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Abstract

Since the deregulation of the natural gas industry new challenges and tasks con-
cerning the transportation of gas arose. This brought into life a whole new research
field dealing with models and problem formulations satisfying the new needs of
the natural gas industry. Being a difficult task even before the deregulation, the
task of gas transportation became even more complex because uncertainty plays
a more important role now. In this context, the computation of the probability
of feasibility of exit load vectors in passive steady-state gas networks, which is
addressed in this thesis, is a task of high importance.

Passive steady-state gas networks can be modeled via an algebraic system tak-
ing into account Kirchhoff’s first and second law. A characterization for feasibility
of load vectors that reduces the number of variables is utilized to compute the
probability of exit load vectors to be feasible with spheric-radial decomposition.
For solving systems of multivariate polynomial equations Gröbner basis techniques
are used. With this method networks with up to three fundamental cycles that
are not edge-disjoint can be analyzed. Two methods to reduce the number of
polynomial systems to be solved are presented. First, some rules for possible flow
directions along the pipes are given and an upper bound for the number of possi-
ble flow directions is deduced. Second, a method for finding redundant pressure
bounds is given.

Parametric optimization problems arising in model predictive control are of
high interest. Hence, it is an important task to identify an explicit representation
of the set of feasible load vectors. In a mathematical context this means that
systems of parametric quadratic multivariate polynomials have to be solved. This
problem is tackled by extending Gröbner bases to comprehensive Gröbner systems,
which yield parametric Gröbner bases.

i





Acknowledgements

First of all, I have to thank my advisor Rüdiger Schultz. Without him this thesis
would not have been possible.

During my time as a PhD student I had the honor to work with some great
people and I have to give special thanks to some of my colleagues. Tobi, it was
a pleasure to share the office with you. I am grateful for all the small talks in
between the work and all the fruitful discussions we had.
I am deeply thankful for all the support of Claudia. She taught me a lot about
gas networks and made it easy for me to dive into this topic. Moreover, I thank
Matthias and Kai for the endless discussions on commutative algebra. Also, I owe
special thanks to Claudia and Matthias for proofreading this thesis.

My research for this dissertation was part of the research project “TRR 154
Mathematical Modelling, Simulation and Optimization using the Example of Gas
Networks” in the course of which I met a bunch of great people. I thank the
other PhD students in the project for the good times we had during our meetings.
Moreover, I owe thanks to the speakers of the lecture series provided to us. Denis,
thanks for pointing me to hyperplane arrangements!

I am grateful for the chance to go to California and work in the group of David
Woodruff at UC Davis for half a year. It was a great experience and under his
leading hand I learned a lot about Python programming.

I am deeply grateful for the parents I have. Mama, Papa – You always encour-
aged me and I can always count on you. Thank you for all the love you give to
me!

Vanessa, you are the reason I never gave up. Some people will deny it, but
between siblings there is always some kind of competition and I always tried (and
will do so in the future) to be at least as good as you are.

I owe special gratitude to Sascha. Thank you for supporting me in every
possible way and for reassuring me in everything I aim for. I am deeply grateful
for your endless love.

I thank the Deutsche Forschungsgemeinschaft for their support within project
B05 in the Collaborative Research Center / Transregio 154 Mathematical Mod-
elling, Simulation and Optimization using the Example of Gas Networks.

iii



Contents

Abstract i

Acknowledgements iii

Contents v

Symbols vi

1 Introduction 1

I Preliminaries 6

2 Solving Systems of Polynomial Equations 7
2.1 Introduction to Polynomials, Varieties, and

Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Gröbner Bases and Applications . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Monomial Orderings . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 A Division Algorithm in k[x1, . . . , xn] . . . . . . . . . . . . . 12
2.2.3 Dickson’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Solving Systems of Polynomial Equations Using Gröbner Bases 18
2.2.6 Shape Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Comprehensive Gröbner Systems . . . . . . . . . . . . . . . . . . . 21

3 Graph Theory 23
3.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Depth First Search . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Matrix Representations . . . . . . . . . . . . . . . . . . . . . 25

3.2 Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Modeling Gas Networks 29
4.1 Physical Properties of Gas . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Equation of State for Real Gases . . . . . . . . . . . . . . . 30

iv



Contents v

4.1.2 Friction Factor . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Single Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Algebraic Model . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Conservation of Mass at the Junctions . . . . . . . . . . . . 33
4.3.2 Modeling Gas Networks Using Graphs . . . . . . . . . . . . 34

II Problems related to Gas Networks 37

5 Feasibility of Loads 38
5.1 The Set of Feasible Load Vectors . . . . . . . . . . . . . . . . . . . 38
5.2 Fixation of the Flow Direction . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Upper Bounds for the Number of Flow Directions . . . . . . 48
5.3 Redundant Pressure Bounds . . . . . . . . . . . . . . . . . . . . . . 62

6 Probability of Feasibility 64
6.1 Computing the Probability of Feasibility Using Spheric-Radial

Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Explicit Representation of the Set of Feasible Load Vectors 72

III Appendix 82

A Extension of Examples Concerning Flow Directions 83
A.1 Infeasible Flow Directions of Example 5.9 . . . . . . . . . . . . . . . 83
A.2 Infeasible Flow Directions of Example 5.15 . . . . . . . . . . . . . . 84
A.3 Infeasible Flow Directions of Example 7.2 . . . . . . . . . . . . . . . 88

B Data 89

Bibliography 91



Symbols

General Notation
N the set of natural numbers
Z, Z≥0 the set of (nonnegative) integers
Zn, Zn≥0 the set of (nonnegative) integer column vectors of di-

mension n
Q the set of rational numbers
R the set of real numbers
C the set of complex numbers
∅ the empty set
Sn−1 (n− 1)-dimensional unit sphere in Rn

|S| the cardinality of a set S
|s| the absolute value of a number s
|v| componentwise absolute value of a vector v, (|v|)i =

|vi|
v|v| componentwise, (v|v|)i = vi|vi|
v2 componentwise square of a vector v, (v2)i = (vi)2

ei the i-th unit vector
In the identity matrix of dimension n
Ai,• the i-th row of a matrix A
A•,j the j-th column of a matrix A
AM the matrix consisting of the columns of A that are

indexed by the elements of M
vM the vector consisting of the components of v that are

indexed by the elements of M
diag(v) the diagonal matrix whose diagonal is v
⊆ subset relation where equality can occur
⊂ strict subset relation where equality must not occur
P probability
ξ a random vector
µ the mean value of a distribution
R the correlation matrix of a distribution
Σ the covariance matrix of a distribution
N (µ,Σ) (multivariate) Gaussian distribution with mean value

µ and covariance matrix Σ
vi



Symbols vii

S a set of samples
v a sample
Ha the hyperplane generated by the arc a

Algebra
k a field
k̄ algebraic closure of a field k
kn, k̄n n-dimensional affine space over k and k̄, respectively
k[x1, . . . , xn] the set of all polynomials in x1, . . . , xn with coeffi-

cients in k, the polynomial ring
k[u1, . . . , um][x1, . . . , xn] the set of all polynomials in x1, . . . , xn with coeffi-

cients in k[u1, . . . , um]
f , g, h, p, q, r polynomials in k[x1, . . . , xn]
x1, . . . , xn, x, y, z indeterminates
totaldeg (xα) the total degree of a monomial xα
deg f the total degree of a polynomial f
I, J ideals
〈f1, . . . , fs〉 the ideal generated by polynomials f1, . . . , fs
V , W affine varieties
V (f1, . . . , fs) the variety defined by polynomials f1, . . . , fs
V (I) the variety defined by the polynomials in I
I (V) the set of all polynomials that vanish on V , the ideal

of V√
I the radical of an ideal I
� monomial ordering on the monomials in k[x1, . . . , xn]
multideg (f) the multidegree of a polynomial f
lc(f) the leading coefficient of a polynomial f
lm(f) the leading monomial of a polynomial f
lt(f) the leading term of a polynomial f
lt(I) the set of leading terms of the elements of I
lcm(f, g) the least common multiple of monomials f and g
rF (f) the remainder on devision of a polynomial f by the

set of polynomials F
G a Gröbner basis of an ideal in k[x1, . . . , xn]
S(f, g) the S–polynomial of polynomials f and g
Il the l-th elimination ideal of an ideal I
Gl a Gröbner basis of the l-th elimination ideal
≡ congruence relation
[f ] the equivalence class of a polynomial f for congruency

modulo an ideal
k[x1, . . . , xn]/I the quotient of the polynomial ring k[x1, . . . , xn] mod-

ulo an ideal I
dimK R the Krull dimension of a ring R



Symbols viii

σ specialization of k[u1, . . . , um] or
k[u1, . . . , um][x1, . . . , xn]

σa specialization induced by a ∈ k̄m
G̃ a comprehensive Gröbner system of a set of polyno-

mials in k[u1, . . . , um][x1, . . . , xn]

Graph Theory
G a graph or digraph
#�

G an orientation of a graph G
V , V (G) the set of all nodes of a (directed) graph
A, A(G) the set of all edges (arcs) of a (directed) graph
u, v, w nodes
r the root node of a spanning tree
a, b, c edges (arcs)
NG(u) the set of all neighbors of a node u in the (directed)

graph G
deg(u) the degree of a node u
degin (u) the in-degree of a node u
degout (u) the out-degree of a node u
head(a) the head of an arc a in a directed graph
tail(a) the tail of an arc a in a directed graph
T a tree
T the cotree of a spanning tree T in a (directed) graph
uT v the unique path from node u to node v in a spanning

tree T
DT (u) the set of all descendants of a node u w.r.t. a search-

tree T
p(u) the predecessor of a node u w.r.t. a search-tree
C+ the set of all cycles in a graph
C = CT the set of all fundamental cycles in a (directed) graph

w.r.t. a spanning tree T
Ca the set of all fundamental cycles in a (directed) graph

that contain the edge (arc) a
C a cycle
Ca the fundamental cycle containing the non-tree edge

(arc) a
aC the non-tree edge (arc) in A(T ) that generates the

fundamental cycle C ∈ CT
AC′ the set of all edges (arcs) a ∈ A that are edges (arcs)

of the fundamental cycles in C ′ but not of those in
C \ C ′

A+ the incidence matrix of a (directed) graph
A the reduced incidence matrix of a (directed) graph



Symbols ix

AB the matrix consisting of the columns of A that cor-
respond to the edges (arcs) of a spanning tree of the
(directed) graph

AN the matrix consisting of the columns of A that corre-
spond to the edges (arcs) of the cotree of a spanning
tree of the (directed) graph

B = BT the fundamental cycle matrix of a (directed) graph
w.r.t. the spanning tree T

BB the matrix consisting of the rows of B that correspond
to the edges (arcs) of a spanning tree of the (directed)
graph

BN the matrix consisting of the rows of B that correspond
to the edges (arcs) of the cotree of a spanning tree of
the (directed) graph

P = PT the path matrix of a digraph w.r.t. a spanning tree
T

Gas Network Modeling
V + the set of junctions/nodes
V+ the set of entry nodes
V− the set of exit nodes
V0 the set of innodes
r ∈ V+ root of the spanning tree, reference node of the net-

work
V the set of nodes without the reference node
A the set of pipes
Q0, Q0,a volumetric flow rate under normal conditions in

m3 h−1 (along pipe a)
Q0 vector in R|A| of volumetric flow rates
p, pu pressure of the gas in Pa (at junction u)
p+, p vectors in R|V +| and R|V |, respectively, of pressures
pu, pu lower respectively upper pressure bound of the gas at

junctions u in Pa
p+, p, p+, p vectors in R|V +| and R|V |, respectively, of pressure

bounds
qnom, qnom

u load in m3 h−1 (at junction u)
qnom+, qnom vectors in R|V +| and R|V |, respectively, of loads
M the set of feasible load vectors
M− the set of feasible exit load vectors (if the network

contains exactly one entry node)
M−(v) the set of r ∈ R≥0 s.t. rLv + µ is a feasible exit load
S ⊆ {−1, 1}|A| the set of all feasible resolvings of the absolute values



Symbols x

Ps the set of all indices such that the corresponding pres-
sure bound inequality is nonredundant, s ∈ S

φ pressure drop coefficient of the gas in a specific pipe
Φ = diag (φa1 , . . . , φam) diagonal matrix of pressure drop coefficients of arcs

ai, i = 1, . . . ,m
ρ density of the gas in kg m−3

ρ0 density of the gas under normal conditions in kg m−3

v velocity of the gas in m s−1

m molar mass of the gas in kg mol−1

η dynamic viscosity of the gas in Pa s
T temperature of the gas in K
Tc (pseudo-)critical temperature of the gas in K
pc (pseudo-)critical pressure of the gas in Pa
pm mean pressure of the gas in Pa
q massflow in kg s−1

Rs specific gas constant of the gas in J kg−1 K−1

z compressibility factor of the gas
zm = z (pm, T ) mean compressibility factor of the gas
z0 = z (p0, T0) compressibility factor under normal conditions of the

gas
λ = λ (Q0) friction factor of the gas in a specific pipe
Re = Re (Q0) Reynolds number of the gas in a specific pipe
A cross-sectional area of pipe in m2

D diameter of a pipe in m
k integral roughness of the inner pipe wall in m
s slope of a pipe, in [−1, 1]
L length of a pipe in m
x location in a pipe, in [0, L]
t time in s

Constants
g = 9.80665 m s−2 gravitational acceleration
T0 = 273.15 K norm temperature
p0 = 101325 Pa norm pressure
R = 8.31441 J mol−1 K−1 universal gas constant
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Chapter 1

Introduction

Since the deregulation of the natural gas industry in Europe in the 2000s, and
before that in the USA in the 1990s, new challenges and tasks concerning the
transportation of gas arose. This brought into life a whole new research field
dealing with models and problem formulations satisfying the new needs of the
natural gas industry. Being a difficult task even before the deregulation, the task
of gas transportation became even more complex because uncertainty plays a more
important role now. Previously, gas companies have been gas traders and network
operators at the same time, but since the deregulation of the natural gas industry
these companies had to split up and now they either trade gas or operate the
pipeline systems. Gas transport customers first have to book with a transmission
system operator (TSO) rights to inject or withdraw gas up to a certain amount
at corresponding injection and withdrawal points of the pipeline system. Then,
one day before the booked gas transport is planned to take place, the transport
customers have to nominate to what extend and where they plan to exercise their
rights. This leads to the fact that the TSO has to ensure that all nominations
that are theoretically possible within the bookings are physically and technically
feasible. If he can not accomplish such a nomination, he has to pay penalty fees
to the customers whose contracts could not been satisfied.

The natural gas flow can be modeled independent of time (steady-state mod-
els) or dependent of time (transient models). In transient models the relations
between different quantities such as pressure and flow are described through par-
tial differential equations. This makes it difficult to integrate transient models in
optimization problems. However, in steady-state models the partial differential
equations reduce to algebraic nonlinear equations. These equations model Kirch-
hoff’s first and second law, conservation of mass and loop rule, cf. [65, 66]. The
loop rule states that the pressure drop within a cycle sums up to zero. It turns
out that the existence of cycles in a pipeline system complicates the solution of
natural gas flow problems. Ríos-Mercado and Borraz-Sánchez [99] write:

“While the size of a gas pipeline system definitely plays an important
role when solving natural gas network flow problems, it is the network
topology that really defines the complexity of the model, e.g., cyclic

1



Chapter 1. Introduction 2

networks are extremely more difficult to solve than its (gun-barrel and
tree-shaped) network counterparts.”

Ríos-Mercado et al. [99] and Iliadis et al. [63] give overviews of the optimization
problems arising in the natural gas industry. One optimization problem is the
line-packing problem. By injecting more gas into the system than is withdrawn,
which is possible since gas is compressible, the pipeline system can be used as
a short-term storage. When the stored gas is needed, there can be withdrawn
more gas than is injected. These two procedures are called line-packing and line-
drafting. The task here is to find a sufficient level of line-pack during a given
planning horizon. The model of de Nevers and Day in [36] identifies the limits of
line-packing and line-drafting for a single pipeline segment in an unsteady-state
pipeline system. In [28] and [106] the line-packing problem is examined under
consideration of uncertain future load.

Another interesting problem is the pooling problem occurring in gas and oil
pipeline systems. If the system contains gas or oil of different sources, and with
that of different quality, it is an important question how to operate the system
and how to mix the different gas resp. oil streams in order to fulfill given costumer
requirements. The modeling involves bilinear and convex quadratic programming
constraints called quality constraints. The pooling problem is investigated in, e.g.,
[4, 14, 44, 61], and in a stochastic setting in [8, 13]. Moreover, in [5] it is proven
that the pooling problem is NP-hard.

In addition to that, an aspect of essential importance is the (optimal) design
of a network. This aspect is split into two issues. The first one is to create a whole
new network, the second one is to add new elements such as pipes or compressors
to an existing network. The optimal design of pipeline systems is addressed in,
e.g., [7, 11,30,42,76,78,80].

The most effort has been put into the minimum fuel cost problem that ad-
dresses the optimal operation of the compressors of the network. The reason for
this is that the operating cost of compressor stations ranges between 25% and
50% of the company’s total operating cost, cf. [54]. Steady-state models are the
ones in [18,27,72,73] where dynamic programming is utilized to solve the problem.
While [72, 73] consider linear and tree-structured pipeline systems, [18, 27] inves-
tigate pipeline systems with at least one cycle containing compressors. Moreover,
[43, 91] use a gradient search and [81, 93] apply mixed integer nonlinear program-
ming tools. Transient models are examined in [29,40,46,79,90,97,98]. While these
models focus on the continuous modeling of compressors, the transient models of
[26,59,75] include discrete decisions concerning, e.g., (control) valves.

All those optimization problems have in common that one of their constraints
is feasibility of the gas flow. When uncertainty comes into play two different
approaches are possible. If the uncertainty is stochastic, i.e., its distribution is
known, this constraint is replaced by a probabilistic constraint stating that the
probability that the gas flow is feasible is greater than a given benchmark. For a
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survey on probabilistic constraints see, e.g., [95] and [94]. If the uncertain variable
is fully unknown, robust optimization is utilized to solve the problem, c.f. [15].
Both approaches are outlined with application to gas networks in [10, 56]. In [3]
the maximization of free booked capacities is considered. As mentioned above,
the TSO sells rights to inject and withdraw gas at certain points. These rights
constitutes bounds for the nominations. Let I andW denote the booked capacities
at the injection points and the withdrawal points, respectively, and qnom

+ and qnom
−

the nominations (loads) at the injection and withdrawal points, respectively. Then
the TSO has to ensure that

∀
(
qnom

+ , qnom
−

)
: qnom

+ ∈ [−I, 0] , qnom
− ∈ [0,W ] ,(

qnom
+ , qnom

−

)
is a feasible load vector.

Since for the nominations at the withdrawal points there exist historical data and
their distribution can be estimated, this condition can be relaxed to

P
{
qnom
− ∈ [0,W ] :

(
qnom

+ , qnom
−

)
is a feasible load vector ∀ qnom

+ ∈ [−I, 0]
}
≥ p,

where p is a prescribed probability level close to 1. If the probability on the left-
hand side is strictly greater than the probability level p, the TSO can sell more
capacities to maximize his profit. This optimization problem reads

max
{
1Tx+ + 1Tx− : P

{
qnom
− ∈ [0,W ] :

(
qnom

+ , qnom
− + y

)
is a feasible

load vector ∀ y ∈ [0, x−] ∀ qnom
+ ∈ [−I − x+, 0]

}
≥ p

}
.

This emphasizes the importance of computing the probability of load vectors to
be feasible.

This thesis focuses on problems with uncertain loads for which historical data are
available leading to probabilistic constraints. This means that only the exit loads
are considered random. The loads at the injection points are market driven and
hence can not be approximated by a distribution. To avoid a robust consideration
of the entry loads the networks in this thesis contain exactly one entry node.
This singularity often appears in distribution networks. Let ξ be a random vector
representing the exit loads, then the aim is to determine the probability

P{ω ∈ Ω: ξ (ω) is a feasible exit load vector}

of feasible exit load vectors. This question was already addressed in [57], but
there only networks with at most one fundamental cycle were treated. As in [57], a
reparametrization technique called spheric-radial decomposition, cf. [51], is used to
tackle this probability. To be able to treat also networks with several fundamental
cycles that are not edge-disjoint, Gröbner bases ([2, 31, 32]) are utilized to solve
the polynomial systems occurring in the course of spheric-radial decomposition.

There already exist works on using Gröbner bases, nonparametric and paramet-
ric, in the load flow problem for electrical networks, see [47, 85, 86, 89]. However,
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the approaches outlined there all have the same limitations: they can not deal
with networks of practical size because the computations become too complex and
consume a lot of computational resources. In the same way, even though Gröb-
ner bases enable to tackle networks with several fundamental cycles that are not
edge-disjoint, the method is limited to a small number of those fundamental cycles.

Parametric optimization problems arising in model predictive control are of high
interest. Predictive model control solves optimal control problems by optimizing
the current time step while keeping future time steps into account. Then the
solution of the first time step is implemented and the problem is solved again for
the next time step. The optimization problem reads as follows [45]:

min
x
f(x, u) s.t. gi(x, u) ≤ 0 for i = 1, . . . , t, (1.1)

where f, g1, . . . , gt ∈ k[u1, . . . , um][x1, . . . , xn]. Here, the function f is to be mini-
mized with respect to the decision variable x for any given value of the parameter
u. By [21] (Karush-Kuhn-Tucker optimality conditions) any minimum of this op-
timization problem is a solution of

∇xf(x, u) +
t∑
i=1

λi∇xgi(x, u) = 0 (1.2)

λigi(x, u) = 0 ∀ i = 1, . . . , t (1.3)
λi ≥ 0 ∀ i = 1, . . . , t (1.4)

gi(x, u) ≤ 0 ∀ i = 1, . . . , t. (1.5)

Equations (1.2) and (1.3) build a polynomial equation system with as many inde-
terminates as equations and it can be solved using Gröbner basis techniques.

To solve problem (1.1) one has to solve the polynomial equation system (1.2),
(1.3), discard all solutions that are infeasible due to (1.4) and (1.5) and then search
for the solution among the remaining solutions with minimal value under evalua-
tion of f . The aim is to handle as much of the computational effort as possible
before the parameter u is fixed. In optimization problems concerning gas networks
this can be done by solving the feasibility problem of loads parametrically using
comprehensive Gröbner systems.

This thesis is organized as follows. The first part is devoted to introductions on
topics that are important for the research presented in this thesis. Chapter 2
deals with algebraic fundamentals needed to solve systems of polynomial equa-
tions. In this chapter, basis definitions are introduced as well as Gröbner bases
and their applications. The chapter concludes with a short treatment of com-
prehensive Gröbner systems. Chapter 3 gives a very brief introduction to graphs
and digraphs. In Chapter 4 the modeling of gas networks is outlined. First, the
physical properties of gas and the gas flow along a single pipe are discussed. After
that the modeling is extended to entire networks. In these preliminaries no proofs
are contained in order not to blow up the length of this thesis.
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In the main part of this thesis new research results are presented. In Chap-
ter 5 the feasibility of loads is characterized. An algorithm to validate feasibility
of a given load using Gröbner bases is stated. Moreover, some rules for possible
flow directions along the pipes are given and an upper bound for the number of
possible flow directions is deduced. Last, a method for finding redundant pressure
bounds is given. In Chapter 6 the probability of exit loads to be feasible is ex-
amined. First, the theory is given and an algorithm to compute the probability
involving Gröbner basis techniques in the course of spheric-radial decomposition is
introduced. Afterwards, some numerical results are presented. The part concludes
with a parametric consideration of the feasibility problem.

The appendix contains infeasible flow directions of some examples occurring in
the thesis and data of some networks considered.

Parts of this thesis have been submitted for publication, see [58].
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Preliminaries



Chapter 2

Solving Systems of Polynomial
Equations

In the main part of this thesis one of the crucial tasks will be to find all solutions of
systems of polynomial equations. This chapter will provide the method used and
its algebraic background. First, in Section 2.1 terms such as polynomial, ideal, and
variety are introduced. Gröbner bases will come into play in Section 2.2. Moreover,
the way how Gröbner bases can be used to solve systems of polynomial equations
is discussed there as well as some special settings where Gröbner bases exhibit an
especially simple form, called Shape basis. In Section 2.3 comprehensive Gröbner
systems are defined. They can be seen as parametric Gröbner bases for ideals
where the polynomials depend not only on indeterminates but also on parameters.

Unless otherwise stated the content of this chapter can be found in [2, 31, 32].
These books are recommendable introductions into the field of polynomial algebra.

Although in the rest of this thesis vectors are always column vectors, in this
chapter they are dealt with as rows for convenience and to simplify notation.

2.1 Introduction to Polynomials, Varieties, and
Ideals

In this section the principal terms polynomial, variety, ideal, and radical ideal are
introduced. Moreover, some of their properties and their interdependencies are
explained.

Let k denote a field. In this thesis, k is always Q, R or C.
A monomial in x1, . . . , xn is a product of the form xα1

1 · · · xαn
n with α1, . . . , αn ∈

Z≥0. The total degree of this monomial is the sum totaldeg (xα1
1 · · ·xαn

n ) := α1 +
· · · + αn. With α = (α1, . . . , αn) the notation of a monomial can be simplified to
xα = xα1

1 · · ·xαn
n .

A polynomial f in x1, . . . , xn with coefficients in the field k is a finite linear

7
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combination of monomials written

f =
∑
α

cαx
α, cα ∈ k.

The set of all polynomials over k is denoted k[x1, . . . , xn]. It is easily verified that
k[x1, . . . , xn] is a commutative ring.

A field is called algebraically closed if every nonconstant polynomial in k[x]
has a root in k. Hence, C is algebraically closed whereas R is not.

Let f be a polynomial as given in the above definition. Then cα is called the
coefficient of the monomial xα and cαxα is called term of f . The total degree of f
is deg f := max {totaldeg (xα) : cα 6= 0}.

The set kn := {(a1, . . . , an) : a1, . . . , an ∈ k} denotes the n-dimensional affine
space over k. Each polynomial f = ∑

α cαx
α ∈ k[x1, . . . , xn] determines a function

f : kn → k defined (b1, . . . , bn) 7→ f (b1, . . . , bn) = ∑
α cαb

α, known as evaluation of
f on b. This is a common way to connect algebra and geometry.

Given some polynomials f1, . . . , fs ∈ k[x1, . . . , xn], the purpose of this chapter is
to determine the points a in the affine space kn for which f1(a) = 0, . . . , fs(a) =
0. The set of all these points is called affine variety defined by the polynomials
f1, . . . , fs ∈ k[x1, . . . , xn],

V (f1, . . . , fs) := {(a1, . . . , an) ∈ kn : fi (a1, . . . , an) = 0 for all i = 1, . . . , s} .

A subset I ⊆ k[x1, . . . , xn] is an ideal if 0 ∈ I, if f + g ∈ I for f, g ∈ I, and if
hf ∈ I for f ∈ I and h ∈ k[x1, . . . , xn].

Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials. The ideal generated by f1, . . . , fs
is

〈f1, . . . , fs〉 :=
{

s∑
i=1

hifi : h1, . . . , hs ∈ k[x1, . . . , xn]
}
.

Indeed, for f1, . . . , fs ∈ k[x1, . . . , xn], 〈f1, . . . , fs〉 is an ideal in k[x1, . . . , xn] and
the polynomials f1, . . . , fs build a basis for this ideal.

For an affine variety V ⊆ kn the set

I (V) := {f ∈ k[x1, . . . , xn] : f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V}

is an ideal, called the ideal of V . If f1, . . . , fs ∈ k[x1, . . . , xn] are polynomials,
then 〈f1, . . . , fs〉 ⊆ I (V (f1, . . . , fs)). The following small example shows that
equality need not to occur. Consider the ideal I = 〈x2, y2〉 ⊆ k[x, y]. Then
V (x2, y2) = {(0, 0)}, i.e., x, y ∈ I (V (x2, y2)), but x, y /∈ I.

Now, let I ⊆ k[x1, . . . , xn] be an ideal. Then the set

V (I) := {(a1, . . . , an) ∈ kn : f (a1, . . . , an) = 0 for all f ∈ I}

is an affine variety. It is easily seen that V (I) = V (f1, . . . , fs) if the polynomials
f1, . . . , fs generate the ideal I. This leads to the following proposition.
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Proposition 2.1. Let f1, . . . , fs and g1, . . . , gt be polynomials in k[x1, . . . , xn] that
generate the same ideal I. Then V (f1, . . . , fs) = V (g1, . . . , gt).

Hence, when solving a system of polynomials f1 = 0, . . . , fs = 0, the idea is
to find another basis g1, . . . , gt for the ideal 〈f1, . . . , fs〉 such that the system of
polynomials g1 = 0, . . . , gt = 0 is easier to solve. Remember that linear equations
are polynomial equations. When solving a system of linear equations, Gaussian
elimination is utilized to transfer the system into row reduced echelon form. The
equations of the “new” system form a basis of the ideal generated by the equations
of the original system, but are much easier to solve. The question under consider-
ation now is, is there a way to perform such transformations on general systems
of polynomial equations and not just on linear systems? The answer is yes as will
be seen in Section 2.2 about Gröbner bases.

If an ideal I in k[x1, . . . , xn] contains the constant polynomial 1, and hence
I = k[x1, . . . , xn], then the variety V (I) is empty. If k is algebraically closed,
equivalency holds as the next theorem states.

Theorem 2.2 (Weak Nullstellensatz). Let k be an algebraically closed field and
I an ideal in k[x1, . . . , xn]. If V (I) = ∅, then I = k[x1, . . . , xn].

To see why the Weak Nullstellensatz does not hold for arbitrary fields consider
the ideal I = 〈x2 + 1〉 in R[x]. Then V (I) = ∅ although 1 /∈ I.

Since V (I (V)) = V for all affine varieties V ⊆ kn, the map

I : affine varieties→ ideals

is one-to-one. On the contrary, it can happen that two distinct ideals define the
same affine variety. For instance, 0 is the only root of the polynomials x and x2,
no matter which field is considered. Thus V (〈x〉) = V (〈x2〉). It follows that the
map

V : ideals→ affine varieties

is not one-to-one.
The main reason why distinct ideals can define the same affine variety is that

a polynomial f and any power fm for an arbitrary integer m ≥ 1 have exactly
the same roots: Let f, f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials and m ≥ 1 an
integer. If fm ∈ 〈f1, . . . , fs〉, then f ∈ I (V (〈f1, . . . , fs〉)). Thus, if in addi-
tion f /∈ 〈f1, . . . , fs〉, then 〈f1, . . . , fs〉 and 〈f1, . . . , fs, f〉 are distinct ideals with
V (〈f1, . . . , fs〉) = V (〈f1, . . . , fs, f〉).

The assertion of the following theorem is, that if the underlying field is alge-
braically closed, then this is the only reason why this can happen.

Theorem 2.3 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field
and f, f1, . . . , fs ∈ k[x1, . . . , xn] polynomials. If f ∈ I (V (f1, . . . , fs)), then there
exists an integer m ≥ 1 such that fm ∈ 〈f1, . . . , fs〉.
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This motivates the definition of radical ideals. A polynomial ideal I is called
radical if f ∈ I whenever fm ∈ I for some integer m ≥ 1.

As an example, let V be an affine variety. Then the ideal I (V) of V is radical.
Let I be an ideal in k[x1, . . . , xn]. Then the radical of I is the set

√
I := {f : fm ∈ I for some m ∈ Z,m ≥ 1} .

It follows that an ideal I is radical if and only if I =
√
I holds. Moreover,

√
I

is a radical ideal in k[x1, . . . , xn] with I ⊆
√
I.

With this notation, Hilbert’s Nullstellensatz 2.3 can be reformulated.

Theorem 2.4 (Strong Nullstellensatz). Let k be an algebraically closed field and
I an ideal in k[x1, . . . , xn]. Then I (V (I)) =

√
I.

This yields that I (V (I)) = I if and only if I is radical. Assuming that k is
an algebraically closed field, this implies that the maps

I : affine varieties→ radical ideals

and
V : radical ideals→ affine varieties

are inverses of each other and thus bijections.

2.2 Gröbner Bases and Applications
This section is devoted to the bases of an ideal that simplify the underlying system
of polynomial equations, called Gröbner bases. Gröbner bases were introduced in
1965 by Bruno Buchberger in his dissertation [22] and received their name in 1976
in Buchberger’s paper [23]. Whilst Buchberger devoted the bases to the supervisor
of his dissertation, Wolfgang Gröbner, the algorithm to compute them is named
after him. The concept of Gröbner bases was already introduced in [62] in 1964
by Hironaka. However, Hironaka’s proof of existence was not constructive and he
did not gave an algorithm to compute them.

To compute a Gröbner basis an algorithm to divide a polynomial by other poly-
nomials is needed. This algorithm is given in Subsection 2.2.2. The definition of
Gröbner bases is introduced in Subsection 2.2.4 and some nice properties of Gröb-
ner bases are listed in Subsubsection 2.2.4.2. For instance, Gröbner bases enable
to decide if a given polynomial lies in a given ideal or not. In Subsubsection 2.2.4.3
an algorithm to compute Gröbner bases is discussed.

Subsection 2.2.5 shows how Gröbner bases can be used to solve systems of
polynomial equations and in Subsection 2.2.6 the Shape Lemma, a lemma stating
under which conditions the reduced Gröbner basis w.r.t. the lexicographic ordering
has an even easier to solve structure, is introduced.
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2.2.1 Monomial Orderings
For the following considerations, the monomials of a polynomial must be ordered
in some way.

Since every monomial xα1
1 · · ·xαn

n can be written in the form xα with α ∈ Zn≥0
and every α ∈ Zn≥0 yields the monomial xα in k[x1, . . . , xn], there is a one-to-one
correspondence between the monomials in k[x1, . . . , xn] and Zn≥0. With an ordering
� on Zn≥0 given, the monomials can be ordered according to the following rule:

α � β ⇐⇒ xα � xβ.

These orderings have to meet some requirements.

Definition 2.5 (Monomial Ordering). A monomial ordering � on k[x1, . . . , xn] is
a relation � on Zn≥0 or equivalent a relation on the set of monomials xα, α ∈ Zn≥0,
that fulfills the following three conditions:

(i) � is a total ordering on Zn≥0.

(ii) If α � β and γ ∈ Zn≥0, then α + γ � β + γ.

(iii) � is a well-ordering on Zn≥0, i.e., every nonempty subset of Zn≥0 has a smallest
element under �.

Let � be a relation on the set of monomials. Then xα � xβ if and only if
xα � xβ and xα 6= xβ.

Lemma 2.6. An ordering � on Zn≥0 is a well-ordering if and only if every strictly
decreasing sequence

α1 � α2 � α3 � · · ·

in Zn≥0 terminates.

It is easily seen that the following three relations are monomial orderings. All
of these monomial orderings have their own advantages and disadvantages and the
choice of the monomial ordering should be considered carefully. Later, this will be
discussed in more detail.

Definition 2.7 (Lexicographic Ordering). Let α, β ∈ Zn≥0. Then α �lex β if the
first nonzero entry of α− β is positive. Furthermore, xα �lex xβ if α �lex β.

Definition 2.8 (Graded Lexicographic Ordering). Let α, β ∈ Zn≥0. Then α �grlex
β if

totaldeg (xα) > totaldeg
(
xβ
)

or
totaldeg (xα) = totaldeg

(
xβ
)

and α �lex β.
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Definition 2.9 (Graded Reverse Lexicographic Ordering). Let α, β ∈ Zn≥0. Then
α �grevlex β if

totaldeg (xα) > totaldeg
(
xβ
)

or

totaldeg (xα) = totaldeg
(
xβ
)

and the last nonzero entry of α− β is negative.

Let f = ∑
α cαx

α 6= 0 be a polynomial in k[x1, . . . , xn] and � a monomial or-
dering. Then multideg (f) := max

{
α ∈ Zn≥0 : cα 6= 0

}
denotes the multidegree of

f , lc(f) := cmultideg(f) ∈ k denotes the leading coefficient of f , lm(f) := xmultideg(f)

denotes the leading monomial of f , and lt(f) := lc(f) · lm(f) denotes the leading
term of f .

If f, g 6= 0 are polynomials in k[x1, . . . , xn], it is easily seen that multideg (fg) =
multideg (f) + multideg (g). Furthermore, if f + g 6= 0 then

multideg (f + g) � max {multideg (f) ,multideg (g)} .

If in addition multideg (f) 6= multideg (g), equality occurs.

Let k be a field and I an ideal in the polynomial ring k[x] of polynomials in one
indeterminate. Then I = 〈f〉 for some polynomial f ∈ k[x] with minimal degree.
Moreover, f is uniquely determined up to multiplication by a nonzero constant in
k. A ring with this property is called principal ideal ring.

2.2.2 A Division Algorithm in k[x1, . . . , xn]
In this subsection an algorithm for dividing a polynomial f by polynomials f1, . . . , fs
is discussed.

Algorithm 2.10 (Division Algorithm).

Input: Polynomials f1, . . . , fs, f , monomial ordering �
Output: Polynomials h1, . . . , hs, r such that f = h1f1 + · · ·+ hsfs + r

h1 := 0, . . . , hs := 0, r := 0
p := f
WHILE p 6= 0 DO

i := 1
divisionoccurred := False
WHILE i ≤ s AND divisionoccurred = False DO

IF lt(p) is divisible by lt(fi) THEN
hi := hi + lt(p)/ lt(fi)
p := p− (lt(p)/ lt(fi)) fi
divisionoccurred := True

ELSE
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i := i+ 1
IF divisionoccurred = False THEN

r := r + lt(p)
p := p− lt(p)

RETURN h1, . . . , hs, r

Proposition 2.11. Let � be a monomial ordering on Zn≥0 and F = (f1, . . . , fs) an
ordered s-tuple of polynomials in k[x1, . . . , xn]. Then by applying Algorithm 2.10
every polynomial f ∈ k[x1, . . . , xn] can be written in the form

f = h1f1 + · · ·+ hsfs + r, h1, . . . , hs, r ∈ k[x1, . . . , xn] (2.1)

such that either r is the zero polynomial or r is a linear combination in k of
monomials, none of which is divisible by any of lt(f1), . . . , lt(fs). The polynomial
r is called the remainder on division of f by F , denoted rF (f). Moreover, if
hifi 6= 0, then multideg (f) � multideg (hifi).

Consider the polynomials f1 = xy + 1, f2 = y2 − 1, f = xy2 − x ∈ k[x, y]
equipped with the lexicographic ordering. If Division Algorithm 2.10 is used to
divide f by the 2-tuple F = (f1, f2), then the representation

xy2 − x = y (xy + 1) + 0
(
y2 − 1

)
+ (−x− y)

is obtained. If, on the contrary, f is divided by the 2-tuple F = (f2, f1), then the
result is

xy2 − x = x
(
y2 − 1

)
+ 0 (xy + 1) + 0.

This example shows that h1, . . . , hs and r depend on the order of f1, . . . , fs.
Furthermore, a polynomial f can be an element of the ideal generated by f1, . . . , fs
although the remainder on division of f by f1, . . . , fs is not equal to zero. Hence,
the condition r = 0 is sufficient for f ∈ 〈f1, . . . , fs〉, but not necessary.

Thus, a desirable property of a basis of an ideal is that the remainder on
division by this basis is independent of the order of the generators. Then r = 0 is
equivalent to f being in this ideal. In Subsection 2.2.4 a basis will be introduced
that fulfills this property.

2.2.3 Dickson’s Lemma
Definition 2.12 (Monomial Ideal). An ideal I ⊆ k[x1, . . . , xn] is called a mono-
mial ideal if there exists a, possibly infinite, subset A ⊆ Zn≥0 such that I consists
of all finite sums of the form∑

α∈A
hαx

α ∈ k[x1, . . . , xn], hα ∈ k[x1, . . . , xn] for all α ∈ A,

denoted I = 〈xα : α ∈ A〉.
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Lemma 2.13. Let I = 〈xα : α ∈ A〉 be a monomial ideal. Then a monomial xβ
is an element of I if and only if xβ is divisible by some xα with α ∈ A.

The monomial xβ is divisible by xα if and only if xβ = xαxγ for γ ∈ Zn≥0 which
is equivalent to β = α+ γ. Thus the set of all monomials that are divisible by xα
is given by

α + Zn≥0 :=
{
α + γ : γ ∈ Zn≥0

}
.

Let I be a monomial ideal and f ∈ k[x1, . . . , xn] a polynomial. Then f ∈ I if
and only if each term of f lies in I. And this is the case if and only if f is a linear
combination of monomials in I with coefficients in k.

As a consequence, two monomial ideals coincide if and only if they contain
the same monomials. Hence, a monomial ideal is uniquely determined by its
monomials.

The next proposition states that every monomial ideal has a finite generating
set.

Proposition 2.14 (Dickson’s Lemma). Let I = 〈xα : α ∈ A〉 be a monomial ideal.
Then I can be represented in the form

I = 〈xα1 , . . . , xαs〉 , α1, . . . , αs ∈ A.

Hence, I has a finite basis.

2.2.4 Gröbner Bases
2.2.4.1 Definition of Gröbner Bases

Let I 6= {0} be an ideal in k[x1, . . . , xn]. Then

lt(I) := {cxα : ∃ f ∈ I with lt(f) = cxα}

is the set of leading terms of elements of I and 〈lt(I)〉 is the ideal generated by
the elements of lt(I).

If I = 〈f1, . . . , fs〉, then 〈lt(f1), . . . , lt(fs)〉 ⊆ 〈lt(I)〉, because {lt(f1), . . . , lt(fs)}
⊆ lt(I). But 〈lt(I)〉 can be strictly larger, as the following example shows.

Consider the polynomial ring k[x, y] equipped with the graded lexicographic
ordering and set f1 = x3 − 2xy and f2 = x2y − 2y2 + x. Then x2 = −yf1 + xf2 ∈
I := 〈f1, f2〉 and hence x2 = lt(x2) ∈ 〈lt(I)〉. However, x2 is neither divisible by
lt(f1) = x3 nor by lt(f2) = x2y, thus x2 /∈ 〈lt(f1), lt(f2)〉 by Lemma 2.13.

Lemma 2.15. Let I ⊆ k[x1, . . . , xn] be an ideal. Then it holds:

(i) 〈lt(I)〉 is a monomial ideal.

(ii) There exist g1, . . . , gt ∈ I such that 〈lt(I)〉 = 〈lt(g1), . . . , lt(gt)〉.
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Theorem 2.16 (Hilbert Basis Theorem). For every ideal I ⊆ k[x1, . . . , xn] there
are finitely many g1, . . . , gt ∈ I, such that I = 〈g1, . . . , gt〉. Hence, every ideal has
a finite generating set.

Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials and I the ideal generated by
these polynomials. Denote F = (f1, . . . , fs) and consider a polynomial f ∈ I.
Subsection 2.2.2 contains an example that shows that the remainder rF (f) need not
to be zero in that case (however, rF (f) = 0 implies f ∈ I). From representation
(2.1) it follows that rF (f) ∈ I. Moreover, its terms are not divisible by the leading
terms of the elements of F because otherwise the particular term would not belong
to the remainder on division of f by F . To ensure that the remainder on division of
all elements of I by the generators of I are zero, the leading terms of all elements
of I have to be divisible by the leading term of one of the generators of I. This
motivates the definition of Gröbner bases.

Definition 2.17 (Gröbner Basis). A finite subset G = {g1, . . . , gt} of an ideal I
is called Gröbner basis if

〈lt(g1), . . . , lt(gt)〉 = 〈lt(I)〉

holds.

Lemma 2.13 and the comments thereafter yield this equivalent formulation of
the definition of Gröbner bases: {g1, . . . , gt} ⊆ I is a Gröbner basis of I if and
only if the leading term of every element in I is divisible by any lt(g1), . . . , lt(gt).

Corollary 2.18. Every ideal I 6= {0} in k[x1, . . . , xn] has a Gröbner basis. More-
over, every Gröbner basis of an ideal I is a basis of I, i.e., I is generated by the
elements of its Gröbner basis.

2.2.4.2 Properties of Gröbner Bases

Proposition 2.19. Let I be an ideal in k[x1, . . . , xn], G = {g1, . . . , gt} a Gröb-
ner basis of I and f ∈ k[x1, . . . , xn] a polynomial. Then there exists a uniquely
determined r ∈ k[x1, . . . , xn] such that the following holds:

(i) No term of r is divisible by any of lt(g1), . . . , lt(gt).

(ii) There exists g ∈ I such that f = g + r.

r is the remainder on division of f by G. Moreover, r does not depend on the
order of the gi in G.

Corollary 2.20. Let I be an ideal in k[x1, . . . , xn], G = {g1, . . . , gt} a Gröbner
basis of I and f ∈ k[x1, . . . , xn] a polynomial. Then f ∈ I if and only if the
remainder on division of f by G is zero.

Corollary 2.20 gives an easy to check criterion to decide whether a given poly-
nomial lies in an ideal or not.
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Definition 2.21 (S–Polynomial). Let f, g ∈ k[x1, . . . , xn] \ {0} be polynomials.

(i) Set multideg (f) := α and multideg (g) := β. If γ = (γ1, . . . , γn) where
γi := max {αi, βi} for all i = 1, . . . , n, then xγ is called the least common
multiple of lm(f) and lm(g) denoted lcm(lm(f), lm(g)).

(ii) The S–polynomial of f and g is

S(f, g) := xγ

lt(f)f −
xγ

lt(g)g,

where xγ = lcm(lm(f), lm(g)).

The following criterion makes a crucial contribution to the algorithm for the
computation of a Gröbner basis.

Theorem 2.22 (Buchberger’s Criterion). Let I be a polynomial ideal. Then a
basis G = {g1, . . . , gt} is a Gröbner basis of I if and only if the remainder on
division of S(gi, gj) by G equals zero for all pairs i, j ∈ {1, . . . , t} with i 6= j.

2.2.4.3 Buchberger’s Algorithm

Now, every component needed to formulate an algorithm for the computation of
a Gröbner basis is available.

Algorithm 2.23 (Buchberger’s Algorithm).

Input: F = {f1, . . . , fs} with f1, . . . , fs ∈ k[x1, . . . , xn]
Output: Gröbner basis G of I = 〈f1, . . . , fs〉

G := F
REPEAT

G ′ := G
FOR each pair {p, q}, p 6= q, in G ′ DO

S := rG′(S(p, q))
IF S 6= 0 THEN

G := G ∪ {S}
UNTIL G = G ′
RETURN G

Proposition 2.24. Let I = 〈f1, . . . , fs〉 6= {0} be a polynomial ideal. Then Buch-
berger’s Algorithm 2.23 computes in finitely many steps a Gröbner basis G of I
with {f1, . . . , fs} ⊆ G.

It has to be mentioned that this algorithm is very rudimentary. An overview
on how Buchberger’s Algorithm can be improved can be found in [31, §9]. From
the references therein, [49] and [55] have to be pointed out separately.
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It can be shown that the number of computations needed in the course of Buch-
berger’s Agorithm 2.23 is minimal if the graded reverse lexicographic ordering is
used. Moreover, in this case the coefficients of the polynomials in the Gröbner basis
are smaller than with other monomial orderings. However, the next subsubsection
shows that the lexicographic ordering brings another benefit.

Lemma 2.25. Let G be a Gröbner basis of the polynomial ideal I and p ∈ G a
polynomial such that lt(p) ∈ 〈lt(G \ {p})〉. Then G \ {p} is a Gröbner basis of I
as well.

Definition 2.26 (Minimal Gröbner Basis). A minimal Gröbner basis of a poly-
nomial ideal I is a Gröbner basis G of I such that

(i) lc(p) = 1 for all p ∈ G.

(ii) lt(p) /∈ 〈lt(G \ {p})〉 for all p ∈ G.

Definition 2.27 (Reduced Gröbner Basis). A reduced Gröbner basis of a poly-
nomial ideal I is a Gröbner basis G of I such that

(i) lc(p) = 1 for all p ∈ G.

(ii) For all p ∈ G it holds that no monomial of p lies in 〈lt(G \ {p})〉.

Theorem 2.28. Let I 6= {0} be a polynomial ideal. Then I has a uniquely
determined reduced Gröbner basis.

Uniqueness of the reduced Gröbner basis gives rise to the following equivalence:
Two nontrivial ideals are the same if and only if their reduced Gröbner bases are
the same.

The reduced Gröbner basis of an ideal can be computed from a Gröbner basis
using the following algorithm.

Algorithm 2.29.

Input: Gröbner basis G of a polynomial ideal I
Output: Reduced Gröbner basis of I

FOR each g ∈ G DO
g := 1/ lc(g) · g

FOR each g ∈ G DO
IF lt(g) ∈ 〈lt(G \ {g})〉 THEN

G := G \ {g}
FOR each g ∈ G DO

g := rG\{g}(g)
RETURN G
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2.2.5 Solving Systems of Polynomial Equations Using Gröb-
ner Bases

Given a system of polynomial equations f1 = 0, . . . , fs = 0 with f1, . . . , fs ∈
k[x1, . . . , xn], it was already pointed out that the varieties V (f1, . . . , fs) and
V (〈f1, . . . , fs〉) coincide. Aiming to find solutions of the system one would try
to find consequences, i.e. multiplication by a polynomial in k[x1, . . . , xn] and ad-
dition of two equations, of the equations f1 = 0, . . . , fs = 0 that eliminate the
indeterminates one after the other, solve the “last” equation in only one indeter-
minate, and start a back-substitution process to find all solutions. For all the
consequences p = 0 of the equations f1 = 0, . . . , fs = 0, the polynomial p is an
element of the ideal 〈f1, . . . , fs〉. This gives rise to the following definition.

Definition 2.30. Let I = 〈f1, . . . , fs〉 be an ideal in k[x1, . . . , xn]. Then the l-th
elimination ideal Il ⊆ k[xl+1, . . . , xn] is the ideal defined

Il := I ∩ k[xl+1, . . . , xn].

Given some polynomials f1, . . . , fs ∈ k[x1, . . . , xn], the l-th elimination ideal
Il consists of all consequences of the equations of the system f1 = 0, . . . , fs = 0
which eliminate the variables x1, . . . , xl. Now, the task is to find a basis for these
ideals.

Theorem 2.31 (Elimination Theorem). Let G be a Gröbner basis of an ideal
I ⊆ k[x1, . . . , xn] w.r.t. the lexicographic ordering with x1 � . . . � xn. Then
Gl := G ∩ k[xl+1, . . . , xn] is a Gröbner basis of the l-th elimination ideal Il for
every l = 1, . . . , n− 1.

Elimination Theorem 2.31 states that g1 = 0, . . . , gt = 0, where G = {g1, . . . , gt}
is a Gröbner basis of the ideal I = 〈f1, . . . , fs〉 w.r.t. the lexicographic ordering
with x1 � . . . � xn, is a representation of the system f1 = 0, . . . , fs = 0 that
eliminates the indeterminate x1 first, x2 second, and so on. Moreover, if Gn−1 is
nonempty, which is the case if the affine variety of I is a finite set, then Gn−1 = {g}
for some g ∈ k[xn] because k[xn] is a principal ideal ring. Since every polynomial
that eliminates x1, . . . , xn−1 lies in In−1 and thus is a multiple of g, g is the best
way to eliminate x1, . . . , xn−1.

For l = 1, . . . , n− 1, a solution (al+1, . . . , an) ∈ V (Il) is called partial solution
of the original system of equations. If for some fixed l ∈ {1, . . . , n− 1} such a
partial solution (al+1, . . . , an) ∈ V (Il) is known, al ∈ k with (al, al+1, . . . , an) ∈
V (Il−1) has to be found. To do so, assume Il−1 = 〈g1, . . . , gt〉. Then (al+1, . . . , an)
is inserted into these polynomials and the system

g1 (xl, al+1, . . . , an) = 0, . . . , gt (xl, al+1, . . . , an) = 0

is obtained. This is a system in only one indeterminate, namely xl. But, these
equations need not to have a common zero al ∈ k as the following small example
shows.
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Consider the ideal I = 〈xz − 1, y − z〉 ∈ C[x, y, z]. These polynomials form
a Gröbner basis of the ideal and thus Elimination Theorem 2.31 can be applied.
The equation y − z = 0 implies that (a, a) lies in V (I1) for all a ∈ C. However,
the partial solution (0, 0) yields the equation 0 − 1 = 0. Hence, (0, 0) cannot be
extended to a solution of the original system.

The next theorem makes it possible to decide in advance whether a partial
solution can be extended or not.

Theorem 2.32 (Extension Theorem). Let k be an algebraically closed field. Let
I = 〈f1, . . . , fs〉 be an ideal in k[x1, . . . , xn] and I1 the first elimination ideal of I.
For every i = 1, . . . , s let fi be represented in the form

fi = gi (x2, . . . , xn)xNi
1 + terms in which x1 has degree < Ni,

where Ni ≥ 0 and 0 6= gi ∈ k[x2, . . . , xn]. Assume that a partial solution (a2, . . . , an)
∈ V (I1) is given. If (a2, . . . , an) /∈ V (g1, . . . , gs), then there exists a1 ∈ k such
that (a1, a2, . . . , an) ∈ V (I).

Two remarks are due. First, even though Extension Theorem 2.32 is formulated
only in the case a partial solution of the first elimination ideal has to be extended
to a full solution of the original system, it can be used to extend partial solutions
of an arbitrary elimination ideal. To see why, note that Il is the first elimination
ideal of Il−1 for each l = 1, . . . , n− 1.

Second, the condition that k is an algebraically closed field is necessary. Con-
sider the ideal 〈x2 − y, y − z〉 ∈ R[x, y, z]. These polynomials form a Gröbner
basis of the ideal. The equation y − z = 0 implies that (a, a) lies in V (I1) for all
a ∈ R. The constant g1 (y, z) = 1 does not vanish for any of the partial solutions,
i.e., (a, a) /∈ V (g1) for all a ∈ R. Yet, the partial solution (a, a) yields the equa-
tion x2 − a = 0, that has no solution in R whenever a < 0. Hence, in this case
(a, a) cannot be extended to a solution of the original system.

Corollary 2.33. Let k be an algebraically closed field, I = 〈f1, . . . , fs〉 an ideal
in k[x1, . . . , xn], and I1 the first elimination ideal of I. Suppose, there is some
i ∈ {1, . . . , s} such that fi can be represented in the form

fi = αxN1 + terms in which x1 has degree < N,

where N ≥ 0 and 0 6= α ∈ k. Assume that a partial solution (a2, . . . , an) ∈ V (I1)
is given. Then there exists a1 ∈ k such that (a1, a2, . . . , an) ∈ V (I).

The preceding discussion indicates that Gröbner bases w.r.t. the lexicographic
ordering reduce the problem of solving a system of multivariate polynomials to
solving univariate polynomials. The roots of a univariate polynomial whose degree
is not greater than 5 can be expressed as functions in the coefficients that use
only the operations addition, subtraction, multiplication, and root extraction. For
polynomials with higher degree, numerical methods have to be used. In general
this could be Newton’s methods, or, more suitable for polynomials, Laguerre’s
method (see, e.g., [1, 25]).
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2.2.6 Shape Lemma
In some special cases the reduced Gröbner bases reveal an even better structure.
For the formulation of these cases the concept of a quotient of a polynomial ring
modulo an ideal has to be introduced. Moreover, some results concerning the Krull
dimension of a ring are needed.

2.2.6.1 Quotient of a Polynomial Ring Modulo an Ideal

Let I be an ideal in k[x1, . . . , xn] and f, g ∈ k[x1, . . . , xn] polynomials. Then f
and g are congruent modulo I, denoted

f ≡ g mod I,

if f−g ∈ I. Congruency modulo I is an equivalence relation on k[x1, . . . , xn] with
equivalence classes

[f ] := {g ∈ k[x1, . . . , xn] : g ≡ f mod I}
=f + I = {f + h : h ∈ I} .

The quotient of k[x1, . . . , xn] modulo I is the set of equivalence classes

k[x1, . . . , xn]/I := {[f ] : f ∈ k[x1, . . . , xn]} .

With addition [f ] + [g] := [f + g] and multiplication [f ] · [g] := [f · g] for all
f, g ∈ k[x1, . . . , xn], the quotient k[x1, . . . , xn]/I is a commutative ring.

2.2.6.2 Krull Dimension

The results on the Krull dimension presented in this subsubsection can be found
in general literature about commutative algebra such as [41,48,71,83].

An ideal I in a ring R is called prime ideal if p ∈ I or q ∈ I for all p, q ∈ R
with pq ∈ I.

Given a ring R, the Krull dimension dimK R is the supremum of the lengths r of
all chains of prime ideals P0 ⊂ P1 ⊂ . . . ⊂ Pr in R. It holds dimK k[x1, . . . , xn] = n.

Let V ⊆ kn be an affine variety and I an ideal in k[x1, . . . , xn] such that
V = V (I). Then the dimension dimV of V is dimK k[x1, . . . , xn]/I. This definition
is independent of the choice of the ideal with V = V (I).

The following lemma is proven in [41, Corollary 9.1].

Lemma 2.34. Let I be an ideal in k[x1, . . . , xn]. Then

|V (I)| <∞ ⇐⇒ dimV = 0

is valid.

This is the reason why an ideal I with |V (I)| <∞ is called zero-dimensional.
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2.2.6.3 Formulation of the Shape Lemma

The Shape Lemma was first proven by Gianni et al. in [52,53].

Lemma 2.35 (Shape Lemma). Let k be a field and I a zero-dimensional radical
ideal in k[x1, . . . , xn] such that all d complex roots of I have distinct xn-coordinates.
Then the reduced Gröbner basis G w.r.t. the lexicographic ordering of I is of the
shape

G = {x1 − q1 (xn) , x2 − q2 (xn) , . . . , xn−1 − qn−1 (xn) , r (xn)}

where r is a polynomial of degree d and qi is a polynomial of degree less than d for
all i = 1, . . . , n− 1.

It has already been pointed out that the computation of a Gröbner basis w.r.t.
the lexicographic ordering reduces the problem of solving a system of multivari-
ate polynomials to solving univariate polynomials. However, in the setting of the
Shape Lemma 2.35, the reduced Gröbner basis w.r.t. the lexicographic ordering
can do even better because the accumulated errors of the approximately deter-
mined solutions are smaller. In general, if the components of the solutions are
determined in the order xn, . . . , x1, then the approximation errors of the compo-
nents xn, . . . , xl−1 affect the component xl so that the x1 component depends on
the approximation errors of all other components of the solution.

In contrast, if the conditions of the Shape Lemma 2.35 are met, then the
components x1, . . . , xn−1 depend only on the approximation error of component
xn, but x1, . . . , xn−1 can be determined independently of each other.

2.3 Comprehensive Gröbner Systems
Another interesting task is to solve systems of polynomials containing some param-
eters. Here, comprehensive Gröbner systems play an important role. For an intro-
duction on comprehensive Gröbner systems the reader is referred to [64,87,104].

In this section the polynomial ring k[u1, . . . , um][x1, . . . , xn], where x1, . . . , xn
are indeterminates and u1, . . . , um are parameters and {u1, . . . , um}∩{x1, . . . , xn} =
∅, is considered. A polynomial f ∈ k[u1, . . . , um][x1, . . . , xn] is a polynomial in
x1, . . . , xn whose coefficients are polynomials in u1, . . . , um. Let k̄ denote the al-
gebraic closure of k. A specialization of k[u1, . . . , um] is a homomorphism

σ : k[u1, . . . , um]→ k̄.

For a ∈ k̄m the specialization induced by a is defined

σa : k[u1, . . . , um]→ k̄, g 7→ g (a) .

A specialization σ of k[u1, . . . , um] can be extended canonically to a specialization
σ̄ : k[u1, . . . , um][x1, . . . , xn] → k̄[x1, . . . , xn] of k[u1, . . . , um][x1, . . . , xn] by apply-
ing σ coefficient-wise. In the following, both specializations will be denoted σ.
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Definition 2.36 (Comprehensive Gröbner System). Let F be a set of polynomials
in k[u1, . . . , um][x1, . . . , xn], A1, . . . , Al ⊆ k̄m algebraically constructible sets such
that ⋃li=1 Ai = k̄m, and G1, . . . ,Gl sets of polynomials in k[u1, . . . , um][x1, . . . , xn].
The finite set G̃ := {(A1,G1) , . . . , (Al,Gl)} is called a comprehensive Gröbner
system for F if σa (Gi) is a Gröbner basis of the ideal 〈σa (F )〉 ⊆ k̄[x1, . . . , xn] for
all a ∈ Ai and i = 1, . . . , n. Each pair (Ai,Gi) is called a branch of G̃.

In this thesis, the algebraically constructible sets Ai are of the form Ai =
V (Ei) \V (Ni) with Ei, Ni ⊆ k[u1, . . . , um]. A pair (Ei, Ni) is called a parametric
constraint. For some further reading on constructible sets see, e.g., [6].

A comprehensive Gröbner system is called disjoint if the sets Ai are pairwise
disjoint. It is called reduced if the sets σa (Gi) are reduced Gröbner bases of
〈σa (F )〉 ⊆ k̄[x1, . . . , xn] for all a ∈ Ai and i = 1, . . . , n.

Comprehensive Gröbner systems often suffer from a large number of branches
what makes it hard to interpret them. The algorithms proposed in [87] and [64]
focus on the computation of comprehensive Gröbner systems with as few branches
as possible.



Chapter 3

Graph Theory

As will be seen later, gas networks can be modeled as (directed) graphs. This chap-
ter deals with basic definitions and facts in graph theory. Complete introductions
into graph theory can be found in [16,17,37,38].

3.1 Graphs

3.1.1 Basic Definitions
A graph is a pair G = (V,A) of two finite sets V = V (G) and A = A(G) such
that V ∩ A = ∅. The elements of V are called nodes, whereas the elements of A
are referred to as edges. An edge a ∈ A uniquely determines a set {u, v} of nodes
u, v ∈ V , written a = {u, v}. The nodes u and v are the end nodes of a. In a
graph an edge whose end nodes coincide is called a loop. Two edges a = {u, v}
and b = {u, v} are said to be parallel. A simple graph is one without loops and
parallel edges.

Consider an edge a = {u, v} in G. Then the edge a is incident to the nodes
u and v, or a and u respectively a and v are incident. The nodes u and v are
adjacent to each other and if u 6= v, they are called neighbors. The set of all
neighbors of a node u is denoted NG(u). Given another edge b = {v, w}, the edges
a and b are adjacent. For a node u ∈ V , the degree deg(u) is the number of edges
incident to u.

A graph G′ = (V ′, A′) is a subgraph of the graph G = (V,A) if V ′ ⊆ V , A′ ⊆ A
and each edge of G′ has the same end nodes in G′ as in G.

A walk is a finite alternating sequence of nodes and edges u1, a1, u2, a2, . . . , an−1,
un with ai = {ui, ui+1} and ai 6= aj for all i, j = 1, . . . , n − 1, i 6= j. A walk is
called open if u1 6= un, otherwise it is closed. An open walk with ui 6= uj for all
i, j = 1, . . . , n, i 6= j, is a path. A cycle C is a closed walk with ui 6= uj for all
i, j = 1, . . . , n, i 6= j, i, j 6= 1, n. Let C+ denote the set of all cycles in G.

A graph G is connected if every pair of nodes in G is connected by a path in G.
Otherwise, G is disconnected. A disconnected graph consists of several connected
subgraphs called components.

23
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A tree T is a connected graph without any cycles. For a tree T it holds
|A(T )| = |V (T )| − 1. Furthermore, for two nodes u, v ∈ V (T ) there always is
a path in T connecting u and v. This path is uniquely determined and denoted
uT v. A tree T is a spanning tree of a graph G = (V,A) if T is a subgraph of G
and V (T ) = V (G). It is easily seen that every connected graph contains at least
one spanning tree. The subgraph T = (V (G), A(G) \ A(T )) of G is the cotree of
T in G.

A fundamental cycle of a connected graph G = (V,A) is a cycle arising by
adding a non-tree edge a ∈ A(T ) to a spanning tree T of G. This uniquely
determined cycle is denoted Ca and the set of all fundamental cycles C = CT . On
the contrary, for a fundamental cycle C ∈ CT let aC ∈ A(T ) denote the edge not
contained in the spanning tree that generates the fundamental cycle C. For an
edge a ∈ A let Ca be the set of all fundamental cycles containing edge a. If C ′ is
a subset of C, then AC′ is the set of all arcs a ∈ A that are arcs of the cycles in
C ′ but not of those in C \ C ′, i.e.,

AC′ := {a ∈ A : a ∈ A(C) ∀ C ∈ C ′, a /∈ A(C) ∀ C ∈ C \ C ′} .

It has to be mentioned that different spanning trees of a connected graph define
different fundamental cycles, but the number of fundamental cycles stays the same,
namely |A| − |V |+ 1.

3.1.2 Depth First Search
The topic of this subsection is the construction of a spanning tree of a connected
graph G = (V,A). A tree-search is a method for this that starts with a subgraph G′
of G that consists of exactly one arbitrary node in V . This node will be the root of
the spanning tree constructed during the tree-search. In every step of this method
an edge in A with its incident nodes is added to G′ such that G′ remains a tree. If
no other edge with this property can be found, G′ is a spanning tree of G since G is
connected. There are several possible orders in which the edges can be added. The
two most known algorithms using this method are breadth-first search and depth-
first search. In this thesis spanning trees are always constructed via depth-first
search (DFS), so this is the only algorithm discussed in this subsection.

Let T be a spanning tree of G constructed with a tree-search algorithm, r ∈ V
the root of T , and u ∈ V a node. Every node in the unique path rT u connecting r
and u in T , including u, is an ancestor of u. An ancestor of u that is not u itself is
a proper ancestor. Conversely, every node that u is an ancestor of is a descendant
of u. The set of all descendants of u is denoted DT (u). If u 6= r, the predecessor
p(u) of u is the immediate proper ancestor of u and the successor of u is the node
whose predecessor is u.

The following algorithm can be found in [17].
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Algorithm 3.1 (DFS-Algorithm).

Input: A connected graph G = (V,A), a root r ∈ V
Output: A spanning tree T of G with root r and a predecessor function p

S := (r)
T := ({r} , ∅)
WHILE S 6= ∅ DO

consider the first node u in S
IF there exists a = {u, v} ∈ A(G) with v /∈ V (T ) DO

V (T ) := V (T ) ∪ {v}
p(v) := u
A(T ) := A(T ) ∪ {a}
add v to the top of S

ELSE DO
remove u from S

RETURN T , p

3.1.3 Matrix Representations
Graphs can be represented by node-edge incidence matrices, or incidence matrices
for short. The node-edge incidence matrix of a graph G = (V,A) is a |V | × |A|
matrix A+ over R defined

ai,j :=

1 if edge aj is incident to node ui,
0 otherwise.

The following three propositions are proven in [37].

Proposition 3.2. If a graph G = (V,A) consists of k components, then rank (A+) =
|V | − k.

This means that, if G is connected, an arbitrary row can be deleted from
A+ without information getting lost. This yields a (|V | − 1) × |A| submatrix A
of A+, called reduced incidence matrix. Then the reference node is the node
corresponding to the row deleted.

Proposition 3.3. Let G = (V,A) be a connected graph and A a reduced incidence
matrix of G. A (|V | − 1)× (|V | − 1) submatrix of A is nonsingular if and only if
there is a spanning tree of G whose edges are exactly the |V |−1 edges corresponding
to the columns of this submatrix.

Corollary 3.4. Every reduced incidence matrix of a tree is nonsingular.

For a given connected graph G and a spanning tree T of G this motivates the
representation

A =
[
AB | AN

]
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where the columns of the (|V | − 1)× (|V | − 1) matrix AB correspond to the edges
of the spanning tree T and thus AB is nonsingular.

The |A| × (|A| − |V |+ 1) matrix B = BT representing the fundamental cycles of
a connected graph G = (V,A) with respect to the spanning tree T is defined

bi,j :=

1 if fundamental cycle Cj contains edge ai,
0 otherwise

and rearranging the rows yields

B =
[
BB
BN

]
=
[

BB
I|A|−|V |+1

]

where the last |A| − |V | + 1 rows correspond to the edges that are not contained
in the spanning tree T of G. This implies rank (B) = |A| − |V |+ 1.

Proposition 3.5. Let G = (V,A) be a connected graph with spanning tree T ,
reduced incidence matrix A and fundamental cycle matrix B. Then

A−1
B AN = BB mod 2.

3.2 Digraphs
A directed graph or digraph is a graph with directions assigned to the edges.
More formally, a digraph is a pair G = (V,A) of two finite sets V and A such that
V ∩ A = ∅. Again, the elements of V are called nodes, but the directed elements
of A are referred to as arcs. An arc a ∈ A uniquely determines an ordered tuple
(u, v) of nodes u, v ∈ V , written a = (u, v). The nodes u and v are the end nodes
of a. More precisely, u is the tail and v the head of a, denoted head(a) and tail(a),
respectively, and a goes from u to v.

A digraph is an orientation of a graph G if it is obtained from G by assigning
directions to the edges of G. An orientation of G is denoted #�

G.
Some of the definitions made for graphs can be adopted to digraphs, others

need slight modifications. In this section only the definitions and statements that
need to be modified are mentioned.

In addition to the degree, each node u ∈ V has an in-degree of ingoing arcs
and an out-degree of outgoing arcs, i.e., degin (u) := |{a : a = (v, u) ∈ A}| and
degout (u) := |{a : a = (u, v) ∈ A}|.

Defining walks, paths and cycles one has to distinguish between directed and
undirected walks, paths, and cycles. A walk is a finite alternating sequence of
nodes and arcs u1, a1, u2, a2, . . . , an−1, un with ai = (ui, ui+1) or ai = (ui+1, ui) and
ai 6= aj for all i, j = 1, . . . , n − 1, i 6= j. It is directed if ai = (ui, ui+1) holds
for every i = 1, . . . , n − 1. (Directed) paths and (directed) cycles in digraphs are
defined equivalently.
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The term connectivity splits up into strong and weak connectivity. A digraph
is weakly connected, or simply connected, if every pair of nodes in it is connected
by a not necessarily directed path and strongly connected if every pair of nodes
is connected by a directed path. The definition of component stays the same, so
that the components of a digraph can be weakly or strongly connected.

An r-branching is a rooted tree T with degin (r) = 0 and degin (u) = 1 for all
u ∈ V (T ) with u 6= r. In an r-branching T , for every node u ∈ V (T ) there is a
uniquely determined directed path from r to u.

The node-arc incidence matrix of a digraph G = (V,A) is a |V | × |A| matrix
A+ (over R) defined

ai,j :=


1 if node ui is head of arc aj,
−1 if node ui is tail of arc aj,
0 otherwise.

The fundamental cycles of a connected digraph G = (V,A) with respect to
the spanning tree T are represented by the |A| × (|A| − |V |+ 1) matrix B = BT
defined

bi,j :=



1 if fundamental cycle Cj = Ca contains arc ai, and ai and a have the
same direction in the cycle,

−1 if fundamental cycle Cj = Ca contains arc ai, and ai and a have
opposite directions in the cycle,

0 otherwise.

All the propositions made about (reduced) incidence matrices and (reduced)
cycle matrices of graphs can be adopted to the corresponding matrices of digraphs.
Only Proposition 3.5 needs to be modified.
Proposition 3.6. Let G = (V,A) be a connected digraph with spanning tree T ,
reduced incidence matrix A and fundamental cycle matrix B. Then

A−1
B AN = −BB.

In addition to the above properties of and the relations between the matrices
representing a digraph, the meaning of the inverse of the basis part of the reduced
incidence matrix A−1

B is needed.
Consider a connected digraph G = (V,A) with spanning tree T rooted in

r ∈ V . The unique paths in T connecting each node to the root r are represented
in the (|V | − 1)× (|V | − 1) matrix P = PT defined

pi,j :=


1 if the path rT uj contains arc ai and ai is directed towards uj,
−1 if the path rT uj contains arc ai and ai is directed towards r,
0 otherwise.

If P is the path matrix of an r-branching, then all entries of P are either 0 or 1.
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Proposition 3.7. Let G = (V,A) be a connected digraph with spanning tree T .
Then

A−1
B = P .

Proof. It suffices to show that P is a right inverse of AB, i.e., ABP = I|V |−1. For
each i, j = 1, . . . , |V | − 1 consider the product of the i-th row of AB and the j-th
column of P

(AB)i,• P•,j =
|V |−1∑
k=1

ai,k pk,j.

The entry ai,k is nonzero if and only if arc ak is incident to node ui.
If i = j, then exactly one arc incident to ui is in the path connecting r and

ui. Thus there is exactly one k ∈ {1, . . . , |V | − 1} where both (AB)i,• and P•,j
have nonzero entries. If ui is the head of ak, then ak is directed towards ui and
(AB)i,• P•,j = 1 · 1 = 1. If ui is the tail of ak, then ak is directed towards r and
(AB)i,• P•,j = −1 · (−1) = 1.

Now let i 6= j. If node ui does not lie in the path p connecting the root r
and uj, then none of the arcs incident to ui can be contained in the path p and
hence ai,k pk,j = 0 for all k = 1, . . . , |V | − 1. If node ui is contained in path p,
then exactly two arcs incident to ui are in p. If ui is the tail of one of these arcs
and head of the other, i.d., the two arcs are directed in the same direction, then
(AB)i,• P•,j = −1 · 1 + 1 · 1 = 0 or (AB)i,• P•,j = −1 · (−1) + 1 · (−1) = 0. If
ui is the tail of both of these arcs or the head of both of these arcs, i.d., the two
arcs are directed in opposite direction, then (AB)i,• P•,j = 1 · 1 + 1 · (−1) = 0 or
(AB)i,• P•,j = −1 · 1 +−1 · (−1) = 0.



Chapter 4

Modeling Gas Networks

This chapter deals with the modeling of gas networks. In Section 4.1 physical
properties of gas are listed and in Section 4.2 these properties are used to model
gas flow along single pipes via the Euler equations. General introductions into
modeling of gas flow are given in [68,77,84] and many other books. Furthermore,
in Section 4.2 the model of a single pipe is reformulated in an algebraic model.

As it is a common practice, gas networks are modeled as graphs in Section 4.3.

4.1 Physical Properties of Gas
In this thesis, some assumptions about the network and the gas flow are needed.
The gas flow is considered to be one-dimensional. This means that pressure,
density, and velocity depend only on the time and the location along the axis of
the pipe, but not on the location in the cross section. For this it is required that
these physical quantities can be approximated good enough by their mean values
over the cross section. If, in addition to that, the pipes of the network are cylindric
and the cross sections are constant along the pipe, the relation between the mass
flow q in kg s−1, density ρ in kg m−3 and the velocity v in m s−1 can be described
by

q = Aρv, (4.1)
where A is the cross-sectional area in m2.

In the literature, mostly the mass flow q in kg s−1 is used, whereas through-
out this thesis the volumetric flow rate under normal conditions Q0 in m3 h−1 is
considered, which can be converted via the equation

q = 1
602 ρ0Q0, (4.2)

where ρ0 denotes the density of the gas under normal conditions in kg m−3. The
normal conditions are specified in DIN 1343 [39]. The norm temperature is T0 =
273.15 K and the norm pressure is p0 = 101325 Pa.

Moreover, pipes are presumed to be horizontal and the network contains only
one gas mixture.

29
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The model considered in this thesis is isothermal and stationary. The former
states that gas and surrounding soil have a constant temperature, the latter impli-
cates that there are no changes over time and that all injections and withdrawals
of gas occur at a fixed rate. Then the steady state of the network is the state in
which the network would be after an arbitrarily long time without changes from
the outside.

4.1.1 Equation of State for Real Gases
The equation of state for ideal gases connects the density ρ, pressure p in Pa,
molar mass m in kg mol−1 and temperature T in K of a gas and reads

p = ρRsT,

where Rs = R
m

is the specific gas constant of the gas in J kg−1 K−1 with universal
gas constant R = 8.31441 J mol−1 K−1.

Real gases do not behave the same way as ideal gases do because in real gases
the molecules interact with each other. Therefore, the equation of state for ideal
gases has to be corrected by a factor z called real gas factor or compressibility
factor. This yields the thermodynamical standard equation of state for real gases

p = ρRsTz. (4.3)

More detailed discussions of the equation of state of ideal and real gases can
be found in [77,84] and others.

4.1.1.1 Compressibility Factor

For a given temperature and pressure the compressibility factor of a gas is the
ratio of the gas volume to the gas volume the gas would have if it were an ideal
gas at the same temperature. Thus, it depends on its pressure and temperature
as well as on its chemical composition. For ideal gases the compressibility factor
equals 1.

The compressibility factor cannot be given exactly, but for pressures up to
7000000 Pa a formula from the American Gas Association (AGA) turns out to be
accurate ([69]):

z (p, T ) = 1 + 0.257 p

pc
− 0.533 p Tc

T pc
.

The quantity Tc denotes the pseudocritical temperature of the gas in K and pc
the pseudocritical pressure in Pa, see [84]. The meaning of these two quantities
is the following: The critical temperature of a pure gas is the temperature above
which the gas cannot be liquefied under pressure. The critical pressure of a pure
gas is the minimum pressure needed to liquefy a gas at its critical temperature. For
gas mixtures critical temperature and critical pressure are called pseudocritical.
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For the computation of z the mean pressure

pm = 1
2 (max {pin, pout}+ min {pin, pout})

along the pipe is used, where pin and pin are the lower respectively upper pressure
bounds at the beginning of the pipe and pout and pout are the lower respectively
upper pressure bounds at the end of the pipe. This gives rise to the definition
zm := z (pm, T ).

The compressibility factor under normal conditions, z (p0, T0) , is denoted z0.

4.1.2 Friction Factor
The roughness of the wall of the inner side of the pipe, the curvature of the pipe,
corrosion processes, and the deposition of dirt and dust in the pipe, summarized
under the term integral roughness k in m, cause friction. This friction implies a
pressure drop of the gas flowing through the pipe.

To determine the friction factor λ = λ (Q0) the Reynolds number (see, e.g.,
[68, 77,84])

Re = Re (Q0) = 4 ρ0

602 πηD
Q0,

where η in Pa s is the dynamic viscosity of the gas, is needed. For natural gas
it is about 10−5 Pa s. The Reynolds number indicates if the gas flow is laminar
or turbulent. If Re ≥ Recrit = 2320, the flow is turbulent, i.e., vortex flow with
mixing layers. Otherwise it is laminar, which means that the flow is layerwise.

For laminar flow a common formula for the friction factor is the Stokes formula

λ = 64
Re ,

see, e.g., [77].
Due to [84], in the turbulent case the equation of Coolebrook-White

1√
λ

= −2 log10

(
2.51

Re
√
λ

+ k

3.71D

)

can be used. The explicit formula

λ =
(

2 log10

(
4.518
Re log10

(
Re
7

)
+ k

3.71D

))−2

is given by Hofer ([68]).
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4.2 Single Pipes

4.2.1 Euler Equations
The gas flow along a single pipe can be modeled via the Euler Equations (for a
deduction of the equations see, e.g., [12, 77])

A∂ρ
∂t

+ ∂q

∂x
= 0 (4.4)

∂p

∂x
+ λ
|v|v
2D ρ+ 1

A
∂q

∂t
+ gρs+ 1

A

∂ρv2

∂x
= 0 (4.5)

where t is the time in s, x ∈ [0, L] the location in the pipe in m, s ∈ [−1, 1] the
slope of the pipe and g = 9.80665 m s−2 the gravitational acceleration. Equation
(4.4) is called continuity equation and models the conservation of mass. The
momentum equation (4.5) represents the conservation of momentum. It describes
how the pressure drop along the pipe depends on the mass flow and some technical
parameters summarized in λ. Since in this thesis only the isothermal case is
considered, the energy equation is neglected here.

Equations (4.4) and (4.5) build a system of two nonlinear, hyperbolic, par-
tial differential equations in four indeterminates q, p, ρ, and v. The system is
completed by equations (4.1) and (4.3). Then the entire system reads

A∂ρ
∂t

+ ∂q

∂x
= 0 (4.4 revisited)

∂p

∂x
+ λ
|v|v
2D ρ+ 1

A
∂q

∂t
+ gρs+ 1

A

∂ρv2

∂x
= 0 (4.5 revisited)

Aρv = q (4.1 revisited)
ρRsTz = p. (4.3 revisited)

4.2.2 Algebraic Model
This system can be transformed into a single algebraic equation. Similar reformu-
lations can be found in, e.g., [12, 68,100].

Since only the stationary case is considered in this thesis, the derivatives w.r.t.
the time t are zero. Continuity equation (4.4) thus becomes

∂q

∂x
= 0

and hence the mass flow q is constant along the pipe. Relation (4.2) then yields
that the volumetric flow rate under normal conditions Q0 is constant along the
pipe as well.

In momentum equation (4.5), the term 1
A
∂q
∂t

is zero for the same reason as
above. Moreover, gρs = 0 because pipes are assumed to be horizontal. Due to
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[105], the term 1
A
∂ρv2

∂x
makes a contribution of less than one percent to the sum

under normal operating conditions and hence can be neglected. This implies

∂p

∂x
= −λ |v|v2D ρ. (4.6)

Inserting equations (4.1) and (4.2) together with A = πD2

4 into (4.6) yields

∂p

∂x
= −λ (Q0) 16 ρ2

0|Q0|Q0

602602 π2 2D5ρ
. (4.7)

Since equation (4.3) also holds under normal conditions,

ρ0

ρ
= p0Tzm

pT0z0

is valid. Inserting this equation into equation (4.7) leads to

∂p

∂x
= −λ (Q0) 16 ρ0p0Tzm

602602 π2 2D5pT0z0
|Q0|Q0,

which is equivalent to

2p∂p
∂x

= −λ (Q0) 16 ρ0p0Tzm
602602 π2D5T0z0

|Q0|Q0. (4.8)

Integration of (4.8) w.r.t. the location x implies
L∫

0

2p∂p
∂x

dx =
L∫

0

−λ (Q0) 16 ρ0p0Tzm
602602 π2D5T0z0

|Q0|Q0 dx

⇔
p(L)∫
p(0)

2u du = −λ (Q0) 16 ρ0p0Tzm
602602 π2D5T0z0

|Q0|Q0

L∫
0

1 dx

⇔
[
u2
]pout

pin
= −λ (Q0) 16 ρ0p0Tzm

602602 π2D5T0z0
|Q0|Q0 [x]L0

⇔ p2
out − p2

in = −λ (Q0) 16 ρ0p0TzmL

602602 π2D5T0z0︸ ︷︷ ︸
=:φ

|Q0|Q0 (4.9)

The coefficient φ is called pressure drop coefficient. The pressure drop is the
reduction of fluid-mechanical energy.

4.3 Networks

4.3.1 Conservation of Mass at the Junctions
A gas network consists of several pipes that are connected at junctions. At a
junction of several pipes the mass of the gas remains constant. Let I denote the



Chapter 4. Modeling Gas Networks 34

set of pipes through which gas flows towards the junction and J the set of pipes
through which gas flows away from the junction. Then∑

i∈I
Q0,i =

∑
j∈J

Q0,j. (4.10)

4.3.2 Modeling Gas Networks Using Graphs
Gas networks can be modeled as connected graphs G = (V +, A) where the set of
nodes V + consists of the junctions of the network and the edges in A correspond
to the pipes of the network. The set of the nodes V + is the union of the three
disjoint sets V+ of the entry nodes where gas is injected into the network, V− of
the exit nodes where gas is withdrawn from the network and V0 of nodes that are
neither entries nor exits, referred to as innodes.

Using DFS-Algorithm 3.1 described in Subsection 3.1.2 with root r ∈ V+ a
spanning tree of G can be computed. The edge set of this spanning tree can be
oriented by its predecessor function p yielding the oriented tree T with arcs

A(T ) := {(p(u), u) : u ∈ V (T ) \ {r}} .

Orienting the edges in T in such a way that no directed cycles occur, an orientation
#�

G of G is obtained. The oriented tree T is a spanning tree of #�

G rooted in r. Since
every node has exactly one predecessor, T is an r-branching.

Let A+ denote the incidence matrix of #�

G. By Proposition 3.2, an arbitrary
row of A+ can be deleted. For this purpose the root r is chosen as the reference
node and from now on it will always be indexed with 0. The resulting reduced
incidence matrix is denoted A and V := V + \ {r}. Let the rows of A be arranged
such that

A =
[
AB | AN

]
where the columns of the |V | × |V | matrix AB correspond to the arcs of the span-
ning tree T . Due to Corollary 3.4, AB is nonsingular and hence A−1

B exists.

Let Q0 ∈ R|A| be the vector containing for each arc a ∈ A of #�

G the volumetric
flow rate under normal conditions Q0,a. Then for Q0,a > 0 the gas flows from the
tail of arc a to the head of arc a and vice versa for Q0,a < 0. Thus, one has to
distinguish between two different orientations of the arcs: the orientation w.r.t.
the spanning tree T computed with the DFS-Algorithm 3.1 and the orientation
corresponding to the flow direction of the gas. To make clear which direction is
meant in the rest of the thesis all quantities related to arc orientation, for example
the degree of a node, are indexed by the subscripts “DFS” respectively “gas”. For
instance, degin

DFS (u) denotes the indegree of node u w.r.t. the spanning tree T ,
whereas degin

gas (u) denotes the indegree of node u w.r.t. the flow direction of the
gas.

Furthermore, let p+, qnom+ ∈ R|V +| denote the vectors containing for each node
u ∈ V + the pressure pu and load qnom

u , respectively, and Φ = diag
(
φa1 , . . . , φa|A|

)
∈
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R|A|×|A| a matrix whose nonzero entry φai
is the pressure drop coefficient of arc

ai introduced at the end of the previous section for i = 1, . . . , |A|. Pressures at
nodes are limited by lower and upper bounds. Upper bounds stem from physical
limitations of the network, while lower bounds depend on the contracts with cos-
tumers. Lower and upper pressure bounds are both strictly positive. The vector
of the lower bounds pu is denoted p+ and the vector of the upper bounds pu is
denoted p+. A load qnom

u is nonnegative if u is an exit node, nonpositive if u is an
entry node and zero if u is an innode. Because an entry node or an exit node with
zero load can be treated as an innode, the loads of entry nodes and exit nodes are
assumed to be nonzero. Since conservation of mass holds at every junction (see
Subsection 4.3.1), the same amount of gas has to be withdrawn from the network
that is injected into it. This leads to the necessity of balanced load vectors, i.e.,
1T qnom+ = 0.

The symbols +, −, 0 as subscripts of vectors in R|V +| are used to extract the
components indexed by elements in V+, V−, and V0, respectively. For instance,
qnom
− = (qnom

u )u∈V− . The load qnom
0 at the innodes V0 is zero. The subscripts B

and N of vectors in R|A| are used to extract the components indexed by arcs in
T and T , respectively. When used as subscripts of matrices whose columns are
indexed by the elements of A, the subscripts extract the columns indexed by the
arcs in T and T , respectively. Moreover, for vectors whose entries correspond to
nodes the superscript + is used to indicate the full vector with entries indexed by
elements in V +. Without the superscript +, entries of those vectors are indexed
by the elements in V only.

With this notation, equation (4.10) for the conservation of mass at node u ∈ V +

is equivalent to (
A+

)
u,•
Q0 = qnom+

u .

Since this equation holds for every node u ∈ V +,

A+Q0 = qnom+

is valid. As observed above, A+ has rank n and 1T qnom+ = 0, and thus, above
system has the same solution space as

AQ0 = qnom. (4.11)

For a vector v ∈ Rs set v2 := (v2
1, . . . , v

2
s)
T and |v|v := (|v1|v1, . . . , |vs|vs)T .

Then for arc a ∈ A, equation (4.9) can be reformulated as
(
A+

)T
•,a

(
p+
)2

= −φa |Q0,a|Q0,a

and thus the entire network has to satisfy

A+T
(
p+
)2

= −Φ |Q0|Q0. (4.12)
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System (4.11), (4.12) consists of |V |+ |A| equations, namely |V | equations for
the conservation of mass at the nodes in (4.11) and |A| equations for the pressure
drop along the pipes in (4.12), but contains |V +| + |A| indeterminates, namely
|A| indeterminates for the flows along the pipes and |V +| indeterminates for the
pressures at the nodes. Thus fixing the pressure at the reference node, the flow
along the pipes and the pressure at the remaining nodes become computable.

As shown, e.g., in [57, 100], equation (4.12) is equivalent to
(
A+
r,•

)T
B
p2
r +ATBp2 = −ΦB |Q0,B|Q0,B(

A+
r,•

)T
N
p2
r +ATNp2 = −ΦN |Q0,N |Q0,N .

Since the rows of a node-arc incidence matrix sum up to zero,
(
A+
r,•

)
B

= −1TAB
holds and by multiplying the first equation by

(
A−1
B

)T
one gets

p2 = 1p2
r −A−1

B
TΦB |Q0,B|Q0,B. (4.13)



Part II

Problems related to Gas
Networks



Chapter 5

Feasibility of Loads

In this chapter feasible load vectors are characterized. Moreover, two methods
to reduce the effort that has to be made to solve the system of equations and
inequalities are discussed: the fixation of the flow direction and redundant pressure
bounds. For special networks an upper bound for the number of feasible flow
directions is given.

5.1 The Set of Feasible Load Vectors
Summarizing the results of the previous chapter, for a given network the set of
feasible load vectors is defined

M :=
{
qnom+ : 1T qnom+ = 0 and ∃

(
Q0, p

+
)
∈ R|A|+|V +| with p+ ∈

[
p+, p+

]
fulfilling (4.11) and (4.12)} .

The following theorem in [57] gives a characterization of the set of feasible load
vectors that reduces the number of equations and indeterminates.

Theorem 5.1. Let G be a graph representing a given network, T a DFS-tree
rooted in the reference node r oriented w.r.t. the predecessor function, and #�

G the
orientation of G w.r.t. the spanning tree T . Define the map

g : R|V | ×R|A(T )| → R|V |, (s, t) 7→
(
A−1
B

)T
ΦB

∣∣∣A−1
B (s−AN t)

∣∣∣ (A−1
B (s−AN t)

)
.

Then the set M consists of all qnom+ with 1T qnom+ = 0 for which there is a z such
that

ATNg (qnom, z) = ΦN |z| z (5.1)
min

i=1,...,|V |

[
(pui

)2 + gi (qnom, z)
]
≥ max

i=1,...,|V |

[
(pui

)2 + gi (qnom, z)
]

(5.2)

(pr)2 ≤ min
i=1,...,|V |

[
(pui

)2 + gi (qnom, z)
]

(5.3)

(pr)2 ≥ max
i=1,...,|V |

[
(pui

)2 + gi (qnom, z)
]
. (5.4)

38
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Similar reformulations and variable reductions of this problem can be found in
[19,20,24]. System (5.1) has |A(T )| equations and |A(T )| indeterminates.

For a given load vector qnom+ let ẑ (qnom) be a solution of system (5.1). Then
the corresponding flow Q0 (qnom) can be determined from ẑ (qnom) in the following
way:

Q0,N (qnom) = ẑ (qnom)
Q0,B (qnom) = A−1

B qnom −A−1
B AN ẑ (qnom) .

If qnom+ is not feasible, then the intersection

F =
[

max
i=1,...,|V |

[
(pui

)2 + gi (qnom, ẑ (qnom))
]
, min
i=1,...,|V |

[
(pui

)2 + gi (qnom, ẑ (qnom))
]]

∩
[
p2
r, p

2
r

]
is empty by Theorem 5.1. Otherwise, F is nonempty and in the proof of Theo-
rem 5.1 in [57] it is shown that the pressure square p2

r can be chosen in F . By
equation (4.13) and the definition of g the resulting pressures at the remaining
nodes are

pui
=
√
p2
r − gi (qnom, ẑ (qnom)) (5.5)

for i = 1, . . . , |V |.
Let qnom ∈ R|V | be an arbitrary reduced load vector and let F : R|A(T )| →

|A(T )| be defined
z 7→ ΦN |z| z −ATNg (qnom, z) .

The crucial fact is that
F (z) = 0 (5.6)

has a uniquely determined real solution. This means that for a given load vector
the flow along the pipes is uniquely determined. Proofs can be found in [100] where
coerzive operators are used to prove the existence of a solution, and [19,20] where
strictly monotone basins on Hilbert spaces are utilized. In [103] the existence is
proven via the Hartman-Stampacchia fixed point theorem ([60]). Uniqueness of
the solution is verified in all of these works.

If the absolute values in F are resolved, system (5.6) becomes a multivariate
polynomial system. Thus, for each possible resolving of the absolute values system
(5.6) can be solved with the Gröbner basis method of Subsection 2.2.5. Afterwards,
it has to be checked if these solutions fulfill the conditions for the resolving of
the absolute values. Since the original system (5.6) has a uniquely determined
real solution, these conditions hold for exactly one of those solutions. Moreover,
there can occur some systems that do not have any solution. If the reduced
Gröbner basis contains the constant polynomial 1, the system does not have any
solution and thus, it does not have to be solved. On the contrary, by the Weak
Nullstellensatz 2.2 the reduced Gröbner basis of every system without solution
contains the constant polynomial 1. Hence, the procedure does not try to solve
systems that do not have any solution.
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The procedure is summarized in the following algorithm. The first FOR-loop of
the algorithm iterates over all possible combinations of resolvings of the absolute
values.

Algorithm 5.2 (Check for Feasibility of Load Vector).

Input: Matrices A+ and Φ and vectors p+ and p+ representing the network,
a reference node r, a load vector qnom+

Output: True, if qnom+ ∈M , and False otherwise

FOR s ∈ {−1, 1}|A| DO
solutions := set of solutions of
ATN

(
A−1
B

)T
ΦB diag(sB)

(
A−1
B (qnom −ANz)

)2
= ΦN diag(sN)z2

FOR ẑ ∈ solutions DO
IF diag(sB)

(
A−1
B (qnom −AN ẑ)

)
≥ 0 AND diag(sN)ẑ ≥ 0 AND

equations (5.2) – (5.4) hold for ẑ DO
RETURN True

RETURN False

The following lemma gives an equivalent formulation of equation (5.1).

Lemma 5.3. Equation (5.1) is equivalent to

∑
b=(u,v)
∈A(Ca)\{a}

φb

∣∣∣∣∣∣
∑

w∈DT (v)
qnom
w −

∑
cC : C∈Cb

Q0,cC

∣∣∣∣∣∣
 ∑
w∈DT (v)

qnom
w −

∑
cC : C∈Cb

Q0,cC


=φa |Q0,a|Q0,a for all a ∈ A(T ).

(5.7)

Proof. Since A−1
B AN = −BB by Proposition 3.6, since the spanning tree T of

graph G is constructed with the DFS-Algorithm 3.1, and due to the orientation #�

G
of graph G, all entries of A−1

B AN are 0 or 1. Thus, multiplication of ΦB|A−1
B qnom−

A−1
B ANQ0,N |

(
A−1
B qnom −A−1

B ANQ0,N
)
by

(
A−1
B AN

)T
means that in the row of

(5.1) that corresponds to arc a ∈ A(T ) not belonging to the spanning tree the
components of ΦB|A−1

B qnom − A−1
B ANQ0,N |

(
A−1
B qnom −A−1

B ANQ0,N
)
are added

that correspond to the spanning-tree arcs in the fundamental cycle Ca. Hence,
(5.1) is equivalent to∑

b=(u,v)
∈A(Ca)\{a}

φb
∣∣∣(A−1

B qnom −A−1
B ANQ0,N

)
b

∣∣∣ (A−1
B qnom −A−1

B ANQ0,N
)
b

= φa |Q0,a|Q0,a for all a ∈ A(T ).

Since A−1
B = P due to Proposition 3.7, since the spanning tree T of graph

G is constructed with the DFS-Algorithm 3.1, and due to the orientation #�

G of
graph G, all entries of A−1

B are 0 or 1, and thus, for all arcs a ∈ A(T ) the loads of
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nodes u ∈ V with a ∈ A(rT u) are summed up in
(
A−1
B qnom

)
a
. By the definition

of descendants this yields(
A−1
B qnom

)
a

=
∑

w∈DT (v)
qnom
w for all a = (u, v) ∈ A(T ).

Finally, multiplying Q0,N by the row of A−1
B AN that correspond to some

spanning-tree arc a ∈ A(T ) sums up the flow along the arcs not belonging to
the spanning tree that generate the fundamental cycles C ∈ CT with a ∈ A(C) and
hence (

A−1
B ANQ0,N

)
a

=
∑

bC : C∈Ca

Q0,bC .

Altogether, this implies the assertion.

Let s1 and s2 be two vectors in the set {−1, 1}|A| of resolvings of the absolute
values that coincide in all components corresponding to arcs that are contained
in some cycle and differ only in components corresponding to arcs that are not
contained in a cycle. Then Lemma 5.3 implicates that only one of these two resolv-
ings of the absolute values has to be considered, because the equivalent formulation
(5.7) of (5.1) does not contain components of s1 and s2 that correspond to arcs
that are not contained in a cycle. This means that instead of all 2|A| resolvings of
the absolute values, only 2|∪C∈CA(C)| have to be considered. In Section 5.2 it will
be shown that this number can be reduced further.

Example 5.4. Consider the following network.

u0 u1

u2

u3

u4
a1

a2

a3

a5a4

a6

qnom
u0

qnom
u2

qnom
u3

The network contains one entry node, u0, and two exit nodes, u2 and u3. The arcs
not belonging to the spanning tree T are depicted in dashed lines, A(T ) = {a4, a6}.
There are two fundamental cycles. One consisting of the arcs a2, a3 and a4, the
other one consisting of the arcs a3, a5 and a6. Hence, system (5.1) consists of two
equations having the form

φa2 |Q0,a2 | (Q0,a2) + φa3 |Q0,a3| (Q0,a3) = φa4 |Q0,a4|Q0,a4

φa3 |Q0,a3 | (Q0,a3) + φa5 |Q0,a5| (Q0,a5) = φa6 |Q0,a6|Q0,a6 .
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Arc a2 is only contained in the first fundamental cycle and the set of descen-
dants of u2 = head(a2) is DT (u2) = {u2, u3, u4}. Thus,

Q0,a2 = qnom
u2 + qnom

u3 + qnom
u4 −Q0,a4 = qnom

u2 + qnom
u3 −Q0,a4 .

Arc a3 is contained in both fundamental cycles and the set of descendants of the
head of a3 is DT (u3) = {u3, u4}, which leads to

Q0,a3 = qnom
u3 + qnom

u4 −Q0,a4 −Q0,a6 = qnom
u3 −Q0,a4 −Q0,a6 .

The flow along arc a5 can be determined similarly. Altogether, this yields

φa2

∣∣∣qnom
u2 + qnom

u3 −Q0,a4

∣∣∣ (qnom
u2 + qnom

u3 −Q0,a4

)
+φa3

∣∣∣qnom
u3 −Q0,a4 −Q0,a6

∣∣∣ (qnom
u3 −Q0,a4 −Q0,a6

)
= φa4 |Q0,a4|Q0,a4

φa3

∣∣∣qnom
u3 −Q0,a4 −Q0,a6

∣∣∣ (qnom
u3 −Q0,a4 −Q0,a6

)
+φa5 |−Q0,a6 | (−Q0,a6) = φa6 |Q0,a6|Q0,a6 .

The section concludes with two properties of the set M of feasible load vectors.

Theorem 5.5. The set M of feasible load vectors is bounded.

Proof. Consider a sequence (qnom+
n )n∈N of balanced load vectors inM with ‖qnom+

n ‖2
→∞ for n→∞. Then there exists an index i with eTui

qnom+
n →∞ or eTui

qnom+
n →

−∞ for n → ∞ and since each load vector has to be balanced, there exists an
index i with eTui

qnom+
n → ∞ and an index j with eTuj

qnom+
n → −∞ for n → ∞.

Node ui is an exit node of the network. Since there are only finitely many arcs that
are incident to node ui, the flow along at least one of those arcs, say arc a, has to
flow towards the exit ui. In addition, this flow has to fulfill |(Q0,a)n| (Q0,a)n →∞
for n → ∞. By (4.9) this implies eTui

pn → 0 for n → ∞ and hence, for n̂ big
enough, the pressure eTui

pn at node ui violates the lower pressure bound pui
for

n > n̂. Thus, M is bounded.

Theorem 5.6. The set M of feasible load vectors is closed.

Proof. Consider a sequence (qnom+
n )n∈N of balanced load vectors inM with qnom+

n →
q̂nom+ for n→∞. It has to be shown that q̂nom+ ∈ M holds. Obviously, q̂nom+ is
balanced.

As already mentioned, for a given load vector there exists a uniquely deter-
mined flow along the arcs yielding a sequence (zn)n∈N. Now, assume ‖zn‖2 → ∞
for n → ∞. Then there exists an index i with eTai

zn → ∞ or eTai
zn → −∞ for

n → ∞. By the same reasons as in the previous proof it follows that qnom+
n /∈ M

for n > n̂ and n̂ big enough, which is a contradiction. Hence, the sequence (zn)n∈N
is bounded. It follows that there is a ẑ ∈ R|A| with zn → ẑ for n→∞.

Since the map F∗ : R|V | ×R|A(T )| → |A(T )| defined

(qnom, z) 7→ ΦN |z| z −ATNg (qnom, z)
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is continuous,
F∗ (qnom

n , zn) = 0 for all n
implies

F∗ (q̂nom, ẑ) = 0. (5.8)
Moreover, the sequence (zn)n∈N of flows along the pipes implies a sequence

(pn)n∈N of pressures at the nodes. By equation (4.13) the pressure depends con-
tinuously on the flow and hence, pn → p̂ for n → ∞, where p̂ is the pressure
corresponding to flow ẑ. Again by continuity, pn ∈ [p+, p+] for all n leads to
p̂ ∈ [p+, p+]. Together with (5.8) this implies q̂nom ∈M and henceM is closed.

In general, the set M of feasible load vectors is not convex.

5.2 Fixation of the Flow Direction
Since the resolving of the absolute values in system (5.1) corresponds to the flow
direction along the pipes, the number of systems to be solved can be reduced if the
flow direction along some pipes can be fixed and if combinations of flow directions
can be excluded.

Proposition 5.7. Let G be a graph representing a given network, T a DFS-
tree rooted in the reference node r oriented w.r.t. the predecessor function, #�

G the
orientation of G w.r.t. the spanning tree T , and Q0 a flow on #�

G with corresponding
pressure p+ fulfilling (4.11) and (4.12). Assume qnom

u < 0 for all entry nodes
u ∈ V+ and qnom

u > 0 for all exit nodes u ∈ V−. Then the following holds

(i) degout
gas (u) ≥ 1 for all entry nodes u ∈ V+.

(ii) degin
gas (u) ≥ 1 for all exit nodes u ∈ V−.

(iii) degout
gas (u) ≥ 1 and degin

gas (u) ≥ 1 (or deggas(u) = 0) for all innodes u ∈ V0.

(iv) There are no cycles in #�

G that are directed w.r.t. the gas flow.

Moreover, if r is the only entry node of #�

G, then

(v) The flow along arcs that do not belong to a cycle is directed away from the
entry node r.

(vi) Let #�

G′ = (V ′, A′) where V ′ :=
{
u ∈ V ( #�G) : ∃ C ∈ C with u ∈ V (C)

}
and

A′ :=
{
a ∈ A( #�G) : ∃ C ∈ C with a ∈ A(C)

}
and K a component of #�

G′. Then
node u ∈ V (K) is an entry node of component K if u = r or u = head(a) for
some a ∈ A( #�G)\A′, and an exit node of component K if u = tail(a) for some
a ∈ A( #�G) \ A′ and there is no b ∈ A( #�G) \ A′ with u = head(b). Moreover,
w.r.t. the subgraph K of #�

G′ the component K has exactly one entry node r̂
and degin

gas (r̂) = 0.
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A flow direction indicated by a flow on #�

G fulfilling (i) – (vi) is called a feasible
flow direction for #�

G.

Proof. (i) Assume that there is some node u ∈ V+ with degout
gas (u) = 0. Let

a ∈ A( #�G) be an arc. Then (A+)u,a = 0 if arc a is not incident to node u and thus
(A+)u,aQ0,a = 0. If arc a is incident to node u and node u is the tail of arc a, then
(A+)u,a = −1 and Q0,a ≤ 0. If arc a is incident to node u and node u is the head
of arc a, then (A+)u,a = 1 and Q0,a ≥ 0. In both cases (A+)u,aQ0,a ≥ 0 is valid.
Since qnom

u < 0 holds, there has to be at least one â ∈ A with (A+)u,âQ0,â > 0.
This yields the contradiction

0 <
(
A+

)
u,•
Q0 = qnom

u < 0.

(ii) Equivalently to the proof of (i) one gets the contradiction

0 >
(
A+

)
u,•
Q0 = qnom

u > 0.

(iii) Analogous to (i) and (ii).
(iv) Assume that there is a cycle u1, a1, u2, a2, . . . , an, un+1 with un+1 = u1 in that
the gas flow is directed from ui to ui+1 for i = 1, . . . , n and that there is at least
one arc a in the cycle with Q0,a 6= 0. For i = 1, . . . , n, if ai = (ui, ui+1), then
(pui+1)2 − (pui

)2 = −φai
|Q0,ai

|Q0,ai
by equation (4.9). Since Q0,ai

≥ 0 in this case,
(pui+1)2 − (pui

)2 ≤ 0.
If ai = (ui+1, ui), then (pui

)2 − (pui+1)2 = −φai
|Q0,ai

|Q0,ai
by equation (4.9)

and since Q0,ai
≤ 0 in this case, (pui

)2 − (pui+1)2 ≥ 0. Multiplying this inequality
by −1 yields (pui+1)2 − (pui

)2 ≤ 0.
Together with Q0,a 6= 0 for at least one arc a in the cycle one gets

0 =
n∑
i=1

(pui+1)2 − (pui
)2 < 0

which is a contradiction.

(v) Let a ∈ A( #�G) be an arc that does not belong to a cycle. Hence, arc a is an
arc of the spanning tree and therefore

Q0,a =
(
A−1
B qnom

)
a
−
(
A−1
B ANQ0,N

)
a
.

Since A−1
B = P by Proposition 3.7, since the spanning tree T of graph G is

constructed with the DFS-Algorithm 3.1, and due to the orientation #�

G of graph
G, all entries of A−1

B are 0 or 1. Moreover, qnom ≥ 0 because the reference node is
the only entry node and thus A−1

B qnom ≥ 0.
By definition of the cycle matrix B and since A−1

B AN = −BB due to Proposi-
tion 3.6,

(
A−1
B AN

)
a,•

= (0, . . . , 0) holds and hence
(
A−1
B ANQ0,N

)
a

= 0.
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Altogether, this yields Q0,a ≥ 0 and since the arc a is directed by the DFS-
Algorithm 3.1, the flow along arc a is directed away from r.

(vi) Let u ∈ V (K) be a node in component K with u = head(a) for some arc
a ∈ A( #�G) \A′. Together with the flow direction of the gas along arc a by (v) this
implies

Q0,a =
∑

v∈DT (u)
qnom
v︸ ︷︷ ︸
≥0

≥ qnom
u +

∑
v∈DT (u) :

A(uT v)∩A′=∅

qnom
v = qnom

u +
∑

b∈A( #�G)\A′ :
u=tail(b)

Q0,b.

Now, one gets

qnom
u = A+

u,•Q0 = Q0,a −
∑

b∈A( #�G)\A′ :
u=tail(b)

Q0,b +
(
A+
u,•

)
K

(Q0)K .

Therefore, the load of node u w.r.t. component K is

qnom
u +

∑
b∈A( #�G)\A′ :
u=tail(b)

Q0,b −Q0,a ≤ 0

and it follows that node u is an entry node w.r.t. component K.
In the same way it can be concluded, that a node u ∈ V (K) such that u =

tail(a) for some a ∈ A( #�G) \ A′ and there is no a ∈ A( #�G) \ A′ with u = head(a) is
an exit node w.r.t. component K.

To show that the component K has exactly one entry node w.r.t. the subgraph,
assume that K contains two entry nodes u and v w.r.t. the subgraph. If K contains
the entry node r of #�

G, then, w.l.o.g., let u = r. The other entry node of K, v,
has to be the head of an arc a ∈ A( #�G) \A′ and thus, arc a is directed toward the
entry node r of #�

G, which contradicts the fact that the spanning tree T is directed
w.r.t. the predecessor function of the DFS-Algorithm 3.1. If K does not contain
the entry node r of #�G, then u and v are heads of arcs a, b ∈ A( #�G)\A′, respectively.
Since #�

G is connected, there exists a path rT u connecting r and u. Since arc a is
not contained in a cycle, it has to be contained in this path. For the same reasons
there exists a path rT v connecting r and v containing b. Finally, there is a path
uT v in K connecting u and v. This results in the cycle rT u, uT v, vT r containing
the arcs a and b, which contradicts a, b ∈ A( #�G) \ A′.

Now suppose that K does not have any entry node w.r.t. the subgraph, i.e., K
does not contain the head of an arc in A( #�G) \ A′. Then K has to contain the tail
of an arc a ∈ A( #�G) \ A′ that is part of a way connecting the root node r and the
component K since #�

G is connected. But this contradicts the fact that the spanning
tree T is directed w.r.t. the predecessor function of the DFS-Algorithm 3.1. Thus,
component K contains the head u of some arc a ∈ A( #�G) \ A′, i.e., node u is an
entry node w.r.t. component K.
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Hence, the component K has a unique entry node r̂ w.r.t. the subgraph. It
remains to show that degin

gas (r̂) = 0 holds. Since all arcs in component K are
contained in cycles and graph #�

G is connected, there have to be at least two arcs
that are incident to r̂. Assume that there is an arc incident to r̂ along that gas is
flowing towards r̂. Backtrack this gas flow along one of its ways as long as possible.
Then this way cannot contain cycles, because then there would be a cycle that is
directed w.r.t. the gas flow, in contradiction to (iv). Let u be the end node of this
way. Then u cannot be an entry node of component K since there is only one entry
node in K and because the way started in this entry node, it would lead to a cycle
directed w.r.t. the gas flow if u = r̂ would hold. But since degin

gas (u) = 0 it cannot
be an exit node or innode neither. This proves the claim that degin

gas (r̂) = 0.

Remark 5.8. In networks with more than one entry node the flow along arcs that do
not belong to a cycle cannot be directed in advance for arbitrary loads. However,
if the loads are fixed, fixation of the flow direction along the arcs not belonging to
a cycle is possible: Consider the graph G representing a network with several entry
nodes, a load vector qnom+ and an edge a = {u, v} ∈ A that does not belong to
any cycle in G. Let G′ = (V (G), A(G) \ {a}) be the graph where edge a is deleted.
Then G′ consists of two components. Let Ku be the component containing node
u and Kv be the component containing node v. If∑

w∈V (Ku)
qnom
w < 0,

then it has to hold ∑
w∈V (Kv)

qnom
w > 0,

because the load is balanced, and along edge a the gas has to flow from node u to
node v. If ∑

w∈V (Ku)
qnom
w > 0,

then ∑
w∈V (Kv)

qnom
w < 0

holds and thus along edge a the gas has to flow from node v to node u. If both
sums are zero, there is no gas flow along edge a.

Example 5.9 illustrates the usage of Proposition 5.7.

Example 5.9. Consider the following network with one entry node and four exit
nodes. The small numbers in brackets indicate in which step the flow direction
has been fixed.
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Entry

Exit

Exit

Exit

Exit

(2)

(2)

(3)

(1)
(1)

(1)

(1)

(2)

(2)

(3)

(1)

The network contains exactly one entry node and thus by (v) of Proposition 5.7,
the flow along arcs that do not belong to a cycle is directed away from the entry
node, indicated by (1).

After deletion of these five arcs the network decomposes into two components
each having exactly one entry node and by (vi) of Proposition 5.7 the flow along the
arcs incident to these two entry nodes has to be directed away from the particular
entry node. Arcs along which the flows are directed in this step are indicated by
(2). By (iii) of Proposition 5.7 the two arcs labeled (3) have to be directed in the
way depicted in the figure.

There are only four arcs of the 15 arcs where the flow direction cannot be
fixed. But there are still some combinations of flow directions that are not feasible
because they violate some of the rules in Proposition 5.7, so that not all of the
24 = 16 flow directions have to be checked. In the following only the part of the
figure encircled by the red dashed line is considered. The graphs depicted below
show all feasible flow directions in this part of the original network.

In Figure A.1 in Appendix A.1 the flow directions violating the rules in Proposi-
tion 5.7 are shown. Moreover, the reasons for infeasibility of those flow directions
are given there.

This means that instead of originally 215 = 32,768 flow directions there remain
only five feasible flow directions.
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Some numerical results of this procedure are shown in Table 6.2 in Section 6.2.

5.2.1 Upper Bounds for the Number of Flow Directions
In a tree structured network with exactly one entry node the flow direction is
uniquely determined and independent of the actual load vector by (v) of Propo-
sition 5.7. In tree structured networks with more than one entry node the flow
direction depends on the actual load vector, but can be uniquely determined if
some load vector is given, see Remark 5.8.

In case the network contains exactly one entry node and consists of exactly one
fundamental cycle, the number of feasible flow directions of the gas can be given
exactly, too.
Theorem 5.10. Let G be a graph representing a network that consists of exactly
one cycle, i.e., there is no edge that does not belong to this cycle. Let r be the only
entry node in G and assume qnom

u > 0 for all exit nodes u ∈ V−. Then there are
exactly |V−| feasible flow directions of the gas along the edges in graph G.
Proof. By (vi) of Proposition 5.7, it holds degin

gas (r) = 0. Hence, there has to be
exactly one exit node u ∈ V− such that degin

gas (u) = 2, degout
gas (u) = 0, degin

gas (v) =
1, and degout

gas (v) = 1 for all v ∈ V \ {u}, because otherwise there would be a node
w ∈ V with degin

gas (w) = 0, which contradicts (ii) and (iii) of Proposition 5.7.
Since exit node u is arbitrary, the assertion is proven.

If the network consists of two or more fundamental cycles that are not edge-
disjoint and there are no arcs that do not belong to any cycle, some fundamentals
of hyperplane arrangements have to be exploited, see e.g., [35, 101].

Let G be the graph representing a given network, T a DFS-tree rooted in the
reference node r oriented w.r.t. the predecessor function, and #�

G the orientation
of G w.r.t the spanning tree T . With each arc a ∈ A there can be identified a
hyperplane Ha where

Ha :=

{Q0,N : Q0,a = 0} if a ∈ A(T ),{
Q0,N : ∑u∈DT (head(a)) q

nom
u −∑bC : C∈Ca

Q0,bC = 0
}

else.

The connected components of R|A(T )| \⋃a∈AHa are called regions of the set of
hyperplanes. Each feasible flow direction can be uniquely mapped to one of these
regions and hence, the number of those regions is an upper bound for the number
of feasible flow directions. In [101] it is shown that the number of regions equals

(−1)|A(T )| ∑
H⊆{Ha : a∈A},
∩H∈HH6=∅

(−1)|H| (−1)|A(T )|−rank(H) (5.9)

where rank (H) is the dimension of the space spanned by the normals to the
hyperplanes in H.

If the network consists of exactly two fundamental cycles that are not edge-
disjoint, the sets H ⊆ {Ha : a ∈ A} with ⋂H∈H H 6= ∅ can be fully characterized.
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5.2.1.1 Exactly Two Interconnected Fundamental Cycles

Figure 5.1 shows the two different types of graphs that are possible if only networks
are considered that consist of exactly two fundamental cycles that are not edge-
disjoint, contain no arcs that do not belong to any cycle, and contain exactly one
entry node. The dotted lines in the figure indicate that there can be an arbitrary
number of arcs on the bows. On the right side, the DFS-trees of the graphs are
depicted where the dashed lines are the arcs of the cotree. The arcs represented
by the dotted lines are oriented in the same direction as the solid lines they are
framed by. The DFS-trees are unique up to graphical representation.

Entry Entry

(a) Type 1, on the right with DFS-tree.

Entry Entry

(b) Type 2, on the right with DFS-tree.

Figure 5.1: Possible types of networks consisting of exactly two fundamental cycles
and their DFS-trees that are unique up to graphical representation.

Since only networks with two fundamental cycles are considered, let A(T ) =
{a1, a2}. Then there are three different types of hyperplanes:

1. hyperplanes parallel to the Q0,a1-axis,

2. hyperplanes parallel to the Q0,a2-axis,

3. hyperplanes intersecting the axes in the points (t, 0) and (0, t) for some
t ∈ R>0.

The following three lemmata provide a crucial contribution to the desired char-
acterization of the sets H ⊆ {Ha : a ∈ A} with ⋂H∈H H 6= ∅.
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Lemma 5.11. Let G be the graph representing a given network, T a DFS-tree
rooted in the reference node r oriented w.r.t. the predecessor function, and #�

G the
orientation of G w.r.t the spanning tree T . Let r be the only entry node in #�

G and
assume qnom

u > 0 for all exit nodes u ∈ V− and that there are no innodes in the
network, i.e., V0 = ∅. Consider two arcs a, b ∈ A, a 6= b, with Ca = Cb. Then the
hyperplanes Ha and Hb are parallel but not identical.
Proof. Let a and b be both in A(T ). W.l.o.g. assume that a was found before b
during the DFS-Algorithm 3.1. Because a and b are contained in exactly the same
fundamental cycles, there has to be a directed path head(a)T head(b) in T and
there exists a node that is descendant of head(a) and proper ancestor of head(b).
This yields DT (head(a)) ⊃ DT (head(b)) and hence,∑

u∈DT (head(a))
qnom
u >

∑
u∈DT (head(b))

qnom
u .

Moreover, since a and b are contained in exactly the same fundamental cycles,∑
cC : C∈Ca

Q0,cC =
∑

cC : C∈Cb

Q0,cC

holds. Altogether, this implies that the hyperplanes

Ha =

Q0,N :
∑

u∈DT (head(a))
qnom
u −

∑
cC : C∈Ca

Q0,cC = 0


and

Hb =

Q0,N :
∑

u∈DT (head(b))
qnom
u −

∑
cC : C∈Cb

Q0,cC = 0


are parallel but not identical.

Now, let a be in A(T ) and b be in A(T ). Then both arcs are in exactly one
fundamental cycle and the hyperplanes

Ha =


Q0,N :

∑
u∈DT (head(a))

qnom
u︸ ︷︷ ︸

>0

−Q0,b = 0


and

Hb = {Q0,N : Q0,b = 0}
are parallel but not identical.
Lemma 5.12. Let G be a graph representing a network consisting of exactly two
fundamental cycles that are not edge-disjoint and containing no arcs that do not
belong to any cycle, T a DFS-tree rooted in the reference node r oriented w.r.t. the
predecessor function, and #�

G the orientation of G w.r.t the spanning tree T . Let r
be the only entry node in #�

G and assume qnom
u > 0 for all exit nodes u ∈ V− and

that there are no innodes in the network, i.e., V0 = ∅. Consider two arcs a, b ∈ A,
a 6= b, with Ca 6= Cb. Then the hyperplanes Ha and Hb are not parallel.
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Proof. The assumption Ca 6= Cb implies∑
cC : C∈Ca

Q0,cC 6=
∑

cC : C∈Cb

Q0,cC .

and hence, the hyperplanes Ha and Hb are not parallel.

Lemma 5.13. Let G be a graph representing a network consisting of exactly two
fundamental cycles that are not edge-disjoint and containing no arcs that do not
belong to any cycle, T a DFS-tree rooted in the reference node r oriented w.r.t.
the predecessor function, and #�

G the orientation of G w.r.t the spanning tree T .
Let r be the only entry node in #�

G and assume qnom
u > 0 for all exit nodes u ∈ V−

and that there are no innodes in the network, i.e., V0 = ∅. Then there is no point
in R2 where more than two hyperplanes corresponding to the arcs in A intersect.

Proof. Let A(T ) = {a1, a2}. Since hyperplanes that belong to the same type of
hyperplanes (see list above) are parallel but not identical, there can be at most
three hyperplanes that intersect in one point, each of them belonging to a different
type of hyperplanes. LetHa, Hb, Hc denote these three hyperplanes corresponding
to the three arcs a, b, c, respectively, and let Ha belong to type 1, Hb to type 2,
and Hc to type 3.

Assume that there is exactly one arc among a, b, c that is an element of A(T ).
Arc c belongs to two fundamental cycles and hence cannot be an arc of the cotree.
W.l.o.g. let a be the arc in A(T ), i.e., a = a1. Then the three hyperplanes are

Ha =
{

(Q0,a1 , Q0,a2)T : Q0,a1 = 0
}

Hb =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(b))
qnom
u −Q0,a2 = 0


Hc =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(c))
qnom
u −Q0,a1 −Q0,a2 = 0


and the point where all three hyperplanes intersect has to fulfill∑

u∈DT (head(b))
qnom
u −

∑
u∈DT (head(c))

qnom
u = 0.

Since arcs b and c are both arcs of the spanning tree and b is contained in exactly
one fundamental cycle whereas c is contained in exactly two fundamental cy-
cles, Figure 5.1 shows that either DT (head(b)) ⊂ DT (head(c)) or DT (head(b)) ⊃
DT (head(c)). Hence, either

0 <
∑

u∈DT (head(b))
qnom
u <

∑
u∈DT (head(c))

qnom
u

or ∑
u∈DT (head(b))

qnom
u >

∑
u∈DT (head(c))

qnom
u > 0
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holds. This implies that there does not exist a point where all three hyperplanes
Ha, Hb and Hc intersect.

Now, assume that there are exactly two arcs among a, b, c that are elements
of A(T ). These two arcs have to be a and b which leads to the three hyperplanes

Ha =
{

(Q0,a1 , Q0,a2)T : Q0,a1 = 0
}

Hb =
{

(Q0,a1 , Q0,a2)T : Q0,a2 = 0
}

Hc =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(c))
qnom
u −Q0,a1 −Q0,a2 = 0

 .
Since ∑u∈DT (head(c)) q

nom
u > 0, there is no point where all three hyperplanes Ha,

Hb and Hc intersect.
Finally, assume that all three arcs a, b, and c are arcs of the spanning tree.

Hence, the three hyperplanes are

Ha =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(a))
qnom
u −Q0,a1 = 0

 ,
Hb =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(b))
qnom
u −Q0,a2 = 0

 ,
Hc =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(c))
qnom
u −Q0,a1 −Q0,a2 = 0


and the point where all three hyperplanes intersect has to fulfill∑

u∈DT (head(a))
qnom
u +

∑
u∈DT (head(b))

qnom
u −

∑
u∈DT (head(c))

qnom
u = 0. (5.10)

From Figure 5.1 it follows that there are two different orderings in that arcs a, b,
and c can be found during DFS-Algorithm 3.1.
Case 1: a, c, b. This implies DT (head(a)) ⊃ DT (head(c)) ⊃ DT (head(b)) and
hence, (5.10) becomes

0 <
∑

u∈DT (head(a))\
DT (head(c)

qnom
u +

∑
u∈DT (head(b))

qnom
u = 0,

which is a contradiction.
Case 2: c, a, b. This implies DT (head(a)) ⊂ DT (head(c)), DT (head(b)) ⊂
DT (head(c)), and DT (head(a)) ∩DT (head(b)) = ∅. Thus, (5.10) becomes

0 > −
∑

u∈DT (head(c)\
(DT (head(a))∪DT (head(b)))

qnom
u = 0,

what is not possible.
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Theorem 5.14. Let G be a graph representing a network consisting of exactly two
fundamental cycles that are not edge-disjoint and containing no arcs that do not
belong to any cycle, T a DFS-tree rooted in the reference node r oriented w.r.t.
the predecessor function, #�

G the orientation of G w.r.t the spanning tree T , and
A(T ) = {a1, a2}. Let r be the only entry node in #�

G and assume qnom
u > 0 for all

exit nodes u ∈ V− and that there are no innodes in the networks, i.e., V0 = ∅. Set
P := {P1,P2,P3} = {{Ca1} , {Ca2} , {Ca1 , Ca2}}. Then there are at most

3∑
i=2

|APi
|
i−1∑
j=1

∣∣∣APj

∣∣∣
+ |A|+ 1 (5.11)

feasible flow directions of the gas along the arcs in #�

G.
It is an upper bound in the sense that it only takes into account (i) and (ii) of

Proposition 5.7 and that every exit node needs to be served, i.e., there is a path
from the entry node r to every exit node in the network that is directed w.r.t. the
flow direction of the gas.

Proof. To verify correctness of formula (5.11) the sets H ⊆ {Ha : a ∈ A} with⋂
H∈H H 6= ∅ have to be characterized. Due to Lemma 5.13 the cardinality of a set

H of hyperplanes whose intersection is not empty has to be smaller than three.
Setting H = ∅ yields

(−1)|H| (−1)2−rank(H) = (−1)0 (−1)2−0 = 1. (5.12)

Each hyperplane Ha with a ∈ A is nonempty and thus one gets∑
H⊆{Ha : a∈A},⋂
H∈H

H6=∅,
|H|=1

(−1)|H| (−1)2−rank(H) = |A| (−1)1 (−1)2−1 = |A| . (5.13)

Two distinct intersecting hyperplanes Ha and Hb have to correspond to two
distinct arcs a and b with Ca 6= Cb by Lemma 5.11. Moreover, every pair of
hyperplanes Ha and Hb with Ca 6= Cb intersects in exactly one point due to
Lemma 5.12. This implies∑

H⊆{Ha : a∈A},⋂
H∈H

H6=∅,
|H|=2

(−1)|H| (−1)2−rank(H)

= (|AP1| |AP2|+ |AP1 | |AP3|+ |AP2 | |AP3|) (−1)2 (−1)2−2

= |AP1 | |AP2 |+ |AP1| |AP3 |+ |AP2| |AP3| .

(5.14)

Summing up equations (5.12) – (5.14) and multiplying the result by (−1)|A(T )| =
(−1)2 = 1 yields the desired equality of equations (5.9) and (5.11).
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To prove that the bound takes care of (i) of Proposition 5.7 assume that deg r = 2.
By Figure 5.1, one of the arcs incident to r is an arc in T and one is an arc in
T . Let a ∈ A(T ) and b ∈ A(T ), w.l.o.g. b = a1, be incident to node r. Then
arcs a and b are both contained in fundamental cycle Ca1 . Moreover, they are
not contained in any other fundamental cycles. The direction of the arcs in #�

G is
depicted in the following graphic.

r ab

The hyperplanes corresponding to arcs a and b are

Ha =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(a))
qnom
u −Q0,a1 = 0


and

Hb =
{

(Q0,a1 , Q0,a2)T : Q0,a1 = 0
}
.

The two hyperplanes are parallel. Thus, there are three regions.

Q0,a1

Q0,a2 Hb Ha

0 ∑
u∈DT (head(a))

qnom
u

1 2 3

In region 1 the flow along arc b is strictly negative and the flow along arc a
is strictly positive and hence, degin

gas (r) = degout
gas (r) = 1. In region 2 it holds

Q0,b > 0 and Q0,a > 0. This implies degout
gas (r) = 2 and degin

gas (r) = 0. Finally, in
region 3 , the flow along arc b is directed away from node r and the flow along
arc a is directed towards node r. Thus, if deg r = 2, the out-degree w.r.t. the gas
flow of node r is always greater than or equal to 1.

Now, assume deg r = 3. Among the three arcs incident to node r there is
exactly one tree-arc. Let a ∈ A(T ) denote this arc. The other two arcs are
a1, a2 ∈ A(T ). The direction of the arcs in #�

G is depicted in the following graphic.

r
a

a1 a2
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The hyperplanes corresponding to arcs a, a1 and a2 are

Ha =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(a))
qnom
u −Q0,a1 −Q0,a2 = 0

 ,
Ha1 =

{
(Q0,a1 , Q0,a2)T : Q0,a1 = 0

}
,

Ha2 =
{

(Q0,a1 , Q0,a2)T : Q0,a2 = 0
}
.

Thus, there are seven regions.

Q0,a1

Q0,a2 Ha1

Ha2

Ha

0

If degout
gas (r) = 0 holds, the flow along arcs a, a1 and a2 is negative. This implies

that (Q0,a1 , Q0,a2)T has to be a point below of hyperplane Ha2 , left of hyperplane
Ha1 and above of hyperplane Ha. But obviously this is not possible and hence,
degout

gas (r) ≥ 1 holds.

The proof of the consideration of (ii) of Proposition 5.7 is carried out equivalently.

To show that every exit node is served the two types of networks in Figure 5.1 are
discussed separately. First, consider the type in Subfigure 5.1(b). It was already
shown that the bound takes into account (i) and (ii) of Proposition 5.7. Following
these two rules there are three possible types of flow directions:

Entry Entry Entry

The blue arcs are the decisions made. The out-degree w.r.t. the gas flow at the
entry node can be 3, 2, or 1. In the leftmost graphic, where degout

gas (r) = 3, there
has to be at least one arc incident to the exit node on the right along that the gas
flows towards the exit node. The arc chosen for this is depicted in blue. Then the
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flow along the other two arcs incident to the exit node can be directed towards
the exit node or away from it.

In the graphic in the middle, where degout
gas (r) = 2, the flow along all of the

arcs in the lower bow have to be directed towards the entry node, because the
in-degree of every (exit) node in this bow has to be at least 1. Moreover, there
has to be at least one arc incident to the exit node on the right along that the
gas flows towards the exit node. Again, the arc chosen for this is drawn in blue.
Hence, the flow along each arc in the upper bow has to be directed towards the
exit node, because the in-degree of every (exit) node in this bow has to be at least
1. Then the flow along the remaining arc incident to the exit node can be directed
towards the exit node or away from it.

Finally, in the rightmost graphic the flow along each arc can be fixed from
bottom to top.

From that it can be seen that every node is served in a network of the type in
Subfigure 5.1(b) if rules (i) and (ii) of Proposition 5.7 are met.

Now, consider the type in Subfigure 5.1(a). First, it is shown that every node
is served if the gas flow reaches the second cycle. There are two different types of
flow directions fulfilling (i) and (ii) of Proposition 5.7 where the gas flow reaches
the second cycle. Again, the arcs where a decision was made are depicted in blue.

Entry Entry

Hence, every exit node is served.
From this it follows that the only possibility that the gas flow does not serve

every exit node is that the gas flow does not reach the second cycle.

Entry

a

b
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The hyperplanes corresponding to arcs a and b are

Ha =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(a))
qnom
u −Q0,a1 = 0


and

Hb =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(b))
qnom
u −Q0,a1 = 0


whereDT (head(a)) ⊃ DT (head(b)) and thus,∑u∈DT (head(a)) q

nom
u >

∑
u∈DT (head(b)) q

nom
u .

The two hyperplanes are shown in the following graphic.

Q0,a1

Q0,a2 Hb Ha

0

If the flow along arcs a and b is directed in the way shown in the graphic, Q0,a < 0
and Q0,b > 0 have to hold. But this means that (Q0,a1 , Q0,a2)T has to be a point
right of hyperplane Ha and left of hyperplane Hb. Obviously, this is not possible
and it can be concluded, that the bound takes into account that every exit node
needs to be served.

The following example shows that the upper bound of feasible flow directions
given in Theorem 5.14 indeed is an upper bound and not exact, because it does
not take into account that there cannot be cycles that are directed w.r.t. the gas
flow and that the in-degree w.r.t. the gas flow of the reference node r has to be
zero.

Example 5.15. Consider the following network with one entry node and four exit
nodes consisting of exactly two fundamental cycles that are not edge-disjoint and
containing no arcs that do not belong to any cycle.
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The network has 6 arcs, thus there are 26 = 64 possible flow directions. By
Theorem 5.14 at most 18 of them are feasible due to the rules in Proposition 5.7.
These 18 flow directions following (i) and (ii) of Proposition 5.7 and taking into
account that every exit node needs to be served are depicted below.
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The flow directions depicted in the first two rows follow all of the rules in
Proposition 5.7 while the flow directions depicted in the last three rows violate
(iv) or (vi) of Proposition 5.7.

The remaining flow directions violating (i) or (ii) of Proposition 5.7 or failing
to serve all exit nodes are shown in Figure A.2 in Appendix A.2.

Corollary 5.16. Let G be a graph representing a network consisting of exactly
two fundamental cycles that are not edge-disjoint and containing no arcs that do
not belong to any cycle, T a DFS-tree rooted in the reference node r oriented w.r.t.
the predecessor function, #�

G the orientation of G w.r.t the spanning tree T , and
A(T ) = {a1, a2}. Let r be the only entry node in #�

G and assume qnom
u > 0 for all

exit nodes u ∈ V−. Moreover, set G′ = (V ′, A′) with

V ′ := V (G) \ {u ∈ V0(G) : deg(u) = 2} ,
A′ :=

{
{head(a), tail(a)} : a ∈ A( #�G) such that head(a) /∈ V0(G) ∧ tail(a) /∈ V0(G)

}
∪ {{u, v} : u, v ∈ V ′ ∧ ∃ a path u, b1, w1, b2, w2, . . . , v in G such that
wi ∈ V0(G) ∧ deg(wi) = 2∀i}

and let T ′ be a DFS-tree of G′ rooted in node r oriented w.r.t. the predecessor
function, #�

G′ the orientation of G′ w.r.t the spanning tree T ′, and A(T ′) = {a′1, a′2}.
Set P := {P1,P2,P3} =

{{
Ca′1
}
,
{
Ca′2
}
,
{
Ca′1 , Ca′2

}}
(w.r.t. G′). Then there are at

most

3∑
i=2

|APi
|
i−1∑
j=1

∣∣∣APj

∣∣∣
+ |A′|+ 1− |{u ∈ V0(G) : deg(u) = 3}| (5.15)

feasible flow directions of the gas along the arcs in #�

G.

Proof. If #�

G does not contain an innode u ∈ V0 with deg(u) = 3 the number of
feasible flow directions of the gas along the arcs in #�

G and #�

G′ are the same by (iii)
of Proposition 5.7.

Now let u be an innode of #�

G with deg(u) = 3. By Figure 5.1 there are two
possible situation.

First, consider the case
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u
a

b a2

where arc a is an arc in cycle Ca1 and arc b an arc in cycles Ca1 and Ca2 . The
hyperplanes corresponding to the three arcs are

Ha =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(a))
qnom
u −Q0,a1 = 0

 ,
Hb =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(b))
qnom
u −Q0,a1 −Q0,a2 = 0

 ,
Ha2 =

{
(Q0,a1 , Q0,a2)T : Q0,a2 = 0

}
with ∑

u∈DT (head(a))
qnom
u =

∑
u∈DT (head(b))

qnom
u .

Hence, all three hyperplanes intersect in the point
(∑

u∈DT (head(a)) q
nom
u , 0

)T
.

In the case

u
a

b c

where arc a is an arc in cycles Ca1 and Ca2 , arc b an arc in cycle Ca1 and arc c is
an arc in cycle Ca2 , the hyperplanes corresponding to the three arcs are

Ha =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(a))
qnom
u −Q0,a1 −Q0,a2 = 0

 ,
Hb =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(b))
qnom
u −Q0,a1 = 0

 ,
Hc =

(Q0,a1 , Q0,a2)T :
∑

u∈DT (head(c))
qnom
u −Q0,a2 = 0


with ∑

u∈DT (head(a))
qnom
u =

∑
u∈DT (head(b))

qnom
u +

∑
u∈DT (head(c))

qnom
u .

Hence, all three hyperplanes intersect in
(∑

u∈DT (head(b)) q
nom
u ,

∑
u∈DT (head(c)) q

nom
u

)T
.

Since the formula of Theorem 5.14 assumes that there are no points where more
than two hyperplanes intersect and since the number of areas generated by three
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hyperplanes that do not intersect in one point is the number of areas generated by
three hyperplanes that do intersect in one point plus 1, the assertion of the lemma
holds.

5.2.1.2 General Networks

Corollary 5.17. Let G be a graph representing a network containing exactly one
entry node and assume qnom

u > 0 for all exit nodes u ∈ V−. Let G′ = (V (G), A′)
where A′ = {a ∈ A(G) : ∃ C ∈ C with a ∈ A(C)}. If a component of G′ contains
cycles that are connected by a node but are pairwise edge-disjoint, the component
can be split at this node. The entry nodes and exit nodes of the components obtained
in this way are determined in the same way as in (vi) of Proposition 5.7. Then
the product of the upper bounds for the number of feasible flow directions of the
components of G′ is an upper bound for the number of feasible flow directions of
G.

Example 5.18. Consider the following graph.

After deletion of the arcs that are not contained in any cycle, the graph decomposes
into two components. The first component is

Its upper bound for the number of feasible flow directions is 3 due to Theorem 5.10.
The second component is

By Corollary 5.16 the two arcs at the top can be replaced by one single arc yielding
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The upper bound for the number of feasible flow directions of this component is 9
due to Corollary 5.16.

Altogether, this implies that 3 · 9 = 27 is an upper bound for the number of
feasible flow directions. For comparison, without applying Proposition 5.7 there
are 212 = 4,096 possibilities to direct the flow along the arcs.

5.3 Redundant Pressure Bounds
Another possibility to reduce the complexity of system (5.1) – (5.4) are redundant
pressure bounds. Elimination of redundant pressure bounds leads to a reduction
in the number of terms that have to be considered in the minima and maxima in
equations (5.2) – (5.4).

Proposition 5.19. Let G be a graph representing a given network, T a DFS-
tree rooted in the reference node r oriented w.r.t. the predecessor function, #�

G the
orientation of G w.r.t. the spanning tree T , and Q0 a flow on #�

G with corresponding
pressure p+ fulfilling (4.11) and (4.12). Let u and v be two nodes in V (G). Since
G is connected, there exists at least one path in G connecting u and v. Let the
flow along this path be directed from u to v.

If the upper pressure bound pu at node u is not greater than the upper pressure
bound pv at node v, then pv is redundant and in the minima in equations (5.2) and
(5.3), the term (pv)2 + gv (qnom, z) does not have to be considered.

If the lower pressure bound pu at node u is not greater than the lower pressure
bound pv at node v, then pu is redundant and in the maxima in equations (5.2)
and (5.4), the term (pu)2 + gu (qnom, z) does not have to be considered.

Proof. Assume pu ≤ pv. Since the gas loses pressure when it flows from node
u to node v, pu ≥ pv holds. Together with this, pu ≤ pu implies pv ≤ pv and
redundancy of pv is proven.

Next it has to be shown that

(pv)2 + gv (qnom, z) ≥ (pu)2 + gu (qnom, z)

holds. By equation (5.5) and since pw ≥ 0 for all w ∈ V , pu ≥ pv implies

0 ≥ (pv)2 − (pu)2 = gu (qnom, z)− gv (qnom, z) .

Together with pu ≤ pv this implies

(pv)2 − (pu)2 ≥ 0 ≥ gu (qnom, z)− gv (qnom, z)
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and thus
(pv)2 + gv (qnom, z) ≥ (pu)2 + gu (qnom, z)

is valid.
The redundancy of pu if pu ≤ pv follows analogously.

The effect of Proposition 5.19 will become even more meaningful when the
probability of exit loads to be feasible is considered. This will be discussed in the
next chapter.



Chapter 6

Probability of Feasibility

This chapter deals with the probability of load vectors to be feasible. Section 6.1
gives the theory while Section 6.2 provides some numerical results.

6.1 Computing the Probability of Feasibility
Using Spheric-Radial Decomposition

The main ambition of this thesis is to determine the probability of load vectors
to be feasible. The loads at entry nodes do not underly any specific distribution
because they are driven by prices. Because of that the networks considered in this
chapter are restricted to networks with exactly one entry node. In contrast, the exit
loads mainly depend on the weather and thus can be identified by a random vector
ξ(ω) on a probability space (Ω,A,P) following a multivariate Gaussian distribution
with mean vector µ and positive definite covariance matrix Σ, ξ ∼ N (µ,Σ).

Since only networks with exactly one entry node are considered, the definition
of the set

M− :=
{
qnom
− ∈ R|V−| : ∃ q̂nom+ ∈ R|V +| with q̂nom+

− = qnom
− s.t. q̂nom+ ∈M

}
of feasible exit load vectors appears naturally. Hence, one is interested in the
probability

P{ω ∈ Ω: ξ (ω) ∈M−}.

Such probabilities can be computed with a reparametrization method called
spheric-radial decomposition that is known to have better convergence properties
than a pure Monte Carlo approach, see, e.g., [33, 50,51].

Theorem 6.1 (Spheric-Radial Decomposition). Let ξ ∼ N (0, R) be some n-
dimensional standard Gaussian distribution with zero mean and positive definite
correlation matrix R. Then, for any Borel measurable subset R ⊆ Rn it holds that

P(ξ ∈ R) =
∫
Sn−1

µχ{r ≥ 0: rLv ∈ R}dµη(v),

64
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where Sn−1 is the (n− 1)-dimensional unit sphere in Rn, µη is the uniform distri-
bution on Sn−1, µχ denotes the χ-distribution with n degrees of freedom and L is
such that R = LLT (e.g., Cholesky decomposition).

In contrast to pure Monte Carlo methods the approach following the spheric-
radial decomposition does not sample on the full euclidean space Rn, but only on
the unit sphere around the origin. Then the rays starting in the origin and having
the direction Lv where v is the sample on the sphere are considered and the
intersections of such rays and the set R are determined. The idea of spheric-radial
decomposition is illustrated in Figure 6.1.

If U is a finite union of disjoint intervals [a1, b1], . . . , [ak, bk], then µχ (U) =∑k
i=1 (Fχ (bi)− Fχ (ai)) where Fχ is the distribution function of µχ.
Theorem 6.1 is adaptable to general Gaussian distributions ξ ∼ N (µ,Σ). Let

D := diag
(√

Σii

)
i=1,...,n

, then R := D−1ΣD−1 is the correlation matrix of the
distribution.

Let X ∼ N
(
µ̃, Σ̃

)
be a n-dimensional random variable and Y := BX + c

for a n × n matrix B and a n-dimensional vector c. It is a well known fact in
probability theory that Y ∼ N

(
Bµ̃+ c, BΣBT

)
, cf. [9, 67, 70]. With that it is

clear that ξ∗ := D−1(ξ − µ) ∼ N (0, R) is valid.
Moreover, let L be a matrix with Σ = LLT , then R = D−1L(D−1L)T holds.
Putting all this together, one gets

P(ξ ∈ R) = P(ξ∗ ∈ D−1 (R− µ))

=
∫
Sn−1

µχ
{

r ≥ 0: rD−1Lv ∈ D−1 (R− µ)
}
dµη(v)

=
∫
Sn−1

µχ {r ≥ 0: rLv + µ ∈ R} dµη(v)

by Theorem 6.1.

R

Sn−1

Lv1

Lv2

Lv3

Figure 6.1: Spheric-Radial Decomposition. The set R of which the probability has
to be computed is depicted in gray. The green circle represents the unit sphere.
Three directions sampled on the sphere are drawn in blue. Only the solid line
segments are relevant for the computation of the probability.
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The following algorithm for the computation of the probability of feasible exit
loads arises.

Algorithm 6.2 (Probability of Feasible Exit Load Vectors).

Input: A gas network, a random variable ξ representing the exit load vector,
ξ ∼ N (µ,Σ), L such that LLT = Σ, number of samples d.

Output: Probability of feasible exit load vectors

S := set of d samples uniformly distributed on the sphere S|V−|−1

FOR v ∈ S DO
Compute the one-dimensional set M−(v) := {r ≥ 0: rLv + µ ∈M−}

RETURN P (ξ ∈M−) ≈ d−1 ∑
v∈S

µχ (M−(v))

The same approach was already utilized in [57]. But there only networks with
at most one cycle were considered. The research in this thesis goes a step further.
In the following it is illustrated how networks with several fundamental cycles that
are not edge-disjoint are tackled.

The most intricate part of this algorithm is the determination of the sets M−(v).
With qnom (r) := rLv + µ the characterization of feasible loads in Theorem 5.1
implies that M−(v) consists of all r ∈ R≥0 for which there is a z such that

ANTg (rLv + µ, z) = ΦN |z| z
min

i=1,...,|V |

[
(pui

)2 + gi (rLv + µ, z)
]
≥ max

i=1,...,|V |

[
(pui

)2 + gi (rLv + µ, z)
]

(pu0)2 ≤ min
i=1,...,|V |

[
(pui

)2 + gi (rLv + µ, z)
]

(pu0)2 ≥ max
i=1,...,|V |

[
(pui

)2 + gi (rLv + µ, z)
]
.

Instead of the minima and maxima, every term can be compared separately yield-
ing the system

ANTg (rLv + µ, z) = ΦN |z| z
(pui

)2 + gi (rLv + µ, z) ≥ (puj
)2 + gj (rLv + µ, z) for all i, j = 1, . . . ,

|V | , i 6= j

(pu0)2 ≤ (pui
)2 + gi (rLv + µ, z) for all i = 1, . . . , |V |

(pu0)2 ≥ (pui
)2 + gi (rLv + µ, z) for all i = 1, . . . , |V | .

(6.1)

In order to rewrite the inequalities as a single one, a map D : R × R|A(T )| →
|V |(|V | − 1) + 2|V | is defined. The components of D corresponding to the three
different types of inequalities are given separately.
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• k = 1, . . . , |V |(|V | − 1):
for i = 1, . . . , |V | set

k :=

(i− 1)|V | − i+ j + 1 for j = 1, . . . , i− 1
(i− 1)|V | − i+ j for j = i+ 1, . . . , |V |

and

Dk (r, z) := (puj
)2 + gj (rLv + µ, z)− (pui

)2 − gi (rLv + µ, z)

• k = |V |(|V | − 1) + 1, . . . , |V |(|V | − 1) + |V |:
for i = 1, . . . , |V | set

k := |V | (|V | − 1) + i

and
Dk (r, z) := (pu0)2 − (pui

)2 − gi (rLv + µ, z)

• k = |V |(|V | − 1) + |V |+ 1, . . . , |V |(|V | − 1) + 2|V |:
for i = 1, . . . , |V | set

k := |V | (|V | − 1) + |V |+ i

and
Dk (r, z) := (pui

)2 + gi (rLv + µ, z)− (pu0)2.

With this notation system (6.1) can be expressed in the form

ANTg (rLv + µ, z) = ΦN |z| z
D (r, z) ≤ 0.

(6.2)

By Theorems 5.5 and 5.6, the set M− of feasible exit load vectors is bounded
and closed. Therefore, M−(v) can be represented as a finite union of disjoint
closed intervals. This means that it is sufficient to determine the end points of
these subintervals, i.e., to determine the points where the ray enters and exits
the set M− of feasible exit load vectors. In these points one of the inequalities in
system (6.2) has to hold with equality. Hence, to determine the end points of all
of the subintervals of M−(v) the system

ANTg (rLv + µ, z) = ΦN |z| z
Dj (r, z) = 0
Dk (r, z) ≤ 0 ∀ k = 1, . . . , |V | (|V | − 1) + 2 |V | , k 6= j

has to be solved for each j = 1, . . . , |V |(|V | − 1) + 2|V |.
Here, redundant pressure bounds play an even more important role than in the

characterization in Theorem 5.1, because in this setting they reduce the number
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of systems to be solved considerably. Strictly speaking, one redundant pressure
bound leads to the deletion of |V | components of map D. The dimension of this
effect becomes even more outstanding if one takes into account that the number
of components of the map D has to be multiplied by the number of resolvings of
absolute values to determine the number of systems to be solved with the Gröbner
basis method of Subsection 2.2.5. Some numerical results of this procedure are
shown in Table 6.1 in Section 6.2.

The computation of the sets M−(v) is summarized in Algorithm 6.3. Let S ⊆
{−1, 1}|A| be the set of all feasible resolvings of the absolute values after applying
Proposition 5.7. For a given arc a ∈ A the component sa is +1 if the flow along
arc a is directed in the same direction as the arc is directed in the spanning tree
T and −1 otherwise. For each s ∈ S let Ps be the set of all k such that Dk is
nonredundant according to Proposition 5.19.

Algorithm 6.3 (Computation of M−(v)).

Input: Matrices A+ and Φ and vectors p+ and p+ representing the network, a
reference node r, a mean value µ, a matrix L such that LLT equals the
covariance matrix, a sample v, set of feasible flow directions S, for each
flow direction s ∈ S the set of nonredundant inequalities Ps

Output: M−(v)

IF µ is a feasible exit load vector DO
M−(v) := {0}

ELSE DO
M−(v) := ∅

FOR s ∈ S DO
FOR k ∈ Ps DO

solutions := set of solutions of
ATN

(
A−1
B

)T
ΦB diag(sB)

(
A−1
B (rLv + µ−ANz)

)2
= ΦN diag(sN)z2

Dk (r, z) = 0
FOR (ẑ, r̂) ∈ solutions DO

IF r̂ ≥ 0 AND diag(sB)
(
A−1
B (rLv + µ−AN ẑ)

)
≥ 0 AND

diag(sN)ẑ ≥ 0 AND Dj(r̂, ẑ) ≤ 0 for all j ∈ Ps AND r̂ /∈M−(v)
DO

M−(v) := M−(v) ∪ r̂
sort the elements of M−(v) by increasing value
RETURN ⋃|M−(v)|/2

j=1 [M−(v)2j−1,M−(v)2j]

6.2 Computational Results
This chapter provides some numerical results on computing the probability of
feasibility.
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Entry

Exit1

Exit2

Innode

a1

a3

a2

a4

a5

(a) Two Fundamental Cycles (e.g., a1a2a3,
a2a4a5)

Entry

Exit1

Exit2

Innode1 Innode2

a1 a2

a3
a4 a5

a6

a7

(b) Three Fundamental Cycles (e.g., a1a2a3a4,
a3a5a6, a2a3a5a7)

Figure 6.2: Topology of the Networks.

Original Reduced

Flow
Direc.

Nonred.
Ineq. Systems Flow

Direc.
Nonred.
Ineq. Systems

2 Cycles 32 32× 12 384 2 2× 1 2
3 Cycles 128 128× 20 2560 4 2× 1, 2× 2 6

Table 6.1: The number of flow directions, the number of nonredundant inequalities
and the number of the polynomial systems to be solved in each sample before and
after applying Proposition 5.7 and Proposition 5.19 for the networks with two and
three fundamental cycles depicted in Figure 6.2.

To generate the samples, |V−|-dimensional samples are drawn from the uniform
distribution over [−1, 1]|V−|. Then these samples are normalized to unit length
and expanded to |V |-dimensional vectors by adding zeros at the positions of the
innodes.

All computations are performed by a Python ([96]) implementation on a Win-
dows system equipped with Intel(R) Core(TM) i7 CPU @ 2.60GHz and 8 GB
RAM. The polynomial systems are solved by the function lex_solve of the li-
brary solve [92] of the computer algebra system Singular [34].

Figure 6.2 shows the topology of the networks that are considered. The data
of these networks is listed in more detail in Appendix B.

Table 6.1 shows the number of flow directions, the number of nonredundant
inequalities and the number of the polynomial systems to be solved in each sample
before and after applying Proposition 5.7 and Proposition 5.19. It becomes evident
that the techniques yield an enormous reduction of the number of systems to be
solved in each sample and thus an appreciable reduction of the computing time.

The probability of feasibility is computed for a series of 10 tests with sample
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2 Cycles 3 Cycles

No. of Nodes 4 5
No. of Pipes 5 7
No. of Cycles 2 3
No. of Exits 2 2
No. of Systems per Sample 2 6
(after reduction)
Mean Probability 0.94477 0.83290
Variance 6.14014e-6 1.01239e-4
Standard Deviation 0.00248 0.01006
Mean Time 12.22 min 56.32 min

Table 6.2: Summary of dimensions, test results, and computing times for gas
networks with two and three fundamental cycles that are not edge-disjoint.

size 1000 each. The results are listed in Table 6.2.
There occur numerical problems in some of the samples, so that these samples

could not contribute to the computation of the probability. But the number of
these samples is always less than 4.5% of the sample size.

The more fundamental cycles are contained in the network the more time con-
suming the computation of the solutions of the polynomial systems in Singular
becomes, explaining the increase of the computing time. Moreover, in the test case
concerning the network with three fundamental cycles there have to be solved three
times more polynomial systems per sample than in the test case concerning the
network with two fundamental cycles.

Furthermore, Table 6.2 shows that the variance and the standard deviation is
sufficiently small.

In Figure 6.3 the moving average of the probability of feasibility with respect to
the number of samples is plotted. The probability computed with spheric-radial
decomposition is depicted in blue, whereas the probability computed with pure
Monte Carlo sampling is drawn in green. It is easily seen that the approach using
spheric-radial decomposition converges faster than the approach using pure Monte
Carlo sampling. Moreover, Figure 6.3 indicates that far less than 1000 samples are
needed to get a meaningful probability when using spheric-radial decomposition.

It has already been mentioned that not all of the systems to be solved dur-
ing spheric-radial decomposition have a solution and that one advantage of the
approach using Gröbner bases in comparison to numerical methods is, that it is
much faster in detecting infeasibility of polynomial systems. The average number
of systems without solution over the 10 test series is 33.2 for the network with two
fundamental cycles depicted in Figure 6.2(a) and 782.2 for the network with three
fundamental cycles depicted in Figure 6.2(b). The infeasible polynomial systems
occurring during the computations concerning the network with two fundamental
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Figure 6.3: Moving average of the probability computed with spheric-radial de-
composition (blue) and with pure Monte Carlo sampling (green) with respect to
the number of samples for the test network with two fundamental cycles (Fig-
ure 6.2(a)).

cycles are “solved” 700 times faster using the function lex_solve of Singular
than a numerical solver (in Python) needs to detect infeasibility. Taking into ac-
count the high number of times this happens, this fact becomes even more crucial.

If networks with more than three fundamental cycles that are not edge-disjoint
are considered, the coefficients of the polynomials in the Gröbner basis reach a
size with that the polynomial systems become numerically unstable. Hence, too
many samples can not be solved and the probabilities computed are unreliable.
In [47, 85, 86, 89] the same observation was made when using Gröbner bases for
solving the load flow problem of electrical networks.



Chapter 7

Explicit Representation of the Set
of Feasible Load Vectors

As already mentioned in the introduction it is an task of high importance for
parametric optimization to identify an explicit representation of the set of feasi-
ble load vectors. Moreover, it is possible to include this representation into the
computation of the probability of feasibility in Chapter 6. However, the required
computations are formidable and the representation obtained becomes quite hard
to interpret.

To determine an explicit representation of the set of feasible load vectors equa-
tion (5.1) has to be solved parametrically with parameter qnom. Afterwards, these
solutions can be inserted into the inequalities (5.2) – (5.4) and one gets a system
of inequalities that determines the set of feasible load vectors.

To solve equation (5.1) parametrically the absolute values have to be resolved.
Again, Proposition 5.7 can be utilized to reduce the number of systems to be con-
sidered. For ideals generated by the rows of these polynomial systems in R[qnom][z]
a disjoint, reduced comprehensive Gröbner system w.r.t. the lexicographic order-
ing is computed yielding polynomial systems that are much easier to solve. For
these computations the library grobcov [88] of the computer algebra system Sin-
gular [34] can be used. The function cgsdr in that library uses the algorithm
proposed in [64]. Consider a branch (V (E) \ V (N),G) of such a comprehensive
Gröbner system. The elements of E and N are polynomials in qnom. Hence, with
the additional condition that qnom

u > 0 for u ∈ V−, qnom
u < 0 for u ∈ V+ and

qnom
u = 0 for u ∈ V0, the set V (E) \ V (N) can be empty. These branches do
not have to be considered any further. Since the lexicographic ordering is used
the polynomial system of the branches of the comprehensive Gröbner systems are
in triangular form. The univariate polynomial equations of these systems can be
solved with the function solve of MuPAD in Matlab [82].

The procedure is summarized in the following algorithm. The set of load
vectors qnom+ for that qnom and the corresponding z fulfill inequalities (5.2) – (5.4)
is denoted Z (z).

72
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Algorithm 7.1.

Input: Matrices A+ and Φ and vectors p+ and p+ representing the network, a
DFS-tree T rooted in the reference node, set of feasible flow directions
S.

Output: Explicit description of the set of feasible load vectors M

M := ∅
FOR s ∈ S DO

F := ATN
(
A−1
B

)T
ΦB diag(sB)

(
A−1
B (qnom −ANz)

)2
− ΦN diag(sN)z2

I :=
〈
F1, . . . ,F|A(T )|

〉
⊆ R[qnom][z]

G̃ := disjoint, reduced comprehensive Gröbner system of I w.r.t. the lexico-
graphic ordering
Delete branches (V (E) \ V (N),G) from G̃ with V (E) \ V (N) = ∅ (under
the condition qnom

u > 0 for u ∈ V−, qnom
u < 0 for u ∈ V+ and qnom

u = 0 for
u ∈ V0)
FOR EACH branch (V (E) \ V (N),G) of G̃ DO

solutions := set of solutions of the parametric polynomial system of the
polynomials in G

FOR EACH Q0,N (qnom) ∈ solutions DO
X :=

{
qnom+ : diag(sB)

(
A−1
B (qnom −ANQ0,N (qnom))

)
≥ 0

∧ diag(sN)Q0,N (qnom) ≥ 0}
M := M ∪

(
X ∩ Z (Q0,N (qnom)) ∩ (V (E) \ V (N))

∩
{
qnom+ : 1T qnom+ = 0

})
RETURN M

A drawback of this procedure is that networks with more than two fundamental
cycles that are not edge-disjoint cannot be tackled by the computer 1 used because
it runs out of memory.

The procedure is demonstrated on an example.

Example 7.2. Consider the network depicted below.

u0

u1

u2

u3

a1

a2

a3a4

a5

qnom
u0

qnom
u1

qnom
u2

qnom
u3

1Windows system equipped with Intel(R) Core(TM) i7 CPU @ 2.60GHz and 8GB RAM
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To simplify notation and to shorten formulas by reducing the length of coefficients,
the pressure drop coefficients of the pipes are assumed to be 1. The set of feasible
load vectors then reads

M =
{

qnom+ : 1T qnom+ = 0,

∃ z such that
|z1| z1 =

∣∣qnom
u1

+ qnom
u2

+ qnom
u3
− z1

∣∣ (qnom
u1

+ qnom
u2

+ qnom
u3
− z1

)
+
∣∣qnom

u2
+ qnom

u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
|z2| z2 =

∣∣qnom
u2

+ qnom
u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
+
∣∣qnom

u3
− z2

∣∣ (qnom
u3
− z2

)
(pu1)2 ≥ (pu2)2 +

∣∣qnom
u2

+ qnom
u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
(pu1)2 ≥ (pu3)2 +

∣∣qnom
u2

+ qnom
u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
+
∣∣qnom

u3
− z2

∣∣ (qnom
u3
− z2

)
(pu2)2 ≥ (pu1)2 −

∣∣qnom
u2

+ qnom
u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
(pu2)2 ≥ (pu3) +

∣∣qnom
u3
− z2

∣∣ (qnom
u3
− z2

)
(pu3)2 ≥ (pu1)2 −

∣∣qnom
u2

+ qnom
u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
−
∣∣qnom

u3
− z2

∣∣ (qnom
u3
− z2

)
(pu3)2 ≥ (pu2)−

∣∣qnom
u3
− z2

∣∣ (qnom
u3
− z2

)
(pu0)2 ≤ (pu1)2 +

∣∣qnom
u1

+ qnom
u2

+ qnom
u3
− z1

∣∣ (qnom
u1

+ qnom
u2

+ qnom
u3
− z1

)
(pu0)2 ≤ (pu2)2 +

∣∣qnom
u1

+ qnom
u2

+ qnom
u3
− z1

∣∣ (qnom
u1

+ qnom
u2

+ qnom
u3
− z1

)
+
∣∣qnom

u2
+ qnom

u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
(pu0)2 ≤ (pu3)2 +

∣∣qnom
u1

+ qnom
u2

+ qnom
u3
− z1

∣∣ (qnom
u1

+ qnom
u2

+ qnom
u3
− z1

)
+
∣∣qnom

u2
+ qnom

u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
+
∣∣qnom

u3
− z2

∣∣ (qnom
u3
− z2

)
(pu0)2 ≥ (pu1)2 +

∣∣qnom
u1

+ qnom
u2

+ qnom
u3
− z1

∣∣ (qnom
u1

+ qnom
u2

+ qnom
u3
− z1

)
(pu0)2 ≥ (pu2)2 +

∣∣qnom
u1

+ qnom
u2

+ qnom
u3
− z1

∣∣ (qnom
u1

+ qnom
u2

+ qnom
u3
− z1

)
+
∣∣qnom

u2
+ qnom

u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
(pu0)2 ≥ (pu2)2 +

∣∣qnom
u1

+ qnom
u2

+ qnom
u3
− z1

∣∣ (qnom
u1

+ qnom
u2

+ qnom
u3
− z1

)
+
∣∣qnom

u2
+ qnom

u3
− z1 − z2

∣∣ (qnom
u2

+ qnom
u3
− z1 − z2

)
+
∣∣qnom

u3
− z2

∣∣ (qnom
u3
− z2

) }
by Theorem 5.1. The set of load vectors qnom+ for that qnom and corresponding

(z1, z2) fulfill the inequalities in above description is denoted Z (z1, z2).
The network contains exactly one entry node, u0, this means that the flow along

arcs a1 and a4 has to be directed away from node u0 by (vi) of Proposition 5.7.
The feasible flow directions along arcs a2, a3 and a5 are shown below while the
infeasible flow directions are listed in Figure A.3 in Appendix A.3.
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Direction 1 Direction 2 Direction 3 Direction 4

Now, the different flow directions are considered separately. The first direction
is discussed in more detail, but for the remaining directions only the results are
listed. The superscripts in brackets indicate the flow direction to which the for-
mulas belong.

Direction 1: Q0,a1 = qnom
u1 +qnom

u2 +qnom
u3 −Q0,a4 ≥ 0, Q0,a2 = qnom

u2 +qnom
u3 −Q0,a4−

Q0,a5 ≥ 0, Q0,a3 = qnom
u3 −Q0,a5 ≥ 0, Q0,a4 = z1 ≥ 0, Q0,a5 = z2 ≥ 0

Pressure drop polynomials:

h
(1)
1 =

(
qnom
u1 + qnom

u2 + qnom
u3 − z1

)2
+
(
qnom
u2 + qnom

u3 − z1 − z2
)2
− z2

1

h
(1)
2 =

(
qnom
u2 + qnom

u3 − z1 − z2
)2

+
(
qnom
u3 − z2

)2
− z2

2

Comprehensive Gröbner system of
〈
h

(1)
1 , h

(1)
2

〉
⊆ R[qnom

u1 , qnom
u2 , qnom

u3 ][z1, z2]:

IF
(
qnom
u1

)2
+ 2qnom

u1 qnom
u2 + 3qnom

u1 qnom
u3 +

(
qnom
u2

)2
+ 3qnom

u2 qnom
u3 + 2

(
qnom
u3

)2
6= 0:

g
(1)
1 =

(
4
(
qnom
u1

)2 + 8qnom
u1 qnom

u2 + 16qnom
u1 qnom

u3 + 4
(
qnom
u2

)2 + 16qnom
u2 qnom

u3 + 16
(
qnom
u3

)2)
z2

2

+
(
4
(
qnom
u1

)3 + 4
(
qnom
u1

)2
qnom
u2 − 4qnom

u1

(
qnom
u2

)2 − 24qnom
u1 qnom

u2 qnom
u3

−24qnom
u1

(
qnom
u3

)2 − 4
(
qnom
u2

)3 − 24
(
qnom
u2

)2
qnom
u3 − 40qnom

u2

(
qnom
u3

)2 − 24
(
qnom
u3

)3)
z2

+
(
qnom
u1

)4 − 2
(
qnom
u1

)2 (
qnom
u2

)2 − 4
(
qnom
u1

)2
qnom
u2 qnom

u3 + 8qnom
u1 qnom

u2

(
qnom
u3

)2
+ 8qnom

u1

(
qnom
u3

)3 +
(
qnom
u2

)4 + 4
(
qnom
u2

)3
qnom
u3 + 12

(
qnom
u2

)2 (
qnom
u3

)2
+ 16qnom

u2

(
qnom
u3

)3 + 8
(
qnom
u3

)4
g

(1)
2 =

(
2qnom
u1 + 2qnom

u2 + 2qnom
u3

)
z1 − 2qnom

u3 z2 −
(
qnom
u1

)2 − 2qnom
u1 qnom

u2 − 2qnom
u1 qnom

u3

−
(
qnom
u2

)2 − 2qnom
u2 qnom

u3

IF qnom
u1 + qnom

u2 + 2qnom
u3 = 0 AND qnom

u3 6= 0:

g
(1)
1 = 2

(
qnom
u3

)2
z2 −

(
qnom
u2

)2
qnom
u3 − 2qnom

u2

(
qnom
u3

)2 − 2
(
qnom
u3

)3
g

(1)
2 = qnom

u3 z1 + qnom
u3 z2
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IF qnom
u3 = 0 AND qnom

u1 + qnom
u2 = 0:

g
(1)
1 = z2

1 + 2z1z2 − 2qnom
u2 z1 + z2

2 − 2qnom
u2 z2 +

(
qnom
u2

)2

IF qnom
u1 + qnom

u2 + qnom
u3 = 0 AND qnom

u1 qnom
u3 + qnom

u2 qnom
u3 + 2

(
qnom
u3

)2
6= 0:

g
(1)
1 = 2qnom

u3 z2 −
(
qnom
u3

)2
g

(1)
2 = z2

1 + 2z1z2 +
(
−2qnom

u2 − 2qnom
u3

)
z1 + z2

2 +
(
−2qnom

u2

)
z2 +

(
qnom
u2

)2 + 2qnom
u2 qnom

u3

Since nodes u1, u2 and u3 are exit nodes, qnom
1 , qnom

2 , qnom
3 ≥ 0 holds. Thus, the

condition
(
qnom
u1

)2
+2qnom

u1 qnom
u2 +3qnom

u1 qnom
u3 +

(
qnom
u2

)2
+3qnom

u2 qnom
u3 +2

(
qnom
u3

)2
= 0, the

only way not to be in the first branch, is only fulfilled with qnom
1 = qnom

2 = qnom
3 = 0.

Obviously, this case is irrelevant, because this would mean that there is no gas flow
in the network and hence, the first branch is the only relevant branch. In what
follows the irrelevant branches will be ignored and for the remaining orientations
they will not even be presented here.

Moreover, the basis of the first branch, set-theoretic the biggest one, has the
shape mentioned in the Shape Lemma 2.35 while the smaller branches have not.

The two roots of g(1)
1 = 0, g(1)

2 = 0 of the first branch are
(

Q
(1,i)
0,a4

(qnom) , Q
(1,i)
0,a5

(qnom)
)

for i = 1, 2 with

Q
(1,i)
0,a5 (qnom) := 1

2
((

qnom
u1

)2 + 2qnom
u1 qnom

u2 + 4qnom
u1 qnom

u3 +
(
qnom
u2

)2 + 4qnom
u2 qnom

u3 + 4
(
qnom
u3

)2)(
(−1)i 2

√
qnom
u3

(
qnom
u1 + qnom

u2 + qnom
u3

)3
√
−
(
qnom
u1

)2 − qnom
u1 qnom

u3 +
(
qnom
u2

)2 + 3qnom
u2 qnom

u3 +
(
qnom
u3

)2
+qnom

u1

(
qnom
u2

)2 − (qnom
u1

)2
qnom
u2 + 6qnom

u1

(
qnom
u3

)2 + 10qnom
u2

(
qnom
u3

)2
+6
(
qnom
u2

)2
qnom
u3 −

(
qnom
u1

)3 +
(
qnom
u2

)3 + 6
(
qnom
u3

)3 + 6qnom
u1 qnom

u2 qnom
u3

)
Q

(1,i)
0,a4 (qnom) := 1

2
(
qnom
u1 + qnom

u2 + qnom
u3

) (2qnom
u3 Q

(1,i)
0,a5 (qnom) +

(
qnom
u1

)2 + 2qnom
u1 qnom

u2

+2qnom
u1 qnom

u3 +
(
qnom
u2

)2 + 2qnom
u2 qnom

u3

)
.

This implies that the set of feasible load vectors that indicate a gas flow ac-
cording to the first direction is

M (1) :=
⋃
i=1,2

(
X(1,i) ∩ Z(1,i)

)
∩ Y (1) ∩

{
qnom+ : 1T qnom+ = 0

}
.

Here, X(1,i) contains the inequalities corresponding to the flow direction, Y (1) the
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parametric constraints of the branch and Z(1,i) the inequalities in Z
(
Q

(1,i)
0,a4 , Q

(1,i)
0,a5

)
:

X(1,i) :=
{
qnom+ : qnom

u1 + qnom
u2 + qnom

u3 −Q
(1,i)
0,a4 (qnom) ≥ 0, qnom

u2 + qnom
u3 −Q

(1,i)
0,a4 (qnom)

−Q(1,i)
0,a5 (qnom) ≥ 0, qnom

u3 −Q
(1,i)
0,a5 (qnom) ≥ 0, Q(1,i)

0,a4 (qnom) ≥ 0,
Q

(1,i)
0,a5 (qnom) ≥ 0

}
Y (1) :=

{
qnom+ :

(
qnom
u1

)2
+ 2qnom

u1 qnom
u2 + 3qnom

u1 qnom
u3 +

(
qnom
u2

)2
+ 3qnom

u2 qnom
u3

+2
(
qnom
u3

)2
6= 0

}
.

Direction 2: Q0,a1 = qnom
u1 +qnom

u2 +qnom
u3 −Q0,a4 ≥ 0, Q0,a2 = qnom

u2 +qnom
u3 −Q0,a4−

Q0,a5 ≥ 0, Q0,a3 = qnom
u3 −Q0,a5 ≤ 0, Q0,a4 = z1 ≥ 0, Q0,a5 = z2 ≥ 0

Pressure drop polynomials:

h
(2)
1 =

(
qnom
u1 + qnom

u2 + qnom
u3 − z1

)2
+
(
qnom
u2 + qnom

u3 − z1 − z2
)2
− z2

1

h
(2)
2 =

(
qnom
u2 + qnom

u3 − z1 − z2
)2
−
(
qnom
u3 − z2

)2
− z2

2

Relevant branch of the comprehensive Gröbner system of
〈
h

(2)
1 , h

(2)
2

〉
⊆

R[qnom
u1 , qnom

u2 , qnom
u3 ][z1, z2]:

IF qnom
u1 + qnom

u2 + qnom
u3 6= 0:

g
(2)
1 = 4z4

2 +
(
8qnom
u1 + 8qnom

u2

)
z3

2 +
(
−8qnom

u1 qnom
u2 − 16qnom

u1 qnom
u3 − 8

(
qnom
u2

)2 − 24qnom
u2 qnom

u3

−8
(
qnom
u3

)2)
z2

2 +
(
4
(
qnom
u1

)3 + 4
(
qnom
u1

)2
qnom
u2 + 8

(
qnom
u1

)2
qnom
u3 − 4qnom

u1

(
qnom
u2

)2
+8qnom

u1 qnom
u2 qnom

u3 + 16qnom
u1

(
qnom
u3

)2 − 4
(
qnom
u2

)3 + 16qnom
u2

(
qnom
u3

)2 + 8
(
qnom
u3

)3)
z2

+
(
qnom
u1

)4 − 2
(
qnom
u1 qnom

u2

)2 − 4
(
qnom
u1

)2
qnom
u2 qnom

u3 − 4
(
qnom
u1 qnom

u3

)2
− 8qnom

u1 qnom
u2

(
qnom
u3

)2 − 8qnom
u1

(
qnom
u3

)3 +
(
qnom
u2

)4 + 4
(
qnom
u2

)3
qnom
u3

− 8qnom
u2

(
qnom
u3

)3 − 4
(
qnom
u3

)4
g

(2)
2 =

(
2qnom
u1 + 2qnom

u2 + 2qnom
u3

)
z1 − 2z2

2 + 2qnom
u3 z2 −

(
qnom
u1

)2 − 2qnom
u1 qnom

u2 − 2qnom
u1 qnom

u3

−
(
qnom
u2

)2 − 2qnom
u2 qnom

u3 − 2
(
qnom
u3

)2
The four roots of g(2)

1 = 0, g(2)
2 = 0 of this branch are

(
Q

(2,i)
0,a4 (qnom) , Q(2,i)

0,a5 (qnom)
)
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for i = 1, . . . , 4 with

Q
(2,i)
0,a5 (qnom) := Rooti Of

(
4z4

2 +
(
8qnom
u1 + 8qnom

u2

)
z3

2 +
(
−8qnom

u1 qnom
u2 − 16qnom

u1 qnom
u3

−8
(
qnom
u2

)2 − 24qnom
u2 qnom

u3 − 8
(
qnom
u3

)2)
z2

2 +
(
4
(
qnom
u1

)3 + 4
(
qnom
u1

)2
qnom
u2

+8
(
qnom
u1

)2
qnom
u3 − 4qnom

u1

(
qnom
u2

)2 + 8qnom
u1 qnom

u2 qnom
u3 + 16qnom

u1

(
qnom
u3

)2
−4
(
qnom
u2

)3 + 16qnom
u2

(
qnom
u3

)2 + 8
(
qnom
u3

)3)
z2 +

(
qnom
u1

)4 − 2
(
qnom
u1 qnom

u2

)2
−4
(
qnom
u1

)2
qnom
u2 qnom

u3 − 4
(
qnom
u1 qnom

u3

)2 − 8qnom
u1 qnom

u2

(
qnom
u3

)2
−8qnom

u1

(
qnom
u3

)3 +
(
qnom
u2

)4 + 4
(
qnom
u2

)3
qnom
u3 − 8qnom

u2

(
qnom
u3

)3 − 4
(
qnom
u3

)4)
Q

(2,i)
0,a4 (qnom) := 1

2
(
qnom
u1 + qnom

u2 + qnom
u3

) (2
(
Q

(2,i)
0,a5 (qnom)

)2
− 2qnom

u3 Q
(2,i)
0,a5 (qnom) +

(
qnom
u1

)2
+2qnom

u1 qnom
u2 + 2qnom

u1 qnom
u3 +

(
qnom
u2

)2 + 2qnom
u2 qnom

u3 + 2
(
qnom
u3

)2)

The set of feasible load vectors that indicate a gas flow according to the second
direction is

M (2) :=
4⋃
i=1

(
X(2,i) ∩ Z(2,i)

)
∩ Y (2) ∩

{
qnom+ : 1T qnom+ = 0

}
with

X(2,i) :=
{
qnom+ : qnom

u1 + qnom
u2 + qnom

u3 −Q
(2,i)
0,a4 (qnom) ≥ 0, qnom

u2 + qnom
u3 −Q

(2,i)
0,a4 (qnom)

−Q(2,i)
0,a5 (qnom) ≥ 0, qnom

u3 −Q
(2,i)
0,a5 (qnom) ≤ 0, Q(2,i)

0,a4 (qnom) ≥ 0,
Q

(2,i)
0,a5 (qnom) ≥ 0

}
,

Y (2) :=
{
qnom+ : qnom

u1 + qnom
u2 + qnom

u3 6= 0
}
,

Z(2,i) :=Z
(
Q

(2,i)
0,a4 , Q

(2,i)
0,a5

)
.

Direction 3: Q0,a1 = qnom
u1 +qnom

u2 +qnom
u3 −Q0,a4 ≥ 0, Q0,a2 = qnom

u2 +qnom
u3 −Q0,a4−

Q0,a5 ≤ 0, Q0,a3 = qnom
u3 −Q0,a5 ≥ 0, Q0,a4 = z1 ≥ 0, Q0,a5 = z2 ≥ 0

Pressure drop polynomials:

h
(3)
1 =

(
qnom
u1 + qnom

u2 + qnom
u3 − z1

)2
−
(
qnom
u2 + qnom

u3 − z1 − z2
)2
− z2

1

h
(3)
2 = −

(
qnom
u2 + qnom

u3 − z1 − z2
)2

+
(
qnom
u3 − z2

)2
− z2

2

Relevant branch of the comprehensive Gröbner system of
〈
h

(3)
1 , h

(3)
2

〉
⊆

R[qnom
u1 , qnom

u2 , qnom
u3 ][z1, z2]:
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IF
(
qnom
u1

)2
+ 2qnom

u1 qnom
u2 + 3qnom

u1 qnom
u3 +

(
qnom
u2

)2
+ 3qnom

u2 qnom
u3 + 2

(
qnom
u3

)2
6= 0:

g
(3)
1 =

(
4
(
qnom
u1

)2 + 8qnom
u1 qnom

u2 + 16qnom
u1 qnom

u3 + 4
(
qnom
u2

)2 + 16qnom
u2 qnom

u3 + 16
(
qnom
u3

)2)
z2

2

+
(
4
(
qnom
u1

)3 + 4
(
qnom
u1

)2
qnom
u2 + 16

(
qnom
u1

)2
qnom
u3 − 4qnom

u1

(
qnom
u2

)2 + 8qnom
u1 qnom

u2 qnom
u3

+8qnom
u1

(
qnom
u3

)2 − 4
(
qnom
u2

)3 − 8
(
qnom
u2

)2
qnom
u3 − 8qnom

u2

(
qnom
u3

)2 − 8
(
qnom
u3

)3)
z2

+
(
qnom
u1

)4 − 2
(
qnom
u1 qnom

u2

)2 − 4
(
qnom
u1

)2
qnom
u2 qnom

u3 − 8
(
qnom
u1 qnom

u3

)2
− 8qnom

u1 qnom
u2

(
qnom
u3

)2 − 8qnom
u1

(
qnom
u3

)3 +
(
qnom
u2

)4 + 4
(
qnom
u2

)3
qnom
u3 + 4

(
qnom
u2 qnom

u3

)2
g

(3)
2 =

(
2qnom
u1 + 2qnom

u2 + 2qnom
u3

)
z1 − 2qnom

u3 z2 −
(
qnom
u1

)2 − 2qnom
u1 qnom

u2 − 2qnom
u1 qnom

u3

−
(
qnom
u2

)2 − 2qnom
u2 qnom

u3

The two roots of g(3)
1 = 0, g(3)

2 = 0 of this branch are
(
Q

(3i)
0,a4 (qnom) , Q(3i)

0,a5 (qnom)
)

for i = 1, 2 with

Q
(3i)
0,a5 (qnom) := 1

2
((

qnom
u1

)2 + 2qnom
u1 qnom

u2 + 4qnom
u1 qnom

u3 +
(
qnom
u2

)2 + 4qnom
u2 qnom

u3 + 4
(
qnom
u3

)2)(
(−1)i 2

√
qnom
u3

(
qnom
u1 + qnom

u2 + qnom
u3

)3
√(

qnom
u1

)2 + 3qnom
u1 qnom

u3 −
(
qnom
u2

)2 − qnom
u2 qnom

u3 +
(
qnom
u3

)2
+qnom

u1

(
qnom
u2

)2 − (qnom
u1

)2
qnom
u2 − 2qnom

u1

(
qnom
u3

)2 − 4
(
qnom
u1

)2
qnom
u3

+2qnom
u2

(
qnom
u3

)2 + 2
(
qnom
u2

)2
qnom
u3 −

(
qnom
u1

)3 +
(
qnom
u2

)3 + 2
(
qnom
u3

)3
−2qnom

u1 qnom
u2 qnom

u3

)
Q

(3i)
0,a4 (qnom) := 1

2
(
qnom
u1 + qnom

u2 + qnom
u3

) (2qnom
u3 Q

(3i)
0,a5 (qnom) +

(
qnom
u1

)2 + 2qnom
u1 qnom

u2

+2qnom
u1 qnom

u3 +
(
qnom
u2

)2 + 2qnom
u2 qnom

u3

)
The set of feasible load vectors that indicate a gas flow according to the third

direction is
M (3) :=

⋃
i=1,2

(
X(3,i) ∩ Z(3,i)

)
∩ Y (3) ∩

{
qnom+ : 1T qnom+ = 0

}
with
X(3,i) :=

{
qnom+ : qnom

u1 + qnom
u2 + qnom

u3 −Q
(3,i)
0,a4 (qnom) ≥ 0, qnom

u2 + qnom
u3 −Q

(3,i)
0,a4 (qnom)

−Q(3,i)
0,a5 (qnom) ≤ 0, qnom

u3 −Q
(3,i)
0,a5 (qnom) ≥ 0, Q(3,i)

0,a4 (qnom) ≥ 0,
Q

(3i)
0,a5 (qnom) ≥ 0

}
,

Y (3) :=
{
qnom+ :

(
qnom
u1

)2
+ 2qnom

u1 qnom
u2 + 3qnom

u1 qnom
u3 +

(
qnom
u2

)2
+ 3qnom

u2 qnom
u3

+2
(
qnom
u3

)2
6= 0

}
,

Z(3,i) :=Z
(
Q

(3,i)
0,a4 , Q

(3,i)
0,a5

)
.
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Direction 4: Q0,a1 = qnom
u1 +qnom

u2 +qnom
u3 −Q0,a4 ≥ 0, Q0,a2 = qnom

u2 +qnom
u3 −Q0,a4−

Q0,a5 ≤ 0, Q0,a3 = qnom
u3 −Q0,a5 ≥ 0, Q0,a4 = z1 ≥ 0, Q0,a5 = z2 ≤ 0

Pressure drop polynomials:

h
(4)
1 =

(
qnom
u1 + qnom

u2 + qnom
u3 − z1

)2
−
(
qnom
u2 + qnom

u3 − z1 − z2
)2
− z2

1

h
(4)
2 = −

(
qnom
u2 + qnom

u3 − z1 − z2
)2

+
(
qnom
u3 − z2

)2
+ z2

2

Relevant branch of the comprehensive Gröbner system of
〈
h

(4)
1 , h

(4)
2

〉
⊆

R[qnom
u1 , qnom

u2 , qnom
u3 ][z1, z2]:

IF q1 + q2 + q3 6= 0:
g

(4)
1 = 4z4

2 +
(
−8qnom

u1 − 8qnom
u2 − 16qnom

u3

)
z3

2 +
(
−8
(
qnom
u1

)2 − 8qnom
u1 qnom

u2 + 8qnom
u2 qnom

u3

+16
(
qnom
u3

)2)
z2

2 +
(
4
(
qnom
u1

)3 + 4
(
qnom
u1

)2
qnom
u2 + 16

(
qnom
u1

)2
qnom
u3 − 4qnom

u1

(
qnom
u2

)2
+8qnom

u1 qnom
u2 qnom

u3 + 8qnom
u1

(
qnom
u3

)2 − 4
(
qnom
u2

)3 − 8
(
qnom
u2

)2
qnom
u3 − 8qnom

u2

(
qnom
u3

)2
−8
(
qnom
u3

)3)
z2 +

(
qnom
u1

)4 − 2
(
qnom
u1 qnom

u2

)2 − 4
(
qnom
u1

)2
qnom
u2 qnom

u3 − 8
(
qnom
u1 qnom

u3

)2
− 8qnom

u1 qnom
u2

(
qnom
u3

)2 − 8qnom
u1

(
qnom
u3

)3 +
(
qnom
u2

)4 + 4
(
qnom
u2

)3
qnom
u3 + 4

(
qnom
u2 qnom

u3

)2
g

(4)
2 =

(
2qnom
u1 + 2qnom

u2 + 2qnom
u3

)
z1 + 2z2

2 − 2qnom
u3 z2 −

(
qnom
u1

)2 − 2qnom
u1 qnom

u2 − 2qnom
u1 qnom

u3

−
(
qnom
u2

)2 − 2qnom
u2 qnom

u3

The four roots of g(4)
1 = 0, g(4)

2 = 0 of this branch are
(
Q

(4,i)
0,a4 (qnom) , Q(4,i)

0,a5 (qnom)
)

for i = 1, . . . , 4 with
Q

(4,i)
0,a5 (qnom) := Rooti Of

(
4z4

2 +
(
−8qnom

u1 − 8qnom
u2 − 16qnom

u3

)
z3

2 +
(
−8
(
qnom
u1

)2
−8qnom

u1 qnom
u2 + 8qnom

u2 qnom
u3 + 16

(
qnom
u3

)2)
z2

2 +
(
4
(
qnom
u1

)3 + 4
(
qnom
u1

)2
qnom
u2

+16
(
qnom
u1

)2
qnom

3 − 4qnom
u1

(
qnom
u2

)2 + 8qnom
u1 qnom

u2 qnom
u3 + 8qnom

u1

(
qnom
u3

)2
−4
(
qnom
u2

)3 − 8
(
qnom
u2

)2
qnom
u3 − 8qnom

u2

(
qnom
u3

)2 − 8
(
qnom
u3

)3)
z2 +

(
qnom
u1

)4
−2
(
qnom
u1 qnom

u2

)2 − 4
(
qnom
u1

)2
qnom
u2 qnom

u3 − 8
(
qnom
u1 qnom

u3

)2
−8qnom

u1 qnom
u2

(
qnom
u3

)2 − 8qnom
u1

(
qnom
u3

)3 +
(
qnom
u2

)4 + 4
(
qnom
u2

)3
qnom
u3

+4
(
qnom
u2 qnom

u3

)2)
Q

(4,i)
0,a4 (qnom) := 1

2
(
qnom
u1 + qnom

u2 + qnom
u3

) (−2Q
(4,i)
0,a5 (qnom)2 + 2qnom

3 Q
(4,i)
0,a5 (qnom)

+
(
qnom
u1

)2 + 2qnom
u1 qnom

u2 + 2qnom
u1 qnom

u3 +
(
qnom
u2

)2 + 2qnom
u2 qnom

u3

)
The set of feasible load vectors that indicate a gas flow according to the fourth

direction is

M (4) :=
4⋃
i=1

(
X(4,i) ∩ Z(4,i)

)
∩ Y (4) ∩

{
qnom+ : 1T qnom+ = 0

}
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with

X(4,i) :=
{
qnom+ : qnom

u1 + qnom
u2 + qnom

u3 −Q
(4,i)
0,a4 (qnom) ≥ 0, qnom

u2 + qnom
u3 −Q

(4,i)
0,a4 (qnom)

−Q(4,i)
0,a5 (qnom) ≤ 0, qnom

u3 −Q
(4,i)
0,a5 (qnom) ≥ 0, Q(4,i)

0,a4 (qnom) ≥ 0,
Q

(4,i)
0,a5 (qnom) ≤ 0

}
,

Y (4) :=
{
qnom+ : qnom

u1 + qnom
u2 + qnom

u3 6= 0
}
,

Z(4,i) :=Z
(
Q

(4,i)
0,a4 , Q

(4,i)
0,a5

)
.

As a conclusion, M can be restated as

M =
4⋃
j=1

M (j).
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Appendix A

Extension of Examples
Concerning Flow Directions

A.1 Infeasible Flow Directions of Example 5.9
Figure A.1 contains infeasible flow directions of the subgraph in Example 5.9. The
flow direction along arcs that are depicted in blue are already fixed. The flows
along the remaining arcs can be directed in 24 = 16 different ways, but only the
infeasible ones are shown in Figure A.1. The arcs which lead to infeasibility of the
flow direction are depicted in red.

In Figure A.1(a) the red arcs compose a cycle that is directed w.r.t. the flow
direction which contradicts (iv) of Proposition 5.7. The out-degree of the red
node in Figure A.1(b) and the in-degree of the red node in Figure A.1(c) and
Figure A.1(d) is zero, in contradiction to (iii) of Proposition 5.7.

(a) Directed Cycles

Figure A.1: Infeasible Flow Directions of Example 5.9.
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(b) Out-degree at the Red Node is Zero

(c) In-degree at the Red Node is Zero

(d) In-degree at the Red Node is Zero

Figure A.1: Infeasible Flow Directions of Example 5.9. (cont.)

A.2 Infeasible Flow Directions of Example 5.15
Figure A.2 contains infeasible flow directions of the network in Example 5.15. The
flows along the arcs can be directed in 26 = 64 different ways, but only the ones
violating (i) or (ii) of Proposition 5.7 or failing to serve every exit node are shown
in Figure A.2. The arcs which lead to infeasibility of the flow direction are depicted
in red.

The out-degree of the red node in Figure A.2(a) and the in-degree of the red
node in Figure A.2(b) is zero, in contradiction to (i) and (ii) of Proposition 5.7,
respectively. In Figure A.2(c) the red nodes are not reached by the gas.
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(a) Out-degree at the Red Entry Node is Zero

Figure A.2: Infeasible Flow Directions of Example 5.15.
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(b) In-degree at the Red Exit Node is Zero

Figure A.2: Infeasible Flow Directions of Example 5.15. (cont.)
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(b) In-degree at the Red Exit Node is Zero (cont.)

(c) Red Nodes are Not Reached

Figure A.2: Infeasible Flow Directions of Example 5.15. (cont.)
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A.3 Infeasible Flow Directions of Example 7.2
Figure A.3 contains infeasible flow directions of the network in Example 7.2. After
fixing the flow along the arcs incident to the unique entry node u0 the flows along
the remaining arcs can be directed in 23 = 8 different ways, but only the ones
violating the rules of Proposition 5.7 are shown in Figure A.3. The arcs which
lead to infeasibility of the flow direction are depicted in red.

In Figure A.3(a) the red arcs compose a cycle that is directed w.r.t. the flow
direction which contradicts (iv) of Proposition 5.7. The in-degree of the red node
in Figure A.3(b) is zero, in contradiction to (ii) of Proposition 5.7.

(a) Directed Cycle

(b) In-degree at the Red Exit Node is Zero

Figure A.3: Infeasible Flow Directions of Example 7.2.
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Data

Tables B.1 – B.3 contain the data of the networks used for the computations in
Section 6.2.

2 Cycles 3 Cycles
Entry [50, 60] [50, 60]
Exit1 [57, 60] [57, 60]
Exit2 [57, 60] [58, 60]
Innode1 [2, 100] [2, 100]
Innode2 – [2, 100]

Table B.1: Pressure Bounds at the Nodes in Bar.

2 Cycles 3 Cycles
a1 0.00039685 0.00039685
a2 0.00039648 0.00039648
a3 0.00039666 0.00039515
a4 0.00039631 0.00039617
a5 0.00039614 0.00039581
a6 – 0.00040323
a7 – 0.00039614

Table B.2: Pressure Drop Coefficients of the Arcs.

2 Cycles 3 Cycles
Exit1 14 10
Exit2 16 60

Table B.3: Mean value of the Distribution of the Loads at the Exits in 1000 m3 h−1.
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2 Cycles 3 Cycles
Exit1 1 100
Exit2 100 100

Table B.4: Variance of the Exit Loads.

For this tests it is assumed that the exit loads at the distinct exit nodes are
uncorrelated. Hence, the covariance matrix is a diagonal matrix whose nonzero
entries are the variances of the exit loads. The variances are listed in Table B.4.
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