2.2 has two advantages over

problem (5.30). Firstly, its implementation is more straightforward since it is

very similar to the nominal non-reduced model. And secondly, optimization

tasks for two bvw, bv′w′ differ only in the linear objectives and therefore solving

multiple subproblems only amounts to changing some coefficients of the

objective function. Hence, we used formulation (5.33) in our implementation.

Ouraim is to solve a relaxation of problem (5.33) to global optimality. To this

end, we present several relaxations of the nonlinear and non-convex set Zla

that can be used for that purpose. Since global optimal solutions are required

to ensure robust feasibility of theobtained results, wedeveloppiecewise-linear

relaxations of Zla which can be used to formulate the problem as anMILP. Of

course other relaxations like linear (see section 5.2.3) or semidefinite arising

from polynomial programming (see chapter 4) are also conceivable, however,

we restrict ourselves to piecewise-linear relaxations as a priori error bounds

can be computed. When not needed, we drop the arc-specific indices of

Zla . Furthermore, we assume the flow variables to be in a finite interval, i.e.,

qa ∈ [qa, qa] for all a ∈ A. This is no restriction as the pressure and flow

variables of problem (5.33) are always bounded; see section 5.2.3 for more

details regarding their computation.

Relaxations with a priori error bounds are of particular interest as they

allow us to compute solutions with arbitrary precision by reducing the error ε;
see Geißler et al. (2012).
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5 A reformulation for two-stage robust optimization with a first stage

Definition 5.2.1 (ε-exact relaxation). Let Z =
{
(x, y) ∈ [x, x] × R

∣∣ y =
f(x)

}
⊆ R2 be the function graph of a function f : R → R over a finite

interval [x, x] and let ε > 0 be a given error. We call Z̃ ⊆ [x, x] ×R an ε-exact
relaxation of Z , if

1. Z ⊆ Z̃ ,

2. |y − ỹ| ≤ ε for all x ∈ [x, x] with (x, y) ∈ Z and (x, ỹ) ∈ Z̃ .

As all presented relaxations are constructed using piecewise-linear func-

tions, we briefly restate how to express piecewise-linear functions inMILPs us-

ing the incremental or delta method, first described by Markowitz and Manne

(1957). Let (xi, yi)i=1,...,k be a series of points inR2 with x1 < x2 < · · · < xk.

Then the graph of the piecewise-linear function with sampling points (xi, yi)
is given by the following MILP constraints:

x = x1 +
∑

i=1,...,k−1
(xi+1 − xi)δi, (5.37a)

y = y1 +
∑

i=1,...,k−1
(yi+1 − yi)δi, (5.37b)

δ1 ≥ z1 ≥ δ2 ≥ z2 ≥ · · · ≥ zk−2 ≥ δk−1, (5.37c)

δi ∈ [0, 1] for all i = 1, . . . , k − 1, (5.37d)

zi ∈ {0, 1} for all i = 1, . . . , k − 2. (5.37e)

In our implementation, the delta method was used exclusively since it is

known for its good performance for gas network problems in practice; see

Geißler (2011).

Finding approximations forZc, i.e., the functiongraphof cx|x| forafixed c >
0, is straightforwardas follows. Aftereliminating theabsolutevaluebysplitting

the function graph into negative and positive parts, only square functions cx2

need to be treated. We show next that the error of approximating cx2 by

a (piecewise) linear function only depends on the parameter c and on the

distance between two adjacent sampling points but not on the position of

the chosen sampling points. Indeed pick any two points (x1, y1), (x2, y2) on

the graph of f sq(x) = cx2 with x1 < x2 and let f lin(x) = y2−y1
x2−x1

(x− x1) + y1
be the line connecting both points. To calculate the maximum deviation

ε = maxx f
lin(x) − f sq(x), we observe that f lin(x) − f sq(x) is a degree-two

polynomial and thus attains its extreme value between its two roots x1 and x2
at x∗ = 1

2(x1 + x2). A short calculation shows that the maximum error is

given by ε = f lin(x∗) − f sq(x∗) = c
2(x2 − x1)2. Since the approximation error

only depends on c and on the distance x2 − x1 between two sampling points,
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Figure 5.1: Nominal pressure drop and piecewise-linear relaxation for constant pressure drop
coefficient l = 1 and approximation quality ε = 1.0.

we conclude that cx2 can be approximated by a piecewise-linear function with

a given error ε by equidistant sampling points. See fig. 5.1 for an example. The

nominal pressure loss function (blue) is bounded from above and below by

piecewise-linear functions (dark gray). The gray area that defined by these

two functions is a relaxation of the original function graph.

Two different cases need to be distinguished when building relaxations

for Zla , depending on whether la is constant or affected by uncertainty. If

the coefficient la is constant, the standard relaxation from the literature with

equidistant sampling points can be applied to obtain an ε-exact relaxation
Z̃pwl

la
⊆ R2; see Geißler, Martin, et al. (2015). For the second case, we assume

the pressure drop coefficient la to be uncertain. In general, this requires a

relaxation that is parameterized by la so that it can adjust to the different

realizations of la to preserve the ε-approximation quality. However, due to

uncorrelated pressure drop coefficients (3.3), a simplification can be applied.

Since the realization of pressure drop coefficient la at arc a is independent

of all other uncertainties, it is sufficient to construct an ε-exact relaxation
Z̃(a) ⊆ R2 of the union ⋃

la∈[la,la]
Zla . (5.38)

Due to continuity and monotonicity of the function value la|qa|∗ in la, the
union

⋃
la∈[la,la] Zla has no holes and its boundary can be described by piece-

wise functions of the form la|qa|∗:

⋃
la∈[la,la]

Zla =
{

(q, λ)
∣∣∣∣∣−la|q|∗ ≤ λ ≤ −la|q|∗, if q ≥ 0
−la|q|∗ ≤ λ ≤ −la|q|∗, if q ≤ 0

}
. (5.39)
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(a) Uncertain pressure drop
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(b) Piecewise-linear relaxation under un-
certainty

Figure 5.2: Pressure drop and piecewise-linear relaxation for uncertain pressure drop coeffi-
cient l ∈ [0.5, 1.5] and approximation quality ε = 1.0.

Finally, the piecewise-linear relaxations for functions with constant la can

be applied to the boundary functions of (5.39) in order to obtain a ε-exact
relaxation Z̃pwl

(a) ⊆ R2 of the union of all possible pressure drops for the given

uncertain parameters; see fig. 5.2 for an example. The figure on the left shows

with green and orange solid lines the two functions corresponding to the

extreme values of the uncertain parameter. The gray area between them can

be interpreted as the range of the “uncertain” pressure drop, i.e., the set of

flow, pressure change-pairs that can arise from the given uncertainty set. The

figureon the right depicts in gray a piecewise-linear relaxation of the uncertain

pressure drop on the left.

We want to emphasize that the shown relaxation ideas for nonlinear con-

straints under uncertainty can be applied to other NLPs as well. Although the

presented model for piecewise-linear functions (5.37) can be generalized to

higher dimensions (Geißler et al. 2012), the relaxation approach is most effec-

tive for univariate functions. This is often the case for problems on networks

where some quantities of interest solely depend on, e.g., the flow along an

arc or the potential at a specific node. As was mentioned earlier, first-stage

solutions obtained through relaxations of (5.13) are always robust feasible but

can be more conservative compared to exact solutions.

5.2.3 Preprocessing approaches

Before solving any of the MILPs (5.33), we apply a preprocessing step to the

bounds of the flow variables to reduce the model size.
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5.2 An application to gas network operations

Binary variables are used for the construction of the presented piecewise-

linear relaxations in section 5.2.2. The overall complexity of solving an MILP

typically depends heavily on the number of discrete variables. Our settings

requires solving not a single but a series of MILPs to determine the right-hand

sides bvw. It is therefore very desirable to speed up the solution process as

much as possible.

The number of binary variables required for our application depends on the

flow bounds [qa, qa] and on the approximation error ε. Since the approxima-

tion error is given, we can decrease the number of required binary variables by

providing strong bounds for qa. To this end, our methods comprise two trivial

bounds and an optimization method using linear relaxations. Preprocessing

ideas for gas network problems can be found in Geißler (2011), including

more complex procedures like pressure and flow propagation heuristics. For a

broader overview of different preprocessing ideas for MILPs, we refer to the

review article Puranik and Sahinidis (2017). However, we cannot use most of

the mentioned ideas as is since they are tailored towards nominal problems

without uncertainty. Due to the nature of our problem setting where we

optimize over the uncertainty set, our preprocessing methods must preserve

the full range of states in the network depending on the uncertainty. All meth-

ods are presented with the full range of uncertainty in mind, i.e., uncertain

demand and uncertain pressure drop coefficients. For problems where only

one or no uncertainty is given, the presented methods can often be simplified

considerably.

Trivial bounds We present two trivial flow bounds, one resulting from the

maximum overall total demand and one resulting from the decomposition

of the linear flow solution space into tree and cycle flows. The problem is

assumed to be affected by uncertain demands and uncertain pressure drop

coefficients.

A trivial flow bound can be derived by calculating the maximum possible

positive demand

dtotal := 1
2 max

{
‖d‖1

∣∣ d ∈ D
}
. (5.40)

However, this optimization task consists of maximizing a convex function and

as such is generally not easy to solve. Since preprocessing has to be very be fast

(compared to solving the actual problem MILPs), we calculate a simple upper

bound on dtotal instead. We consider uncertainty set (3.4). After omitting the

balancing hyperplane, every demand parameter dv is only affected by upper

and lower bounds:

dv ≤ dv ≤ dv for all v ∈ V. (5.41)
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With this in mind, we first bound the maximum total gas injection and with-

drawal. A simple bound can be obtained from these quantities by taking the

minimum of their absolute values:

d+ =
∑
v∈V

max{0, dv}, d− =
∑
v∈V

min{0, dv}, (5.42)

drelax := min{d+,−d−}. (5.43)

The gas flow over each arc can never exceed the total injection, thus

qa ∈ [−drelax, drelax] (5.44)

is a feasible bound for all arcs a ∈ A.

The previous bound can be improved considerably for certain arcs if the

structure of the linear network flow solution space is exploited. Recall

from (2.57) that any feasible flow q can be written as

q = Ã−1
B (d̃− ÃNqN ), (5.45)

where qN ∈ R|N | is a vector of free variables. It is known from linear flow

theory that due to (5.45), the flow over all arcs which are not part of a cycle

is independent of qN , i.e., can be written as qa = (Ã−1
B d̃)a. This allows us to

find tight bounds for qa over non-cycle arcs a by optimizing over the demand

uncertainty set:

qa ∈
[
min
d∈D

{
(Ã−1

B d̃)a
}
, max
d∈D

{
(Ã−1

B d̃)a
}]
. (5.46)

If it is not desirable to solve an optimization task, lower and upper bounds

for (5.46) can be found with a similar approach as (5.42). We remark that

for problems without demand uncertainty the exact, constant flow qa can be

evaluated by calculating (Ã−1
B d̃)a. In this case, the nonlinear pressure drop

equation can be removed by evaluating the signed square function at qa.

Bounds due to linear relaxations Every fundamental cycle introduces a

free variable into the description of the flow (5.45). The flow on every arc

that is part of a cycle depends on the unbounded variable qN . Consequently,

equation (5.45) cannot be used to derive finite bounds for the flow on arcs that

are part of cycle. In order toderive bounds in this setting, we supplement (5.45)

with a very rough approximation of the pressure drop constraints. This was

done previously for the nominal case in Geißler (2011) by defining a convex

hull of the pressure drop constraint’s graph through linear inequalities. When
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Figure 5.3: Linear convex hull of nominal (l = 1.0) and uncertain pressure drop coefficient
(l ∈ [0.5, 1.5]).

compared to the piecewise-linear relaxation approach in section 5.2.2, the

defined set is still a relaxation of the original constraint but does not guarantee

an ε-approximation.

Next, we generalize the linearmodel to incorporate uncertain pressure drop

coefficients l ∈ U . To this end, we construct a convex hull Z̃cvx
(a) ⊂ R2 of the set

of all possible pressure drops when given an uncertain coefficient la ∈ [la, la]

Z̃cvx
(a) ⊃

⋃
la∈[la,la]

Zla . (5.47)

See fig. 5.3 for a linear convex hull for nominal pressure drop as well as for

pressure drop under uncertainty. We would like to point out that the gray

area is again a relaxation of the nominal pressure drop (left figure) and of the

uncertain pressure drop (right figure).

Given relaxations Z̃cvx
(a) for each pipe a ∈ Api, a very similar problemas (5.33)

is defined by replacing the nonlinear sets (5.33d) with their corresponding

relaxations. Let X̂ be the feasible region of the resulting problem. Then

bounds qa ∈ [q∗
a,lb, q

∗
a,ub] for the flow along each arc a ∈ A can be derived by

minimizing and maximizing qa over X̂ :

q∗
a,lb := min

q,π∈X̂
qa, q∗

a,ub := max
q,π∈X̂

qa. (5.48)

Since the problems in (5.48) are LPs, we call this the LP-based relaxation

preprocessing approach. In the literature, this type of preprocessing strategy

is known as feasibility-based bounds tightening; see Puranik and Sahinidis

(2017).
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5 A reformulation for two-stage robust optimization with a first stage

We remark that in case of demand uncertainty, the problems (5.48) contain

description of the uncertainty set. For pressure drop uncertainty, the uncer-

tainty set is incorporated into the relaxations of the pressure drop equations

and therefore is not present in the LPs.

Implementation details In our implementation, all three flow bounds—

trivial total demand, linear flows on non-cycle arcs and LP relaxation based

bounds—are combined into an iterative bound tightening procedure. Initially,

trivial flow bounds (5.44) arederived for each arc toobtain finite bounds. Next,

the flow bounds of all non-cycle arcs are tightened with (5.46). The procedure

then enters a loop where the LPs (5.48) are solved repeatedly for all remaining

arcs. In one iteration step, model (5.48) is built only once and then reusedwith

different objectives for each flow variable. At the end of each iteration step, all

flow bounds are updated with the newly calculated bound information. The

algorithm terminates if either a maximum number of iterations is reached or

if the Euclidean normof the difference between the bounds of two subsequent

iterations is smaller than a specified cutoff value. We use a maximum number

of fifteen iterations and a cutoff value of 1.0 in our computations.

5.3 Numerical experiments on realistic instances

In this section, the performance of the developed methods is evaluated on a

family of gas network instances. First, we show the advantages of the aggrega-

tion idea (5.18) over solving all subproblems individually. Using this as a basis

for further study, problem running times are compared in more detail under

different aspects such as relaxation quality and magnitude of uncertainty. We

close this section with a benchmark using the data from the real-world Greek

natural gas network in section 5.3.3.

Table 5.1: Instances for numerical experiments.

scaling nodes pipes cmprs.
ctrl.

valves

short

pipes

GĆĘLĎć-11 1.00 11 8 2 0 1
GĆĘLĎć-24 2.05 24 19 3 1 2
GĆĘLĎć-40 0.67 40 39 5 0 1
GĆĘLĎć-134 1.00 134 86 1 1 45
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Instancesand setup The studied problems are taken fromGĆĘLĎć Schmidt

et al. (2017), a freely available collection of realistic gas network instances

incorporating topology and nomination data. We used networks GĆĘLĎć-11,

GĆĘLĎć-24, GĆĘLĎć-40, and GĆĘLĎć-134 with their supplemented demand and

pressure nominations. GĆĘLĎć-134 is a realistic model of the Greek natural

gas network, which will be subject to an in-depth discussion in section 5.3.3.

Someof the employed instanceswere slightlymodified to fit the context of this

thesis. All elements that are neither compressors nor control valves nor pipes

are replaced by short pipes; see section 2.1. In order to satisfy assumption 1,

the compressor of GĆĘLĎć-40 that is part of a cyclewas replaced by a short pipe

as well. Furthermore, the demands of GĆĘLĎć-24 and GĆĘLĎć-40 were scaled

to obtain nominations whose corresponding robust problems are feasible

for all studied uncertainty sets and have non-zero optimal solutions, i.e.,

compressors have to be used to reach feasibility. Table 5.1 gives an overview of

the features of the used instances. We abbreviate compressors with “cmprs.”

and control valves with “ctrl. valves”.

Each instance can be affected by uncertainty. We use relative perturbations

around thenominal demandvaluesorpressuredropcoefficientsasuncertainty

sets. A unified naming scheme of the defined uncertainty sets is utilized

for both demand and pressure drop uncertainty. The network’s demand or

pressure drop coefficients may be affected independently by four levels of

uncertainty: nominal (no uncertainty), small,medium, and large; see table 5.2.

Any combination of the provided levels defines an uncertainty set for the

numerical experiments, ranging from no uncertainty (“nominal demand and

nominal pressure drop”) to the combination of large demand uncertaintywith

large pressure drop uncertainty. The chosen uncertainty level is then applied

to all affected elements, i.e., demands or pressure drop coefficients. Thus,

there are 16 uncertainty sets in total. The concrete definitions can be found

in table 5.2.

All experiments were carried out on a machine with a quad core Intel Xeon

E3-1240 v5 CPU running at 3.5 GHz each and 16 GB of RAM. The LPs and

MILPs were solved using Gurobi 7.5 (Gurobi Optimization, Inc. 2017) using 4

threads.

5.3.1 Running time improvements due to preprocessing and
aggregation

In the following, the influence of the preprocessing strategy and the aggrega-

tion step on the runtime is examined in more detail.
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5 A reformulation for two-stage robust optimization with a first stage

Table 5.2: Every combination of demand and pressure drop uncertainty level defines an
uncertainty set used in the numerical study.

demand press. drop coeff.

nominal {d} {l}
small [0.95 · d, 1.05 · d] [l, 1.10 · l]
medium [0.90 · d, 1.10 · d] [l, 1.50 · l]
large [0.80 · d, 1.20 · d] [l, 2.00 · l]

Running time improvements due to preprocessing We compare pre-

processing strategies on GĆĘLĎć-11 and GĆĘLĎć-24 since GĆĘLĎć-40 is already

too large to be solved in an acceptable timespan without preprocessing. In

order to cover a wide range of problems, we derive average running times of

instance groups where each group contains all combinations of aggregated/in-

dividual, approximation quality ε ∈ 0.01, 0.1, 1.0 and uncertainty set. Hence,

each group consists of 96 instances.

We take a look at the average running times depending on the employed

preprocessing method; see table 5.3. The columns denote the different prepro-

cessing choices: trivial from equation (5.44), treeflows (5.46), and LP-based

bound tightening (5.48) (“opt”). The number in brackets represents the rel-

ative speedup compared to the trivial preprocessing bounds. The speedups

from treeflows preprocessing is negligible, possibly due to the fact that the

studied GĆĘLĎć instances contain only few arcs that are not part of a cycle. We

observe a dramatic speedup of a factor of about 30 to 50 when the LP-based

bound tightening is used.

Table 5.3:Mean running times when using different preprocessing strategies. The number in
brackets denotes the speedup compared to “trivial” preprocessing.

trivial treeflows opt

GĆĘLĎć-11 14.67 s (1.0×) 11.47 s (1.3×) 0.46 s (31.6×)

GĆĘLĎć-24 327.09 s (1.0×) 327.14 s (1.0×) 6.24 s (52.4×)

Running time improvements due to aggregation First, we compare the

individual model with the aggregated model. Recall that in order to calculate

the right-hand side of (5.29) with problem (5.33), we can either solve O(|V|2)
individual problems to obtain each bvw or we can solve a smaller number of

problems after applying the aggregation idea (5.15).
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Table 5.4:Mean running times of individual and aggregated models after LP-based prepro-
cessing. The numbers in brackets denote the speedup compared to the individual model.

individual aggregated

GĆĘLĎć-11 0.67 s (1.0×) 0.26 s (2.6×)

GĆĘLĎć-24 11.07 s (1.0×) 1.41 s (7.8×)

GĆĘLĎć-40 193.84 s (1.0×) 21.37 s (9.1×)

Table 5.4 shows themean running times on instances GĆĘLĎć-11, GĆĘLĎć-24,

and GĆĘLĎć-40 when choosing to solve all problems individually or in an

aggregated fashion. The running times are averages of instance groups where

each group contains all 48 possible combinations of approximation quality

ε ∈ {0.01, 0.1, 1.0} and uncertainty set. All problems were preprocessed with

LP-based bound tightening. The numbers in brackets denote the relative

speedup compared to the slowest method. We observe a mean speedup factor

of about 8 to 9 for the larger instances and a smaller speedup of about 2.6 for

the smallest instance when using the aggregated model.

In total, a combination of LP-based bound tightening and an aggregation

of subproblems yields a mean speedup factor of up to 400 for GĆĘLĎć-24 when

omitting preprocessing and solving all problems individually; see tables 5.3

and 5.4.

Next, we investigate the individual and aggregated methods in more detail.

The overall running time for solving the robust gas network problem mainly

consists of running times of the preprocessing LPs, running times of theMILP

subproblems, and running time of the last LP for deciding a configuration of

the active elements. In our setting, solving all occurring LPs is trivial and can

be done within fractions of a second. Therefore, we focus on the performance

of the MILP subproblems when LP-based preprocessing has been applied.

Table 5.5: Number of MILP subproblems for individual and aggregated models, together with
their mean and total running times.

individual aggregated

#probs rt.mean rt. total #probs rt.mean rt. total

GĆĘLĎć-11 110 0.01 s 0.66 s 7 0.03 s 0.24 s
GĆĘLĎć-24 552 0.02 s 11.01 s 21 0.06 s 1.35 s
GĆĘLĎć-40 1560 0.12 s 193.30 s 31 0.67 s 20.83 s
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5 A reformulation for two-stage robust optimization with a first stage

Table 5.5 gives a more detailed summary of the mean running times for

the individual and aggregation method. As before, every cell is the average

over all possible combinations of approximation quality ε ∈ {0.01, 0.1, 1.0}
and uncertainty sets for a total number of 48 combinations. We use LP-based

preprocessing for all instances. The columns are partitioned into one group

related to solving all problems individually and one group where the aggrega-

tion method is applied. In each column group, we list the number of required

subproblems together with their mean and total running times. We observe

that applying the aggregation method drastically reduces the required num-

ber of subproblems. For the studied instances, the running times of the

aggregated models increases at a smaller rate compared to the reduction of

problems. Thus, the increase in complexity of the aggregated models is easily

compensated by the smaller number of instances that need to be solved.

5.3.2 Influence of the piecewise-linear relaxation

Next, we investigate the influence of the relaxation parameter on the optimal

value of the problem. Larger values of ε lead to coarser relaxations of the non-

linear constraints and therefore lead tomore conservative solutions. Using the

GĆĘLĎć-11, GĆĘLĎć-24, and GĆĘLĎć-40 instances, we solve the robust problem

for the “large × large” combination of uncertainty sets (see table 5.2) and

for varying relaxation parameters ε ∈ {0.001, 0.01, 0.1, 1.0, 10.0}. All compar-

isons in this paragraph are relative to the solution obtained with the smallest

relaxation parameter ε = 0.001, which we assume to be “close enough” to the

exact solution of the original nonlinear two-stage robust problem. We use

LP-based preprocessing and the aggregation method for all problems. The

results are summarized in table 5.6. Each column corresponds to a different

choice of ε. We assumesociate three rows with each gas network instance,

where the first row denotes the absolute objective function value, the second

row denotes the relative increase when compared to the finest relaxation

ε = 0.001, and the third row denotes the running time.

As a general trend, the objective value increases with the relaxation param-

eter ε as well as with the instance size. Furthermore, we observe an increase

in running times for decreasing relaxation parameters. This is to be expected

since a smaller ε leads to better approximations and thus to larger MILP

models with more binary variables and constraints.

Concerning the optimal value, we observe a very small relative increase

for GĆĘLĎć-11 and GĆĘLĎć-24 of at most 3 % for all choices of ε. Even for the

largest instance GĆĘLĎć-40, the additional cost due the chosen relaxation only
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Table 5.6: Absolute and relative comparison of optimal total compressor cost for different
relaxation parameters ε together with their respective running times.

relaxation parameter ε
0.001 0.01 0.1 1.0 10.0

GĆĘLĎć-11 763.78 763.79 763.90 764.76 768.15
+0.002 % +0.016 % +0.128 % +0.572 %

30.74 s 3.21 s 0.44 s 0.14 s 0.08 s

GĆĘLĎć-24 647.83 647.86 648.08 649.93 665.37
+0.004 % +0.039 % +0.325 % +2.708 %

130.27 s 16.25 s 2.59 s 0.66 s 0.32 s

GĆĘLĎć-40 45.12 45.16 45.69 49.50 79.21
+0.102 % +1.281 % +9.711 % +75.575 %

2948.58 s 374.17 s 42.30 s 10.05 s 3.67 s
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Figure 5.4: Influenceof the relaxation parameterε onobjective and running time. Theabsolute
increase of objective in the left picture is shown relative to ε = 0.001.

amounts to about 10 % for a comparatively small ε = 1.0. Only for the largest

choice of ε = 10.0 does the objective increase significantly by 76 %.

Next, we want to highlight the quality of solutions that can be found within

the fixed timespan of 1minute. As shown in table 5.6, we can solve GĆĘLĎć-11

for ε = 0.001, GĆĘLĎć-24 for ε = 0.01, and GĆĘLĎć-40 for ε = 0.1 within

this timespan. Moreover, the additional cost due to relaxation is very small:

+0.004 % for GĆĘLĎć-24 and +1.281 % for GĆĘLĎć-40. This demonstrates that

our method can be used to find high quality robust solutions within a short

timespan.

Finally, we want to investigate the influence of ε on the absolute magnitude

of the optimal value and the total running times of the resulting problems.
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5 A reformulation for two-stage robust optimization with a first stage

To this end, the left part of fig. 5.4 shows the absolute increase of objective

relative to the smallest choice of ε = 0.001 for all three networks. The right

part displays the corresponding total running times on a logarithmic scale. We

observe a seemingly linear dependence of the optimal value on the choice of ε
and note that the displayed curves are almost, but not completely, monotoni-

cally increasing. The lack of monotonicity is due to the fact that the feasible

region of a piecewise-linear relaxation with parameter ε1 is not necessarily a

subset of the feasible region of another relaxation with ε2 > ε1. In fact, two

piecewise-linear relaxations that are constructed with different ε can have

very different sampling points.

When comparing both figures, we observe the objectives to scale almost

linearly with ε. In contrast, the corresponding running times scale exponen-

tially for ε ≤ 1, but are influenced only very little by the relaxation parameter

for ε ≥ 2. Since the running times for ε ∈ [2, 10] are about the same, there is

no reason not to solve theproblemwith smallervalues of ε and thus profit from

higher quality solutions. On the other hand, the improvement of objective for

small relaxation parameters, e.g., ε ∈ (0, 1] is so small that taking values from

that range seems to be unjustified when taking the potentially large increase

of running times into account. In short, there seems to be a sweet spot at

1 ≤ ε ≤ 2 where high quality solutions can be obtained at comparatively small

computational cost.

5.3.3 The natural gas network of Greece

We conclude this section on numerical results with a case study on a real-

world network. GĆĘLĎć-134 models the Greek natural gas network, which

extends over a total length of 7000 km between the Greek border with Turkey

in the north and Athens in the south. It features a tree structured topology

with a small number of active elements. Figure 5.5 is a map of mainland

Greece, where the natural gas pipeline network is marked with a solid line.

The numbers in circles represent cross-border interconnection points with

other countries and are therefore some of the most important injection and

withdrawal points in the network. Please note that the dotted lines can be

ignored as they represent planned pipeline projects.

The network description is supplemented by 1234 real load situations,

which are available in the form of daily data between November 1, 2011 and

February 17, 2016. After excluding 28 days due to conflicting data, the 1006
remaining nominations are used for our computations. All 57 888 combina-

tions of ε ∈ {0.01, 0.1, 1.0}, nominations, and uncertainty sets are solved with

the aggregation method using LP-based preprocessing. We remark that the
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5.3 Numerical experiments on realistic instances

Figure 5.5:Thenatural gas networkof Greece. Solid lines representpipelines, and the thickness
of the line reflects the pipe diameter. Dashed lines are planned projects. The numbers in
circles mark cross-border interconnection points with other countries. With permission from
ENTSOG (2016).
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5 A reformulation for two-stage robust optimization with a first stage

Table 5.7:Mean running times of all 1006 instances for different choices of ε and uncertainty
set.

ε = 0.01 ε = 0.1 ε = 1.0
demand pdrop coeff.

nominal nominal 0.04 s 0.04 s 0.04 s
small small 1.27 s 0.94 s 0.86 s
medium medium 8.86 s 4.83 s 3.55 s
large large 95.05 s 39.63 s 27.05 s

aggregation step reduces the number of subproblems from the initial 17 822
to 7.

Possibly due to the employed preprocessing strategy on a tree network, we

found the solution value to be independent of the tested values for ε. As was

to be expected, since this is real-world data, all “nominal×nominal” problems

are feasible. In addition, an increase in the number of infeasible instances

becomes evident as the sizes of the uncertainty sets increase.

In order to shorten the presentation, we limit ourselves to a portion of the

uncertainty sets where demand and pressure drop coefficient are affected

by the same level of uncertainty and examine the average running time as a

functionof the approximation parameter. The results aredisplayed in table 5.7.

Small to medium uncertainty sets have mean running times in the order of

seconds whereas large uncertainty sets are in the order of minutes.

As our approach is relying on the solution of MILPs, outliers with long

running timesare tobeexpected. We investigate this behavior in fig. 5.6, where

the x-axis denotes a fixed period of time and the y-axis denotes the percentage

of all instances with the largest uncertainty set that can be successfully solved

within this timespan. We observe that all instances can be solved in a few

minutes. Even for the best approximation quality of ε = 0.01, over 90 % of the

instances are solved in less than 5 min.
A distinct feature of our approach is that the feasible set of the robust two-

stage problem is explicitly calculated in the formof a polytope; see (5.29). This

allows us to compare the regions of robust feasibility for different uncertainty

sets; see fig. 5.7. We choose an approximation quality of ε = 0.1 and the

nomination of December 30, 2014 as this load situation is robust feasible

for all uncertainty sets. To improve readability, we choose the same level of

uncertainty for both demand and pressure drop coefficients ranging from

“nominal” to “large”. As expected, we observe an inverse relation between size

of the robust feasible region and size of the uncertainty set.

126



5.3 Numerical experiments on realistic instances

0.0 2.5 5.0 7.5 10.0
0 %

50 %

75 %
90 %

100 %

Running time [min]

Pe
rc

en
ta

ge
of

fe
as

ib
le

in
st

an
ce

s

ε = 0.01
ε = 0.1
ε = 1.0

Figure 5.6: Percentage of instances with the largest uncertainty set that can be successfully
solved in a fixed period of time.
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methods

Natural gas as an energy source and the corresponding operation of natural

gas pipelines are playing an increasingly important role. Gas network opera-

tions are often influenced by random factors, such as fluctuations in energy

demand or market developments. In this thesis, we studied problems arising

from natural gas transport under uncertainty in the form of general two-stage

robust optimization problems with a non-convex second stage and a unique-

ness property for the second-stage variables. Solving problems of this kind is

very challenging for several reasons such as the two-stage structure and the

non-convex constraints. We argued in section 3.4 that the non-convex struc-

ture together with the uniquely determined second-stage variables makes

it difficult to apply standard robust optimization techniques like decision

rules and reformulations. Moreover, solutions obtained in this way from an

approximated model give no guarantees regarding robustness of the original

nonlinear problem formulation.

In order to meet these challenges, we developed novel methods to address

this general class of two-stage robust optimization problems. Our approaches

use relaxations of the non-convex constraints and exploit the uniqueness of

the second-stage variables. Altogether, this allows us to find solutions that

are guaranteed to be robust feasible for the original nonlinear formulation.

Next, we will briefly review the presented methods. First, a decision vari-

ant of the two-stage problem with empty first stage has been considered

in chapter 4. We propose to solve this problem by deciding an equivalent set

containment question concerning the feasible region and the uncertainty set.

Using methods from polynomial optimization, we developed two approaches

for solving this problem—one for deciding feasibility and one for deciding

infeasibility. As we solve relaxations of the proposed methods in practice, two

distinct methods are necessary since a single method cannot be expected to

solve both parts of the question. Both approaches were tested on a variety of

small cyclic gas network instances. For problemswhere deciding robustness is

possible, we observed that typically level 2 or level 3 of the Lasserre hierarchy

were sufficient.

The second approach, introduced in chapter 5, is a reformulation idea for

the two-stage problem with a first stage. Under some additional assumptions

for the constraints, the two-stage problemcan be transformed into anordinary

single-stage optimization problem whose right-hand is computed by a series
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of subproblems. Additionally, we presented an aggregation idea that makes it

possible to reduce the number of subproblems that have to be solved. We also

showed how relaxations of the subproblems can be used to find solutions that

are robust for the original problem formulation. For a practical application to

gas network operations, weadapted preprocessing techniques to theuncertain

case and used a known piecewise linearization technique to treat the non-

convex aspects. The practical feasibility and effectiveness of this approachwas

demonstrated with benchmarks on the realistic natural gas network of Greece.

A combination of all these techniques permitted us to quickly find robust

feasible solutions for the original nonlinear problem formulation. These

solutions are slightly more conservative due to the relaxations used.

Comparing both presented approaches for robust feasibility, i.e., the polyno-

mial feasibility method and the mixed-integer reformulation idea, we notice

that both follow similar ideas. We point out that this comparison does not

include the polynomial infeasibility method as it uses a different approach

that only works in conjunction with polynomial optimization techniques.

Relaxations of the non-convex second stage are used to find bounds for the

second-stage variables that can ultimately be used to prove robustness of the

original problem formulation. In particular, we use SDP and MILP relaxations

that can be solved to global optimality for ensuring robustness. Since only

global optimality is important, the employed relaxations could be replaced;

that is, polynomial relaxations could be used in the MILP reformulation

method and vice versa. However, this would not be very useful in a practical

application, as both methods have different strengths and weaknesses which

are closely linked to the employed relaxation. In the following, we will briefly

compare the advantages and disadvantages of our methods.

First of all, we take a closer look at the polynomial methods, starting with its

advantages. Using the Lasserre relaxation hierarchy allows us to systematically

constructSDP relaxations forarbitrarycomplexpolynomials that can be solved

easily in practice with off-the-shelf software. Moreover, the two developed

methods directly work with the nonlinear formulation without the need for

additional approximations. Possibly, the Lasserre hierarchy can find an exact

solution at a small relaxation level.

As a downside, the gap between relaxations and the (unknown) exact so-

lution can only be controlled by the hierarchy level. This can be very costly

while the resulting solutions are still far from the exact solution. In addition,

increasing the hierarchy level or the number of problem variables quickly

leads to SDPs that are too large and cannot be solved in practice.
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Next, we evaluate the MILP reformulation approach, starting with the

positive aspects. Current commercial MILP solvers are very performant and

even very large problems can often be solved in a short time span. Thus,

the presented method can be used to solve comparatively large two-stage

robust problems. Another upside of using MILPs is that discrete first or

second-stage variables could be included easily. The presented aggregation

idea is a potent way of reducing the number of subproblems that have to be

solved. Together with the preprocessing ideas, we demonstrated a dramatic

performance increase. By using mixed-integer relaxations, it is possible to

precisely control the approximation quality, i.e., the maximum error between

relaxations and the original nonlinear function.

The reformulation approach also has some shortcomings. There is no

systematic way of constructing piecewise-linear relaxations of arbitrary non-

linear functions without additional assumptions such as Lipschitz continuity.

Often problem specific knowledge has to be invested in order to find good

sampling points for the piecewise-linear functions. Moreover, approximating

high-dimensional functions is possible, but can quickly lead to difficult mixed-

integer formulations with a large number of variables. This is naturally also

the case when we seek to increase the approximation quality by introducing

additional sampling points.

This discussion makes it clear that the strengths of the two general ap-

proaches lie in different areas. The polynomial method is suitable for poly-

nomial problems with complex nonlinear aspects and a small number of

variables. While this approach has the potential to find an exact solution

at a finite level of the relaxation hierarchy, all other feasible solutions also

guarantee robustness for the original problem formulation. On the other

hand, the MILP reformulation method is well suited for large problems where

the nonlinear aspects can be handled well with the piecewise-linear relaxation

technique. Similar to the polynomial method, the solutions obtained with

this method are guaranteed to be robust feasible for the original nonlinear

problem. These solutions, however, are always slightly more conservative

because of the relaxations used. Altogether, appropriate solution approach

depends on the structure of the problem at hand.

Taking the results of this thesis into account, there are different directions

for future research. One possibility is further studies of two-stage robust

optimization problemswith uniquely determined second-stage variables. The

unique dependence of a system’s state on its boundary conditions is a property

that is shared bymanymathematical models arising from real-world problems.

Consequently, this class of robust optimization tasks is found in a variety of
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applications under uncertainty. As far as the application to gas networks is

concerned, it would surely be of interest to extend our methods to a richer set

of active elements with more complex behaviors. In that case, however, some

of the additional assumptions for the second stage structure may no longer

be fulfilled, and hence the developed methods would have to be adapted

accordingly. Finally, many of the gas network properties such as uniqueness

and existenceof solutions also hold forotherpotential driven networks likeDC

power flow or water networks. Due to their close similarity with gas networks,

our methods could also be applied to problems from these domains.
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Exact Methods for  
Two-Stage Robust Optimization
with Applications in Gas Networks

Natural gas is an important source of energy that is regarded as essential for achieving the 
politically set climate goals. In particular, gas-fired power plants are valued as flexible buffers 
to compensate for fluctuations in renewable electricity generation. Moreover, gas network 
operators face new challenges due to the liberalization of the European gas market. Under 
the newly introduced entry-exit market regime, gas network operators have to ensure that 
all possible market outcomes can be transported over the network.

Hence, the operators of gas networks require new aids for decision-making under uncertain 
conditions such as load fluctuations or inaccuracies in physical parameters.

To this end, this thesis investigates a general class of two-stage robust optimization  
problems using the example of gas network operations under uncertainty. Three general 
solution methods are developed for this problem class. The first two approaches use ideas 
from polynomial optimization to decide robust feasibility or infeasibility. Both procedures 
consider polynomial formulations that are approximated by semidefinite programs via  
the Lasserre relaxation hierarchy. The third approach is based on a transformation of  
the two-stage robust problem into a number of single-stage optimization problems. The  
resulting subproblems are approximated by mixed-integer linear programs. By combining 
this method with additional preprocessing and aggregation steps, it is demonstrated that 
real-world problems can be solved efficiently within a short time.
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