
Int. J. Logistics Systems and Management, Vol. 29, No. 4, 2018 455

Copyright © 2018 Inderscience Enterprises Ltd.

λ-GRASP with bi-directional path relinking for the
bi-objective orienteering problem

Hasnaa Rezki and Brahim Aghezzaf*
Lab. Informatique,
Modélisation des Systèmes et Aide à la Décision (LIMSAD),
Faculté des Sciences Ain Chock,
Université Hassan II de Casablanca,
BP 5366 Maarif, 20100 Casablanca, Morocco
Email: b.aghezzaf@fsac.ac.ma
Email: hasnarezki@hotmail.fr
*Corresponding author

Abstract: This paper presents a new approach to solve the bi-objective
orienteering problem (BOOP). The BOOP is a multi-objective extension of the
well-known orienteering problem (OP). The multi-objective aspect stems from
the personalised tourist routes planning problem, in which each point of interest
in a city provides different profits associated with different categories. The aim
of the BOOP is to find routes satisfying a given travel cost restriction, and
visiting some points of interest that maximise the total collected of different
profits. To generate a good approximation of Pareto-optimal solutions, we
develop a new metaheuristic method based on hybridisation of λ-GRASP and a
new variant of the path relinking procedure called bi-directional path relinking
(BDPR). The latter is used as an intensification phase, with the goal to obtain
new solutions that can eventually be part of the set of the Pareto-optimal
solutions. The proposed approach is tested on benchmark instances taken
from the literature. It is compared with the Pareto ant colony optimisation
algorithm (P-ACO) and the variable neighbourhood search method (VNS).
Computational results show that, compared to the P-ACO and the VNS
procedures, the proposed method provide a good approximation of the Pareto
front for the bi-objective orienteering problem.
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1 Introduction

A number of web and mobile applications have recently integrated personalised
electronic tourist guides that lead to improved quality of tourist’s vacation. Millions of
tourists visit large cities with a rich cultural heritage for several days. With a very large
variety of tourist attractions the so-called points of interest (POIs), tourists cannot visit
every POI during their stay. They are limited in time. So, they are facing the problem of
deciding which POI can be more interesting to visit and how to determine a route for
each trip-day. Hence, a complex decision situation arises. It is therefore important to have
a tourist trip design system that presents suggestions of efficient routes, which can be
interesting for each day of the tourist’s visit.

The tourist trip design problem (TTDP) (Vansteenwegen and van Oudheusden, 2007;
Souffriau et al., 2008; Vansteenwegen et al. 2009; Gavalas et al., 2015) can be viewed as
an orienteering problem (OP) (Tsiligirides, 1984) also known as the selective travelling
salesman problem (STSP). In the OP, each vertex of a given directed graph G = (V, A)
provides a certain profit. The goal of this problem is to determine a path, subject to a
given length restriction, that visits some of the vertices, in order to maximise the total
collected profit. The applications of OP arise in various real-world situations such as fuel
delivery problems and tourist tour planning problems. In the literature, different variants
of OP such as the orienteering problem with stochastic profits (OPSP) introduced by
Ilhan et al. (2008) can be found. In this stochastic case, normally distributed profits are
associated to the vertices. The goal of the OPSP is to design a route visiting a subset of
vertices that maximises, within a time limit, the probability of collecting more than a
pre-specified target profit level. Another variant of the OP is the orienteering problem
with stochastic travel and service times (OPSTS) introduced by Campbell et al. (2011) in
which both travel and service times are stochastic. In this problem, a specific reward is
received if a vertex is visited, and if it is not, a certain penalty is incurred. This situation
illustrates the challenge of a company who, on a given day, may have more customers
than it can serve. Recently, Palomo-Martínez et al. (2017) introduced the orienteering
problem with mandatory visits and exclusionary constraints in which the objective is to
find a route that visits all mandatory vertices and some optional, without conflicts among
them, while a given time restriction is respected and the total collected profit is
maximised. The OP is also extended to a version with multiple routes known as the team
orienteering problem (TOP) introduced by Chao et al. (1996), in which a set of routes is
designed with the aim of maximising the total collected profit without exceeding a given
length limit. The time-dependent orienteering problem (TD-OP), in which the travel time
between two vertices depends on the departure time at the first vertex is also investigated.
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This problem formulation allows to model several real life situations like issues related to
the traffic congestion such as morning and evening peaks on the highways or crowded
cities (Fomin and Lingas, 2002; Garcia et al., 2013; Verbeeck et al., 2014, 2016).
Recently, Mei et al. (2016) have introduced a new multi objective variant of the TD-OP
called multi-objective TD-OP in which time-dependent travel time and multiple
preferences are considered together. The interested reader in different variants and
extensions of OP can be referred to the survey of Vansteenwegen et al. (2011), Gavalas
et al. (2014) and Gunawan et al. (2016).

In this paper, we are interested in the bi-objective variant of OP called bi-objective
orienteering problem (BOOP). In this variant, two categories for each POI exit (e.g.,
category culture, leisure) and each POI provides different benefits for each category. The
BOOP is a NP-hard optimisation problem that was introduced by Schilde et al. (2009). In
the BOOP, a directed graph G = (V, A) is given where V = {v0, v1, v2,…vn+1} is the
vertices set and A is the arcs set. The vertex v0 and vn+1 are the mandatory starting and
ending points. Two different benefits are associated to each vertex vi  V\{v0, vn+1} and a
cost Cij is associated with each arc (vi, vj)  A, representing time or distance needed to
travel from vertex vi to vertex vj. The main goal is to find feasible routes, which visit
some vertices and maximise the sum of both benefits without violating a given travel cost
restriction. Generally, in multi-objective problems, no single optimal solution exists that
simultaneously optimises all the objective functions. So, the concept of optimality in the
multi-objective optimisation is replaced with the Pareto optimality (non-dominated
solutions). The non-dominated solutions are the solutions that cannot be improved in one
objective function without deteriorating their performance in at least one of the others.

In the literature, several approaches were introduced to determine an approximation
of the Pareto optimal solutions for the BOOP. The first approaches were proposed by
Schilde et al. (2009). They have developed two metaheuristic procedures. The first is an
adaptation of the Pareto-ant colony optimisation (P-ACO) metaheuristic, and the second
is based on the variable neighbourhood search (VNS) metaheuristic. Both methods were
hybridised with the path relinking procedure. Additionally, Tricoire (2012) have
introduced a multi-directional local search (MDLS) and applied it to the BOOP. Martí
et al. (2015) have proposed different adaptations of the greedy randomised adaptive
search procedure (GRASP) combined with the path relinking procedure that have been
used as a post-processing strategy.

This paper presents a new hybrid GRASP for generating an efficient approximation
of the Pareto optimal solutions for the BOOP. The proposed approach is based on a new
adaptation of the λ-GRASP (2010), combined with a new variant of the path relinking
procedure called bi-directional path relinking (BDPR) which is used as an intensification
phase in order to improve the effectiveness of the λ-GRASP. This is established by
generating new solutions that can eventually be Pareto optimal. Three essential phases
characterise each iteration of our method: construction, improvement, and intensification.

Experimental results on the test instances show that the proposed method is very
competitive with the P-ACO and VNS algorithms proposed in the literature in terms of
the solutions quality.

The remainder of this paper is organised as follows: Section 2 presents the
mathematical formulation of the BOOP. The proposed approach used to solve the BOOP
is described in the third section. Experimental results are reported and discussed in
Section 4. Finally, Section 5 presents some concluding remarks.
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2 Mathematical formulation

The BOOP can be defined on a directed graph G = (V, A) with a set of vertices
V = {v0, v1, v2,…vn+1} where v0 and vn+1 are the mandatory starting and ending points, and
a set of arcs A = {(vi, vj): vi, vj  V, vi ≠ vj, vi ≠ vn+1, vj ≠ v0}. For every arc (vi, vj)  A is
associated a cost value cij which can represent the time or the distance required to travel
from vertex vi to vertex vj. Two profits are associated to each vertex vi  V\{v0, vn+1} pi1

and pi2. The aim is to determine routes visiting some of the vertices, subject to a given
cost restriction Tmax, that maximise the total collected corresponding to each of the two
profits.

The decision variables are defined as follows:
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0 otherwise
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The problem is then formulated as follows:
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In (1), two objective functions are to be maximised:
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 (k = 1, 2).

Constraints (2) and (3) ensure the connectivity of the route and guarantee that every
vertex is visited at most once; constraints (4) eliminate sub-tours; constraints (5) make
the route start and end at the correct points; constraint (6) ensure that the cost limit Tmax
is respected in the route. Finally, constraints (7) and (8) define that the decision variables
are binary.
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3 Approach description

Before presenting the proposed approach, it is important to give some definitions that
characterise the solutions of a bi-objective optimisation problem. In the multi-objective
optimisation problems, a solution x1 is more efficient than another solution x2, if x1 is
better than x2 for at least one objective and not worse for all the other ones. However,
usually there is no single optimal solution that simultaneously optimises all the objective
functions. The concept of optimality is replaced with that of Pareto optimality. The aim in
a multi-objective optimisation problem in the Pareto sense is to find all Pareto-optimal
solutions among which the decision maker can select the preferred one (Mavrotas, 2009).

Let us consider a bi-objective optimisation problem, where both objective functions
are to be maximised:

Definition 1 (dominance): a solution x1 dominates a solution x2 (x1  x2) if and only if
f1(x1) ≥ f1(x2) and f2(x1) > f2(x2) or f1(x1) > f1(x2) and f2(x1) ≥ f2(x2).

Definition 2 (strict dominance): a solution x1 strictly dominates a solution x2 (x1  x2) if

and only if f1(x1) > f1(x2) and f2(x1) > f2(x2).

Definition 3 (Pareto-optimal solution): let X a set of all feasible solutions, a solution x1 is
Pareto-optimal or efficient solution if and only if there is no other solution x2  X such
that x2 dominates x1. Such solutions are also called non-dominated solutions.

Definition 4 (Pareto front): let X a set of all feasible solutions, if Y is the set that contains
only all Pareto-optimal solutions of X, then the Pareto front is the set of objective vectors
of the solutions in Y.

3.1 Overview of used methods

3.1.1 GRASP

GRASP (Feo and Resende, 1989, 1995) is a multi-start metaheuristic, in which each
iteration consists of two phases: construction and local search. The construction phase is
guided by a greedy randomised algorithm; it consists in constructing a feasible solution.
In the second phase, local search is applied to this solution, in order to obtain a local
optimum in its neighbourhood. The best solution over all GRASP iterations is returned as
result. The GRASP was successfully adapted and applied to several multi-objective
problems. In Delorme et al. (2010) a new approach called λ-GRASP was proposed to
solve the bi-objective set packing problem, in which the GRASP is iterated independently
with various weighted sum objective functions. Arroyo et al. (2008) introduced the
GRASP to solve the multi-criteria minimum spanning tree wherein the construction
phase is guided by the Kruskal’s algorithm using a weighted combination of the
objectives, and a drop-and-add neighbourhood is used in the local search. Arroyo et al.
(2010) proposed a new bi-objective GRASP to solve the bi-objective p-median problem.
An elitist GRASP metaheuristic algorithm called mGRASP was developed by Li and
Landa-Silva (2009) to solve the multi-objective quadratic assignment problem (mQAP).
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This version of GRASP is characterised by three features: elite greedy randomised
construction adaptation of search directions and cooperation between solutions. The
GRASP was also used as a multi-objective approach by Salazar-Aguilar et al. (2013) for
solving the bi-objective commercial territory design problem. The pseudo code of general
GRASP for maximisation problem is given in Algorithm 1.

Algorithm 1: pseudo code of general GRASP

GRASP(MaxIter)

x* ← Ø

f(x*) ← 0
For i = 1 to MaxIter

x ← ConstructionProcedure()

x←LocalSearch(x)
If f(x) >f(x*)

x* ← x

End if

End For

Return x

End

3.1.2 Path-relinking

The path-relinking (PR) was originally introduced by Glover and Laguna (1997) as a
technique to integrate intensification and diversification strategies in the context of tabu
search, where the objective is to generate new solutions by exploring the search space or
path between two elite solutions (high-quality solutions). Starting from one of these
solutions, called an initiating or origin solution, a path is generated in the neighbourhood
space that leads toward the other solutions called guiding solutions. This is accomplished
by selecting moves that introduce attributes contained in the guiding solutions, and
incorporating them in an intermediate solution initially originated in the initiating
solution. The PR was successfully integrated as an intensification phase of the GRASP.

This combination was first proposed by Laguna and Marti (1999). The relinking in
the intensification context consists in generating a path between a solution found with
GRASP and a chosen elite solution. Different variants of PR were introduced in the
literature, such as the greedy randomised path relinking (GRPR) introduced by Faria
et al. (2005) where the moves between the initiating and the guiding solutions are done in
a greedy randomised way, and the evolutionary path relinking (EvPR) proposed by
Resende and Werneck (2004) as a post-processing phase for GRASP with PR. Marti et al.
(2015) proposed different adaptations of the multi-objective path relinking used as a
post-processing phase in the multi-objective GRASP; they have introduced the pure path
relinking in which one objective function is considered to select the intermediate
solutions in the entire path between two solutions; the sequential path relinking in which
the objective function, used to generate the intermediate solutions, is alternated in the
same path, and the weighted path relinking in which the weighted objective function is
used to select all the intermediate solutions.
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This paper proposes a new adaptation of the path relinking in a bi-objective context,
called BDPR, used as an intensification phase in the λ-GRASP. An outline of the
proposed path relinking is given in Algorithm 5.

3.2 Proposed approach

In order to solve the BOOP, we propose an hybrid procedure called GRASP+BDPR. This
approach is based on a new adaptation of the λ-GRASP (2010), a version derived from
the GRASP, combined with the new variant of the path relinking procedure called BDPR,
employed as an intensification phase. The main goal in the use of BDPR is to improve
the performance of the λ-GRASP procedure by providing new solutions that can
eventually be part of the set of non-dominated solutions. Each iteration of GRASP +
BDPR consists of three phases: construction, local search, and intensification. The
pseudo-code of the proposed approach is presented in Algorithm 4.

In the λ-GRASP, the standard GRASP procedure is performed independently on a
certain number of search directions with different weighted sum objective functions.
So, for each weight λ, a construction procedure and a local search phase are applied
and repeated until a certain stopping condition is met. the latter can be represented
by the maximum number of iterations. The general process of λ-GRASP is given in
Algorithm 2.

Algorithm 2: pseudo code of λ-GRASP

λ-GRASP(N, MaxIter)

Input: N //number of search direction

MaxIter //number of iterations of GRASP

ES ← Ø

For λ   1 2
0, , , 1

1 1N N 


x ← GRASP (λ, MaxIter)

if ( s  ES: s  x) then:

ES ← ES  x

ES ← ES\{s:  s′  ES: s′  s}

End if

End For

Return ES

End

In the proposed approach, each local search phase of the λ-GRASP is guided by the two
objectives to be maximised.

The GRASP+BDPR is based on two input parameters: N which represents the
number of search directions, and MaxIter, the maximum number of iterations which
represents the stopping criterion of each GRASP application. The proposed solution
procedure returns a set of non-dominated solutions called ES. The different steps of
GRASP + BDPR are described in the next sub-sections.
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3.2.1 Constructive phase

In each iteration of GRASP, the construction phase is guided by a greedy randomised
procedure with a certain parameter  that allows controlling the amounts of greediness
and randomness in the algorithm. This step consists in building a solution while trying to
maximise the value of the weighted sum objective function λf1 + (1 – λ)f2 with λ  [0, 1].
The constructed solution is checked for its possible inclusion in the set of non-dominated
solutions ES. The pseudo code of the GRASP constructive procedure is shown in
Algorithm 3.

Algorithm 3: pseudo code of construction procedure

Greedy randomised procedure (λ, )

X ← Ø

Initialise the candidate list: CL

Evaluate the incremental increase of the evaluation function P(vi) for all vi  CL

While CL ≠ Ø

Pmin ← min {P(vi)/vi  CL}

Pmax ← max{P(vi)/vi  CL}

RCL ← {vi  CL/P(vi) ≥ Pmin + (Pmax – Pmin)}

Select at random an element e from RCL

X ← X  {e}

Update the candidate list CL

Reevaluate the incremental increase P(vi) for all vi  CL

End while

Return X

End

In the BOOP, a solution x is a route including the start and the end vertex, in addition to
some of the vertices where the total cost satisfies a given cost restriction Tmax. The
greedy randomised procedure starts with an initial partial solution x formed with the start
and the end vertex {v0, vn+1} and a total cost of route C0n+1. At each insertion, a candidate
list CL is initialised with all vertices not present in the partial solution that can be added
without exceeding the cost limit Tmax. In the first step:

  0 1 0 1V , :  maxi n i inCL v v v C C T    

All elements of CL are evaluated with a greedy evaluation function P that takes into
account the incremental increase in the cost function produced by selecting a certain
vertex vi. Specifically, for each candidate vi in CL, we define P(vi) as follows:

     1 1 2 2(1 )
j j

i j i j i
v x v x

P v λ p p λ p p
 

     
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Algorithm 4: pseudo-code of the proposed GRASP + BDPR

GRASP + BDPR (N, MaxIter)
ES ← Ø
F ← Ø
Fp ← Ø

For λ   1 2
0, , , 1

1 1N N 


For iter = 1 to MaxIter

iter 1

MaxIter 1







L1 = L2 = Ø
Constructive phase

x ← greedy randomised procedure (λ, )   [0, 1]
if ( s  ES: s  x) then:

ES ← ES  {x}
ES ← ES\{s:  s′  ES: s′  s}

End if
Local search phase

L1 ← LS1(x) // improve x maximising f1

L2 ← LS2(x) // improve x maximising f2

ES ← non-dominated solutions of (ES  L1  L2)
Intensification phase

LP = Ø
Select at random x0 from ES

if ( x1  L1  L2: (x1, x0)  Fp) then:
LP ← BDPR(x1, x0)

Fp ← Fp  {( x1, x0)}

if(x0  F) then:

F ← F  {x0}
End if

else
Select at random x0 from ES\F, x1 from L1, and x2 from L2

LP1,0 ← BDPR(x1, x0) and LP2,0 ← BDPR(x2, x0)

LP ← LP1,0  LP2,0

F ← F  {x0}

Fp ← Fp  {(x1, x0), (x2, x0)}
End if

ES ← non-dominated solutions of (ES  LP)
End For

End For
Return ES
End
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To select the element to be inserted in the partial solution, a restricted candidate list
(RCL) is formed with the best elements whose quality is superior to a certain threshold
value in which the parameter  allows to control the amounts of greediness and
randomness in the choice of the element to be inserted in the solution under construction.
Note that the case  = 0 corresponds to a completely random choice, while  = 1
corresponds to a pure greedy selection:

    : min max mini iRCL v CL P v P P P    

where      max max ; min min ;  and [0, 1].i iv CL i v CL iP P v P P v   

One vertex is selected at random from RCL and it is inserted in the best position into
the current solution. The candidate list CL is updated after each insertion. All of this
process is performed as long as CL is not empty.

3.2.2 Local search

In this stage, a local search is performed in order to improve the initial solution generated
by the constructive phase. The local search phase of our approach explores two search
directions by performing a local search with respect to each objective (i.e., the
constructed solution is improved by maximising the objective functions f1 and f2,
respectively).

For each objective, two different neighbourhoods are used such as it was employed
by Campos et al. (2014) to solve the single objective OP. Two types of moves are
considered: 1-1 exchange and insertion.

Let Y the solution generated in the constructive phase: in the 1-1 exchange, we
examine each vertex u in the solution Y, trying to exchange it with another vertex v not
included in Y that leads to the best improvement of the objective k(k = 1,2) considered in
the local search, without exceeding the limit cost Tmax. Specifically, for each vertex u in
Y, we construct the different combinations between the vertex u and each vertex v not in
Y, then we compute the difference Δ between the profits associated to both vertices such
that Δ = pvk – puk, and we perform the exchange that provides a maximum improvement.
If for a vertex u in Y, no improving exchange exists, we try to exchange it with a vertex
that provides the same profit value puk but that allows to reduce the route total cost

 ( , )
.

i j
ij ij

v v Y
C x

 If the exchange is not performed, we resort to the next vertex u in Y.

After 1-1 exchange, we try to insert as possible the vertices not included in the
solution Y without exceeding Tmax. Note that the vertices are always inserted in the best
position of the solution.

The examination of vertices is done in their order in the solution. When a certain
move is performed for any vertex in the solution, the visited solution is inserted in a set
Lk. The exploration of vertices restart from the beginning until no further improvement is
possible.

In the proposed algorithm, the local search phase returns two sets: L1 associated to the
local search for the objective 1 denoted LS1 in algorithm 4, and L2 associated to the local
search for the objective 2 denoted LS2. Each solution in L1 and L2 is checked for its
possible inclusion in the set ES of non-dominated solutions.
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3.2.3 Intensification phase with BDPR

In the intensification phase of the proposed approach, we introduce a new variant of the
path relinking procedure in a bi-objective context that we call BDPR in order to generate
new solutions that can eventually be Pareto-optimal.

The key idea of BDPR is so to use two path relinking procedures for each pair of
solutions (the initiating solution and the guiding solution), each of them working on a
certain search direction. In other words, for a certain optimisation problem with two
objectives, a path relinking procedure PRk is performed for each objective k(k = 1,2) that
allows to produce a sequence of successive intermediate solutions in each direction. In
each path relinking application PRk(k = 1,2), the intermediate solutions in the entire path
are selected with respect to the objective function fk. Figure 1 shows an illustration of two
paths generated by a BDPR procedure where the path 1 and the path 2 are composed of
all intermediate solutions according, respectively, to the objective function f1 and the
objective function f2.

Figure 1 Paths generated by exploring two search directions

The BDPR method has two parameters: the initiating solution, and the guiding solution.
The general algorithm of the proposed path relinking is presented in Algorithm 5.

Let x0 and xg two solutions of BOOP (two routes); x0 denotes the initiating solution,
and xg the guiding solution. Let x0–g be the set of vertices present in x0 and not in xg, and
xg–0 denotes the set of vertices present in xg and not in x0. The path relinking procedure
PRk(x0, xg) starts with the solution x0 and gradually transforms it into the other solution xg.

Algorithm 5: the BDPR algorithm

BDPR(x0, xg)

LP0,g = LP1 = LP2 = Ø

LP1 ← PR1(x0, xg)

LP2 ← PR2(x0, xg)

LP0,g ← LP1  LP2

Return LP0,g

This is accomplished at first by inserting an element from xg–0 in x0. The choice of the
element to be inserted is done in a greedy way. Specifically, the best element according
to the objective function fk is selected. If the resulting solution is feasible, it is considered
as the next intermediate solution in the path. Otherwise, the worst vertices according to
the objective function fk in x0–g are removed until the current solution becomes feasible.
This whole process is repeated for as long as Tmax is not exceeded, and the set xg–0 is not
empty.
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In the intensification stage of GRASP + BDPR, two sets are incorporated: Fp and F.
The first contains all pairs of solutions (x0, xg) explored in past BDPR applications, while
the second set includes all solutions that were used as guiding solution by the BDPR. In
each intensification phase, a first solution x0 is selected at random from the set of
non-dominated solutions ES. Another solution x1 is selected from the set L1  L2 such as
the pair (x1, x0) is different from every pair in Fp. The BDPR is then applied on (x1, x0).
This pair is stored in the set Fp. In the case where there is no solution in L1  L2 that
satisfies the selection condition, a new solution x0 is randomly selected from ES\F if it is
not empty (ES\F represents the set of solutions in the set of non-dominated solutions ES
that have never been used as guiding solutions), and two different solutions x1 and x2 are
selected at random from L1 and L2, respectively. The BDPR is applied on each pair of
solutions (x1, x0), and (x2, x0). The solution x0 and both pairs are stored in F and Fp,
respectively. All solutions in the different sets resulting by different BDPR applications
are checked for their possible inclusion in the set ES of the overall non-dominated
solutions to be returned by GRASP + BDPR.

4 Computational experiments

The GRASP + BDPR was coded in Java and was run on a computer Intel(R) with 2.1
GHz processor and 2 GB of RAM memory. The performance of the proposed algorithm
was tested on 100 test instances taken from Schilde et al. (2009) with number of vertices
ranging from 21 to 559. These instances are 2_p21, 2_p32, 2_p33, 2_p64 (dia), 2_p66
(squ), 2_p97 (pad), 2_p273 (wie), and 2_p559 (stm). Each of them is tested with different
values of route length restriction (Tmax). The characteristics regarding the number of test
instances, the number of vertices and the different route length restriction values Tmax of
these problems are given in Table 1. The proposed GRASP + BDPR was executed ten
times for each instance in order to obtain the Pareto front. Two parameters were
employed:

Table 1 Benchmark BOOP instances

Instance Number of
test instances

Number of
vertices

Route length restriction Tmax

2_p21 11 21 15, 20, 23, 25, 27, 30, 32, 35, 38, 40, 45

2_p32 16 32 5, 10, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
80, 85

2_p33 13 33 15, 30, 35, 40, 50, 60, 70, 75, 80, 85, 90, 100, 110

2_p64 13 64 15, 20, 25, 30, 35, 45, 50, 55, 60, 65, 70, 75, 80

2_p66 16 66 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,
80, 90

2_p97 19 97 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17,
18, 19, 20

2_p273 6 273 1, 2, 5, 10, 15, 20

2_p559 6 559 10, 20, 30, 40, 50, 80

N: the number of search directions, and MaxIter: the maximum number of iterations
considered in each GRASP application. According to the experimental results as well as
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performance evaluations, we have kept the following values that have yielded the best

results: N = 50, so λ   1 2
0, , , ,1 ;

49 49
 MaxIter = 20.

In this research work, we compare our GRASP + BDPR with the P-ACO and the
VNS (Schilde et al., 2009) in order to evaluate the effectiveness of the proposed method.

In the multi-objective optimisation, it is so difficult to measure the quality among
approximations of Pareto front obtained by different methods. Consequently, the
performance evaluation on the multi-objective optimisation is realised using different
metrics that have been introduced in the literature like the following:

 Distance metric (Dist) proposed by Czyzżak and Jaszkiewicz (1998) and Knowles
and Corne (2002), this indicator evaluates the distribution of an estimated efficient
frontier A as well as the proximity of A to the reference set R; it represents the
average distance from each point y  R to its closest point in A. This indicator is
calculated as follows:

1
( ) min ( , )

| |
x A

y R
Dist A d x y

R



 

where d(x, y) represents the Euclidean distance between x and y with:

   2 2* * * *
1 1 2 2( , ) ( ) ( ) ( ) ( )d x y f y f x f y f x   

and *(.)if represents the normalisation of the objective function i to the range [0, 1],

where 1 stands for the best result and 0 for the worst.

 Cardinal measure |A  R|: it represents. The number of solutions of the efficient
frontier A that are included in the reference set R.

 Overall non-dominated vector generation ratio (ONVGR) (2006): it measures the
ratio of |A  R| and the number of solutions in the reference set R. this metric is
defined as follows:

| |
100

| |

A R
ONVGR

R


 

 The coverage metric C(A,B) proposed by Zitzler and Thiele (1999): this metric
represents the proportion of points in the estimated efficient frontier B that are
dominated by the efficient points in the estimated frontier A. Note that C(A, B) = 1
means that all the solutions in B are dominated by solutions in A, while C(A, B) = 0
represents the situation when none of the solutions in B are dominated by solutions
in A. This metric is defined as follows:

:
( , )

| |

x B y A y x
C A B

B

  




In our experimentation, the reference set R is defined as the set of all non-dominated
points obtained by combining all non-dominated solutions generated by the three
methods (GRASP + BDPR, P-ACO, and VNS) and finding out the non-dominated
solutions from the combination.
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Figures 2 to 4 show a graphical representation of the non-dominated solutions
obtained by the three methods for the problem set 2_p273 with a total length limit of
Tmax = 20, the problem set 2_p66 with Tmax = 30, and the instance 2_p559 with Tmax =
80. It can be observed that the GRASP + BDPR algorithm provides a better
approximation of the efficient frontier in these instances.

Figure 2 Pareto front approximation for instance 2_p273 with Tmax = 20 (see online version
for colours)

Figure 3 Pareto front approximation for instance 2_p66 with Tmax = 30 (see online version
for colours)
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Figure 4 Pareto front approximation for instance 2_p559 with Tmax = 80 (see online version
for colours)

Table 2 Average of distance metric and computational time on different instances

Instances
GRASP + BDPR P-ACO VNS

Dist CPU Dist CPU Dist CPU

2_p21 0.000 1.60 0.000 1.35 0.000 1.35

2_p32 0.002 5.43 0.017 3.25 0.098 3.25

2_p33 0.012 6.37 0.011 5.14 0.069 5.14

2_p64 0.010 20.79 0.018 14.97 0.005 14.97

2_p66 0.006 25.05 0.013 16.17 0.007 16.17

2_p97 0.038 3.25 0.150 1.17 0.141 1.17

2_p273 0.009 50.80 0.682 31.48 0.177 31.48

2_p559 0.002 57.12 0.017 36.57 0.032 36.57

Average 0.009 21.301 0.113 13.762 0.066 13.762

Table 2 summarises the results of the three methods on the distance measure Dist and the
computational time in seconds. Each indicator value represents the average of the
indicator values calculated for each problem set with different values of Tmax.

The overall results show that GRASP + BDPR outperforms P-ACO and VNS
procedures regarding the distance metric. The GRASP + BDPR gives the best average
value for all instances. In particular, for instances 2_p273, the average value of Dist
provided by GRASP + BDPR (0.009) is smaller than that of P-ACO (0.682) and VNS
(0.177). The superiority of GRASP + BDPR can be also observed on the instances 2_p66,
2_p97, 2_p559. Furthermore, we can conclude that the non-dominated solutions obtained
by our algorithm have a closer distance to the reference set than the non-dominated
solutions generated by P-ACO and VNS.
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Table 3 Cardinal measure and ONVGR on different instances

Instances |R|
GRASP + BDPR P-ACO VNS

|A| |AR|
ONVGR

(%)
|A| |AR|

ONVGR
(%)

|A| |AR|
ONVGR

(%)

2_p21 21 21 21 100 21 21 100 21 21 100

2_p32 60 60 59 98 59 56 93 55 54 90

2_p33 76 75 73 96 76 68 89 73 63 82

2_p64 564 468 248 44 465 85 15 557 349 62

2_p66 401 390 189 47 391 113 28 390 291 72

2_p97 40 38 38 95 33 33 82 34 34 85

2_p273 113 113 70 62 77 34 30 89 28 25

2_p559 20 20 19 95 17 16 80 15 13 65

Table 3 shows the number of Pareto-optimal solutions in the reference set (|R|),
the number of non-dominated solutions provided by each method (|A|), the number of
reference solutions provided by each algorithm (|A  R|), and the percentage of
non-dominated solutions for each algorithm (ONVGR).

GRASP + BDPR is superior to P-ACO regarding the cardinal measure on all problem
sets. A larger number of reference solutions are generated by GRASP + BDPR. For
example, on the instance 2_p64, 564 reference solutions were generated, from which
248 solutions were found by GRASP + BDPR, and only 85 solutions by P-ACO. The
value of the ONVGR indicator obtained by GRASP + BDPR is higher than that of
P-ACO for the same instance where 44% of the solutions in the reference set were
provided by GRASP + BDPR. This outperformance can be also observed on the instance
2_p97, in which 95% of solutions in the reference set were obtained by our method while
82% were found by P-ACO.

The GRASP + BDPR outperform the VNS algorithm on the problem instances
2_p32, 2_p33, 2_p97, 2_p273, and 2_p559. Specially, on the problem set 2_p273,
113 reference solutions were generated, from which 70 (62%) and 28 (25%) reference
solutions were provided, respectively, by GRASP + BDPR and VNS. Additionally,
we can observe the superiority of GRASP + BDPR on the problem set 2_p33,
76 reference solutions were generated from which 73 (96%) solutions were obtained by
GRASP + BDPR, and 63 (82%) solutions by VNS. Furthermore, on the problem
instances 2_p64 and 2_p66, the VNS provides a larger number of reference solutions. For
example, on the instance 2_p64, 564 reference solutions were generated, from which 248
(44%) solution were obtained by GRASP + BDPR and 349 (62%) solutions were found
by VNS.

Twenty-five instances are randomly chosen for a brief comparison of GRASP +
BDPR with P-ACO, and VNS regarding the objective ranges. Table 4 reports the
objective ranges of non-dominated solutions generated by the three methods and the
reference set on these instances. The objective ranges are expressed in the form of a pair
of the minimum and the maximum values obtained for the objective. The objective
ranges associated to each method are similar for 14/25 instances while the GRASP +
BDPR significantly outperforms the other methods on 10/25 instances. It can be deduced
that GRASP + BDPR provides a better spread of solutions from the approximation of
efficient frontier in the objective space than P-ACO and VNS.
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Table 4 Objective ranges for some instances
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Table 5 Coverage metric

Instances C(GRASP +
BDPR, P-ACO)

C(PACO, GRASP
+ BDPR)

C(GRASP +
BDPR, VNS)

C(VNS, GRASP +
BDPR)

2_p21 0.000 0.000 0.000 0.000

2_p32 0.045 0.012 0.02 0.012

2_p33 0.076 0.014 0.09 0.008

2_p64 0.475 0.20 0.23 0.41

2_p66 0.44 0.16 0.18 0.34

2_p97 0.000 0.000 0.000 0.000

2_p273 0.43 0.19 0.31 0.14

2_p559 0.03 0.02 0.08 0.02

Average 0.187 0.074 0.114 0.116

The effectiveness of the proposed method can be also viewed in Table 5, where the
average of coverage values on GRASP + BDPR outperforms P-ACO. For example, on
the instance 2_p66, 44% of the non-dominated solutions obtained by P-ACO are
dominated by GRASP + BDPR, while only 16% of those provided by GRASP + BDPR
are dominated by P-ACO. The GRASP + BDPR is able to dominate large parts of the
non-dominated solutions provided by P-ACO algorithm while a marginal number of
non-dominated solutions found by GRASP + BDPR are dominated by P-ACO. The
GRASP + BDPR outperforms VNS regarding the coverage metric on the problem sets
2_p32, 2_p33, 2_p273, 2_p559 with the exception of the problem sets 2_p64 and 2_p66.
For example, on the instance 2_p273, the GRASP + BDPR dominate 31% of
non-dominated solutions generated by VNS while only 14% of those obtained by
GRASP + BDPR are dominated by VNS.

In summary, the superiority of GRASP + BDPR in comparison with P-ACO and
VNS according to the distance metric, the cardinal measure, the ONVGR and the
coverage metric reinforces our conclusion that the GRASP + BDPR is more efficient to
generate a good approximation of the Pareto optimal solutions except for the problem
instances 2_p64 and 2_p66 where the VNS procedure outperforms the GRASP + BDPR
on the cardinal measure and the coverage metric. On average, the proposed algorithm
requires a computational time superior to that of P-ACO and VNS (Table 2). This
computational effort is very reasonable taking into account the high quality solutions
produced by GRASP + BDPR.

5 Conclusions

In this paper, we presented a metaheuristic method called GRASP + BDPR for
approximating the Pareto front of the BOOP that arises in the tourist routes design
problem. The proposed approach combines the λ-GRASP method with a new variant of
the path relinking procedure that we have called BDPR which was used as an
intensification phase in the λ-GRASP with the aim to improve the efficiency of the
method by generating better solutions that can eventually be Pareto optimal.

To verify the performance of the proposed approach, the GRASP + BDPR was
compared with P-ACO and VNS procedures on some benchmark instances taken from
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the literature by using four measures: distance metric, cardinal measure, ONVGR and the
coverage metric. The Computational results show that the proposed approach is
competitive with P-ACO and VNS procedures. The GRASP + BDPR outperforms these
two methods on all measures except for the problem sets 2_p64 and 2_p66 on which
VNS outperforms GRASP + BDPR on the cardinal measure and the coverage metric.
New and more efficient solutions on large test instances were achieved within a
reasonable CPU effort. This computational effort is an acceptable trade-off for the high
quality of solutions obtained by GRASP + BDPR.

The BDPR can be viewed as an efficient approach in a bi-objective context for
generating new solutions that can be Pareto optimal. However, we think that the use of
the key idea of the BDPR in a multi-objective problems in which the number of
objectives exceeds 2, might not be efficient since it could require more computational
effort without achieving significant improvements. Additionally, the random character of
the constructive phase of the algorithm is very important in terms of solutions quality, but
it might produce many identical solutions. It is also important to note that the choice of
the parameters used in the GRASP + BDPR is very crucial in terms of the quality of
solutions on the one hand and the computational time on the other hand. For example, the
use of a high value of the search directions parameter might lead to higher computational
effort but could ensure a good coverage of the efficient frontier.

In the future research, we will try to adapt the solution procedure to be reactive to
human stimuli by considering more complex real-world constraints such as time windows
and budget limitations of tourists for entrance fees corresponding to the POIs in order to
illustrate a more realistic TTDP.
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