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Abstract. Potential-based flows are an extension of classical network flows
in which the flow on an arc is determined by the difference of the potentials
of its incident nodes. Such flows are unique and arise, for example, in energy
networks. Two important algorithmic problems are to determine whether there
exists a feasible flow and to maximize the flow between two designated nodes.
We show that these problems can be solved for the single source and sink case
by reducing the network to a single arc. However, if we additionally consider
switches that allow to force the flow to 0 and decouple the potentials, these
problems are NP-hard. Nevertheless, for particular series-parallel networks, one
can use algorithms for the subset sum problem. Moreover, applying network
presolving based on generalized series-parallel structures allows to significantly
reduce the size of realistic energy networks.

1. Introduction

This paper deals with algorithmic questions related to potential-based flows, which
form an extension of classical network flows. Given a directed graph, these flows
depend on the differences of potentials at the incident nodes. Such potential-based
flows often appear in energy networks like in gas, power, or water transportation.
In contrast to the classical case, the flow in such networks follows physical laws that
make it unique. On the one side, this seems to make the analysis easier, but on
the other side, the dependency between the flows and potentials is often nonlinear,
which leads to a harder class of optimization problems.

Motivated by their physical applications, such potential-based networks have
been studied repeatedly in the literature. One of the earliest references seems to
be Birkhoff and Diaz [3]. Clearly, there is an abundance of further articles dealing
with the networks of particular applications. Research of potential-based networks
has mainly focused on two topics: uniqueness of the solutions and algorithms.
Uniqueness was studied, for instance, in [3], Collins et al. [12], and Maugis [29]; see
Section 3 below for a review. However, the cited articles also discuss algorithms to
compute the solution; see Rockafellar [32] for a general treatment.

In this paper, we extend these investigations by studying algorithmic questions
related to potential-based networks. In particular, we are interested in the following
two algorithmic problems: Compute a feasible flow, if it exists, and find a maximal
flow between two designated nodes. These two problems can be seen as a direct
analogue of the corresponding classical flow problems. In addition, we study networks
that may contain types of arcs that act as switches, i.e., it is possible to force the
flow to 0 and decouple the potentials on the corresponding nodes.
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We begin our study by introducing the model and its assumptions in Section 2.
In this section, we also explain the relation to gas, water, and power transmission
networks and review existing hardness results. We then treat passive networks, i.e.,
networks that do not contain switches, in Section 3. We show that networks that
contain a single source and sink can be reduced to an equivalent network with only
one arc. This allows to solve the above mentioned algorithmic problems efficiently.
Next, we introduce generalized series-parallel graphs in Section 4 and investigate
whether the two problems can be efficiently solved on this class of graphs. We
then turn to networks that may contain switches, which turn out to be harder to
handle. In Section 5, we discuss monotonicity properties of active networks and
their relation to Braess-paradoxes. Moreover, we discuss an approximate reduction
of the multiple source/sink to the single source/sink case. We then exploit the
favorable algorithmic properties of generalized series-parallel graphs and investigate
the structure of realistic energy networks by applying series-parallel reductions. The
computations in Section 6 show that using such presolving steps can considerably
reduce the size of realistic networks, highlighting the special role of series-parallel
network structures. In fact, we can reduce the size of large real-world gas networks
by up to 76 %.

In total, this paper provides analysis of the algorithmic questions related to
potential-based networks and shows that, on the one hand, the problems on passive
single-source and sink networks can be treated efficiently and, on the other hand,
investigates networks with switches. In fact, using presolving operations significantly
helps to reduce the size of realistic energy networks.

2. Basic Model

In this section, we present the general framework of potential-based flows and
illustrate it by explaining how the already mentioned examples of gas, power, and
water flows fit into this framework.

2.1. Potential Networks. We define a potential network G as follows. It consists
of a directed graph G = (V,A) with node set V = V (G) and arc set A = A(G). To
each node v ∈ V a potential πv is assigned with lower and upper bounds πv, πv ∈ R,
πv ≤ πv, and to every arc a ∈ A a flow xa is assigned with lower and upper bounds
xa, xa ∈ R, xa ≤ xa. Note that the flow xa on an arc a = (u, v) can be negative
with the interpretation of flow against the direction of the arc, whereas flow from u
to v is modeled by positive flows. The arc set A is partitioned into arcs AL = AL(G)
representing so-called lines and arcs AS = AS(G) representing switches. We call a
potential network passive if AS = ∅ holds. Otherwise, we call it active.

For every switch-arc a = (u, v) ∈ AS , we have a control variable ya ∈ {0, 1}
specifying the state of the switch. If ya = 1, then πu = πv has to hold and the
flow xa is not restricted by the incident potentials. Otherwise, if ya = 0, the flow on
the arc has to be 0, i.e., xa = 0, and the potentials are decoupled from (1) below.
In these cases, the switch is said to be “on” and “off”, respectively.

For a line-arc a = (u, v) ∈ AL, the flow xa depends on the potential difference at
its incident nodes u and v:

πu − πv = βa ψ(xa). (1)

Here, βa > 0 is an arc specific constant. Moreover, ψ : R→ R is a potential function
that is the same for all arcs a ∈ AL and has the following properties:

(1) ψ is continuous,
(2) ψ is strictly increasing, and
(3) ψ is an odd function, i.e., ψ(−x) = −ψ(x).
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The potential function ψ depends on the application; we will later see typical choices
for ψ in natural gas, water, and power networks, where potential functions have
the properties (1)–(3). Note that different line arcs in a potential network are only
distinguished by their values of βa. The assumptions that ψ is continuous and
strictly increasing are natural in the mentioned physical contexts. Note that ψ−1
exists under these assumptions. Moreover, the assumption that ψ is odd makes the
situation symmetric with respect to the direction of the flow.

If ψ is positively homogeneous of order r > 0, i.e.,

ψ(λx) = λr ψ(x), λ > 0,

we call the potential network homogeneous. Homogeneity is motivated by physical
laws, and its order r depends on the different applications. Moreover, it implies
that ψ is of the form

ψ(x) = α sgn(x) |x| r, (2)
for some constant α = ψ(1) > 0 and order r > 0.

We also assume that both ψ and ψ−1 are efficiently computable. We note that
when we write about computational complexity, e.g., in the literature review in
Section 2.4, we take the classical Turing machine as our computational model. For
the applications with more involved potential functions ψ (e.g., in water networks),
another model such as the BSS-machine [4, 5] or a real RAM [37]. We refrain from
these extensions, however, since for our positive results we do not need to compute
ψ−1. This would require to compute roots, which need to be approximated in all of
these models. This can be done in polynomial time if we allow for a fixed ε > 0 for
the approximation error as discussed in [1].

Overall, given the potentials at the incident nodes, we can compute the flow on
an arc by

xa = ψ−1
(
(πu − πv)/βa

)
.

Finally, note that the name potential is motivated by the physical applications.
The term is also used with a different meaning for the dual variables of the classical
flow problem.

2.2. Potential-Based Flows. A potential-based flow (x, π, y) in a potential net-
work G = (V,A) consists of a flow x ∈ RA, potentials π ∈ RV , and control variables
y ∈ {0, 1}AS . We are mainly interested in the setting with one source s ∈ V and
one sink t ∈ V , where s 6= t. For a potential-based s-t-flow (x, π, y) we require flow
conservation at the inner nodes,∑

a∈δout(v)

xa −
∑

a∈δin(v)

xa = 0, v ∈ V \ {s, t} ,

where δout(v) := {(v, w) ∈ A}, δin(v) := {(u, v) ∈ A}. The flow value is defined as
the net amount of flow sent from the source:

val(x, π, y) :=
∑

a∈δout(s)

xa −
∑

a∈δin(s)

xa.

Notice that this amount might be negative, meaning that −val(x, π, y) flow is
actually being sent from t to s. If the network is passive, we sometimes omit y, i.e.,
we write val(x, π).
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We call (x, π, y) a feasible potential-based s-t-flow if it satisfies the following
constraints:∑

a∈δout(v)

xa −
∑

a∈δin(v)

xa = 0, v ∈ V \ {s, t}, (3a)

πu − πv = βa ψ(xa), a = (u, v) ∈ AL, (3b)
−F ya ≤ xa ≤ F ya, a ∈ AS , (3c)

(πu − πv) (1− ya) ≤ πu − πv ≤ (πu − πv) (1− ya), a = (u, v) ∈ AS , (3d)
xa ∈ [xa, xa], a ∈ A, (3e)
πv ∈ [πv, πv], v ∈ V, (3f)
ya ∈ {0, 1} , a ∈ AS . (3g)

In (3c), F is an upper bound on the flow on any arc. Further flow bounds are given
by xa, xa or can be derived using the potential bounds πv, πv and (3b). Note that
the system implies that if ya = 1 for a switch arc a ∈ AS , then πu = πv and the
flow is not restricted by (3c). Similarly, if ya = 0, then xa = 0 and the potentials
are not restricted by (3d).

Note that (sub)networks that only consist of switches allow to represent classical
flows. This also implies that the flow is not necessarily unique in these cases (see
Section 3 below for a discussion of uniqueness in passive networks). But such
(sub)networks are not realistic, and it makes sense to exclude them. The methods
developed below, however, do not need this exclusion.

In the remainder of this section, we discuss different specific examples of the
setting described so far. These examples are given by gas, water, and power networks,
which illustrate the broad applicability of our model and results. In all of these
cases, the models are an approximation of a description of the relevant physics,
typically described by partial differential equations; see, e.g., Hante et al. [18].

Example 2.1 (Gas Transport Networks). In stationary models of gas transport
networks, lines correspond to gas pipes and switches model valves. In this context,
potentials at nodes correspond to squares of gas pressures and flows are gas mass flows.
The relation between mass flows and gas pressure squares at gas pipes a = (u, v) ∈ AL
is typically approximated by pressure loss functions of the type

πu − πv = βa ψ(xa), ψ(xa) = |xa|xa. (4)

The arc-specific constant βa is positive and depends on technical parameters of the
pipe like its diameter, its length, or the roughness of its inner wall, etc. For more de-
tails on modeling stationary gas flow in pipeline networks see the chapter Fügenschuh
et al. [15] of the book Koch et al. [23] and the references therein.

Note that (4) assumes a constant elevation of the network. However, we can also
treat the following model, which is one of the most accurate algebraic approximations
of gas flow on a pipe, see again the chapter [15] in [23] for a derivation.

Observation 2.2. Let hv be the height of node v ∈ V . The algebraic gas flow model

πv =

(
πu − Λa |xa|xa

eSa − 1

Sa

)
e−Sa , (5)

where Λa are arc-dependent constants and Sa = δ (hv − hu), δ > 0, is a scaled
version of the potential-flow model (4).

Indeed, multiplying (5) with eδhv , we obtain

eδ hvπv = eδ huπu − Λa |xa|xa
(1− e−Sa)

Sa
eδhv .

This is just a scaled version of (4) for an appropriate definition of βa.
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Example 2.3 (Water Transport Networks). In water networks, potentials corre-
spond to hydraulic heads. The head-loss model is also based on (1) with

ψ(xa) = sgn(xa) |xa| 1.852

and arc-specific constants βa > 0. For a more detailed description we refer to Larock
et al. [26].

Example 2.4 (Lossless DC Power Flow Networks). In lossless DC power flow
networks, the flow model is linear, but also satisfies all properties discussed above.
In this context, βa = 1/Ba is the reciprocal of the susceptance Ba of the line a ∈ AL
and the linear potential function is given by ψ(xa) = xa. See Kirschen and Strbac
[22] as well as Bienstock [2] for a discussion of this and the more involved AC case.

2.3. Algorithmic Problems for Potential-Based Flows. We now introduce
two natural algorithmic problems for potential-based s-t-flows that we consider in
the following. The first problem deals with the question whether a feasible flow
exists.

s-t-FlowFeasibility
Input: A potential network G.
Problem: Is there a feasible potential-based s-t-flow (x, π, y) for G?

Recall that a feasible potential-based flow consists of (x, π, y) such that the
conditions in (3) are satisfied. Moreover, we consider the problem to maximize the
flow value as well.

s-t-MaxFlow
Input: A potential network G.
Problem: Find a feasible potential-based s-t-flow (x, π, y) for G of
maximal value val(x, π, y).

These two problems are natural analogues of algorithmic problems for classical
flows. One could also consider the analogue of the min-cost flow problem, but this
seems to be less natural, since the flow is unique on passive networks.

2.4. Hardness. In this subsection, we discuss the computational complexity of
the s-t-FlowFeasibility and s-t-MaxFlow problems. To the best of our knowledge,
the complexity of these problems has not been studied in the settings of potential
flows that we use. However, there are results known for analogous feasibility and
maximization problems for gas and DC power networks. These complexity results
carry over to the potential flow setting—at least in the cases that we will mention
now.

Lehmann et al. [28] showed that the DC power analogue of s-t-FlowFeasibility
is strongly NP-hard for planar graphs of maximum degree 3. They also show
that a generalization of s-t-MaxFlow with at least two sources and sinks cannot
be approximated in polynomial time better than 2(logn)1−ε

for an ε > 0 unless
the problems in NP can be solved in quasi-polynomial deterministic time. For
an arbitrary number of sources and sinks, they show that their analogue of the
s-t-FlowFeasibility problem is weakly NP-hard even on cactus graphs of maximum
degree 3. For AC networks, the same authors show in a different paper [27] that an
analogue of the s-t-FlowFeasibility problem is hard even on trees.

For gas networks, Szabó [38] showed that for a feasibility problem that he calls the
active gas nomination validation problem, which is analogous to s-t-FlowFeasibility, is
weakly NP-hard even for series-parallel networks. For arbitrary networks, Humpola
[20] showed that a similar problem to s-t-FlowFeasibility, which he calls the topology
optimization problem is strongly NP-hard.
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3. Passive Networks

In this section, we discuss passive potential networks. A known property of these
networks is that, in the absence of potential and flow bounds, every balanced set
of supplies and demands can be transported and once a single potential in every
connected component is fixed, the solutions are uniquely determined. This statement
holds for the case of node balances, i.e., the net outflow of a node u ∈ V is required
to be equal to a given balance bu. Given node balances b ∈ RV with

∑
v∈V bv = 0,

a potential-based b-flow (x, π) satisfies (1) and flow conservation constraints∑
a∈δout(v)

xa −
∑

a∈δin(v)

xa = bv, v ∈ V. (6)

In classical network flow theory, scaling a given b-flow x by some parameter λ ∈ R
yields a λb-flow λx. The following observation is a straightforward generalization to
potential-based flows in homogeneous passive networks.

Observation 3.1. Consider a homogeneous passive network of order r > 0 with
node balances b ∈ RV and a potential-based b-flow (x, π). Then, for any λ ∈ R,
(λx, sgn(λ) |λ|r π) is a potential-based λb-flow.

Proof. The observation follows directly from Equations (1) and (2). �

A potential-based b-flow is said to be feasible if, in addition to (6), it obeys the
flow bounds (3e) and potential bounds (3f).

Theorem 3.2 (Collins et al. [12] and Ríos-Mercado et al. [31]). Let G be a passive
connected potential network and let b ∈ RV be a vector of node balances with∑

v∈V bv = 0. Furthermore, assume that no potential and flow bounds are given and
that for a given node s ∈ V the potential πs is fixed. Then, there exists a unique
feasible potential-based b-flow (x, π).

One can prove this theorem in different ways: The approach of [31] shows that
the corresponding solution operators are monotone, which implies that a reduced
system of equations has a unique solution.

Here we recall the historically earlier approach of [12] and [29], based on a classical
convex min-cost flow problem. This convex min-cost flow problem and its dual turn
out to be useful for various purposes. Let Ψ : R→ R with

Ψ(x) :=

∫ x

0

ψ(ξ) dξ,

which is strictly convex as ψ is strictly increasing. The convex optimization problem
is given as

min
x

∑
a∈A

βaΨ(xa) (7a)

s.t.
∑

a∈δout(v)

xa −
∑

a∈δin(v)

xa = bv, v ∈ V. (7b)

Notice that the objective function (7a) is strictly convex. For Lagrangean multipli-
ers πv, v ∈ V , the corresponding Lagrange function reads

L(x, π) =
∑
a∈A

βaΨ(xa) +
∑

a=(u,v)∈A

xa(πv − πu) +
∑
v∈V

bvπv

=
∑

a=(u,v)∈A

(
βaΨ(xa) + xa(πv − πu)

)
+
∑
v∈V

bvπv.

The KKT conditions thus yield (1) as well as the flow conservation constraints (7b).
Fixing one potential makes the solution unique, which gives Theorem 3.2.
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For testing feasibility, the restriction that we do not consider potential and flow
bounds is not an obstacle due to the following observation, which follows directly
from Constraint (3b).

Lemma 3.3 (Szabó [38]). Let G be a passive potential network with node balances
b ∈ RV . If (x, π) is a potential-based b-flow, then (x, π + c1) is a potential-based
b-flow for every constant c ∈ R.

So, to check feasibility in a passive potential network, one can first ignore
potential bounds and compute a potential-based b-flow. If the flow bounds are
violated, there exists no feasible potential-based b-flow. Otherwise, one checks
whether the potentials can be shifted such that the flow becomes feasible for the
potential bounds.

For future reference, we state the following.

Lemma 3.4 ([29]). Consider a potential network and let the potential function be
positively homogeneous, i.e., ψ(x) = α sgn(x) |x|r for some α > 0 and r > 0. Then,
the Lagrange dual maxπ minx L(x, π) of (7) is given by

max
π

∑
v∈V

bvπv −
∑

a=(u,v)∈A

r

r + 1

|πu − πv|
r+1
r

(βa α)
1
r

 . (8)

Proof. Notice that for fixed π, taking the partial derivatives of L(x, π) w.r.t. the flow
variables xa, the inner minimum over these variables is attained by x∗ satisfying,
for each arc a = (u, v) ∈ A,

βaψ(x∗a) + πv − πu = 0 or, equivalently, x∗a = ψ−1
(
πu − πv
βa

)
.

Thus, the Lagrange dual can be rewritten as

max
π

∑
a=(u,v)∈A

(
βaΨ

(
ψ−1

(πu − πv
βa

))
+ ψ−1

(πu − πv
βa

)
(πv − πu)

)
+
∑
v∈V

bvπv.

For positively homogeneous ψ, we have

Ψ(x) =
α

r + 1
|x| r+1 and ψ−1(y) = sgn(y)

(
|y|
α

) 1
r

.

Thus, the first sum of the Lagrange dual’s objective is∑
a=(u,v)∈A

(
αβa
r + 1

(
|πu − πv|
αβa

) r+1
r

+ sgn(πu − πv)
(
|πu − πv|
αβa

) 1
r

(πv − πu)

)
.

Simplification yields (8). �

For later use, we note that, using the notation of the proof of Lemma 3.4, the
Lagrange dual can also be written as

max
π

∑
v∈V

bvπv − r
∑
a∈A

βa Ψ(x∗a). (9)

This duality is discussed in Rockafellar [32] in more detail and more generality.
Returning to the s-t-flow case, we can show that in this case passive potential

networks with a positively homogeneous potential function can equivalently be
represented by a single line. To make the statement of this result simpler, we use the
following shorthand notation. We say that a triple (xst, π̄s, π̄t) can be extended to a
potential-based flow if there exists a potential-based s-t-flow (x, π) with flow value
val(x, π) = xst such that πs = π̄s and πt = π̄t. We note that, due to Theorem 3.2,
these extensions are unique.
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Lemma 3.5. Let G be a homogeneous passive potential network of order r > 0
with two distinguished nodes s, t ∈ V . Assume (xst, πs, πt) with xst 6= 0 can
be extended to a potential-based s-t-flow. Then, for any λ ∈ R, the triple(
λxst, sgn(λ) |λ|r πs, sgn(λ) |λ|r πt

)
can be extended to a potential-based s-t-flow.

Proof. The stated result is an immediate consequence of Observation 3.1. �

The nice characterization of the space of solutions of the preceding lemma
immediately breaks down as soon as one introduces new element types (even non-
homogeneous passive elements) or allows multiple sources or sinks. We can, however,
prove that a homogeneous passive network with a single source and a single sink
has the same behavior as a single line, which has been already observed in different
settings, e.g., for water networks in Burgschweiger et al. [10].

Theorem 3.6. Let G be a homogeneous passive potential network of order r > 0
with two distinguished nodes s, t ∈ V . Then, there exists a constant βst such that a
triple (xst, πs, πt) can be extended to a potential-based s-t-flow if and only if

xst = ψ−1
(
(πs − πt)/βst

)
. (10)

Proof. Consider a potential-based s-t-flow (x′, π′) of value 1, that is, an optimal
solution x′ to (7) together with a corresponding optimal dual solution π′ to (8),
for node balances b ∈ RV with bs = −bt = 1 and bv = 0 for all v ∈ V \ {s, t}. By
Lemma 3.3, i.e., shifting the node potentials by −π′t, we may assume that π′t = 0.
Thus, the triple (1, π′s, 0) can be extended to the potential-based s-t-flow (x′, π′).

We define βst := π′s/ψ(1) and show that a triple (xst, πs, πt) can be extended
to a potential-based s-t-flow if and only if Equation (10) holds. Making use of
Lemma 3.3 once more, we may assume πt = 0. Now let

π̃s := ψ(xst)βst = sgn(xst) |xst| r ψ(1)βst = sgn(xst) |xst| r π′s.
By Lemma 3.5 the triple (xst, π̃s, 0) can be extended to a potential-based s-t-flow.
Moreover, due to Theorem 3.2, π̃s is the unique potential on s that allows this
extension. Hence, (xst, πs, 0) can be extended if and only if πs = π̃s. The latter
condition is equivalent to (10). �

We next show that for a homogeneous passive potential network, the s-t-MaxFlow
problem can be solved efficiently.

Theorem 3.7. Let G be a homogeneous passive potential network with upper and
lower bounds on the node potentials and flows. Then, there is an interval IG ⊆ R
such that a feasible potential-based s-t-flow of value xst exists if and only if xst ∈ IG.
Moreover, IG can be efficiently computed.

This theorem implies that the value of an s-t-MaxFlow and a corresponding
feasible potential-based s-t-flow can be efficiently computed.

Proof. Let x be a (not necessarily feasible) potential-based s-t-flow of value 1.
It follows from Observation 3.1 and Theorem 3.2 that in any potential-based
s-t-flow of value λ, the flow on line a ∈ A is equal to λxa. In particular, a
potential-based s-t-flow of value λ obeys the flow bounds [xa, xa] on a if and only
if λ ∈ [xa/xa, xa/xa] =: Ia. Therefore, there exists a potential-based s-t-flow of
value λ obeying all flow bounds if and only if λ ∈

⋂
a∈A Ia =: IA. Notice that the

interval IA can be computed in linear time.
We next deal with the bounds on node potentials. For this purpose, let π with

πs = 0 be the potential corresponding to the potential-based s-t-flow x of value 1.
By Observation 3.1 and Theorem 3.2, a potential-based s-t-flow of value λ obeys
the bounds [πv, πv] on v’s node potential, for some node v ∈ V , if and only if the
potential of the source node s is in [πv − λπv, πv − λπv] =: Jv. In particular, there
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is a potential-based s-t-flow of value λ obeying all bounds on node potentials if and
only if

⋂
v∈V Jv is non-empty, that is, if and only if

max
v∈V

(πv − λπv) ≤ min
v∈V

(πv − λπv). (11)

Notice that inequality (11) is fulfilled for some value λ ∈ R if and only if λ is
contained in an interval IV whose borders can be determined in time O(|V |2).

Summarizing, there is a feasible potential-based flow of value λ if and only
if λ ∈ IA ∩ IV and the interval IA ∩ IV can be efficiently computed. �

4. Series-Parallel Graphs

Series-parallel graphs often appear in applications, either directly or as substruc-
tures, see Section 6. In this section, we exploit their favorable properties for positive
results on passive and active potential-based networks. We describe them in their
directed form by a constructive characterization loosely following Eppstein [14].

Definition 4.1. An s-t-series-parallel graph (SPG) G is a directed graph with two
distinguished nodes s and t, called the source and sink of G, that can be created
from two SPGs using the following two operations:
• Parallel composition: Let X be an s1-t1-SPG and Y be an s2-t2-SPG. The parallel
composition of X and Y is an s-t-SPG P defined by merging the sources and
sinks of X and Y , respectively:

V (P ) := (V (X) ∪ V (Y ) ∪ {s, t}) \ {s1, s2, t1, t2} ,

A(P ) := (A(X) ∪A(Y ) ∪A′) \
⋃

v∈{s1,s2,t1,t2}

δ(v)

with
A′ := { (s, v) | (s1, v) ∈ A(X) or (s2, v) ∈ A(Y )}

∪ { (v, s) | (v, s1) ∈ A(X) or (v, s2) ∈ A(Y )}
∪ { (t, v) | (t1, v) ∈ A(X) or (t2, v) ∈ A(Y )}
∪ { (v, t) | (v, t1) ∈ A(X) or (v, t2) ∈ A(Y )} .

• Series composition: Let X be an s1-t1-SPG and Y be an s2-t2-SPG. The series
composition of X and Y is an s1-t2-SPG S defined by merging the sink of X with
the source of Y into a node u:

V (S) := (V (X) ∪ V (Y ) ∪ {u}) \ {t1, s2} ,

A(S) := (A(X) ∪A(Y ) ∪A′) \
⋃

v∈{t1,s2}

δ(v)

with
A′ := { (u, v) | (t1, v) ∈ A(X) or (s2, v) ∈ A(Y )}

∪ { (v, u) | (v, t1) ∈ A(X) or (v, s2) ∈ A(Y )} .
Finally, the graph consisting of two nodes v, w and a single arc (v, w) is a v-w- and
w-v-SPG.

Given an SPG, it is possible to reverse-engineer a sequence of parallel and series
compositions that was used for its construction. This is referred to as series-parallel
decomposition and results in a tree with series- and parallel compositions as inner
nodes and single arcs as the leaves. This decomposition can be found in linear time
(see Takamizawa et al. [39]) and allows for faster algorithms for many problems like
maximum independent set or maximum matching, which can be solved in linear
time on SPGs, see [39].
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Generalized series-parallel graphs (see Korneyenko [25]) are an extension of series-
parallel graphs that retains the decomposability of series-parallel graphs. In addition
to the series- and parallel compositions, a tree composition is allowed:
• Tree composition. Let X be an s1-t1-SPG and Y be an s2-t2-SPG. The tree
composition of X and Y is an s-t2-SPG T defined by merging the sources of X
and Y into a source s:

V (T ) := (V (X) ∪ V (Y ) ∪ {s}) \ {s1, s2} ,

A(T ) := (A(X) ∪A(Y ) ∪A′) \
⋃

v∈{s1,s2}

δ(v)

with
A′ := { (s, v) | (s1, v) ∈ A(X) or (s2, v) ∈ A(Y )}

∪ { (v, s) | (v, s1) ∈ A(X) or (v, s2) ∈ A(Y )} .
In particular, all trees are generalized series-parallel graphs.

An SPG decomposition can be used to presolve a given potential-based network,
as the following result shows.

Lemma 4.2.
(1) Consider two serial lines a1 = (u, v) and a2 = (v, w) with bv = 0 and |δin(v)| =
|δout(v)| = 1. Then, this serial combination can be equivalently replaced by the
line a = (u,w) with βa = βa1 + βa2 .

(2) Consider two parallel lines a1 and a2 between nodes u and v with βa1 , βa2 > 0.
Then, this parallel combination can be equivalently replaced by the line a = (u, v)
with

βa =
βa1βa1(

r
√
βa1 + r

√
βa1
)r .

Proof.
(1) The given situation leads to the model

πu − πv = βa1ψ(xa1) and πv − πw = βa2ψ(xa2).

Since bv = 0 and |δin(v)| = |δout(v)| = 1, we know that xa1 = xa2 =: xa and
adding the above two equalities yields

πu − πw = πu − πv + πv − πw = (βa1 + βa2)ψ(xa),

which proves the first result.
(2) For the two parallel arcs, we know that

πu − πv = βa1ψ(xa1) = βa2ψ(xa2) (12)

holds. Thus, we have to find a βa that satisfies

πu − πv = βaψ(xa1 + xa2). (13)

To this end, define z := xa1 + xa2 and let λ ∈ [0, 1] be such that xa1 = (1− λ) z,
xa2 = λ z. Using this re-parameterization, (12), and the homogeneity of ψ yields
the equation

βa1
βa2

=
ψ(xa2)

ψ(xa1)
=

ψ(λ z)

ψ((1− λ) z)
=

λr

(1− λ)r
.

Solving this equation for λ yields

λ =
r
√
βa1/βa2

1 + r
√
βa1/βa2

. (14)

Equations (12) and (13) lead to

βa1(1− λ)rψ(z) + βa2λ
rψ(z) = 2βa ψ(z)
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and solving for βa, we obtain

βa = 1
2 (βa1(1− λ)r + β2λ

r) .

Finally, using (14) and a simple calculation proves the statement. �

For instance, βa for the surrogate line a for two parallel lines a1, a2 in gas networks
satisfies

βa =
βa1βa2(√

βa1 +
√
βa2
)2 .

For lossless DC power flow, we get

βa =
βa1βa2
βa1 + βa2

,

which is equivalent to the well-known parallel resistance formula
1

βa
=

1

βa1
+

1

βa2
.

This application of SPGs for DC power flow was already presented by Duffin [13].
The specific formula for water flow has also been studied in the literature, see [10].

The series-parallel decomposition of SPGs together with Lemma 4.2 reveals that
passive s-t-SPGs can be replaced equivalently by a graph with a single surrogate line
connecting s and t. The existence of such a single surrogate line is already known
from Theorem 3.6. However, for SPGs we obtain an explicit way of computing the
surrogate line without the need to solve a potential-based flow problem.

Theorem 4.3. For a passive s-t-SPG G, we can reduce G to a single arc with
O(|A(G)|) applications of Lemma 4.2.

Proof. The binary decomposition tree of G can be computed in O(|A(G)|) and has
size O(|A(G)|), see, e.g., [39]. We now traverse this binary decomposition tree from
the leaves to the root. If we encounter an inner node during this traversal that
corresponds to a serial composition we apply Part (1) of Lemma 4.2; if we encounter
an inner node during this traversal that corresponds to a parallel composition we
apply Part (2). �

We can exploit the series-parallel structure for active networks, too, as the next
theorem shows.

Theorem 4.4. Let G be an s-t-SPG that consists of internally node-disjoint s-t-
paths that contain switches and lines. Then, we can transform the question whether
we can send X units of flow from s to t for fixed πs, πt into a SUBSETSUM problem
(if ψ−1 and X are rational). The SUBSETSUM problem is:

SUBSETSUM
Input: Numbers k1, k2, . . . , kn, X ∈ Z.
Problem: Is there a set I ⊆ {1, . . . , n} such that

∑
i∈I ki = X?

Proof. First, we notice that there are only two meaningful cases for each s-t-path:
either all switches are on, in which case we can contract the switch arcs and use
Theorem 4.3 to obtain a single arc for the path, or at least one switch is off, in
which case the whole path transports no flow at all. Thus, each path P can be
replaced by a switch followed by a line whose parameter βP can be computed using
Theorem 4.3.
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Let there be n s-t-paths with xi being the flow on path i ∈ {1, . . . , n}, βi the
constant of path i, and yi ∈ {0, 1} denotes whether all switches are open (yi = 1) or
not (yi = 0). Then, we have that the flow sent from s to t is

bs :=

n∑
i=1

xi =
∑

i=1,...,n: yi=1

ψ−1
(
πs − πt
βi

)
.

Our objective is to determine whether there is a variable assignment such that
X = bs for a given X, which can be reformulated as a SUBSETSUM problem: Is
there a subset I ⊆ {1, . . . , n} such that∑

i∈I
ψ−1

(
πs − πr
βi

)
= X? (15)

Since the SUBSETSUM problem is defined for integer inputs, we have to scale X and
ψ−1 ((πs − πr)/βi) values so that they are become integer, which is always possible
due to the assumption of ψ−1 and X being rational. �

The advantage of this reduction is that SUBSETSUM problem is well studied.
Possible solutions are an O(2n/2) algorithm due to Horowitz and Sahni [19], an
O(nmaxi∈I {ki}) algorithm by Pisinger [30], and an Õ(

√
nX) algorithm due to

Koiliaris and Xu [24].
We can also extend our results to generalized series-parallel networks with multiple

sources and sinks, as long as the sources and sinks are conveniently placed with
regard to the structure of the network.

Theorem 4.5. Let G be a passive potential network with balances b such that G
can be decomposed into s-t-SPGs G1, . . . , G` in which every node with bv 6= 0 is the
source and/or the sink of an SPG Gi, i = 1, . . . , `. Then, we can reduce G into a
tree.

Proof. Let Gi, i = 1, . . . , `, be the decomposition of G into SPGs such that all
nodes v of Gi that are neither source nor sink of Gi have bv = 0. Then, we can
apply Theorem 4.3 to reduce Gi into a single arc. Performing this reduction for all
Gi reduces G to a tree. �

5. Active Networks: Monotonicity and Multiple Sources and Sinks

In this section, we consider active networks and relate the previous results to the
problem of minimizing the power-loss∑

v∈V
bv πv =

∑
a=(u,v)∈A

(πu − πv)xa

for some potential-based flow (x, π) with respect to the balance vector b ∈ RV with∑
v∈V bv = 0. In the s-t-case, the power-loss simply reads bs(πs − πt).

Theorem 5.1. Consider a potential-based network G with homogeneous potential
function and assume that the potential and flow bounds are infinite. Then, for a given
balance vector b ∈ RV ,

∑
v∈V bv = 0, the power-loss of a feasible potential-based flow

is minimized if all switches are on.

Proof. Let ψ(x) = α sgn(x) |x|r for some r > 0 and first fix the decisions y for the
switches to be off. Consider the primal problem (7) and the dual problem (8) and
observe that strong duality holds. Let z∗ be the optimal value of these two problems.
Then, by (9), we obtain the following for the optimal solution (x∗, π∗):

z∗ =
∑
v∈V

bv π
∗
v − r

∑
a∈A

βaΨ(x∗a).
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By the primal problem, the last sum is equal to r z∗, which yields
∑
v∈V bvπv =

(r+1)z∗. If we turn on switches, then clearly z∗ does not increase, since this increases
the degree of freedom (some flows are allowed to take nonzero values afterward).
This shows that the power-loss is not increasing when turning on switches. �

Remark 5.2.
(1) We note that Calvert and Keady [11, Theorem 1] showed that the power-loss

is monotone with respect to the change of one βa, a ∈ A. By observing that
βa = 0 corresponds to an open switch, this can be used to show Theorem 5.1,
but the above proof is simpler.

(2) For the s-t-case, Theorem 5.1 implies that the problem to minimize power-loss
given a fixed flow value and without flow and potential bounds is easy (obtained
by turning all switches on). However, it is known from the literature that the
problem becomes NP-hard, if potential bounds are present, see Section 2.4 for a
discussion.

Using similar arguments as in Theorem 5.1, we see the following for the s-t-case:

Corollary 5.3. The value βst of Theorem 3.6 does not increase when turning
on switches. Moreover, if πs − πt > 0 is fixed, then the maximal flow value is
non-decreasing with respect to turning on switches.

Remark 5.4. Corollary 5.3 implies that no equivalent to the so-called Braess-paradox
exists, see Braess [6]. In our situation, this would mean that we can increase the
flow value by turning off switches. In fact, the main purpose of the paper [11] is to
show a converse to the monotonicity property mentioned above: Calvert and Keady
showed that if the power-loss is monotone with respect to the change of one βa,
then the network has to be homogeneous and all ψ(x) have the same order. Indeed,
note that it is crucial for the proof of Theorem 5.1 that all ψ(x) are the same. If
this condition is violated, for instance, by modeling capacities, Braess paradoxes
may appear. In this case, the network has to contain a diamond graph (Wheatstone
bridge in the electrical network community) as an induced subgraph. This implies
that the graph is not series-parallel.

Notice that we can transform active networks with multiple sources and sinks into
active networks with only a single sink, if we are willing to introduce a small error
and flow bounds are present. We describe this procedure for transferring balance
from a sink to a super-sink; an analogous procedure can be applied to shift balance
from a source to a super-source.

Let t be the sink we are considering and ω our super-sink. Let π̂t be a lower
bound for the potential of t in any feasible flow. We assume that π̂t > 0, since
otherwise we may shift potentials as discussed in Lemma 3.3. Without loss of
generality, we assume that πω = 0. We now add an intermediate node vt and a
line-arc at = (t, vt) with flow bounds xat = xat = −bt and βat = −π̂t/(2bt). This
ensures that we can send −bt flow along this arc if πvt = πt − π̂t/2, which is always
possible if there exists a feasible potential-based flow in the original network.

In order to send −bt flow from vt to ω, we need an arc with parameter β, since
we always need to send −bt flow, but we do not know the potential of vt beforehand
and the potential of ω is fixed. We can simulate this by adding paths P1, . . . , Pk
between vt and ω that consist of a switch followed by a line. For each such path,
we vary the arc-constant of the line arc—the introduced error then depends on the
number of used paths (and the spread of the arc-constants in the line-arcs of each
path).
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6. Network Reduction Techniques

The results of Section 3 and 4, especially Lemma 4.2, suggest graph reduction
methods for potential-based networks. These methods are described in this section
and we present and discuss numerical results for water, power, and gas networks.
We start by describing the general ideas. Specific adaptions for the concrete network
types are discussed in the corresponding sections.

For our reductions, we assume that we are given demands and supplies b =
(bv)v∈V ∈ RV and, possibly, lower and upper bounds on the potentials on all nodes
of the network G = (V,A). We assume that for supply nodes v ∈ V we have bv > 0
and that bv < 0 holds for demand nodes v ∈ V . The remaining set of nodes v with
bv = 0 are called inner nodes in the following.

Our overall graph reduction consists of two ingredients: (1) the reduction of
leaves and (2) the reduction of serial and parallel arcs. We note that our reductions
are independent of the actual flow rates. Therefore, they do not depend on a specific
balance vector b, but only on the specification whether a node is a demand or a
supply node.

We describe both techniques in the following for passive networks. The only
networks considered here that have active elements are gas networks. The required
adaptions are thus described in Section 6.3, where we also discuss the numerical
results for gas transport networks.

Leaf Reduction. For every leaf v ∈ V , we know the flow value xa = ±bv of its
unique incident arc a ∈ δ(v) since a is a bridge. Without loss of generality, let
a = (u, v). In this situation, we update bu ← bu + bv and delete the arc a = (u, v)
and the node v.

If we are additionally given potential bounds πu, πu, πv, πv, we update the poten-
tial bounds πu, πu as follows:

πu ← max {πu, πv + βaψ(xa)} , πu ← min {πu, πv + βaψ(xa)} .
Let G′ = (V \ {v} , A \ {a}) be the reduced network. It is immediately clear that

there exists a feasible flow for the network G if and only if there is a feasible solution
for the reduced network G′. Obviously, the leaf reduction can be iteratively applied
until no more leaf nodes are present in G′.

Reduction of Serial and Parallel Arcs. By Lemma 4.2 we know that we can
replace parallel arcs a1 and a2 from u to v by a single new arc a = (u, v) as well as
serial arcs a1 = (u, v), a2 = (v, w) that are connected by an inner degree-2 node v
of balance 0 with a new arc a = (u,w). In both situations, we can apply Lemma 4.2
to compute an equivalent arc parameter βa.

As before, these reductions can be applied iteratively. If this iteration terminates,
the reduced graph has no more degree-2 nodes with balance 0 and no more parallel
arcs. In particular, if we apply both the leaf reduction and the reduction of serial
and parallel arcs to a passive generalized s-t-SPG, we end up with an equivalent
network G′ = ({s} , ∅) with a single node. Note also that the reduction technique for
serial and parallel arcs cannot eliminate supply or demand nodes—which is possible
for the leaf reduction method.

We now turn to the discussion of the results. All graph reduction techniques have
been implemented in Java 1.8.0_102 and all computations have been performed on
an Intel Core i7-4510U with two 2 GHz cores and 8 GB RAM. Our focus here lies
on the strength of the reduction techniques in terms of the reduction of the graph
size. The used measure is thus the number of arcs before and after the reduction.
All computation times do not include the computation of new arc parameters β or
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Table 1. Results of the network reduction techniques on water
network instances

Instance |V | |V±| |A| |V ′| |A′| L P S t ρ

shamir 7 7 8 6 7 1 0 0 0.0007 13%
NewYork 20 20 21 16 17 4 0 0 0.0004 19%
hanoi 32 32 34 25 27 7 0 0 0.0014 21%
blacksburg 31 31 35 23 27 8 0 0 0.0035 23%
fossiron 37 37 58 36 57 1 0 0 0.0008 2%
pescara 71 64 99 64 91 7 1 0 0.0009 8%
modena 272 245 317 268 313 4 0 0 0.0013 1%

updating potential bounds. As a consequence of this, we do not have to deal with
roots in this section.

6.1. Water Networks. We start by presenting network reduction results for seven
water transport networks used in the publications Bragalli et al. [7] and Bragalli
et al. [8, 9] on mixed-integer nonlinear models (MINLPs) for the optimal design
of water distribution networks. All considered water networks are passive, i.e., all
arcs are pipes. The networks shamir, NewYork, hanoi, and blacksburg are taken
from the literature, whereas fossiron, pescara, and modena are reduced versions of
medium-sized Italian cities.

The statistics for the network instances as well as for the applied reductions
are given in Table 1. The number of nodes and arcs of the network is denoted
by |V | and |A|, respectively, and |V±| denotes the number of entries and exits in
the network. The number of nodes and arcs of the reduced network is given in
the columns |V ′| and |A′|, respectively. Leaf reductions as well as the reduction
of parallel and serial arcs are captioned with “L”, “P”, and “S”. Finally, t denotes
runtimes (in seconds), and ρ is the percentage reduction of arcs.

The reduction results for the tested water network instances vary from 1 % to
23 % reduced arcs of the original network. We will later see that the same reduction
techniques yield much better results for power and, especially, gas transport networks.
For five out of seven water network instances, all nodes are either supply or demand
nodes. This leads to the fact that the serial reduction, which requires serial arcs
connected by an inner degree-2 node of balance 0, is never applied. Our experience
with power and gas networks additionally shows that parallel arcs often arise from a
sequence of serial reductions. Thus, there are almost no parallel reductions as well.
Only the pescara instance has two parallel arcs that are merged. The leaf reduction
thus is more or less the only reduction technique that is applied for water networks.

As an exemplary instance, Figure 1 depicts the fossiron network, which shows
(i) that there are no serial arcs that can be merged since all nodes are supply or
demand nodes, (ii) that there are no parallel arcs to be merged, and (iii) that there
is only one leaf.

Fortunately, it turns out that our reduction techniques can be implemented quite
efficiently: The total runtime for all water networks is significantly below 1 s.

6.2. Power Networks. We now present the results of our reduction techniques
applied to 30 power network instances taken from the MATPOWER library of
Zimmerman et al. [40]. These networks vary strongly in their size, from very small
4-arc instances to huge networks with more than 20 000 arcs. The results are given
in Table 2 in the same way as in Table 1 for water networks. The reduction of arcs
varies in the range of 0 % to 49 %. Since the instances from [40] are frequently used
for solving non-convex optimal power flow problems, this reduction in the number
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Figure 1. Schematic plot of the water network fossiron

Figure 2. Schematic plots of the power networks case4gs (left)
and case5 (right)

of arcs would roughly correspond to a reduction of the size (in terms of variables
and constraints) of a non-convex problem up to almost 50 %, which would typically
lead to significantly faster runtimes.

The most successful technique is the leaf reduction method, which can be applied
for all but three instances (case4gs, case5, case6ww). In addition, for all instances
with more than 245 arcs, our method also finds parallel arcs that can be reduced.
This was not the case for the water instances and thus indicates an important
topological difference between the considered water and power networks. Clearly,
this difference is also the reason why the overall reduction is stronger on the power
than on the water networks. However, we also observe some instances with a small
(≤ 10 % or even 0 %) number of reductions. These cases are mainly very small
networks like case4gs and case5 in Figure 2. In these cases, all nodes are either supply
or demand nodes and the network does not have any leaves, which explains the
missing reductions. For the larger networks, the amount of supply or demand nodes
reduces and thus our techniques can be applied more often. Since the MATPOWER
test problems are designed for researchers and educators, they do not correspond
to historically grown real-world networks, but academic ones. This might be the
reason that these networks do not contain any serial arcs that are connected with
inner degree-2 nodes. Thus, the serial reduction is never applied on this test set.
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Table 2. Results of the network reduction techniques on power
network instances

Instance |V | |V±| |A| |V ′| |A′| L P S t ρ

case4gs 4 4 4 4 4 0 0 0 0.0002 0%
case5 5 5 6 5 6 0 0 0 0.0002 0%
case9 9 6 9 6 6 3 0 0 0.0004 33%
case9Q 9 6 9 6 6 3 0 0 0.0006 33%
case9target 9 6 9 6 6 3 0 0 0.0005 33%
case6ww 6 6 11 6 11 0 0 0 0.0002 0%
case14 14 13 20 13 19 1 0 0 0.0003 5%
case33bw 33 33 37 32 36 1 0 0 0.0005 3%
case24ieeerts 24 20 38 23 33 1 4 0 0.0002 13%
case30 30 24 41 27 38 3 0 0 0.0005 7%
case30pwl 30 24 41 27 38 3 0 0 0.0003 7%
case30Q 30 24 41 27 38 3 0 0 0.0008 7%
caseieee30 30 24 41 27 38 3 0 0 0.0008 7%
case39 39 29 46 28 35 11 0 0 0.0004 24%
case57 57 42 80 56 77 1 2 0 0.0002 4%
case118 118 108 186 109 170 9 7 0 0.0110 9%
case89pegase 89 41 210 72 189 17 4 0 0.0006 10%
caseillinois200 200 157 245 128 173 72 0 0 0.0008 29%
case300 300 225 411 213 322 87 2 0 0.0019 22%
case145 145 61 453 132 409 13 31 0 0.0017 10%
case1354pegase 1354 881 1991 730 1086 624 281 0 0.0400 45%
case1888rte 1888 1149 2531 886 1306 1002 223 0 0.0088 48%
case1951rte 1951 1232 2596 895 1319 1056 221 0 0.0086 49%
case2383wp 2383 1827 2896 1733 2236 650 10 0 0.0073 23%
case2736sp 2736 2057 3504 2395 3154 341 9 0 0.0129 10%
case2737sop 2737 2058 3506 2396 3156 341 9 0 0.0082 10%
case2746wop 2746 2016 3514 2392 3151 354 9 0 0.0082 10%
case2746wp 2746 2029 3514 2393 3152 353 9 0 0.0069 10%
case3012wp 3012 2277 3572 2301 2855 711 6 0 0.0101 20%
case3120sp 3120 2311 3693 2385 2949 735 9 0 0.0073 20%
case2848rte 2848 1694 3776 1382 1976 1466 334 0 0.0080 48%
case2868rte 2868 1748 3808 1389 1992 1479 337 0 0.0105 48%
case3375wp 3374 2476 4161 2511 3205 863 93 0 0.0100 23%
case2869pegase 2869 1815 4582 1989 3088 880 614 0 0.0160 33%
case6468rte 6468 3791 9000 3796 5393 2672 935 0 0.0218 40%
case6470rte 6470 3856 9005 3783 5379 2687 939 0 0.0264 40%
case6495rte 6495 3871 9019 3771 5360 2724 935 0 0.0220 41%
case6515rte 6515 3906 9037 3773 5362 2742 933 0 0.0236 41%
case9241pegase 9241 5873 16049 7374 12340 1867 1842 0 0.0587 23%
case13659pegase 13659 9135 20467 7374 12340 6285 1842 0 0.1623 40%

Finally, regarding runtimes we see that our algorithm requires less than 1 s for all
instances.

6.3. Gas Networks. Finally, we discuss the results of our network reduction
techniques applied to three small- to medium-scale academic, but realistic gas
networks and two large-scale real-world gas networks. The academic networks are
freely available online (see Humpola et al. [21]) and the real-world instances are the
low- and high-calorific gas networks of the German gas transport company Open
Grid Europe GmbH.1

1https://www.open-grid-europe.com

https://www.open-grid-europe.com
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Table 3. Results of the network reduction techniques on gas
network instances

Instance |V | |V±| |A| |V ′| |A′| L P S t ρ

GasLib-40 40 32 45 29 34 9 0 2 0.0010 24%
GasLib-135 135 105 170 92 114 43 13 0 0.0074 33%
GasLib-582 582 160 609 122 144 294 5 163 0.0027 76%
H-Gas 2735 474 3074 1255 1588 886 10 587 0.0213 48%
L-Gas 4198 976 4460 1208 1436 1705 40 1269 0.0247 68%

In contrast to the water and power network instances considered so far, the gas
networks that we consider here contain active elements like valves (switches) to
block gas flow, control valves to reduce gas pressure, and compressor stations that
are used to increase gas pressure. Thus, the general reduction techniques described
at the beginning of this section have to be adapted slightly: All techniques are
only applied if the involved arcs are neither control valves nor compressor stations.
These arc types stay completely untouched. This also implies that our reduction
techniques are independent of the specific modeling of these two types of active
elements. Valves also stay untouched for the reduction of serial and parallel arcs,
but can be considered in the leaf reduction method. Here, a leaf v with incident
valve (u, v) is processed as follows: If bv 6= 0, we open the valve, whereas the valve
status is indifferent for leaf nodes with bv = 0. In our implementation, we close the
valve in this situation. Potential bounds can be also updated accordingly.

Moreover, the status of valves (open or closed) can also be decided if they are
bridges, i.e., if their deletion from the network’s arc set decomposes the network
into two disjoint components V1, V2 ⊆ V with V1 ∪ V2 = V . If now∑

v∈V1

bv =
∑
v∈V2

bv = 0

holds, the valve can be closed, whereas it has to be open otherwise. The former
case decouples the two components to which the reduction techniques can then be
applied independently.

Before we discuss the results, we finally remark that gas transport networks
typically contain different passive arc types besides pipes, for instance, short cuts
or resistors, see, e.g., [15]. For the ease of implementation and presentation we
subsume all passive gas arc types as pipes.

The results are given in Table 3. The runtimes are always less than 1 s and
the arc set is reduced by 24 % to 76 %. Thus, the reduction is strongest on the
considered gas network instances. The main reason for this is that, as real-world
or quite realistic networks, these networks also contain historically grown serial
branches. Due to this aspect, the serial reduction is applied, which is not the case
for the other two network types. Figure 3 displays the GasLib-582 network in its
original and reduced version. It is clearly visible that the main structure of the
network is preserved, while all detailed structures at the boundaries of the network
are removed. The latter structures correspond to regional distribution networks
that often have tree-like structure, which can be reduced almost completely by our
methods.

In summary, we see that our reduction techniques can be very powerful. Due to
their short runtimes they lend themselves as presolve techniques, especially when it
comes to solving complex optimization problems like, e.g., MINLPs (see, e.g., Geißler
et al. [16, 17] and Rose et al. [33]), or other hard problems like nonconvex NLPs or
MPECs (see, e.g., Schmidt [34] and Schmidt et al. [35, 36]) on these graphs. In these
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models, the number of variables and constraints is typically linear in the number
of nodes and arcs of the underlying graph. Thus, reductions up to 76 % will have
a significant positive effect on the runtimes required for solving the corresponding
MINLPs.

7. Conclusions

In this paper, we have analyzed the algorithmic properties of potential-based
flows. It turns out that the studied flow problems on passive networks with a single
source and sink can be solved efficiently, because the network can be represented
equivalently by using a single arc. However, the problems are NP-hard for active
networks. Nevertheless, we employ SPG-substructures to reduce the size of practical
water, power, and gas transport network instances significantly.

There are several open questions: In extension of the approximating construction
in Section 5, can the sum of the transported flow be efficiently optimized for passive
networks with multiple sources and sinks? Does there exist a pseudo-polynomial
algorithm for the s-t-MaxFlow problem in SPGs? Similarly, it is open whether any
positive results can be shown for active general networks. Moreover, it remains
an open research topic to consider a framework that models transient behavior, as
motivated by the physical applications.
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