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We study two-stage robust optimization problems with a special decom-
posable structure. By exploiting this special structure, it is shown how the
two-stage problem can be reformulated to a standard single-stage optimization
problem where the right hand side of the inequality system are pre-computed
by solving a series of optimization problems. As a consequence of the de-
composable structure, we develop an aggregated model which leads to a
drastic reduction of the number of subproblems. The ideas developed here
are then applied to a real-world gas network problem with active elements
under uncertainty. The approach is able to deal with both uncertainties in
the demand as well as uncertainties in the physical parameters. After having
shown how this problem fits into the setting described here, we use piecewise
relaxations and preprocessing techniques for gas networks that have been
developed previously and extend them such that they are able to incorporate
uncertain input data. The practical feasibility and the effectiveness of the new
robust optimization approach is demonstrated using a series of benchmarks
on realistic gas network instances.

1 Introduction
In this paper, we study two-stage robust optimization problems with a special decompos-
able structure. The aim of robust optimization is to solve optimization tasks that are
parameterized by a so-called uncertainty set U . In the easiest setting, solving a robust
problem amounts to specifying a solution for the problem variables that is feasible for all
possible realizations of the uncertainty. If this is too conservative or even impossible, e.g.,
when the problem has unique and differing solutions for each realization of the uncertainty
set, one may use a two-stage approach. The problem variables are split into here-and-now
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variables which have to be decided without knowledge of the uncertainty and wait-and-see
or adjustable variables whose value can be chosen after the uncertainty is revealed. A
two-stage approach is a natural model choice for gas network optimization tasks with
remotely controllable elements (“active elements”) with an uncertain demand situation
or uncertainties in the physical parameters. The network operator has to decide the
configuration of the controllable network elements before knowing the realization of the
uncertainty whereas the physical state of the network adjusts itself once the uncertainty
is revealed.

This two-stage model has two special properties: first, the physical state of the network
which is described by the adjustable variables is uniquely determined by the uncertain
parameter and second, there is no coupling between first and second stage variables.
We show how this structure can be exploited to reformulated the two-stage problem as
a single stage problem whose right hand side comprises the optimal values of a series
of subproblems arising from this transformation. By further exploiting the problem
structure, we develop an aggregation method which can be used to drastically reduce the
number of subproblems to solve. We also show that solving the subproblems to global
optimality is not absolutely necessary as relaxations can be used instead to obtain a more
conservative—but still robust feasible—solution.
In order to apply these ideas to the nonlinear, non-convex gas network problem, we

extend the well-known piecewise linearization technique for the nonlinear pressure drop
constraints to incorporate uncertain parameters. As our approach requires solving a
potentially large number of subproblems where each one is very similar to the nominal
problem, it is crucial to reduce the problem size as much as possible for the overall
solution time to stay within an acceptable time frame. To this end, we describe a variety
of preprocessing techniques which are adapted from the literature and generalized to
handle uncertain parameters.

This work is structured as follows: In section 2, the problem is introduced as a general
two-stage robust optimization task. After specifying the special structure, the transfor-
mation to single-stage problem and the aggregation idea are explained.
In section 3, we show how this transformation can be applied to gas network problems
under uncertainty. We first give a brief introduction of the gas network problem with
active elements under uncertainty in section 3.1. Next it is shown in section 3.2 how the
previously developed ideas can be apply to the gas network problem. How to construct
relaxations of arising nonlinear problem is described in section 3.2.1. Lastly, section 3.3
presents several generalizations of known preprocessing techniques to incorporate uncer-
tain parameters.
In section 4, the presented methods are benchmarked on a variety of freely available gas
network instances to show their practical feasibility.
This work closes with a summary in section 5.
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2 Two-Stage Robust Optimization Problems with
Disconnected First Stage and Unique Second Stage

Robust optimization deals with optimization problems under uncertainty. A robust
optimization task is given by a family of optimization problems which are parameterized
by a so-called uncertainty set U ⊆ Rnu :{

min
z∈Rn

{f(z) : g(z, u) = 0, h(z, u) ≤ 0}
}
u∈U

. (1)

In addition to the problem variables z ∈ Rn, the constraint functions g : Rn×Rnu → Rm1

and h : Rn × Rnu → Rm2 accept an additional data vector u ∈ U . Without loss of
generality, we assume a certain objective function f : Rn → R, see [2]. The goal of
robust optimization is to find solutions for (1) which are immunized against all possible
realizations u ∈ U . In the most basic setting, all problem variables have to be fixed before
the uncertainty becomes known. This leads to the robust counterpart

min
z∈Rn

{f(z) | g(z, u) = 0, h(z, u) ≤ 0 ∀u ∈ U} (RC)

where the feasible region is the set of all z which are feasible for all possible realizations
of the uncertainty.

If we drop the requirement of fixing z before the uncertainty is revealed, we arrive at a
two-stage robust optimization problem. Here, the problem variables are partitioned into
first and second stage variables: z = (x, y) ∈ Rn = Rn1+n2 . First stage or here-and-now
variables x ∈ Rn1 have to be fixed before the uncertainty becomes known whereas second
stage or wait-and-see variables y ∈ Rn2 can be decided with knowledge of the revealed
uncertainty. Since the second stage variables thus depend on the uncertain parameter,
they are also called adjustable variables. The notion of different actions happening at
different points in time directly leads to the adjustable robust counterpart

min
x
{f(x) | ∃x ∈ Rn1 ∀u ∈ U ∃y ∈ Rn2 with g(x, y, u) = 0, h(x, y, u) ≤ 0} . (ARC)

Again, without loss of generality, the objective only depends on here-and-now variables.
In this article we consider two-stage problems with a special constraint structure:

Assumption 1. a. The equation system g(x, y, u) = 0 does not depend on x and
admits a unique solution y∗(u) for all u ∈ U .

b. The inequality constraints h(x, y, u) ≤ 0 are separable: h(x, y, u) = s(x) + t(y, u).
Under this assumption, the two-stage problem can be reformulated as a single stage

problem:
Lemma 2.1. Under assumption 1, the set of feasible first stage decisions x of the
adjustable robust counterpart (ARC) is given by

X = {x ∈ Rn1 | s(x) ≤ b} (2)

where b ∈ Rm1 with

bi = −max
u∈U

{ti(y, u) | g(y, u) = 0, y ∈ Rn2} . (3)
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Proof. Due to assumption 1, the equality constraints of (ARC) only depend on y and u:
g(x, y, u) ≡ g(y, u) and the inequality constraints are separable: h(x, y, u) = s(x)+ t(y, u).
Therefore, the set of feasible first stage decisions x of (ARC) can be written as

{x | ∃x ∈ Rn1 ∀u ∈ U ∃y ∈ Rn2 with g(y, u) = 0, s(x) + t(y, u) ≤ 0} . (4)

From assumption 1 it follows that there is a function y∗(u) which maps values u of the
uncertainty set U to solutions of g(y, u) = 0. This function exists and is well defined since
solutions of the equality system exist for all u ∈ U and are unique. With this in mind,
the ∃y quantor and the equality constraints can be eliminated from (4) and the feasible
region of a single stage robust optimization problem of the form (RC) is obtained:

{x ∈ Rn1 | s(x) + t(y∗(u), u) ≤ 0 ∀u ∈ U} . (5)

To eliminate the “for all” condition, we maximize the left hand side of the inequality:

s(x) + t(y∗(u), u) ≤ 0 ∀u ∈ U ⇐⇒ max
u∈U

(s(x) + t(y∗(u), u)) ≤ 0 (6)

⇐⇒ s(x) + max
u∈U

(t(y∗(u), u)) ≤ 0. (7)

After rewriting the solution function y∗ in terms of g and letting

bi := −max
u∈U

{ti(y, u) | g(y, u) = 0, y ∈ Rn2} for all = 1, . . . ,m1, (8)

we obtain

si(x) + max
u∈U

(ti(y∗(u), u)) = si(x)− bi ≤ 0 (9)

and thus set of feasible first stage decisions x of (ARC) is equivalent to

{x ∈ Rn1 | s(x) ≤ b} . (10)

We want to highlight two properties of (2) which may be beneficial for solving problems
of this type in practice.
Remark 2.2. Calculating bi involves solving an optimization task to global optimality.
In situations where this is not possible or where it can only be done with great effort,
relaxations of the problem can be used instead. We propose to use convex or mixed-
integer linear relaxations as they lead to optimization tasks which can be solved to global
optimality. Consider the definition of bi:

bi = −max
u∈U

{ti(y, u) | g(y, u) = 0, y ∈ Rn2}︸ ︷︷ ︸
(?)

. (11)

Replacing (?) by a relaxed optimization problem leads to some b′i ≤ bi. Plugging b′ into
(10) yields a smaller feasible region for the first-stage decision variables x:{

x ∈ Rn1
∣∣ s(x) ≤ b′

}
⊆ {x ∈ Rn1 | s(x) ≤ b} . (12)

This leads to more conservative solutions (i.e., larger objective) of (10) while preserving
robust feasibility.
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Remark 2.3. Suppose there are two constraints hi(x, y, u) = si(x)+ti(y, u) ≤ 0 for i = 1, 2
which are replaced by s1(x) ≤ b1 and s2(x) ≤ b2 due to lemma 2.1. If the functions s1
and s2 are identical, both constraints can be aggregated into a single constraint by setting

s1(x) = s2(x) ≤ min(b1, b2). (13)

For ease of explanation, the implications of this observation will be explained using these
two constraint as an example. However, it is easy to see how to generalize this notion to
any finite number of constraints hi.

We want to emphasize that this situation may not be that uncommon in practice. For
example, all variable bounds yi ≤ yi are independent of x and are therefore reduced to a
constraint of the form s(x) = 0 ≤ c for some c ∈ R.

In order to implement reduction (13), one still needs to solve two optimization tasks of
the form (8) to obtain bi. Using the definition of bi, it is possible to obtain min(b1, b2)
using a single optimization task:

min(b1, b2) (8)= min
i=1,2

(
−max

u∈U
{ti(y, u) | g(y, u) = 0, y ∈ Rn2}

)
(14)

= min
i=1,2

(
min
u∈U
{−ti(y, u) | g(y, u) = 0, y ∈ Rn2}

)
(15)

= min
u∈U

{
min
i=1,2

(−ti(y, u))
∣∣∣∣ g(y, u) = 0, y ∈ Rn2

}
. (16)

Compared to (8), the aggregated optimization problem (16) has the same feasible set
but a different objective.

3 Stationary Gas Network Operations with Simplified
Compressor Models Under Uncertainty

First, the gas network problem under uncertainty is modeled. Next, we show how to
reformulate the model to satisfy the assumptions of section 2. Finally, relaxations for the
nonlinear constraints as well as preprocessing methods for enhancing model performance
are presented.

3.1 The Stationary Gas Network Transport Problem with Linear
Compressors

A gas network comprises a number of different components. Apart from pipes which allow
gas transport, there are compressors and control valves which increase and decrease the
pressure, valves which can prohibit flow along an arc, or resistors which hinder the gas flow
and decrease pressure. In this article, we only consider networks with pipes and simple
compressor models. Let G = (V +, A) be a digraph with |V +| = |{0, . . . , n+ 1}| = n+ 1
nodes and |A| = m ≥ n arcs. Without loss of generality, we assume G to be weakly
connected, i.e., the corresponding undirected graph is connected. If G is not weakly
connected, all presented results can be applied to each connected component separately.
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Gas can be inserted or withdrawn at the graph’s nodes. Let qnom+
v ∈ R denote the

demand at node v ∈ V where inflowing gas is indicated by a negative sign and outflowing
gas by a positive sign. In gas network operations, the vector qnom+ ∈ R|V +| is also called
the network’s nomination. As is true for any network flow problem, this vector has to be
balanced:

∑
v∈V + qnom+

v = 0.
Let qa ∈ R denote the gas flow over arc a ∈ A. Flow in arc direction is indicated by a

positive sign of qa whereas flow in reverse arc direction is indicated by a negative sign of
qa. Just like linear network flow problems, the gas flow has to satisfy flow conservation
at each node v ∈ V +: ∑

a=(v,w)∈A
qa −

∑
a=(w,v)∈A

qa = qnom+
v . (17)

Furthermore, we introduce variables pv ∈ R≥0 to model the pressure at node v ∈ V .
Since pressure variables always appear squared in our setting, a squared pressure variable
πv = p2

v is introduced to simplify the model and linearize all p2
v.

The pressure at two adjacent nodes (v, w) = a ∈ A is linked through one or more
constraints induced by the present network component on arc a. Let A = Api ∪Acs with
Api ∩Acs = ∅ be a partition of the network’s arcs into a set Api of pipes and a set Acs of
compressors.
Gas traveling along a pipe a = (v, w) ∈ Api experiences a pressure drop:

πw − πv = −φaqa |qa| . (18)

The magnitude of this pressure loss depends on the amount qa of gas and the pressure drop
coefficient φa ∈ R>0. The factor φa is computed from a number of physical properties
of the pipe and the quality of the gas mixture. Since many of these parameters can be
affected by uncertainty, this parameter lends itself for a robust treatment.

Compressors can be used to increase the pressure of the gas. This is needed e.g., when
gas is inserted into a higher pressure network, or in order to compensate for pressure
loss when gas is transported over a long distance. There are several compressor models
available, ranging from very simple to highly complex see blah . We use a simple linear
compressor model where the increase in pressure is independent of the flow through
the compressor. The squared pressure difference may be increased linearly by some
nonnegative amount ∆a ∈ [∆a,∆a] ⊆ R≥0:

πw − πv = ∆a, (v, w) = a ∈ Acs. (19)

Let ∆ ∈ R|Acs|
≥0 be the vector of all compressor “power levels” within in the network. We

model the costs of compressor operation (e.g., due to fuel consumption) by a linear cost
function

wT∆ (20)

where w ∈ R|Acs|
≥0 is a cost vector associated with the given compressors.
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Let A+ ∈ Rn×m be the node-arc-incidence-matrix of G, that is (A+)av = −1 and
(A+)aw = +1 for a = (v, w) ∈ A. With this matrix, the gas transport problem can be
expressed in a very concise fashion. Flow conservation (17) can be written as

A+q = qnom+. (21)

Let F : R|Api| ×R|A| ×R|Acs| → R be an aggregation of pipe (18) and compressor (19)
models:

Fa(φ, q,∆) =
{
−φaqa|qa| if a ∈ Api,

∆a if a ∈ Acs.
(22)

Hence, the constraint for the network component on arc a = (v, w) ∈ A = Api ∪ Acs is
given by

πw − πv = Fa(φ, q,∆). (23)

Using the node-arc-incidence-matrix A+, constraint (23) for all arcs amounts to

A+Tπ = F (φ, q,∆). (24)

Combining flow conservation (21), pressure constraints (24), and objective function (20)
yields the gas transport problem with linear compressors:

min wT∆ (25)
A+q = qnom+, (26)

A+Tπ = F (φ, q,∆), (27)

∆ ∈ [∆,∆] ⊆ R|Acs|
≥0 (28)

π ∈ [π, π] ⊆ R|V |≥0 , (29)

q ∈ R|A|. (30)

3.1.1 The Gas Network Problem Under Uncertainty

There are two main sources of uncertainty which are studied in this article: fluctuations
in the demand vector qnom+ as well as uncertainties in the pressure drop coefficient
φ. We define two polyhedral uncertainty sets, P ⊆ R|Api|

>0 for uncertain pressure drop
coefficients and D ⊆ R|V | for uncertain demands. When not explicitly stated otherwise,
the considered problems may be affected by both uncertainty sets simultaneously. Thus
we typically use a combined uncertainty set U = P ×D.

Uncertain pressure loss coefficients This is an arc-wise uncertainty and influences the
pressure drop between two incident nodes. For all arcs a ∈ Api, let φa, φa ∈ R>0 with
0 < φa,≤ φa. Let the uncertainty set be given by

P =
{
φ ∈ R|Api|

>0

∣∣∣φa ≤ φa ≤ φa, a ∈ Api
}
. (31)

This type of uncertainty is also known as “box uncertainty”.
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Uncertain demand This node-wise uncertainty has an impact on the solution space
of the linear network flow problem. For all nodes v ∈ V , let qnom+

v , qnom+
v ∈ R with

qnom+
v ≤ qnom+

v . As the overall demand always has to be balanced, the uncertainty set
includes a balancing constraint.

D =
{
qnom+ ∈ R|V |

∣∣∣∣∣ q
nom+
v ≤qnom+

v ≤ qnom+
v , v ∈ V

1T qnom+ = 0

}
. (32)

3.1.2 Robust Counterpart

Robust treatment of the gas network problem (25)–(30) requires a two-stage model.
Assume for a moment that single stage (also known as strict) robustness is applied
to the problem at hand. In the single stage setting, a solution for flow q and squared
pressure π has to be found which is valid for all possible realizations of the uncertainty
set. Considering flowing gas as a physical system, such a solution is very unlikely to
exists as one would expect the flow and pressure situation within the network to be
highly dependent upon overall demand and the pressure loss coefficients. Therefore, a
two-stage robust approach is appropriate.

In two-stage robustness, the problem variables are partitioned into first-stage or here-
and-now and second-stage or wait-and-see variables. First-stage variables have to be
decided without knowledge of the uncertain parameters whereas second-stage variables
can adjust to the revealed uncertainty. For the gas network problem, compressor power ∆
are first-stage variables whereas flow q and squared pressure π are adjustable second-stage
variables. Thus, the two-stage problem can be formulated as

min
{
wT∆

∣∣∣ ∃∆ such that ∀u = (φ, qnom+) ∈ U ∃q, π that satisfy (26)–(30)
}
. (33)

This is also known as the (fully) adjustable robust counterpart.

3.2 A Separable Reformulation of the Gas Transport Problem
We now show that problem (25)–(30) can be reformulated so that assumption 1 is satisfied.
This is possible as long as no compressors are part of a cycle in the graph:

Assumption 2. Let a gas network problem with compressors over graph G be given.
Then no compressors are part of a cycle in the undirected counterpart of G.

Furthermore, without loss of generality we assume G to be weakly connected, i.e., the
corresponding undirected graph is connected. This is no restriction since all presented
transformations can be applied to each weakly connected component separately.

In [6], the authors show how all squared pressure variables and |V |−1 flow variables can
be eliminated from the model. This is done by expressing the flows within the network
as a combination of flows on a spanning tree together with flows on the remaining cycles.
The pressure at each node is expressed relative to an arbitrary chosen root node by
defining an aggregated pressure drop function between root node and each node in G.
Similar to Kirchhoff’s loop rule in electrical circuits, another set of constraints forces the
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aggregated pressure drop on every fundamental cycle to be zero. The next paragraph
introduces the required concepts used in the reformulation.

Since we assume G to be weakly connected, its node-arc-incidence-matrix A+ has rank
n − 1 and an arbitrary row can be removed while preserving the solution space. We
discard the row corresponding to node 1 and obtain a full-rank matrix A from A+ in
this way. After fixing a basis B of A, matrix A is partitioned into a basic submatrix
AB ∈ R(n−1)×(n−1) and a non-basic submatrix AN ∈ R(n−1)×(m−n+1). Moreover, let
(FB, FN ) and (qB, qN ) be the respective partitions of F and q. In the reduced model
only non-basic flows qN ∈ R|N | remain. Since every non-basic element corresponds to a
fundamental cycle in G, we call the remaining flow variables qN ∈ R|N | cycle flows.
It is well known from linear algebra that the solution space of the linear equation

system Aq = qnom can be parameterized by the non-basis variables qN . We define a
function q(·, qnom) that maps non-basic flows to flows in the whole network:

q : R|N | ×R|V | → R|A|, (34)

qa(qN , qnom) =


(
A−1
B (qnom −ANqN )

)
a
, if a ∈ B,

(qN )a , if a ∈ N.
(35)

Next we define an aggregated pressure loss function:

g̃(φ, q,∆) =
(
ATB

)−1
FB (φ, q,∆) (36)

Notice how each entry Fa only depends on either φa, qa or ∆a. Thus, the arguments of
FB can be restricted to their basic parts φB, qB and ∆B. Next, with (34) we rewrite
qB = qB(qN , qnom) such that the new function ḡ depends on qN and qnom instead of qB:

ḡ(φB, qnom, qN ,∆B) =
(
ATB

)−1
FB (φB, qB(qN , qnom),∆B) . (37)

We extend ḡ to incorporate the root node and obtain the final definition of the aggregated
pressure drop function g:

g : R|A|>0 ×R
|V | ×R|N | ×R|B|≥0 → R|V |,

gv(φB, qnom, qN ,∆B) =
{

0, if v = 1,
ḡv(φB, qnom, qN ,∆B), if v ∈ V \ {1}.

(v ∈ V )
(38)

By construction, ḡv(φB, qnom, qN ,∆B) is the sum of all pressure loss values on the unique
path between root node 1 and node v ∈ V on the spanning tree as induced by B. This
includes pressure drop due to pipes as well as pressure changes due to compressors.

Elimination of Variables and Equations The next theorem establishes an equivalent
formulation of the gas network problem over networks without compressors. In the absence
of compressors, we omit the compressor variables and abbreviate gv(φB, qnom, qN ) ≡
gv(φB, qnom, qN ,∆B).
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Theorem 3.1 ([6]). Assume that G = (V,A) is weakly connected and contains only pipes,
i.e., A = Api and Acs = ∅. Let A be the node-arc-incidence-matrix of G, with a partition
(AB,AN ) into basis and non-basis as described above. Let (FB, FN ) and (qB, qN ) be the
corresponding partitions of F and q, respectively. Let g be the aggregate pressure drop
function as defined in (38).
Then (26)–(30) has a feasible solution if and only if the following reduced system in

variables qN has a solution. Moreover, any solution of the reduced system can be expanded
to a solution of the original system.

ATNg(φB, qnom, qN ) = FN (φN , qnom, qN ), (39)
gw(φB, qnom, qN )− gv(φB, qnom, qN ) ≤ πv − πw, (v, w ∈ V ) (40)

qN ∈ R|N |. (41)

The parameters πv, πv denote the squared pressure bounds at node v.
If a feasible qN for (39) and (40) exists, the remaining original variables qB, π can be
recovered through qB = A−1

B (qnom −ANqN ) and πv = π0 − gv(φB, qnom, qN ) (v ∈ V ).
The value of π0 is an arbitrary given element of[

max
v∈V

[πv + gv(φB, qnom, qN )], min
v∈V

[πv + gv(φB, qnom, qN )]
]
.

Conversely, a vector qN that was extracted from a solution q∗, π∗ of (26)–(30) is feasible
for (39)–(41).

Proof. See [6].

Corollary 3.2. The theorem still holds if a network with compressors is considered, i.e.,
Acs 6= ∅.

Proof. The original result of [6] is established for pipe-only networks, i.e., Acs = ∅.
However, the pressure drop law is never used explicitly in the proof. Therefore, we
conclude that their result must still hold for networks with compressors or other pressure
constraints of the form

πw − πv = αa(qa), a = (v, w) ∈ A (42)

where αa is some scalar-valued function of the flow qa.

Existence and Uniqueness of Flow Consider a connected gas network without pressure
bounds and without compressors. Due to [4, 12], it is known that in this setting a feasible
flow always exists.

Theorem 3.3 ([4]). Consider a connected gas network without pressure bounds and
compressors. Then the set

X = {(q, π) | (q, π) satisfy (26)–(28) and (30)} (43)

of feasible solutions has the following properties:
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1. A flow solution always exists and is unique, i.e., |{q | ∃π : (q, π) ∈ X}| = 1.

2. Given a flow solution q∗, the set X of feasible solutions has the form

X =
{

(q∗, π)
∣∣∣π = π∗ + η(1, . . . , 1)T , η ∈ R

}
.

A feasible π∗ can be computed by first fixing the pressure π∗ at the root node
to an arbitrary value and then computing the remaining squared pressures via
πv = π0 − gv(φB, qnom, q∗N ) (v ∈ V )

Corollary 3.4. Consider a gas network with compressors where assumption 2 is fulfilled,
i.e., no compressors are part of a cycle. Fix any compressor power ∆∗. Then theorem 3.3
still holds.

Proof. 1. The solution space of the linear flow problem can be parameterized by the
non-basic flows qN (see (34)). A non-basic flow q∗N is feasible for the gas network
problem, if it satisfies the equation system (39):

ATNg(φB, qnom, qN ,∆∗B) = FN (φN , qnom, qN ,∆∗N ). (44)

However, due to assumption 2, this system does not depend on ∆∗. Therefore,
the existence and uniqueness of a q∗N is implied by theorem 3.3 by considering an
equivalent gas network G̃ which consists of all the cycles in the original network G.

2. Since the compressor power ∆∗ is fixed and is linked to the adjacent node’s squared
pressures via

πw − πv = ∆∗a, (v, w) = a ∈ Acs, (45)

any feasible π∗ remains feasible after adding η(1, . . . , 1)T (η ∈ R).

The Reduced Gas Network Problem as a Two-Stage Problem In this paragraph, we
show how the gas network problem can be reformulated to fit assumption 1 of section 2.
Consider a two-stage robust version of the gas transport problem with compressors.

Compressor variables ∆ are first stage decisions whereas squared pressure π and flow
variables q are second stage variables.

min
{
wT∆

∣∣∣ ∃∆ such that ∀u = (φ, qnom+) ∈ U ∃q, π that satisfy (26)–(30)
}
. (46)

With corollary 3.2, the squared pressure variables and some equations can be eliminated
from the model to obtain an equivalent formulation:

min
{
wT∆

∣∣∣ ∃∆ such that ∀u = (φ, qnom+) ∈ U ∃qN that satisfies (39) and (40)
}
.

(47)

Theorem 3.5. Suppose that assumption 2 holds, i.e., no compressors are part of a cycle.
Then the constraints of problem (47) satisfy assumption 2.
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Proof. Consider the equation system (39):

ATNg(φB, qnom, qN ,∆) = FN (φN , qnom, qN ,∆) (48)

Assumption 2 implies that this system is independent of the first stage variables ∆.
Moreover, uniqueness and existence of a solution q∗N holds due to corollary 3.4. Thus the
constraint system satisfies the first part of assumption 1.
With the assumption’s second part in mind, we take a closer look at the inequality

system (40):

gw(φB, qnom, qN ,∆B)− gv(φB, qnom, qN ,∆B) ≤ πv − πw, (v, w ∈ V ). (49)

If v = 0 is the root node, then g0(φB, qnom, qN ,∆B) = 0. Suppose v 6= 0, then

gv(φB, qnom, qN ,∆B) =
[(
ATB

)−1
FB (φB, qB(qN , qnom),∆B)

]
v
, (50)

=
(
ATB

)−1

v·
FB (φB, qB(qN , qnom),∆B) , (51)

where
(
ATB

)−1

v·
denotes the v-th line of

(
ATB

)−1
. From this definition it is evident that

gv is a linear combination of the entries of FB. Every entry in FB either concerns a
pipe and depends on qN or concerns a compressors and depends on ∆. Therefore the
inequalities are separable:

(
ATB

)−1

w·
FB (φB, qB(qN , qnom),∆B)−

(
ATB

)−1

v·
FB (φB, qB(qN , qnom),∆B)− πv + πw

= svw(∆) + tvw(φB, qB(qN , qnom)) ≤ 0, (v, w ∈ V ), (52)

for suitable functions svw and tvw.

Next, we apply lemma 2.1 in order to solve the two-stage robust gas transport problem
as a single stage linear program

min
∆∈[∆,∆]

wT∆,

svw(∆) ≤ bvw, (v, w ∈ V ),
(53)

where

bvw = −max

tvw(φB, qB(qN , qnom))

∣∣∣∣∣∣∣∣
ATNg(φB, qnom, qN ) = FN (φN , qnom, qN )

(φ, qnom) ∈ U
qN ∈ R|N |.

 . (54)
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3.2.1 Piecewise Linear Relaxations of the Gas Transport Problem

In order to solve the gas network problem via the linear problem (53), one first needs to
compute bvw by solving a series of nonlinear and non-convex optimization problems to
global optimality. Since this is a difficult task in general, we first replace all nonlinear
terms by piecewise linear relaxations and use this surrogate model to compute the right
hand side b. As was discussed in section 2, using relaxations for computing b leads to a
smaller feasible region but preserves robust feasibility of the obtained solution.
For ease of explanations, we transform problem (54) back into its non-reduced form.

We observe that the objective of (54) is a linear combinations of entries in F , i.e., pressure
drops. Let

cvw =
(
ATB

)−1

w·
−
(
ATB

)−1

v·
(55)

be the coefficients of the linear objective and let λ = F (φ, q,∆) be a variable modeling
the pressure drops over each arc. With this in mind, the objective of (54) can be written
as cTλ. Next, we split the pressure drop constraints A+Tπ = F (φ, q,∆) = λ into one set
for pipes and one set for compressors. The pressure drop in the pipes is rewritten by
introducing the equivalent set of feasible pressure drops Laφa

on pipe a ∈ A:

πw − πv = λa = −φaqa |qa| (56)
⇐⇒ (qa, λa) ∈ Laφa

= {(qa, λa) |λa = −φa |qa| qa, qa ∈ R} . (57)

We set ∆ = 0 so that compressors do not influence the maximum pressure drop over the
remaining pipes and fix the pressure at an arbitrary node to an arbitrary value: π0 = 0.

bvw = −max cvwTλ− πv + πw (58a)
A+q = qnom+, (58b)

A+
Acs

T
π = 0, (58c)

A+
Api

T
π = λ, (58d)

(qa, λa) ∈ Laφa
(a ∈ Api), (58e)

π0 = 0, (58f)
q ∈ R|A|. (58g)

Our aim is to solve problem (58) or a relaxation thereof to global optimality. To this end,
we present several relaxations of the nonlinear and non-convex set Laφa

that can be used
for that purpose. Since global optimal solutions are required to ensure robustness, we
develop piecewise linear relaxations of Laφa

which can then be used in a MIP. Of course
other relaxations like linear (see section 3.3) or SDP relaxations arising from polynomial
programming (see [1]) are also conceivable, however, we restrict ourselves to piecewise
linear relaxations as they provide us with easy a-priori error bounds. In the remainder of
this section, we drop the arc-specific indices of Laφa

. Furthermore, we assume the flow
variables to be in a finite interval, i.e., qa ∈ [qa, qa]. This is no restriction as the pressure

13



and flow variables of problem (58) are always bounded, see section 3.3 for more details
regarding their computation.
Relaxations with a-priori error bounds are of particular interest as they allow us to

compute solutions with arbitrary precision by reducing the error ε.

Definition 3.1 (ε-exact relaxation). Let L = {(x, y) ∈ [x, x]×R | y = f(x)} ⊆ R2 be
the function graph of a function f : R→ R over a finite interval [x, x] and let ε > 0 be a
given error. We call L̃ ⊆ [x, x]×R an ε-exact relaxation of L, if

1. L ⊆ L̃ and

2. |y − ỹ| ≤ ε for all x ∈ [x, x] with (x, y) ∈ L and (x, ỹ) ∈ L̃.

As all presented relaxations are based around piecewise linear functions, we quickly
restate how to express piecewise linear functions in MIPs using the delta method. Let
(xi, yi)i=1,...,k a series of points in R2 with x1 < x2 < . . . < xk. Then the graph of the
piecewise linear function with sampling points (xi, yi) is described given by the following
mixed-integer constraints:

x = x1 +
∑

i=1,...,k−1
(xi+1 − xi)δi, (59a)

y = y1 +
∑

i=1,...,k−1
(yi+1 − yi)δi, (59b)

δ1 ≥ z1 ≥ δ2 ≥ z2 ≥ . . . ≥ zk−2 ≥ δk−1, (59c)
δi ∈ [0, 1] (i = 1, . . . , k − 1), (59d)
zi ∈ {0, 1} (i = 1, . . . , k − 2). (59e)

Finding approximations for L, i.e., the function graph of cx|x| for a fixed c > 0 is
straightforward. After eliminating the absolute value by splitting the function graph
into negative and positive parts, only square functions cx2 need to be treated. We show
briefly how the error of approximating cx2 by a (piecewise) linear function only depends
on the parameter c and the distance between two adjacent sampling points but not on
the position of the chosen sampling points. Pick any two points (x1, y1), (x2, y2) on the
graph of f sq(x) = cx2 with x1 < x2 and let f lin(x) = y2−y1

x2−x1
(x − x1) + y1 be the line

connecting both points. To calculate the maximum deviation ε = maxx f lin(x)− f sq(x),
observe that f lin(x) − f sq(x) is a degree two polynomial and thus attains its extreme
value between its two roots x1 and x2 at x∗ = 1

2(x1 + x2). A short calculation shows
the maximum error to be given by ε = f lin(x∗) − f sq(x∗) = c

2(x2 − x1)2. Since the
approximation error only depends on c and the distance x2 − x1 between two sampling
points, we conclude that cx2 can be approximated by a piecewise linear function with a
given error ε by equidistant sampling points. See fig. 1 for an example.
Two different cases need to be distinguished when building relaxations for Laφa

, de-
pending on whether φa is constant or affected by uncertainty. If the coefficient φa is
constant, the standard relaxation from literature with equidistant sampling points can be
applied (see BLAH) to obtain a ε-exact relaxation L̃. For the second case, we assume the
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Figure 1: Nominal pressure drop and piecewise linear relaxation for constant pressure
drop coefficient φ = 1 and approximation quality ε = 1.0.

pressure drop coefficient φa to be affected by uncertainty. In general, this would require
a relaxation Lφa which is parameterized by φa so that it can adjust to the different
realizations of φa to preserve the ε-approximation quality. However, due to uncorrelated
pressure drop coefficients (31), a simplification can be applied. Since the realization
of pressure drop coefficient φa at arc a is independent of all other uncertainties, it is
sufficient to construct a ε-exact relaxation of the union⋃

φa∈[φa,φa]
Laφa

. (60)

Due to continuity and monotonicity of the function value φaqa|qa| in φa, the union
∪φa∈[φa,φa]Laφa

has no holes and its boundary can be described by piecewise φaqa|qa|
functions: ⋃

φa∈[φa,φa]
Laφa

=
{

(qa, λa)
∣∣∣∣∣−φaqa |qa| ≤ λa ≤ −φaqa |qa| , if qa ≥ 0,
−φaqa |qa| ≤ λa ≤ −φaqa |qa| , if qa ≤ 0.

}
(61)

Finally, the relaxations for functions with constant φa can be applied to the border-
defining functions of (61) in order to obtain a ε-exact relaxation. We remark that this
leads to a ε-exact relaxation for the whole continuum of pressure drop constraints on
an arc and not to a ε-exact relaxation of a single pressure drop constraint where the
coefficient φa was fixed. However, this is no restriction since the uncertainty set for the
pressure drop coefficients is uncorrelated and thus we can always chose some φ′a whose
pressure drop function graph is at most ε away from the solution within the relaxation.
See fig. 2 for an example.

3.3 Reducing Model Size by Preprocessing
Binary variables are used for the construction of the presented piecewise linear relaxations.
The overall complexity of solving a MIP typically heavily depends on the number of
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Figure 2: Pressure drop and piecewise linear relaxation for uncertain pressure drop
coefficient φ ∈ [0.5, 1.5] and approximation quality ε = 1.0.

binary or integer variables. Our settings requires solving not a single but a series of MIPs
to determine the right hand sides bi. It is therefore very desirable to speed up the solution
process as much as possible. Improving the solution time entails other advantages like
being able to use a smaller approximation factor ε or being able to solving larger instances
in the same amount of time.
The number of binary variables in our setting depends on the flow bounds [qa, qa]

and the approximation error ε. Since the approximation error is given, we decrease the
number of required binary variables by providing strong bounds for qa. To this end, our
methods comprise two trivial bounds and an optimization method using LP relaxations.
Similar preprocessing ideas can be found in [5], including more complex procedures like
pressure and flow propagation heuristics. However, we cannot use most the mentioned
ideas as is since they are tailored towards nominal problems without uncertainty. Due
to the nature of our problem setting where we optimize over the uncertainty set, our
preprocessing methods must preserve the full range of states in the network depending on
the uncertainty. All methods are presented with the full range of uncertainty in mind, i.e.,
uncertain demand and uncertain pressure drop coefficients. For problems where only one
or no uncertainty is given, the presented methods can often be simplified considerably.

Trivial bounds We present two trivial flow bounds, one resulting from the maximum
overall total demand and one resulting from the decomposition of the linear flow solution
space into tree and cycle flows. The problem is assumed to be affected by uncertain
demand and uncertain pressure drop coefficient.
A trivial flow bound can be derived by calculating the maximum possible positive

demand:
dtotal = 1

2 max
{∥∥∥qnom+

∥∥∥ 1
∣∣∣ qnom+ ∈ D

}
(62)

In general this problem is NP-hard and has to be reformulated as a MIP. Typically, the
preprocessing should to very be fast (compared to solving the actual problem MIPs), so
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we use an easy to calculate upper bound on dtotal instead. Consider a demand uncertainty
set (32). After omitting the balancing hyperplane, every demand parameter qnom+

v is
only affected by upper and lower bounds:

qnom+
v ≤ qnom+

v ≤ qnom+
v , v ∈ V. (63)

With this in mind, we first estimate the maximum total gas injection and withdrawal.
A simple bound can be obtained from these quantities by taking the minimum of their
absolute values:

d+ =
∑
v∈V

max
(
0, qnom+

v

)
, d− =

∑
v∈V

min
(
0, qnom+

v

)
, (64)

drelax = min(d+,−d−). (65)

The gas flow over each arc can never exceed the total injection, thus

qa ∈ [−drelax, drelax] (66)

is a feasible bound for all arcs a ∈ A.
The previous bound can be improved considerably for certain arcs if the structure of

the linear network flow solution space is exploited. Recall from (34) that any feasible
flow q can be written as

q = A−1
B (qnom −ANqN ) , (67)

where qN ∈ R|N | is a free parameter. It is known from linear flow theory that due to
(67), the flow over all arcs which are not part of a cycle is independent of qN , i.e., can be
written as qa = (A−1

B qnom)a. This allows us to find tight bounds for qa over non-cycle
arcs a by optimizing over the demand uncertainty set:

qa ∈
[

min
qnom∈D

(A−1
B qnom)a, max

qnom∈D
(A−1

B qnom)a
]
. (68)

If it is not desirable to solve an optimization task, lower and upper bounds can be
found with a similar approach as (64). We remark that for problems without demand
uncertainty, there is nothing to optimize and the exact, constant flow qa can be evaluated
by calculating (A−1

B qnom)a. In this case, the nonlinear pressure drop equation can be
removed by evaluating the signed square function with qa.

Bounds due to linear relaxations The previously derived flow bounds have a serious
drawback as they cannot be used for cycle arcs since each fundamental cycle introduces a
free parameter into the description of the flow solution. Since the linear flow model is not
sufficient to derive bounds for these variables on its own, we add a coarse surrogate model
for the pressure drop constraints. This was done previously for the nominal case in [5] by
defining a convex hull of the pressure drop constraint’s graph through linear inequalities.
Compared to the piecewise linearization approach in section 3.2.1, the defined set is still
a relaxation of the original constraint but does not guarantee a ε-approximation. We
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Figure 3: Linear convex hull of nominal (φ = 1.0) and uncertain pressure drop coefficient
(φ ∈ [0.5, 1.5]).

generalize the linear model to incorporate variable pressure drop coefficients φ, i.e., build
a convex hull L̂a of the union over all possible pressure drops given an interval of pressure
drop coefficients:

L̂a ⊃
⋃

φa∈[φa,φa]
Laφa

. (69)

See fig. 3 for a linear convex hull for nominal pressure drop as well as pressure drop under
uncertainty.

Given relaxations L̂a for each pipe a ∈ Api, a very similar problem as (58) is introduced
by replacing the nonlinear sets (58e) by their corresponding relaxation. Let X̂ be the
feasible region of the resulting problem. Then bounds qa ∈ [q∗a,lb, q∗a,ub] for the flow along
each arc a ∈ A can be derived by minimizing and maximizing qa over X̂ :

q∗a,lb = min
q,π∈X̂

qa, q∗a,ub = max
q,π∈X̂

qa. (70)

We remark that in case of demand uncertainty, the problems (70) also contains a
description the uncertainty set. For pressure drop uncertainty, the uncertainty set is
incorporated into the relaxations of the pressure drop equations and therefore does not
show up in the linear programs.

Preprocessing strategy In our implementation, all three bounds—trivial total demand,
linear flows on non-cycle arcs and LP relaxation based bounds—are combined into an
iterative bound tightening procedure. Initially, trivial flow bounds (66) are derived for
each arc to obtain finite bounds. Next, the flow bounds of all non-cycle arcs are tightened
with (68). The procedure then enters a loop where the linear programs (70) are solved
repeatedly for all remaining arcs. In one iteration step, model (70) is build only once
and then reused with different objectives for each flow variable. At the end of each
iteration step, all flow bounds are updated with the newly calculated bound information.
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The algorithm terminates if either a maximum number of iterations is reached or if the
euclidean norm of the difference between the bounds of two subsequent iterations is
smaller than a specified cutoff value. In our computations, we use a maximum number of
fifteen iterations and a cutoff value of 1.0.

4 Numerical Experiments
In this section, the performance of the developed methods is evaluated on a family of
gas network instances. We first examine the influence of the preprocessing routines and
of the aggregation idea to determine the best possible combination of both. Using this
a basis for further study, problem run times are studied in more detail under different
aspects like approximation quality and size of uncertainty set.

Instances and setup The studied problems are taken from GasLib [13], a freely available
collection of gas network instances comprising of topology and nomination data. We used
networks GasLib-11, GasLib-24, and GasLib-40 with their supplemented demand and
pressure nominations. The employed instances were modified to fit the context of this
article: Any element which is no compressor and no pipe is replaced by a so-called short
pipe—an special type of pipe with zero pressure drop coefficient that can be traversed
freely by gas without experiencing a pressure drop. In order to satisfy assumption 2,
the compressor of GasLib-40 which is part of a cycle was replaced by a short pipes
as well. Furthermore, the demand values of GasLib-40’s nomination were halved as
manual experiments revealed the provided nomination to quickly result in infeasible
instances when adding uncertainties. Table 1 gives an overview over the features of the
used instances.

Table 1: Instances for numerical experiments.
#nodes #pipes #compressors #control valves #short pipes

GasLib-11 11 8 2 0 1
GasLib-24 24 19 3 1 2
GasLib-40 40 39 5 0 1

Each instance can be affected by uncertainty. We use relative perturbations around
the nominal demand values or pressure drop coefficients as uncertainty sets. A unified
naming schema of the defined uncertainty sets is utilized for both demand and pressure
drop uncertainty. The network’s demand or pressure drop coefficients may be affected
independently by four levels of uncertainty: nominal (i.e., no uncertainty), small, medium,
and large uncertainty. Any combination of the provided levels defines an uncertainty
set for the numerical experiments, ranging from no uncertainty (“nominal demand and
nominal pressure drop uncertainty”) to the combination of large demand uncertainty
with large pressure drop uncertainty. The chosen uncertainty level is then applied to
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all affected elements, e.g., demands or pressure drop coefficients. Thus, there are 16
uncertainty sets in total. The concrete definitions can be found in table 2.

Table 2: Any combination of demand and pressure drop uncertainty level defines an
uncertainty set used in the numerical study,

demand pressure drop coefficient

nominal {qnom+} {φ}
small [0.95 · qnom+, 1.05 · qnom+] [φ, 1.10 · φ]
medium [0.90 · qnom+, 1.10 · qnom+] [φ, 1.50 · φ]
large [0.80 · qnom+, 1.20 · qnom+] [φ, 2.00 · φ]

The linearization error for the piecewise linear relaxation of the pressure drop equations
was chosen as ε ∈ {0.01, 0.1, 1.0}.

All experiments were carried out on a notebook with four Intel i7-4810MQ cores running
at 2.80GHz each and 16 GB of RAM. The linear and mixed-integer linear problems were
solved using Gurobi 7.5 [8] using 4 threads.

Run time improvements due to preprocessing and aggregation We compare prepro-
cessing strategies on GasLib-11 and GasLib-24 since GasLib-40 is already too large
to be solved in an acceptable timespan without preprocessing. In order to cover a wide
range of problems, we derive average run times of instance groups where each group
contains all possible combinations of the remaining parameters like approximation quality
ε and uncertainty set.

First we take a look at the average run times depending on the employed preprocessing
method, see table 3 and fig. 4a. The columns denote the different preprocessing choices:
trivial (66), treeflows (68), and LP-based bound tightening (70) (“opt”). Each entry
of table 3 is the averaged run time of 96 instances arising from all combinations of
uncertainty set, ε ∈ 0.01, 0.1, 1.0, and choice of individual or aggregated model. The
number in brackets displays the relative speedup compared to the trivial preprocessing
bounds. Speedups from treeflows preprocessing is negligible, possibly due to the GasLib-
instances containing only few arcs which are not part of cycle. We observe a dramatic
speedup of 30–40× when the LP based bound tightening is used.

Table 3: Mean run times when using different preprocessing strategies. The number in
brackets denotes the speedup compared to “trivial” preprocessing.

trivial treeflows opt

GasLib-11 29.1 s (1.0×) 23.1 s (1.3×) 0.8 s (38.1×)
GasLib-24 149.2 s (1.0×) 146.0 s (1.0×) 4.7 s (31.9×)

Next, the influence of aggregation is benchmarked. We only consider instances after
applying LP-based bound tightening. Recall that in order to calculate the right hand
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side of (53) with problem (58), we can either solve O(|V |2) problems individually to
obtain each bvw or a smaller number problems after applying an aggregation step (13).
In table 4 we compare the mean run times on instances GasLib-11, GasLib-24, and
GasLib-40 when choosing to solve all problem individually or in an aggregated fashion.
As with the preprocessing strategies, the numbers in brackets denote the relative speedup
compared to the slowest method, see also fig. 4b. Each cell of table 4 is an average
over all instances with varying approximation quality and uncertainty set. We observe a
speedup of about 10× for the larger instances and a smaller speedup of about 2× for the
smallest instance when using the aggregated model.

Table 4: Mean run times of individual and aggregated models after LP-based preprocess-
ing. The number in brackets denotes the speedup compared to the individual
model.

individual aggregated

GasLib-11 1.1 s (1.0×) 0.4 s (2.4×)
GasLib-24 8.5 s (1.0×) 0.8 s (10.0×)
GasLib-40 246.0 s (1.0×) 24.1 s (10.2×)

In total, a combination of LP-based bound tightening and an aggregation of subproblems
can yield a mean speedup of about 300× compared to no preprocessing and solving all
problems individually (see fig. 4).
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Figure 4: Different speedups due to preprocessing and aggregation. With both techniques,
mean speedup can reach a factor of 300–400×.

Run times and number of subproblems The overall run time of the gas network
problem mainly consists of run times of the preprocessing LPs, run times of the MIP
subproblems, and run time of last LP for deciding a solution of the compressors. In our
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setting, solving all occurring LP problems is trivial and can be done the fraction of a
second. Therefore, we only focus on the performance of the MIP subproblems after the
application of LP-based preprocessing.

Table 5 gives a more detailed summary over the mean run times for the individual and
aggregated method. As usual, every cell is the average over all possible combinations of
approximation quality and uncertainty set. The columns are partitioned into one group
related to solving all problems individually and one group where the aggregated method
is applied. In each column group, we list the number of required subproblems together
with their mean and total run times. It can be observed that applying the aggregation
method drastically reduces the number of subproblems required to solve. For the studied
instances, the run times of the aggregated models increases at a smaller rate compared
to the reduction of problems. Thus, the increase in complexity of the aggregated models
is more than compensated by the reduction of instances.

Table 5: Number of MIP-subproblems for individual and aggregated models, together
with their mean and total run times

individual aggregated
#probs rt mean rt total #probs rt mean rt total

GasLib-11 110 0.010 s 1.063 s 7 0.061 s 0.430 s
GasLib-24 552 0.015 s 8.407 s 21 0.036 s 0.754 s
GasLib-40 1560 0.157 s 245.248 s 31 0.755 s 23.391 s

5 Concluding Remarks
We study a two-stage robust optimization problem with a special structure: first and
second stage variables are not coupled, and the second stage variables are uniquely
determined by the uncertain data. It is shown how this problem can be transformed to a
single stage problem whose right hand side is the product of a series of optimization tasks.
Even if the subproblems cannot be solved to global optimality, it is nevertheless possible
to obtain conservative but robust feasible solutions of the overall problem by solving
relaxations of the subproblems instead. Further exploitation of the problem structure
leads to a reduction of subproblems by describing an aggregated model.
The developed approaches are applied to gas network problems with active elements

under uncertainties in demand or pressure drop coefficients. After reformulating the
gas network problem to match the special structure, it is shown how to generalize the
previously known piecewise linearization techniques to incorporate uncertain parameters.
This allows the formulation of relaxations of the non-convex and nonlinear gas network
problem under uncertainty. In order to decrease the computational burden, we develop
uncertainty-aware preprocessing by adapting techniques for the nominal case from the
literature.
This work concludes with a series of benchmarks on freely available, medium sized
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GasLib instances to demonstrate the practical feasibility of the approach. By combining
optimization-based preprocessing techniques with the aggregation model, speedups of 300–
400× can be achieved when compared to models without preprocessing and aggregation.
Solving a robust 40-node instance is possible within the order of minutes, depending on
uncertainty and approximation quality.
As an outlook, we remark that the abstract two-stage problem and the developed

aggregation technique can be applied to any robust problem that admits this structure.
Furthermore, the presented uncertainty-aware preprocessing and linearization techniques
could be used on other potential driven network problems like e.g., water networks.
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