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Abstract. It is folklore knowledge that nonconvex mixed-integer nonlinear
optimization problems can be notoriously hard to solve in practice. In this
paper we go one step further and drop analytical properties that are usually
taken for granted in mixed-integer nonlinear optimization. First, we only
assume Lipschitz continuity of the nonlinear functions and additionally con-
sider multivariate implicit constraint functions that cannot be solved for any
parameter analytically. For this class of mixed-integer problems we propose a
novel algorithm based on an approximation of the feasible set in the domain of
the nonlinear function—in contrast to an approximation of the graph of the
function considered in prior work. This method is shown to compute global
optimal solutions in finite time and we also provide a worst-case iteration
bound. However, first numerical experiences reveal that a lot of work is still
to be done for this highly challenging class of problems and we thus finally
propose some possible directions of future research.

1. Introduction

Mixed-integer nonlinear optimization problems (MINLPs) are one of the most
important classes of models in mathematical optimization. This is due to its
capability of modeling decisions via incorporating discrete aspects as well as the
possibility of modeling nonlinear phenomena. However, the combination of these
two aspects also makes these problems very hard to solve [10, 24]. For a general
overview about MINLP we refer to [1].

Both from a theoretic and algorithmic point of view it is important to classify
MINLPs further. Probably the most important distinction is to be made between
convex and nonconvex MINLPs. Since gradients yield valid cuts in the convex case,
outer approximations of the feasible sets of the convex nonlinearities can be derived
and exploited in algorithms [2, 5, 7]. In the nonconvex case this is not possible. Here,
one typically needs to derive convex underestimators and concave overestimators
that yield (piecewise) convex relaxations of the nonconvex nonlinearities [25, 43, 44].

The latter usually exploits known analytical properties of the nonconvex nonlinear
functions, which is obviously not possible if these properties, like, e.g., differentiability,
are not known or even knowledge about the explicit representation is missing. In this
case, one typically tries to resort to Lipschitz assumptions about the nonlinearities,
which leads to the field of global Lipschitz optimization; see, e.g., [19, 20, 22, 31–33,
45] to name only a few. For a more detailed overview about this field see the
textbook [21] and the references therein.

In this paper, we focus on a specific setting that can be observed in a lot of
applications (see below for some problem-specific references), namely that the
Lipschitzian MINLP under consideration can be decomposed into a mixed-integer
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linear (MILP) part and a nonlinear part. Our working hypothesis in this and also
the preceding works [16, 17, 37, 41] is that the MILP part can be solved comparably
fast and reliable whereas the nonlinearity really hampers the solution process—at
least in combination with the MILP part of the problem. See also [3, 12, 13, 42],
where this working hypothesis is followed as well. At this point we remark that
the cited literature usually tries to get rid of the nonlinear functions by replacing
or, so to say, re-modeling them using MILP-representable approximations. In this
paper, we consider the case in which this re-modeling is not possible without adding
additional unknowns and constraints to the problem.

One specific field of application that fits into the above discussion and that has
been studied very successfully in recent years is mixed-integer nonlinear optimization
of gas transport networks [8, 14, 15, 17, 30]; see the recent book [26] and the survey
[34] for more references. This application will also be studied later in our numerical
case study. MINLPs from gas transport optimization are defined on graphs that
represent the transport network. Mass balances and simple physical as well as
technical bounds yield linear constraints in this context and controllable elements
are typically modeled by mixed-integer (non)linear sets of variables and constraints.
Here, the complicating nonlinearity is the system of differential equations modeling
the gas flow through pipes. In its full beauty, these equations yield implicit and
highly nonlinear constraints that can be evaluated only by simulation and that do
not possess additional and desired analytical properties like convexity; see [9, 23,
28, 38–40]. In almost all contributions of the literature cited above the authors
make, depending on their special focus, tailored assumptions that allow to develop
very effective solution approaches. In this paper, we follow the way paved by
the paper [37], where general methods have been developed (and tested on gas
transport problems) that only require Lipschitzian, 1-dimensional, and explicitly
given nonlinearities. In this paper, we show that the approach can be extended to
the case where the nonlinearity is only given implicitly. To this end, we relax the
assumptions used in [37] as follows:

(1) We consider constraints that are only implicitly given, i.e., con-
straints of type F (x) = 0 with x ∈ Rn such that a representation
F (x1, . . . ,xi−1,xi+1, . . . ,xn) = xi cannot be achieved analytically for any
i ∈ {1, . . . ,n}.

(2) We consider multi-dimensional constraint functions F (x) = 0 with x ∈ Rn
and n ≥ 2.

Regarding (1) it is of course possible to re-model the implicit constraint as F (x) = y
and by adding additional linear constraints y = 0. We, however, refrain from such
a re-modeling in this paper and consider the case were such a re-modeling, which
also enlarges the problem, is not appropriate. It will turn out that both aspects
drastically accentuate the computational hardness of the problem.

Our contribution is the following. We formalize the problem class in Section 2
and the corresponding assumptions sketched above (Section 3). Based on this, we
state an algorithm and prove its correctness, i.e., that it computes globally optimal
solutions (or proves the infeasibility of the problem) in finite time. Moreover, we
prove a worst-case iteration bound for the algorithm. Finally, we present a numerical
case study in Section 4, which reveals the considerable computational hardness of
the considered class of problems: Only very small gas transport networks can be
solved in reasonable time under the stated very weak assumptions. This is why we
consider the addressed problem class as an open computational challenge for which
we state possible directions of future research in Section 5.
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2. Problem Definition

We consider problems of the form

min
x

h>x (1a)

s.t. Ax ≥ b, x ∈ [
¯
x, x̄], x ∈ Rn × Zm, (1b)

Fi(xc(i)) = 0, i ∈ [p], (1c)

where A ∈ R`×(n+m), b ∈ R`, h ∈ Rn+m, and [p] := {1, . . . , p}. The p constraints
Fi : Rni → R, i ∈ [p], comprise all nonlinearities of the problem. Here, and in
what follows, we use the splitting x = (xc,xd) of the entire variable vector with
xc ∈ Rn and xd ∈ Zm. That is, xc are all continuous and xd are all discrete
variables of the problem and the nonlinear functions Fi, i ∈ [p], only depend on the
continuous variables xc(i), i.e., xc(i) is a sub-vector of the vector xc of all continuous
variables. We remark that the assumption that the nonlinearities only depend on
the continuous variables is only made to simplify the technical discussions later
on—it can always be formally satisfied by introducing auxiliary continuous variables.

Instead of optimizing the objective of (1) over the feasible set F given by (1b)–
(1c) we replace F by an approximating sequence Fk ≈ F and globally optimize the
sequence of problems

min {h>x : x ∈ Fk}. (2)
The iteration can then be stopped once a solution xk of (2) is close enough to the
original feasible set F . To this end let

min
x

h>x

s.t. Ax ≥ b, x ∈ [
¯
x, x̄], x ∈ Rn × Zm,

|Fi(xc(i))| ≤ ε, i ∈ [p],

(3)

be the ε-relaxed version of the original problem (1). Note that we only relax the
nonlinearities whereas all other constraints stay as they are. The precise choice of
the approximate sets Fk will be detailed later in Section 3.

Definition 2.1 (ε-feasibility). We call a point ε-feasible if it is feasible for Prob-
lem (3).

3. Algorithm

The main idea of our algorithm for solving Problem (1) to global optimality
is to split the problem into its mixed-integer linear and its nonlinear part. The
mixed-integer linear part is solved in the so-called master problem, which addi-
tionally contains a successively tightened approximation of the zero sets of the
nonlinearities Fi, i ∈ [p]. Let xk denote the master problem’s solution in iteration k.
Then, for every master problem solution, we check the feasibility of the solution
w.r.t. the nonlinearities Fi. In case of feasibility, we have found a global optimal
solution of the original problem; and in case of infeasibility, we construct a tighter
approximation of the zero sets for the next master problem based on the information
obtained by evaluating the nonlinearities Fi at the current master solution xk. For
the latter, we need (i) the function values Fi(xkc(i)), i ∈ [p], as well as (ii) the global
Lipschitz constants Li of the Fi.

Assumption 1. We have an oracle that evaluates Fi(xc(i)) for all i ∈ [p] and all Fi
are globally Lipschitz continuous on xc(i) ∈ [

¯
xc(i), x̄c(i)] with known global Lipschitz

constant Li.
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We now show how to construct the successively tightened approximations of
the zero sets in case of Assumption 1. Let Ωk

i denote this approximation of the
zero set of function Fi in iteration k of the algorithm. Initially, we start with
the box Ω0

i := [
¯
xc(i), x̄c(i)] defined by the original bounds of the problem (or after

presolving; see Section 4). Assume now that the evaluation of the nonlinearity yields
|Fi(xkc(i))| ≥ ε for a prescribed tolerance ε > 0. We then exclude the box

Bki :=

{
x ∈ Rni : ‖x− xkc(i)‖∞ <

|Fi(xkc(i))|
Li

}
(4)

in the next iteration. If |Fi(xkc(i))| < ε holds, we set Bki = ∅. Putting these boxes
together, we obtain the nonconvex approximation

Ωki = [
¯
xc(i), x̄c(i)] \

⋃
j∈[k−1]

Bji , k = 1, 2, . . . (5)

With this at hand, we can now formulate the master problem:

min
x

h>x (6a)

s.t. Ax ≥ b, x ∈ [
¯
x, x̄], x ∈ Rn × Zm, (6b)

xc(i) ∈ Ωki , i ∈ [p]. (6c)

Before we proof correctness of the algorithm, i.e., finite termination of the
algorithm at global optimal points, we first state and prove some properties of the
master problem that will be used later and formally state the algorithm.

Proposition 3.1. Assume that Assumption 1 holds. Then, it holds

Ωki ⊇ (ker(Fi) ∩ [
¯
xc(i), x̄c(i)])

for all i ∈ [p] and all k. Thus, the master problem (6) is a relaxation of (1) for
all k.

Proof. The proposition follows directly from the construction (4) and (5) and the
Lipschitz continuity of Fi. �

The next lemma shows that we can use state-of-the-art MILP software for solving
the master problems.

Lemma 3.2. The nonconvex master problem (6) can be modeled as a mixed-integer
linear problem. The number of additional variables and constraints required to
formulate (6c) for an i ∈ [p] is in O(k |c(i)|).

Proof. The constraints Ax ≥ b, x ∈ [
¯
x, x̄], and x ∈ Rn × Zm are obviously mixed-

integer linear constraints. Thus, it remains to prove that xc(i) ∈ Ωki , i ∈ [p], can be
formulated with mixed-integer linear constraints as well. We define the index set

Iki := {j ∈ [k − 1] : |Fi(xjc(i))| ≥ ε}, i ∈ [p],

for the boxes to exclude. Moreover, we define

¯
xjc(i)

:= xjc(i) − 1
|Fi(xjc(i))|

Li
and x̄jc(i)

:= xjc(i) + 1
|Fi(xjc(i))|

Li
(7)

for all i ∈ [p] and j ∈ Iki ; see Figure 1 for an illustration. In (7) we use the notation 1
for the vector of ones in appropriate dimension. To model the gray area in Figure 1,
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Figure 1. Set Ω2
i with c(i) = {1, 2}.

we have to exclude the white rectangles Bji for all j ∈ Iki . This can be done in the
following way:

Ωki =

{
xc(i) : zj,1l , zj,2l ∈ {0, 1} for all l ∈ c(i), j ∈ Iki , (8a)

xl ≤ x̄jl + zj,1l (x̄l − x̄jl ) for all l ∈ c(i), j ∈ Iki , (8b)

xl ≥
¯
xl + zj,1l (x̄jl − ¯

xl) for all l ∈ c(i), j ∈ Iki , (8c)

xl ≤
¯
xjl + (1− zj,2l )(x̄l −

¯
xjl ) for all l ∈ c(i), j ∈ Iki , (8d)

xl ≥
¯
xl + (1− zj,2l )(

¯
xjl − ¯

xl) for all l ∈ c(i), j ∈ Iki , (8e)∑
l∈c(i)

(zj,1l + zj,2l ) ≥ 1 for all j ∈ Iki
}

. (8f)

We remark that (8b) and (8c) check if xl ≤ x̄jl . If this holds true, then z
j,1
l = 0. On

the other hand, (8d) and (8e) check if xl ≥
¯
xjl . If this holds true, then z

j,2
l = 0. As

we want to ensure that Bji is excluded, we have to add the inequality (8f). One can
easily see that System (8) requires O(k |c(i)|) additional variables and constraints
for every i ∈ [p]. �

We additionally remark that after having solved the master problem, all Fi can
be evaluated in parallel in every iteration. The overall algorithm is formally stated
in Algorithm 1. We now prove correctness of the algorithm, i.e., that the algorithm
terminates after a finite number of iterations with a global optimal solution or with
an indication of infeasibility of the original problem.

Theorem 3.3. Suppose that Assumption 1 holds. Then, Algorithm 1 terminates
after a finite number of iterations at an approximate globally optimal point xk of
Problem (1) or with an indication that Problem (1) is infeasible.

Proof. We assume that the algorithm does not terminate after a finite number of
iterations. That is, there exists an i ∈ [p] and a corresponding subsequence (indexed
by l) of iterates with

|Fi(xlc(i))| > ε. (9)
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Algorithm 1 Global Optimization of MINLPs with Implicit Nonlinearities

Require: Problem (1) and ε > 0.
Ensure: Returns an globally optimal point for Problem (1) or an indication of

infeasibility.

1: Set k ← 0 and initialize Ω0
i ← [

¯
xc(i), x̄c(i)] for all i ∈ [p].

2: while true do
3: Solve the master problem (6) to global optimality.
4: if (6) is infeasible then return “Problem (1) is infeasible”.
5: Let xk denote the optimal solution of (6).
6: Evaluate Fi(xkc(i)) for all i ∈ [p].
7: if |Fi(xkc(i))| ≤ ε for all i ∈ [p] then return xk.
8: for i ∈ [p] do
9: if |Fi(xkc(i))| > ε then set Ωk+1

i ← Ωki \Bki else set Ωk+1
i ← Ωki .

10: end for
11: Increase k ← k + 1.
12: end while

We investigate the master problem’s solutions xlc(i). Since all variables are bounded,
the subsequence (xlc(i)) has a convergent subsequence (xµc(i)). Thus, we can write

‖xαc(i) − x
β
c(i)‖2 < δ (10)

for all sufficiently large indices α and β of the µ-subsequence and arbitrarily
small δ > 0. However, all iterates xlc(i) are excluded from the subsequent feasi-
ble set, see (4), and together with (9) we can write

‖xαc(i) − x
β
c(i)‖2 ≥

|Fi(xkc(i))|
Li

>
ε

Li
,

for all α,β. This contradicts (10). �

Next, we establish a worst-case bound for required number of iterations.

Theorem 3.4. For given i ∈ [p], let ni = |c(i)|, i.e., xc(i) ∈ Rni . Furthermore, let
σi := x̄c(i)−¯

xc(i) ∈ Rni . Then, Algorithm 1 terminates after a maximum number of∑
i∈[p]

ni∏
j=1

(⌊
σij
Li
ε

+ 1

⌋)
iterations.

Proof. We show that for each constraint Fi(xc(i)) = 0, i ∈ [p], there are at most
ni∏
j=1

(⌊
σij
Li
ε

+ 1

⌋)
iterations k for which Ωk+1

i 6= Ωki holds. Since in each iteration at least one of the
sets Ωki needs to be changed this proves the assertion. To see the claim, we notice,
that the hypercube [

¯
xc(i), x̄c(i)] ⊂ Rni can be covered by

N =

ni∏
j=1

(⌊
σij
Li
ε

+ 1

⌋)
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hypercubes Hk
ε , k ∈ [N ], with side-length ε/Li. To see this, we note that each of

the intervals [
¯
xj , x̄j ] for j ∈ c(i) can be decomposed as

¯
xj =

¯
xj + 0 · ε

Li
<

¯
xj + 1 · ε

Li
< · · · <

¯
xj +

⌊
σij
Li
ε

⌋
ε

Li
≤ x̄j

into bσijLi/ε+ 1c subintervals of length lower or equal ε/Li. Taking the product of
these intervals gives the desired cover of the hypercube.

Now, by definition, in an iteration k during which Ωk
i is changed, a point xc(i)

together with its neighborhood Bki is excluded from Ωki . In order for this to happen,
|Fi(xc(i))|

Li
>

ε

Li

needs to hold. Consequently, the neighborhood Bki contains a hypercube with side-
length 2ε/Li. As a consequence, if xc(i) is contained in Hk

ε , then no future iterate
can be placed in this Hk

ε . This proves the claimed bound on the iterations. �

The last theorem shows that the maximum number of required iterations is
bounded above by O((Lmax/ε)n̄), where n̄ = max{c(i) : i ∈ [p]} is the maximum
number of arguments of the nonlinear functions Fi and Lmax = max{Li : i ∈ [p]} is
the maximum Lipschitz constant. Moreover, the asymptotic bounds derived in [29,
46] indicate that, in general, no better worst-case iteration bound can be expected.

Remark 3.5. During the course of the algorithm, the excluded boxes Bki are de-
termined based on the master problem’s solution. To tighten the feasible set of
the initial master problem, we first equidistantly sample points from the initial
box Ω0

i . Afterward, we sort these sampling points by the excluded box volume,
see (4), in descending order and add them to the initial master problem if they are
not excluded by a previous sampling point. By doing so, we obtain a tighter feasible
region from the beginning on at the cost of a larger MILP formulation.

4. Numerical Case Study

In this section, we present computational results of Algorithm 1 applied to
stationary gas transport optimization. We briefly describe the model in Section 4.1
and discuss the results in Section 4.2.

4.1. Stationary Gas Transport Optimization. One central task in the gas
industry is to transport prescribed supplied and discharged flows at minimum costs.
Gas mainly flows from higher to lower pressures and in order to transport gas over
large distances through pipeline systems, it is required to increase the gas pressure.
This is done by compressors that add discrete aspects to the problem. We consider
the stationary case, briefly present a mixed-integer model, and show how it can be
tackled with the algorithm presented above.

We model a gas network as a directed graph G = (V ,A) with node set V and
arc set A. The set of nodes is partitioned into the set of entry nodes V+, where
gas is supplied, the set of exit nodes V−, where gas is discharged, and the set of
inner nodes V0. The set of arcs consists of pipes Api and compressors Acm. We
associate positive gas flow on arcs a = (u, v) with mass flow in arc direction, i.e.,
qa > 0 if gas flows from u to v and qa < 0 if gas flows from v to u. Moreover,
mass flow variables qa are bounded from below and above, i.e., qa ∈ [

¯
qa, q̄a]. The

sets δin(u) := {a ∈ A : a = (v,u)} and δout(u) := {a ∈ A : a = (u, v)} are the sets
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of in- and outgoing arcs for node u ∈ V . Thus, we model mass conservation by

∑
a∈δout(u)

qa −
∑

a∈δin(u)

qa = qu


≥ 0, u ∈ V+,

≤ 0, u ∈ V−,

= 0, u ∈ V0,

for all u ∈ V , (11)

where qu denotes the supplied or discharged flows. In addition, we need bounded
pressure variables pu ∈ [

¯
pu, p̄u] for each node u ∈ V .

Pipes a ∈ Api are used to transport the gas through the network. We consider
their length La, their diameter Da, their cross-sectional area Aa, their slope sa,
and their friction factor λa, which we model using the implicit formula of Prandtl–
Colebrook; see, e.g., [4] or [35, Chap. 9]. Gas flow in networks is described by a
system of partial differential equations—the Euler equations for compressible fluids
[6]. In what follows, we consider the stationary case and assume small velocities,
constant temperature T̂ , and constant compressibility factor ẑ. This leads to the so-
called Weymouth equation, see [9, 12], that describes the relation between pressure
and mass flow on a pipe via

p2
v − p2

u + Λa|qa|qa = 0 for all a = (u, v) ∈ Api, Λa =
LaλaRsẑT̂

A2
aDa

. (12)

We remark that Rs and g denote the specific gas constant and the gravitational
constant, respectively.

Finally, we describe our model of compressors a ∈ Acm. They are used to increase
the inflow gas pressure to a higher outflow pressure. In general, a compressor can
be active, in bypass mode, or closed. Closed compressors simply block the gas
flow (qa = 0) and thus decouple the in- and outflow pressure. If compressors are
open, they can operate in bypass mode, yielding equal pressures pu = pv. Finally, if
activated, they are able to increase the outflow pressure. We only consider so-called
turbo compressors that are typically modeled by characteristic diagrams, which
determine the feasible range of an active compressor depending on pu, pv, and qa;
see, e.g. [38, 40] for a detailed description of turbo compressor models. It turns out
that the model of a turbo compressor is highly nonlinear and nonconvex. Since our
focus here does not lie on detailed compressor modeling, we use known mixed-integer
linear outer approximations

la(pu, pv, qa,Pa, ya) ≥ 0 for all a = (u, v) ∈ Acm (13)

of the operating ranges. In (13), Pa stands for the power required for compression
and the variables ya are additional auxiliary variables required to formulate the
specific outer approximation model; see [9, 12] for the details.

We now collect all component models and obtain the mixed-integer optimization
problem

min
∑
a∈Acm

Pa

s.t. pressure and flow bounds, mass conservation: (11),
pipe model: (12), compressor model: (13).

Note that the only nonlinearity of the model is given by the pipe model (12).
Consequently, we compute the global Lipschitz constant analytically and obtain (4)
by evaluating (12).

4.2. Results. Our test instances are the networks GasLib-4 and GasLib-4-Tree;
see Figure 2 left and right, respectively. These instances will be included in the next
version of the publicly available GasLib test set; see [36].
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Entry Exit Entry Exit

Figure 2. GasLib-4 (left) and GasLib-4-Tree (right).

Table 1. Overview of the results of Algorithm 1

qnom
u k t obj. abs. rel.

GasLib-4 220 113 467.45 580.30 3.364 0.797
230 96 413.09 613.06 5.794 0.582

GasLib-4-Tree 170 11 0.21 218.52 0.006 4× 10−4

180 13 0.25 401.85 0.011 8× 10−4

Let us first note that we incorporate preprocessing techniques that are problem-
specific bound tightenings for flow and pressure variables; see [11]. This yields both
smaller initial boxes Ω0

i and potentially improved Lipschitz constants. Moreover, we
a-priorily insert up to 20 sampling points in the case of GasLib-4-Tree and up to
150 sampling points in the case of GasLib-4; see Remark 3.5.

We consider two different kinds of termination criteria. On the one hand, we
check the maximum absolute error as stated in Algorithm 1. On the other hand, we
check the maximum relative error. If one of both criteria is fulfilled for all nonlinear
functions, we stop at the current solution. Otherwise, if one of both criteria is
violated, we use the master problem’s solution to tighten its feasible set according
to Line 9 of Algorithm 1. The maximum absolute error and the maximum relative
error allowed is 0.1 bar and 0.001 % in the case of GasLib-4-Tree and 1 bar and 1 %
in the case of GasLib-4, respectively.

Our algorithm and the model are implemented using the C++ framework
LaMaTTO++; see [27]. We solve the MILPs with Gurobi 6.5.0 using all available
4 threads; see [18]. All computations were performed on an Intel c© CoreTMi5-3360M
CPU with 4 cores and 2.8 GHz each and 4 GB RAM.

Table 1 gives an overview of the results. There, the results are grouped by
GasLib-4 and GasLib-4-Tree with nomination values (qnom

u ; in 1000Nm3/h), iteration
numbers (k), solution times (t; in seconds), objective values (obj.; in kW), maximum
absolute errors (abs.; in bar2), and maximum relative errors (rel.). All four instances
are solved to global optimality. It is obvious that iteration numbers and solution
times for GasLib-4 are much higher than for GasLib-4-Tree. Figure 3 (left) shows
the amount of binary variables while Figure 3 (right) shows the solution times in a
semi-log plot. Note that we truncate both plots at iteration 50 and that we selected
the instance with qu = 230 for GasLib-4 and with qu = 180 for GasLib-4-Tree. The
high solution times and iteration numbers in the case of GasLib-4 compared to
GasLib-4-Tree mainly result from one reason. The bound strengthening fixes the flow
values in the entire network and the dimension of the domain of the nonlinearity
effectively reduces to two. Due to its cycle, this is not possible for the GasLib-4
network and, thus, the domain of the nonlinearity is of higher dimension. This
leads to the need for more sampling points in the second case (150 vs. 20), which
significantly increases the number of initial binary variables; see Figure 3 (left).
Consequently, solution times are higher as well; see Figure 3 (right). Furthermore,
the additional dimension leads to a three-dimensional domain Ωi of the nonlinearity,
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Figure 3. Binary variables (top) and solution times (bottom) in
every iteration for GasLib-4 with nomination qu = 230 and GasLib-
4-Tree with nomination qu = 180 up to iteration 50.

which requires significantly more boxes to obtain an accurate representation of
the feasible set. This, in turn, leads to a higher iteration numbers, although the
termination criteria are less strict for the GasLib-4 network.

5. Conclusion

Without any doubt, mixed-integer nonlinear optimization is hard. Fortunately, in
many practically relevant situations effective solution approaches exist. In this paper,
we considered especially hard cases of mixed-integer nonlinear programming with
implicit constraints that have the adverse property that evaluating the constraint
does not give a feasible point and that they may be multi-dimensional. The numerical
results are somehow sobering—although the class of considered problems is of high
importance in many fields of applications.

Thus, there is need for computational improvement for this class of problems
if they are tackled using MILP technology as a working horse. At this point, we
suggest three possible directions of future research.

(1) Is it possible to exploit local Lipschitz information in order to increase the
volume of excluded infeasible regions during the course of the iteration?

(2) Is it possible to create iterates that both yield larger excluded regions for
the next iteration but that are also near the feasible region of the original
problem?

(3) Presolve and sampling seem to be of utmost computational importance. Is
it possible to incorporate these techniques in the course of the iterations of
the proposed algorithm?
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