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Abstract
The process industries are characterized by a large number of continuously operating plants,

for which optimal operation is of economic and ecological importance. Many industrial sys-

tems can be regarded as an arrangement of several subsystems, where outputs of certain sub-

systems are inputs to others. This gives rise to the notion of interconnected systems. Plant

optimality is difficult to achieve when the model used in optimization is inaccurate or in the

presence of process disturbances. However, in the presence of plant-model mismatch, opti-

mal operation can be enforced via specific real-time optimization methods. Specifically, this

thesis considers so-called Modifier-Adaptation schemes which achieve plant optimality by

direct incorporation of process measurements in the form of first-order corrections.

As a first contribution, this thesis proposes a novel problem formulation for modifier

adaptation. Specifically, it is focused on plants consisting of multiple interconnected subsys-

tems that allows problem decomposition and application of distributed optimization strate-

gies. The underlying key idea is the use of measurements and global plant gradients in place

of an interconnection model.

As a second contribution, this thesis investigates modifier adaptation for interconnected

systems relying on local gradients by using an interconnection model. We show that the use

of local information in terms of model, gradients and measurements is sufficient to optimize

the steady-state performance of the plant.

Finally, we propose a distributed modifier-adaptation algorithm that, besides the inter-

connection model and local gradients, employs a coordinator. For this scheme, we prove

feasible-side convergence to the plant optimum, where a coordinator ensures that the local

optimal inputs computed for each subsystem are consistent with the interconnection model.

The experimental effort necessary to estimate the plant gradients increases with the num-

ber of plant inputs and may become intractable and sometimes not feasible or reliable for

large-scale interconnected systems. The proposed approaches that use the interconnection

model and local gradients overcome this problem.

As an application case study of industrial relevance, this thesis investigates the problem

of optimal load-sharing for serial and parallel gas compressors. The aim of load-sharing op-

timization is operating compressor units in an energy-efficient way, while at the same time

satisfying varying load demands. We show how the structure of both the parallel and serial

compressor configurations can be exploited in the design of tailored modifier adaptation al-

gorithms based on efficient estimation of local gradients. Our findings show that the com-

plexity of this estimation is independent of the number of compressors. In addition, we dis-
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cuss gradient estimation for the case where the compressors are operating close to the surge

conditions, which induces discontinuities in the problem.

Key words: Real-Time Optimization, Uncertain Systems, Interconnected Systems, Modifier

Adaptation, Gas Compressors, Optimal Load Sharing.
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Résumé
Les industries de type « process » sont caractérisés par un grand nombre de procédés qui

fonctionnent continuellement et pour lesquels le fonctionnement optimal a une importance

économique. La composition de procédés multiples, où les sorties de certains sont les en-

trées des autres, s’appelle système interconnecté. L’optimalité de procédé est difficile à at-

teindre si le modèle utilisé pour l’optimisation est imprécis ou en présence de perturbations.

Le fonctionnement optimal peut être assuré par les méthodes d’optimisation en temps réel

(Real Time Optimization). Cette thèse étudie la méthode « Modifier Adaptation » qui corrige

ces déficiences par l’intégration directe des mesures de procédé dans le problème d’optimi-

sation via les valeurs de contraintes et les estimations du gradient du procédé.

Dans cette thèse on analyse la formulation du problème de procédés comprenant de mul-

tiples sous-systèmes et on décompose le problème d’optimisation pour que la stratégie dé-

centralisé d’optimisation puisse être appliqué. Les méthodes ‘Modifier Adaptation’ qui uti-

lisent les mesures de procédés et les gradients globaux en place du modèle interconnecté

sont considérées. On montre que les schémas proposés optimisent la performance en régime

stationnaire.

De plus, on considère le ‘Modifier Adaptation’ pour les systèmes interconnectés néces-

sitant des estimations locales du gradient. Comme l’algorithme utilise la connaissance du

modèle des interconnexions, on montre que l’usage de l’information locale du modèle, les

gradients et les mesures suffisent à optimiser la performance en régime stationnaire. Ensuite,

on propose un algorithme de « distributed modifier adaptatation » qui utilise un coordinateur

en combinaison avec le modèle des interconnexions, et on démontre qui converge depuis

le coté faisable vers l’optimum du procédé. Le coordinateur assure que les entrées locales

optimales calculées par chaque sous-système sont consistentes avec le modèle des intercon-

nexions.

L’effort expérimental nécessaire à estimer les gradients des procédés augmente avec le

nombre des entrées de procédés. Il peut devenir difficile de résoudre, voire impossible, ou

pas fiable pour les grands systèmes interconnectés. La méthode proposée dans cette thèse

corrige ces déficiences par l’intégration des mesures de procédé locales uniquement dans le

problème d’optimisation.

Également, le problème de la partition optimale de charge pour les compresseurs de gaz

connectés en série et en parallèle est examiné dans cette thèse. Le but d’optimisation de la

partition de charge est le fonctionnement de ces compresseurs avec consommation mini-

male, tout en satisfaisant différentes demandes. La ‘Modifier Adaptation’ qui utilise les gra-
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dients locaux est appliqué au problème de la partition optimale de charge pour les compres-

seurs de gaz connectés en série et en parallèle. On suppose que le nombre de compresseurs

actifs est constant. On montre comment la structure de l’ensemble des compresseurs connec-

tés en parallèle ou en série peut être exploitée dans le but d’estimer les gradients locaux. De

plus, nos découvertes montrent que la complexité de cette estimation est indépendante de

nombre de compresseurs. Le schéma proposé marche en coopération avec le régulateur du

niveau de base qui doit assurer le suivi du débit massique total dans le cas de compresseurs

en parallèle, ou d’une pression de refoulement dans le cas de compresseurs en série. Égale-

ment, on discute l’estimation de gradients dans le cas où les compresseurs fonctionnent près

des conditions de pompage. L’activation de régulateurs anti-pompage présente un défi im-

portant pour Modifier Adaptation parce qu’il introduit une discontinuité dans les gradients à

estimer. Les simulations démontrent l’efficacité de la méthode d’optimisation en temps réel

présentée ici.

Mots clefs : Optimisation en temps réel, Systèmes incertains, Systèmes interconnectés,

Modifier Adaptation, Compresseurs de gaz, Partition optimale de charge.
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1 Introduction

1.1 Motivation

1.1.1 Real-Time Optimization

In a world of increasing competition and emerging energy crisis, operating systems optimally

is a must. Over the last decades, the bridge between the design of a control system and op-

timization of a complex dynamic process has attracted considerable attention in industry,

in spite of limited quality of process models and unmeasured varying disturbances affecting

process operation. A well-established approach to create a link between control and per-

formance improvement is Real-Time Optimization (RTO). An RTO system is an upper-level

control system that is operated in closed loop and provides setpoints to the lower-level con-

trol systems in order to maintain the process operation as close as possible to optimality. RTO

was first applied in the chemical industry more than 30 years ago. Nowadays, RTO implemen-

tations are intended for a range of applications in the chemical and petrochemical industry,

biological processes, mineral production, food production processes as well as in energy sys-

tems. These processes require continuous monitoring and adjustment in order to keep them

operate efficiently, while taking into account security, quality, environmental and equipment

constraints. These tasks are of immense importance in today’s highly competitive markets.

The process, oil and gas industries are investing significantly to upgrade their operations. For

such high-capacity plants, even a 1% improvement yields significant annual savings for a

company. Legal regulations, intense competition, changes in the markets and requirements

for more environmental-friendly applications are some of the reasons that motivate the in-

dustries to improve their current practices.

A general objective of operating industrial processes is to maximize economical efficiency

of the plant. In complex systems, the straightforward approach of designing and implement-

ing a single centralized control unit is quite difficult and in many cases of complex multi-

variable processes just impossible. Rather, optimal operation of an industrial plant is typ-

ically addressed by a decision hierarchy involving several layers as shown in Figure 1.1. A

well-established way to cope with such a complex system is to apply a hierarchical control
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Figure 1.1 – Real-time optimization as a part of a multilayer control structure
.

structure which is essentially a cascade structure (Findeisen et al., 1980). The idea is to de-

compose the original control task into a sequence of simpler and hierarchically structured

subtasks. There are two basic methods of decomposition of the overall control objective:

(1) multilayer (functional) decomposition

(2) multilevel (spatial) decomposition.

The first one, so-called multilayer structure, leads to a vertical decomposition of automation

tasks. The decision unit connected with each layer makes decisions concerning the con-

trolled process, but each of them makes decisions of a different kind. The RTO level provides

the bridge between plant scheduling and process control.

In the second one, so-called multilevel structure, the spatial decomposition is done horizon-

tally. It is based on the control task being distributed into the local subtasks of the same

functional kind but related to individual spatially isolated parts of the entire complex control

process. It results in subtasks of smaller dimentionality with smaller amount of processed in-

formation. Namely, the plant is spatially decomposed into interacting groups of processing

units. The exchange of information between these interacting processing units is often done

from time to time via a coordinator. Each unit of a plant is highly integrated with the over-

all process. It gives rise to approaches known as decentralized optimizing control (Morari

et al., 1980), optimizing control of interconnected systems (Brdyś and Tatjewski, 2005) or

plant-wide control (Stephanopoulos and Ng, 2000; Larsson and Skogestad, 2000). Important
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reasons for using decentralized or multilevel rather than centralized control structures are:

(i) the need to increase the overall system robustness so that the system still remains opera-

tional when one of the units fails or when an information link breaks down; (ii) the possibility

of decreasing the system sensitivity to disturbances if local control units can respond faster

and more adequately than one central unit; (iii) the developments in computer technology

enabling application of powerful distributed computer control systems.

RTO relies on a process model that is used to compute the best operating conditions. One

of the main challenges in design of RTO schemes comes from the fact that the models are

simplified representatives of the reality and are subject to uncertainty. The current industry

practice, the “two-step” approach, is to regularly estimate the parameters of a process model,

and then to recompute the new operating points. However, this methodology has a number

of important drawbacks. Improved RTO algorithms should address the following problems:

• Imperfect models: The availability of process operating data enables updating the pro-

cess model for better prediction of the plant outputs. As one may expect, the perfor-

mance of the RTO systems depends on the model accuracy. However, obtaining accu-

rate models is quite difficult. If the model contains many uncertain parameters, it is

difficult to ensure sufficient excitation in order to estimate these parameters, and do-

ing so will prevent it from reaching the optimization objective. Parameter estimation

is certainly useful as it improves the quality of the process model, which may then be

used for offline analyses. Furthermore, the development of RTO methods that do not

require frequent online parameter estimation is of considerable interest.

• Optimal operation: The issue of plant optimization using inaccurate models has been

addressed in the literature. It is crucial to know whether the RTO algorithm is capable

of reaching an optimal solution for the plant. Convergence to the optimum should

be ensured even for considerable structural plant-model mismatch. In such a case, it

may happen that the optimal solution obtained from the “two-step” approach does not

satisfy the optimality conditions of the plant (Forbes et al., 1994).

• Constraint satisfaction: Guaranteeing satisfaction of equipment constraints (valve po-

sitions, compressor speeds, horsepower limits) and safety constraints (safety limits, crit-

ical temperatures and pressures) is of paramount importance. Namely, violation of

these constraints can lead to severe economic consequences. In the presence of plant-

model mismatch and disturbances, the model-based solution such as the “two-step”

approach cannot guarantee that constraints are satisfied as they might be poorly pre-

dicted by the model.

• Changing optimum: Degradation of the process results in performance decrease and

increase in power consumption for the same plant operating condition. From the start-

up of a process until its shutdown for maintenance, the process goes through a con-

tinuous state of degradation, including wearing of mechanical equipment, fouling of
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turbines, decaying of catalyst activities, etc. External conditions such as weather condi-

tions, or any disturbance that occurs in some unmeasured external input to the plant,

affect the operating condition of the process (cooling water temperatures, air cooler

efficiencies and heat loss from equipment).

• Convergence speed: The convergence speed of an algorithm is quite important in RTO.

It is defined by the number of setpoint changes required prior to reaching the proximity

of the plant optimum. Even though, in any RTO application, the plant optimum may

change due to process degradation, the assumption is that the disturbance variations

occur slowly with respect to the plant settling time and to the time the RTO algorithm

takes to converge. Thus, the RTO algorithm ensures the tracking of the plant optimum

in case of low-frequency degradation and disturbance.

Note that, the classical “two-step” approach works well provided that structural plant-model

mismatch is not significantly large and that sufficient excitation is provided for estimation of

the uncertain model parameters. Unfortunately, such conditions are rarely met in practice.

An alternative RTO algorithm called Modifier Adaptation (MA) has been developed in recent

years in response to the drawbacks of the “two-step” approach. MA has been applied to nu-

merous systems proving its effectiveness in obtaining optimal operation of industrial systems

(Marchetti et al., 2016). Even though optimality of the real process is guaranteed upon con-

vergence, there are several practical issues remaining to be addressed regarding MA appli-

cation to complex systems. Firstly, MA requires estimation of experimental plant gradients,

that is the plant sensitivities to small changes in operating conditions. Secondly, a reliable

MA formulation for optimization of plants with interconnected systems is required. This as-

sumes a formulation that guaranties convergence to plant optimality as well as satisfaction

of each subsystem’s constraints. As already mentioned, dividing the optimization tasks into

local subtasks leads to a formulation where the plant-model mismatch can be handled lo-

cally with lower-dimensional problems. Namely, MA relies on the use of a model linking the

plant inputs to performance. Due to the use of local plant measurements, this link can be

estimated on the local level for each subsystem. As this decomposition is beneficial from a

computational point of view, which is not the primary aim of the MA methodology, it can also

be beneficial to efficient estimation of the plant gradients.

The effectiveness of the methodology developed in this thesis is illustrated considering

the problem of optimization of compressors operating in different configurations. Thus, the

following subsection recalls the importance of operation of compressors in various industrial

processes.

1.1.2 Optimal Operation of Compressors

Many processes in industries use compressors to achieve different objectives for their oper-

ations. Compressors are mechanical machines, utilized in various applications such as gas
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transport through a pipe, air compression for utilities, and can also recirculate fluids. In most

cases, operation of compressors in industrial processes is quite energy consuming and it also

imposes relatively high compressor maintenance costs.

To that end, efficient scheduling, management and operation of compressors could save

energy and reduce operational costs. Energy-intensive applications of compressors can be

found in the chemical and natural gas industries. In this section, we focus on the use of

compressors in natural gas systems.

Compressors in Natural Gas Transportation Systems

Natural gas is considered as an essential energy source for the future (EIA, 2017). The statis-

tics show that most of natural gas consumption is concentrated in the industrial and elec-

tric sectors, accounting for 87% of the total world natural gas consumption, with an average

growth of 1.7% and 2.0% per year, respectively, through 2050. Global projections in natural

gas reserves clearly indicate that natural gas will play an increasingly important role in sup-

porting growth in markets through 2050. In Germany, for example, the annual consumption

of compressor stations amounts to 6.5TWh (Erd, 2017). The benefits of natural gas as a pri-

mary energy source are of immense importance within natural gas end-use consumption

sectors such as the residential, industrial and electric generation sectors.

In the residential sector, natural gas is one of the primary sources of energy used for heat-

ing. Also, the industrial sector uses natural gas as the main source of energy for heating

and power generation. Operations in the industrial sector, related to oil and gas transport

from the source (fields) all the way to the end-users, have been discussed by Kurz and Brun

(2012b).

Natural gas is provided from wells to gas processing plants which produce dry gas that

is transported to the residential sector or industries. As depicted in Figure 1.2, from the oil

and gas wells until its delivery to the end-users, the compression applications of natural gas

take place in different stages and can be classified into three major categories (Kurz and Brun,

2012b):

Figure 1.2 – Path for natural gas from the well to the user (Rasmussen et al., 2009).
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1. The upstream applications are utilized for transportation of natural gas from oil and

gas wells to gas processing plants:

Natural gas is extracted from the wells together with crude oil. Then, two of them are

being separated in the process of gas gathering that includes the ash gas compression.

At this level, compressors are used to increase the flow due to natural low pressures

in wells. Gas lift and gas injection are both used to increase the flow and production

from a reservoir. A major difference between the two is that the gas injection goes into

the reservoir, and the gas lift goes into the well bore and to the surface. Natural gas is

afterwards compressed via export gas compressor from an offshore platform through

an under sea pipeline system.

2. The midstream applications are utilized to transport gas from the processing plant to

the distribution points:

So called boost compressors are used in gas processing plants to increase gas pressure

coming from the gathering system (Kurz and Brun, 2012b). Also, compressor stations

are used to compress the sales gas from the exit of the plant to the delivery points. This

implies gas transportation through pipelines up to 4,000 km over land and 2,000 km

off-shore (Schmidt et al., 2015). In case of larger distances, the natural gas is lique-

fied and transported in ships. The liquefaction of gases is a complicated process that

uses compression and expansions to achieve high pressures and very low temperatures.

Compressors are also used to store gas in reservoirs to deal with the uncertainty in the

demand of the gas.

3. The downstream applications consist of gas distribution to the end-users. Namely,

gas distribution is the process of routing gas to individual customers. There are also

compressors that increase the pressure of the gas at the exit of the plant to the pressure

of the inlet of downstream pipelines.

For both transmission and distribution networks, the gas flows through various devices

including pipes, regulators, valves, and compressors. In a transmission network, gas pres-

sure is reduced due to friction with the pipe wall as the gas travels through the pipe. Some

of this pressure is added back at compressor stations, which raises the pressure of the gas

passing through them. This involves compressor stations in series to increase the pressure of

the gas in order to overcome the friction losses in pipes. A typical example of a compressor

station can involve a varying number of compressor units that operate in serial and parallel

configuration. A large number of compressor stations can be found in different parts of a

gas network system, for example a large network may include tens of compressor stations

distributed in a strategic way together with several hundreds of pipelines (Ríos-Mercado and

Borraz-Sánchez, 2015). Nevertheless, there are gas networks that involve a small number of

compressor stations for gas transportation, but with great power and flow capacity. Since

compressors are considered to be the most critical and most energy-consuming elements in

a compressor station, minor improvements in efficiency can have a significant impact on the
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operating costs. A compressor station’s operating cost, however, is generally measured by the

fuel/power consumed at the compressor station. According to Luongo et al. (1989), the oper-

ating cost of running the compressor stations represents between 25% and 50% of the total

company’s operating budget. Hence, the objective for a transmission network is to minimize

the total fuel/power consumption of the compressor stations while satisfying the specified

delivery flow rates and pressure requirements at the delivery terminals.

Since the problem of optimizing the gas compressor stations is of tremendous impor-

tance, it opens the door to the development of optimization algorithms. The difficulties of

such optimization problems come from several aspects. First, compressor stations are very

sophisticated entities themselves and they can consist of several compressor units in vari-

ous configurations with different efficiencies and characteristics. The compressor behavior

is nonlinear and the maintenance and activation of each compressor should be planned in

the optimal way. Each station may contain several groups of compressor units of various

vintages and the capacity may expand due to various demands over the years. Also, the set

of constraints that define feasible operating range of the compressors together with the con-

straints related to the pipeline system constitute a very complex set of nonlinear constraints.

Finally, operations of the valves and regulators may introduce certain discontinuities to the

problems as well. These factors make compressor controller development both challenging

and crucial for improving their overall efficiency.

1.2 State of the Art

1.2.1 Real-Time Optimization

RTO has emerged over the past forty years to overcome difficulties associated with plant-

model mismatch. Uncertainty can be classified into three groups, namely, (i) parametric

uncertainty, when the values of the model parameters do not correspond to the reality of the

process at hand; (ii) structural plant-model mismatch, when the structure of the model does

not correspond to process dynamics; (iii) process disturbances. Note that these three sources

are not mutually exclusive. In general, there are two directions in optimization approaches

under uncertainty that can cope with plant-model mismatch depending on the available in-

formation from the plant. Namely, if no process measurements can be used for modeling the

disturbances and incorporated in the control scheme, then robust optimization strategies are

used to cope with uncertainty. Alternatively, measurement-based optimization techniques

incorporate process measurements in the optimization framework to combat the effect of

uncertainty.

In the sequel, the measurement-based techniques will be reviewed. These methods can

be classified depending on how the available measurements are used. There are basically

three categories, namely, (i) methods that act at the level of the inputs also referred to as

model-free techniques; (ii) methods that use the measurements at the level of the process
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model to update model parameters; (iii) methods that use the measurements at the level of

the cost and constraint functions.

RTO techniques are developed for the process industry that includes both continuous

plant operating at steady state, and transient plants. Srinivasan et al. (2003) and Chachuat

et al. (2009) give a comprehensive review of these RTO techniques. Also, François and Bonvin

(2013b) discuss batch and semi-batch processes as examples of transient processes. These

processes are usually nonlinear, multivariable and affected by process disturbances and mea-

surement noise. Moreover, they are subject to safety constraints (e.g surge, pressures or tem-

peratures), equipment constraints (actuator limits, compressor speeds or maximum driver

power) and quality constraints (product specifications). Operation of these complex pro-

cesses has been managed via online computer-aided multivariable control (Cutler and Perry,

1983; Darby et al., 2011). A large number of successful RTO applications have been reported

(Marlin and Hrymak, 1997; Darby et al., 2011), and it remains a very active research field.

Model-Free Methods

In model-free RTO techniques, incorporating process measurements in the optimization frame-

work entails directly updating the inputs in a control-inspired manner. Initially, various

heuristic model-free evolutionary-search techniques were developed (Box and Draper, 1969).

These techniques are based on utilizing plant measurements to find directions in the input

space that improve performance of the plant. On the one hand, evolutionary techniques do

not require process models, only simple calculations and, due to their simplicity, they can

be implemented readily. On the other hand, these techniques are quite impractical for cases

with large number of inputs and complex nonlinear behavior. A more recent model-free tech-

nique, Self-Optimizing Control (SOC) (Skogestad, 2000; Alstad and Skogestad, 2007), uses the

sensitivity between the uncertain model parameters and the measured outputs to generate

linear combinations of the outputs that are locally insensitive to the model parameters, and

which can thus be kept constant at their nominal values to reject the effect of uncertainty.

Also, Necessary Conditions of Optimality (NCO) tracking (François et al., 2005; Srinivasan

and Bonvin, 2007), uses output measurements to estimate the plant NCO, which are then en-

forced via multivariable feedback control. Extremum-Seeking Control (ESC) is a technique

where dither signals are added to the inputs so that the plant gradients are estimated online

using the output measurements (Krstić and Wang, 2000). In the unconstrained case, gradient

control is directly applied to drive the plant cost gradient to zero.

Methods with Model Update

The most intuitive strategy to improve plant performance is to utilize measurements to up-

date the model. This is the main idea behind the “two-step” approach (Chen and Joseph,

1987; Marlin and Hrymak, 1997). It is the most common RTO algorithm in practice (Darby

et al., 2011). Although this approach can handle arbitrarily complex systems with many in-
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puts, it is fairly computationally intensive. In the “two-step” approach, measured outputs

are used to update the model parameters and obtain new inputs by optimizing the updated

model. This way, the model is expected to represent more accurately the plant at its current

operating point. The idea is to repeat this procedure until convergence is reached under the

assumption that the updated model is capable of predicting the optimal plant inputs. The re-

quirements for this to happen are referred to as the model-adequacy conditions (Forbes et al.,

1994). Despite the popularity of the two-step method, these conditions will almost never be

satisfied in a practical setting. Namely, in practice, the “two-step” approach is likely to per-

form well if a structurally correct model is available. Nevertheless, this cannot be guaranteed.

Moreover, in the presence of structural plant-model mismatch, parameter estimation may

be ineffective and can even lead to worse performance than if no RTO was performed at all

(Agarwal et al., 1997; Marchetti et al., 2009; Gao and Engell, 2005). Also, the “two-step” ap-

proach is unlikely to perform well if there are too many uncertain parameters in the model.

Therefore, another class of model-based algorithm, which addresses the issues associated

with the two-step approach, has been developed in parallel.

Fixed-Model Methods

Fixed-model methods utilize both a nominal process model and appropriate measurements

for guiding the iterative scheme towards optimality. But instead of refining the parameters

of a first-principles model through RTO iterations, the measurements are used to update the

cost and constraint functions in the optimization problem in order to improve plant perfor-

mance. Early progress was made via the method called Integrated System Optimization and

Parameter Estimation (ISOPE), which uses measurements to update both the model param-

eters and the gradient of the cost function in the optimization problem to be solved online

Roberts (1979). A number of researchers have improved and extended the ISOPE algorithm

over the years (Roberts, 1979, 1995; Roberts and Williams, 1981) and a comprehensive review

of this development is given by Brdyś and Tatjewski (2005). ISOPE requires both cost mea-

surements and estimates of the gradients of the plant cost with respect to the inputs. Due to

the utilization of these gradient modifiers, ISOPE can guarantee plant optimality in spite of

the presence of plant-model mismatch. Researches utilized gradient modification due to the

nature of the necessary conditions of optimality that include both constraints and sensitivity

conditions (Bazaraa et al., 2006). Namely, by incorporating estimates of the plant gradients

in the model, the goal is to enforce NCO matching between the model and the plant.

An important improvement of the ISOPE algorithm was introduced by Tatjewski (2002) by

eliminating the parameter estimation step. Furthermore, Gao and Engell (2005) refined this

simplified algorithm to address plant-model mismatch in constraints. Finally, Marchetti et al.

(2009) provided a solid theoretical basis for the simplified ISOPE algorithm, which resulted

in the development of a fixed-model RTO scheme called Modifier Adaptation. Over the years,

MA has been successfully applied to a number of complex industrial processes such as an ex-

perimental solid-oxide fuel-cell stack (Bunin et al., 2010), a simulated oxygen-consumption
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plant (Navia et al., 2012) and the simulated heat and power system of a sugar and ethanol

plant (Serralunga et al., 2013). An excellent overview of MA approaches and all its varieties is

given in (Marchetti et al., 2016). Essentially, MA uses measurements of plant constraints and

estimates of plant gradients to modify the cost and constraint functions in the model-based

optimization problem without updating the model parameters. Many different MA formula-

tions have been investigated recently with extension to closed-loop systems (Costello et al.,

2013) and extension to discontinuous systems (Serralunga et al., 2014). Also, various theo-

retical aspects have been tackled regarding the convergence analysis of MA, such as the use

of convex models to ease the numerical optimization and enforce model adequacy (François

and Bonvin, 2013a), the use of second-order modifiers (Faulwasser and Bonvin, 2014), and

even promising preliminary results on sufficient conditions for global convergence (Bunin,

2014; Marchetti et al., 2017; Faulwasser and Bonvin, 2014). Besides this, the gradient esti-

mation problem has been discussed by Bunin et al. (2013); Marchetti (2013); Rodger and

Chachuat (2010); Navia et al. (2013). Recently, a variant of MA known as directional modi-

fier adaptation has been proposed (Costello et al., 2016). It uses the available process model

to identify a small number of critical input directions that are crucial for plant performance.

Consequently, it often suffices to estimate the plant gradients in these directions, thereby

making the overall approach less expensive.

Optimization of Interconnected Systems

In the literature, interconnected systems with interacting subsystems are sometimes called

large-scale systems (Brdys et al., 1990), networked systems (Venkat et al., 2008), multi-agent

systems (Olfati-Saber et al., 2007), partitioned systems (Farina et al., 2010), or simply intercon-

nected systems (Sandell et al., 1978; Brdyś and Tatjewski, 2005). These terms emphasize the

interactions between the subsystems, which are typically caused by an exchange of material,

energy or information.

Steady-state optimizing control is often performed in a two-layer hierarchical framework,

where the values of the setpoints are computed in an upper supervisory control layer and

transmitted down to a lower regulatory control layer. Optimizing control techniques and al-

gorithms are available which treat the process under control as consisting of a set of intercon-

nected subprocesses, each with its own regulatory control system and supervisory decision

unit. Coordination is then required to take account of the interconnections between the sub-

processes. In this structure, the supervisory control layer is itself structured into two levels.

The lower level consists of a set of separate decision units whose tasks are to compute the

optimal setpoints to be applied to their local regulatory controllers. The upper level consists

of a single decision unit that should provide the coordination function. Such a hierarchical

structure has a particular utility within distributed systems controlling a large-scale plant

consisting of geographically separated subprocesses.

The computation of setpoints is usually performed by solving the steady-state optimizing

control problem of minimizing, or maximizing a performance index subject to a mathemati-
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cal model, together with constraints representing the steady-state behavior of the controlled

process. Inevitably, the model will be an approximation, in structure and parameters, to re-

ality and thus the solution will in general be suboptimal. In order to take into account the

plant-model differences, various techniques that use real process measurements have been

developed over the years.

An early strategy is known as the Interaction Balance Method with Feedback (IBMF) (Find-

eisen et al., 1980). While it has been observed to yield significant performance improvement,

it does not necessarily lead to plant optimality. Also, it requires a large number of online it-

erations and thus lacks practical value. Gu and Wan (2001) proposed a method to deal with

these issues. The main idea behind this method is that the model coefficients of each sub-

process are replaced by corresponding fuzzy numbers. To overcome the limitation of subop-

timality of the IBMF, researchers have tried to complement this distributed algorithm with

elements of centralized ISOPE techniques. Similarly to the centralized case in ISOPE, plant-

model mismatch can be handled by using process measurements to iteratively modify the

gradient of the cost function of the optimization problem and update the parameters of the

steady-state model. As a result, the plant optimum can be reached upon convergence de-

spite plant-model mismatch (Brdyś and Tatjewski, 2005). By combining these ideas with the

distributed structure of IBMF, various distributed ISOPE techniques have been obtained. An

overview of these techniques is given by Brdyś and Tatjewski (2005). In fact, these approaches

are hierarchical in nature, and the solution algorithms have a nested iterative structure.

There are several variants depending on the types of measurements and decision vari-

ables:

• The measurements for each subsystem can include only output or both inputs and

outputs (Lin et al., 1989).

• The decision variables applied to the plant can include only the setpoints computed in

the outer loop (model-based algorithms) or those computed in both the outer and in-

ner loops (system-based algorithms) (Brdys et al., 1990). In the former case, a model is

used for the inner iteration, and only the setpoints computed in the outer iterations

are applied to the plant, thereby reducing the number of time-consuming setpoint

changes (Bryds et al., 1989). Also, Lin et al. (1988) have allocated more attention to the

issue of reducing the number of controller setpoint changes than to the convergence

features. A variable augmentation technique is introduced to reduce the sensitivity of

the algorithm to iterative gain selection and to improve the convergence of the algo-

rithm (Lin et al., 1989; Brdys et al., 1987)

It is very important to point out that the literature on RTO algorithms for interconnected sys-

tems puts emphasis on handling the plant-model mismatch. Thus, we focus on the formu-

lations for optimization of plants with interconnected systems, posed and treated as an RTO

problem.
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None of the approaches, referenced above, tackles the issue of gradient estimation of com-

plex plants, rather the assumption of exact plant gradient estimates is imposed. With all

approaches, convergence to the plant optimum in the presence of plant-model mismatch

is possible, but the plant inequality constraints must be known exactly. Note as well that

the model update is based on “two-step” approach techniques that assume frequent estima-

tion of model parameters. Unfortunately, for complex industrial plants, accurate estimation

of many parameters is extremely complicated to implement. Also, all subprocesses need to

exchange model, measurements and gradient information among themselves in order to en-

sure the convergence of the algorithm.

This thesis presents RTO methodologies to deal with the optimal operation of intercon-

nected systems and discusses their application to the problem of optimal distribution of the

load in the compressor plants. Thus, the following subsection presents the literature review

on the topic of optimal operation of compressor stations.

1.2.2 Optimization of Gas Compressors

The topic of the optimization of compressor stations has been explored by numerous re-

searchers. Compressors are used in various applications where the nature of each application

influences the objectives and constraints of the optimization problem. Also, the utilization

of compressors is reported to be energy-intensive in many industrial processes (Saidur et al.,

2010; Mahmoudimehr and Sanaye, 2013). The steady-state optimal operation of gas com-

pressors in different process systems has been explored by many researchers (Han et al., 2004;

Hasan et al., 2009; Sun and Ding, 2014). Scheduling of compressors is discussed by van den

Heever and Grossmann (2003). Other studies focused on the optimal control of compressors

using model predictive control strategies (Cortinovis et al., 2015; Gopalakrishnan and Biegler,

2013; Zavala, 2014)

Over the years, compressors have been employed in a wide range of industrial appli-

cations, particularly for gas transportation and storage in natural gas networks, extraction,

processing and utilities (de Marco et al., 2011; Borraz-Sánchez and Haugland, 2013; Ríos-

Mercado and Borraz-Sánchez, 2015).

Compressor stations, typically composed of several compressor units connected in series

or in parallel, play a crucial role in the natural gas industry. A compressor unit is a device used

to increase the pressure of natural gas by reducing its volume, thus providing the required

propel force or boost to keep it moving along the line. Compressor stations are strategically

installed along gas transmission lines as important assets to the gas transport industry so as

to provide enough energy to natural gas for its transmission. An excellent overview of the

entire pipeline network optimization is given in Ríos-Mercado and Borraz-Sánchez (2015).

In the literature, various approaches for the optimization of compression networks can be

found starting as early as the mid 19th century, where Hax (1967) investigated the optimiza-

tion of natural gas transmission. In late 70s, Edgar et al. (1978) focused on the optimal design
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of natural gas transmission networks while Marqués and Morari (1988) showed first promis-

ing results on pipeline optimization in the late 80s. Compressor station optimization was

considered, for example by Murphy et al. (1989); Osiadacz (1980) and Wright et al. (1998) in

the late 80s and 90s. Due to the complexity of these problems, a compressor station is mod-

eled as a single compressor unit, even if it consists of multiple compressors.

Process systems that include utilities are applications in which compressors consume

most of the energy (Han et al., 2004). The analysis of these systems does not focus on the

detailed modeling of the pipes since friction losses are not important compared to natural

gas networks, where the length of the pipes extends to hundreds of kilometers. The optimiza-

tion of parallel compressors in refrigeration systems is studied by Widell and Eikevik (2010).

Namely, they report that compressors in refrigeration systems can be used in oil and gas in-

dustry for cooling a compressed gas, liquefaction of natural gas and removing liquid in a gas

plant. As reported by Kurz and Brun (2012b), compressors are also the major consumers of

energy in these applications.

Application that deals with the optimization of compressors in gas storage has been stud-

ied by Kurz and Brun (2010); Camponogara et al. (2012); Kurz and Brun (2012b); Silva and

Camponogara (2014).

Optimal Load Sharing

Several compressors are used when the capacity of a single station is not enough to satisfy

the demands on mass flow or pressure of the downstream applications.

Load-sharing optimization can be considered as an equivalent of real-time optimization

used in the process industries. Also, in the context of compressor station operation, it is an

extension of what is generally referred to as load-sharing control (Staroselsky and Mirsky,

1987). Parallel centrifugal compressors are used in applications that request high mass flow

rates and low pressure ratios (Boyce, 2003). Serial compressor configurations are employed

to increase the total discharge pressure compared to the pressure a single compressor can

achieve. The compressor station receives a general target from the dispatch center, typi-

cally in the form of an hourly flow or pressure setpoint for parallel or serial configuration,

respectively. This setpoint is realized via station process controller by allocating a load dis-

tribution to each compressor. In turn, individual compressor control systems peruse their

local targets by adjusting the operating speeds. Load-sharing optimization extends this task

of load-sharing control by considering individual compressor performance maps and opti-

mizing specific objective such as minimizing the power consumption of all machines. Kurz

et al. (2012) commented that if compressors have identical compressor maps, then the load

can be equally split or they can operate at the same surge margin. In general, compressors

in a station with multiple units have, however, different performance maps and efficiencies.

Several authors and practitioners reported on this note (Abbaspour et al., 2005; Lipták, 2013).

Furthermore, plant maintenance results in the change of compressor maps of the same com-
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pressor before and after the procedure (Paparella et al., 2013; Cicciotti et al., 2014). In addi-

tion, compressor characteristics and efficiencies change over time due to fouling and erosion

(Kurz and Brun, 2012a). According to Tirnovan et al. (2008), these characteristics can be esti-

mated and updated by using process measurements and surrogate models.

The aim of this thesis is to formulate an optimization problem to distribute the load

among compressors. The optimization of fuel consumption together with load-sharing op-

timization problem of the parallel gas compressor plants driven by gas turbines has been

discussed by Abbaspour et al. (2005); Han et al. (2004). However, practical aspects such as

update of the maps and implementation of actual optimization have not been encompassed

in these papers. Cortinovis et al. (2016); Xenos et al. (2015) presented an optimization frame-

work that updates the model parameters of the compressors online. Therein, the problem

of optimal load-sharing of parallel compressor stations is discussed. Optimization of serial

compressor configuration has been tackled by Kumar and Cortinovis (2017).

Maintenance and Optimal Selection of Compressors

Even though the focus of this thesis is not on active selection and maintenance of compres-

sors, a number of papers discuss this issue in the operation of gas networks. The exam-

ples of these works are mentioned by Ríos-Mercado and Borraz-Sánchez (2015); Mohamadi-

Baghmolaei et al. (2014).

Nguyen et al. (2008) consider the problem of active compressor selection in natural gas

pipeline operations. This selection deals with the choice of the number of operating com-

pressors while no optimal setpoints for compressor speeds are computed. Abbaspour et al.

(2005) presented a detailed mathematical model of compressor networks, where decision

variables are reconstituted by the compressor steady-state speeds and the objective func-

tion to be minimized is the total fuel consumption. Furthermore, Moritz (2007) considers a

mixed-integer linear programming approach for the transient optimization of compression

networks. Xenos et al. (2014) and Hawryluk et al. (2010) consider optimization with multi-

ple objectives related to compressor stations. Namely, in Xenos et al. (2014), several different

objectives in connection with both operations and maintenance are combined. Hawryluk

et al. (2010) carried out a formal multi-objective optimization with the aim to minimize en-

ergy consumption and maximize station throughput. Paparella et al. (2013); Cortinovis et al.

(2016) studied the optimization of a compressor station by including integer variables to rep-

resent the start up and shut down costs within parallel compressor plant. The work of Mahlke

et al. (2010) used a mixed-integer approach to include discrete events into the optimization

of a transient problem to deal with the optimal operation of serial compressors. It is worth

noting that, in all of the above-listed studies, except for Cortinovis et al. (2016) and Xenos et al.

(2015), the load-sharing optimization problem is not posed and treated as an RTO problem

in the context of an automation system.

Compressors in process gas applications mainly suffer from fouling. Fouling is an im-
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portant mechanism leading to performance deterioration in gas turbines over time due to

the adherence of particles to airfoils and annulus surfaces. A consequence of the fouling is

increased power consumption and reduced efficiency of the compressor for the same load

compared to a non-fouled compressor. Rao and Naikan (2008) studied the optimal wash-

ing schedule of a single compressor. Martín-Aragón and Valdés (2014) and Sánchez et al.

(2009) studied the optimal scheduling of offline washing of gas turbine compressors with

thermodynamic methods. The framework presented by Xenos et al. (2016) includes the ba-

sic operational constraints of the compressors considering operational aspects, such as the

prediction of power consumption depending on the operational conditions, the extra power

consumption due to degradation, and minimum running and minimum shut down times of

the compressors.

1.3 Thesis Organization and Contributions

The objectives of this thesis are dedicated to the study of the fixed-model RTO methods. It

considers the optimizing control of a plant composed of multiple subsystems or units that

are physically interconnected, such that the outputs of one system influence the inputs of

other subsystems. In that context, the objectives are twofold:

• This thesis analyzes the overall plant problem formulation and decomposes the opti-

mization problem so that a decentralized optimization strategy can be applied. Also,

the role of measurements of the interconnection variables is discussed, which leads to

the reformulation of the optimization problem. Such reformulation and utilization of

local measurements lead to the adaptation of existing fixed-model RTO methods, so

that the algorithms presented still guarantee plant optimality.

• Moreover, the local adaptation of the optimization problem of subsystems is tested on

two examples of gas compressor stations. Practical aspects and effectiveness of the

algorithms are illustrated on a load-sharing optimization case study for parallel and

serial gas compressor configuration.

The main scientific contributions of this thesis include:

• The MA framework is extended for the first time to interconnected systems. Two novel

distributed algorithms using plant measurements and global modifiers in place of an

interconnection model are proposed. Due to the absence of an interconnection model,

no coordinator is required. Both schemes enable optimizing the steady-state perfor-

mance of an interconnected plant.

• Two novel MA algorithms for interconnected systems that use the knowledge of inter-

connection model are proposed. Also, both schemes rely on the use of local modifiers
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that are introduced for the first time in the RTO framework. We show that, upon con-

vergence, they deliver optimal steady-state performance for the overall plant. The first

scheme is centralized. The second one is a distributed MA scheme for which plant

monotonic cost decrease and feasibility guarantees are provided.

• A solution to the load-sharing optimization problem for parallel and serial compressor

plants for the case when the compressors may also operate on the surge control line

is presented. Also, an efficient approach for obtaining accurate gradient estimates of

the plant cost and constraints in the presence of noise and plant-model mismatch is

proposed. Furthermore, we show that the complexity of this estimation is independent

of the number of compressors in both, parallel and serial configuration.

The thesis structure is as follows:

Chapter 2: Preliminaries. The static RTO optimization problem is formulated as a nonlinear

program. The effect of plant-model mismatch is discussed, which gives a good motivation

for introduction of the methodology called modifier adaptation. Model adequacy is reviewed

and the basics of MA are presented together with gradient estimation techniques within the

RTO framework. We also discuss a recent study of MA with convex upper bounds. This chap-

ter concludes with a description of a compressor model.

Chapter 3: MA for Interconnected Systems using Global Modifiers. In this chapter, two dis-

tributed real-time optimization algorithms based on the MA framework are proposed. In

contrast to ISOPE, MA handles the uncertain cost function and the uncertain inequality con-

straints without parameter estimation (Marchetti et al., 2009, 2016). Nevertheless, MA is able

to drive the plant to optimality. Here, such features are leveraged for the first time for inter-

connected systems. The two proposed MA algorithms use plant measurements in place of

an interconnection model. Uncertain inequality constraints can also be handled. It is shown

for both schemes that, upon convergence, the computed inputs optimize the steady-state

performance of the uncertain interconnected plant. The results herein presented have been

published by Schneider et al. (2017).

Chapter 4: MA for Interconnected Systems using Local Modifiers. This chapter extends the

MA framework for interconnected systems to a scheme that uses only local input measure-

ments of each subsystem for plant gradient estimates. Two MA algorithms are discussed. The

first one is a centralized scheme. The second scheme is a coordinator-based distributed MA

scheme that requires estimation of only local plant gradients. The proposed algorithm has

a two-layer structure. In the inner loop, a coordinator ensures that the inputs of the local

subproblems are consistent with the interconnection model. Upon convergence of the inner

loop, these consistent inputs are applied to the plant in the outer loop. Note that the pro-

posed scheme does not require that the models underlying each subproblem are shared with

other subsystems for the purpose of obtaining the plant gradient estimates. This is possible

due to a novel way of updating the modifiers within RTO framework. Furthermore, mono-
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tonic cost decrease and feasibility guarantees are given for the MA scheme using a coordi-

nator and measured interconnection variables. The results herein presented have been pub-

lished by Milosavljevic et al. (2017, 2018c).

Chapter 5: Application to Gas-Compressor Stations. This chapter investigates the use of MA

for load-sharing optimization in gas compression stations consisting of several compressors

in both parallel and serial configurations. The centralized version of MA for interconnected

systems using local modifiers, presented in Chapter 4, is applied to both configurations. The

results show that optimal operation of the plant can be obtained after a few RTO iterations

without having to update the model parameters or the compressor maps. An interesting fea-

ture that makes MA particularly well suited for this problem is that it is possible to excite all

compressor speeds simultaneously without significantly perturbing the station mass-flow or

pressure setpoint. Also, an efficient approach for obtaining accurate gradient estimates of the

plant cost and constraints in the presence of noise and plant-model mismatch is proposed.

These estimates are obtained locally for each subsystem. The analysis shows that the algo-

rithm is capable of quickly converging to the plant optimum by using only local subsystem

derivatives. In fact, each subsystem relies on the estimation of the local power consumption

and constraint derivatives with respect to its own inputs. The presented results have been

documented by Milosavljevic et al. (2016, 2018b,a).

Chapter 6: Conclusions.

This chapter concludes the thesis and discusses the perspectives in terms of new research

topics.
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2 Preliminaries

RTO methods are related to either steady-state or dynamic plant optimization. In the case

of former, the RTO scheme aims to find the optimal steady-state values for the plant inputs,

which often correspond to setpoints for lower-level controllers. The main contribution of this

thesis is related to the RTO methodology for interconnected systems. Since, each subsystem

can be analyzed as a single continuous process, we will introduce the RTO methodology of

centralized plants. The variations and reformulations of centralized optimization problems

will be used later on for the analysis of interconnected systems.

Nonlinear programming provides a framework for characterizing optimal operating con-

ditions of a continuous process, and the properties of an optimal solution are described in

Section 2.1. If a process model is available, numerical optimization can be used to approxi-

mately compute the optimal operating conditions. It is an approximate solution because the

model never perfectly matches the real process. The MA algorithm, which compensates for

this mismatch using measurements, is described in Section 2.2. Finally, a model to describe

the operation of a single compressor is outlined in Section 2.3.

2.1 Static Optimization

The problem of finding optimal steady-state operating conditions for a continuous process

is typically expressed mathematically as

u�

p = argmin
u

φp (u) (2.1)

s.t. gp (u) ≤ 0,

where u is the nu-dimensional vector of decision (or input) variables; φp ,gp, j : Rnu �→ R, j =

1, . . . ,ng , denote the cost and constraints functions, where ng is the number of process con-

straints. The notation (·)p is used to denote variables associated with the ′′plant′′.

Local minima of Problem (2.1) can be characterized via the necessary conditions of opti-
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mality (NCO) (Bazaraa et al., 2006).

Theorem 2.1 (KKT Necessary Conditions). Let u∗
p be a (local) optimum of Problem 2.1, and

assume that u∗
p is a regular point of the constraints, that is, the active constraints are linearly

independent. Then, there exist unique values for the ng -dimensional vector of Lagrange multi-

pliers, μ, such that the following first-order Karush-Kuhn-Tucker (KKT) conditions hold at u∗
p :

gp (u∗
p )≤ 0, (2.2a)

μ�gp (u∗
p ) = 0, (2.2b)

μ≥ 0, (2.2c)

∇uLp (u∗
p )= 0, (2.2d)

with the Lagrangian function defined as Lp (up ) =φp (up )+μ�gp (up ).

Proof. See, for example, (Bazaraa et al., 2006, Thm 4.2.13).

The necessary conditions of optimality in (2.2) are referred to as the primal feasibility,

complementary slackness, dual feasibility and stationarity conditions, respectively. These

conditions must hold at any local minimum that is also a regular point of the constraints.

Note that these conditions might be satisfied by a point that is not a local minimum, as they

are not sufficient conditions of optimality.

2.2 Modifier Adaptation

2.2.1 Standard Modifier Adaptation

In any practical application, the steady-state input-output mappings φp (·) and gp (·) in (2.1)

are typically unknown, and only an approximate nonlinear steady-state models φ(·) and g(·)

are available. Thus, the model-based optimization problem becomes

u�
= argmin

u
φ(u) (2.3)

s.t. g(u) ≤ 0,

Thus, in the presence of plant-model mismatch, the model solution u� does not generally

coincide with the plant optimum u�

p in (2.1).

Hence, Problem (2.1) cannot be solved directly. One approach to deal with this problem

is the method of modifier adaptation (Marchetti et al., 2009). In this section, we first review

its key property of dealing with uncertainty in cost and constraints. In the presence of plant-

model mismatch, it has been proposed to solve Problem (2.1) iteratively via the MA approach
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given as

u∗
k+1 = argmin

u
φ(u)+

(
λ
φ

k

)�
(u−uk ) (2.4a)

s.t. g(u)+ε
g
k +

(
λ

g
k

)�
(u−uk ) ≤ 0, (2.4b)

where φ(·) is a model of the plant cost φp (·), g(·) is a model of the plant constraints gp (·); ε
g
k

is the ng -dimensional vector of zeroth-order constraint modifiers, λφ

k is the nu-dimensional

vector of first-order cost modifiers and λ
g
k is the (nu ×ng ) matrix of first-order constraint

modifiers. These modifiers are given as:

(
λ
φ

k

)�
=

∂φp

∂u
(uk )−

∂φ

∂u
(uk ), (2.5a)

ε
g
k = gp (uk )−g (uk ) , (2.5b)(

λ
g
k

)�
=

∂gp

∂u
(uk )−

∂g

∂u
(uk ). (2.5c)

Moreover, we assume that the minimum u∗
k+1 exists at every iteration k and that the inputs

are filtered using a constant and nonsingular gain matrix K ∈R
nu×nu as

uk+1 = uk +K
(
u∗

k+1 −uk
)

(2.6)

before being applied to the plant. The process measurements are used to iteratively modify

the model-based problem (2.4) in such a way that, upon convergence, the necessary condi-

tions of optimality for the modified problem match those for the plant-based problem (2.1).

This is made possible by using modifiers that, at each iteration, are computed as the differ-

ences between the measured and predicted values of the constraints and the measured and

predicted cost and constraint gradients. This forces the cost and constraints in the model-

based optimization problem to locally match those of the plant. In its simplest form, the

algorithm proceeds as follows:

Algorithm 2.1 : Modifier Adaptation (Marchetti et al., 2009)

Initialization: choose the diagonal filter matrix K with eigenvalues in the interval (0,1] and
choose a feasible input vector u0.
for k = 0 →∞ do:

1. Apply the inputs uk to the plant and wait for steady state.

2. Update the modifiers according to (2.5a)-(2.5c).

3. Solve the modified model-based optimization problem (2.4)

4. Filter the inputs according to (2.6).

end
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An important property of the modifier-adaptation approach is provided by the following

theorem:

Theorem 2.2 (KKT matching for Algorithm 2.1, Marchetti et al. (2009)). Let the MA Algorithm

2.1 converge, with u∞ = limk→∞uk . Then, u∞ is a KKT point for the plant optimization prob-

lem (2.1).

Note that, while the KKT-matching property is a very desirable property for an RTO algorithm,

it remains a theoretical result. In a real application, due to noisy measurements and inexact

gradients, the algorithm will reach a neighborhood of the plant optimum.

Note also that Theorem 2.2 guaranties that, if MA converges, it will do so to the KKT point

of the plant. Whether an RTO algorithm is capable of converging to the plant optimum has

been initially discussed by Forbes and Marlin (1996). In RTO, this is referred to as the “Model-

Adequacy” question.

Theorem 2.3 (Model Adequacy). Let u�

p be the unique plant optimum, which is assumed to

be a regular point for the na
g active constraints. The process model is adequate for use in MA if

the reduced Hessian of the cost function φ is positive definite at u�
p :

Z�
(
∇

2φ
)

Z > 0, (2.7)

where the columns of Z ∈R
nu×(nu−na

g ) are a set of basis vectors for the null space of the Jacobian

of the active constraints in the model-based optimization problem (2.4).

Proof. See Marchetti et al. (2009).

Hence, in the case of MA, model adequacy is dictated by the second-order derivatives

because any mismatch in the cost and constraints is corrected by the MA scheme up to the

first-order derivatives. Clearly, the positive-definiteness requirement is independent of the

modifier values themselves.

Theorem 2.3 implies that the use of strictly convex models in MA schemes automatically satis-

fies the model adequacy condition. Indeed, François and Bonvin (2013a) proposed a method

to enforce the Model-Adequacy Condition for a general nonlinear model cost function by

using convex approximations.

Note that, according to Theorem 2.2, if MA converges, it will do so to a plant KKT point.

Next, assuming the model-adequacy criterion is met according to Theorem 2.3, MA will con-

verge to the plant optimum. The question related to the MA convergence properties has

been tackled recently by several authors (Marchetti et al., 2009, 2017; Bunin, 2014; Faulwasser

and Bonvin, 2014). Here, both necessary and sufficient conditions have been proposed for

the MA convergence. Namely, Bunin (2014) discussed the equivalence between MA and the
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trust-region framework and exploited this relation to propose a globally convergent modifier-

adaptation algorithm using already developed trust-region theory for unconstrained opti-

mization problems. Also, Marchetti et al. (2017) presented a feasible-side globally conver-

gent MA formulation, wherein the cost and constraint functions belong to a certain class of

convex upper-bounding functions. Faulwasser and Bonvin (2014) discuss how second-order

updates in MA can lead to SQP schemes. Furthermore, Milosavljevic et al. (2018c) show con-

nection between the MA framework and proximal-gradient methods, which is discussed in

Appendix B.

From a practical point of view, it is very difficult to enforce the conditions proposed in

these papers. Therefore, more focus is required on practical aspects of MA such as gradi-

ent estimation, especially for the applications with high-dimensional input space. Initially,

Marchetti et al. (2009) analyzed convergence of the standard MA Algorithm 2.1 for variations

of the exponential filter matrix K, with positive eigenvalues in the interval (0,1]. Larger eigen-

values encourage more rapid convergence, but may also cause oscillating behavior, or a fail-

ure to converge at all. Smaller eigenvalues result in the MA algorithm taking more cautious

steps, making convergence more likely, but at a slower pace. Also, Navia et al. (2013) and Gao

et al. (2016) proposed methods that completely avoid the gradient estimation step. Instead,

the cost and constraint gradient modifiers λ
φ

k and λ
g
k are determined at each iteration by an

unconstrained gradient-free optimization routine. While this conveniently avoids gradient

estimation, its drawback is that the gradient-free optimization algorithm must optimize the

plant using many RTO iterations to converge to the plant optimum. Costello et al. (2016) pro-

posed a variant of MA known as Directional Modifier Adaptation (DMA). Here, the gradients

are corrected only in the subspace spanned by the most critical (i.e., sensitive) directions for a

small parametric mismatch. Next, Singhal et al. (2017) extended DMA concept by computing

a set of critical directions that are robust to large parametric perturbations. The core idea in

DMA is that confidence in model structure can be exploited for efficient gradient estimation

i.e updating the model in directions that are key for improving the plant performance.

The proposed methodology for interconnected systems in this theses goes along the line

of exploiting the knowledge of the interconnection model of the plant. Namely, we discuss

how this knowledge can be used for efficient gradient estimation so that with small number

of setpoint changes, MA converges to the optimum of the plant consisting of interconnected

systems.

2.2.2 Modifier Adaptation with Convex Upper Bounds

Marchetti et al. (2017) presented a feasible-side globally convergent RTO formulation, where

the cost and constraint functions are constructed as convex upper-bounding functions. They

propose to construct the required upper-bounding functions by adding quadratic terms to

the modified cost and constraint functions used in standard MA. The main feature of this

method is an MA algorithm guaranteeing global feasible-side convergence to a KKT point of

23



Chapter 2. Preliminaries

the plant assuming perfect plant gradient estimates.

In general, the design of an RTO algorithm should enforce the following desirable proper-

ties:

(i) Plant optimality: Despite structural plant-model mismatch, a KKT point of Problem

(2.1) is reached upon convergence of (2.4).

(ii) Plant feasibility: All RTO iterates uk satisfy the constraints of Problem (2.1).

(iii) Monotonic cost improvement: The performance is required to improve between con-

secutive RTO iterates.

Besides these important basic properties, one would like to have sufficiently fast conver-

gence and sufficient robustness with respect to gradient errors.

The key to the MA scheme proposed in Marchetti et al. (2017) is the concept of convex

upper-bounding functions. These are defined next.

Definition 2.1 (Convex upper-bounding function). Let the function f : Rnu �→ R be continu-

ously differentiable. Then, the convex differentiable function f U
k : Rnu �→R

f U
k (u) = f (uk )+

(
∇ f (uk )

)�(u−uk )+
δ f

2
‖u−uk‖

2
2,

is said to be a quadratic convex upper-bounding function of f (u) at uk with an upper-bounding

coefficient δ f ≥ 0, if it satisfies the following conditions for all uk ∈R
nu :

f U
k (uk ) = f (uk ) (2.8a)

∇ f U
k (uk ) =∇ f (uk ) (2.8b)

f U
k (u) ≥ f (u). (2.8c)

Upper-bounding functions can be used to enforce monotonic cost improvement in MA schemes

(Marchetti et al., 2017). In particular, at every RTO iteration k , the following update is pro-

posed:

uk+1 =argmin
u

φU
k (u) :=φ(u)+ε

φ

k +

(
λ
φ

k

)�
(u−uk )+

δφ

2
‖u−uk‖

2
2 (2.9a)

s.t. gU
j ,k (u) := g j (u)+ε

g j

k +

(
λ

g j

k

)�
(u−uk )+

δg j

2
‖u−uk‖

2
2 ≤ 0, j = 1, . . . ,ng , (2.9b)

where ε
g j

k ∈R is the constraint value modifiers, λφ

k λ
g j

k ∈R
nu are the cost and constraint gradi-

ent modifiers, respectively, defined in (2.5a)–(2.5c). Also, the cost value modifiers is defined

as ε
φ

k = φp (uk )−φ(uk ); Note that ε
φ

k is a constant, thus it is not included in formulation of

Problem 2.4. These modifiers ensure matching function values and first derivatives of the
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plant (2.1) and the modified model (2.9) at the current operating point uk . Moreover, the

upper-bounding coefficients δφ,δg j in (2.9) need to be selected such that φU
k (u) and gU

j ,k(u)

are convex upper-bounding functions of φp (u) and gp, j (u), respectively.

The following algorithm explains the implementation of modifier adaptation with convex

upper bounds.

Algorithm 2.2 : MA with convex upper-bounding functions (Marchetti et al., 2017)

1. Initialization: Provide the initial point, u0. Set k := 0.

2. Plant experiment: Apply the set of inputs uk to the plant and wait for steady state.

3. Modifier computation: Compute the modifiers as per (2.5a)–(2.5c).

4. New input calculation: Compute uk+1 by solving Problem (2.9).

5. Iterate: Set k := k +1 and return to Step 2.

The further developments are based on the technical assumptions introduced next.

Assumption 2.1 (Plant properties).

The plant optimization problem (2.1), satisfies the following conditions:

1. We assume that the solution is a regular KKT point i.e. linear independence constraint

qualification holds.

2. The feasible set is a nonempty compact.

3. φp (u) and gp, j (u) are twice continuously differentiable functions for all u.

�

Assumption 2.2 (Model properties).

φ(u) and g j (u) are twice continuously differentiable functions for all u. �

Assumption 2.3 (Exact gradient estimates).

The constrained values and the cost and constraint gradients of the plant are perfectly known

at each RTO iteration. �

The following theorem states that the RTO Algorithm 2.2 guarantees feasible-side global

convergence to a KKT point of the plant.

Theorem 2.4 (Global convergence (Marchetti et al., 2017)). Let Assumptions 2.1-2.3 hold.

Then, for any feasible initial point u0, the input sequence generated by Algorithm 2.2 converges

to a KKT point of Problem (2.1) with the following properties:
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a) All RTO iterates satisfy the plant constraints.

b) The plant cost decreases monotonically at each iteration.

Proof. The proof is given in (Marchetti et al., 2017, Thm.1). This result is based on the idea of

(Marks and Wright, 1978).

2.2.3 Gradient Estimation

The most challenging part of MA is the estimation of the plant gradients or the first-order

modifiers. This is the most difficult aspect of the RTO methodology since the gradients can-

not be measured directly and, furthermore, measurement noise is almost invariably present.

This section discusses different ways of estimating gradients, since they can be obtained in

many different ways (Bunin et al., 2013; Mansour and Ellis, 2003; Zhang and Forbes, 2006;

Srinivasan et al., 2011). Here, the discussion is restricted to the methods associated with MA,

which is why special emphasis will be placed on the methods classified for steady-state per-

turbations that use only steady-state data (Marchetti et al., 2010; Brdyś and Tatjewski, 1994;

Marchetti, 2013). For each change in the input variables, one must wait until the plant has

reached steady state before taking measurements, which can make these methods expensive

since each new point requires a new plant setpoint change. Here, we will focus only on finite-

difference approximation methods. This is the most common approach and it requires at

least nu +1 steady-state operating points to estimate the gradients.

The first alternative is forward finite-difference approximation by perturbing the current

RTO point. This rather straightforward approach involved perturbing each input separately

around the current operating point to get an estimate of the corresponding gradient element.

For instance, the i -th element of ∇φp (uk ), is estimated as:

∂φp

∂ui
(uk ) =

φ̃p (uk +δui )− φ̃p (uk )

‖δui‖
, (2.10)

where δui is a vector aligned with the i -th input direction. The superscript (̃·) denotes a noisy

measurement. The same procedure is used for estimating the constraint gradients. This ap-

proach requires nu perturbations δui to be carried out at each RTO iteration, and for each

perturbation a new steady state must be attained.

The second alternative is finite-difference approximation using past RTO points. It con-

sists of computing the gradients solely from measurements of the current and previously vis-

ited RTO points {uk ,uk−1, ...,uk−nu+1}. At the k-th RTO iteration, the following matrix can be

constructed:

U (u)=
[
u−uk , . . . ,u−uk−nu+1

]�
∈R

nu×nu . (2.11)

Assuming the cost measurements φp are available at each iteration, we construct the follow-
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ing vectors at the k-th RTO iteration:

δφ̃p (u)=
[
φ̃p (u)− φ̃p,k , . . . , φ̃p (u)− φ̃p,k−nu+1

]�
∈R

nu . (2.12)

If U (uk ) is nonsingular, then the set of nu + 1 RTO points {uk− j }nu

j=0 is said to be poised for

linear interpolation in R
nu . The cost gradient at uk can then be estimated as follows:

�∇φp (uk ) =
(
δφ̃p (uk )

)� U−1 (uk ) . (2.13)

In addition, constraint gradients can be computed in a similar way.

2.2.4 Bounds on Gradient Uncertainty

It might appear that by using previously visited RTO points, it is possible to estimate the

gradients ‘for free’, that is without any additional experimental burden. In reality, the steps

taken by the RTO algorithm must be taken with caution to ensure good gradient estimates.

Here, we discuss estimation of the bounds on gradient estimates, which is often more chal-

lenging than obtaining the estimates themselves. In case the gradient estimates are obtained

via finite-difference, Brekelmans et al. (2005) proposed a deterministic quantification of the

gradient error due to the finite-difference approximation (or truncation error) and due to

measurement noise error. The expressions obtained for the total gradient error are convex

functions of the step size, from which it is easy to compute the step size that minimizes the

total gradient error. Following a similar approach, Marchetti et al. (2010) analyzed the gradi-

ent error and bounds on gradient error associated with (2.13).

The gradient estimation error is defined as the difference between the estimated gradient

and the true plant gradient

(
εφ (u)

)�
= ∇̂φp (u)−

∂φp

∂u
(u), (2.14a)

Note that the row vector ∇̂φp (u) is the estimate of the plant cost gradient. From (2.13) and

using φ̃p (u) =φp (u)+ν, (2.14a) can be split as

εφ(u) = εt (u)+εn (u), (2.14b)

where ν is measurement noise, εt is the error due to the finite-difference approximation (or

truncation) and εn is the measurement noise error,

(
εt (u)

)�
=

[
φp (u)−φp,k , . . . ,φp (u)−φp,k−nu+1

]
U−1(u)−

∂φp

∂u
(u), (2.14c)(

εn(u)
)�

=
[
ν−νk , . . . ,ν−νk−nu+1

]
U−1(u). (2.14d)

Assuming that φp (u) is twice continuously differentiable with respect to u, then the norm
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of the gradient error due to truncation can be upper bounded as follows (Marchetti et al.,

2010):

‖εt (u)‖≤ E
t (u) :=

dσ

2
‖[(u−uk )�(u−uk ) . . . (u−uk−nu+1)�(u−uk−nu+1)]U−1(u)‖, (2.15a)

where dσ is an upper bound on the spectral radius of the Hessian of φp (u). Also, assum-

ing that the noisy output φ̃p (u) remains within an interval δ at steady-state operation, then

the norm of the gradient error due to measurement noise can be upper bounded as follows

Marchetti et al. (2010)

‖εn(u)‖≤ E
n(u) :=

δ

lmi n(u)
, (2.15b)

where lmi n(u) is the shortest distance between all possible pairs of complement affine sub-

spaces that can be generated from the set of points S = {u,uk ,uk−1, ...,uk−nu+1} (see Marchetti

et al. (2010) for the computation of lmi n(u)). Roughly speaking, lmi n(u) is the minimum of the

orthogonal distances between each individual point in the set S and the hyperplane passing

through the remaining points. Hence, in order to keep the noise error small, the past input

points should be approximately orthogonal to each other and no two points should be too

close to each other.

Thus, the overall bound on gradient error is given as sum of bounds in (2.15a) and (2.15b)

as

E
φ(u) = E

t (u)+E
n(u). (2.15c)

2.2.5 Computation of Gradient Modifiers

The most straightforward way of computing the gradient modifiers is to directly evaluate

them from the estimated gradients, according to their definition

(
λ
φ

k

)�
= ∇̂φp,k −

∂φ

∂u
(uk ), (2.16a)

(
λ

g j

k

)�
= ∇̂g p, j ,k −

∂g j

∂u
(uk ), (2.16b)

where, in principle, any of the methods mentioned in Section 2.2.3 can be used to obtain the

gradient estimates ∇̂φp,k = ∇̂φp (uk ) and ∇̂g p, j ,k = ∇̂g p, j (uk ),∀ j = 1, . . . ,ng . Here, λ
g j

k is j -th

column vector of modifier λ
g
k in (2.4).

Instead of using a set of steady-state operating points to estimate the gradients, it is pos-

sible to use the same set to directly compute the gradient modifiers by linear interpolation or

linear regression. For instance, Marchetti (2013) proposed to estimate the gradient modifiers

by linear interpolation using the set of nu +1 RTO points {uk−i }nu
i=0. In addition to the plant
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cost vectors δφ̃p,k = δφ̃p (uk ) in (2.12),

δφ̃p,k =
[
φ̃p,k − φ̃p,k−1, . . . , φ̃p,k − φ̃p,k−nu

]�
∈R

nu , (2.17)

its model counterpart can be constructed at the k-th RTO iteration

δφk =
[
φk −φk−1, . . . ,φk −φk−nu

]�
∈R

nu . (2.18)

Similarly, we define the plant and model constraint vectors for all j = 1, . . . ,ng :

δg̃p, j ,k =
[
g̃p, j ,k − g̃p, j ,k−1, . . . , g̃p, j ,k − g̃p, j ,k−nu

]�
∈R

nu (2.19)

δg j ,k =
[
g j ,k − g j ,k−1, . . . , g j ,k − g j ,k−nu

]�
∈R

nu . (2.20)

This leads to the following expressions for the gradient modifiers(
λ
φ

k

)�
=

(
δφ̃p,k −δφk

)� U−1
k (2.21a)(

λ
g j

k

)�
=

(
δg̃p, j ,k −δg j ,k

)� U−1
k (2.21b)

where input matrix Uk = U(uk ) is defined in (2.11). Here, the sample points consist of the

current and nu most recent RTO points. However, it is also possible to include the designed

perturbations in the sample set. With the gradient modifiers presented in (2.21), the modified

cost and constraint functions match the corresponding measured values for the plant at the

current and past operating points {uk ,uk , ...,uk−nu }. Marchetti (2013) discussed that this gives

a better approximation of the plant cost and constraint functions, in particular for increased

distances between the points. In this case, the modified cost and constraint functions should

be viewed as a higher-order correction.

2.3 Operation of a Compressor

The MA methodology developed in this thesis is tested on a load-sharing problem for com-

pressor stations consisting of several compressors in series and in parallel. This section pro-

vides the background knowledge on a single compressor model. Hence, the description of

the principles of industrial centrifugal compressor and its operational aspects are introduced

here. This type of compressor is usually used in process systems and natural gas applications.

This section explains the major operational aspects (characteristics, performance, control

methods and maintenance) of a single compressor.

2.3.1 Compressor Model

The static compressor model used in this thesis is based on the work of Cortinovis et al. (2015).

As depicted in Figure 2.1, the main element is the centrifugal compressor that is surrounded

by piping and valves. The main line consists of a suction side valve (′i n′), a recycle valve line
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pi n

pout

mi n

mout

mc

mrec

ps

pd

Vi n

VoutVrec

Figure 2.1 – Diagram of a single compressor.

(′r ec ′) that connects the compressor outlet with the compressor inlet, and the discharge side

valve (′out ′). The compressor conveys a gas from the upstream process to the downstream

process. There is a driver that provides power to the shaft of the compressor, and it can be a

gas turbine, steam turbine or an electrical motor. The driver rotates the shaft with rotational

speed ω, which can be either constant or variable as is the case with a variable-speed drive.

This type of drive is employed by a variable-speed compressor.

The dynamic compressor model can be written as:

d ps

d t
=C1(mi n +mrec −mc ) (2.22a)

d pd

d t
=C2(mc −mrec −mout ) (2.22b)

dmc

d t
=C3(psΠ−pd ) (2.22c)

dω

d t
=C4(τ−τcomp ) (2.22d)

dmrec

d t
=C5(mrec ,ss −mrec ) , (2.22e)

where mc , mrec , mi n and mout denote the compressor, recycle, inlet, and outlet flows, respec-

tively; ps is the suction pressure, pd the discharge pressure, Π the pressure ratio, τ the applied

torque, whereas τcomp is the torque resulting from the air compression, while Ci , i = 1, ...,5,

are constant parameters.

Furthermore, one can write:

mi n = ki nVi n
√

|pi n −ps | (2.23a)

mout = kout Vout
√

|pd −pout | (2.23b)

mrec ,ss = krecVrec
√

|pd −ps | (2.23c)

τcomp =σrωmc , (2.23d)
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2.3. Operation of a Compressor

where ki n , kout , and krec are the inlet, outlet, and recycle valve gains; pi n and pout are the

inlet and outlet pressures; r is the impeller diameter and σ is the slip factor.

2.3.2 Compressor Maps, Characteristics and Efficiency

The operation of a compressor can be identified by studying the compressor maps. A typical

compressor map can be seen in Figure 2.2. Such maps provide information about the char-

acteristics and performance of compressors. These maps are used to identify the operating

point of a compressor and its efficiency at steady-state conditions. A single characteristic

curve of a compressor describes the relationship between pressure ratio Π and the corrected

mass flow rate mc for a constant rotational speed ω. Figure 2.2 depicts curves with different

operating speeds ω. The operation between surge and choke for a constant speed curve de-

fines the operational range of this characteristic curve. The group of all the characteristics

between minimum and maximum rotational speed constitutes the operational domain or

feasible window of the operation of a compressor. The compressor cannot operate beyond

the limits of this window due to physical, safety, power and mechanical constraints.

Surge is the phenomenon of reverse flow in the compressor, and it occurs when the ma-

chine compresses gas to high pressures at low flow rates. Not only does it reduce both per-

formance and efficiency, but it can also cause damage to the compressor or other auxiliaries

(Cortinovis et al., 2015). Additionally, it causes vibrations due to the reversal of the flow result-

ing in unacceptable noise levels. Due to undesired consequences of the surge effect, compres-

sors have to operate at a reduced operational window. This operational window is restricted
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Figure 2.2 – Compressor operating constraints and cost contour curves (gray line). Upper and
lower bound on speed (dashed black), operating points for three constant speeds (dashed
gray), choke and surge line (dashed red) and surge control line parallel to surge line (black).
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by a left boundary, known as control surge line. This line is located to the right of the surge

line and both lines are separated by a safety margin.

Choke or stonewall region is located at the right region of a performance map. A choke

point is described as the operational point of a compressor which is reached at the maximum

flow rate and the minimum head for a fixed speed curve. It can also cause serious serious

damage to the rotors and blades of multi-stage centrifugal or axial compressors (Bloch, 2006).

Dixon and Hall (2013) presented a detailed explanation of the physical constraints of surge

and choke with the use of fundamental aerodynamic and thermodynamic equations. The

upper and lower bounds of the speed of a compressor map are defined by the specifications

of the prime mover of the compressor, i.e. electric motor or gas turbine.

According to the manufacturer and the application, there are other descriptions of com-

pressors maps which may consider for example discharge pressure, or isentropic or poly-

tropic head on the vertical axis (Dixon and Hall, 2013). The pressure ratio Π is modeled as

a polynomial function of ω and mc . Likewise, the polytropic efficiency ηp is modeled as a

polynomial function of ω and Π Cortinovis et al. (2016):

Π=α1 +α2ω+α3mc +α4ωmc +α5ω
2
+α6m2

c (2.24a)

ηp =β1 +β2ω+β3Π+β4ωΠ+β5ω
2
+β6Π

2. (2.24b)

These compressor maps are typically provided by the manufacturer or they can be identified

based on historical data Cortinovis et al. (2016).

The consideration of both the operating point, which describes pressure and flow rate,

and the efficiency of the compressor can be used to estimate the power consumed by the gas

at specific conditions. The shaft power is calculated as (Abbaspour et al., 2005)

Φ=
yp

ηp
mc , (2.25a)

where yp is the polytropic head:

yp =
Zi nRTi n

MW

nν

nν−1

[
Π

nν−1
nν −1

]
. (2.25b)

Here, Zi n is the inlet compressibility factor, Ti n the suction temperature, MW the molecular

weight of the gas mixture assumed to be constant, and nν the polytropic exponent.
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3 Modifier Adaptation for Intercon-
nected Systems using Global Modi-
fiers
This chapter is based on:

R. Schneider, P. Milosavljevic, and D. Bonvin. Distributed modifier-adaptation schemes for

the real-time optimization of uncertain interconnected systems. International Journal of

Control, pages 1–14, 2017.

This chapter deals with two distributed RTO schemes for systems that are composed of

interconnected subsystems. This term emphasize the dynamic interactions between the sub-

systems, which are typically caused by an exchange of material, energy or information. Both

schemes are based on the MA framework. In contrast to ISOPE, MA consistently handles

the uncertain cost function and the uncertain inequality constraints without requiring pa-

rameter estimation (Marchetti et al., 2009, 2016). Nevertheless, it is able to drive the plant

to optimality (Marchetti et al., 2009). Here, these features are leveraged for interconnected

systems.

In particular, both distributed MA algorithms use plant measurements in place of an inter-

connection model. This way, no coordinator is needed, and the subsystem optimizers do not

have to share their local models. This feature makes these algorithms particularly attractive

for privacy-sensitive applications, such as site-wide optimization in industrial parks operated

by a consortium of competing companies (Wenzel et al., 2016). However, due to the absence

or uncertainty in the interconnection model, both algorithms rely on the use of global modi-

fiers. This means that the plant gradients of one subsystem with respect to the inputs of the

other subsystems are required. Finally, it is shown for both schemes that, upon convergence,

the computed inputs optimize the steady-state performance of the interconnected plant.

In many cases, centralized control of systems with interconnected subsystems may be diffi-

cult or undesirable. This is because (i) the individual subsystems may be physically at differ-

ent locations as in hydroelectric power networks, (ii) of a prohibitively high computational

complexity as in large chemical plants, or (iii) of concerns about the dependency of the whole
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system on a single controller. These issues are well known, and various alternative control

architectures have been developed (see Scattolini (2009) for a recent survey). These alterna-

tive control architectures include decentralized approaches, in which every subsystem is con-

trolled by a dedicated controller that computes the local inputs based only on measurements

from that subsystem. Another alternative is distributed control schemes. Similarly to the de-

centralized case, each subsystem is controlled by a dedicated controller, but the subsystem

controllers might exchange information among each others. If, in addition, the local control

actions are coordinated by a distinct coordinating unit, the resulting architecture is called

hierarchical control (Scattolini, 2009) or coordinated control (Al-Gherwi et al., 2011). Note

that, since the presence of a coordinator is often considered by default, many researchers

call their coordinated control schemes simply distributed as well. These different control ar-

chitectures can be found at all levels of the control pyramid, from the base and advanced

control layers to the steady-state optimization and scheduling levels at the top. In the con-

text of interconnected systems, distributed and hierarchical architectures have been found to

be particularly advantageous when combined with methods relying on mathematical model-

based optimization. These methods are typically applied at the upper levels of the control

pyramid. For example, at the level of model predictive control, a variety of distributed and

hierarchical methods exist for control (Christofides et al., 2013), state estimation (Schneider

et al., 2015), and output feedback (Schneider et al., 2014). These techniques typically draw

upon dynamic process models to solve dynamic optimization problems. At the top level,

methods to decompose and distribute conventional plant-wide optimization problems have

been suggested, e.g., for the tasks of scheduling (Xu et al., 2012) and steady-state optimization

(Bryds et al., 1989). At this level, steady-state models give rise to static optimization problems.

The chapter is organized as follows. Section 3.1 presents the plant optimization prob-

lem for systems with explicit internal variables. In Section 3.2, a detailed model for inter-

connected systems is introduced and utilized to obtain a KKT point of the plant optimiza-

tion problem via a centralized MA scheme. In Section 3.3, the two distributed modifier-

adaptation algorithms are proposed and analyzed. Their main features are illustrated in Sec-

tion 3.4 on a simple numerical example. Finally, Section 3.5 concludes the chapter with a

summary and outlook on improving directions.

3.1 Problem Formulation

In contrast to the plant problem formulation given in Section 2.1, this section introduces the

general steady-state optimization problem for a plant with internal variables. The cost func-

tion and constraints depend not only on the inputs but also on the outputs and the internal

variables. However, provided that these output and internal variables are unique for every

input vector, knowledge of their optimal values is not required for optimal plant operation.

This section shows that it suffices to deal with the inputs to the plant, thus transforming the

problem into the standard plant optimization problem (2.1), known from the RTO literature.
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3.1.1 Plant Optimization Problem Including Output and Internal Variables

Consider the plant with the outputs yp and the internal variables vp as shown in Figure 3.1. In

order to operate this plant optimally, one wishes to determine the optimal steady-state plant

variables, that is, the minimizers of the following plant optimization problem

(u∗
p ,v∗p ,y∗p ) = argmin

u,vp ,yp

Φp (u,vp ,yp ) (3.1a)

s.t. yp = Fp (u,vp ), (3.1b)

Gp (u,vp ,yp ) ≤ 0, (3.1c)

vp = Hp (yp ), (3.1d)

where the subscript p denotes quantities related to the plant, and where u ∈ R
nu , vp ∈ R

nv

and yp ∈R
ny are the steady-state plant inputs, internal variables and outputs, respectively. At

steady state, the outputs are defined by the equality constraint (3.1b), and their relationship

with the internal variables is represented by the nv equality constraints (3.1d). Moreover,

the nG inequality constraints (3.1c) reflect the limits within which the plant can be operated

safely.

From a practical perspective, the optimal values of the internal variables vp and yp are

less important than the optimal values of the inputs u. This is because only these inputs can

be adjusted to optimize the steady-state performance of the plant. For this reason, the plant

optimization problem (3.1) is often formulated differently, as shown in the next section.

HpFp

u yp vp

yp

vp

Φp

Gp

Figure 3.1 – Plant with the inputs u, the outputs yp and the internal variables vp .

3.1.2 Standard Plant Optimization Problem

Since only the inputs u of the plant can be adjusted, it is reasonable to simplify Problem (3.1)

by eliminating the dependence of the cost and constraint functions on vp and yp . Mathemat-

ically, this is possible under the following assumption:

Assumption 3.1 (Unique plant steady state). There exist unique and continuously differen-

tiable functions fp (·) and hp (·) such that, for every admissible input vector u, the equations
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(3.1b) and (3.1d) are equivalent to the equations

yp = fp (u), (3.2a)

vp = hp (u). (3.2b)

�

This assumption allows transforming the plant optimization problem with the output and

internal variables (3.1) into the standard formulation, presented in Problem (2.1), frequently

found in the RTO literature as described in the following Lemma:

Lemma 3.1 (Relationship to the standard plant optimization problem). Let

φp (u) :=Φp
(
u,hp (u), fp (u)

)
, (3.3a)

gp (u) := Gp
(
u,hp (u), fp (u)

)
. (3.3b)

Under Assumption 3.1, the solution to Problem (3.1) consists of the solution to the standard

plant optimization problem (2.1)

u∗
p =argmin

u
φp (u) (3.4a)

s.t. gp (u)≤ 0, (3.4b)

and the relations

y∗p = fp (u∗
p ), (3.4c)

v∗p =hp (u∗
p ). (3.4d)

Proof. The proof can be found in Appendix C.1.

Lemma 3.1 shows that, in order to force the plant to operate at the optimal tuple (u∗
p ,v∗p ,y∗p ),

it suffices to compute and implement the optimal inputs u∗
p . The optimal values of y∗p and

v∗p will then be automatically enforced by the plant upon reaching steady state, cf. equations

(3.4c) and (3.4d). Unfortunately, computing the optimal inputs is not straightforward, as will

be seen in the next section.

3.2 Centralized MA for Interconnected Systems

As already mentioned, some or all of the plant functions Φp (·, ·, ·), Fp (·, ·), Gp (·, ·, ·), and Hp (·)

in (3.1) are typically unknown in practice. Consequently, the functions fp (·) and hp (·), as

well as the cost and constraint functions φp (·) and gp (·) in (3.4) are also unknown. Hence,

neither Problem (3.1) nor (3.4) can be solved directly. One approach to deal with this problem

is the method of modifier adaptation. Here, MA performance is analyzed when utilizing a
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model whose structure closely resembles the one of the plant shown in Figure 3.1. As a result,

distributed modifier-adaptation will be proposed in the next section.

3.2.1 MA with a Model for the Output and Internal Variables

The standard MA approach presented in Section 2.2 is quite general. However, for plants with

the structure shown in Figure 3.1 expliciting the inputs, outputs and internal variables, one

often has models for the functions Φp (·, ·, ·), Fp (·, ·), Gp (·, ·, ·), and Hp (·), rather than for φp (·)

and gp (·). Figure 3.2 shows the corresponding model structure, which consists of the cost

model Φ(u,v,y), the constraint models G(u,v,y)≤ 0, and the steady-state model

y = F(u,v), (3.5a)

v = H(y), (3.5b)

where y ∈R
ny and v ∈R

nv are the modeled output and internal variables, respectively.

HF

u
y v

y

v

Φ

G

Figure 3.2 – Model of the plant with the inputs u, the outputs y and the internal variables v.

When these models are available, one may want to formulate the modifier-adaptation

algorithm directly in terms of these models. To do this, the following assumption is required:

Assumption 3.2 (Unique model steady state). There exist unique and continuously differen-

tiable functions f(·) and h(·) such that, for every admissible input vector u, the equations (3.5a)

and (3.5b) are equivalent to the equations

y = f(u), (3.6a)

v =h(u). (3.6b)

�

Then, the MA algorithm is formulated, which uses a model for the output and internal

variables, as follows:(
u∗

k+1,v∗k+1,y∗k+1

)
= argmin

u,v,y
Φ(u,v,y)+

(
λ
φ

k

)�
(u−uk ) (3.7a)
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s.t.

y = F(u,v), (3.7b)

G(u,v,y)+ε
g
k +

(
λ

g
k

)�
(u−uk )≤ 0, (3.7c)

v = H(y), (3.7d)

where the modifiers are computed according to (2.5a)-(2.5c) with the model functions φ(·)

and g(·) defined, in analogy to (3.3a) and (3.3b), as

φ(u) :=Φ (u,h(u), f(u)) , (3.7e)

g(u) := G (u,h(u), f(u)) . (3.7f)

It may be surprising that (3.7a) contains modifier terms for u but not for the other optimiza-

tion variables v or y. However, this problem formulation enables us to establish the equiva-

lence between this algorithm and the standard MA scheme (2.4). Before doing so, note that

similar to standard MA, the existence of a solution at every iteration k is assumed. Also, the

filter as in (2.6) is applied as

uk+1 = uk +K
(
u∗

k+1−uk
)

(3.7g)

Now, the equivalence of this algorithm with the standard MA algorithm is established. We

state the following result as a special case, namely for N = 1, of the proof of Proposition 3.1

that will be discussed latter.

Corollary 3.1 (Equivalence with standard MA). Under Assumption 3.2, the optimal inputs u∗

obtained from (3.7) are equivalent to those obtained from (2.4).

Even though they are equivalent, the MA formulations (3.7) and (2.4) serve different pur-

poses in this work: As shown below, the formulation (3.7) will enable us to use intuitive mod-

els of interconnected systems. This paves the way for distributed MA schemes, whose ability

to converge to a KKT point of the plant despite plant-model mismatch, will be proven in Sec-

tion 3.3 with the help of Problem 2.4.

3.2.2 Modeling an Interconnected System

For interconnected systems, the model with output and internal variables can be refined fur-

ther. In this section, the model of the plant is discussed under the assumption that it consists

of N interconnected subsystems i ∈ N = {1, . . . , N } as shown in Figure 3.3. Each of these

subsystem models, shown in more detail in Figure 3.4, has the nui inputs ui , the nvi inter-

connection inputs vi , the nyi outputs yi . In addition, there are nyi output equations and nGi
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3.2. Centralized MA for Interconnected Systems

v = H(y)

Subsystem
i

Subsystem
j �= i

. . .

yi

y j

ui

u j

vi

v j

Figure 3.3 – Model of a plant composed of interconnected subsystems. The interconnection
variables are the inputs v = col(v1, . . . ,vN ).

inequality constraints modeled as

yi = Fi (ui ,vi ), (3.8a)

Gi (ui ,vi ,yi ) ≤ 0, ∀i ∈N . (3.8b)

Collectively, the vectors and functions of all subsystem models correspond to the vectors and

functions known from (3.5a) in the following way:

u = col(u1, . . . ,uN ), (3.8c)

v = col(v1, . . . ,vN ), (3.8d)

y = col(y1, . . . ,yN ), (3.8e)

F(u,v) = col
(
F1(u1,v1), . . . ,FN (uN ,vN )

)
, (3.8f)

G(u,v,y) = col
(
G1(u1,v1,y1), . . . ,GN (uN ,vN ,yN )

)
. (3.8g)

Fi
ui

vi
yi

Φi Gi

Figure 3.4 – Model of the i -th subsystem.
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Chapter 3. Modifier Adaptation for Interconnected Systems using Global Modifiers

Notice that the variables v, introduced as internal variables in the previous section, here serve

the purpose of connecting the different subsystems

v = H(y). (3.8h)

Hence, they will be denoted as interconnection variables. From Figure 3.3, it can be seen that

the interconnection variables vi of the subsystem model i generally depend on the outputs

of at least some other subsystem model j �= i . Thus, unless the subsystems are decoupled,

(3.8h) cannot be written as

vi = Hi (yi ), ∀i ∈N . (3.9)

Furthermore, the model Φ(·, ·, ·) of the plant cost Φp (·, ·, ·) is assumed to be separable,

Φ(u,v,y) =
∑

i∈N

Φi (ui ,vi ,yi ). (3.10)

3.2.3 Proposed Centralized MA Scheme

Here, a centralized MA scheme for interconnected systems is formulated using the model

derived in (3.7). The following optimization problem is solved at the k-th iteration(
u∗

k+1,v∗k+1,y∗k+1

)
= argmin

u,v,y

∑
i∈N

(
Φi (ui ,vi ,yi )+

(
λ
φ

i ,k

)�(
ui −ui ,k

))
(3.11a)

s.t. ∀i ∈N :

yi = Fi (ui ,vi ), (3.11b)

Gi (ui ,vi ,yi )+ε
g
i ,k +

(
λ

g
i ,k

)�
(u−uk ) ≤ 0, (3.11c)

v = H(y), (3.11d)

where
(
λ
φ

i ,k

)�
is the nui -dimensional i -th block-column of the modifiers

(
λ
φ

k

)�
, ε

g
i ,k is the

nGi -dimensional i -th block-row of the modifiers ε
g
k , and

(
λ

g
i ,k

)� is the (nGi ×nu)-dimensional

i -th block-row of the modifiers
(
λ

g
k

)�. The modifiers are computed according to (2.5a)-(2.5c)

with the model functions φ(·) and g (·) defined, in analogy to (3.7e) and (3.7f) and using the

special model structure (3.8) and (3.10), as

φ(u) :=Φ (u,h(u), f(u)) (3.11e)

=
∑

i∈N

Φi (ui ,hi (u), fi (u)), (3.11f)

g(u) := G (u,h(u), f(u)) (3.11g)

= col
(
G1(u1,h1(u), f1(u)), . . . ,GN (uN ,hN (u), fN (u))

)
, (3.11h)
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3.3. Distributed MA without Interconnection Model

where fi (·) and hi (·) are the components of the functions f(·) and h(·) defined in Assumption

3.2. Moreover, the existence of a solution at every iteration k is assumed. Also, the filter

(3.7g) is applied. It can be shown that the fixed point is a KKT point of the plant optimization

problem (3.4a) subject to (3.4b). In its simplest form, the algorithm proceeds as follows

Algorithm 3.1 : Centralised MA with Global Modifiers

Initialization: choose the diagonal filter matrix K in (3.7g) with eigenvalues in the interval
(0,1] and choose a feasible input vector u0.
for k = 0 →∞ do:

1. Apply the inputs uk to the plant and wait for steady state.

2. Update the modifiers according to (2.5a)-(2.5c).

3. Solve the modified model-based optimization problem (3.11)

4. Filter the inputs according to (3.7g).

end

The property of this iterative procedure is provided by the following theorem.

Proposition 3.1 (KKT matching for Algorithm 3.1). Let Assumption 3.2 hold and the sequence

generated by Algorithm 3.1 converge, with u∞ = limk→∞uk . Then, u∞ is a KKT point for the

plant optimization problem (3.4a) subject to (3.4b).

Proof. The proof can be found in Appendix C.2.

Remark 3.1 (Mismatch in interconnection variables). Even when the fixed point u∞ of the

MA scheme is an optimal input vector for the plant, the converged outputs y∞ := limk→∞yk

and interconnection variables v∞ := limk→∞ vk are generally different from the plant values

y∗p and v∗p . The reason lies in the mismatch between the plant functions fp (·) and hp (·) and

their model counterparts f(·) and h(·). Nevertheless, provided that the computed input vector

u∞ is optimal for the plant, its implementation will directly result in the plant settling at the

optimal plant values y∗
p and v∗p , cf. (3.4c) and (3.4d).

The centralized MA for interconnected systems derived in this section will be the basis

for the distributed MA schemes developed next.

3.3 Distributed MA without Interconnection Model

For interconnected systems, centralized RTO schemes may not be desirable or applicable.

For example, centralized computers to solve optimization problems may not be available or

local subsystem operators may not want to disclose their models to competitors. In these

and similar situations, distributed RTO schemes may be beneficial.
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Chapter 3. Modifier Adaptation for Interconnected Systems using Global Modifiers

In order to derive such schemes, some assumptions regarding the inequality constraints

are made that can be considered. In each of the following subsections, a particular dis-

tributed MA scheme is presented and analyzed. These schemes differ in the amount of mea-

sured information used. The order in which these schemes are presented is chosen to reflect

the decreasing model complexity and increasing use of measurements, without implying that

one algorithm is generally better than another.

Specifically, each subsection is structured as follows. Firstly, the sequence of optimiza-

tion problems is stated mathematically. Secondly, a convergence result is given for every

distributed MA scheme. Thirdly, the assumptions needed to implement and solve the corre-

sponding optimization problem in a distributed way are presented. Finally, each resulting

algorithm is summarized and its technical requirements and practical advantages are dis-

cussed.

3.3.1 Assumptions regarding the Inequality Constraints

To see why additional assumptions on the inequality constraints are required for distributed

MA schemes, consider the structure of Problem (3.11): At the k-th iteration, Problem (3.11)

consists in the minimization of the separable cost (3.11a) subject to a set of separable equality

constraints (3.11b), a set of coupled inequality constraints (3.11c), and a set of coupled equal-

ity constraints (3.11d). Clearly, the coupled constraints (3.11c) and (3.11d) are an obstacle

toward a distributed MA scheme.

In this section, the inequality constraints are simplified. First, note that the local first-

order constraint modifiers ε
g
i of every subsystem can be determined from the local model

and plant variables if the following assumption holds:

Assumption 3.3 (Local plant inequalities). For each subsystem, the plant inequality constraints

depend only on adjustable or measurable variables associated with that subsystem. In other

words, the plant inequality constraints are of the form

Gp (u,v,y) = col
(
Gp,1(u1,vp,1,yp,1), . . . ,Gp,N (uN ,vp,N ,yp,N )

)
. (3.12)

�

Second, the local inequality constraints (3.11c) are generally coupled across subsystems,

that is, the inequality constraint for subsystem i depends on u j . To make the subsequent

analysis tractable, it is assumed that the plant and model inequalities are decoupled, which

will be the case under the following two assumptions:

Assumption 3.4 (Decoupled inequalities). The off-diagonal derivatives of the plant inequali-
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3.3. Distributed MA without Interconnection Model

ties vanish despite the presence of interconnection variables:

∂gp,i (u)

∂u j
=

dGp,i
(
ui ,hp,i (u), fp,i (u)

)
du j

= 0, ∀i ∈N \ j . (3.13)

�

Before stating the benefit of these assumptions, a brief comment on Assumption 3.4 is

in order. Effectively, Assumption 3.4 covers distributed RTO problems with general uncer-

tain constraint functions that depend only on the local subsystem inputs ui and those local

subsystem outputs yp,i that are independent of vp,i . In other words, suppose that the local

subsystem outputs yp,i can be partitioned into yA
p,i and yB

p,i as follows:

yA
p,i = FA

p,i (ui ,vp,i ), (3.14a)

yB
p,i = FB

p,i (ui ), (3.14b)

that is, the local subsystem outputs yB
p,i are independent of vp,i (and hence of u j �=i ). Then,

Assumption 3.4 restricts the class of admissible plant inequality constraints to functions Gp,i

that can be expressed as

Gp,i (ui ,yB
p,i ) ≤ 0. (3.15)

Inequality constraints of this form can be found in important RTO problem classes. In pro-

cess systems engineering, for example, they can be used to handle valve stiction by consider-

ing constraints on valve positions yp,i which may be uncertain functions of the valve position

set-points ui . Note that, uncertain inequality constraints are not considered in ISOPE algo-

rithms for interconnected systems (Brdyś and Tatjewski, 2005).

As a consequence of Assumptions 3.3-3.4, the first-order constraint modifier blocks λ
g
i j ,k

will be zero for every j �= i , and the inequality constraints (3.11c) reduce to

Gi (ui ,vi ,yi )+ε
g
i ,k +

(
λ

g
i i ,k

)�(
ui −ui ,k

)
≤ 0, (3.16)

where
(
λ

g
i ,k

)� is the (nGi ×nui )-dimensional i -th diagonal block of
(
λ

g
k

)�.

There are also viable alternatives to handle distributed RTO problems whose inequality

constraints do not satisfy the above assumptions. Instead of imposing these constraints as

hard constraints, a penalty or barrier function of their violation can be added to the original

costs of the plant and the model, as proposed in different contexts by Srinivasan et al. (2008);

Ellis et al. (1988).

While such soft constraints can be more general and possibly coupled, they may increase

the number of necessary RTO iterations until convergence is achieved compared to the case

of hard constraints.
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Chapter 3. Modifier Adaptation for Interconnected Systems using Global Modifiers

3.3.2 Distributed MA without Interconnection Model

The algorithm in this section exploits the fact that MA is quite flexible with model uncertainty

even if that is uncertainty in the interconnection model. In particular, if the plant measure-

ments vp are available at every iteration, one do not need to use the interconnection model

(3.11d) to link the model variables y and v. Instead, the model variables v can be replaced

by the plant measurements vp at every iteration. This results in the following optimization

problems at the k-th iteration:(
u∗

k+1,y∗k+1

)
= argmin

u,y

∑
i∈N

(
Φi

(
ui ,vp,i ,k ,yi

)
+

(
λ
φ

i ,k

)�(
ui −ui ,k

))
(3.17a)

s.t. ∀i ∈N :

yi = Fi
(
ui ,vp,i ,k

)
, (3.17b)

Gi
(
ui ,vp,i ,k ,yi

)
+ε

g
i ,k +

(
λ

g
i ,k

)�
(u−uk ) ≤ 0, (3.17c)

where again
(
λ
φ

i ,k

)�
is the nui -dimensional i -th block-column of

(
λ
φ

k

)�
, ε

g
i ,k is the nGi -dime-

nsional i -th block-row of ε
g
k , and

(
λ

g
i ,k

)� is the (nGi × nu)-dimensional i -th block-row of(
λ

g
k

)�. Here, the special model structure (3.8) and (3.10) and the plant measurements vp

are used to define the model functions φ(·) and g(·) as

φ(u) :=Φ

(
u,vp,k ,F

(
u,vp,k

))
(3.17d)

=
∑

i∈N

Φi

(
ui ,vp,i ,k ,Fi

(
ui ,vp,i ,k

))
, (3.17e)

g(u) := G
(
u,vp,k ,F

(
u,vp,k

))
(3.17f)

= col

(
G1

(
u1,vp,1,k ,F1

(
u1,vp,1,k

))
, . . . ,GN

(
uN ,vp,N ,k ,FN

(
uN ,vp,N ,k

)))
. (3.17g)

Moreover, the existence of a solution of (3.17) at every iteration k is required. Also, the input

filter is applied. Note that, MA scheme (3.17) does not require Assumption 3.2 to show that

any fixed point is a KKT point of the plant optimization problem (3.4a) subject to (3.4b).

Problem (3.17) is tackled in a distributed way. Due to the absence of an interconnection

model, there are no equalities to be satisfied. Hence, one only need to impose eq. (3.13)

in Assumptions 3.4 and Assumption 3.3, or replace the hard inequality constraints by soft

constraints, to compute the solution to Problem (3.17) by solving in parallel the following

subproblems (for i ∈N ) at the k-th iteration:(
u∗

i ,k+1,y∗i ,k+1

)
= argmin

ui ,yi

(
Φi

(
ui ,vp,i ,k ,yi

)
+

(
λ
φ

i ,k

)�(
ui −ui ,k

))
(3.18a)
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s.t.

yi =Fi
(
ui ,vp,i ,k

)
, (3.18b)

Gi
(
ui ,vp,i ,k ,yi

)
+ε

g
i ,k +

(
λ

g
i i ,k

)�(
ui −ui ,k

)
≤ 0. (3.18c)

If one also parallelize the filtering step (3.7g) by enforcing the filter gain matrix to be block-

diagonal, that is, K = blkdiag(K1, . . . ,KN ), the following distributed modifier-adaptation algo-

rithm that does not use any interconnection model is obtained:

Algorithm 3.2 : Distributed MA without interconnection model

Initialization: Choose a block-diagonal and nonsingular filter gain matrix K and a feasible
input vector u(0).
for k = 0 →∞ and, in parallel for all i ∈N , do:

1. Apply the inputs ui ,k to the plant and wait for steady state.

2. Measure the plant constraint values gp,i (uk ) and the interconnection variables vp,i ,k .

Estimate the gradients
dφp (u)

dui

∣∣∣
u=uk

and
dgp (u)

dui

∣∣∣
u=uk

.

3. Update the modifiers according to (2.5a)-(2.5c).

4. Compute the solution u∗
i ,k+1 to the optimization problems (3.18).

5. Filter the input vector u∗
i ,k+1 as

ui ,k+1 = ui ,k +Ki
(
u∗

i ,k+1−ui ,k
)
. (3.19)

end

Hence, by using measurements of the interconnection variables vp instead of the inter-

connection model (3.11d), fully parallelizable algorithm is obtained as illustrated in Figure

3.5. Note that there is no information exchange between the subsystem optimizers. This is

because only the local functions Φi (·, ·, ·), Fi (·, ·), and Gi (·, ·, ·) are required to compute the

model gradients. On the other hand, if a good interconnection model is available, disre-

garding the interconnection information may increase the number of iterations until con-

vergence is achieved.

The property of Algorithm 3.2 is provided by the following theorem.

Proposition 3.2 (KKT matching for Algorithm 3.2). Let the sequence generated by Algorithm

3.2 converge, with u∞ = limk→∞uk . Then, u∞ is a KKT point for the plant optimization prob-

lem (3.4a) subject to (3.4b).

Proof. The proof can be found in Appendix C.3.

However, note that the current algorithm is not completely decentralized, since each sub-
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Subsystem
i

Subsystem
j

Subsystem
optimizer

i

Subsystem
optimizer

j

Figure 3.5 – Coordination-free structure of Algorithms 3.2 and 3.3.

system optimizer still relies on information from other subsystems in order to determine the

plant gradients with respect to the local inputs. Namely, mismatch in interconnection model

is compensated by plant gradient estimation of one system with respect to the inputs of other

systems. For large scale systems as well as systems with low settling time and different dynam-

ics this can be very expensive, resulting in slow convergence and large number of setpoint

changes.

3.3.3 Distributed MA without Interconnection and Output Models

Let us go one step further and assume that there is neither an interconnection model nor a

model for the outputs y. Then, the plant measurements vp and yp are utilized instead and

the following optimization problem is proposed at the k-th iteration:

u∗
k+1 = argmin

u

∑
i∈N

(
Φi

(
ui ,vp,i ,k ,yp,i ,k

)
+

(
λ
φ

i ,k

)� (
ui −ui ,k

))
(3.20a)

s.t. Gi
(
ui ,vp,i ,k ,yp,i ,k

)
+ε

g
i ,k +

(
λ

g
i ,k

)�
(u−uk ) ≤ 0, ∀i ∈N , (3.20b)

where again
(
λ
φ

i ,k

)� is the nui -dimen−sional i -th block-column of
(
λ
φ

k

)�, εg
i ,k is the nGi -

dimensional i -th block-row of ε
g
k , and

(
λ

g
i ,k

)� is the (nGi ×nu)-dimensional i -th block-row of(
λ

g
k

)�. Here, the special model structure (3.8) and (3.10) and the plant measurements vp and

yp are used to define the model functions φ(·) and g(·) as

φ(u) :=Φ
(
u,vp,k ,yp,k

)
(3.20c)

=
∑

i∈N

Φi
(
ui ,vp,i ,k ,yp,i ,k

)
, (3.20d)

g(u) := G
(
u,vp,k ,yp,k

)
(3.20e)

= col
(
G1

(
u1,vp,1,k ,yp,1,k

)
, . . . ,GN

(
uN ,vp,N ,k ,yp,N ,k

))
. (3.20f)

Moreover, the existence of a solution at every iteration k is required. Also, the filter (3.7g) is

applied.

This approach does not require models of the interconnections and outputs. Instead,
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3.3. Distributed MA without Interconnection Model

measurements of the outputs yp and of the interconnection variables vp are used. As with

distributed MA Algorithm 3.2, the computation of the solution can be fully parallelized, pro-

vided that (i) the plant inequality constraints are decoupled, that is, under Assumptions 3.3

and eq. (3.13) in Assumptions 3.4, (ii) the plant gradients are available, and (iii) K is a block-

diagonal filter gain matrix. Recall that, as an alternative to imposing Assumptions 3.3 and

3.4, the inequality constraints can be treated as soft constraints via penalty or barrier terms

in the cost. In any case, the solution to Problem (3.20) is obtained by solving in parallel the

following subproblems (for i ∈N ) at the k-th iteration:

u∗
i ,k+1 = argmin

ui

(
Φi

(
ui ,vp,i ,k ,yp,i ,k

)
+

(
λ
φ

i ,k

)�(
ui −ui ,k

))
(3.21a)

s.t. Gi
(
ui ,vp,i ,k ,yp,i ,k

)
+ε

g
i ,k +

(
λ

g
i i ,k

)�(
ui −ui ,k

)
≤ 0. (3.21b)

This results in the parallel Algorithm 3.3.

Algorithm 3.3 : Distributed MA without interconnection and output models

Initialization: Choose a block-diagonal and nonsingular filter gain matrix K and a feasible
input vector u(0).
for k = 0 →∞ and, in parallel for all i ∈N , do:

1. Apply the inputs ui ,k to the plant and wait for steady state.

2. Measure the plant constraint values gp,i (uk ), the interconnection variables vp,i ,k and

the outputs yp,i ,k . Estimate the gradients
dφp (u)

dui

∣∣∣
u=uk

and
dgp (u)

dui

∣∣∣
u=uk

.

3. Update the modifiers according to (2.5a)-(2.5c).

4. Obtain the solution u∗
i ,k+1 to the optimization problems (3.21).

5. Filter the inputs u∗
i ,k+1 as

ui ,k+1 = ui ,k +Ki
(
u∗

i ,k+1−ui ,k
)
. (3.22)

end

Just as in Algorithm 3.2, model does not need to be exchanged between the subsystem

optimizers as illustrated in Figure 3.5.

The property of Algorithm 3.3 is provided by the following theorem.

Proposition 3.3 (KKT matching for Algorithm 3.3). Let the sequence generated by Algorithm

3.3 converge, with u∞ = limk→∞uk . Then, u∞ is a KKT point for the plant optimization prob-

lem (3.4a) subject to (3.4b).

Proof. Stacking the inequality constraints and using the definition of the functions φ(·) and
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g(·), the equivalence of (3.20) with the standard MA scheme (2.4) follows immediately. Hence,

Theorem 2.2 applies and gives the desired result.

In summary, the distributed MA Algorithm 3.3 requires the least modeling effort but relies

the most on (if possible fairly accurate) measurements.

3.4 Numerical Example

To illustrate how the two proposed distributed modifier-adaptation schemes work, they are

applied to a simple numerical example from the literature, which does not require any domain-

specific knowledge.

3.4.1 Plant Description

The plant consisting of two interconnected subsystems as depicted in Figure 3.6 (Brdyś and

Tatjewski, 2005) is studied.

The interconnection structure of the system is reflected by the equalities

vp,1 − yp,21 = 0, (3.23a)

vp,2 − yp,1 = 0, (3.23b)

and the steady-state outputs of the subsystems are:

yp,11 = 4u1 +v 2
p,1, (3.24a)

yp,21 = 0.2eu2 −0.1u2vp,2, (3.24b)

yp,22 = 0.1u2vp,2 −0.2u2
2. (3.24c)

(3.24d)

The objective is to minimize the sum of the two costs

Φp,1 =−6u2
1 −5u1vp,1 + (yp,11 −1)2, (3.25a)

Φp,2 =u2
2 +4u2 +0.5(yp,22)2. (3.25b)

Subsystem 1 Subsystem 2
yp,11 vp,2

u1 u2

yp,22vp,1

yp,21

Figure 3.6 – Structure of the plant with two interconnected subsystems.
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subject to the box constraints

Gp,1(u1)= u1 −0.2 ≤ 0, (3.26a)

Gp,2(u2)= u2 −3 ≤ 0. (3.26b)

The steady-state inputs that optimize the plant performance are u∗
p = (0.2;−2.019)� .

3.4.2 Available Model

The available output model is as follows:

y11 =−u1 +0.6v1, (3.27a)

y21 = 0.63u2 +0.5v2, (3.27b)

y22 = 2.4u2 +2.2v2, (3.27c)

(3.27d)

The model cost functions are given as,

Φ1 = u2
1 +6u1 + (y11 −1)2, (3.28a)

Φ2 = u2
2 +4u2 +0.5(y22)2. (3.28b)

the model constraints are different:

G1(u1) = u1 −0.1 ≤ 0, (3.29a)

G2(u2) = u2 −3.5 ≤ 0. (3.29b)

Note that these optimal plant inputs are outside the feasible region of the model, that is,

they are infeasible for the nominal model-based optimization problem (3.27)–(3.29). As will

be seen in the following, this will not be a concern for the proposed distributed modifier-

adaptation algorithms. Furthermore, for all methods, exact plant gradients and noise-free

measurements are assumed to be available.

3.4.3 Simulation Results

The problem described in the previous section is solved via Algorithms 3.2, and 3.3. Each

of them is initialized at u(0) = (−0.5,0). The plant has two inputs u1 and u2, thus the filter

matrix K is 2×2 diagonal matrix. For both algorithms, a diagonal filter matrix of the form K =

diag([0.15 0.3]) is chosen. This choice of low filter gains indicate that both algorithms have

to take very cautious steps to avoid oscillations and divergence. In particular, the diagonal

values larger than 0.35 lead to divergence of Algorithm 3.3, thus being more sensitive to the

increase of eigenvalues of K in comparison to Algorithms 3.2 for this particular example.
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Figure 3.7 – Convergence of the input sequences and the plant cost.

As expected, the absence of accurate interconnection model, or of both the interconnection

and local output models, leads to slow convergence for Algorithms 3.2 and 3.3, respectively.

Figure 3.7 shows that the inputs converge only after about 40 to 50 RTO iterations, whereas

the plant cost converge to optimal value after about around 30 iterations. Still, the algorithms

take too many plant setpoint changes knowing that Figure 3.7 depicts only RTO iterations

without additional perturbations required for gradient estimation.

3.5 Conclusion

This chapter has discussed two distributed modifier-adaptation schemes for the real-time

optimization of interconnected systems. Such systems are increasingly encountered in many

areas of engineering, and distributed approaches to optimize the steady-state performance

in the presence of plant-model mismatch are highly relevant. The schemes proposed here

accomplish this task, and offer additional benefits such as confidentiality of subsystem mod-

els. The method of choice depends on a variety of factors, including the quality of the models

and of the measurements and the confidentiality of the models.
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3.5. Conclusion

On the one hand, Algorithms 3.2 and 3.3, demonstrate the strength of the modifier-adaptation

methodology even when there is no model of the subsystem interconnections. The model

used does not assume interaction between the subsystems, and the price to pay for this in-

cludes more RTO iterations for convergence to the plant optimum.

On the other hand, one may face severe practical difficulties in the application of these two

methods to a particular system. The problem of estimating the plant gradients is the most

challenging part in modifier-adaptation schemes. The presented algorithms require the knowl-

edge of the sensitivities of each subsystem’s cost and constraint functions with respect to the

inputs of other subsystems. In practice, obtaining these estimates can be very difficult de-

pending on the dimensionality of the system, the dynamics of the whole plant and the time

it takes to go to steady state. Moreover, the complexity of estimating these plant gradients

would be comparable to that of treating the whole plant as one unit. Furthermore, the as-

sumptions regarding the inequalities in Section 3.3.1 may be rather restrictive since they do

not allow the inequality constraints to depend on the interconnection variables.
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4 Modifier Adaptation for Intercon-
nected Systems using Local Modifiers

This chapter is based on:

P. Milosavljevic, R. Schneider, T. Faulwasser, and D. Bonvin. Distributed modifier adap-

tation using a coordinator and measured interconnection variables. In 20th IFACWorld

Congress, Toulouse, France, 2017.

P. Milosavljevic, R. Schneider, A. Cortinovis, T. Faulwasser, and D. Bonvin. A distributed

feasible-side convergentmodifier-adaptation scheme for interconnected systems, with

application to gas-compressor stations. Comp. Chem. Eng., 115:474–486, 2018c.

This chapter focuses on model-based steady-state optimization of interconnected sys-

tems utilizing an interconnection model and local measurements. As a continuation of the

previous chapter, we deal here with plants that consist of interconnected subsystems, which

implies that the subsystems are influenced not only by their decision variables (inputs) but

also by interconnection variables that are outputs of other subsystems. Hence, these inter-

connection variables cannot be directly manipulated. We assume that the measurements of

the interconnection variables v and outputs y are available. In fact, this chapter extends the

MA framework for interconnected systems presented in the previous chapter to the schemes

that uses only local measurements of each subsystem for plant gradient estimates. Namely,

the proposed schemes rely on the use of local modifiers. This means that the gradients of

i -th subsystem with respect to its own local inputs ui and vi are required. Furthermore, we

propose two MA formulations.

Firstly, a centralized MA scheme is proposed and its KKT matching properties are ana-

lyzed. The second scheme is a coordinator-based distributed MA scheme. The proposed

algorithm has a two-layer structure. In the inner loop, a coordinator ensures that the inputs

of the local subproblems are consistent with the interconnection model. Upon convergence

of the inner loop, these consistent inputs are applied to the plant in the outer loop. Note

that, the proposed scheme does not require the models underlying each subproblems to be
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Chapter 4. Modifier Adaptation for Interconnected Systems using Local Modifiers

shared with other subsytems for purpose of obtaining the plant gradient estimates. This is

possible due to a novel way of updating the modifiers in the distributed RTO framework.

Furthermore, we propose a distributed modifier-adaptation algorithm that, besides the in-

terconnection model, employs a coordinator, and we prove its feasible-side convergence to

the plant optimum.

Section 4.1 gives the description of the plant and model optimization problem. Section

4.2 presents the centralized MA problem of optimizing an uncertain plant with intercon-

nected subsystems. In Section 4.3, the distributed MA algorithm is proposed and analyzed.

We describe these two algorithms, namely a centralized MA and a decentralized MA, both

using measurement of interconnection variables. Their effectiveness is illustrated in Section

4.5 on a numerical example and a load-sharing optimization problem of serial compressors.

Finally, Section 4.6 concludes the chapter.

4.1 Problem Formulation

Here we present the plant and model optimization problem with the same structure as given

in Chapter 4. Since outputs are functions of u and v, for the sake of simplicity, we exclude

cost and inequality constraint dependence on outputs and write them directly as functions

of u and v.

4.1.1 Plant Optimization Problem

The problem of finding optimal operating conditions for a plant with interconnected systems

and known interconnection model, depicted in Figure 4.1, can be formulated as the following

NLP

(u�

p ,v�p ) =argmin
u,vp

Φp (u,vp ) (4.1a)

s.t. yp := Fp (u,vp ) (4.1b)

Gp (u,vp )≤ 0 (4.1c)

vp =Hp (yp ) (4.1d)

where u ∈ R
nu , vp ∈ R

nv and yp ∈ R
ny are the steady-state plant inputs, interconnection vari-

ables and outputs, respectively. Φp : Rnu ×R
nv → R is the cost of the whole plant, Gp : Rnu ×

R
nv →R

nG are the process constraints and Hp ∈R
nv is the interconnection function. We con-

sider that the plant consists of N interconnected subsystems, i ∈N = {1, . . . , N }. Subsystem i

has the inputs ui ∈ R
nui , the interconnection variables vp,i ∈ R

nvi , the outputs yp,i ∈ R
nyi are

defined as in (3.8c)-(3.8f) while the constraints Gp,i ∈R
nGi are organized as

Gp (u,vp ) = col
(
Gp,1(u1,vp,1), . . . ,Gp,N (uN ,vp,N )

)
. (4.2a)
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4.2. Centralized MA with Interconnection Model

vp = H(yp )

Subsystem
i

Subsystem
j �= i

. . .

yp,i

yp, j

ui

u j

vp,i

vp, j

Figure 4.1 – Plant composed of interconnected subsystems. The interconnection variables
are the inputs vp .

Furthermore, we assume that the objective Φp is separable,

Φp (u,v) =
∑

i∈N

Φp,i (ui ,vp,i ). (4.2b)

4.1.2 Model Optimization Problem

In practice, the plant functions Φp , Fp , Gp ,Hp are usually not known accurately; only models

of these functions are available. Hence, the structure shown in Figure 4.1 is also assumed

for the model, with which only an approximate solution to Problem (4.1) can be obtained by

solving the following model-based problem:

(u�,v�) =argmin
u,v

Φ(u,v) (4.3a)

s.t. y := F(u,v) (4.3b)

G(u,v) ≤ 0 (4.3c)

v = H(y) , (4.3d)

where v ∈ R
nv and y ∈ R

ny are the modeled interconnection variables and outputs, respec-

tively. Similar to the plant, the constraint models G, and the cost function Φ are defined as:

G(u,v) = col
(
G1(u1,v1), . . . ,GN (uN ,vN )

)
, (4.4a)

Φ(u,v) =
∑

i∈N

Φi (ui ,vi ). (4.4b)

4.2 Centralized MA with Interconnection Model

The process measurements are used to iteratively modify the model-based problem (4.3) by

introducing local modifiers. Namely, a centralized formulation of the scheme is proposed,
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Chapter 4. Modifier Adaptation for Interconnected Systems using Local Modifiers

given by the following sequence of optimization problems(
u�

k+1,v�k+1

)
=argmin

u,v
Φ(u,v)+

(
λΦ

k

)� (
z−zp,k

)
(4.5a)

s.t. y := F(u,v) (4.5b)

Gm := G(u,v)+εG
k +

(
λG

k

)� (
z−zp,k

)
≤ 0 (4.5c)

v = H(y)+εH
k +

(
λH

k

)� (
z−zp,k

)
, (4.5d)

where z� := [z�1 , . . . ,z�N ] and z�p := [z�p,1, . . . ,z�p,N ] with, for all i ∈ N , z�i := [u�
i ,v�i ] and z�p,i :=

[u�
i ,v�p,i ]. Furthermore,λΦ

k ∈R
nu+nv is the vector of first-order cost modifiers, λH

k ∈R
(nu+nv )×nQ

are first-order modifiers of interconnection constraints, εH
k ∈ R

nQ are zero-order modifiers

of interconnection constraints, λG
k ∈ R

(nu+nv )×nG are first-order constraint modifiers, and

εG
k ∈R

nG are zero-order constraint modifiers. These modifiers are defined as:

λΦ

k =∇zpΦp
(
uk ,vp,k

)
−∇zΦ

(
uk ,vp,k

)
(4.6a)

εG
k =Gp

(
uk ,vp,k

)
−G

(
uk ,vp,k

)
(4.6b)

λG
k =∇zp Gp

(
uk ,vp,k

)
−∇zG

(
uk ,vp,k

)
(4.6c)

εH
k =Hp

(
yp

(
uk ,vp,k

))
−H

(
y
(
uk ,vp,k

))
(4.6d)

λH
k =∇zp Hp

(
yp

(
uk ,vp,k

))
−∇zH

(
y
(
uk ,vp,k

))
. (4.6e)

Moreover, we assume that the new inputs are filtered before being applied to the plant,

uk+1 = uk +K
(
u�

k+1−uk
)
. (4.7)

In its simplest form, the algorithm proceeds as follows

Algorithm 4.1 : Centralised MA with Local Modifiers

Initialization: choose the diagonal filter matrix K with eigenvalues in the interval (0,1] and
choose a feasible input vector u0.
for k = 0 →∞ do:

1. Apply the inputs uk to the plant and wait for steady state.

2. Update the modifiers according to (4.6a)-(4.6e).

3. Solve the modified model-based optimization problem (4.5)

4. Filter the inputs according to (4.7).

end

Assumption 4.1 (Existence of a solution).

We assume that the solution to Problem (4.5) exists at every iteration k and that it is a regular

KKT point. �
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4.3. Distributed MA with Interconnection Model

Assumption 4.2 (Unique solution).

For every admissible input vector u, there is a unique vector v such that the pair (u,v) is solu-

tion to equations (4.5d). �

Now we show that fixed point of Algorithm 4.1 is a KKT point of the plant problem (4.1).

Proposition 4.1 (KKT matching for Algorithm 4.1).

Let Assumptions 4.1–4.2 hold and let Algorithm 4.1 converge to (u∞,v∞). Then (u∞,v∞) is a

KKT point of Problem (4.1). �

Proof. The proof can be found in Appendix C.4.

Remark 4.1 (Alternative modifier formulation).

Note that the modifiers (4.6a)-(4.6e), estimated at point (u,vp ), are written with respect to the

inputs u and the interconnection variables v. Also, note that the plant variables vp differ from

v due to model uncertainty. Hence, the modifiers differ from those in standard schemes, where

only gradient information with respect to the decision variables u is used (Marchetti et al.,

2009, 2016). �

Note that outputs y are not the decision variables in Problem 4.5. Here, outputs are used

to define v in (4.5d) but they will play an important role in distributed schemes as we will see

next. In the following section, the structure of Problem (4.5) is exploited for the distributed

implementation of MA scheme.

4.3 Distributed MA with Interconnection Model

Here, the distributed MA scheme for interconnected systems with the plant and model struc-

ture in Figure 4.1 is proposed. Also, a feasible-side convergent distributed MA scheme is

investigated.

Prior to details on MA schemes, the following assumption regarding the interconnection

constraint in (4.1d) and (4.3d) is stated.

Assumption 4.3 (Interconnections are linear in outputs).

The interconnection functions Hp
(
yp

)
and H

(
y
)

are linear in outputs yp and y, respectively,

namely, Hp (yp ) = Hyp and H(y) = Hy, where the matrix H is known. Furthermore, H is as-

sumed to consist of zero and ones only, with precisely one non-zero element in each row and

each column. �

Note that assuming knowledge of the interconnection matrix H is realistic for physical

systems where the outputs of one unit are inputs to another unit. A real-world example sat-

isfying Assumption 4.3 will be discussed for the problem of scheduling gas compressor sta-

tions.
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4.3.1 Distributed MA Formulation

As the cost and constraints of all subproblems are functions of only the local variables ui

and vi , we now reformulate optimization problem such that the structure is suitable for dis-

tributed algorithms. To this end, consider

(
u�

k+1,v�k+1

)
= argmin

u,v

∑
i∈N

(
Φi (ui ,vi )+

(
λ
Φi

k

)� (
zi −zp,i ,k

))
(4.8a)

s.t. ∀i ∈N :

ym,i := Fi (ui ,vi )+ε
Fi

k +

(
λ

Fi

k

)� (
zi −zp,i ,k

)
(4.8b)

Gi (ui ,vi )+ε
Gi

k +

(
λ

Gi

k

)� (
zi −zp,i ,k

)
≤ 0 (4.8c)

v = Hym , (4.8d)

where λΦi ∈R
nui +nvi , λFi ∈R

(nui +nvi )×nyi , λGi ∈R
(nui +nvi )×nGi are the first-order modifiers and

εFi ∈R
nyi , εGi ∈R

nGi are the zero-order modifiers; nGi is the number of inequality constraints

and nyi is the number of measured outputs for each i -th subsystem. The modifiers are ob-

tained as:

λ
Φi

k =∇zp,i Φp,i
(
ui ,k ,vp,i ,k

)
−∇zi Φi

(
ui ,k ,vp,i ,k

)
(4.8e)

ε
Gi

k = Gp,i
(
ui ,k ,vp,i ,k

)
−Gi

(
ui ,k ,vp,i ,k

)
(4.8f)

λ
Gi

k =∇zp,i Gp,i
(
ui ,k ,vp,i ,k

)
−∇zi Gi

(
ui ,k ,vp,i ,k

)
(4.8g)

ε
Fi

k = Fp,i
(
ui ,k ,vp,i ,k

)
−Fi

(
ui ,k ,vp,i ,k

)
(4.8h)

λ
Fi

k =∇zp,i Fpi

(
uk ,vp,i ,k

)
−∇zi Fi

(
ui ,k ,vp,i ,k

)
. (4.8i)

Prior to discussion about the properties of the scheme, the following assumption regard-

ing the model is stated.

Assumption 4.4 (Convex nominal models).

In Probelm 4.3, the nominal model has strictly convex cost functionsΦi , linear inequality func-

tions Gi and linear steady-state outputs Fi , ∀i ∈N . �

Problem (4.8) has a special structure that can be exploited for its distributed implementa-

tion. In particular, at every iteration k of Problem (4.8), the cost function (4.8a), the equality

constraints (4.8b) and the inequality constraints (4.8c) are functions of the local variables

zi . The coupled equality constraints (4.8d) can be handled by moving them into the objec-

tive function upon formulating the augmented Lagrangian. Since the modified cost function

(4.8a) is convex (due to Assumption 4.4) and the constraints (4.8b)-(4.8d) are linear, dual de-

composition has been proposed to obtain a solution in distributed way (Necoara et al., 2011).

In particular, Problem (4.8) can be solved iteratively with a two-step procedure:
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4.3. Distributed MA with Interconnection Model

Step 1: For all i ∈N , obtain the solution to the following optimization problem:(
ul ,�

i ,k+1,vl ,�
i ,k+1

)
= argmin

(ui ,vi )∈Gi

Φi (ui ,vi )+

+

(
λ
Φi

k

)� (
zi −zp,i ,k

)
+

(
μl

i

)�
vi −

∑
j∈N

(
μl

j

)�
Hi j ym,i (4.9)

Step 2: Update of dual variable μ:

yl ,�
m,i ,k+1 := Fi (ul ,�

i ,k+1,vl ,�
i ,k+1)+ε

Fi

k +

(
λ

Fi

k

)� (
zl ,�

i ,k+1 −zp,i ,k

)
,∀i ∈N (4.10a)

μl+1
=μl

+ρμ

(
v l ,�

k+1 −Hyl ,�
m,k+1

)
(4.10b)

where Hi j ∈ R
nv j ×nyi , μ is the dual variable of the equality constraint (4.8d), ρμ > 0, and l is

the counter of the model-based inner-loop iterations. As a result, we propose Algorithm 4.2

as a distributed MA scheme that exploits the knowledge of the interconnection model. As can

be seen in Figure 4.2, Algorithm 4.2 required existence of the coordinator to ensure meeting

the coupled equality constraints. In its simplest form, the algorithm proceeds as follows

Algorithm 4.2 : Distributed MA with Local Modifiers

Initialize: Choose a step size parameter ρμ, an initial dual variable μ0, a sequence of filter
gain matrices Kk for all nonnegative integers k , and a feasible input vector u0.

for k = 0 →∞ do:

1. Apply the inputs uk to the plant and wait for steady state.

2. Measure the interconnection variables vp . Also, measure the plant cost, constraints
and outputs, and estimate their gradients with respect to zp .

3. Update the modifiers according to (4.8e)-(4.8i).

4. for l = 0 → convergence do:

(a) For all i ∈N , compute in parallel the solutions
(
ul ,�

i ,k+1,vl ,�
i ,k+1

)
to the optimization

problem (4.9).

(b) Update the dual variable μ according to (4.10).

end

5. Filter the inputs according to (4.7).

end

Now, we propose the following
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Chapter 4. Modifier Adaptation for Interconnected Systems using Local Modifiers

Proposition 4.2 (KKT matching for Algorithm 4.2).

Let Assumptions 4.1–4.4 hold. Then,

(i) there exist a ρμ > 0 such that the inner loop of Algorithm 4.2, defined by (4.9)-(4.10),

converges to the optimum of Problem (4.8).

(ii) If in addition, in the outer loop, the modifiers in (4.8a)–(4.8d) are updated according to

(4.8e)-(4.8i), then, upon convergence of the outer loop, a KKT point
(
u�

p ,v�p
)

of the plant

Problem (4.1) is reached.

�

Proof. Part (i): The iterative procedure of Steps (4.9) and (4.10) is essentially a dual decom-

position discussed in (Necoara et al., 2011, Thm. 3.5). Furthermore, due to Assumption 4.4,

Problem (4.8) is strictly convex. Hence, convergence of the inner loop (4.9)-(4.10) to the op-

timal solution of its centralized formulation (4.8) can be enforced via a proper choice of the

tuning parameter ρμ.

Part (ii): Upon convergence of the outer loop, optimal values
(
u�
∞,v�∞

)
of Problem (4.8)

correspond to the KKT point of plant problem (4.1). This can be shown in the similar way as

in Proposition 4.1.

Remark 4.2 (Local modifier estimation).

Note that each subproblem i relies on the usage of the local input-output measurements ui

and vp,i to handle uncertainty locally. Due to the linearity of the constraints (Assumption 4.4),

there is no need to exchange the plant and model gradient information among subsystems. �

Coordinator

Subsystem
optimizer

i

v1 y1

u1

Subsystem
optimizer

N

vN
yN

uN

Subsystem
1

. . .

Subsystem
N

H

. . .

μl μlul
1,vl

1 ul
N ,vl

N

Figure 4.2 – Coordination-based structure of Algorithm 4.2.
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Remark 4.3 (Advantages of using convex models).

The use of convex models guarantees model adequacy without prior knowledge of the plant

optimum (Marchetti et al., 2009; François and Bonvin, 2013a). Furthermore, adding affine

modifiers to the cost and constraints will preserve a convex structure to MA optimization prob-

lem. This implies that distributed convex solvers can be used, whose convergence properties

are well established (Boyd et al., 2011). However, more RTO iterations might be required if the

convex models are not good plant approximations. �

Remark 4.4 (Non-convex models).

Note that assumption regarding convexity is required only for convergence of inner-loop itera-

tions. These iterations are model-based and one may choose different algorithm to obtain the

solution of (4.9)-(4.10) depending on the cost and constraint structure of Problem (4.3). For

example, if Problem (4.3) is non-convex, one might choose techniques detailed by Hours and

Jones (2016); Houska et al. (2016). �

4.3.2 A Feasible-Side Convergent Distributed MA Algorithm

The distributed MA methodology proposed in Subsection 4.3.1 guarantees optimality of the

plant upon convergence. In addition, the design of a distributed method should enforce

properties such as the feasibility of the plant constraints (4.1c) as well as monotonic improve-

ment of the plant cost through all RTO iterates. Here, a distributed MA algorithm that guar-

antees feasible-side convergence to the plant optimum is proposed as a modification of the

distributed algorithm presented in Subsection 4.3.1.

Firstly, we define the cost functions and constraint functions by adding second-order

terms for i -th subproblem:

Φ
U
i ,k (ui ,vi ) :=Φi (ui ,vi )+

(
λ
Φi

k

)� (
zi −zp,i ,k

)
+
δΦi

2
‖zi −zp,i ,k‖

2
2, (4.11)

GU
i , j ,k (ui ,vi ) :=Gi , j (ui ,vi )+ε

Gi , j

k +

(
λ

Gi , j

k

)� (
zi −zp,i ,k

)
+
δGi , j

2
‖zi −zp,i ,k‖

2
2 ≤ 0, j = 1, . . . ,nGi .

(4.12)

where δΦi ,δGi , j are some positive scalars.

The feasible convex set for i -th subsystem at the k-th RTO iteration is defined as

F
U
i ,k =

{
(ui ,vi ) ∈R

ui ×R
vi : GU

i , j ,k (ui ,vi ) ≤ 0, j = 1, . . . ,nGi

}
.

Let us now propose the following distributed MA algorithm:
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Algorithm 4.3 : Distributed Feasible-Side Convergent MA with Local Modifiers

1. Initialization: Choose a step size parameter ρμ, an initial dual variable μ0 and a feasible
input vector u0, and set k := 0.

2. Plant experiment: Apply the inputs uk to the plant and wait for steady state.

3. Modifier computation: Compute the modifiers as per (4.8e)-(4.8i).

4. New input calculation:
for l = 0 → convergence do:

(a) For all i ∈N , compute in parallel the solutions(
ul ,�

i ,k+1,vl ,�
i ,k+1

)
= argmin

(ui ,vi )∈F
U
i ,k

Φ
U
i ,k (ui ,vi )+

(
μl

i

)�
vi −

∑
j∈N

μl ,�
j Hi j ym,i (4.13)

(b) Update the dual variable μ according to (4.10).

end

5. Iterate: Set k := k +1 and return to Step 2.

To establish convergence of this algorithm, we need that Assumption 3.1 holds. This

means that interconnection variables can be expressed as the functions of input vector u.

This assumption allows transforming the plant functions with interconnection variables v

into RTO formulation where cost and constraints are functions of vector u

hp = col(hp,1, . . . ,hp,N ), (4.14a)

gp,i , j (u) =Gp,i , j (ui ,hp,i (u)), j = 1, . . . ,nGi (4.14b)

φp,i (u) =Φp,i (ui ,hp,i (u)), ∀i ∈N , (4.14c)

φp (u) =
∑

i∈N

φp,i (u). (4.14d)

Assumption 4.5 (Differentiable functions).

Let Φi (ui ,vi ), φp (u) and gp,i , j (u) be differentiable functions and let their gradients be δΦm

i , δφp

and δ
gp

i , j -Lipschitz continuous, respectively. �

Assumption 4.6 (Invertibility).

The matrix
(
I−H∇vp F�

p (zp,k )
)
, where the plant functions Fp are used in (4.1b) and H in As-

sumption 4.3, is invertible. �

Adding second-order terms in (4.11) forces monotonic decrease of the plant cost in the dis-

tributed MA algorithm as will be show next. Hence, the properties of Algorithm 4.3 are stated

in the following proposition:

Proposition 4.3 (Feasible-side convergence).

Let Assumptions 3.1, and 4.3–4.6 hold. Then,
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(i) there exist ρμ > 0 such that the inner loop of Algorithm 4.3 converges to the optimum of

Problem (4.8) at every RTO iteration k;

(ii) the plant cost decreases monotonically at each RTO iteration if δΦi −3δΦm
i −δφp ≥ 0,∀i ∈

N ; and

(iii) there exist a positive constant δΔi , j ∈ R, such that all RTO iterates satisfy the plant con-

straints (4.1c) if δGi , j > δΔi , j , j = 1, . . . ,nGi ,∀i ∈N .

Proof. The proof can be found in Appendix C.5.

Remark 4.5 (Convergence of inner-loop algorithm).

It has been shown that adding the second-order terms to the cost and constraints in (4.11) en-

forces concavity of the dual function for each sub-problem (Necoara et al., 2009). Hence, a dual

fast gradient (DFG) algorithm can be implemented for the update of μ for fast convergence of

inner-loop algorithm (Necoara et al., 2011). �

Putting Proposition 4.3 differently, Algorithm 4.3 proposes a feasible-side MA scheme

that exploits the knowledge of the interconnection model and local measurements. As al-

ready mentioned in Assumption 4.4, the presented algorithm requires utilization of convex

nominal models. As can be seen in Algorithm 4.3, the existence of the coordinator is needed

to ensure meeting the coupled equality constraints (4.8d) by iteratively adjusting the dual

variables. Based on these dual variables, the subsystem optimizers solve the N decoupled

optimization problems. This is the inner-loop part of the algorithm, whose iterates are cheap

in comparison to the RTO iterates k in the outer loop, the latter involving an experimental

setpoint change in the plant.

4.4 Estimation of Modifiers from Past Operating Points

Let us now discuss the approach for obtaining local modifiers and upper bound on the gradi-

ent error norm of Lagrangian function for the plant with interconnected systems described

in Section 4.1.1.

Here, the method based on linear interpolation or linear regression introduced in Section

2.2.5 is leveraged for interconnected systems. At the k-th RTO iteration, the following input

matrix can be constructed for i -th unit

Ui ,k
(
zp,i ,k

)
= [zp,i ,k −zp,i ,k−1, . . . ,zp,i ,k −zp,i ,k−nzi

]� ∈R
nzi ×nzi . (4.15a)

Assuming that measurements of the cost Φp,i and constraints are available at each iteration,

we construct the following vectors at the k-th RTO iteration, as well as their model counter-
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parts:

δΦ̃p,i = [Φ̃p,i ,k − Φ̃p,i ,k−1, . . . ,Φ̃p,i ,k − Φ̃p,i ,k−nzi
]� ∈R

nzi

δΦi = [Φi ,k −Φi ,k−1, . . . ,Φi ,k −Φi ,k−nzi
]� ∈R

nzi

The measured cost has measurement noise νk

Φ̃p,i ,k =Φp,i ,k +νk .

If Uk is nonsingular, then the set of nzi +1 RTO points {zk− j }
nzi
j=0 is said to be poised for linear

interpolation in R
nzi . The cost modifier at zp,i ,k can then be estimated by FDA as follows:

λ
Φi

k =
(
δΦ̃p,i −δΦi

)� U−1
i ,k

= �∇zp,i Φp,i
(
zp,i ,k

)
−∇zp,i Φi

(
zp,i ,k

)
(4.15b)

where �∇zp,i Φp,i
(
zp,i ,k

)
= δΦ̃�

p,i U−1
i ,k and ∇zp,i Φi

(
zp,i ,k

)
= δΦ�

i U−1
i ,k . The constraint gradient

modifiers in (4.8g) and (4.8i) can be computed in a similar way.

Bounds on Gradient Uncertainty

For the purpose of optimization, the perturbations should be selected so as to obtain accu-

rate Lagrangian gradient estimates (Marchetti et al., 2010). An upper bound on the gradient

error norm is discussed in Section 2.2.4. Assuming that interconnection constraint in (4.1d)

has structure Qp := vp −Hyp (zp ) = 0, the measured value of Lagrangian function for the plant

with interconnected systems described in Section 4.1.1, can be expressed as

L̃p (zp )=
∑

i∈N

Φ̃p,i (zp,i )+
∑

i∈N

μ�
Gi

G̃p,i (zp,i )+μ�
Q Q̃p (zp )

=
∑

i∈N

(
Lp,i (zp,i )+νi

)
. (4.16a)

Here νi denotes the resulting noise in the Lagrangian function of i -th subsystem and μG ,μQ

being the Lagrange multipliers. The superscript (̃·) denotes noisy measurements. In (4.16a),

Lp,i (zp,i ),∀i ∈N are

Lp,i (zp,i )=Φp,i (zp,i )+μ�
Gi

Gp,i (zp,i )+μ�
Q ,i vp,i −

∑
j∈N

μ�
Q , j Hi j yp,i (zi ).

Therefore, the i -th gradient ∇zp,i Lp,i ∈R
1×nzi , i ∈N is given as

∇zp,i Lp,i =∇zp,i Φp,i (zp,i )+μ�
Gi
∇zp,i Gp,i (zp,i )+μ�

Qi
−

∑
j∈N

μ�
Q ,i Hi j∇zi yp,i (zi ).
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Finally, the gradient estimation error εLi (zp,i ) ∈R
nzi ×1 can be stated as

εLp,i (zp,i ) = εΦp,i (zp,i )+μ�
Gi
εGp,i (zp,i )−

∑
j∈N

μ�
Q , j Hi j ε

yp,i (zp,i ) (4.18)

where εΦp,i (zp,i ),εGp,i (zp,i ) and εyp,i (zp,i ) are gradient estimation error of the cost Φp,i , con-

straint Gp,i and outputs yp,i , respectively. As already explained in Section 2.2.4, each error

function is defined as difference between the estimated gradient and the true plant gradient

which can be split in truncation and measurement noise error as in (2.14b).

Let Lp,i (zp,i ) be a twice continuously differentiable function, then the norm of the gradi-

ent error εLp,i (zp,i ) in (4.18) can be upper bounded as follows

‖εLp,i ‖≤ ‖εΦp,i ‖+‖μGi ‖‖ε
Gp,i ‖+

∑
j∈N

‖μQ ,i‖‖Hi j‖‖ε
yp,i ‖

≤ E
Lp,i := E

Φp,i +‖μGi ‖E
Gp,i +

∑
j∈N

‖μQ ,i‖‖Hi j‖E
yp,i (4.19)

where E
Φp,i ,E Gp,i and E

yp,i are the bounds on gradient error of plant functions Φp,i ,Gp,i and

yp,i . These bounds are obtained as in (2.15) in Subsection 2.2.4.

4.5 Examples

Next, we present two examples. Subsections 4.5.1 and 4.5.2 discuss the application of Algo-

rithms 4.2 and 4.3, respectively. Here, we consider that the plant gradient estimates are exact.

4.5.1 Numerical Example

We illustrate the essential features of the proposed distributed modifier-adaptation schemes

via a numerical example. We study a system consisting of two interconnected subsystems as

depicted in Figure 4.3. The interconnection structure is

v1 − y21 = 0, (4.20a)

v2 − y11 = 0. (4.20b)
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Subsystem 1 Subsystem 2
y11 v2

u1 u2 y22v1

y21

Figure 4.3 – Input-output structure of two interconnected subsystems.

The objective is to minimize the total cost
∑2

i=1Φi of the plant defined next:

yp,11 = 2.6u1 +0.1v 2
p,1, (4.21a)

yp,21 = 0.2eu2 −0.1u2vp,2, (4.21b)

yp,22 = 0.1u2vp,2 −0.2u2
2, (4.21c)

Gp,1 = u2
1 −vp,2 −0.5 ≤ 0, (4.21d)

Φp,1 =−6u2
1 −5u1vp,1 + (yp,11 −1)2, (4.21e)

Φp,2 = u2
2 +4u2 +0.5(yp,22)2. (4.21f)

The available model reads:

y11 = 2.2u1 +0.6v1, (4.22a)

y21 = 0.63u2 +0.5v2, (4.22b)

y22 = 2.4u2 +2.2v2, (4.22c)

G1 = u1 −v2 ≤ 0, (4.22d)

Φ1 = u2
1 +6u1 + (y11 −1)2, (4.22e)

Φ2 = u2
2 +4u2 +0.5(y22)2. (4.22f)

The plant optimum is u∗
p = (1.0998,−2.3744), while the optimal input for the nominal

model is u∗ = (0.1190,−0.1071). We assume that exact plant gradients and noise-free mea-

surements are available.

The optimum solution to the plant problem (4.20) and (4.21) is obtained by using the

model equations (4.20), (4.22) and distributed MA Algorithm 4.2. As the model optimization

problem satisfies Assumption 4.4, dual decomposition with ρμ = 1 is used. Moreover, we use

the filter gain K = 0.8I.

The resulting sequences of inputs and interconnection variables are shown in Figure 4.4.

The algorithm converges to the optimal plant values for both u and v. For every RTO iteration,

the number of model-based inner iterations is shown in Figure 4.5. The algorithm was also

tested in the presence of errors on the plant cost and constraint gradients. Additive zero-

mean errors with 8% standard deviation were considered. In this case, the input sequence

converges to a small neighborhood of the plant optimum, which is similar to the observation

made by Marchetti et al. (2009).
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4.5.2 Optimization of Serial Gas-Compressor Station

In the following example the problem of optimal load sharing of serial gas compressors in

the presence of plant-model mismatch has been tackled. We analyze the station with two

compressors in series due to the simplicity but it can be easily scaled to the case of N com-

pressors. We tackle this problem via Algorithm 4.3. The main advantage of the algorithm is

that it guarantees convergence to the plant optimum by requiring only local estimation of

the modifiers.

Consider a station with two compressors in series as shown in Figure 4.6. The optimal

setpoints for the speed ωi and the recycle valve opening Vrec ,i , with i ∈ N = {1,2}, can be

obtained by minimizing the sum of the power consumption of the two compressors. It is

assumed that the station is operated by keeping the inlet Vi n,i and outlet Vout ,i valves at con-

stant values. In the serial configuration, the two compressors are arranged such that the

discharge tank of the first compressor feeds into the suction tank of the second compressor,

as shown in Figure 4.6. Hence, the interconnection relationship of the compressors reads

pi n,2 = pd ,1. It is necessary that the pressure downstream of Compressor 2 be above a spec-

ified pressure setpoint psp
d ,2. Mathematically, the centralized RTO problem can be stated as

follows:

min
ω1,ω2

Φ1 +Φ2 (4.23a)

s.t. steady-state model equations

s0,i − s1,i mc,i +Πi ≤ 0, i ∈ {1,2} (4.23b)

c0,i +c1,i mc ,i −Πi ≤ 0, i ∈ {1,2} (4.23c)

0≤Vrec ,i ≤V U
rec ,i , i ∈ {1,2} (4.23d)

ωL
i ≤ωi ≤ωU

i , i ∈ {1,2} (4.23e)

psp
d ,2 −pd ,2 ≤ 0 (4.23f)

pi n,2 = pd ,1, (4.23g)

where s0,i and s1,i are positive constants that define surge constraints (4.23b). The violation

of this constraint is prevented with anti-surge controller (ASC). Furthermore, c0,i and c1,i

define choke constraints (4.23c). Also, there are lower and upper bounds for the recycle valve

openings Vrec ,i in (4.23d), as well as for the speed ωi in (4.23e).

Load-sharing optimization via distributed MA Algorithm 4.3

For simplicity, the analysis is restricted to station flow setpoints psp
d ,2 for which all compres-

sors operate far from the surge line, that is, without the need for anti-surge control. In other

words, we assume Vrec ,1 = Vrec ,2 = 0. The interconnection variable v2 = pi n,2 is given by the

interconnection realtionship (4.23g), where the output of Compressor 1 is y1 = pd ,1. Hence,

the interconnection model (4.8d) for the system presented in Figure 4.6 is given as v2 = H y1,
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Figure 4.6 – Schematic diagram of serial compressors.

where H = 1. Also, the local inputs for each subsystem are defined as

z�1 =
(
ω1, pi n,1

)
, z�2 =

(
ω2, pi n,2

)
. (4.24)

Plant-model mismatch is introduced by using different compressor maps (2.24) for the

model and the plant. The efficiency maps (A and B) for two different plants, shown in Figure

4.7, are used in (2.25a) to obtain the plant cost functions Φp,1 and Φp,2. The model cost func-

tions Φ1 and Φ2 are obtained using the model efficiency map in Figure 4.7. Enforcing plant

optimality via Algorithm 4.3 requires the use of of convex cost models and linear constraints

with respect to the local inputs. Hence, linearized model equations and constraints of Prob-

lem (4.23) are used as well as the convex cost models Φ
c
i of Φi with respect to zi at the initial

operating points zp,1,0 and zp,2,0 of Compressor 1 and Compressor 2, respectively.

For each compressor, the local optimization problem is used in the inner-loop of Algo-

rithm 4.3:

(i) The optimization problem for the first compressor is defined according to (4.13):

zl ,�
1,k+1 = argmin

z1∈F
U
1,k

Φ
c
1(z1)+

(
λ
Φ1

k

)� (
z1 −zp,1,k

)
+
δΦ1

2
‖z1 −zp,1,k‖

2
2 −μl pd ,m,1(z1), (4.25a)

where μ are the Lagrange multipliers of the interconnection constraint (4.23g) and

F
U
1 is the feasible set of Compressor 1 defined via box constraints on the speed ω1

in (4.23e).

Also, pd ,m,1(z1) is the modified discharge pressure function:

pd ,m,1(z1) = pd ,1(z1)+ε
pd ,1

k +λ
pd ,1

k

(
z1 −zp,1,k

)
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Figure 4.7 – Comparison between the model efficiency map (grey) and the plant efficiency
maps (red) for two different compressors. The maps are shown as contour plots, whereas the
dashed black lines represent the operating range of the gas compressor.

and modifiers for the first compressors read:

ε
pd ,1

k = pd ,p (zp,1,k )−pd (zp,1,k )

λ
Φ1

k =∇z1Φp,1(zp,1,k )−∇z1Φ
c
1(zp,1,k )

λ
pd ,1

k =∇z1 pd ,p,1(zp,1,k )−∇z1 pd ,1(zp,1,k ).

Here, ∇z1Φp,1(zp,1,k ) and ∇z1 pd ,p,1(zp,1,k ) are the derivatives with respect to z1 of the

plant cost Φp,1 and plant outlet pressure pd ,p,1, respectively, evaluated at zp,1,k . λΦ1

and λpd ,1 are the cost and outlet pressure modifiers, respectively.

(ii) The optimization problem for the second compressor reads:

zl ,�
2,k+1 = argmin

z2∈F
U
2,k

Φ
c
2(z2)+

(
λ
Φ2

k

)� (
z2 −zp,2,k

)
+
δΦ2

2
‖z2 −zp,2,k‖

2
2 +μl pi n,2(z2), (4.26a)

with F
U
2,k being the feasible set of Compressor 2 defined as F

U
2,k = Uω2 ∩GU

2,k , where

70



4.5. Examples

Uω2 denote box constraints on the speed ω2 (4.23e) and GU
2,k is defined as

GU
2,k :=G2(z2)+ε

G2

k +

(
λ

G2

k

)� (
z2 −zp,2,k

)
+
δG2

2
‖z2 −zp,2,k‖

2
2 ≤ 0 (4.26b)

G2(z2) := psp
d ,2 −pd ,2 ≤ 0 (4.26c)

λ
G2

k =∇z2Gp,2,k (zp,2,k )−∇z2G2,k (zp,2,k ),

where ε
G2

k and λG2 are the zero-order and first-order modifiers of the plant constraint

Gp,2, respectively, evaluated at zp,2,k . Also, the cost first-order modifier is given as:

λ
Φ2

k =∇z2Φp,2(zp,2,k )−∇z2Φ
c
2(zp,2,k ).

(iii) We define next the (b) and (c) steps of the inner loop of Algorithm 4.3:

The solutions zl ,�
1,k+1 and zl ,�

2,k+1 from (4.25a) and (4.26a) are used to update the dual

variable μ as follows:

μl+1
=μl

+ρμ

(
pl ,�

i n,2,k+1−pl ,�
d ,m,1,k+1

)
,

where

pl ,�
d ,m,1,k+1 = pd ,1(zl ,�

p,1,k+1)+εpd ,1 +
(
λ

pd ,1

k

)� (
zl ,�

p,1,k+1 −zp,1,k

)
.

Simulation results

The distributed MA Algorithm 4.3 is tested in simulation. The scenario involves steady-state

optimization of a station composed of two serial compressors, as presented in Figure 4.6.

We assume that gradient information regarding the plant costs Φp,1 and Φp,2, the constraint

G2 and the output pd ,1 is available. The convergence of the plant inputs to the optimum is

presented in Figure 4.8. Figure 4.9 shows the performance loss

ΔPk =

∑N
i=1Φp,i (zp,i ,k )−

∑N
i=1Φp,i (z�p,i )∑N

i=1Φp,i (z�p,i )
×100%,

where
∑N

i=1Φp,i (z�p,i ) denotes the true optimal cost of the plant, and
∑N

i=1Φp,i (zp,i ,k ) is the

plant cost obtained at the k-th RTO iterate. We also compare the performance of distributed

MA with that of equal-load distribution, which corresponds to current industrial practice.

Note that the benefit of applying the RTO algorithm is around 6.5% and 2.4% in compari-

son to the initial point and equal-load distribution, respectively. Furthermore, Figure 4.9

depicts the number of inner-loop iterations, which are purely model-based and thus cheap

compared to the outer RTO iterations that involve experimental steady-state transitions. We

observe monotonic decrease of the plant cost and feasibility through the RTO iterations, as

expected from the properties of the distributed MA algorithm. The initial point is chosen
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Figure 4.8 – (Blue) Evolution of the inputs (speeds) via Algorithm 4.3. (Red) Plant optimum.
(Dashed black) Speed for equal-load distribution.

such that the plant constraint G2(z2) is satisfied. In particular, Figure 4.10 shows that the out-

let pressure pd ,2 of the downstream compressor exceeds psp
d ,2 through all RTO iterations. Also,

constraint G2(z2) is active at the plant optimum.
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Figure 4.9 – The compressors station performance loss via Algorithm 4.3 (top) and number
of model-based inner-loop iterations (bottom).
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4.6 Conclusion

This chapter has discussed the convergence properties of centralized and distributed mod-

ifier adaptation algorithm for the real-time optimization of uncertain interconnected sys-

tems. The proposed modifier-adaptation schemes use local plant gradient information with

respect to both the decision variables and the interconnection variables. Because of this

property, this algorithm overcomes the challenges of most distributed algorithms in the con-

text of RTO, in particular the dependence on global plant gradients and on the availability

of a global model. This is possible because the algorithms use the measurement of intercon-

nection variables and can handle uncertainty for each subsystem locally, that is, without the

need to exchange plant gradient information among subsystems. Furthermore, feasible-side

convergence of a distributed modifier scheme was shown, provided perfect plant gradient

information is available. The effectiveness of the algorithm was illustrated on load-sharing

optimization problem for serial compressors.

From an RTO point of view, the main benefit of both formulations is that the plant sensi-

tivities with respect to only local inputs of each subsystem need to be estimated. Potentially,

this can reduce the required number of perturbations for gradient estimation. However, the

gradient estimates with respect to the interconnection variables are required. The problem

is that these variables are not directly manipulated, and careful steps have to be taken in the

perturbation design procedure for interconnected systems.
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tions

This chapter is based on:

P. Milosavljevic, A. Cortinovis, A. Marchetti, T. Faulwasser, M. Mercangöz, and D. Bon-

vin. Optimal load sharing of parallel compressors via modifier adaptation. In IEEE

Conference on Control Applications, pages 1488–1493, 2016.

P. Milosavljevic, A. Cortinovis, R. Schneider, T. Faulwasser, M. Mercangöz, and D. Bon-

vin. Optimal load sharing for serial compressors via modifier adaptation. In European

Control Conference (ECC), pages 2306–2311, 2018b.

P. Milosavljevic, A. Cortinovis, A. Marchetti, T. Faulwasser, M. Mercangöz, and D. Bon-

vin. Load-sharing optimization of parallel and serial compressors via modifier adaptation.

Applied Energy, (in preparation), 2018.

Compressors in industrial applications are most commonly operated in stations compris-

ing two main arrangements, that is, parallel and serial configurations. While parallel centrifu-

gal compressors are used in applications that demand high mass flowrates and low pressure

ratios (Boyce, 2003), serial compressor configurations are employed to increase the total dis-

charge pressure compared to the pressure that a single compressor can deliver. Typically, a

compressor station receives a reference signal from the dispatch center, usually in the form

of a total mass-flow setpoint for parallel configurations, or a pressure setpoint for serial con-

figuration. Often, these setpoints are tracked by applying an equal load distribution to each

compressor. In turn, the individual compressor control systems track their local setpoints by

adjusting the operating speeds. Usually, compressor stations consist of heterogeneous units.

Yet, the industrial practice of equal load distribution does not account for differences in the

efficiencies. Hence, it often results in suboptimal operation.

The issue of suboptimal operation can be approached by solving an optimization prob-

lem in order to select the number of active compressors (Xenos et al., 2015) and to assign
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mass flows to the compressors, that is, allocating speeds to the drives (Cortinovis et al., 2016;

Kumar and Cortinovis, 2017). This problem is often referred to as the load-sharing optimiza-

tion problem (Nguyen et al., 2008; Kumar and Cortinovis, 2017; Xenos et al., 2015). The main

challenge of load-sharing optimization is that the efficiency maps of the compressors are

subject to considerable uncertainty. Moreover, these maps change over time due to erosion

and fouling (Kurz and Brun, 2012a). To that end, several groups have recently investigated

different strategies for load-sharing optimization. These range from methods to update effi-

ciency maps over time via surrogate models and process data (Tirnovan et al., 2008), through

data-driven models (Xenos et al., 2015) to an online optimization framework relying on re-

cursive updates of model parameters (Paparella et al., 2013). In current industrial practice,

the uncertainty surrounding the efficiency of compressor maps is mainly addressed using

the so-called two-step approach (Cortinovis et al., 2016; Kumar and Cortinovis, 2017; Xenos

et al., 2015), that is, the update of compressor maps via static nonlinear regression followed

by load-sharing optimization.

In this chapter, the problem of distributing a load among the available machines in a

parallel and serial compressor station is considered when the compressor efficiency charac-

teristics are not precisely known. This problem is tackled via the centralized first-order MA

Algorithm 4.1 for interconnected systems that uses local input and output measurements of

each subsystem. The most challenging part of MA lies in the fact that the gradients of the

plant outputs with respect to the inputs must be estimated. Here, the gradient estimation of

compressors’ cost and constraints with respect to local inputs exploiting the interconnection

structure is discussed. In addition, the gradient estimation is elaborated when the plant is

operated close to the surge conditions. Such conditions are particularly challenging due to

the discontinuity in gradient that occurs. In this thesis, the following characteristics are ex-

plicitly considered: (i) fixed number of active units, (ii) parallel and serial connections of gas

compressors, (iii) operation close to the surge constraints, and (iv) availability of uncertain

individual compressor performance maps. Moreover, the analysis shows how the intercon-

nection structure of the compressor station can be exploited to overcome the hurdle of esti-

mating process gradients. Furthermore, the complexity of this estimation is independent of

the number of compressors. The real-time optimization algorithm works in synergy with a

low-level controller that tracks the required discharge pressure in serial configuration or the

required mass flow in parallel configuration.

This chapter is organized as follows. Section 5.1 formulates the load-sharing optimiza-

tion problem for a parallel and serial-compressor plant. Section 5.2 proposes an MA solution

to the optimal load-sharing problem. The gradient estimation technique applied to functions

with discontinuities in the gradient is presented in Section 5.3. A case study is presented in

Section 5.4, and Section 5.5 concludes this chapter.
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5.1 Problem Formulation

Here, the compressor model described in Section 2.3 is considered. Namely, the dynamics of

the compressor is presented in (2.22) while the compressor maps and the cost function are

given in (2.24) and (2.25a), respectively.

Subsection 5.1.1 gives details on low level controllers used in both configurations. Fur-

thermore, the load-sharing optimization (LSO) problem for both, parallel and serial configu-

ration of compressors operating in synergy with process controller is presented in Subsection

5.1.2 and Subsection 5.1.3, respectively.

5.1.1 Underlying Control Loops

Before detailing the specifics of parallel and serial compressor configurations, a few com-

ments on the control loops, depicted in Figure 5.1, are in order. Consider a station with N

separate gas compressors connected in either a parallel or a serial arrangement, as depicted

in Figure 5.1. Subsequently, we assumed that all compressors are active and operate contin-

uously for the time period under investigation.

Each compressor uses a local anti-surge controller to avoid surge conditions. The surge

control line distance is controlled by means of a PI controller manipulating the opening of the

anti-surge control valve. The control signal is constrained between 0 and 100% (valve open-

ing) and is only giving a control action different from zero if the surge control line distance

becomes positive. In addition, another PI controller computes the speed setpoint for each

driver in order to track the station demand provided by the user, either msp
t ot (t ) or psp

d ,N (t ).

In absence of an optimization layer, all parallel compressors would receive the same

speed setpoints, thus implementing suboptimal load distribution among the interconnected

compressors since the compressors might be of different sizes, different ages, different states

of maintenance.

5.1.2 Parallel Configuration

Consider a station with N parallel compressors, as illustrated in Figure 5.1(top), and let i ∈

N = {1, . . . , N } be the corresponding index set. The optimal setpoints for the inputs ωi can

be obtained by minimizing the total power consumption of all compressors. In the parallel

arrangement, the inlet and outlet pressures, pi n,i and pout ,i , are the same for all compres-

sors and considered to be constant. In contrast, the mass flows mc,i , ∀i ∈ N , can be varied

independently by manipulating the speeds ωi . This is possible due to variable-speed drives.

The individual output flows mout ,i of all compressors must add up to the station flow set-

point msp
t ot in order to meet the plant demand. Under normal process operation, the power

consumption is minimized by keeping the inlet and outlet valves completely open, that is,
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Figure 5.1 – Diagram of a parallel-compressor configuration with mass-flow control (top
plot); and serial-compressor configuration with pressure control (bottom plot). PT and FT
represent pressure and flow transmitters, respectively. ASC is an anti-surge controller. The
control is executed in continuous time t , while the optimization problem is executed only

once the system has reached steady state. Δω f
i ,k is the contribution of the optimization layer

to the rotational speed ωi ,k , while Δωi ,k is the perturbation that is added to compute the
experimental gradients. ωc

k is the speed reached at the k-th RTO iteration without the per-
turbation Δωi ,k , while ω̃c

k is the speed reached at steady state with the perturbations Δωi ,k

added. LSO: load-sharing optimization
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Vi n,i =Vout ,i = 1. Hence, the problem can be stated as follows

min
ω,Vrec

∑
i∈N

Φi (5.1a)

s.t. steady-state equations obtained from (2.22)-(2.24)

mt ot =
∑

i∈N

mout ,i = msp
t ot (5.1b)

G1,i =
1

s1,i

(
s0,i +Πi

)
−mc,i − s2,i ≤ 0, (5.1c)

G2,i =
1

c1,i

(
c0,i −Πi

)
+mc,i −c2,i ≤ 0, (5.1d)

mc,i ∈Mi , ωi ∈Wi , Vrec ,i ∈ Vrec ,i , i ∈N , (5.1e)

where mt ot is the total output flow, and s0,i , s1,i and s2,i are the surge line coefficients of the

i -th compressor. The surge constraint G1,i expresses a lower limit on the mass flow of the i -th

compressor for a given head or pressure ratio. If this limit is violated, then a flow instability

called surge occurs, which can cause thermal and mechanical stress to compressor blades,

potentially leading to damages and eventually also to machine failure. Each compressor uses

a local anti-surge controller in order to avoid surge conditions by manipulating the recyle

valve openings Vrec ,i within bounds defined in (5.1e). The choke line coefficients of the i -th

compressor are c0,i , c1,i and c2,i . The choke constraint G2,i corresponds to the maximum flow

that can be generated by the i th compressor depending on the aerodynamic characteristics

of the compressor and the discharge piping. Box constraints on the operating flows, speeds

and valve openings are included in (5.1e).

5.1.3 Serial Configuration

Consider a station with N compressors operating in a serial configuration as illustrated in Fig-

ure 5.1(bottom). In the serial setup, the compressors are arranged such that the discharge of

the i -th compressor feeds into the suction of the (i +1)-st compressor. The first compressor

is connected to the suction header, while the last compressor is connected to the discharge

header. Hence, only the inlet boundary pressure of the first compressor pi n,1 and the outlet

boundary pressure of the last compressor pout ,N are considered to be specified. In contrast

to the parallel topology, the flow through each compressor mout ,i , ∀i ∈N , is the same. Since

variable-speed drives are considered, the individual pressure ratios Πi can be varied inde-

pendently by manipulating the speeds ωi . The optimal speed values can be computed by

minimizing the total power consumption of all compressors. Here as well, we consider that

the power consumption is minimized by keeping the inlet and outlet valves completely open.

The discharge and suction lines of two neighboring compressors share the same valve, and

their interconnection can be expressed as pd ,i = pi n,i+1 with mout ,i = mi n,i+1. It is desired to

enforce that the discharge pressure of the N -th compressor be equal to the pressure setpoint
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psp
d ,N . A suitable load-sharing optimization problem reads as follows

min
ω,Vrec

∑
i∈N

Φi (5.2a)

s.t. steady-state equations obtained from (2.22)-(2.24)

pd ,N = psp
d ,N (5.2b)

pd ,i = pi n,i+1 i ∈ {1, . . . , N −1} (5.2c)

mout ,i = mi n,i+1 i ∈ {1, . . . , N −1}, (5.2d)

G1,i =
1

s1,i

(
s0,i +Πi

)
−mc,i − s2,i ≤ 0, (5.2e)

G2,i =
1

c1,i

(
c0,i −Πi

)
+mc,i −c2,i ≤ 0, (5.2f)

mc,i ∈Mi , ωi ∈Wi , Vrec ,i ∈ Vrec ,i , i ∈N , (5.2g)

where the constraints (5.2e)–(5.2g) are the same as the constraints (5.1c)–(5.1e) in the load-

sharing optimization problem for the parallel configuration.

5.2 Load-Sharing Optimization via MA

Compressors in a compressor plant may operate at different points on compressor map. This

also includes operating points close to surge conditions. This requires modeling the discon-

tinuity that occurs when the anti-surge controllers become active or inactive. In this study a

fixed number of active compressors is assumed.

We assume that the choke constraints in (5.1d) and (5.2f) do not become active in the

analysis that follows. The reason is because the most efficient operating conditions for both

configurations typically involve the activation of the surge constraints, while operating on the

choke line is not economically efficient. Note, however, that the formulation of load-sharing

optimization for the choke conditions can be handled in a similar way.

5.2.1 MA for Parallel Compressors

As explained in Subsection 5.1.2, the operating point of each compressor in the parallel con-

figuration depends only on the speed applied to that compressor. Hence, the local input zi

for the i -th compressor is defined as

zi =ωi . (5.3)

Note that the local input zi in (5.3) does not include interconnection variables. This is due to

the fact that, in Problem (5.1), there are no interconnection constraints in the form of (4.5d).

Nevertheless, Problem (5.1) has equality constraint (5.1b) that couples dynamics of the plant.

Therefore, the gradient correction of each mout ,i with respect to local inputs is required.
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The load-sharing optimization problem at the k-th RTO iteration is handled via MA for-

mulation:

ω�

k+1 = argmin
ω

∑
i∈N

Φi (ωi )+
(
λ
Φi

k

)(
ωi −ωi ,k

)
(5.4a)

s.t. steady-state model equations

NA k (ω) = {i ∈N | Ga
1,i (ωi )+ε

G1,i

k ≥ 0,with V a
rec ,i = 0}, (5.4b)

G1, j (ω j )+ε
G1, j

k = 0, ∀ j ∈NA k (ω), (5.4c)

Vrec ,l = 0,∀ l ∈N \NA k (ω), (5.4d)( ∑
i∈N

mout ,i (ωi )+
(
λ

mi

k

)�
(ωi −ωi ,k )

)
+εm

k = msp
t ot , (5.4e)

inequality constraints (5.1e),

where the zeroth-order modifiers are computed as follows:

εm
k = mt ot ,p (ωk )−

∑
i∈N

mout ,i (ωi ,k ), (5.5a)

ε
G1,i

k = G1,p,i (ωi ,k )−G1,i (ωi ,k ), ∀ i ∈N . (5.5b)

Here, mt ot ,p (ωk ) is the measured value of the total mass flow at the k-th iteration and, for

each compressor, λΦi

k and λ
mi

k are the first-order modifiers of Φp,i and mout ,p,i , respectively.

NA k (ω) is the set of compressors for which the surge constraint is active. The compressors

that belong to this set are determined in (5.4b) by defining an auxiliary recycle valve open-

ing that is always closed V a
rec , j = 0, and an auxiliary surge control distance −Ga

1, j . The surge

constraints that are violated for closed recycle valves are handled as active surge constraints

in (5.4c). These equality constraints can be enforced by computing the required (predicted)

valve opening Vrec , j , ∀ j ∈ NA k (ω). N \ NA k (ω) represents the complement of NA k (ω),

that is, the set of all compressors for which the surge control distance is strictly positive, i.e.,

−Ga
1,i (ωi )−ε

G1,i

k > 0. For these compressors, the recycle valves are completely closed, as ex-

pressed in (5.4d). Note that condition (5.4b) introduces a discontinuity in the steady-state

model equations, which describes the activation (or deactivation) of the anti-surge controller

when the surge control distance becomes equal to zero. As a result, the steady-state compres-

sor functions present a discontinuity in their derivatives with respect to the applied compres-

sor speed. This discontinuity can be observed for the output mass flow, pressures and power

consumption in Figure 5.2.

Note in addition that, (i) the gradient modifiers λ
Φi

k and λ
mi

k are scalars, (ii) the choke

constraints have been eliminated to simplify the formulation, and (iii) in order to estimate

the plant derivatives, a single perturbation of the speed ωi is required for each compressor.

Furthermore, it is possible to perturb all the speeds simultaneously in such a way that the

disturbance to the total mass flow is negligible, as will be explained in Section 5.3.

81



Chapter 5. Application to Gas-Compressor Stations

0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

V re
c

0.2 0.3 0.4 0.5

0.1

0.15

0.2

m
ou

t

0.2 0.3 0.4 0.5
0.8

0.85

0.9

0.95

p d

0.2 0.3 0.4 0.5
0.4

0.6

0.8

P
ow

er
Figure 5.2 – Normalized values of recycle valve opening Vrec , discharge pressure pd , output
mass flow mout and power consumption Φ as functions of speed ω. Discontinuity in the
gradient is indicated with black dashed line.

5.2.2 MA for Serial Compressors

As already explained in Subsection 5.1.3, the outlet flow of each compressor is equal to

mout ,N = kout ,N Vout ,N

√
|pd ,N −pout ,N |. (5.6)

Consequently, if pd ,N , pout ,N and Vout ,N do not change, the outlet flow of all compressors

will remain constant at the plant steady state. Because of this, and due to the fact that the

discharge of the i -th compressor feeds into the suction of the (i +1)-st compressor, the op-

erating conditions of each compressor are defined by its speed ωi and inlet pressure pi n,i .

Hence, the local inputs zi for the i -th compressor are defined as

zi = [ωi pi n,i ]�. (5.7)

In contrast to the parallel configuration, there is the interconnection variable vi = pi n,i , which

is involved in the interconnection constraint (5.2c), while the output is yi = pd ,i .
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Hence, Problem (5.2) can be addressed via the following MA formulation:(
ω�

k+1, p�

i n,k+1

)
=argmin

ω,pi n

∑
i∈N

Φi (zi )+
(
λ
Φi

k

)� (
zi −zp,i ,k

)
(5.8a)

s.t. steady-state model equations

NA k (ω) = {i ∈N | Ga
1,i (zi )+ε

G1,i

k ≥ 0, with V a
rec ,i = 0}, (5.8b)

G1, j (z j )+ε
G1, j

k = 0, ∀ j ∈NA k (ω), (5.8c)

Vrec ,l = 0,∀ l ∈N \NA k (ω), (5.8d)

pd ,m,i = pd ,i +ε
pd ,i

k +
(
λ

pd ,i

k

)� (
zi −zp,i ,k

)
, (5.8e)

pi n,i+1 = pd ,m,i i ∈ {1, . . . , N −1}, (5.8f)

pd ,m,N = psp
d ,N , (5.8g)

pi n,i ∈P i n,i , (5.8h)

inequality constraints (5.2g) ,

where the zeroth-order modifiers ε
pd ,i

k are computed as:

ε
pd ,i

k = pd ,p,i ,k (zp,i ,k )−pd ,i ,k (zp,i ,k ), ∀ i ∈N . (5.9a)

Here, λ
pd ,i

k and λ
Φi

k are the first-order modifiers of the plant cost Φp,i and plant discharge

pressure pd ,p,i with respect to zi , respectively. The zeroth- and first-order modifiers of G1,i (zi )

are defined in the same way as in the previous subsection. Similar to the parallel case, the set

of active surge constraints NA k (ω) at the k-th RTO iteration and at speed ω is determined by

means of (5.8b).

Note that, (i) the gradient modifiers λ
Φi

k and λ
pd ,i

k are vectors, (ii) the choke constraints

have been dropped, and (iii) perturbations of the inputs zi are required to estimate the plant

derivatives for each compressor. However, in this case it is also possible to perturb all the

speeds simultaneously in such a way that the disturbance of the outlet pressure setpoint psp
d ,N

is negligible, as will be explained in Section 5.3.

5.2.3 Implementation Aspects

As shown in Figure 5.1, the discharge pressure pd ,N and the mass flow mt ot are regulated

according to the station demands psp
d ,N and msp

t ot for the serial and parallel configurations,

respectively. In conventional load sharing, each compressor receives the same speed set-

point ωc
k (t ), thereby achieving equal-load distribution among the interconnected compres-

sors. Load-sharing optimization comes as an additional layer that generates asymmetries in

the load distribution based on the current efficiencies of the various units.

Consider the steady state reached at the k-th RTO iteration, with ωc
k the speed setpoint

generated by the mass-flow or pressure controller andωi ,k the speed setpoint applied to the i -
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th compressor. The RTO algorithm suggests applying next ωf
i ,k+1, which is the filtered value

of the optimal speed computed from Problem (5.4) or Problem (5.8) for parallel and serial

configuration, respectively, that is:

ωf
i ,k+1 =Kω�

i ,k+1 + (I−K)ωi ,k , (5.10)

which means that the contribution of the optimization to the next RTO iteration is:

Δωf
i ,k+1 =ωf

i ,k+1−ωc
k . (5.11)

This closed-loop implementation maintains the attractive MA property of converging to a

Karush-Kuhn-Tucker (KKT) point for the plant (see Theorem 1 in Marchetti et al. (2009)).

5.3 Gradient Estimation Exploiting the Problem Structure

The most challenging part of MA consists in estimating the plant gradients or the first-order

modifiers used in (5.4) and (5.8). In general, steady-state perturbation methods require at

least (nu +1) steady-state operating points to be available, which means that one has to wait

for steady state each time the inputs are changed. It turns out that MA for interconnected

systems can help since the input dimension of each compressor is nzi = 2 in serial, and nzi = 1

in parallel configuration, respectively. The price for being able to reduce the dimensionality

of the input space via MA for interconnected systems is that the plant gradients with respect

to the interconnection variables are needed.

We show next that, in the case of the load-sharing Problems (5.4) and (5.8) the plant

structure can be exploited for estimating the plant derivatives efficiently. In fact, it is possible

to perturb the speeds of all compressors at the same time to estimate the required gradients.

This has the advantage that the complete gradients can be estimated using only two steady-

state operating points, regardless of the number of compressors. This will be explained in the

following subsections. These steady states correspond to the current RTO operating point

ωk and the perturbed operating point ω̃k . The perturbed point is obtained by adding the

perturbations Δωi ,k to each compressor (see Figure 5.1):

ω̃i ,k = ω̃c
k +Δωf

i ,k +Δωi ,k , (5.12)

where ω̃c
k is the speed generated by the mass-flow or pressure controller at steady state for

the perturbed operating point. The speed perturbation vector Δωk is defined as:

Δωk = diag(Δωk )dk , (5.13)

where dk ∈ R
N is a vector whose i -th element di ,k can take only the values 1 or −1, defining

the direction of the perturbation for the i -th compressor; and Δωk ∈R
N represents the size of

the perturbation for the compressor speeds. The choices of dk and Δωk are discussed in the
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following subsections.

5.3.1 Direction of Perturbations

The directions of the perturbations will be selected based on an heuristic approach that leads

to good gradient estimates in practice. Since we want to perturb all compressors at the same

time without significantly perturbing the setpoint-matching conditions (5.4e) or (5.8g), we

choose to perturb half of the compressors in one direction and the other half in the opposite

direction.

Due to the update of the surge constraints in (5.4c) and (5.8c), the modified model pro-

vides good estimates of the speed values at which the discontinuities occur. Thus, the direc-

tions of the perturbations will be selected based on the proximity to the discontinuity. If N

is even, then the N /2 compressors closest to the discontinuity point are assigned directions

that push them away from the discontinuity point. The other compressors are assigned di-

rections such that
∑

i∈N di ,k = 0. If N is odd, then the (N +1)/2 compressors closest to the

discontinuity point are assigned directions that push them away from the discontinuity point.

The other compressors are assigned directions such that
∑

i∈N di ,k =±1.

5.3.2 Gradient Estimation for Parallel Configuration

The derivatives of the power consumption are estimated by finite difference as follows :

�∇ωi Φp,i (ωi ,k )=
Φp,i (ω̃i ,k )−Φp,i (ωi ,k )

ω̃i ,k −ωi ,k
. (5.14)

The mass-flow derivatives �∇ωi mc ,i can be estimated using the same approach. An operating

line of the compressor in parallel connection is shown in red in Figure 5.3. The perturbations

Δzi ,k =Δωi ,k should be selected such that (i) gradients are estimated with sufficient accuracy,

(ii) the perturbation of the total mass flow is negligible.

These two requirements can be accounted for by computing the perturbation steps Δωk in

(5.13), for the given direction vector dk , by solving the following optimization problem at the
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k-th RTO iteration:

Δωk = argmin
Δω

∑
i∈N

E
Li (ω̃i ) (5.15a)

s.t. steady-state equations

NA k (ω̃)= {i ∈N | Ga
1,i (ω̃i )+ε

G1,i

k ≥ 0, with V a
rec ,i = 0}, (5.15b)

G1, j (ω̃ j )+ε
G1, j

k = 0, ∀ j ∈NA k (ω̃), (5.15c)

Vrec ,l = 0,∀ l ∈N \NA k (ω̃), (5.15d)

ω̃=ωk + diag(Δω)dk , (5.15e)( ∑
i∈N

mout ,i (ω̃i )+
(
λ

mi

k−1

)� (ω̃i −ωi ,k )

)
+εm

k = msp
t ot , (5.15f)

0 ≤Δωi ≤Δ
U
ωi

, i ∈N (5.15g)

where ω̃ is the optimal perturbed speed of optimization problem (5.15) and E
Li (ω̃i ) is the

bound on gradient error function

E
Lp,i (ω̃i ) = E

Φp,i +‖μmout ,i ‖E
mout ,p,i (5.16)

where the value of the Lagrange multiplier μmout ,i is obtained at the optimum of the modified

model at (k − 1)-th iteration. Note that the gradient modifiers λ
mi

k−1 used in Problem (5.15)

are the ones corresponding to the (k −1)-th RTO iteration, since Problem (5.15) is solved to

compute the perturbations required for computing the gradient modifiers λΦi

k and λ
mi

k .

The accuracy in the gradient estimates in (i) is enforced by selecting a sufficiently large

perturbation step Δωi . The requirement (ii) is enforced by including the equality constraint

(5.15f).

5.3.3 Gradient Estimation for Serial Configuration

For the serial configuration, we need to estimate the gradients of the cost and constraints

with respect to both ωi and pi n,i . While the compressor speeds can be conveniently per-

turbed, the difficulty in estimating the gradients comes from the fact that the inlet pressures

(interconnection variables) cannot be independently perturbed. Next, we describe how the

gradients can be estimated by perturbing only the compressor speeds.

In perturbing a compressor’s speed, we can estimate the plant gradients along the di-

rection denoted Ur
i ,1 = z̃p,i ,k − zp,i ,k , where z̃p,i ,k = [ω̃i ,k p̃i n,p,i ,k ]� with p̃i n,p,i ,k being the

measured inlet pressure at the perturbed speed ω̃k and zp,i ,k = [ωi ,k pi n,p,i ,k ]�.

The blue line in Figure 5.3 corresponds to the operating line of a compressor in serial

connection. A compressor in serial connection operates at constant outlet mass flow mout ,i ,

and thus, when the recycle valve is closed the compressor mass flow mc,i is also constant
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Figure 5.3 – Compressor operating constraints and power consumption contour curves (con-
tinuous gray line) in the Π-mc space. Upper and lower bound on the speed (dashed black);
operating points for three constant speeds (dashed gray); choke and surge line (dashed red);
and surge control line parallel to surge line (black). Operating steady-state points for a com-
pressor in parallel configuration (red line) and operating points for a compressor in serial
configuration (blue line). The arrows point in the direction of speed increase.

at mc,i = mout ,i . One can notice in Figure 5.3 that a dashed gray curve corresponds to op-

erating conditions where the compressor speed is constant. The intersection of these gray

curves with the blue operating line correspond to operating points for different speed values.

Hence, operating at constant outlet mass flow and constant speed is equivalent to operating

on a fixed point on the blue operating line. For any fixed operating point on the blue line, the

power consumption and the pressure ratio are also fixed. However, the inlet pressure might

vary since it is affected by upstream compressor. Based on this analysis, the power consump-

tion gradient can be estimated by selecting as the second direction Ur
i ,2 = [0 1]�, that is,

the direction where ωi is constant and pi n,i changes, and setting the variation of the power

consumption along this direction to zero

�∇zi Φ
�

p,i =

[
Φp,i (z̃p,i ,k )−Φp,i (zp,i ,k )

0

]�

U−1
i ,1 , (5.17)

where Ui ,1 = [Ur
i ,1 Ur

i ,2].

For the estimation of ∇zp,i pd ,p,i in (5.8), we consider the discharge pressure in (2.22c) at

steady state, pd ,p,i =Πp,i ps,p,i , and write

�∇zp,i p
d ,p,i

= �∇zp,i Πp,i
ps,p,i +Πp,i �∇zp,i p

s,p,i
, (5.18a)
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where, similarly to the power consumption in (5.17), we estimate ∇zi Πp,i as

�∇zp,i Π
�

p,i
=

[
Πp,i (z̃p,i ,k )−Πp,i (zp,i ,k )

0

]�

U−1
i ,1. (5.18b)

For the estimate of �∇zp,i p
s,p,i

, we use the fact that the suction pressure does not change for

the constant inlet/outlet mass flow and constant inlet pressure according to (2.23a), which

corresponds to the direction Ur
i ,3 = [1 0]�. The gradient estimate of the suction pressure is

obtained as

�∇zp,i p
�

s,p,i
=

[
ps,p,i (z̃p,i ,k )−ps,p,i (zp,i ,k )

0

]�

U−1
i ,2 , (5.18c)

where Ui ,2 = [Ur
i ,1 Ur

i ,3]. The perturbations Δωi ,k are selected in a similar way as we pro-

posed for parallel compressors. At the k-th RTO iteration, and for a given direction vector dk ,

the perturbation steps Δωk are obtained by solving the following optimization problem:(
Δωk ,Δpi n,k

)
=argmin

Δω,Δpi n

∑
i∈N

E
Lp,i (z̃i ) (5.19a)

s.t. steady-state equations

z̃i = [ω̃i p̃i n,i ]� (5.19b)

p̃i n = pi n,p,k +Δpi n , (5.19c)

ω̃=ωk +diag(Δω)dk , (5.19d)

NA k (ω̃)= {i ∈N | Ga
1,i (z̃i )+ε

G1,i

k ≥ 0, with V a
rec ,i = 0}, (5.19e)

G1, j (z̃ j )+ε
G1, j

k = 0, ∀ j ∈NA k (ω̃), (5.19f)

Vrec ,l = 0,∀ l ∈N \NA k (ω̃), (5.19g)

pd ,m,i = pd ,i +ε
pd ,i

k +
(
λ

pd ,i

k−1

)� (
z̃i −zp,i ,k

)
, (5.19h)

p̃i n,i+1 = pd ,m,i i ∈ {1, . . . , N −1}, (5.19i)

pd ,m,N = psp
d ,N , (5.19j)

p̃i n,i ∈P i n,i , (5.19k)

0 ≤Δωi ≤Δ
U
ωi

, i ∈N (5.19l)

Δ
L
pi n,i

≤Δpi n,i ≤Δ
U
pi n,i

, i ∈N . (5.19m)

Here, pi n,p,k is the measured inlet pressure; ω̃ is the optimal perturbed speed of optimization

problem (5.19), while p̃i n is the optimal perturbed inlet pressure at ω̃. Moreover, E
Lp,i (z̃i ) in

(5.19a) is given by

E
Lp,i (z̃i ) = E

Φp,i (z̃i )+‖μpd ,i ‖E
pd ,p,i (z̃i ) (5.19n)

where the value of the Lagrange multiplier μpd ,i is obtained at the optimum of the modified

model at (k −1)-th iteration; E
Φp,i (z̃i ) and E

pd ,p,i (z̃i ) are individual bound on error functions
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of the cost and discharge pressure, respectively. Note that the analysis of Subsection 2.2.4

assumes that upper bounds on gradient error due to measurement noise and truncation are

defined with the same input matrix Ui . However, different input matrices Ui ,1 and Ui ,2 are

utilized for obtaining �∇zp,i p
d ,p,i

in (5.18a). Thus E
pd ,p,i (z̃i ) is given by

E
pd ,p,i (z̃i )= ‖ps,p,i (zp,i ,k )‖EΠp,i (z̃i )+‖Πp,i (zp,i ,k )‖E ps,p,i (z̃i ), (5.19o)

where E
Πp,i (z̃i ) and E

ps,p,i (z̃i ) are individual upper bounds on error functions of the Πp,i and

ps,p,i .

5.3.4 Estimation of Discontinuous Compressor Function Gradients

A difficulty in estimating experimental gradients in the neighborhood of the surge control

line is due to the discontinuity in the gradients. The reason why and when this discontinu-

ity occurs is illustrated in Figures 5.3 and 5.4. Figure 5.3 depicts two operating curves. By

observing the red curve that corresponds to the operating line for compressor in the parallel

configuration, one sees that, at low speeds, the compressor operates on the surge control line,

that is, the anti-surge controller is activated to avoid potentially dangerous conditions. The

point where the surge line passes from being active to inactive (or vice versa) is the point of

discontinuity. At this point, the derivatives of the compressor functions, such as mass flow,

power consumption and pressures, present a discontinuity.

This discontinuity is illustrated for the outlet mass-flow function mout ,i in Figure 5.4. The

surge constraint G1,i is also depicted in Figure 5.4. The shaded area in both plots indicates

the region where the plant compressor is on the surge control line, that is, when the plant

function G1,p (depicted in blue) is active with G1,p,i = 0 for all speed values less then ωi =

0.14. One also notices that the slope of the outlet mass-flow function mout ,p,i is higher on

the surge line. Due to plant-model mismatch, the model surge constraint G1,i predicts this

discontinuity at a much higher speed (around ωi = 0.24).

This results in high mismatch between the plant (blue) and the model (black) outlet mass-

flow functions. Hence, we may conclude that, besides having different slopes, the outlet

mass-flow functions have different points of discontinuity. We remedy this issue by adding

zeroth-order modifiers to G1. Adding modifiers to the surge function G1 in (5.4d) and (5.8d)

results in a good prediction of the point where the discontinuity occurs. Due to this adapta-

tion, we obtain the new output mass-flow function (dashed black line). The modified func-

tion mout ,i (red line) is obtained by adding the zeroth- and first-order modifiers.

On the one hand, with the approach of estimating modifiers via finite-difference in (2.16),

the modified cost and constraints are such that their values match the corresponding mea-

sured values at the current operating point zp,i ,k , and their gradients match the correspond-

ing gradient estimates at zp,i ,k . On the other hand, with the modifier estimation approach

based on linear regression in (2.21) and further discussed for interconnected systems in (4.15b),
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Figure 5.4 – Top plot: Surge constraint as a function of the speed. The gray area represents
the region where the surge constraint is active, G1,p,i = 0. Bottom plot: Output mass flow as
a function of the speed. The two red points represent the measured plant outlet flow at the
operating point ωi ,k and the perturbed point ω̃i ,k . The dashed black curve is the adapted
model outlet flow following the adaptation of the surge constraint G1,i .

the modified cost and constraint functions match the corresponding measured values for the

plant at the current and perturbed operating points. This gives a better approximation of the

plant cost and constraint functions, in particular for increased distances between the points.

The choice between the modifiers in (2.16) and (2.21) greatly affects the convergence of

the MA schemes in Section 5.2.1 and Section 5.2.2. In fact, when the compressor operates on

the surge line, the first-order correction of the slope given by the modifiers in (2.16) would

adversely affect the function slope in non-surge region and vice versa.

5.4 Simulation Results

The simulations used to generate the results are based on industrial compressor models and

were implemented in Matlab/Simulink. Plant-model mismatch is introduced by using com-

pressor maps (2.24) that are different for the plant and the model. We consider the scenario of

a gas compressor station consisting of three compressors (N = 3) for both parallel and serial

configuration. The plant efficiency maps A, B and C shown in Figure 5.5 are used in (2.25a)

to compute the plant cost functions Φp,i . The model cost functions Φi are obtained using

the model efficiency map shown in Figure 5.5. The model assumes the same map for all com-
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Figure 5.5 – Comparison between the model efficiency map (grey) and the plant efficiency
maps (red) for three different compressors. The maps are shown as contour plots, whereas
the dashed black lines represent the operating range of the gas compressor.

pressors. It follows that the model optimum corresponds to equal-load distribution for both

the parallel and serial configurations.

5.4.1 Parallel Configuration

The MA scheme described in Subsection 5.2.1 is tested in simulation. Once the controlled

plant satisfies near steady-state conditions, cost and constraint measurements are taken and

averaged over a moving time window of 10 s.

The perturbations Δωi ,k used to estimate the gradients are computed according to the

procedure discussed in Subsection 5.3.2. Based on experimental data from real compressors,

the power consumption and the mass flow are selected as Gaussian noises with standard de-

viations of σΦi = 0.1 and σmout ,i = 0.004, respectively. The noise interval is δΦi = 6σΦi and

δmout ,i = 6σmout ,i . Inputs zi are scaled in the interval [0,2]. In this region, the largest eigen-

value of the Hessian of the cost and outlet mass flow predicted by the modified model, ob-

tained with the scaled inputs, are dΦ

σi
= 6, d mout

σi
= 3, respectively. Thus dΦ

σi
and δΦi are used

to obtain E
Φi ; d mout

σi
and δmout ,i are used to obtain E

mout ,i in (5.16). The filter (5.10) is applied

with K= 0.6I. Simulations start from the model optimum, that is, equal-load distribution.

Instead of perturbing the system at every RTO iteration, the perturbations are stopped
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and the gradient modifiers no longer updated once the cost improvement becomes negligi-

ble. For instance, at the k-th iteration, excitation is not carried out if, for a given ε > 0, the

following condition is met:∣∣∣∑3
i=1Φp,i (zp,i ,k )−

∑3
i=1Φp,i (zp,i ,k−1)

∣∣∣∑3
i=1Φp,i (zp,i ,k−1)

≤ ε. (5.20)

Gradient estimation is restarted every time the total mass-flow setpoint is changed. To obtain

smooth transitions between steady states, the changes in both the mass-flow setpoint and the

feedforward contributions to the speeds are implemented using ramps.

Using the proposed MA scheme, the time profiles of the speeds applied to three compres-

sors are shown in Figure 5.6. They are compared to the equal load distribution (model opti-

mum) speeds obtained for the same station flow set-point variations. Also, time profiles of

the surge distances are depicted in Figure 5.7. One sees that, when the compressors operate

close to the surge conditions, the performed perturbations are in agreement with analysis

presented in Section 5.3.1. The plant station mass flow mt ot ,p is compared to its setpoint

for four different setpoint values in Figure 5.8. Note that the station mass flow satisfies the

desired setpoint even when the speeds are being perturbed for the purpose of gradient esti-

mation. Using ε= 10−3 in (5.20), the perturbations are stopped after only 2-3 RTO iterations.

As can be seen in Figure 5.8, the improvement in power consumption goes up to 8%, which

is economically significant. Power loss in Figure 5.8 is obtained as

Ploss =

∑3
i=1Φp,i (zp,i ,k )−

∑3
i=1Φ

�

p,i∑3
i=1Φ

�

p,i

×100% (5.21)

whereΦ
�

p,i is the optimal power consumption of i -th compressor for the current output mass-

flow setpoint value. Similarly, the instantaneous optimality loss after each pressure setpoint

change is nearly suppressed after the first RTO iteration.

5.4.2 Serial Configuration

The MA scheme described in Subsection 5.2.2 is tested in simulation. The perturbations

Δωi ,k used to estimate the gradients are computed according to the procedure discussed in

Subsection 5.3.3.

As already mentioned in Subsection 5.3.3, input matrices Ui ,1 and Ui ,2 are used to obtain

the gradient estimates of ∇̂zi Φp,i and ∇zi pd ,p,i in (5.17), (5.18b) and (5.18c). These matrices

are ill-conditioned if for the new perturbation point ω̃, vector Ur
i ,1 = z̃p,i ,k −zp,i ,k lies in direc-

tion Ur
i ,2 or Ur

i ,3. Therefore, utilization of the upper bound on gradient error function E
Li (z̃i )

in (5.19n) penalizes the perturbations in these directions and provides a good candidate ω̃

for accurate gradient estimation. Figure 5.9 depicts the contour lines of E
Li (z̃i ) function. One

can notice in Figure 5.9 that values of E
Li (z̃i ) are very large in direction Ur

i ,2 and Ur
i ,3. Thus,
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5.4. Simulation Results

Figure 5.6 – Time profiles of the normalized speeds for parallel configuration. Applied speed
using MA scheme is depicted in blue. Steady-state equal-load distribution speed is presented
with red dashed line. The shaded area indicates the region where the compressors are oper-
ating on the surge control line.
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Figure 5.7 – Values of the plant surge control distance for parallel configuration (blue line).
Surge distance corresponding to the plant optimum (black dashed line).
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Figure 5.8 – Top plot: Normalized total station mass flow mt ot ,p . Bottom plot: Power loss us-
ing MA compared to equal-load distribution. The plant optimum corresponds to zero power
loss.

optimal perturbationsΔωk ,Δpi n,k will tend to be in one of the two valleys, illustrated in Figure

5.9, such that constraints in (5.19) are satisfied.

The measurement noises for the power consumption, discharge pressure and pressure

ratio are selected as Gaussian noises with standard deviations of σΦi = 0.1, σps,p,i = 0.01 and

σΠp,i = 0.01, respectively. The noise interval for each one of them is defined as δΦi = 6σΦi ,

δps,p,i = 6σps,p,i and δΠp,i = 6σΠp,i . Inputs zi are scaled in the interval [0,2]. In this region, the

largest eigenvalue of the Hessian of the cost, discharge pressure and pressure ration predicted

by the modified model, obtained with the scaled inputs, are dΦ
σi

= 6, d
ps
σi

= 4 and dΠ
σi

= 2,

respectively. Thus dΦ

σi
and δΦi are used to obtain E

Φi ; d ps
σi

and δps,p,i are used to obtain E
ps,p,i ;

and dΠ

σi
and δΠp,i are used to obtain E

Πp,i in (5.19o) and (5.19n).

The filter (5.10) is applied with K = 0.9I. The filter gain K is larger here, in comparison

to the parallel configuration, because the adaptation of the modifiers and thus the input val-

ues ωk has been less aggressive for the chosen operating setpoints according to our findings.

Simulations are run starting from model optimum, that is, equal-load distribution.

Using the proposed MA scheme, the time profiles of the speeds applied to the three com-

pressors are shown in Figure 5.10. They are compared to the equal load distribution (model

optimum) speeds obtained for the same station flow set-point variations. Also, the time pro-

files of the surge distances are depicted in Figure 5.11. In Figure 5.10, one may see that the
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Figure 5.9 – Gradient error contour lines of one compressor for the serial connection for nor-
malised perturbations Δωi and Δpi n,i .

performed perturbations are in agreement with the methodology presented in Section 5.3.1.

This is clearly noticeable for the second and third compressors between 40 min - 60 min of

operation. Namely, around 45 min, compressors operate on the surge line and perturbations

are pushing them away from the discontinuity in order to stay in the surge conditions after

perturbation. Then, around 50 min, RTO brings compressors out of the surge and perturba-

tions are performed such that again compressors are pushed away from the discontinuity.

The plant station pressure pd ,3 is compared to its setpoints for four different setpoint val-

ues in Figure 5.12. Note that the station mass flow satisfies the desired setpoint even when the

speeds are being perturbed for the purpose of gradient estimation. Using ε = 10−3 in (5.20),

the perturbations are stopped after only 2-3 RTO iterations. Figure 5.12 shows an improve-

ment in power consumption of up to 10% for the simulated operating conditions. Power loss

in Figure 5.12 is obtained as in (5.21). Similarly to the parallel configuration, the instanta-

neous optimality loss after each pressure setpoint change is nearly suppressed after the first

RTO iteration.
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Figure 5.10 – Time profiles of the normalized speeds for serial configuration. Applied speed
using MA scheme is depicted in blue. Steady-state equal-load distribution speed is presented
with red dashed line. The shaded area indicates the region where the compressors are oper-
ating on the surge control line.
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Figure 5.11 – Values of the plant surge control distance for serial configuration (blue line).
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Figure 5.12 – Top plot: Normalized discharge pressure pd ,p,3. Bottom plot: Power loss using
MA compared to equal-load distribution. The plant optimum corresponds to zero power loss.

5.5 Conclusion

This chapter has investigated the use of MA for load-sharing optimization in gas compression

stations consisting of several compressors in both parallel and serial configurations. The

analysis showed that optimal operation of the plant can be obtained after a few RTO iterations

without having to update the model parameters or the compressor maps. Analysis showed

that, by using only local subsystem derivatives, the algorithm is capable of quickly converging

to the plant optimum. In fact, each subsystem relies on the estimation of the local power

consumption, discharge pressure and mass flow derivatives with respect to its own inputs.

What makes MA particularly well suited for this problem is that it is possible to excite all

compressor speeds simultaneously without significantly perturbing the station setpoint. A

solution to the load-sharing optimization problem was also proposed for the case where the

compressors may operate on the surge control line. Furthermore, an efficient approach for

obtaining accurate gradient estimates of the plant cost and constraints in the presence of

noise and plant-model mismatch was discussed. The simulation case studies showed that

the potential cost saving is up to 10% for the considered operating conditions.
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6 Conclusions

6.1 Final Remarks

This thesis discussed difficulties in achieving plant optimality when the model used in op-

timization is inaccurate or in the presence of process disturbances. The thesis investigated

the modifier-adaptation methodology for plants composed of multiple subsystems or units

that are physically interconnected, such that the outputs of one system influence the inputs

of other subsystems. Centralized RTO schemes may not be applicable or desirable for in-

terconnected systems due to the complexity of the available model. Thus, we proposed a

problem formulation for the overall plant relying on interconnection variables. Moreover,

the thesis discussed reformulation and decomposition of the centralized RTO problem so

that distributed optimization strategies can be applied. Since the available model is a sim-

plified representation of the reality, the role of local measurements of the interconnection

variables was discussed. Furthermore, the availability of local measurements and intercon-

nection model led to the formulation of novel MA schemes using an alternative definition

of modifiers. The main benefit of this formulation is that each subsystem requires modifiers

only with respect to its own inputs. However, local plant gradients with respect to intercon-

nection variables are needed. The problem is that interconnection variables are not directly

manipulated, and careful steps had to be taken in the perturbation design. We showed that

the proposed formulation using the interconnection model and local gradients could reduce

the required number of setpoint changes for gradient estimation, thus implying faster con-

vergence to optimality. In particular, the practical aspects and the effectiveness of the algo-

rithms were illustrated via industry-inspired case study of load-sharing optimization. This

case study showed that the algorithm is capable of quickly converging to plant optimality

using only local modifier estimates.

The following paragraphs summarize the main conclusions of the chapters hereof:

Chapter 3: Modifier Adaptation for Interconnected Systems using Global Modifiers. This

chapter has discussed the reformulation and the decomposition of the centralized optimiza-

tion problem so that decentralized optimization strategies can be applied. It presented two
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distributed MA schemes for the real-time optimization of interconnected systems. For both

schemes, plant measurements were utilized in place of an interconnection model. It was

shown that, upon convergence, the computed inputs optimize the steady-state performance

of the interconnected plant.

Both schemes demonstrated the strength of the modifier-adaptation methodology even

when there is no model for the subsystem interconnections. The model that is used does not

assume interaction between the subsystems. In turn, this leads to an increased number of

RTO iterates. Furthermore, the proposed algorithms require the knowledge of the sensitivi-

ties of each subsystem’s cost and constraint functions with respect to the inputs of the other

subsystems. In practice, depending on the dimensionality of the system, the dynamics of the

whole plant and the time it takes to reach steady state, obtaining these estimates can be very

costly. Note that, the complexity of estimating these plant gradients is the same as in the case

of treating the whole plant as one unit.

Chapter 4: Modifier Adaptation for Interconnected Systems using Local Modifiers. This

chapter has extended the MA framework for interconnected systems, presented in Chapter 3,

to a scheme that uses only local input measurements of each subsystem for plant gradient es-

timates. This approach allows the algorithm to overcome the challenges of most distributed

algorithms in the context of RTO, in particular the dependence on global plant gradients and

the availability of a global model. Two MA algorithms were discussed. Both MA schemes

use the interconnection model as well as local plant gradient information with respect to the

decision variables and the interconnection variables. We showed that, they deliver optimal

steady-state performance for the overall plant. The first one is a centralized scheme, while

the second scheme is a coordinator-based distributed MA scheme. The proposed distributed

algorithm has a two-layer structure. In the model-based inner loop, a coordinator ensures

that the inputs of the local subproblems are consistent with the interconnection model. Fur-

thermore, feasible-side convergence of a distributed modifier scheme was shown, under the

assumption of perfect plant gradient information.

Chapter 5: Application to Gas-Compressor Stations. This chapter has investigated the use

of MA for load-sharing optimization in gas-compression stations consisting of several com-

pressors in both parallel and serial configurations. The centralized version of MA for inter-

connected systems using local modifiers, presented in Chapter 4, is applied to both configu-

rations. This analysis showed that, the algorithm is capable of quickly converging to the plant

optimum by using only local subsystem derivatives. In fact, each subsystem relies on the es-

timation of the local power consumption, discharge pressure and mass flow derivatives with

respect to its own inputs. A solution to the load-sharing optimization problem was proposed

when the compressors may also operate on the surge control line. Also, an efficient approach

for obtaining accurate gradient estimates of the plant cost and constraints in the presence

of noise and plant-model mismatch was discussed. Furthermore, the complexity of this es-

timation is independent of the number of compressors. The MA algorithm works in synergy

with a low-level controller that tracks the required discharge pressure in serial configuration

102



6.2. Outlook and Perspectives

or the required mass flow in parallel configuration.

6.2 Outlook and Perspectives

Modifier-adaptation methods for centralized systems are well developed from a theoretical

perspective. New challenges, inspired by practice and applications to industrial systems, will

emerge and thus provide motivation for further improvements of the method. At this point, it

is necessary to apply the methodology to experimental systems. Also, industrial practitioners

will be more likely to adopt these methods if they have already been shown to work on real

systems.

This thesis concludes with an outlook and suggestions.

Adaptation of outputs: There is one interesting observation that distinguishes the proposed

methodology for interconnected systems using local gradients from other MA approaches,

namely, the adaptation of equality constraints. Except for the recent work of Papasavvas et al.

(2017), none of the methods in MA framework use the adaptation of equality constraints.

These authors have investigated that the adaptation of outputs, with respect to global gradi-

ents, improves the convergence of an MA scheme. This analysis can be extended to the plants

with interconnected systems and local gradient adaptation.

However, in this thesis, the utilization of modifiers for the adaptation of equality constraints

is twofold. Firstly, the adaptation is required so that the modified model, using local modi-

fiers, is capable of reaching a KKT point of the plant, as shown in Proposition 4.1. Also, this

clearly affects the convergence of the outer-loop in distributed algorithms, as shown in Sec-

tion 4.3. Secondly, the convergence of the inner-loop to the optimal value of dual variables

is influenced by this adaptation. Namely, the update of the output model affects the gradi-

ents of the dual variables used in the model-based inner-loop optimization problem. This is

something that has not been discussed in the ISOPE approaches (Brdyś and Tatjewski, 2005).

If obtaining the solution to the inner-loop problem is computationally too intensive, even for

utilization of more sophisticated distributed approaches, one may consider defining stop-

ping criteria for the inner loop. This way, the inputs applied to the plant are not the optimal

inputs of the current modified model. However, one must analyze whether this approach is

robust enough to lead the plant towards its optimality. Similar problems have been tackled in

the context of numerical optimization for fast inexact decomposition algorithms (Tran-Dinh

et al., 2016; Pu et al., 2014).

Steady-state gradient estimation: As already mentioned, experimental gradient estimation

is the main difficulty MA is facing. For processes with a large number of inputs, the challenge

is to estimate many gradients from sparse and noisy data. By introducing local gradients, the

curse of dimensionality can be reduced, but the estimates of the plant cost with respect to

the interconnection variables are required. However, these variables are not directly manip-

ulated. In this thesis, we analyzed the gradient estimation problem for a particular case of
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compressor plants.

Nonetheless, an important question remains. Is there a more general way to design an RTO

scheme for efficient estimation of these gradients? One way is to tackle this problem via Direc-

tional Modifier Adaptation (DMA) (Costello et al., 2016). In DMA, the gradients are corrected

only in the subspace spanned by the most sensitive input directions to a small parametric

perturbation. These directions are also called privileged directions. It is important to note

that with the decomposition of optimization problem for interconnected systems, the privi-

leged local input directions for each subsystem can be obtained from local parametric sen-

sitivity analysis. These directions can be utilized in Dual Directional Modifier Adaptation,

by introducing augmentation terms in each subproblem to reward steps in these privileged

directions. Another approach would be to formulate the optimization problem with Dual

MA (Marchetti et al., 2010; Rodger and Chachuat, 2010), where steps taken by an MA algo-

rithm must be severely constrained to ensure good gradient estimates. This usually results in

formulation of separate optimization problems that, in the case of interconnected systems,

must be taken with precaution.

Another question that is also relevant for the herein proposed formulation is the following:

How to decide if estimates of local modifiers are less complicated to obtain than estimates of

global gradients? It is not clear how to give an answer as it depends on the particular case

study, the topology of the network and the ability of an RTO scheme to provide sufficient

excitation to the interconnected variables for accurate gradient estimates. Thus, this remains

an open research direction.

Gradient estimation using transient measurements: MA techniques presented in this the-

sis are characterized by their ability to enforce plant optimality upon convergence despite

the presence of model uncertainty. They are based on correcting the available model using

gradient estimates computed from steady-state points at each iteration. With many itera-

tions and inputs, this can make convergence to the plant optimum rather slow. Thus, it is of

great interest to improve this approach by using a dynamic model as well as transient mea-

surements for gradient computations. The idea is to implement steady-state MA in the tran-

sient phase, thereby attempting to reach optimality in a single transient operation to steady

state (François and Bonvin, 2013; de Avila Ferreira et al., 2017). To that end, the steady-state

optimization problem is solved repeatedly online, with the steady-state modifiers being es-

timated from transient measurements. The latter are used as if they were steady-state mea-

surements. It is worth investigating whether local modifiers for the plant with interconnected

systems can benefit from the use of local transient measurements. This way, the challenging

gradient estimation with respect to interconnection variables can be avoided and, potentially,

plant optimality can be reached in a single transient operation.

Inexact feasible-side distributed MA schemes: It is also worth noting that the role of second-

order terms, introduced in the distributed MA Algorithm 4.3, is very similar to the the role of

second-order terms presented in Appendix A for centralized MA with convex upper bounds.
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In the case of large gradient error, this analysis can be extended to the adaptation of δGi , j and

δΦi in Proposition 4.3 (used in MA Algorithm 4.3) in order to improve the plant performance

and reduce the input oscillations.

Subsystems with different dynamics: Distributed modifier adaption for interconnected sys-

tems using local modifiers may be very useful for tackling steady-state optimizing control

of plants consisting of subsystems with different dynamics. Namely, complex plants usually

consist of units whose settling times are different. The distributed methodology presented

in Section 4.3 assumes synchronous optimization of all subsystems. This means that the co-

ordinator has to wait for all units to reach steady state to update and distribute a new price

vector (dual variables) to the subsystem optimizer. However, this should not always be the

case as some units have smaller settling times in comparison to other units that are also part

of the plant. The potential benefits of these methods would be the improved performance

of the entire plant, faster convergence to plant optimality in comparison to the centralized

approach and the overall system robustness when one of the control units fails or an infor-

mation link fails. Also, the use of the above-mentioned local transient measurements may

be beneficial for local gradient estimation. Asynchronous parallel methods in distributed op-

timization could have spurred the theoretical analysis for these RTO approaches. However,

the motivation for asynchronous parallel methods in various fields of research differs from

the one in RTO framework. Asynchronous approaches appear in the application area mo-

tivated by the existence of an inhomogeneous mixture of agents, where their local updates

need not occur at a common rate (Stathopoulos and Jones, 2017). Also, these methods have

been mostly motivated from memory allocation applications, when, e.g., a vector is stored in

the shared memory space of a multicore computer and can be accessed and altered by the

cores in an intermittent manner (Peng et al., 2016; Liu and Wright, 2015).

Finally, the general topic of real-time optimization of interconnected systems warrants

additional investigation. This thesis has demonstrated theoretically that modifier adaptation

can be applied to such systems. Thus, experimental validation is required as this will reveal

where the challenges lie, and provide motivation for further improving the method.
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A Modifier Adaptation with Convex
Upper Bounds and Inexact Gradients

This appendix is based on:

P. Milosavljevic, R. Schneider, A. Cortinovis, T. Faulwasser, and D. Bonvin. A distributed

feasible-side convergentmodifier-adaptation scheme for interconnected systems, with

application to gas-compressor stations. Comp. Chem. Eng., 115:474–486, 2018c.

Here, we recall the MA scheme with convex upper bounds presented in Subsection 2.2.2

and discuss its robustness in the case of inexact gradient information. Also, we analyze the

convergence of this algorithm assuming plant cost gradient error. We finally demonstrate the

effectiveness of the algorithm on a small numerical example and draw conclusions.

It is important to emphasize that much of the discussion in Section 2.2.2 has focused on very

idealized cases, without considering how Algorithm 2.2 would behave in real applications,

where accurate function and derivative values are not available. In the sequel, we will empha-

size the robustness of Algorithm 2.2 to inexact gradients of the plant cost function. In static

RTO, gradient estimation is rather expensive since it requires additional setpoint changes to

the plant. For this analysis, we first introduce a function that expresses the mismatch be-

tween the plant and model costs.

The plant-model mismatch function Λ(u) : Rnu �→R is defined as

Λ(u)=φp (u)−φ(u). (A.1)

Assumption A.1 (Differentiable model and plant functions).

Let the gradient of φ(u) and Λ(u) be Lm- and LΛ-Lipschitz continuous, respectively. Also, let

φ(u) be a convex function. �

Assumption A.2 (Cost gradient error).

The model gradient ∇φ(u) is known so that the error in the gradient of Λ(u) result only from

error in the plant gradient ∇φp (u). �
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Assumption A.2 implies

∇̂Λ(uk ) = �∇φp (uk )−∇φ(uk )

=∇φp (uk )+ek −∇φ(uk ), (A.2)

where ∇φp (uk ) and �∇φp (uk ) are the exact and noisy gradients of the plant cost at the operat-

ing point uk , respectively, while ∇φ(uk ) is the exact gradient of the model cost, and ek is the

plant cost gradient error.

The gradient of the Lagrangian function of Problem (2.9) at the optimal point uk+1 is

∇φ(uk+1)+∇̂Λ(uk )+δφ(uk+1 −uk )+vk = 0, (A.3a)

where

vk =

ng∑
j=1

(
μ�

j

)�
∇gU

j ,k (uk+1), (A.3b)

and μ�

j is Lagrange multiplier associated with gU
j ,k(u) at uk+1.

Proposition A.1 (Inexact gradient information). Consider the modifier-adaptation scheme

(2.9), the noisy gradient of the mismatch function Λ̃(u) in eq. (A.2), and the vector vk defined

in (A.3b). Let Assumptions 2.1, 2.2, A.1 and A.2 hold. It follows that:

(i) In the absence of gradient error (ek = 0), and if δφ ≥ LΛ, then the plant cost decreases at

iteration k +1.

(ii) If δφ ≥ LΛ, δφ ≥ Lm such that

‖�∇φp (uk )+vk‖2 ≥ K
(
δφ

)
‖ek‖2 (A.4)

where

K
(
δφ

)
=

(δφ+Lm)2(
δφ−LΛ

)(
δφ−Lm

) , (A.5)

then the plant cost decreases at iteration k +1.

Proof. For the proof, we need to define the feasible sets associated with the upper-bounding

constraint functions in (2.9) is given as

F
U
j ,k =

{
u ∈R

nu : gU
j ,k (u)≤ 0

}
, j = 1, . . . ,ng . (A.6a)
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Hence, the feasible convex set for the k-th RTO iteration can be written as

F
U
k =

(
ng⋂
j=1

F
U
j ,k

)
. (A.6b)

We are now ready to prove Proposition A.1.

Part (i): Using that εφk =Λ(uk ) and λ
φ

k = ∇̂Λ(uk ) as well as the definition of optimality of

(2.9) at uk+1, implies:

φ(uk+1)+Λ(uk )+∇̂Λ(uk )�(uk+1 −uk )+
δφ

2
‖uk+1−uk‖

2
2

≤φ(u)+Λ(uk )+∇Λ̃(uk )�(u−uk )+
δφ

2
‖u−uk‖

2
2, (A.7a)

for all u ∈F
U
k . Since we assume perfect constraint gradient information, the set F

U
k is equiv-

alent to the feasible set defined in (Marchetti et al., 2017, Thm.1). Hence, uk ∈ F
U
k and, for

u = uk , (A.7a) yields the inequality

φ(uk+1)−φ(uk )+∇̂Λ(uk )�(uk+1 −uk )+
δφ

2
‖uk+1−uk‖

2
2 ≤ 0. (A.7b)

Lipschitz continuity of the gradient of function Λ(u) (Assumption A.1) implies:

Λ(uk+1)≤Λ(uk )+∇Λ(uk )�(uk+1−uk )+
LΛ

2
‖uk+1−uk‖

2
2.

By adding this last inequality to (A.7b) and rearranging the various terms gives:

Λ(uk+1)+φ(uk+1)−Λ(uk )−φ(uk )+
(
∇̂Λ(uk )−∇Λ(uk )

)�(uk+1−uk )

+
(δφ−LΛ)

2
‖uk+1−uk‖

2
2 ≤ 0. (A.7c)

Recalling from (A.1) that Λ = φp −φ and using the definition of the gradient error e in (A.2),

(A.7c) becomes

φp (uk+1)−φp (uk )+e�k (uk+1 −uk )+
(δφ−LΛ)

2
‖uk+1−uk‖

2
2 ≤ 0. (A.7d)

In the case of perfect gradient estimation ∇̂Λ(uk )=∇Λ(uk ), that is ek = 0, the following holds:

φp (uk+1)−φp (uk )+
(δφ−LΛ)

2
‖uk+1−uk‖

2
2 ≤ 0.

Hence, for δφ−LΛ ≥ 0, we obtain:

φp (uk+1) ≤φp (uk ).
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Part (ii): Writing down the optimality conditions for Problem (2.9) at the point uk+1 gives:

∇φ(uk+1)+∇̂Λ(uk )+δφ(uk+1 −uk )+vk = 0. (A.8a)

with the vector vk defined as in (A.3b). Based on this equation, we will now derive upper and

lower bounds on the term ‖uk+1−uk‖2. For the upper bound, we substitute ∇̂Λ(uk ) by the

expression ∇̂Λ(uk ) = �∇φp (uk )−∇φ(uk ).

uk+1−uk =
1

δφ

(
−∇φ(uk+1)+∇φ(uk )−�∇φp (uk )−vk

)
. (A.8b)

Using the triangle inequality and Lipschitz continuity of ∇φ(u) (Assumption A.1) gives:

‖uk+1−uk‖2 ≤
1

δφ
‖∇φ(uk+1)−∇φ(uk )‖2 +

1

δφ
‖�∇φp (uk )+vk‖2

≤
Lm

δφ
‖uk+1−uk‖2 +

1

δφ
‖�∇φp (uk )+vk‖2. (A.8c)

Hence, for δφ > Lm , we get the desired upper bound

‖uk+1−uk‖2 ≤
1

(δφ−Lm)
‖�∇φp (uk )+vk‖2. (A.8d)

In order to derive the lower bound, we first rewrite the equality (A.8b) as

δφ (uk+1 −uk )+∇φ(uk+1)−∇φ(uk ) =−�∇φp (uk )−vk (A.9a)

Taking the norm on both sides, and using Lipschitz continuity and the triangle inequality

gives:

δφ‖uk+1 −uk‖2 +Lm
‖uk+1−uk‖2 ≥ (A.9b)

δφ‖uk+1 −uk‖2 +‖∇φ(uk+1)−∇φ(uk )‖2 ≥ (A.9c)

‖�∇φp (uk )+vk‖2. (A.9d)

Simplifying (A.9b), we obtain the desired lower bound

‖uk+1−uk‖2 ≥
1

(δφ+Lm)
‖�∇φp (uk )+vk‖2. (A.9e)

Going back to (A.7d) , we have

φp (uk+1)−φp (uk )+ (ek )� (uk+1 −uk )+
(δφ−LΛ)

2
‖uk+1−uk‖

2
2 ≤ 0. (A.10a)
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Rearranging we get:

φp (uk+1)−φp (uk ) ≤− (ek )� (uk+1 −uk )−
(δφ−LΛ)

2
‖uk+1−uk‖

2
2 (A.10b)

≤ ‖ek‖2‖uk+1 −uk‖2 −
(δφ−LΛ)

2
‖uk+1−uk‖

2
2. (A.10c)

Next, (a) we multiply (A.8d) by ‖ek‖2, and (b) we square (A.9e) and multiply the result by

−
(δφ−LΛ)

2 . Then, we use both (a) and (b) in (A.10c) to obtain:

φp (uk+1)−φp (uk )≤
1

δφ−Lm
‖ek‖2‖�∇φp (uk )+vk‖2 −

δφ−LΛ

(δφ+Lm)2
‖�∇φp (uk )+vk‖

2
2 (A.10d)

≤ ‖�∇φp (uk )+vk‖2

(
1

δφ−Lm
‖ek‖2 −

δφ−LΛ

(δφ+Lm)2
‖�∇φp (uk )+vk‖2

)
.

(A.10e)

The right-hand side of (A.10e) is negative for ‖�∇φp (uk )+vk‖2 ≥ K ‖ek‖2, where

K =
(δφ+Lm)2(

δφ−LΛ
)(
δφ−Lm

) .

Then, for ‖�∇φp (uk )+vk‖2 ≥ K ‖ek‖2, the plant cost function decreases at iteration k +1.

Remark A.1 (Plant cost decrease). The result of Proposition A.1 indicates that the plant cost

will decrease until the input converges to the region where

‖�∇φp (uk )+vk‖2 < K
(
δφ

)
‖ek‖2. (A.11)

In this region, the algorithm can behave quite unpredictably due to the presence of random

gradient errors. If the errors vary substantially, the method will tend to oscillate within the re-

gion in which the plant optimum lies. According to (A.3), in case the optimum uk+1 lies on the

constraints, vk in (A.3b) is a non-zero vector that can be obtained from the model optimization

problem (2.9). Hence, the proof indicates that, in the case of an unconstrained optimum, the

condition in (A.4) reduces to ‖�∇φp (uk )‖2 ≥ K
(
δφ

)
‖ek‖2. If exact value of gradient error norm

‖ek‖2 is not known, one can be obtained its bound as in Subsection 2.2.4.

Next, we discuss the influence of the parameter δφ on the performance of the MA Algo-

rithm 2.2. Note that the choice of δφ is bounded from below by the parameters LΛ and Lm .

The estimation of LΛ is very challenging in practice; in general, it is even more difficult than

obtaining exact plant gradients. On the one hand, imposing monotonic decrease of the plant

cost would require conservative values of δφ, especially if the gradients are inexact and if the

noise level is high. On the other hand, choosing high values of δφ results in slow convergence

of Algorithm 2.2, thus requiring too many setpoint changes on the real system.

We will now show how Condition (A.4) can help in reduce the number of setpoint changes.
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Namely, we will propose modified version of MA Algorithm 2.2 that adapts the parameter

δφ in order to speedup convergence to the neighborhood of the plant optimum. Here, we

choose large values of δφ, namely to give certain robustness to the MA algorithm in presence

of large gradient error, thus preventing large steps and implying slow convergence. However,

if Condition (A.4) holds, we can adapt the value of δφ such that the inequality (A.4) holds with

equality. In this case, we compute δφ from

‖�∇φp (uk )+vk‖2 = K
(
δφ

)
‖ek‖2 (A.12)

and utilize it in the MA Algorithm 2.2. This way, the MA scheme will take larger steps knowing

that the plant cost decrease Condition (A.4) still holds. Note that K
(
δφ

)
in (A.5) is a decreasing

function of δφ for δφ ≥ LΛ, δφ ≥ Lm and the solution of (A.12) is unique.

Hence, we propose the following Algorithm A.1 as the modified version of the MA Algorithm

2.2 in Section 2.2.2

Algorithm A.1 : MA Algorithm 2.2 with adaptation of δφ

1. Initialization: Provide the initial point u0 and δ
φ
max ,LΛ and Lm . Set k := 0.

2. Plant experiment: Apply the set of inputs uk to the plant and wait for steady state.

3. Modifier computation: Compute the modifiers as per eqs. (2.5a)–(2.5c).

4. Adaptation of δφ:
Set δφ = δ

φ
max

if eq. (A.4) holds
Compute new δφ from eq. (A.12)

end

5. New input calculation: Compute uk+1 by solving Problem (2.9).

6. Iterate: Set k := k +1 and return to Step 2.

A.1 Numerical Example

To illustrate the influence of the parameter δφ on the convergence of the MA scheme, we

present a simple example characterized by an unconstrained optimum.

Consider the plant optimization problem:

min
u1,u2

φp :=1.8(u1 +1)2
+2(u2 +1)2 (A.13a)

s.t.−5 ≤ u1 ≤ 5 (A.13b)

−5 ≤ u2 ≤ 5, (A.13c)
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and its model counterpart:

min
u1,u2

φ :=2.5(u1 −0.5)2
+1.3(u2 −0.5)2 (A.14a)

s.t.−5 ≤ u1 ≤ 5 (A.14b)

−5 ≤ u2 ≤ 5. (A.14c)

We discuss various scenarios with different δφ values as presented in Table A.1 and Figure

A.1. Each scenario considers a constant norm of the gradient error e.

Scenario 1 illustrates the case where the small value δ
φ
max = 3 is chosen. Algorithm 2.2

with no adaptation of δφ is considered. Here δφ = 3 is a value that ensures monotonic cost

decrease in the absence of gradient error (e = 0). However, once in the vicinity of the opti-

mum, after about 10 RTO iterations, the algorithm starts oscillating significantly due to the

large gradient error ‖e‖ = 6. For the same value δ
φ
max = 3, applying Algorithm A.1 will not

change the outcome of Scenario 1. This is due to the fact that, for ‖e‖ = 6 and the small value

δ
φ
max = 3, Condition (A.4) is never satisfied.

Scenarios 2 and 3 correspond to RTO iterates δφ being adapted. The same value of gradi-

ent error ‖ek‖= 6, as in Scenario 1, is considered. In Figure A.1, the dotted line represents the

value of K
(
δ
φ
max

)
‖e‖2. Thus, whenever ‖�∇φp (uk )‖2 ≥ K

(
δ
φ
max

)
‖ek‖2 holds, the value of δφ

is adapted according to Algorithm A.1. Due to this adaptation, the vicinity of the optimum is

reached after about 15-20 iterations. However, there are no oscillations due to gradient error.

In Scenario 4, since δφ is not adapted, the convergence to the neighborhood of the opti-

mum is slower in comparison to Scenarios 2 and 3.

K (δ
φ
max )‖e‖ δ

φ
max Algorithm ‖e‖

Scenario 1 181.5 3 Alg. 2.2 6
Scenario 2 7.1 50 Alg. A.1 6
Scenario 3 8 30 Alg. A.1 6
Scenario 4 7.1 50 Alg. 2.2 6

Table A.1 – Four different scenarios corresponding to Figure A.1
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Figure A.1 – RTO iterates for Algorithm 2.2 and scenarios in Table A.1

This appendix has discussed the robustness of an MA algorithm with convex upper bounds

in the case of inexact gradient information. We have analyzed the convergence of this algo-

rithm assuming gradient error in the plant cost. The conditions that can be used to reduce

the conservatism of the proposed algorithm have been derived. This way, convergence to the

neighborhood of the plant optimum can be reached faster.
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B A Link Between MA and Proximal-
Gradient Algorithm

This appendix recalls the basic proximal-gradient algorithm, which has been shown to be

a very powerful tool for solving nonconvex and nonsmooth problems that occur in many

applications. For the purpose of this paper, we briefly recall its application for minimizing

the sum of two functions (Bolte et al., 2014; Hours and Jones, 2016).

Consider the following optimization problem:

min
u∈Ω

t (u)+h(u), (B.1)

where Ω is a convex set in R
nu , t (u) : Rnu → R is a convex function, not necessarily smooth,

and h(u) :Rnu →R is a differentiable function. To move the input constraints to the objective

function, we will replace t (u) by the penalty function

f (u) := t (u)+IΩ(u). (B.2)

where IΩ(u) is the indicator function of convex set Ω. As a result, we may rewrite (B.1) as the

unconstrained problem:

min
u∈Rnu

f (u)+h(u). (B.3)

Definition B.1 (Proximal operator). Let f : Rnu → R be a lower-semicontinuous convex func-

tion and L > 0. The proximal operator associated with the function f (u) and the coefficient L,

denoted prox
f
L , is defined as follows:

proxf
L (c) = argmin

u∈Rnu

f (u)+
L

2
‖u−c‖2

2. (B.4)

Then, the solution to Problem (B.3) can be obtained via the proximal-gradient algorithm

(PGA) (Parikh and Boyd, 2014):

We shall now investigate the relationship between the modifier-adaptation Algorithm 2.2 and
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Algorithm B.1 : Proximal-gradient algorithm

1. Initialization: Provide the initial point u0. Set k := 0.
2. New point calculation:

uk+1 = prox f
L

(
uk −

1

L
∇h(uk )

)
. (B.5)

3. Iterate: Set k := k +1 and return to Step 2.

the proximal-gradient Algorithm B.1. For this analysis, we first introduce a function that ex-

presses the mismatch between the plant and model costs.

Note that the plant-model mismatch function Λ(u) is defined in (A.1) and the feasible set

associated with Problem (2.9) is given in (A.6).

The relationship between the MA Algorithm 2.2 and the proximal-gradient Algorithm B.1 can

be stated as follows.

Proposition B.1 (Equivalence between MA and PGA).

Let Assumption A.1 hold. Consider the modifier-adaptation recursion (2.9) at the k-th iteration

and the plant-model mismatch function Λ(u) defined in (A.1). Then, if L = δφ, the modifier-

adaptation Problem (2.9) is equivalent to the proximal-gradient update

uk+1 = proxΦL
(
uk −

1

L
∇Λ(uk )

)
(B.6)

associated with Φ(u) :=φ(u)+I
F

U
k

(u), where F
U
k is the convex set defined in (A.6).

Proof. From the definition of the proximal operator (B.4):

uk+1 =proxΦL
(
uk−

1

L
∇Λ(uk )

)
= argmin

u∈F
U
k

φ(u)+
L

2
‖u−uk +

1

L
∇Λ(uk )‖2

2

= argmin
u∈F

U
k

φ(u)+∇Λ(uk )�(u−uk )+
L

2
‖u−uk‖

2
2

= argmin
u∈F

U
k

φ(u)+Λ(uk )+∇Λ(uk )�(u−uk )+
L

2
‖u−uk‖

2
2

Hence, uk+1 minimizes φ(u) plus a quadratic local model of Λ(uk ) around uk . Since Λ(uk ) =

φp (uk ) −φ(uk ) = ε
φ

k and ∇Λ(uk ) = ∇φp (uk )−∇φ(uk ) = λ
φ

k , Problem (2.9) is equivalent to

Problem (B.6) for L = δφ.
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C Proofs

C.1 Proof of Lemma 3.1

Proof. Using Assumption 3.1, the plant optimization problem (3.1) can be equivalently rewrit-

ten as

(u∗
p ,v∗p ,y∗p ) =argmin

u,vp ,yp

Φp (u,vp ,yp ) (C.1a)

s.t. yp = fp (u), (C.1b)

Gp (u,vp ,yp ) ≤ 0, (C.1c)

vp = hp (u). (C.1d)

Substituting the equality constraints (C.1b) and (C.1d) into the objective function (C.1a) and

into the inequality constraints (C.1c), Problem (C.1) becomes

(u∗
p ,v∗p ,y∗p )=argmin

u,vp ,yp

Φp
(
u,hp (u), fp (u)

)
(C.2a)

s.t. yp = fp (u), (C.2b)

Gp
(
u,hp (u), fp (u)

)
≤ 0, (C.2c)

vp = hp (u). (C.2d)

In this formulation, the optimal value of u is no longer influenced by the variables yp and vp .

Moreover, the optimal values y∗p and v∗p are now uniquely defined by the equality constraints

(C.2b) and (C.2d). Hence, Problem (C.2) can be equivalently rewritten as

u∗
p =Φp

(
u,hp (u), fp (u)

)
(C.3a)

s.t. Gp
(
u,hp (u), fp (u)

)
≤ 0, (C.3b)

y∗p = fp (u∗
p ), (C.3c)

v∗p = hp (u∗
p ), (C.3d)
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and finally as (3.4).

C.2 Proof of Proposition 3.1

Proof. Problem (3.11) can be rewritten as(
u∗

k+1,v∗k+1,y∗k+1

)
=argmin

u,v,y
Φ(u,v,y)+

(
λ
φ

k

)�(
u−uk

)
(C.4a)

s.t. y = F(u,v), (C.4b)

G(u,v,y)+ε
g
k +

(
λ

g
k

)�(
u−uk

)
≤ 0, (C.4c)

v = H(y), (C.4d)

with the filter (3.7g). Applying Assumption 3.2 and using the definition of the functions φ(·)

and g(·), the equivalent problem is obtained(
u∗

k+1,v∗k+1,y∗k+1

)
=argmin

u,v,y
φ(u)+

(
λ
φ

k

)�(
u−uk

)
(C.5a)

s.t. y = f(u), (C.5b)

g(u)+ε
g
k +

(
λ

g
k

)�(
u−uk

)
≤ 0, (C.5c)

v = h(u), (C.5d)

with the filter (3.7g). Similar to (C.2), the optimal value of u does not depend on y or v. Hence,

we can simplify further to obtain the equations

u∗
k+1 =argmin

u
φ(u)+

(
λ
φ

k

)�(
u−uk

)
, (C.6a)

s.t. g(u)+ε
g
k +

(
λ

g
k

)�(
u−uk

)
≤ 0, (C.6b)

y∗k+1 = f
(
u∗

k+1

)
, (C.6c)

v∗k+1 = h
(
u∗

k+1

)
, (C.6d)

with the filter (3.7g). Since (C.6a) and (C.6b) as well as the filter equations are the same as in

the standard MA scheme (2.4), Theorem 2.2 applies and gives the desired result.

C.3 Proof of Proposition 3.2

Proof. Problem (3.17) can be rewritten as(
u∗

k+1,y∗k+1

)
=argmin

u,y
Φ(u,vp,k ,y)+

(
λ
φ

k

)�(
u−uk

)
, (C.7a)

s.t. y =F
(
u,vp,k

)
, (C.7b)

G
(
u,vp,k

)
+ε

g
k +

(
λ

g
k

)�(
u−uk

)
≤ 0, (C.7c)
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with the filter (3.7g). Substituting F
(
u,vp,k

)
for y in the objective function and inequality

constraints and using the definition of the functions φ(·) and g(·), the equivalent problem

is obtained (
u∗

k+1,y∗k+1

)
=argmin

u,y
φ(u)+

(
λ
φ

k

)�(
u−uk

)
(C.7d)

s.t. y = F
(
u,vp,k

)
, (C.7e)

g(u)+ε
g
k +

(
λ

g
k

)�(
u−uk

)
≤ 0, (C.7f)

with the filter (3.7g). Again, the optimal value of u does not depend on y. Hence, we can

simplify further to obtain the equations

u∗
k+1 =argmin

u
φ(u)+

(
λ
φ

k

)�(
u−uk

)
, (C.7g)

s.t. g(u)+ε
g
k +

(
λ

g
k

)�(
u−uk

)
≤ 0, (C.7h)

y∗k+1 =F
(
u∗

k+1,vp,k
)
, (C.7i)

with the filter (3.7g). Since (C.7g) and (C.7h) as well as the filter equations are the same as in

the standard MA scheme (2.4), Theorem 2.2 applies and gives the desired result.

C.4 Proof of Proposition 4.1

Proof. The proof proceeds in two steps: the first part of the proof shows that, upon conver-

gence, v∞ is equal to vp,∞; second we show that a KKT point of the plant is reached.

Step 1: The following analysis shows that, upon convergence, the pair (u∞,vp,∞) is a solu-

tion to (4.5d). In fact, by evaluating equation (4.5d)

Qm(u,v) := v−
(
H(y)+εH

k +
(
λH

k

)� (
z−zp,k

))
(C.8)

at point zp,∞ = [u∞,vp,∞], we obtain

Qm
(
u∞,vp,∞

)
= vp,∞−H

(
y
(
u∞,vp,∞

))
−εH

k −
(
λH

k

)� (
zp,∞−zp,∞

)
(C.9a)

= vp,∞−Hp
(
yp

(
u∞,vp,∞

))
(C.9b)

= 0. (C.9c)

Thus, from (C.9), the pair (u∞,vp,∞) is solution to (4.5d). Since the solution to (4.5d) is unique

(Assumption 4.2), this means that upon convergence to u∞, the duple (u∞,v∞) is the same

as (u∞,vp,∞).

Step 2: The second part of the proof is focused on the KKT conditions of problems (4.1)
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and (4.5). The definition of the modifiers (4.5) implies that

Gm =G
(
u∞,vp,∞

)
+εG

∞ = Gp
(
u∞,vp,∞

)
(C.10a)

∇zGm (u∞,v∞) =∇zGm
(
u∞,vp,∞

)
=∇zG

(
u∞,vp,∞

)
+λG

∞

=∇zp Gp
(
u∞,vp,∞

)
(C.10b)

∇zΦm (u∞,v∞) =∇zΦm
(
u∞,vp,∞

)
=∇zΦ

(
u∞,vp,∞

)
+λΦ

∞

=∇zpΦp
(
u∞,vp,∞

)
. (C.10c)

Similarly, for interconnection equation Qm(u,v) in (C.8) i.e. (4.5d)

∇zQm (u∞,v∞)=∇zp Qp
(
u∞,vp,∞

)
. (C.10d)

where Qp := vp −Hp (yp ). Hence, upon convergence, we have KKT matching in Problems (4.1)

and (4.5). Since, by Assumption 4.1, (u∞,v∞) =
(
u∞,vp,∞

)
is a KKT point of Problem (4.5), it

is also a KKT point of (4.1) (Marchetti et al., 2009, Thm. 1).

C.5 Proof of Proposition 4.3

Proof. Part (i): The iterative procedure of Steps (a) and (c) in Algorithm 4.3 are essentially a

dual decomposition (Necoara et al., 2011; Bertsekas and Tsitsiklis, 1997). Due to Assumption

4.4, Problem (4.13) is strictly convex. Hence, convergence of the inner loop of Algorithm 4.3

to the optimal solution is discussed in (Necoara et al., 2011, Thm. 3.5).
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Part (ii): For the sake of simplicity, the following notation is used:

Φp,i ,k :=Φp,i (ui ,k ,vp,i ,k )

Φi ,k :=Φi (ui ,k ,vi ,k )

Φk :=Φ(uk ,vk )

Fp,k := Fp (uk ,vp,k )

Fk := F(uk ,vk )

zp,i ,k := [u�
i ,k ,v�p,i ,k ]�

zi ,k := [u�
i ,k ,v�i ,k ]�

φp,k :=φp (uk )

z� := [z�1 , . . . ,z�N ]

z�p := [z�p,1, . . . ,z�p,N ].

The proof is divided in 4 separate steps. Namely, the relation between plant cost function

value at points uk and uk+1 is provided based on the properties of the model and plant cost

function. In the first step, the relation between model costs Φ(zk+1), Φ(zp,k ) and plant cost

gradient ∇zΦ(zp,k ) is establish. Then in the second step, the model cost entities are elim-

inated. In the third step, relation between model interconnection variables and input at

points uk and uk+1 is derived. The step 4 combines conditions from previous steps to finalize

the proof.

Step 1: Here, a relationship between the model costs Φ(zk+1) and Φ(zp,k ) is derived by ex-

panding the functions ΦU
i ,k (ui ,vi ),∀i ∈N in (4.11).

Namely, upon convergence of the inner loop to the model optimum corresponding to z�i ,k+1 =

[u�
i ,k+1,v�i ,k+1],∀i ∈N and dual variable μ, the following holds:

∑
i∈N

(
Φi (ui ,k+1,vi ,k+1)+

(
λ
Φi

k

)� (
zi ,k+1 −zp,i ,k

)
+
δΦi

2
‖zi ,k+1−zp,i ,k‖

2
2

)
+μ�

(
vk+1 −Hym,k+1

)
≤

∑
i∈N

(
Φi (ui ,vi )+

(
λ
Φi

k

)� (
zi −zp,i ,k

)
+
δΦi

2
‖zi −zp,i ,k‖

2
2

)
+μ�

(
v−Hym (u,v)

)
(C.12a)

By definition, convergence of inner loop ensures feasibility of the interconnection equation

for the modified model, i.e.

vk+1 −Hym,k+1 = 0. (C.12b)
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Moreover, by evaluating (C.12a) at point z = zp,k , one obtains

∑
i∈N

(
Φi (ui ,k+1,vi ,k+1)+

(
λ
Φi

k

)� (
zi ,k+1 −zp,i ,k

)
+
δΦi

2
‖zi ,k+1−zp,i ,k‖

2
2

)
≤

∑
i∈N

Φi (up,i ,k ,vp,i ,k ).

(C.12c)

Hence, utilizing

Φk+1 =
∑

i∈N

Φi (ui ,k+1,vi ,k+1)

Φ(zp,k ) =
∑

i∈N

Φi (up,i ,k ,vp,i ,k )(
λ
Φi

k

)�
=∇zp,i Φp,i ,k −∇zi Φi (zp,i ,k )

in (C.12c) yields:

Φk+1+
∑

i∈N

(
∇zp,i Φp,i ,k −∇zi Φi (zp,i ,k )

)�
(zi ,k+1−zp,i ,k )+

∑
i∈N

δΦi

2
‖zi ,k+1 −zp,i ,k‖

2
2 ≤Φ(zp,k ).

(C.12d)

Step 2: Now, the result of Step (1) i.e. (C.12d) and properties of the model cost function are

used to give guarantees on the value of the plant gradient at the new point uk+1. We start

from the fact that Assumption 4.5 implies

Φ(zp,k ) ≤Φk+1 +
∑

i∈N

∇zi Φ
�
i ,k+1(zp,i ,k −zi ,k+1)+

∑
i∈N

δ
Φm

i

2
‖zp,i ,k −zi ,k+1‖

2
2. (C.12e)

Hence, summing up (C.12d) and (C.12e) gives:

∑
i∈N

∇zp,i Φ
�
p,i ,k (zi ,k+1 −zp,i ,k )+

∑
i∈N

(
∇zi Φi ,k+1 −∇zi Φi (zp,i ,k )

)� (zi ,k+1 −zp,i ,k )

+
∑

i∈N

δΦi −δ
Φm

i

2
‖zi ,k+1 −zp,i ,k‖

2
2 ≤ 0. (C.12f)

In order to cancel the second term of the above inequality, the Cauchy-Schwarz inequality is

used and the Lipschitz Assumption 4.5 to derive the following expression:

−
∑

i∈N

(
∇zi Φi ,k+1 −∇zi Φi (zp,i ,k )

)�
(zi ,k+1 −zp,i ,k )

≤
∑

i∈N

‖∇zi Φi ,k+1−∇zi Φi (zp,i ,k )‖2‖zi ,k+1 −zp,i ,k‖2

≤
∑

i∈N

δ
Φm

i ‖zi ,k+1 −zp,i ,k‖
2
2. (C.12g)
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Summing up (C.12f) and (C.12g) gives:

∑
i∈N

∇zp,i Φ
�
p,i ,k (zi ,k+1 −zp,i ,k )+

∑
i∈N

δΦi −3δΦm

i

2
‖zi ,k+1 −zp,i ,k‖

2
2 ≤ 0. (C.12h)

Finally, simplification of (C.12h) yields

∇zpΦ
�
p,k (zk+1 −zp,k )+

∑
i∈N

δΦi −3δΦm
i

2
‖zi ,k+1 −zp,i ,k‖

2
2 ≤ 0 (C.12i)

∇uΦ
�
p,k (uk+1 −uk )+∇vpΦ

�
p,k (vk+1 −vp,k )+

∑
i∈N

δΦi −3δΦm

i

2
‖zi ,k+1−zp,i ,k‖

2
2 ≤ 0. (C.12j)

Step 3: Now, vk+1 −vp,k is expressed as a function of uk+1 −uk . Recall from (C.12b) that

vk+1 = H
(

Fk+1 +ε
F
k +

(
λ

F
k

)�
(zk+1 −zp,k )

)
= H

(
Fk+1+Fp,k −F(zp,k ) +

(
∇zp Fp,k −∇zF(zp,k )

)� (
zk+1 −zp,k

))
. (C.13a)

According to Assumption 4.4, the model output functions F are linear in u and v. Hence, one

can write:

Fk+1 =∇zF�zk+1 +F(0) (C.13b)

F
(
zp,k

)
=∇zF�zp,k +F(0). (C.13c)

Substituting (C.13b) and (C.13c) in (C.13a) yields

vk+1 = H
(
Fp,k +∇zp F�

p,k

(
zk+1 −zp,k

))
(C.13d)

= vp,k +H∇zp F�
p,k (zk+1 −zp,k ) (C.13e)

= vp,k +H∇uF�
p,k (uk+1 −uk )+H∇vp F�

p,k (vk+1 −vp,k ). (C.13f)

Hence, the following equality is obtained by rearranging (C.13d)(
I−H∇vp F�

p,k

)(
vk+1 −vp,k

)
= H∇uF�

p,k (uk+1−uk ).

Due to Assumption 4.6, the matrix
(
I−H∇vp F�

p,k

)
is invertible. Hence,

vk+1 −vp,k =

(
I−H∇vF�

p,k

)−1
H∇uF�

p,k (uk+1 −uk ). (C.13g)

According to Assumption 3.1 and (4.14a), we have hp = vp . Differentiating the plant intercon-

nection variables hp = vp = Hyp in (4.1d) at the point uk gives:

dvp,k

du
=∇uh�

p,k =H
(
∇uF�

p,k +∇vp F�
p,k∇hv�p,k∇uh�

p,k

)
. (C.13h)
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Since ∇hv�p,k = I, then by solving (C.13h) for ∇uh�
p,k , one obtains:

∇uh�
p,k =

(
I−H∇vp F�

p,k

)−1
H∇uF�

p,k . (C.13i)

Hence, substituting (C.13i) in (C.13g) gives:

vk+1 −vp,k =∇uh�
p,k (uk+1 −uk ). (C.13j)

Step 4: Finally, the results from the previous two steps are used to show the monotonic cost

decrease condition. In particular, substituting (C.13j) in (C.12j) gives:

∇uΦ
�
p,k (uk+1−uk )+∇vpΦ

�
p,k∇uh�

p,k (uk+1 −uk )+
∑

i∈N

δΦi −3δΦm

i

2
‖zi ,k+1 −zp,i ,k‖

2
2 ≤ 0,

or

(
∇uΦ

�
p,k +∇vPΦ

�
p,k∇uh�

p,k

)
(uk+1 −uk )+

∑
i∈N

δΦi −3δΦm

i

2
‖zi ,k+1 −zp,i ,k‖

2
2 ≤ 0. (C.14a)

Since ∇uΦ
�
p,k +∇vpΦ

�
p,k∇uh�

p,k = d
duΦp,k , one obtains:

d

du
Φp,k (uk+1 −uk )+

∑
i∈N

δΦi −3δΦm

i

2
‖zi ,k+1−zp,i ,k‖

2
2 ≤ 0. (C.14b)

Expanding inequality (C.14b) and using that d
duΦp,k =∇uφ

�
p,k from (4.14c)-(4.14d) leads to:

∇uφ
�
p,k (uk+1−uk )+

∑
i∈N

δΦi −3δΦm

i

2
‖ui ,k+1−ui ,k‖

2
2 +

∑
i∈N

δΦi −3δΦm

i

2
‖vi ,k+1−vp,i ,k‖

2
2 ≤ 0.

(C.14c)

Assumption 4.5 implies:

φp (uk+1)≤φp (uk )+∇uφ
�
p,k (uk+1 −uk )+

δφp

2
‖ui ,k+1−ui ,k‖

2
2. (C.15a)

Summing up (C.14c) and (C.15a) gives the following inequality:

φp (uk+1)−φp (uk ) ≤

−
∑

i∈N

δΦi −3δΦm

i −δφp

2
‖ui ,k+1−up,i ,k‖

2
2 −

∑
i∈N

δΦi −3δΦm

i

2
‖vi ,k+1−vp,i ,k‖

2
2. (C.15b)

Hence, the plant cost decreases if

δΦi −3δΦm

i −δφp ≥ 0,∀i ∈N .
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This condition guarantees monotonic decrease of the plant cost. In the following part of the

proof, the plant feasibility issue will be addressed.

Part (iii): We start by evaluating (4.11) at the point zi ,k+1:

Gi , j (zi ,k+1)+ε
Gi , j

k +

(
λ

Gi , j

k

)� (
zi ,k+1 −zp,i ,k

)
+

δG
i , j

2
‖zi ,k+1−zp,i ,k‖

2
2 ≤ 0, j = 1, . . . ,nGi . (C.16)

Upon expanding the modifiers, we obtain:

Gi , j (zi ,k+1)+Gp,i , j (zp,i ,k )−Gi , j (zp,i ,k )

+

(
∇zp,i G

�
p,i , j

(
zp,i ,k

)
−∇zi G

�
i , j

(
zp,i ,k

))(
zi ,k+1 −zp,i ,k

)
+

δG
i , j

2
‖zi ,k+1−zp,i ,k‖

2
2 ≤ 0. (C.17a)

Since, from Assumption 4.4, the model inequality constraints are linear,

Gi , j
(
zi ,k+1

)
=∇zi G

�
i , j zi ,k+1+Gi , j (0) (C.17b)

Gi , j
(
zp,i ,k

)
=∇zi G

�
i , j zp,i ,k +Gi , j (0), (C.17c)

substituting (C.17b) and (C.17c) in (C.17a) gives:

Gp,i , j (zp,i ,k )+∇zp,i G
�
p,i , j

(
zp,i ,k

)(
zi ,k+1−zp,i ,k

)
+

δG
i , j

2
‖zi ,k+1−zp,i ,k‖

2
2 ≤ 0. (C.17d)

Furthermore, expanding the second term of the previous inequality yields

∇zi G
�
p,i , j

(
zp,i ,k

)(
zi ,k+1 −zp,i ,k

)
=∇ui G

�
p,i , j ,k (ui ,k+1−ui ,k )+∇vi G

�
p,i , j ,k (vi ,k+1 −vp,i ,k ).

(C.17e)

The i -th row of (C.13j) can be written as:

vi ,k+1−vp,i ,k =∇uh�
p,i ,k (uk+1−uk ), (C.17f)

where ∇uh�
p,i ,k is the i t h block-row matrix of ∇uh�

p,k . Next, substituting (C.17f) in (C.17e)

gives:

∇zi G
�
p,i , j

(
zp,i ,k

)(
zi ,k+1−zp,i ,k

)
=∇ui G

�
p,i , j ,k Iui (uk+1 −uk )+∇vi G

�
p,i , j ,k∇uh�

p,i ,k (uk+1 −uk )

=

(
∇ui G

�
p,i , j ,k Iui +∇vi G

�
p,i , j ,k∇uh�

p,i ,k

)
(uk+1−uk )

=
dGp,i , j ,k

du
(uk+1 −uk )

=∇ug�
p,i , j ,k (uk+1−uk ). (C.17g)

Here we introduced the selection matrix Iui =
dui
du ∈R

nui ×nu and we used the fact that∇hi v�p,i ,k =

I. For the last two lines, we also used that Gp,i , j (zp,i ,k ) = gp,i , j (uk ) (from Assumption 3.1 and
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(4.14b)). Substituting (C.17g) in (C.17d), for all i ∈N , gives:

gp,i , j (uk )+∇ug�
p,i ,k (uk+1−uk )+

δG
i , j

2

(
‖ui ,k+1−ui ,k‖

2
2 +‖vi ,k+1 −vp,i ,k‖

2
2

)
≤ 0. (C.17h)

Lipschitz continuity of the gradient of gp,i , j (Assumption 4.5) implies

gp,i , j (uk+1) ≤ gp,i , j (uk )+∇ug�
p,i , j ,k (uk+1 −uk )+

δ
gp

i , j

2
‖uk+1−uk‖

2
2. (C.18)

Combining (C.17h) and (C.18) yields

gp,i , j (uk+1) ≤
δ

gp

i , j

2
‖uk+1−uk‖

2
2 −

δG
i , j

2

(
‖ui ,k+1−ui ,k‖

2
2 +‖vi ,k+1 −vp,i ,k‖

2
2

)
. (C.19)

Finally, using (C.17f) gives

gp,i , j (uk+1) ≤
δ

gp

i , j

2
‖uk+1−uk‖

2
2 −

δG
i , j

2

(
‖ui ,k+1−ui ,k‖

2
2 +‖∇uh�

p,i ,k‖
2
2‖uk+1−uk‖

2
2

)
. (C.20)

It remains to discuss two possible cases. The first one is the case with ‖∇uh�
p,i ,k‖2 = 0, which

means that the constraint gp,i , j (u) =Gp,i , j (ui ,vp,i ) is only a function of the local manipulated

variable ui . The analysis is the same as in the centralized case (Marchetti et al., 2017), and

feasibility is guaranteed if δG
i , j >δ

gp

i , j .

In the second case is given by ‖∇uh�
p,i ,k‖2 �= 0, the right-hand side of (C.20) is negative if

δG
i , j > δ

gp

i , j /‖∇uh�
p,i ,k‖

2
2. Hence, feasibility is ensured at each iterate k if δG

i , j > δΔi , j , where δΔi , j

is defined as

δΔi , j =

{
δ

gp

i , j if ‖∇uh�
p,i ,k‖2 = 0

δ
gp

i , j /‖∇uh�
p,i ,k‖

2
2 if ‖∇uh�

p,i ,k‖2 �= 0.
(C.21)
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