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Abstract
The class of potential-driven network flow problems provides important

models for a range of infrastructure networks. For real-world applications,
they need to be combined with integer models for switching certain network
elements, giving rise to hard-to-solve MINLPs. We observe that on large-
scale real-world meshed networks the usually employed relaxations are
rather weak due to cycles in the network. We propose acyclic flow orienta-
tions as a combinatorial relaxation of feasible solutions of potential-driven
flow problems and show how they can be used to strengthen existing relax-
ations. First computational results indicate that the strengthend model is
much tighter than the original relaxation, thus promising a computational
advantage.

Network operators for utility and infrastructure networks face difficult plan-
ning and operational problems [4, 11, 19, 10]. Due to regulation and increasing
cost pressure, but also due to the availability of powerful solvers, modern opti-
mization methods are more and more applied to reduce cost and to improve the
quality of planning and operation. The complexity of the considered optimization
problems increases for several reasons, for instance because geographically bigger
networks are considered or the detail level is increased. For instance, realistic
network models for parts of the German gas network have more than 4000 nodes
and almost 4500 arcs [25]. For networks of this size, providing globally optimal
solutions or at least good bounds for assessing solution quality is still a big
challenge [10].

A key submodel for infrastructure networks for fluids, e.g., water and gas [22,
6, 11], is the so-called potential-driven nonlinear network flow problem. This
problem features a so-called potential πu for each node u ∈ V , and the flow qa
of an arc a ∈ A is related to the difference of the potential of its end nodes via
an arc-specific potential loss function φa. Formally, the potential-driven network
flow problem for a digraph D = (V,A), supply vector qnom, and bounds on the
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flow qa and potential πu is given by

min cT(q, π, s) (1a)

qnom
v +

∑
a=uv∈A

qa −
∑

a=vu∈A
qa = 0 for all v ∈ V, (1b)

πu − πv = φa(qa) for all a ∈ A, (1c)
qa ≤ qa ≤ qa for all a ∈ A, (1d)
πu ≤ πu ≤ πu for all u ∈ V. (1e)

An important property of this model is that the flow is always directed from
higher to lower potential, i.e., the potentials induce an acylic orientation of the
arcs. In other words: The network arising from a feasible flow by orienting each
network arc in the direction of the flow over this arc contains no directed cycle.

This property is only implicit in the model for potential-driven network flows,
i.e., it is not represented by an explicit constraint, but follows from the interplay
of flow conservation and potential loss along an arc. Therefore, it is not reflected
in the relaxations used to solve these nonlinear noncovex optimization problems.
We discuss this in detail in Section 1.

Our contribution This paper proposes to use the discrete structure arising
from the combination of flow conservation and an acyclicity requirement for the
flow to improve the relaxations used to solve MINLPs arising from potential-
driven network flow problems to global optimality. To this end, we introduce
a combinatorial abstraction of feasible flows we call acyclic flow orientation.
As real networks contain additional network elements that do not necessarily
fit the potential-driven network flow framework, we consider a generic MINLP
featuring the potential-driven network flow problem as a submodel. Moreover,
we consider not only fixed demand vectors, but intervals for the demand at each
source/sink. This is useful for situations where the demand is not fully fixed, e.g.,
due to mixing of gas qualities [9]. Moreover, this may be applied to analyze the
difference in flow directions if large classes of demand vectors are possible [17].

Related work Potential-driven network flow problems have been considered at
least since the 1970s [20, 5] and are relevant for a variety of applications areas [16].
Although pure potential-driven network flow problems (1) are nonconvex NLPs,
their special structure enables the development of efficient solution techniques [5].
For network design problems, binary variables for enabling/disabling network
elements are introduced, yielding MINLPs that are NP-hard [14] and significantly
harder to solve in practice [22, 18]. The same holds when the problem is extended
by models for further (switchable) network elements to model network operation
in detail [21, 19, 10].

For the case of the potential network flow problem (1) with potential loss
function φa(qa) = caqa|qa|, knowing the flow directions for all arcs enables the
use of algebraic methods to e.g., solve certain stochastic optimization variants
of the problem [12, 13]. Enumerating all acyclic flow orientations as discussed
in [3] hence supports this line of research.

To the best of our knowledge, there have been no attempts to exploit the
acyclicity property as is done in this paper.
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Figure 1: Tightness of the flow bounds obtained for a large-scale meshed gas
network.

The remaining paper is structured as follows. Section 1 discusses two common
relaxations used to solve potential-driven network flow problems in practice and
why the presence of cycles in the network weakens these relaxations. In Section 2,
we derive our combinatorial relaxation from a generic MINLP containing the
potential-driven network flow problem as a submodel. Section 3 shows how
this combinatorial relaxation can be used to strengthen the original model. We
present some preliminary computational results indicating the impact of this
approach in Section 4 and provide some conlusions Section 5.

1 Weak relaxations on meshed networks
In this section we study the quality of two common relaxations on the large-scale
real-world network shown in Figure 1. It is well-known [23] that meshed gas
networks are much harder to optimize than tree networks or networks with
very few cycles. The common sense explanation is that on trees, all flows are
fixed while networks with cycles admit different flow vectors (in principle; for
networks without active elements the flow vector may be unique inspite of
cycles [20, 5]). Our analysis provides another complementing explanation for
the difficulty incurred by cycles: The relaxations used for global optimization do
not incoporate the acyclicity property which is only relevant on meshed (and
sufficiently large) networks.
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1.1 Relaxation 1: Classical network flow problem
The relaxation consists of just the flow conservation constraints (1b) and the
flow bounds (1d). It is useful e.g., for bound tightening [24], where the flow over
each arc is maximized and minimized to obtain improved flow bounds for this
arc.

Figure 2a shows a subnetwork of a real-world gas network that contains a
cycle. In this case, the cycle arises due to two pipelines running in parallel, which
is very common for high-load transmission systems. Note that there are several
short pipe segments along the right pipeline which are used to route some of
the transmissioned gas to customers. Depending on the demand situation, the
parallel pipes may not be operated in parallel, i.e., the gas is flowing in different
directions. However, for the demand vector considered here, the pipes can be
operated in parallel.

We performed the bound tightening for the flow bounds as explained above.
The colors in the picture indicate whether this bound tightening was able to fix
the flow direction (green arcs) or not (red arcs). Obviously, the flow directions
could not be infered for the red cycles. The reason is that when e.g., maximizing
the flow along a given arc, in the classical network flow problem it is possible
and beneficial to send as much flow as possible along the cycle to get a large
flow on each arc. When minimizing the flow, basically the same amount is send
in the opposite direction. However, this is an unphysical solution that is not
feasible for the potential-driven network flow problem. Thus the flow bounds of
[−3200, 3500] obtained for each arc of the big cycle are very weak. In fact, the
309 flow units arriving from the top have to be routed to the bottom, so this is
an upper bound for the flow along each of the two pipes. To obtain this result
from the bound tightening problem, one has to include some constraint to forbid
flow along cycles.

1.2 Relaxation 2: (piecewise) Linear relaxation
In this relaxation, the nonlinear constraints are replaced by (piecewise) linear
functions such that the resulting feasible region contains the original one. The
corresponding MILP model can be constructed once and then solved with a
standard solver [8, 7]. Alternatively, state-of-the-art MINLP solvers like SCIP [1]
or BARON [2] construct such a linear relaxation in each search tree node
dynamically according to the current variable bounds.

Figure 2b shows the piecewise linear relaxation (grey area) constructed with
the techniques from [8] for the potential loss function of one of the arcs on the big
cycle. To construct this relaxation, the weak bounds from the classical network
flow problem have been used. The small blue area indicates the piecewise linear
relaxation that can be constructed from the tighter bounds of [0, 309]. In this
case, one piecewise linear segment instead of six is sufficient. Moreover, the area
of the relaxation is significantly reduced, indicating a much stronger relaxation.
Again, to obtain this strong relaxation it is necessary to disallow flow along
cycles.
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(b) Piecewise linear relaxation for potential loss on arc with loose
flow bounds.

Figure 2: Example for which the network flow relaxation yields weak bounds.

2 Acyclic flow orientations as combinatorial re-
laxations for potential-driven network flow prob-
lems

The aim of this section is to derive a combinatorial relaxation capturing the
acyclicity property implied by potential-driven flows and the flow balance prop-
erty at the same time. Potential-driven network flow problems usually occur
as submodels in networks with additional elements. In order to exploit this
structure on a subnetwork that is as large as possible, we consider models for
further network elements for which the acyclicity property also holds.

In particular, we consider a network represented as a directed graph (V,Api∪
Asp ∪Ava ∪Acv ∪Aother), where the arc set is partitioned in the following arc
subsets:

pipes Api network elements with potential loss described by the potential loss
function φa(qa), where qa denotes the flow along a ∈ Api

short pipes Asp network elements without any potential loss (which are often
used for modeling purposes and thus considered here),

valves Ava network elements that can be open or closed, either admitting flow
without potential loss or blocking flow, respectively,

control valves Acv network elements that allow to reduce the potential in a
controllable way,

other network elements Aother network elements of other types, e.g., com-
pressors or pumps.
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Although our terminology for the network elements is clearly inspired by gas
networks, the MINLP model considered below is rather generic. Our results can
thus readily be applied to other problems from this class, e.g., to water networks.

The operation of each network element a = uv ∈ A is described by the
feasible set Fa ⊆ {(πu, πv, qa) ∈ R3 | πu, πu ≥ 0} relating the feasible values of
the inlet potential πu, the outlet potential πv, and the flow qa. For technical
reasons, we are only able to handle elements with certain properties. First of
all, we require the potential loss function φa of each pipe a ∈ Api to have the
following properties:

φa(qa) ≥ 0 =⇒ qa ≥ 0, (2a)
φa(qa) ≤ 0 =⇒ qa ≤ 0, (2b)
φa(qa) = 0 =⇒ qa = 0. (2c)

Moreover, we consider the following two types of special control valves, both of
which admit only nonnegative flow.
control valves of type I always strictly reduce the potential. Formally, the

feasible set Fa has the following property:

Fa ⊆ {(πu, πv, qa) ∈ R3
≥0 | πu > πv}. (3)

control valves of type II allow to maintain the potential for “small” flows.
Formally, the feasible set Fa has the following properties:

Fa ⊆ {(πu, πv, qa) ∈ R3
≥0}, (4a)

(πu, πu, qa) ∈ Fa and 0 ≤ q′a ≤ qa =⇒ (πu, πu, q′a) ∈ Fa. (4b)

In the following, we assume that the set Acv consists only of control valves of
these two types. Control valves of differing types and further network elements
can be included in the set Aother to treat them within our framework.
Remark 1 Observe that the only switched elements here are the valves and
the remaining controllable elements (control valves, compressors) are always
“active”. Additional states (“closed”, “bypass”) as considered e.g., in [19] can be
modeled using additional valves and short pipes and are thus also captured by
the model. 2

We consider the following generic MINLP for potential flow problems.

min cT(q, π, s) (5a)

qnom
v +

∑
a=uv∈A

qa −
∑

a=vu∈A
qa = 0 for all v ∈ V, (5b)

πu − πv = φa(qa) for all a ∈ Api, (5c)
πu − πv = 0 for all a ∈ Asp, (5d)

sa = 0 =⇒ qa = 0, for all a ∈ Ava, (5e)
sa = 1 =⇒ πu = πv, for all a ∈ Ava, (5f)

(πu, πv, qa) ∈ Fa for all a ∈ Acv, (5g)
(πu, πv, qa) ∈ Fa for all a ∈ Aother, (5h)

qa ≤ qa ≤ qa for all a ∈ A, (5i)
πu ≤ πu ≤ πu for all u ∈ V. (5j)
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Observe that although (5g) and (5h) are formally the same, we actually require
the feasible sets Fa of control valves to satisfy one of the conditions (3) or (4)
according to their type. In contrast, the set Fa of network elements in Aother
may be arbitrary. In particular, increasing the potential is allowed. This may
lead to cyclic flows, which is the main reason why these elements are treated
specially (i.e., ignored in the relaxation to be constructed).

Our first result establishes that under suitable assumptions on the cost vector,
the MINLP (5) always has an optimal solution that is an acylic flow as defined
next.

Definition 1 Let q : A → R be a flow on a digraph D = (V,A) for a supply
vector qnom, i.e., q satisfies (5b). The flow q is called an acyclic flow if there is a
bijective mapping σ : V → {1, . . . , |V |} satisfying

σ(u) > σ(v) =⇒ qa ≥ 0
σ(u) < σ(v) =⇒ qa ≤ 0

for all a = uv ∈ A. (6)

A mapping σ satisfying (6) is called an acyclic node ordering for the flow q. 2

An acyclic node ordering σ for a given flow induces an orientation Dσ =
(V,Aσ) of the original digraph D = (V,A) via

Aσ := {uv | uv ∈ A, σ(u) > σ(v)} ∪ {vu | uv ∈ A, σ(v) > σ(u)}. (7)

Observe that Dσ is an acyclic digraph as (7) states that σ is a topological sorting
for Dσ. The oriented flow qσ : Aσ → R defined by

qσa :=
{
qa a = uv,

−qa a = vu
for all a ∈ A

is then a non-negative flow in the acyclic digraph Dσ – hence the name acyclic
flow.

Theorem 1 Consider a MINLP (5) for a digraph D = (V,A) and a supply
vector qnom. Let D̃ = (V, Ã) be the subgraph of D defined by

Ã := A \
(
Aother ∪ {a ∈ Asp ∪Ava ∪AcvII | cqa

6= 0}
)
, (8)

where AcvII denotes the set of control valves of type II. Then there is an optimal
solution (q∗, π∗, s∗) of (5) such that q∗ is an acyclic flow on D̃. 2

Proof Let (q, π, s) be a feasible solution of (5) for D. Without loss of generality,
we can assume that all arcs are oriented such that qa ≥ 0 (by changing the
direction of the arc and the sign of the flow, which does not affect the truth
of (6)).

To define a suitable node order σ, let L := {πu | u ∈ V } be the set of potential
levels in the solution. We partition the node set by the potential levels by defining
node sets V` := {u ∈ V | πu = `} for all ` ∈ L. This node partition induces a
partition of the arcs Ã into potential-reducing arcs and potential-maintaining
arcs.

The ordering σ is defined such that

σ(u) > σ(v) whenever πu > πv, (9)
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which prescribes the orientation of the potential-reducing arcs. Consider a
potential-reducing arc a = uv. For a pipe a ∈ Api, the relation πu > πv
implies qa ≥ 0, due to the required properties (2) of the potential loss function.
Moreover, the arc a cannot be a short pipe nor an open valve due to (5d)
and (5f), respectively. For a closed valve a ∈ Ava, we have qa = 0. If a ∈ Acv we
must have πu > πv and qa ≥ 0 by (3) and (4). We thus established (6) for the
potential-reducing arcs.

It remains to define the order of the nodes within each V`. If there is an
ordering that satisfies (9) and, additionally,

σ(u) > σ(v) ⇐⇒ qa > 0 for all a = uv ∈ Ã with u, v ∈ V` and qa > 0 (10)

for any ` ∈ L, (6) obviously holds. Assume that (q, π) does not fulfill (10). Then
there exists a cycle, i.e., a sequence of arcs a1 = (u1, u2), a1 = (u2, u3), . . . , ak =
(uk, u1), with qai

> 0 for every 1 ≤ i ≤ k. Due to the properties (2) of the
potential loss function, qai

> 0 implies ai /∈ Api. Likewise, ai cannot be a closed
valve or a control valve of type I. Hence, ai is either a short pipe, an open valve,
or a control valve of type II. We can thus reduce the flow along the cycle until
the flow along one arc becomes 0 without affecting the feasiblity or the cost
(hence the exclusion of arcs of these types with nonzero cost from Ã). Repeated
application of this operation breaks the cycle and yields a flow q′ for which (10)
is fulfilled. Since the flow adjustment affects only potential-maintaining arcs, the
above argument for the potential-reducing arcs holds for q′ as well. Moreover,
(10) implies (6) for the corresponding arcs.

Finally, (6) can obviously be satisfied for any of the remaining arcs a = uv
with qa = 0 by chosing any ordering of u and v that is consistent with (9)
and (10). �

Theorem 1 implies that the MINLP (5) complemented by the constraint

{q : A→ R | q is acyclic on D̃} (11)

is equivalent to (5) in the sense that one of the two problems is feasible iff the
other one is feasible and both problems have the same objective value. Thus
any relaxation of (5) can be strengthened (in this sense of solution equivalence)
by adding (a relaxation of) constraint (11). However, it is nonobvious how to
express (11) (or a relaxation) in a mathematical program. In the following, we
develop a purely combinatorial relaxation of (11) and flow conservation (5b) that
can be formulated using additional binary variables and additional constraints.
For this relaxation, we assume that for each network element a, finite lower and
upper bounds qa and qa for the flow are known. These can be obtained e.g., via
standard bound-tightening techniques as described e.g., in [24]. Moreover, we
also treat qnom as a variable with lower and upper bounds qnom and qnom.

From now on, we assume that the arcs of the digraph D = (V,A) are oriented
in the direction of the flow if the direction is already known.

Assumption 1 Let q and q be valid bounds for the flows along each arc for any
supply vector with qnom ≤ qnom ≤ qnom. For each network element a, these flow
bounds either satisfy qa < 0 < qa or 0 ≤ qa.

In case this assumption is not fulfilled (i.e., there is an arc with qa < 0), it can
be met by reversing this arc and adjusting the flow bounds accordingly.
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The basic idea of this combinatorial relaxation is to model the arc orientations
that may occur in solutions of (5) as orientations of a graph. Theorem 1 implies
that it is sufficient to consider orientations that are acyclic. To take into account
flow conservation as well, it is tempting to require that in addition to being
acyclic, each node has to have at least one in-arc and one out-arc (adjusting
for sources and sinks, which would count as in-arc and out-arc, respectively).
However, these requirements together may be inconsistent, as shown by the
following counterexamples, for both of which the zero flow is a feasible (acyclic)
solution.
Example 1 (3-cycle with no sources and sinks) All of the nodes have to
have an in-arc and an out-arc, but this yields a cycle:

2

Example 2 (K4 with no sources and sinks) Having an orientation that sat-
isfies the above requirements, reverting the orientations of all arcs yields an
orientation that satisfies them, too. Therefore, we can wlog assume that the
node 1 has an in-arc and two out-arcs. By symmetry, we can assume that the
out-arcs are nodes 2 and 3. Then the edge {2, 4} needs to be oriented as (4, 2),
since otherwise there is a cycle. Now there are the two in-arcs (1, 2) and (4, 2)
at node 2, thus the edge {2, 3} must be the out-arc (2, 3). Orienting the re-
maing edge either yields a cycle or violates the combinatorial supply/demand
constraints. 2

Thus more refined criteria are necessary to handle zero flows. To describe
these, some more notation is necessary. We use the arc flow bounds to restrict
the possible directions of each arc. The bounds for the supply at a node indicate
whether the node may be a source or a sink. It will later be useful to consider
subdigraphs defined by subsets of the arcs. For these subdigraphs, we use
adjusted bounds for the supply at the nodes. The intuition is that flow leaving
(entering) a node on arcs that are not part of the considered subdigraphs lets
the node work as a sink (source) for the subdigraph.
Definition 2 Let q and q be lower and upper bounds for the flow on each arc
and qnom and qnom be lower and upper bounds on the supply at each node. The
set of valid directions ∆(a) of an arc a ∈ A is the minimum set satisfying

qa > 0 =⇒ fwd ∈ ∆(a), (12a)
qa < 0 =⇒ bwd ∈ ∆(a), (12b)

0 ∈ [qa, qa] =⇒ 0 ∈ ∆(a). (12c)

For a subset A′ ⊆ A, the supply bounds induced by A′ for a node v ∈ V are given
by

qnom,A′

v := qnom
v +

∑
a=uv∈A\A′

qa −
∑

a=vu∈A\A′

qa, (13a)

qnom,A′

v := qnom
v +

∑
a=uv∈A\A′

qa −
∑

a=vu∈A\A′

qa. (13b)
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2

The following definition and result provide the desired combinatorial relax-
ation of acyclic flows.

Definition 3 Consider a MINLP (5) for a digraph D = (V,A) and assume
that q and q are valid bounds for the flows along each arc for any supply
vector with qnom ≤ qnom ≤ qnom. Let A′ ⊆ A be a subset of the arcs. A
digraph ~D = (V,A′ω,� ∪A′ω,0) defined by a mapping ω : A′ → {fwd, bwd, 0} via

A′ω,fwd := {uv | a = uv ∈ A′, ω(a) = fwd}, (14a)
A′ω,bwd := {vu | a = uv ∈ A′, ω(a) = bwd}, (14b)
A′ω,0 := {uv | a = uv ∈ A′, ω(a) = 0}, (14c)
A′ω,� := A′ω,fwd ∪A′ω,bwd, (14d)

is called an acyclic flow orientation for A′, if

(AFO-1) The direction of each arc a ∈ A′ is a valid direction conforming to the
flow bounds, i.e., ω(a) ∈ ∆(a).

(AFO-2) The subdigraph
(
V,A′ω,� ∩ Ã

)
is acyclic.

(AFO-3) Each node v ∈ V incident to A′ω,� has at least one in-arc and one
out-arc (with possibly positive supply counting as in-arc, and possibly
negative supply counting as out-arc):

|{uv ∈ A′ω,�}|+ 1qnom,A′
v >0 ≥ 1, (15a)

|{vu ∈ A′ω,�}|+ 1qnom,A′
v <0 ≥ 1. (15b)

Arcs in A′ω,fwd, A′ω,bwd, and A′ω,0 are called forward arcs, backward arcs, and
zero arcs, respectively. 2

Theorem 2 Let (q, π, s) be a solution of the MINLP (5) augmented with con-
straint (11). For every arc subset A′ ⊆ A, the digraph ~D = (V,A′ω,� ∪ A′ω,0)
defined by

ωq(a) :=


fwd qa > 0,
bwd qa < 0,
0 qa = 0,

for all a = uv ∈ A′. (16)

is an acyclic flow orientation for A′. 2

Proof For A′ = A, the mapping ωq satisfies requirement (AFO-1), as q is
a feasible and thus respects the flow bounds on each arc. Likewise, require-
ment (AFO-2) is satisfied due to constraint (11). Therefore, both requirements
are also satisfied for every proper subset of A.

It remains to establish requirement (AFO-3) for an arbitrary A′ = A. Con-
sider an arc a ∈ A′ω,� incident to node v. Assume that a ∈ A′ω,fwd, i.e.,
qa > 0, and a = uv. In this case, (15a) is obviously fulfilled, as the first term
is at least 1. Moreover, condition (15b) is satisfied, too, if there is another
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arc a′ = vw ∈ A′ω,�. Assume that this is not the case, i.e., |{vw ∈ A′ω,�}| = 0.
Due to the definition of ωq this implies∑

a′=vw∈A′

qa′ ≤ 0, and
∑

a′=wv∈A′, a′ 6=a
qa′ ≥ 0,

i.e., all arcs in A′ that are incident to v carry flow into node v. Thus this flow
and the positive flow from arc a has to leave node u as negative supply (either
because u is a sink or on arcs not contained in A′). Formally, the lower supply
bound induced by A′ is negative:

qnom,A′

v = qnom
v +

∑
a′=wv∈A\A′

qa′ −
∑

a′=vw∈A\A′

qa′

≤ qnom
v +

∑
a′=wv∈A\A′

qa′ −
∑

a′=vw∈A\A′

qa′

= −qa −
∑

a′=wv∈A′, a′ 6=a
qa′ +

∑
a′=vw∈A′

qa′

≤ −qa < 0.

This establishes condition (15b) in the case |{vw ∈ A′ω,�}| = 0.
The case a ∈ A′ω,fwd and a = vw works the other way around: Condition (15b)

is obviously fulfilled and condition (15a) is derived from that. The same
arguments apply in the cases for a ∈ A′ω,bwd. �

Theorem 2 implies that a strengthening of constraint (11) is given by

{q : A′ → R | ωq as defined by (16) yields an acyclic flow orientation} (17)

for A′ = A. By choosing any arc subset A′ ⊆ A, a relaxation of (17) may be
obtained.

We will now discuss how to incorporate Constraint (17) in optimization
models.

3 Exploiting acyclic flow orientations to improve
relaxations

As discussed in the introduction, the fact that the potential-driven network
flow submodel does not admit cyclic flows is not necessarily reflected in the
relaxations used. To incorporate this fact in relaxation models, one may add
Constraint (17). In the following, we describe models for (17) that are supposed
to be used as submodels in addition to relaxation model considered. We assume
that the relaxation model contains at least the flow variables, which are further
constrained.

We will begin by addressing the question of how to model the orientation
of a single arc. In Examples 1 and 2 in the previous section we have seen that
there are graphs that do not allow for an orientation that is acyclic and where
each node has both at least one in-arc and one out-arc (adjusting for sources and
sinks, which would count as in-arc and out-arc, respectively). For this reason our
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concept of an acyclic flow orientation introduced three types of arcs: forward
arcs, backward arcs and zero arcs.

Within the framework of a MINLP this raises the question of how to model
these three possible orientations of an arc. Using a model with three different
orientations for each arc may lead to a unnecessarily large number of possible
orientations of a graph, which is likely to be computationally very expensive.
Moreover, two binary variables are needed for each arc.

Fortunately, we can draw on two results from [3] to simplify the situation.

Theorem 3 The arc subset Ã of any directed graph D = (V,A) can be decom-
posed into two disjoint (possibly empty) sets Ã0 ∪ Ã� = Ã such that for each
feasible solution of the MINLP (5) we have

1. qa = 0 for all a ∈ Ã0, and

2. there exists an acyclic flow orientation ω for Ã with Ãω,� = Ã� (i.e., all
arcs in Ã� are either forward or backward arcs) and

ω(a) = fwd =⇒ qa ≥ 0,
ω(a) = bwd =⇒ qa ≤ 0. 2

Proof Follows from Corollaries 5 and 6 in [3]. �

The previous Theorem 3 implies that for each network there exist acyclic
flow orientations without zero arcs for a subset Ã� of the arcs, while we can
determine in advance that all flows on the arcs Ã0 must be zero. (For instance,
in the examples above we have A = Ã0.) Moreover, the forward and backward
direction of an arc in an acyclic flow orientation corresponds to the sign of
the flow variable of at least one feasible solution. Hence we can model the
constraint (17) imposed by the acyclic flow orientations as follows.

The arcs in the set Ã0 are handled by the trivial constraint

qa = 0 for all a ∈ Ã0. (18)

The choice of the forward or backward direction for the arcs in Ã� can be
formulated by introducing binary variables xa for the flow direction of each
arc a = uv ∈ Ã�, where xa = 1 means flow from u to v and xa = 0 indicates
flow in the opposite direction. The coupling between these binary variables and
the corresponding flow variables can be achieved via the big-M constraints

qa(1− xa) ≤ qa ≤ qaxa for all a ∈ Ã�. (19)

One option to model the requirements for an acyclic flow orientation on the
arcs Ã� is to use a suitable MILP model for the degree requirement (AFO-1)
and to model the acyclicity requirement (AFO-2) via the constraints for the
acyclic subgraph polytope [15]. However, we expect this approach not to be
computationally effective.

Instead, we employ a Dantzig-Wolfe reformulation: We enumerate all possible
acyclic flow orientations and require that one of those acyclic flow orientations is
chosen. Of course, this approach will not work for large networks as we expect
the number of acyclic flow orientations to grow exponentially in the number of
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arcs. For this reason, we consider a family C = {C1, . . . , Ck} of subsets of Ã
for which all acyclic flow orientations can be enumerated with reasonable effort.
Observe that in general, this does not guarantee that an acyclic flow orientation
for the entire set Ã is chosen.

Let Oi, 1 ≤ i ≤ k, be the set of orientations for the arc subset Ci. For each
O ∈ Oi we introduce a binary variable yCO , where O is selected iff yCO = 1. This
requirement is formulated as∑

O∈O : a is forward arc
yCO = xa for all a ∈ Ã ∩ C,C ∈ C. (20)

Constraints (18), (19), (20) provide a MILP formulation of Constraint (17).
Note that this formulations involves many additional binary variables which
may substantially increase the solving time for the relaxation. To benefit to
some extent from the knowledge about the acyclic flow orientations it is also
possible to relax the integrality requirement for the variables yCO , yielding a
weaker relaxation.

4 Preliminary computational results
In order to investigate the computational potential of these ideas we consider a
single supply vector qnom for the real-world network shown in Figure 3a. Our aim
is to improve the two relaxations discussed in Section 1. Hence we perform the
bound tightening implemented during the FORNE project [19] as summarized
in [24]. Among other bound tightening techniques, this includes optimality-based
bound tightening for the flows, i.e., minimizing and maximizing the flow over
each arc subject to flow conservation constraints and flow bounds (either from
the original input or derived via other bound tightening steps). This bound
tightening is able to fix the flow direction on a large share of the network arcs
(colored green in Figure 3b), but there also remain large parts of the network
where the flow direction cannot be fixed (colored red in Figure 3b). Incidentally,
these tend to be the main trannsmission lines since these are often part of a
cycle.

We choose the subsets of Ã for which we enumerate acyclic flow orientations
to be the components of the graph consisting of the arcs for which the flow
direction could not be fixed. For each arc subset A′ ⊆ Ã, we construct the
undirected graph induced by this arc subset, designating nodes as sources or
sinks according to the induced supply bounds computed via to (13). We apply
the enumeration algorithm from [3] to obtain the set of acyclic flow orientations
for this undirected graph. These sets of acyclic flow orientations are then used
to set up a bound-tightening MILP consisting of the original flow conservation
constraints, flow bounds derived via the original bound tightening procedure, and
Constraints (18), (19), (20). This MILP is solved twice for each arc, minimizing
and maximizing the flow over the arc, respectively.

Table 1 presents the improvement of the flow bounds obtained by this method.
The first line shows that the number of arc where the flow could be fixed to
zero increases by 55. The following lines show the number of arcs for which
the flow range, the difference between the upper and the lower flow bound
for this arc, exceeds a certain threshold. (To relate the size of the threshold,
note that the total supply transmissioned through the network is roughly 3500
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(a) A real-world large-scale gas network. (b) Components (red) where the existing bound
tightening does not fix the flow direction.

Figure 3: A real-world large-scale gas network and results of bound tightening
for the considered supply vector.

units.) It is evident that the number of arcs which huge flow range can be
reduced significantly. These results show that the proposed technique is able to
significantly strengthen the classical network flow relaxation.

Table 2 presents the impact of the tighter flow bounds on the size of a
piecewise linear relaxation constructed with the method from [7, 8]. The size is
measured as the number of binary variables used to model the choice between
piecewise linear segments (which is equal to the number of this segments). To
measure the quality of the relaxation, we compute the total area of the piecewise
linear segments. Note these are relaxations of nonlinear function and thus the
“true” area of the feasible region is 0.0. Shown is the impact for the two main
classes of nonlinear functions from the models considered. The function qa|qa|
is the potential loss function for gas networks, whereas the function pu ↔ πu
maps the pressure of the node to its potential (being the square of the pressure).
Clearly, the improved bounds yield also significantly tighter piecewise linear
relaxations.

5 Conclusions and further work
We proposed acyclic flow orientations as a combinatorial relaxation capturing
essential properties of feasible solutions of potential-driven flow problems. Incor-
porating the restriction to acyclic flow orientations into established relaxations
leads to tighter relaxations, promising a significant computational advantage.

To fully benefit from this, it is necessary to understand the structure of
acyclic flow orientations and how to enumerate them. This theory is provided
by the companion report [3]. The next step will be an extensive computational
evaluation of the impact of exploiting acyclic flow orientations to solve MINLPs
with a potential-driven network flow submodel. It is to be expected that the
enumeration of acyclic flow orientations for bigger subgraphs is prohibitive, so
the choice of suitable subgraphs is likely to be crucial. Our initial results for
considering the subgraphs of arcs with open flow direction show that a substantial
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flow range # arcs
original with orientations rel. reduction

= 0.0 1057 1112 5.20%
≥ 1000 430 294 -31.63%
≥ 2000 373 263 -29.49%
≥ 3000 286 211 -26.22%
≥ 4000 173 40 -76.88%
≥ 5000 154 14 -90.91%
≥ 6000 146 9 -93.84%
≥ 7000 47 9 -80.85%

Table 1: Results of bound tightening strengthened by acyclic flow orientations.
“flow range” is the difference between the upper and the lower bound derived for
the flow along an arc. The flow direction could be fixed for 143 out of the 1260
arcs for which the flow direction could not be determined before.

original with orientations improvement
#bin vars ∅ area #bin vars ∅ area #bin vars ∅ area

function type
qa|qa| 4450 9195.85 3602 3171.98 -19.06% -65.51%
pu ↔ πu 1586 331.32 1412 307.26 -10.97% -7.26%

Table 2: Impact of the improved flow bounds on the size and quality of a
piecewise linear relaxation.
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improvement can already be gained by considering small subgraphs.
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