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Abstract. This paper provides a first approach to assess gas market interac-
tion on a network with nonconvex flow models. In the simplest possible setup
that adequately reflects gas transport and market interaction, we elaborate on
the relation of the solution of a simultaneous competitive gas market game,
its corresponding mixed nonlinear complementarity problem (MNCP), and a
first-best benchmark. We provide conditions under which the solution of the
simultaneous game is also the solution of the corresponding MNCP. However,
equilibria cannot be determined by the MNCP as the transmission system
operator’s (TSO’s) first-order conditions are insufficient, which goes back to
nonconvexities of the gas flow model. This also implies that the welfare max-
imization problem may have multiple solutions that sometimes do not even
coincide with any of the market equilibria. Our analysis shows that, even in
the absence of strategic firms, market interaction fails to implement desirable
outcomes from a welfare perspective due to the TSO’s incentive structure. We
conclude that the technical environment calls for a market design that commits
the TSO to a welfare objective through regulation and propose a design where
the market solution corresponds to a welfare maximum and vice versa.

1. Introduction

Gas is nowadays one of the most important energy carriers worldwide; see, e.g.,
[24, 25]. Ever since, gas is traded internationally and transported over long distances.
Consequently, gas market research has focused for a long time on issues of market
power and political economy, largely abstracting from the interdependence of markets
and the transport infrastructure, e.g., [5, 8, 26, 44]. Recent developments like energy
sector coupling or the increasing supply uncertainty at electricity markets due to
the massive rollout of renewables, potentially increase the interdependence of gas
trade with other energy sectors and, thus, the complexity at gas markets. Gas
is, moreover, considered the main transitory technology on the way to sustainable
energy supply; for recent discussions see, e.g., [35, 51]. All this may lead to an
increasing number of traders, more frequent trade, as well as more entry and exit
points in national gas networks. Therefore, an analysis of the interplay of gas trade
and gas transmission becomes more and more important.

The analysis of markets in network-based industries has a long tradition in
electricity market research. Typically, competitive electricity markets are described
by mixed complementarity systems that arise from the optimality conditions of all
players on the market, including the transmission system operator (TSO), jointly
with additional constraints like a market clearing condition; see, e.g., [13, 21–23, 50].
Under simplifying economic and technical assumptions on the flow restrictions taken
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into account upon spot-market trading, it is known that these mixed complementarity
systems are equivalent to the optimality conditions of a single-level optimization
problem. The optimization goal of the latter is typically to maximize the agents’
joint social welfare. Building on these fundamental results, a large literature has
developed that thoroughly analyzes electricity market designs used around the world
in (multilevel) electricity market models; cf. [16, 17, 31]. For gas markets, no similar
models have been developed in the past, mainly due to the high complexity of
network flow models that adequately reflect gas transport.

In gas market research, however, the long term objective is to understand in-
centives and consequences of different gas market designs as, e.g., the entry-exit
system in Central Europe, or the US design based on long-term, point-to-point com-
mercial capacity rights. By now, the related literature typically discusses potential
shortcomings of those market regimes based on illustrative examples; cf., e.g., [1,
14, 20, 49] for Europe, [3, 27, 37–39] for the US market, and [32, 48] for China.
Whenever those discussions include a quantitative analysis this is typically based
on drastically simplified network representations. Equilibrium frameworks that do
include a relatively detailed representation of the network as suggested above have
not yet been developed in the literature. The main reason is that even stationary
gas flow models are inherently nonlinear and nonconvex. Moreover, gas transport
involves discrete decisions to be taken in order to control the network. These are
the reasons why a straightforward application of techniques for modeling electric
power markets is not possible in models that consider the interplay of natural gas
markets and gas transport.

This paper is the first step on the way to provide adequate tools for the assessment
of gas market designs. The natural first step is to specify an appropriate gas market
game (analogously to the standard electricity market setup) and elaborate on the
relation of the corresponding mixed nonlinear complementarity problem (MNCP)
and the first-best model of a gas market. In order to deliver a first assessment of the
scope for gas market modeling on a network, we choose the simplest possible model
specification that adequately reflects gas transport restrictions. In particular, we
draw on the gas flow representation first formalized in [47]. Here, the pressure drop
between network nodes introduces nonconvexities to the models of the underlying
equilibrium problems, which rules out a straightforward application of standard
approaches from electricity market modeling. As the appropriate technical model of
gas physics induces significant challenges, we consider a very basic economic model
of the short-run natural gas market, assuming three profit-maximizing types of
agents—non-strategic gas-suppliers with convex marginal cost,1 gas consumers with
decreasing demand, and the TSO who operates the transmission network—together
with a market clearing condition.

For this model, we show that, under mild conditions, the solution of a simultaneous
market game among profit-maximizing but non-strategic agents is also the solution
of the corresponding MNCP. However, as it turns out, the converse is not necessarily
true. We demonstrate that there exist solutions to the MNCP that do not correspond
to market equilibria. Hence, although all market equilibria correspond to solutions
of the MNCP, these equilibria cannot be determined by the MNCP due to the
insufficiency of the TSO’s first-order conditions that goes back to the nonconvexity
of the gas flow model. As a second step, we consider the welfare maximization
problem that typically serves as a first-best benchmark and under appropriate
assumptions—which are not satisfied in our framework—corresponds to the outcome
of the competitive equilibrium; cf. the fundamental theorems of welfare economics as

1Note that, for constant marginal production costs, multiplicities could occur even for linear
network constraints, see [29].
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established in [2]. We demonstrate that the nonconvexities originating from gas flow
constraints also imply that the welfare maximization problem may have multiple
solutions even for simple gas networks. Afterward, we analyze the correspondence
between welfare maxima and competitive equilibria and relate our findings to the
fundamental theorems of welfare economics. We show that restrictive assumptions
can be determined that guarantee that equilibria of the simultaneous game are
welfare maximizing. In essence, this applies if no network congestion occurs for the
respective supply and demand situation. However, in the general case, there is no
1-1 correspondence between equilibria and welfare-maximal solutions. In particular,
there even exist situations, where not a single welfare-maximal solution can be
implemented as an equilibrium of the simultaneous game.

Our analysis clearly suggests that market interaction cannot yield desirable
outcomes from a welfare perspective due to the TSO’s incentive structure. We
therefore propose an alternative market environment that induces optimality of
market outcomes by regulating the player, whose decisions are responsible for the
divergence of equilibrium outcomes and welfare maxima, i.e., the TSO. In particular,
we propose a three-level gas market model where the TSO is committed to a
welfare objective and moves first by setting the nodal prices that govern gas trade
among suppliers and consumers at the second level. At the third level, the TSO
operates the network based on the market outcome at level two. We prove that the
market solutions correspond to welfare maxima and vice versa, and discuss critical
assumptions with respect to the information that players, in particular the TSO,
possess.

Our work directly relates to the classical contributions in [46] and [2] that
establish the fundamental theorems of welfare economics; for a comprehensive
survey see, e.g., [33]. The theorems establish—under suitably chosen assumptions—
existence, uniqueness, and Pareto-optimality of competitive equilibria, i.e., a 1-1
correspondence of market equilibria and welfare optima. The fundamental setup
that we analyze can clearly be interpreted accordingly if gas at different nodes of
the network is considered as a different good. In that context, the TSO is a specific
producer that, according to its production technology, can convert input at certain
nodes of the network into output at other nodes of the network. However, for the
case of gas flow models based on pressure gradients, the network model exhibits
nonconvexities that imply that the corresponding market game, which we analyze,
does not satisfy the classical assumptions behind the fundamental welfare theorems.
Consequently, our framework is not directly covered by the classical contributions
on welfare economics. One strand of literature that aims at overcoming the problem
of nonconvexities due to network flow models uses linear approximations; see, e.g.,
[11, 34, 43]. However, the resulting flow models necessarily neglect important
characteristics of gas transport. Therefore, in our analysis, the focus is on the
relation of market outcomes and welfare maxima in environments with nonconvex
flow models. Our results thus provide a first step for the analysis of gas markets
accounting appropriately for network constraints.

Our paper is organized as follows. Section 2 is devoted to the basic notation
and some mathematical preliminaries. Section 3 introduces a gas market model
analogous to the approach used in the electricity market literature and provides
results on the correspondence between its equilibria and the associated MNCP.
Section 4 provides an analysis of the welfare-maximal benchmark and shows under
which conditions the fundamental welfare theorems extend to our environment and
when they fail to extend. Section 5 finally proposes an alternative model of gas
markets that restores the correspondence of welfare maxima and market solutions.
Section 6 concludes.
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2. Basic Notation and Mathematical Preliminaries

In this section, we present the basic notation that is used throughout the paper
and collect the required mathematical background.

2.1. Basic Notation. The gas transport network is modeled as a directed and
connected graph G = (V,A) with node set V and arc set A. The set of nodes is
further distinguished into the set V+ ⊆ V of nodes at which supply customers are
located and the set V− ⊆ V of nodes at which discharging customers are located. The
set of supply and discharging customers are assumed to be disjoint, i.e., V+∩V− = ∅,
and V+ ∪ V− = V holds. The set of arcs represents the pipes. Our main motivation
in this paper is to analyze the effects of including the nonconvex physics of gas flow
on the market outcome. Thus, we do not regard active elements, e.g., (control)
valves or compressors, that would add further nonconvexities of discrete type.

The economic framework is as follows. The function cu(·) models variable costs of
gas supply. From an economic point of view, variable costs of a supplier located at
a node u ∈ V+ are non-negative, cu(·) ≥ 0, and zero in case of no supply, cu(0) = 0.
Moreover, the functions cu(·) are monotonically increasing, strictly convex, and
continuously differentiable.

The willingness to pay of a consumer located at a node u ∈ V− is described by
the inverse demand function Pu(·). Each inverse demand function Pu(·) is assumed
to be continuous and strictly decreasing.

2.2. Mathematical Preliminaries. In this paper, we often make use of the
Karush–Kuhn–Tucker (KKT) conditions. For a general optimization problem
of the form

max
x

f(x) s.t. gi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J, (1)

they are given by

∇f(x)−
∑
i∈I

µi∇gi(x)−
∑
j∈J

λi∇hj(x) = 0, (2a)

gi(x) ≤ 0, i ∈ I, (2b)
hj(x) = 0, j ∈ J, (2c)

µi ≥ 0, i ∈ I, (2d)
µigi(x) = 0, i ∈ I. (2e)

In this context, we always assume that f , gi, and hj are continuously differentiable
for all i ∈ I and j ∈ J . Under a suitable constraint qualification, the KKT conditions
are known to be necessary for optimal solutions. In the case of convex optimization
problems, the KKT conditions are both necessary and sufficient for global optimality
if a suitable constraint qualification like, e.g., Slater’s condition, holds; see [7]. In
case of nonconvex optimization problems, other constraint qualifications are needed.
In our analysis, we mainly use the linear independence constraint qualification
(LICQ).

Definition 2.1 (LICQ). Let x be a feasible solution of (1) and let I=(x) := {i ∈
I : gi(x) = 0}. Then, x fulfills the LICQ if the gradients ∇hj(x), j ∈ J , and ∇gi(x),
i ∈ I=(x), are linearly independent.

The LICQ implies the following: For an optimal solution x̂ of (1) that satisfies
the LICQ, there exists a vector of Lagrange multipliers (µ̂, λ̂) such that the KKT
conditions are fulfilled by (x̂, µ̂, λ̂). Such points are called KKT points. Furthermore,
the LICQ implies unique Lagrange multipliers. Thus, the LICQ is also of interest for
analyzing convex optimization problems because the Lagrange multipliers correspond
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to dual variables in this setting. To guarantee sufficiency of KKT conditions in case
of nonconvexity, an additional second-order condition has to hold; see, e.g., [36] and
the references therein.

3. Nonconvex Gas Market Equilibrium Modeling:
The Standard Approach

We now consider a simultaneous game for a nodal-pricing-type gas market under
perfect competition. In such a game, all players decide simultaneously on their
actions. The formulation chosen here is closely related to the formulation of the
electricity market model presented in [21]. In what follows, we first state the
simultaneous game and afterward, we show that—due to the nonconvexity of gas
physics—the solutions of this game cannot be obtained by a reformulation as a
mixed nonlinear complementarity system.

3.1. The Simultaneous Game. The main players are the supplying customers,
the discharging customers, and the transmission system operator (TSO). As we
consider the case of perfect competition, all players act as price takers, i.e., they do
not take into account the impact of their actions on market prices. Each supplying
customer bids a supply function in dependence of the given market price with the
resulting profit as payoff. In turn, each discharging customer bids a demand function
that relates the requested quantity to the market price. The goal here is to maximize
gross consumer surplus less costs. We assume that there is no strategic interaction
among suppliers or among consumers. The same holds for the TSO who ensures
feasibility of the operation of the transmission network. His payoff depends on price
differences between nodes. The simultaneous game is composed of the optimization
problems of each player together with market clearing conditions. We start by
describing the gas suppliers.

3.1.1. Gas Suppliers. Every gas supplying customer located at a node u ∈ V+
maximizes his profit by solving the concave maximization problem

max
yu≥0

πuyu − cu(yu), (3)

where yu denotes the amount of gas supplied by the player. The function cu(·)
models variable costs of gas supply and πu is the given market price at which the
gas is sold. Moreover, the amount yu of supplied gas is bounded to be non-negative.
The KKT conditions of Problem (3) can be used to obtain the complementarity
system

πu − c′u(yu) + η−u = 0, 0 ≤ yu ⊥ η−u ≥ 0, (4)

which characterizes global optima of Problem (3).
In what follows, we prove that the reaction of a gas supplier to a given nodal

price is unique. Furthermore, we specify the unique primal solution of the suppliers’
profit maximization problem.

Lemma 3.1. Let πu be the nodal price at node u ∈ V+. Then, for the supplier
located at this node, the primal solution of Problem (3) is unique and given by

yu =

{
0, c′u(0) > πu,

(c′u)−1 (πu) , c′u(0) ≤ πu.
In addition, the dual solution is unique.

Proof. The uniqueness of the primal solution follows from strict convexity of Prob-
lem (3). As cu(·) is strictly convex as well as continuously differentiable, c′u(·)
is strictly increasing, continuous, and thus invertible. In case of c′u(0) > πu,
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η−u = c′u(yu) − πu ≥ c′u(0) − πu > 0 and yu = 0 follows directly from the KKT
conditions (4). In case of c′u(0) ≤ πu, yu = (c′u)−1 (πu + η−u ) ≥ (c′u)−1 (c′u(0) + η−u )
also follows from the KKT conditions (4). If η−u > 0, then, yu > (c′u)−1 (c′u(0)) = 0,
which contradicts (4). Thus, η−u = 0 and yu = (c′u)−1 (πu).

Uniqueness of the dual solution follows directly from the LICQ. �

3.1.2. Gas Consumers. The optimization problem of a consumer located at a
node u ∈ V− reads

max
du≥0

∫ du

0

Pu(x) dx− πudu, (5)

where Pu(·) is the continuous and strictly decreasing inverse demand function of the
player. Moreover, the amount du of discharged gas is bounded to be non-negative.

Problem (5) is also a concave maximization problem. In analogy to the comple-
mentarity problem (4) above, we obtain the again necessary and sufficient system

Pu(du)− πu + β−u = 0, 0 ≤ du ⊥ β−u ≥ 0. (6)

In what follows, we show that the decisions of the discharging customers are
unique w.r.t. a given nodal price. Moreover, the unique reaction can be explicitly
stated for each consumer.
Lemma 3.2. Let πu be the nodal price at node u ∈ V−. Then, for the consumer
located at this node, the primal solution of Problem (5) is unique and given by

du =

{
0, Pu(0) < πu,

P−1u (πu) , Pu(0) ≥ πu.
In addition, the dual solution is unique.

Proof. Analogous to Lemma 3.1. �

3.1.3. Market Clearing Conditions. To clear the market, supply must equal demand.
This is achieved by imposing the nodal balance equations∑

a∈δin(u)

qa −
∑

a∈δout(u)

qa = qu, u ∈ V, (7)

as market clearing conditions. Here, qu = du holds for u ∈ V− and qu = −yu holds
for u ∈ V+. Thus, the gas flow out of node u ∈ V and the gas flow into that node
have to be balanced w.r.t. supply or demand at that node.

3.1.4. The Transmission System Operator. Finally, we model the TSO that is
responsible to operate the transmission network. We mainly follow [21] and model
this player using the problem

max
q,p

∑
a=(u,v)∈A

(πv − πu)qa (8a)

s.t. p2u − p2v = Λaqa|qa|, a = (u, v) ∈ A, (8b)

p−u ≤ pu ≤ p+u , u ∈ V, (8c)

with physical arc flows q = (qa)a∈A and nodal pressures p = (pu)u∈V . The market
prices πu are given, i.e., the TSO is also a price-taker. The goal of the TSO is
to take advantage of existing price differences between adjacent nodes by routing
as much gas as possible from low-price to high-price nodes.2 The stationary gas
flow through pipes is described by the so-called Weymouth constraint (8b); cf.,

2If the TSO would be completely indifferent w.r.t. his routing decisions, i.e., Problem (8) reduces
to a pure feasibility problem, then, each physically feasible solution would correspond to a market
equilibrium in case of appropriate nodal prices. Such a formulation would not be economically
meaningful. Thus, neither the case of a welfare-maximizing but price-taking TSO nor the case
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e.g., Chapter [12] in [28]. The change in quadratic nodal pressures over an arc is
expressed by the pipe’s specific pressure drop coefficient Λa ≥ 0 and the quadratic
flow term qa|qa| that takes into account the flow direction. Thus, the resulting
model is nonlinear and nonconvex. The pressure drop coefficient itself is a constant
depending on the pipe’s diameter, length, and cross-sectional area as well as on the
gas temperature, the compressibility factor, and on the specific gas constant; see [12]
for the details. By using the Weymouth equation in (8b), we decided to use the
most simple representation that is appropriate to model gas physics. Moreover, it is
a very common model in the literature on gas network optimization; see, e.g., the
recent book [28] or the survey article [41] as well as the references therein. In order
to choose the most simple model that allows to analyze the impact of nonconvex
physics in market models, we refrain from including more difficult elements like
compressor stations and thus also refrain from including transport costs.

Finally, Constraint (8c) bounds the nodal pressures pu from below by p−u and
from above by p+u to ensure technical requirements like maximum pressures in pipes
or contractual pressure limits. If appropriate, Model (8) can be extended by arc-wise
flow bounds that can be derived from the Weymouth equation (8b) and the pressure
bounds (8c).

The KKT conditions of the TSO’s nonlinear problem (8) are given by

2Λaγa|qa|+ πv − πu = 0, a = (u, v) ∈ A, (9a)

2pu

 ∑
a∈δin(u)

γa −
∑

a∈δout(u)

γa

+ ζ−u − ζ+u = 0, u ∈ V, (9b)

p2v − p2u + Λaqa|qa| = 0, a = (u, v) ∈ A, (9c)

0 ≤ ζ−u ⊥ (pu − p−u ) ≥ 0, u ∈ V, (9d)

0 ≤ ζ+u ⊥ (p+u − pu) ≥ 0, u ∈ V. (9e)

To guarantee that the KKT conditions are necessary and sufficient for optimality,
a constraint qualification as well as a second-order sufficient condition have to be
valid for a given solution of Problem (8). The question of necessity and sufficiency
of the TSO’s KKT conditions is addressed later in this section, where we show that
LICQ holds under certain mild assumptions but that second-order conditions may
fail to hold.

We now show that—under consideration of the market clearing conditions (7)—
the TSO’s actions are unique.

Theorem 3.3. Let (πu)u∈V be nodal prices such that∑
u∈V+

yu =
∑
u∈V−

du

holds for yu being the solution of Problem (3), u ∈ V+, and du being the solution
of Problem (5), u ∈ V−. In addition, let x = (q, p) and x̂ = (q̂, p̂) be solutions of
Problem (8) that fulfill the flow conservation constraints (7). Then, q = q̂ holds.

Proof. As nodal prices are given, all supply (yu)u∈V+
and all demand (du)u∈V−

quantities are—in accordance with Lemma 3.1 and Lemma 3.2—unique and thus
fixed. The assertion then follows from Theorem 1 in [42]. �

Besides flows, pressures are unique except for constant shifts, i.e., there exists a
constant c ∈ R such that pu = p̂u + c for all u ∈ V also yield a solution. Note that

of Constraints (7), (8b), and (8c) as market clearing conditions would yield a reasonable market
equilibrium model.
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this multiplicity of the pressure variables does not influence the market outcomes,
which is why we do not focus on this multiplicity in the following analyses.

3.2. Equilibrium Analysis. So far, we described the players’ strategies by study-
ing their individual maximization problems. Especially we proved that, given nodal
prices such that supply equals demand, all players’ actions are unique. However,
these results are not enough to guarantee a market equilibrium. In equilibrium
the actions of all players imply market clearing and furthermore, no player has an
incentive to deviate from his decision. The latter is is achieved in case of optimal
decisions for each player. Therefore, solving the optimization problems of all market
players together, i.e., solving the simultaneous game (SG) that is defined by

Suppliers: (3) for all u ∈ V+,
Consumers: (5) for all u ∈ V−,

Market Clearing Conditions: (7),
TSO: (8),

(SG)

yields a market equilibrium if it exists. To obtain solutions of the simultaneous
game, it is typically reformulated by replacing the players’ optimization problems
using the corresponding KKT conditions; cf., e.g., [13, 21].

In our application, combining the complementarity systems of all market players
yields the mixed nonlinear complementarity system

Suppliers: (4) for all u ∈ V+,
Consumers: (6) for all u ∈ V−,

Market Clearing Conditions: (7),
TSO: (9).

(MNCP)

However, this reformulation is only meaningful if and only if a constraint qualification
and a second-order sufficient condition hold for the TSO’s problem. Only then, the
corresponding KKT system represents the optimal decisions of the TSO. In what
follows, we address the question if

(SG) ⇐⇒ (MNCP)

holds in our special case. We next show that the implication “(SG) ⇒ (MNCP)”
holds true if the following assumptions hold.

Assumption 1. All lower pressure bounds p−u , u ∈ V , are positive and all pressure
bounds p−u and p+u , u ∈ V , are pairwise distinct.

Assumption 2. Let x = (q, p) be a solution of Problem (8). Then for each
cycle C = (V (C), A(C)) in G, there exists an arc a ∈ A(C) with qa 6= 0.

Using these assumptions, we show that the TSO’s KKT conditions are necessary
for optimality. The proof is rather technical and given in Appendix A.

Lemma 3.4. Let x = (q, p) be a solution of Problem (8) that fulfills Assumption 2.
Furthermore, suppose that Assumption 1 holds. Then, there exists a unique vector
of Lagrange multipliers λ = (γ, ζ−, ζ+) such that (x, λ) satisfies Problem (9).

As the KKT conditions of the gas supplying and discharging customers are also
necessary, the implication “(SG) ⇒ (MNCP)” holds as long as there is no optimal
solution of Problem (8) with zero flows on one of the cycles of the network. Thus,
each market equilibrium of (SG) is also a solution of the (MNCP).

Theorem 3.5. Let x = (y, d, q, p) be a solution of the simultaneous game (SG)
such that (q, p) fulfills Assumption 2. Furthermore, suppose that Assumption 1
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1
Generation:
p ∈ [1,

√
2]

c(y) = y2

2
Demand:
p ∈ [0, 1]
P (d) = 13− d

3
Demand:
p = 1

P (d) = 10
√
2 + 1

2
− d

Λ = 1

Λ = 1

Λ = 1

Figure 1. Three-node network of Example 3.7

holds. Then, there exists a unique vector λ = (η−, β−, γ, ζ−, ζ+) such that (x, λ) is
a solution of the (MNCP).

Proof. Follows from Lemma 3.1, Lemma 3.2, and Theorem 3.4. �

It remains to consider the implication “(SG)⇐ (MNCP)”. It turns out that this
implication does not hold in general. There may exist solutions to the (MNCP)
that do not correspond to market equilibria. Hence, although all market equilibria
correspond to solutions of the (MNCP), these equilibria cannot be determined by
the (MNCP) due to the insufficiency of the TSO’s first-order conditions.

Theorem 3.6. Let (x;λ) = (y, d, q, p; η−, β−, γ, ζ−, ζ+) be a solution of the
(MNCP) such that (q, p) fulfills Assumption 2. Furthermore, suppose that As-
sumption 1 holds. Then, there exist instances such that x = (y, d, q, p) does not
implement a market equilibrium of the simultaneous game (SG).

Proof. See Appendix B. �

The counterexample given in Appendix B is rather technical. Thus, we addition-
ally present an instance that, on the one hand, violates Assumption 1 but, on the
other hand, comprises all phenomena that illustrate the failure in Theorem (3.6).
In particular, there also exists an (MNCP) solution that does not yield a market
equilibrium.

Example 3.7. The considered graph consists of three nodes that are connected
by three pipes. The example is depicted, together with all physical and economical
parameters, in Figure 1. For the nodal prices

π1 = 2 + 2
√

2, π2 = 12−
√

2, π3 = 10
√

2 +
1

2
,

we obtain the solution

y1 = 1 +
√

2, d2 = 1 +
√

2, d3 = 0,

q12 =
√

2, q13 = 1, q23 = −1,

p1 =
√

2, p2 = 0, p3 = 1,

of the (MNCP). The Lagrange multipliers are given by

γ12 =
3
√

2− 10

2
√

2
, γ13 = −4

√
2 +

3

4
, γ23 = −11

2

√
2 +

23

4
,

ζ−3 = 19
√

2− 13, ζ+1 = 26− 9

2

√
2,
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and η−1 = β−2 = β−3 = ζ−1 = ζ−2 = ζ+2 = ζ+3 = 0. The corresponding Problem (8) of
the TSO then reads

max
q,p

(
10− 3

√
2
)
q12 +

(
8
√

2− 3

2

)
q13 +

(
11
√

2− 23

2

)
q23

s.t. p22 = p21 − q12|q12|, p23 = p21 − q13|q13|, p23 = p22 − q23|q23|,
1 ≤ p1 ≤

√
2, 0 ≤ p2 ≤ 1, p3 = 1.

Using pressures p1 =
√

2 and p2 = 1 with flows q12 = 1, q13 = 1, and q23 = 0 yields a
higher payoff for the TSO than p1 =

√
2 and p2 = 0 Thus, the TSO has an incentive

to deviate from the stated solution of the (MNCP) and, consequently, the (MNCP)
solution does not correspond to a market equilibrium.

4. The Welfare Maximization Problem

In this section, we describe a welfare maximization problem that serves as a
first-best benchmark for the simultaneous game discussed in the last section. Then,
we study whether the welfare-maximal solution is unique. It turns out that, even
for simple gas networks, multiple welfare-maximal solutions exist. Afterward, we
analyze the correspondence between welfare maxima and competitive equilibria and
relate our findings to the fundamental theorems of welfare economics. Here, we will
see that restrictive assumptions can be determined that guarantee that equilibria of
the simultaneous game are welfare-maximizing. However, none of these equilibria is
welfare maximal in the general case.

The welfare maximization problem is derived by considering an integrated planner
who simultaneously decides on supply and demand for gas as well as on the physical
gas flows by controlling the nodal pressures. The goal of the integrated planner is
to maximize social welfare, i.e., gross consumer surplus less variable costs of supply.
The resulting welfare maximization problem reads

max
y,d,q,p

∑
u∈V−

∫ du

0

Pu(x) dx−
∑
u∈V+

cu(yu)

s.t. yu ≥ 0, u ∈ V+,
du ≥ 0, u ∈ V−,∑
a∈δin(u)

qa −
∑

a∈δout(u)

qa = qu, u ∈ V,

p2u − p2v = Λaqa|qa|, a = (u, v) ∈ A,
p−u ≤ pu ≤ p+u , u ∈ V,

(WMP)

where qu equals du for all u ∈ V− and −yu for all u ∈ V+. The non-negative
variable yu describes the amount of gas supplied by the supplier located at node u ∈
V+. The amount of gas discharged by the customer located at node u ∈ V− is
denoted by the non-negative variable du. Moreover, the physical gas flow over a
pipe a ∈ A is given by the variable qa and the pressure at node u ∈ V is modeled by
the variable pu. The last three constraints again implement nodal flow balance and
ensure physical and technical feasibility of the resulting gas flow; cf. (8b) and (8c).

4.1. Multiplicity of Welfare-Maximal Solutions. In this section, we show that
the solution of the welfare maximization problem (WMP) is in general not unique.
We prove this multiplicity by an example. To this end, we consider the three-node
network of Example 3.7; see, Figure 1. The corresponding welfare maximization
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d̂

h3

d̃

h21 2

0.5

1

d2

d3

Figure 2. Projection of the feasible set of Problem (10) onto the
2d-space of demand variables

problem reads

max
y,d,q,p

∫ d2

0

(13− x) dx+

∫ d3

0

(
10
√

2 +
1

2
− x
)

dx− y21
s.t. y1 ≥ 0, d2 ≥ 0, d3 ≥ 0,

q12 + q13 = y1, q12 − q23 = d2, q13 + q23 = d3,

p22 = p21 − q12|q12|, p23 = p21 − q13|q13|, p23 = p22 − q23|q23|,
1 ≤ p1 ≤

√
2, 0 ≤ p2 ≤ 1, p3 = 1.

(10)

As before, we fix the pressure at node 3 and impose pressure bounds at the other
nodes such that all flow directions are known because p1 ≥ p3 ≥ p2. Since flow is
only possible from higher to lower nodal pressures, it holds q12 ≥ 0, q13 ≥ 0, and
q23 ≤ 0. Since the flow over a pipe is proportional to the change in quadratic nodal
pressures, d2 ≥ d3 follows directly from p1 ≥ p3 ≥ p2. Using the results of [15], the
projection of the feasible set of problem (10) onto the space of withdrawals (d2, d3)
can be described by the inequality system

0 ≤ d3 ≤ d2,

0 ≤
(

2d2 + d3 −
√

2(d22 + d2d3)

)2

≤ 2,

0 ≤
(√

2(d22 + d2d3)− d2
)2

≤ 1,

−1 ≤
(√

2(d22 + d2d3)− d2
)2

−
(

2d2 + d3 −
√

2(d22 + d2d3)

)2

≤ 0.

In Figure 2, the set of pairs (d2, d3) that satisfy this system is depicted. The
boundaries of the set are defined by the functions

h1 : [0, 1]→ [0, 1], d2 7→ d2,

h2 : [0, 1 +
√

2]→ 0, d2 7→ 0,

h3 : [1, 1 +
√

2]→ [0, 1], d2 7→
1 + 2d2 − d22

2d2
.

In what follows, we show that the points d̂ = (1, 1) and d̃ = (1 +
√

2, 0) both are
optimal solutions of the welfare maximization problem (10). Both lie on the graph
of h3. We now consider the welfare function W , cf. the objective of (10), as a
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Figure 3. The welfare function W (left) and its isolines (right)

function of d2 and d3:

W (d2, d3) =

∫ d2

0

(13− x) dx+

∫ d3

0

(
10
√

2 +
1

2
− x
)

dx− (d2 + d3)2

= 13d2 +

(
10
√

2 +
1

2

)
d3 −

3

2
d22 −

3

2
d23 − 2d2d3.

The unconstrained welfare function W is strictly concave and attains its unique
maximum in (d2, d3) = (7.6− 4

√
2, 6
√

2− 4.9). In case of no network restrictions,
this unique maximum also corresponds to the unique market equilibrium. However,
in our example, the network is restrictive. In Figure 3, the welfare objective function
and its isolines are depicted. For the region of feasible demands, see Figure 2, it
holds that the farther away the isoline of welfare lies from the origin, the better is
the corresponding welfare. The two feasible points d̂ = (1, 1) and d̃ = (1 +

√
2, 0)

have the same objective value 8.5 + 10
√

2. Thus, they are both located on the same
isoline of welfare, which is given—in dependence of d2—by

I(d2) =
1

6

(
1 + 20

√
2− 4d2 −

√
597− 200

√
2 + 304d2 − 160

√
2d2 − 20d22

)
.

Thus, to prove that both points implement the welfare maximum, it remains to
show that, within the interval [1, 1 +

√
2], I lies above h3, i.e., I(d2) ≥ h3(d2). This

can be seen by an easy computation.
We showed that both points d̂ and d̃ correspond to optimal solutions of the

welfare maximization problem (10). Consequently, the welfare-maximal solution
is not unique. Moreover, in Appendix C we show that multiplicities even occur in
more simple tree-like networks.

4.2. Why the Fundamental Welfare Theorems do not extend to Gas Mar-
ket Models with Network Constraints. The fundamental theorems of welfare
economics state that—under convexity assumptions—every competitive market
equilibrium among consumers and producers corresponds to a welfare maximum
and that, vice versa, every welfare maximum can be implemented as a competitive
market equilibrium; see, e.g., [2] and Chapter 10 of [33]. In the framework of [2], gas
at different nodes of the network needs to be considered as a different goods. Thus,
|V | goods are traded in a gas network. Furthermore, the TSO in that context is a
specific producer that, according to its “production technology”, can convert input
at certain nodes of the network into output at other nodes of the network. In doing
so, the TSO is restricted by the network constraints. One of the main assumptions
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of the welfare theorems states that the resulting set of production plans is convex,
see Assumption I.a in [2]. In our situation, these production plans correspond to
transportable supplies and demands as they are depicted, e.g., in Figure 2 for the
three-node network of Example 3.7. Due to the nonconvexity of gas physics, the set
of transportable supplies and demands faced by the TSO is nonconvex. Therefore, it
is not clear if the results of the fundamental welfare theorems can still be established
for the case of gas markets accounting for network constraints.

The common way of proving the equivalence of competitive market equilibria
and welfare-maximal solutions is by showing that the following relation holds:3

(SG) ⇐⇒ (MNCP) ⇐⇒ KKTs of (WMP) ⇐⇒ (WMP). (11)

However, the results of Section 3.2 already imply that the relation fails to hold
in general because the first equivalence is typically not given. In this section, we
additionally prove the following:

(1) The equivalence
(SG) ⇐⇒ (WMP)

can be established under certain, more restrictive, assumptions.
(2) For a more general setting, we show that the solution sets of the simultaneous

game (SG) and the welfare maximization problem may be disjoint. In other
words, there exist situations in which not a single welfare-maximal solution
can be implemented as an equilibrium of (SG).

4.2.1. No Network Congestion: Simultaneous Game Equilibria are Welfare Maxima.
We start with the positive result for which we have to make the assumption that
there is no network congestion, i.e., all pressure bounds are inactive:

p−u < pu < p+u for all u ∈ V.
We prove that in this case, a market equilibrium exists, that it is unique, and that
it corresponds to the welfare maximum. Moreover, the same market price results
for all market participants. Let us emphasize at this point, that we are aware that
this result is quite intuitive. In fact, the main focus of the paper is the case where
network restrictions do constrain gas market interaction; see Section 4.2.2. At this
point, however, we provide a comprehensive analysis of the unconstrained case in
order to set the stage for the more complicated setting. We start with analyzing
the TSO’s problem (8) and the corresponding KKT conditions (9).

Lemma 4.1. Let (πu)u∈V be given nodal prices and let x = (q, p) be a solution
of Problem (8). Furthermore, suppose that there exist Lagrange multipliers λ =
(γ, ζ−, ζ+) such that (x, λ) is a KKT point of Problem (8). Then, the nodal prices
of nodes adjacent to arcs with zero gas flow are equal. That is, πu = πv holds for
all a = (u, v) ∈ A with qa = 0.

Proof. The vector (x, λ) is a KKT point of Problem (8) if and only if (x, λ) solves (9).
The vector (x, λ) solves (9) if (x, λ), in particular, satisfies (9a), i.e., if 2Λaγa|qa|+
πv − πu = 0 for all a = (u, v) ∈ A. This reduces to πu = πv for all a = (u, v) ∈ A
with qa = 0. �

The latter lemma states that zero gas flow on an arc implies the same price at
the adjacent nodes.

3In the case of electricity markets, the equivalence of welfare-maximal solutions and competitive
market equilibria has been shown for different model types, e.g., in Chapter 3 of [13], in [19], or
in [6]. Common to all these modeling approaches are convex flow models. Such an equivalence
also has been shown in the context of gas markets but on the basis of a linear network flow model;
see [40].
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Figure 4. Two welfare-maximal solutions derived in Section 4.1;
see Figure 1 for the data of this problem

Lemma 4.2. Let (πu)u∈V be given nodal prices and let x = (q, p) be a solution
of Problem (8). Furthermore, suppose that there exist Lagrange multipliers λ =
(γ, ζ−, ζ+) such that (x, λ) is a KKT point of Problem (8). Then, the signs of
the Lagrange multipliers γ related to the Weymouth constraint (8b) are equal to
the signs of the nodal price differences. That is, sgn(γa) = sgn(πu − πv) holds for
all a = (u, v) ∈ A with qa 6= 0.

Proof. An argument similar to the one used in the proof of Lemma 4.1 shows
that γa = (πu−πv)/(2Λa|qa|) for all a = (u, v) ∈ A with qa 6= 0. As the denominator
is positive, the assertion follows. �

Lemma 4.2 helps us to deal with arcs with nonzero gas flows in the proof of the
following theorem, which states that (i) all nodal prices are the same, that (ii) the
gas market equilibrium is unique, and that (iii) it is welfare-maximal. The proof is
rather technical and therefore given in Appendix D.

Theorem 4.3. Let (πu)u∈V be given nodal prices and let x = (y, d, q, p) be a solution
of the simultaneous game (SG). Suppose further that the nodal pressures are not
binding, i.e., p−u < pu < p+u for all u ∈ V and that (q, p) satisfies Assumption 2.
Moreover, suppose that Assumption 1 holds. Then, all nodal prices are equal, x
is the unique market equilibrium of the simultaneous game (SG), and this unique
market equilibrium is welfare-maximal.

4.2.2. No Extension of the Fundamental Welfare Theorems to Gas Markets with
Network Congestion. In this section, we show that there are instances in which the
sets of (SG) equilibria and welfare-maximal points do not coincide. Furthermore,
we prove that there even exist instances where both sets are disjoint.

Theorem 4.4. There exist instances such that the solution spaces of the simultane-
ous game (SG) and of the welfare maximization problem (WMP) do not coincide, i.e.,
the welfare theorems do not hold for gas trade on networks with network congestion.

Our argument in the proof of Theorem 4.4 is again based on the three-node
network of Example 3.7; see Figure 1. We show that the welfare maxima x̂ and x̃,
see Figure 4, cannot be obtained as simultaneous game equilibria. Since x̂ and x̃ are
the only welfare-maximal solutions, it follows that there is no equilibrium of (SG)
that implements a welfare-maximal solution. Thus, both fundamental welfare
theorems cannot be extended to the case of gas markets with binding network
constraints in general.

Proof of Theorem 4.4. The nodal prices that implement the welfare maxima in the
instance of Example 3.7 are determined by the demand functions in case of demand
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Figure 5. The TSO’s objective function and its isolines for prices π̂

nodes and by the marginal costs in case of supply nodes. In case of zero demand, all
prices equal to and greater than the prohibitive price are possible. Thus, we have

π̂1 = 4, π̂2 = 12, π̂3 = 10
√

2− 1

2
,

π̃1 = 2 + 2
√

2, π̃2 = 12−
√

2, π̃3 ≥ 10
√

2 +
1

2
.

We start with the welfare maximum x̂, which yields a market solution of (SG)
if and only if (q̂, p̂) is an optimal solution of Problem (8). Using the data of our
example, Problem (8) reads

max
q̂,p̂

8q̂12 +

(
10
√

2− 9

2

)
q̂13 +

(
10
√

2− 25

2

)
q̂23

s.t. p̂22 = p̂21 − q̂12|q̂12|, p̂23 = p̂21 − q̂13|q̂13|, p̂23 = p̂22 − q̂23|q̂23|,
1 ≤ p̂1 ≤

√
2, 0 ≤ p̂2 ≤ 1, p̂3 = 1.

As the signs of all flows are predetermined due to the chosen pressure bounds, this
problem is equivalent to the optimization problem

max
p̂1,p̂2

8
√
p̂21 − p̂22 +

(
10
√

2− 9

2

)√
p̂21 − 1−

(
10
√

2− 25

2

)√
1− p̂22

s.t. 1 ≤ p̂1 ≤
√

2, 0 ≤ p̂2 ≤ 1.

Figure 5 displays the objective function and its isolines. The optimal solution is
(p̂1, p̂2) = (

√
2, 0) and thus differs from (

√
2, 1); see Figure 4 (left). Consequently,

the welfare maximum x̂ is not a solution of the simultaneous game (SG).
The same argumentation yields that the TSO’s problem (8) for the welfare

optimum x̃ is equivalent to the optimization problem

max
p̃

(
10− 3

√
2
)√

p̃21 − p̃22 +
(
π̃3 − 2− 2

√
2
)√

p̃21 − 1−
(
π̃3 − 12 +

√
2
)√

1− p̃22

s.t. 1 ≤ p̃1 ≤
√

2, 0 ≤ p̃2 ≤ 1,

with π̃3 ≥ 10
√

2 + 1/2. From π̃3 − 2− 2
√

2 ≥ 0 and 10− 3
√

2 ≥ 0 we get p̃1 =
√

2.
Thus, the TSO’s Problem is equivalent to the optimization problem

max
p̃2

(
10− 3

√
2
)√

2− p̃22 + π̃3 − 2− 2
√

2−
(
π̃3 − 12 +

√
2
)√

1− p̃22
s.t. 0 ≤ p̃2 ≤ 1.
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Since

10− 3
√

2 >
(

10− 3
√

2
)√

2−
(

10
√

2 +
1

2
− 12 +

√
2

)
≥
(

10− 3
√

2
)√

2−
(
π̃3 − 12 +

√
2
)

holds, the TSO’s objective function value with p̃2 = 1 is larger than the TSO’s
objective function value with p̃2 = 0 for all π̃3 ≥ 10

√
2 + 1/2. Thus, the TSO

prefers p̃2 = 1. Consequently, the welfare maximum x̃ is again not a solution of the
simultaneous game (SG). �

In conclusion, this shows that there exist market situations for which no welfare
maximum corresponds to a market equilibrium and vice versa. Thus, the fundamental
theorems of welfare economics cannot be extended to gas markets accounting for
network constraints, which especially means that market equilibria cannot be
identified by solving the corresponding welfare maximization problem.

To strengthen our point, we show in Appendix C that the same results might
also be obtained on simple tree networks. Thus, we have shown in this section
that even in the most promising case (convex marginal cost of suppliers, strictly
decreasing demand, and perfect competition) we cannot establish the extension
of the fundamental theorems of welfare economics to gas markets even for very
simple networks. We clearly identified the nonconvex “production technology” of
the TSO as the origin of this failure. We conjecture that an appropriate regulatory
regime might resolve the problem. In the following section we show that indeed,
committing the TSO to a welfare objective and, at the same time, giving him
discretion to determine the nodal prices can effectively establish an efficient gas
market framework. Of course, the analysis considers an idealistic world. Major
obvious qualifications of the analysis and our results are discussed in the conclusion.

5. Nonconvex Gas Market Equilibrium Modeling:
A Multilevel Approach

We have shown so far that in the case of a profit-maximizing TSO, competitive
market equilibria of the wholesale short-run natural gas market do not correspond
to welfare-maximal solutions in general and thus may lead to market inefficiency.
We conjecture that the problem can be addressed by appropriate regulation of the
TSO and thus, analyze a respective market structure in the following. In particular,
in the proposed setup, the TSO is committed to a welfare objective and moves first
by setting the nodal prices. For the resulting trilevel game, we prove that each
market solution corresponds to a welfare-maximal solution and vice versa.

The proposed hierarchical game is structured as follows. The TSO is regulated to
operate such that overall social welfare is maximized. Therefore, the TSO decides
at the first level about welfare-maximizing market prices. Afterward, the market
prices are forwarded to the suppliers and consumers, who decide simultaneously
about the quantities of gas that they supply or discharge. Thus, supply and demand
is determined at the second level. At the third level, the TSO controls the physical
gas flows based on the given supply and demand quantities. An overview of the
resulting multilevel problem is depicted in Figure 6.

Thus, the TSO solves the following optimization problem at the first level:

max
π

∑
u∈V−

∫ du

0

Pu(x) dx−
∑
u∈V+

cu(yu). (12)

Here and in what follows, π = (πu)u∈V denotes the vector of nodal prices.
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Figure 6. Structure of the multilevel gas market model

At the second level, all suppliers and consumers face the welfare-maximizing
market prices that have been chosen by the TSO. Note that in this framework,
the assumption of non-strategic firms is not necessary since, at prices fixed by
the TSO, it is in the firms’ best interest to take supply and demand decisions
optimally. The problem of incomplete information on the part of the regulator
(or here, the regulated TSO) has been extensively addressed in the literature. For
seminal contributions see [4] or [30]. For a recent survey see [45]. In the context of
energy markets, however, information on cost parameters is often supposed to be
available, as recent advances of regulators regarding price control based on verified
cost demonstrate; see, e.g., [9].

In this setup, the optimization problem

max
yu≥0

πuyu − cu(yu), (13)

arises for each supplier located at node u ∈ V+. For each consumer located at
node u ∈ V−, we have

max
du≥0

∫ du

0

Pu(x) dx− πudu. (14)

Note that Problem (13) and (14) correspond to Problem (3) and (5), respectively.
Finally, the TSO determines a feasible operation of the transmission network at

the third level. As long as active elements, e.g., (control) valves or compressors,
are not considered, no transportation costs arise for the TSO. This leads to the
following feasibility problem at the third level:

p2v = p2u − Λaqa|qa|, a = (u, v) ∈ A,
p−u ≤ pu ≤ p+u , u ∈ V,∑

a∈δin(u)

qa −
∑

a∈δout(u)

qa = qu, u ∈ V,
(15)

with

qu =

{
du, u ∈ V−,
−yu, u ∈ V+.

(16)

Since all supply and demand quantities have already been determined at the second
level and are therefore fixed at the third level, uniqueness of the third-level solution
w.r.t. the flows follows from the results in [42]. The pressures are also unique except
for constant shifts. However, this multiplicity does not influence the market outcome.
Uniqueness of the second level solution follows from Lemma 3.1 and 3.2.

In what follows, we prove that market solutions of the hierarchical game corre-
spond to welfare-maximal solutions. Thus, unlike in the case of a profit-maximizing
TSO, we can establish an analogue of the fundamental welfare theorems. We start
by showing the 1-1 correspondence of the multilevel optimization problem and an



18 V. GRIMM, J. GRÜBEL, L. SCHEWE, M. SCHMIDT, AND G. ZÖTTL

optimization problem with equilibrium constraints (MPEC). Afterward, we prove
the 1-1 correspondence of the MPEC and the welfare maximization problem.

The MPEC’s upper level consists of the optimization problem

max
q,p,π

∑
u∈V−

∫ qu

0

Pu(x) dx−
∑
u∈V+

cu(−qu) s.t. (15), (16). (17)

The second level of the hierarchical game, i.e., Problem (13) and (14), corresponds to
the MPEC’s equilibrium problem. Thus, the MPEC originates from the hierarchical
game by aggregating level one and three. We now show that this aggregation does
not influence the space of optimal solutions.

Lemma 5.1. Let (π; d, y; q, p) be a market solution of the hierarchical game.
Then, (q, p, π; d, y) is a solution of the MPEC.

Proof. As one can easily see, (q, p, π; d, y) is feasible for the MPEC. We now prove
optimality by contradiction. Assume that (q, p, π; d, y) is not optimal for the MPEC.
Then, there exists (q̃, p̃, π̃; d̃, ỹ) such that for the profit of the leader, i.e., the TSO,∑

u∈V−

∫ q̃u

0

Pu(x) dx−
∑
u∈V+

cu(−q̃u) >
∑
u∈V−

∫ qu

0

Pu(x) dx−
∑
u∈V+

cu(−qu)

holds. If the TSO would set π̃ as market prices at the first level of the trilevel
problem, the followers, i.e., the suppliers and consumers, would react with supply ỹ
and demand d̃. This is the case as the second level of the MPEC and the second
level of the hierarchical game coincide. In turn, the TSO would react with flows q̃
and pressures p̃ as the reaction of the TSO is unique with regard to fixed demands
and supplies; cf. [42]. Therefore, (π̃; d̃, ỹ; q̃, p̃) is feasible for the hierarchical game
but yields a higher outcome for the TSO than (π; d, y; q, p). Since the TSO is also
the leader of the hierarchical game, this contradicts the assumption that (π; d, y; q, p)
is a market solution of the hierarchical game. Thus, (q, p, π; d, y) must be optimal
for the MPEC. �

Lemma 5.2. Let (q, p, π; d, y) be a solution of the MPEC. Then, (π; d, y; q, p) is a
market solution of the hierarchical game.

Proof. As one can easily see, (π; d, y; q, p) is feasible for the hierarchical game. Again,
we prove optimality by contradiction. Assume that (π; d, y; q, p) is not optimal for
the hierarchical game. Then, there exists (π̃; d̃, ỹ; q̃, p̃) such that for the profit of the
leader, i.e., the TSO,∑

u∈V−

∫ d̃u

0

Pu(x) dx−
∑
u∈V+

cu(ỹu) >
∑
u∈V−

∫ du

0

Pu(x) dx−
∑
u∈V+

cu(yu)

holds. The vector (q̃, p̃, π̃; d̃, ỹ) is feasible for the MPEC but yields a higher out-
come for the TSO than (q, p, π; d, y). Since the TSO is also the leader of the
MPEC, this contradicts the assumption that (q, p, π; d, y) is a solution of the MPEC.
Thus, (π; d, y; q, p) must be optimal for the hierarchical game. �

Thus, we have established a 1-1 correspondence of the hierarchical game and
the MPEC. Finally, we also prove the 1-1 correspondence of the MPEC and the
welfare maximization problem.

Lemma 5.3. There is a 1-1 correspondence of the MPEC and the welfare maxi-
mization problem (WMP), i.e., the solution spaces of both problems coincide.
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Proof. The unique primal solution of the second level of the MPEC is given by
Lemma 3.1 and Lemma 3.2. Thus, the MPEC is equivalent to the following single-
level optimization problem:

max
q,p,π

∑
u∈V−

∫ qu

0

Pu(x) dx−
∑
u∈V+

cu(qu) (18a)

s.t. Physical feasibility: (15), (18b)

qu =

{
0, c′u(0) > πu,

−(c′u)−1 (πu) , c′u(0) ≤ πu,
u ∈ V+, (18c)

qu =

{
0, Pu(0) < πu,

P−1u (πu) , Pu(0) ≥ πu,
u ∈ V−. (18d)

Since (18c) and (18d) describe the optimal reactions of suppliers and consumers to
market prices, i.e., yu = −qu for all u ∈ V+ and du = qu for all u ∈ V− are solutions
of the MPEC’s lower level equilibrium problem. It follows that 0 ≤ yu for all u ∈ V+
and 0 ≤ du for all u ∈ V−. Thus, if (q, p, π) is a feasible solution of Problem (18),
then, (d, y, q, p) is a feasible solution of the welfare maximization problem (WMP).

In turn, let (d, y, q, p) be a solution of the welfare maximization problem (WMP).
Let π be defined by πu = c′u(yu) for all u ∈ V+ and πu = Pu(du) for all u ∈ V−.
Then, in the case yu = 0, πu = c′u(0) holds and we obtain qu = − (c′u)

−1
(c′u(0)) = 0;

cf. Equation (18c). In the other case yu > 0, πu = c′u(yu) holds and we get
qu = − (c′u)

−1
(πu) = − (c′u)

−1
(c′u(yu)) = −yu, because c′u(0) < πu = c′u(yu) follows

from the fact that the marginal costs c′u(·) are strictly increasing, continuous, and
thus invertible. Hence, the prices πu yield −yu in Equation (18c) for all u ∈ V+. By
an analogous argumentation, it can be shown that the prices πu also yield du in
Equation (18d) for all u ∈ V−. Thus, (q, p, π) is a feasible solution of Problem (18).

As the set of feasible solutions and the objective functions of Problem (18) and
the welfare maximization problem (WMP) coincide, the assertion follows. �

In summary, we have shown the 1-1 correspondence of the hierarchical game and
the welfare maximization problem.

Theorem 5.4. There is a 1-1 correspondence of the solutions of the hierarchical
game and the welfare maximization problem (WMP), i.e., the solution spaces of
both problems coincide.

Consequently, all welfare-maximal solutions correspond to market solutions of
the proposed hierarchical game and vice versa. The fundamental welfare theorems
are therefore re-established for the wholesale short-run natural gas market under
perfect competition in case of a welfare-maximizing TSO.

6. Conclusion

This paper lays the foundation for an analysis of the interplay of gas markets
and gas transport in partial equilibrium models. To set the stage for an in-depth
understanding of the particular restrictions of standard equilibrium analysis in this
context, we first analyze a standard approach from electricity market modeling; see,
e.g., [13, 21, 23]. We demonstrate that standard results from welfare economics [2],
which typically make the analysis tractable in electricity market modeling, do not
extend to our framework due to nonconvexities of the network constraints that
obtain even for the simplest possible gas transport model. We investigate in detail
the correspondence between equilibria of a gas market game and the corresponding
MNCP, as well as the relation between market equilibria and welfare maxima of the
analyzed gas market environment. As we show, the respective solutions fall apart
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even for tree-structured networks if flow restrictions are binding such that standard
techniques to determine market outcomes necessarily fail. We propose an alternative
gas market model that involves a regulated TSO focused on welfare maximization.
For the corresponding three-level model we show that market outcomes coincide
with welfare-maximal solutions.

The contribution of our paper is twofold. First, we provide detailed insights
on when and why standard approaches to model market interaction on networks
fail for the case of gas markets. Second, we pin down the origin of the missing
correspondence of market equilibria and welfare maxima and propose a model,
where regulation of the affected players re-establishes a well-functioning market
environment. In fact, various energy market designs around the world seem to follow
this idea in principle, although in quite different manners. In the US, electricity
market designs sometimes involve a regulated TSO who has some discretion to
set market prices; see, e.g., [10]. This seems to accomodate the insight that nodal
pricing in electricity market bears similar problems as those we point to here if real
network constraints are taken into consideration. In Europe, gas market regulation
decouples network management from gas trade through the entry-exit system; see,
e.g., [14]. This procedure necessarily leaves network capacity unused and therefore
decreases overall welfare as compared to the optimal design described in this paper.
Assessing the size of the welfare gap is left for future research. A first approach to
model the entry-exit system is provided in [18], where also discrete controls for the
network’s operation are addressed.
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Appendix A. Proof of Lemma 3.4

We now prove Lemma 3.4. Note that Assumption 1 is needed in the proof to
guarantee that in the case of no gas flows on a path P = (V (P ), A(P )) in G, at
most one of the nodes in V (P ) has an active pressure bound.

Lemma A.1. Let x = (q, p) be a solution of Problem (8). In addition, let P =
(V (P ), A(P )) be a path in G with qa = 0 for all a ∈ A(P ). Furthermore, suppose
that Assumption 1 holds. Then, there exists at most one node u ∈ V (P ) with active
an pressure bound.

Proof. Since qa = 0 for all a = (u, v) ∈ A(P ), pu = pv follows from constraint (8b).
Consequently, all nodal pressures are equal along the path P . As all pressure bounds
are pairwise distinct by Assumption 1, the assertion follows. �

Within the following proof, we denote for a given matrix M ∈ Rm×n by MR,C

the sub-matrix with all rows corresponding to the elements of the index set R and all
columns corresponding to the elements of the index set C. Analogously, we denote
for a given vector m ∈ Rm by mR the subvector with all entries corresponding to
the elements of the index set R.
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Proof of Lemma 3.4. We show that under the given assumptions, the LICQ holds
in x. To this end, we use the notation

V lo = {u ∈ V : pu = p−u }, A=0 = {a ∈ A : qa = 0},
V up = {u ∈ V : pu = p+u }, A 6=0 = {a ∈ A : qa 6= 0},
V in = {u ∈ V : p−u < pu < p+u }.

We further introduce the function

fa : R→ R, qa 7→ Λaqa|qa|.
for all a ∈ A and denote the vector of squared pressures (p2u)u∈V by p̄, the vec-
tor of lower pressure bounds (p−u )u∈V by p−, and the vector of upper pressure
bounds (p+u )u∈V by p+. In addition, let f(q) denote (fa(qa))a∈A and let f ′ denote
(f ′a(qa))a∈A with

f ′a : R→ R≥0, qa 7→ 2Λa|qa|. (19)
Let B ∈ {0,±1}|V |×|A| denote the node-arc-incidence-matrix of the graph G and
let In be the identity matrix of dimension n× n. The Jacobian of the constraint set
of Problem (8) is then given by∇q (BT p̄− f(q)

)
∇p
(
BT p̄− f(q)

)
∇q(p− − p) ∇p(p− − p)
∇q(p− p+) ∇p(p− p+)

 .
Without loss of generality, we assume that the flow vector is ordered as q> =
(q>A=0 , q>A6=0) and that the pressure vector is ordered as p> = (p>V lo , p

>
V up , p>V in). In

the following, we consider the corresponding rectangular and homogeneous system

Jλ =


−diag(f ′A=0) 0 0 0

0 −diag(f ′A 6=0) 0 0

B̂V lo,A=0 B̂V lo,A 6=0 −I|V lo| 0

B̂V up,A=0 B̂V up,A 6=0 0 I|V up|
B̂V in,A=0 B̂V in,A 6=0 0 0



λA=0

λA6=0

λV lo

λV up

 = 0.

Here, B̂ ∈ R|V |×|A| is defined by

B̂u,a =


2pu, u = v,

−2pu, u = w,

0, otherwise,

for all u ∈ V and a = (v, w) ∈ A.
Since f ′a(qa) = 0 if and only if qa = 0 for all a ∈ A, we have f ′A 6=0 6= 0 and

therefore λA6=0 = 0. If A=0 6= ∅ holds, the first block row is zero and can be ignored.
Thus, the system reduces toB̂V lo,A=0 −I|V lo| 0

B̂V up,A=0 0 I|V up|
B̂V in,A=0 0 0

λA=0

λV lo

λV up

 = 0

Thus, LICQ holds if this reduced square linear system has full rank, i.e., if the only
solution is the zero solution.

Since all pressures are positive by Assumption 1, this system is a network flow
problem on the subgraph GA=0 =

(
V (A=0), A=0

)
. We define λ̂u := λu/(2pu) for all

u ∈ V lo ∪ V up and obtain the flow problem

BV lo,A=0λA=0 = λ̂V lo ,

BV up,A=0λA=0 = −λ̂V up ,

BV in,A=0λA=0 = 0.

(20)
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1
Generation:
p ∈ [

√
1 + 2ε,

√
2 + ε]

c(y) = y2

2
Demand:
p ∈ [

√
ε, 1]

P (d) = 13− d

3
Demand:
p =
√
1 + ε

P (d) = 10
√
2 + 1

2
− d

Λ = 1

Λ = 1

Λ = 1

Figure 7. Perturbed three-node network

As there is no cycle in GA=0 by Assumption 2, each connected component of GA=0

corresponds to a path P = (V (P ), A(P )) in G with qa = 0 for all a ∈ A(P ). From
Lemma A.1, it follows for each connected component of GA=0 that at most one
pressure bound is active and therefore at most one entry of the right-hand side is
variable. Consequently, Problem (20) is only solved by the zero vector. Therefore,
LICQ holds. �

Appendix B. Proof of Theorem 3.6

Proof of Theorem 3.6. We consider an instance G = (V,A) with three nodes that
are connected by three pipes. The instance is depicted, together with all physical
and economical parameters, in Figure 7. It is similar to the one of Example 3.7 but
with slightly perturbed physical parameters such that Assumption 1 is fulfilled. For
the nodal prices

π1 = 2 + 2
√

2, π2 = 12−
√

2, π3 = 10
√

2 +
1

2
,

we obtain the solution

y1 = 1 +
√

2, d2 = 1 +
√

2, d3 = 0,

q12 =
√

2, q13 = 1, q23 = −1,

p1 =
√

2 + ε, p2 =
√
ε, p3 =

√
1 + ε,

of the (MNCP). The Lagrange multipliers are given by

γ12 =
3
√

2− 10

2
√

2
, ζ+1 =

√
2 + ε

(
13
√

2− 9

2

)
,

γ13 = −4
√

2 +
3

4
, ζ−2 =

√
ε

(
17

2
− 6
√

2

)
,

γ23 = −11

2

√
2 +

23

4
, ζ−3 =

√
1 + ε

(
19
√

2− 13
)
,

and η−1 = β−2 = β−3 = ζ−1 = ζ+2 = ζ+3 = 0. For the TSO’s problem (8), the LICQ
holds in (q, p); cf. Lemma 3.4. Thus, being a solution of (MNCP) is a necessary
condition for being a market equilibrium. The corresponding problem of the TSO
reads

max
q,p

(
10− 3

√
2
)
q12 +

(
8
√

2− 3

2

)
q13 +

(
11
√

2− 23

2

)
q23

s.t. p22 = p21 − q12|q12|, p23 = p21 − q13|q13|, p23 = p22 − q23|q23|,√
1 + 2ε ≤ p1 ≤

√
2 + ε,

√
ε ≤ p2 ≤ 1, p3 =

√
1 + ε.

As, for small epsilon ε > 0, the pressures p1 =
√

2 + ε and p2 = 1 with flows
q12 =

√
1 + ε, q13 = 1, and q23 = −√ε yield a higher payoff for the TSO than
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1
Generation:
p ∈ [

√
2,
√
2.21]

c(y) = y2

2
Demand:
p ∈ [1,

√
2]

P (d) = 15− d

3

Demand:
p = [1,

√
2]

P (d) = (2.2− 0.87/
√
0.21)− d

Λ = 1

Λ = 1

Figure 8. Three-node tree network

p1 =
√

2 + ε and p2 =
√
ε, the TSO has an incentive to deviate from the stated

solution of the (MNCP). Thus, the (MNCP) solution does not correspond to a
market equilibrium due to the insufficiency of the TSO’s first-order conditions. �

Appendix C. The Welfare Maximization Problem on Trees

In this section we show that the welfare maximization problem possesses multiple
solutions even on tree-like network structures. Afterward we show that the welfare
theorems also cannot be extended to gas networks that are trees.

C.1. Multiplicity of Welfare-Maximal Solutions. In what follows, we show
that even on simple tree-like networks, there exist multiple solutions of the welfare
maximization problem (WMP). To this end, we consider a graph that consists of
three nodes connected by two pipes. An overview of all physical and economical
parameters is given in Figure 8. The corresponding welfare maximization problem
reads

max
y,d,q,p

∫ d2

0

(15− x) dx+

∫ d3

0

(2.2− 0.87/
√

0.21− x) dx− y21 (21a)

s.t. y1 ≥ 0, d2 ≥ 0, d3 ≥ 0, (21b)
q12 + q13 = y1, q12 = d2, q13 = d3, (21c)

p22 = p21 − q12|q12|, p23 = p21 − q13|q13|, (21d)
√

2 ≤ p1 ≤
√

2.21, 1 ≤ p2 ≤
√

2, 1 ≤ p3 ≤
√

2. (21e)

An argument similar to the one in Section 4.1 yields q12 ≥ 0 and q13 ≥ 0. The
projection of the feasible set onto the space of withdrawals (d2, d3) is described by
the inequality system

0 ≤ d22 ≤ 1.21, 0 ≤ d23 ≤ 1.21, −1 ≤ d23 − d22 ≤ 1,

cf. [15]. The set of demands (d2, d3) that satisfy this system is depicted in Figure 9.
The important part of the boundary of the feasible set is defined by the function

h : [1, 1.1]→ [0,
√

0.21], d2 7→
√
d22 − 1.

Again, we show that the points d̂ = (1, 0) and d̃ = (1.1,
√

0.21) both implement
welfare-maximal solutions. Both lie on the graph h and on the same isoline of
welfare. The latter—in dependence of d2—is given by

I(d2) =
1

3

(
2.2− 0.87√

0.21
− 2d2

)

+
1

3

√(
2.2− 0.87√

0.21
− 2d2

)2

+ 6 ·
(

15d2 −
3

2
d22 − 13.5

)
.
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Figure 9. Projection of the feasible set of Problem (21) onto the
2d-space of demand variables
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Figure 10. The welfare function (left) and its isolines (right)

In Figure 10, the unconstrained welfare function and its isolines are depicted as
functions of d2 and d3. The unique maximum is attained in (d2, d3) = (5, 0). For
the region of feasible demands, see Figure 9, it holds again that the farther away
the isoline of welfare is from the origin, the better is the corresponding welfare. It
again remains to show that, within the interval [1, 1.1], h(d2) − I(d2) ≥ 0 holds.
This can be shown by an easy computation. We thus proved that both points d̂ and
d̃ correspond to optimal solutions of the welfare maximization problem (21). Hence,
even on simple tree networks, the welfare-maximal solution is not unique.

C.2. Welfare Theorems do not Extend to Gas Markets on Trees. In what
follows, we show that—also for our three-node tree network—the equilibria of (SG)
and the welfare-maximal points are disjoint; cf. Section 4.2.2. Again, we show that
the welfare maxima x̂ and x̃, see Figure 11, cannot be obtained as simultaneous
game equilibria. Since x̂ and x̃ are the only welfare-maximal solutions, it follows
that there is no equilibrium of (SG) that implements a welfare-maximal solution.
Thus, both fundamental welfare theorems cannot be extended to the case of gas
markets accounting for physical network constraints even on simple tree networks.
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1
p =
√
2

y = 1
c(y) = 1

2
p = 1

d = 1
P (d) = 14

3
p =
√
2

d = 0

P (d) = 2.2− 0.87√
0.21

1

0

1
p =
√
2.21

y = 1.1 +
√
0.21

c(y) = (1.1 +
√
0.21)2

2
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3
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√
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√
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P (d) = 2.2− 0.87√
0.21
−
√
0.21

1.1

√
0.21

Figure 11. Two welfare-maximal solutions derived in Appendix C;
see Figure 8 for the data of this problem

For our example, the following nodal prices implement the welfare maxima x̂
and x̃:

π̂1 = 2, π̂2 = 14, π̂3 ≥
(

2.2− 0.87√
0.21

)
,

π̃1 = 2 · (1.1 +
√

0.21), π̃2 = 13.9, π̃3 =

(
2.2− 0.87√

0.21

)
−
√

0.21.

We start with the welfare maximum x̂, which yields a market solution of (SG)
if and only if (q̂, p̂) is an optimal solution of Problem (8). As, again, the signs
of all flows are predetermined due to the chosen pressure bounds, Problem (8) is
equivalent to the optimization problem

max
p̂

12
√
p̂21 − p̂22 + (π̂3 − 2)

√
p̂21 − p̂23

s.t.
√

2 ≤ p̂1 ≤
√

2.21, 1 ≤ p̂2 ≤
√

2, 1 ≤ p̂3 ≤
√

2,

with π̂3 ≥ 2.2− 0.87/
√

0.21. Since

12
√

2.21− 1 + (π̂3 − 2)
√

2.21− 2 ≥ 12

holds, the TSO’s objective function value with p̂1 =
√

2.21, p̂2 = 1, and p̂3 =
√

2 is
larger than the TSO’s objective function value with p̂1 =

√
2, p̂2 = 1, and p̂3 =

√
2

for all π̂3 ≥ 2.2− 0.87/
√

0.21. Thus, the TSO has an incentive to deviate from the
welfare-maximal strategy. Consequently, the welfare maximum x̂ is not a solution
of the simultaneous game (SG).

The TSO’s problem (8) for the nodal prices π̃ is equivalent to the optimization
problem

max
p̃

(
11.7− 2

√
0.21

)√
p̃21 − p̃22 −

(
0.87√
0.21

+ 3
√

0.21

)√
p̃21 − p̃23

s.t.
√

2 ≤ p̃1 ≤
√

2.21, 1 ≤ p̃2 ≤
√

2, 1 ≤ p̃3 ≤
√

2.

The optimal solution is p̃ = (
√

2, 1,
√

2) and thus differs from (
√

2.21, 1,
√

2), see
Figure 11 (below). Consequently, the welfare maximum x̃ is not a solution of the
simultaneous game (SG).
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In summary, it follows that the fundamental theorems of welfare economics cannot
be extended to gas markets accounting for network constraints even on simple tree
networks.

Appendix D. Proof of Theorem 4.3

Proof of Theorem 4.3. Since x is a solution of (SG), (q, p) is a solution of (8).
According to Theorem 3.4, there exist Lagrange multipliers (γ, ζ−, ζ+) such
that (q, p, γ, ζ−, ζ+) solves (9).

We first show that πu = πv holds for all a = (u, v) ∈ A. Since πu = πv holds
for all arcs a ∈ A with qa = 0, cf. Lemma 4.1, it is sufficient to prove πu = πv for
all a ∈ A with qa 6= 0. In turn, this is equivalent to show γa = 0 for all a ∈ A with
qa 6= 0, cf. Equation (9a).

Because 0 < p−u < pu < p+u for all u ∈ V , Equation (9b) reduces to∑
a∈δin(u)

γa −
∑

a∈δout(u)

γa = 0, u ∈ V. (22)

Thus, γ = (γa)a∈A is a circulation in G. We now consider a cycle C = (V (C), A(C))
of G. By Assumption 2, there exists an arc a ∈ A(C) with qa 6= 0. Without loss of
generality, we assume that all arcs a = (u, v) ∈ A are directed such that πu ≤ πv
holds. As then sgn(γa) = sgn(πu−πv) ≤ 0 holds for all arcs of the cycle with qa 6= 0,
cf. Lemma 4.2, these arcs must have the same direction to allow for circulations.
If this is not the case, we have γa = 0 for all a ∈ A(C) with qa 6= 0 and we are
done. Hence, we assume that all arcs with qa 6= 0 have the same direction. From
Equation (9a) and Lemma 4.1, it follows∑
a∈A(C): qa 6=0

γa2Λa|qa| =
∑

a=(u,v)∈A(C): qa 6=0

(πu − πv) =
∑

a=(u,v)∈A(C)

(πu − πv) = 0.

As γa ≤ 0 for all a ∈ A(C) with qa 6= 0, we have γa = 0 for all a ∈ A(C) with qa 6= 0.
Thus, πu = πv follows for all a = (u, v) ∈ A.

Since variable costs of gas supply are strictly convex, continuously differentiable,
and increasing, the same holds for the aggregated market supply. An analogous
argument yields that the aggregated inverse market demand is continuous and
strictly decreasing. Hence, the point of intersection of the overall market supply and
the overall inverse market demand function is unique. Consequently, there exists
only one solution to (SG) that fulfills πu = πv for all a = (u, v) ∈ A. Therefore, x is
the unique market equilibrium of (SG).

In the absence of physical network restrictions, the unique welfare maximum is
implemented in case of a uniform market price; see Chapter 10.E of [33]. Thus, the
unique market equilibrium of (SG) corresponds to the unique welfare maximum of
(WMP). �
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