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Coupled Natural Gas and Electric Power Systems

Abhi Ojha

(ABSTRACT)

Decreasing gas prices and the pressing need for fast-responding electric power generators are

currently transforming natural gas networks. The intermittent operation of gas-fired plants

to balance wind generation introduces spatiotemporal fluctuations of increasing gas demand.

At the heart of modeling, monitoring, and control of gas networks is a set of nonlinear

equations relating nodal gas injections and pressures to flows over the pipelines. Given gas

demands at all points of the network, the gas flow task aims at finding the rest of the physical

quantities. This problem is posed here as a feasibility problem involving quadratic equalities

and inequalities, and is further relaxed to a convex semidefinite program (SDP) minimization.

Drawing parallels to the power flow problem, the relaxation is shown to be exact if the cost

function is judiciously designed using a representative set of network states. Adding to the

complexity of gas flow task, this thesis also considers the coupled dynamic and natural gas

and electric power systems. The optimal dispatch problem is posed as a relaxed convex

minimization problem, which is solved using the feasible point pursuit (FPP) algorithm.

For a decentralized solution, alternating direction method of multipliers (ADMM) is used

in collaboration with the FPP. Numerical experiments conducted on a Belgian gas network

coupled with the IEEE 14 bus benchmark system corroborate significant enhancements on

computational e�ciency compared with the centralized FPP based approach.



Coupled Natural Gas and Electric Power Systems

Abhi Ojha

(GENERAL AUDIENCE ABSTRACT)

The increase in penetration of renewable energy in the electric power grid has led to increased

fluctuations in the power. The conventional coal based generators are inept to handle these

fluctuations and thus, natural gas generators, which have fast response times are used to

handle the intermittency caused by renewable energy sources. This manuscript solves the

problem of finding the optimal dispatch of coupled natural gas and electric power systems.

First, the optimal dispatch problem is framed as a optimization problem and then mathe-

matical solvers are developed. Using the mathematical tools of Feasible point pursuit and

Alternating direction method of multipliers, a distributed solver is developed, which can

solve the optimal dispatch for large power and natural gas networks. The proposed algo-

rithm is tested on a part of a Belgian gas network and the IEEE 14 bus power system. The

algorithm is shown to converge to a feasible point.
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Chapter 1

Introduction

Natural gas is currently at the core of the energy discussion. Due to the hydro-fracking

technology, substantial supplies of natural gas are being discovered [5]. The substitution of

oil by natural gas is primarily determined by the ratio of oil to natural gas prices. Granted

the increasing trends of oil prices in the US, natural gas is becoming more economically

appealing. Its role is likely to expand further in carbon-constrained electric power systems

with higher penetration of renewables as the variability of wind generation complements well

with gas-fired power plants o↵ering fast-responding reserves [6].

Natural gas is transported from source sites to electricity generators and other loads over a

continent-wide network of pipelines. To alleviate the pressure drop across pipelines, compres-

sors are routinely used to boost pressure up to desirable levels. Gas distribution companies

typically withdraw gas with low intra-day variation and enter into long-term firm contracts

1
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with gas transmission companies [7]. Under this setup, gas networks have been adequately

captured using steady-state gas models. However, if larger volumes of gas are consumed by

gas-fired power plants, the intermittency of renewable electric energy resources may trans-

late to higher variability in gas demand [8]. Moreover, congestion in gas networks may force

power system operators committing more expensive generators. This upcoming mode of

operation necessitates computational tools for dispatching natural gas networks in tandem

with power systems and under more dynamic conditions.

1.1 Natural gas systems

Natural gas systems perform the primary function of transporting natural gas, primarily

methane, from producers to end consumers. In the production phase, holes are drilled into

the ground to reach the natural gas deposits. A wellhead is then employed to extract the gas

from underground. Recent advancements in the filed of natural gas extraction have led to

horizontal drilling techniques and hydraulic fracking, which has enabled recovery of natural

gas trapped under shale rock formations. Figure 1.1 shows the various types of conventional

deposits of natural gas.

The flow of natural gas in a pipeline is determined by the pressure di↵erence between its two

points. Since reliable operation of natural gas networks requires pressures to be within spe-

cific ranges, compressor stations are installed throughout the network to monitor and control

the pressure. In contrast to the power systems having conventional coal-based generators,
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Figure 1.1: Conventional deposits of natural gas.

natural gas systems can manage demand supply imbalances as the gas can be stored in the

pipelines. Figure 1.2 major natural gas transportation corridors in the USA, for a detailed

report see [1] for a detailed report.

Unlike the ISO’s for power transmission networks in the USA, gas transmission networks

do not have a centralized system operator. Most transactions in the gas network occur

as bilateral arrangements between the shipping and the receiving party. Large consumers

such as industrial users directly connect to high pressure gas pipelines and make their own

shipping arrangements, while small residential consumers receive their gas through utility

companies.
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Figure 1.2: Major natural gas transportation corridors in the USA [1].

Currently in the USA, gas pipeline operators are responsible for investing in new pipelines

after taking approval from the Federal Energy Regulatory Commission (FERC). Capac-

ity rights of various time durations along with availability guarantees are auctioned to gas

producers or consumers [9]. The cost of natural gas is a sum of the commodity and trans-

portation costs. The commodity cost is the price of natural gas at Henry Hub, which is a

location in the USA where many pipelines meet [9], see Fig. 1.3. The transportation cost

is the price di↵erence between Henry Hub and any other hub in the country. Natural gas

markets have a single-day trading with multiple intraday changes to balance supply and

demand.
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Figure 1.3: natural gas market centers in the USA [1].

1.2 Electric power systems

Electric power systems perform the function of delivering power from generators to end con-

sumers. They consist of generating stations, high-voltage transmission networks, medium-

and low-voltage distribution grids, all connected through substations as shown in Fig. 1.4.

Transformers in electric grids perform the function of transforming high-voltage electric-

ity to low-voltage. The low-voltage distribution lines help in distributing electricity to end

consumers.

The electric power grid in the US is partitioned into several reliability areas and/or indepen-

dent system operators as shown in Fig. 1.5. ISOs are responsible for coordinating system

and market activities between producers and consumers. Large-scale industrial customers
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Figure 1.4: Electric power system [2].

and utilities may connect directly to the high-voltage transmission network, while residential

customers get their electricity from the utilities. Each ISO collects bids from electric power

generators and consumers through a day-ahead and real-time market. After dispatching the

grid in the most economical fashion while respecting transmission network limitations, the

ISO announces the price for buying and selling electricity at every node of the power system.

For a detailed review of whole-sale electricity markets, see [10].

1.3 Literature review

The review of computational advances in gas networks commences with the gas flow (GF)

problem. Given gas injections and pressures at specific network nodes, the GF task aims

at solving the equations describing gas flows. In a network without compressors, the flows

and pressures can be recovered as the primal-dual solutions of a convex problem [11]. For

general networks, the GF task can be solved using the Newton-Raphson method, yet its
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Figure 1.5: Independent system operators in the US.

convergence is conditioned on proper initialization [12]. Reference [13] leverages the theory

of monotone operators to tackle GF by solving a set of variational inequalities; while [14]

finds GF solutions as the rank-one minimizers of a semi-definite program with a carefully

designed cost.

Related to GF are the problems of optimal compression and optimal gas flow (OGF). Op-

timal compression, which is the task of finding compressor settings with minimal cost while

maintaining gas pressures within limits, has been posed as a geometric program in [5]. The

OGF task minimizes the costs of procuring gas while respecting pipeline network limitations.

Using successive linearization of the involved nonlinear functions, reference [15] tackles OGF
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by solving a sequence of convex problems. The problem of minimizing fuel cost consumption

due to compressors is discussed in [16]. All the compressors in the network are ignored,

resulting in a disconnected network. Each disconnected network is termed as a subnetwork,

and the gas flow equations are solved independently for every subnetwork. All the sub-

networks are then connected via compressors to form a supernetwork. The flow rate and

inlet/outlet pressure of compressors are assumed to be independent of each other, which is

not true. Also the proposed model fails to solve GF equations if the supernetwork is mesh.

It has been shown in [15] that for a network without any compressors, the flows and pressures

are the optimal primal-dual solution of a convex minimization problem. For general meshed

networks with compressors, the GF problem is typically solved using the Newton-Raphson

scheme, but its convergence is conditioned on proper initialization [12]. Under slow time-

varying injections, the Newton-Raphson scheme could be initialized at the previous state;

nevertheless, this may not be applicable for reliability studies. Leveraging the theory of

monotone operators [17], preprint [13] shows that a GF solution can be found by solving a

set of variational inequalities. The latter are derived from the GF equations after applying

a carefully designed linear transformation. The approach is proved successful for tree net-

works. Otherwise, a quasi-convex optimization problem should be solved to design the linear

transformation under the restricting assumptions that flow directions are known a priori.

For modeling the natural gas system, steady-state approximation is widely adopted [18]. A

quantitative model that evaluates the e↵ect of fuel uncertainty of natural gas power plants

is considered in [19]. The coupling between gas and power networks only appears in terms
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of the incurred generation cost also termed as social welfare. The proposed task maximizes

the social welfare subject to power flow constraints.

A transient model for coupled natural gas and electricity networks is discussed in [20].

The gas network consumption is modeled as two components: forecasted and small spatio-

temporarily varying. Furthermore, the pressure fluctuations introduced by time-varying gas

demands are discussed. Coordinated scheduling of coupled natural gas and power systems is

studied in [8]. The gas flow equations are discretized in space giving rise to a set of ordinary

di↵erential equations (ODEs), while the electric system is modeled through the linearized

DC power flow model. The formulated optimization problem is non-convex with respect to

the continuous-time spaces, and is approximated through non-linear programming. While

the optimality is not guaranteed, provable exactness is non-trivial. Reference [21] considers

the joint optimization of residential gas distribution networks and radial electric power grids

coupled through gas-fired generators. The optimal power flow task relies on the second-

order cone (SOC) relaxation of the branch-flow equations [22], whereas the optimal gas flow

is handled through the convex-concave approach reviewed in [23] to yield SOC constraints as

well. The two systems are computationally decoupled upon using the alternating direction

method of multipliers (ADMM); see e.g., [24]. The proposed formulation uses a dynamic

model for gas flow equations as described in [25].



Chapter 2

Background

This chapter reviews some mathematical tools and algorithms that will be used in later

chapters.

2.1 Semi-definite programming

Consider a minimization problem as follows:

min
X⌫02RN⇥N

Tr(X) (2.1)

s.to Tr(A
k

X)  0

where matrices {A
k

}K
k=1 are of appropriate dimensions.

Problem (2.1) minimizes a linear function with respect to linear matrix inequality and linear

inequalities, and is known as a semidefinite program (SDP). Since the problem objective and

10
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constraints are convex, a SDP is a convex optimization problem. Semidefinite programs of up

to a few hundreds of variables and/or constraints can be e�ciently handled by primal-dual

interior point methods [26], [27].

2.2 Feasible point pursuit

Non-convex QCQPs have traditionally been tackled using the techniques of semi-definite

relaxation or successive convex approximation (SCA); see [28], [23], and references therein.

Because the former technique entails solving semidefinite programs, its computational com-

plexity may not scale favorably. Moreover, if the relaxation is not exact, it may not be

obvious how to obtain a feasible point.

On the other hand, the SCA technique solves a sequence of convex restrictions of the original

non-convex problem [23]. To review SCA particularly for QCQPs, consider the program:

min
x

�>x (2.2a)

s.to f

m

(x)  c

m

, m = 1, . . . ,M (2.2b)

where f

m

(x) := x>A
m

x + b>
m

x for m = 1, . . . ,M . Unless A
m

⌫ 0 for all m or M  2,

problem (2.2) is non-convex and hard to solve in general [28]. Every matrix can be expressed

as the sum of a positive semidefinite and a negative semidefinite matrix as A
m

= A+
m

+A�
m

with A+
m

⌫ 0 and A�
m

� 0. The SCA method substitutes the constraints in (2.3b) as follows:
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xk+1 := argmin
x

�>x (2.3a)

s.to f̃

m

(x,xk)  c

m

, m = 1, . . . ,M (2.3b)

where f̃
m

(x, z) := x>A+
m

x+2z>A�
m

x�z>A�
m

z+b>
m

x, and iterates over k until convergence.

It is not hard to verify that f

m

(x)  f̃

m

(x, z) for all x and z, while f

m

(x) = f̃

m

(x,x).

Therefore, problem (2.3) constitutes a restriction of the QCQP in (2.2). With the caveat of

being initialized at a feasible x0, the SCA iterates {xk} are guaranteed to yield decreasing

costs and converge to a stationary point of (2.2).

To remedy the need for a feasible initial point, (FPP) relaxes the restrictions during the

SCA iterates by adding a slack variable �
m

in the right-hand side (RHS) of each constraint

m and then penalizing the objective by their sum as [29]

(xk+1
, �k+1) := argmin

x,�
�>x+ �>1 (2.4)

s.to f̃

m

(x,xk)  c

m

+ �

m

, 8m

for some large  > 0. The FPP iterates can be initialized at a random point x0. Note that

the time taken by the FPP algorithm to converge depends upon the initial point selection.

2.3 Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM) is used to decouple large-scale

convex optimization tasks into smaller subproblem that are typically easier to solve. It enjoys
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Algorithm 1 Feasible point pursuit (FPP) algorithm
1: Initialization: Set k = 0 and randomly initialize the point z.

2: Solve the convex QCQP in (2.4).

3: Let xk⇤ be the optimal solution at the end of k-th iteration. Set zk+1 = xk⇤.

4: Set k = k + 1 till convergence.

the good convergence properties of the method of multipliers and decoupling of variables from

dual decomposition [27].

In its general form, ADMM applied to the optimization problem

min f(x) + g(y) (2.5a)

over x 2 X , y 2 Y (2.5b)

s.to x = y (2.5c)

Let � be the Lagrange multiplier corresponding to the equality constraint in (2.5c). Given

that X and Y are convex sets, the minimizers x⇤ and y⇤ are found through following itera-

tions:

xk+1 2 argmin
x2X

f(x) +
⇢

2

��x� yk + �k

��2

2
, (2.6a)

yk+1 2 argmin
y2Y

g(y) +
⇢

2

��xk+1 � y + �k

��2

2
, (2.6b)

�k+1 := �k + (xk+1 � yk+1), (2.6c)

where ⇢ is a positive constant. Assuming that f and g are convex, the convergence of ADMM
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to an optimal solution is guaranteed under following conditions [24]:

lim
k!1

��xk � yk

��
2
= 0,

lim
k!1

��yk � yk�1
��
2
= 0.

The method has been adopted in a wide range of applications [30], [31], [32], including

optimal power flow and power system state estimation [33], [34], [35].



Chapter 3

Steady-state gas flow

3.1 Introduction

The increasing variability in gas demand both across time and space calls for advanced mod-

eling, control, and monitoring of the underlying physical infrastructure. In this context,

this chapter targets solving e�ciently the gas flow (GF) equations, a set of nonlinear equa-

tions governing the distribution of gas flows and pressures across a pipeline network. Given

gas injections and withdrawals across all nodes, the gas flow problem aims at finding gas

flows across pipelines together with the pressure at all nodes. Even under steady-state and

balanced conditions, solving the GF problem is hard to solve for non-tree networks [13].

In this chapter, after reviewing a natural gas network model via a convenient matrix-vector

notation in Section 3.2, it is first recognized that the GF task can be tackled using a semidef-

15
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inite program (SDP) relaxation in Section 3.3. The relaxation is shown to be exact for a

judiciously selected cost of the related SDP problem. Secondly, e�cient formulations for

designing this cost function and for solving the GF problem are developed in Section 3.4.

Numerical tests conducted on a modified version of a part of the Belgian gas network demon-

strate: (i) the success of the relaxation over a wide range of injection conditions; and (ii) its

superiority over the currently used Newton-Raphson scheme. Conclusions are presented in

Section 3.7.

Regarding notation, lower- (upper-) case boldface letters denote column vectors (matrices),

while symbol (·)> stands for transposition. Calligraphic symbols are reserved for sets, and

|X | is the cardinality of set X . Vectors 0, 1, and e
n

, are the all-zeros, all-ones, and the n-th

canonical vectors, respectively. Operator dg(x) defines a diagonal matrix having x on its

main diagonal. A symmetric positive (semi)definite matrix is denoted by X � 0 (X ⌫ 0).

Finally, symbols SN and SN

+ (SN

++) denote respectively the sets of N ⇥ N symmetric and

symmetric positive (semi)definite matrices.

3.2 Natural gas network modeling

Consider a natural gas network modeled by a directed graph G := (N0,L). The graph

vertices N0 = {0, · · · , N} model nodes where gas is injected or withdrawn from the network,

or simple junctions. The graph edges L = {1, . . . , L} correspond to gas pipelines connecting

two network nodes. Let ⇡
i

> 0 be the gas pressure at node i for all i 2 N0. One of the
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Figure 3.1: Gas network pipeline (i, j).

nodes (conventionally one hosting a large gas producer) is selected as the reference node, it

is indexed by 0, and its gas pressure is fixed to a known value ⇡0. The remaining nodes form

the set N := {1, . . . , N}. The gas injection s

i

at node i 2 N0 is positive for an injection node,

negative for a withdrawal node, and zero for network junctions. Without loss of generality,

edges are assigned an arbitrary direction denoted by ` : (i, j) 2 L for i, j 2 N0. The gas flow

�

`

on pipeline ` : (i, j) 2 L is positive when gas flows from node i to node j, and negative,

otherwise. Conservation of mass implies that

s

i

=
X

`:(i,j)2L

�

`

�
X

`:(j,i)2L

�

`

(3.1)

for every i 2 N0. Moreover, summing injections over all nodes should yield zero in steady

state, that is s0 = �
P

i2N s

i

. Therefore, given balanced {s
i

}
i2N0 , model (3.1) provides N

rather than N + 1 independent linear equations on {�
`

}
`2L.

Natural gas networks are operated at high pressures of 200 to 1,500 pounds per square inch

(psi), flows amount to millions of cubic feet, and pipelines have diameters in the range of 16–

48 inches [5], [36]. Under these conditions, the pressure drop and energy loss over pipelines are

captured by a partial di↵erential equation involving one spatial dimension along the pipeline

length and the time dimension; see [37] and [38] for details. After ignoring friction, any
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possible pipeline tilt, and assuming time-invariant gas injections, for a given pipeline (i, j)

as shown in Fig 3.1, the partial di↵erential equation simplifies to the Weymouth equation [5]:

⇡

2
i

� ⇡

2
j

= a

`

�

`

|�
`

| (3.2)

characterizing the pressure di↵erence across the endpoints of pipeline ` : (i, j) 2 L. The

parameter a
`

> 0 in (3.2) depends on physical properties of the pipeline, such as its length

and diameter [13]. The Weymouth equation asserts that gas pressure drops across a pipeline

in the direction of gas flow. To be precise, the di↵erence of squared pressures is proportional

to the squared gas flow.

Reliable network operation requires that gas pressures remain within specific limits. To

avoid unacceptably low or high pressures, network operators install compressors at selected

pipelines, henceforth referred to as active pipelines comprising the set L
a

✓ L with L

a

= |L
a

|.

A compressor amplifies the squared pressure between its input and output by a compression

ratio ↵
`

. Suppose �
`

> 0 and that the compressor along pipeline ` : (i, j) 2 L
a

is located at

normalized distances r
`

with r

`

2 [0, 1] from node i and (1 � r

`

) from node j. It is easy to

verify from (3.2) that the pressure at the compressor input is ⇡2
i

� r

`

a

`

�

2
`

, while the pressure

at its output is ⇡2
j

+ (1� r

`

)a
`

�

2
`

. The compression ratio is defined as [5]

↵

`

:=
⇡

2
j

+ (1� r

`

)a
`

�

2
`

⇡

2
i

� r

`

a

`

�

2
`

� 1. (3.3)

Since �
`

is known to be positive for active pipelines, equation (3.3) can be rearranged as

↵

`

⇡

2
i

� ⇡

2
j

= c

`

�

`

|�
`

| (3.4)
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Figure 3.2: Gas network pipeline (i, j) with compressor.

where c

`

:= a

`

[1 � (1 � ↵

`

)r
`

)] is a known positive constant. The pressure drop described

by (3.4) generalizes the Weymouth equation in (3.2), since it applies to both active and

non-active pipelines: one can simply set r
`

= 0 and ↵
`

= 1 for non-active pipelines ` /2 L
a

.

Given the reference pressure ⇡0, balanced nodal injections {s
i

}
i2N0 , and the pipeline param-

eters {↵
`

, c

`

}
`2L, the gas flow (GF) problem aims at finding nodal pressures {⇡

i

}
i2N and

pipeline flows {�
`

}
`2L satisfying the gas flow equations (3.1), (3.4), and {�

`

� 0}
`2La . It

therefore consists of solving N+L equations over N+L unknowns. Although equations (3.1)

are linear, the generalized Weymouth equation in (3.4) is piecewise quadratic and not every-

where di↵erentiable, while the requirement {�
`

� 0}
`2La further complicates the task. The

GF problem is typically solved using Newton-Raphson iterates [12]. However, the method

converges only if it is initialized su�ciently close to the actual system state.

To handle the non-di↵erentiability of the absolute value in (3.4), introduce variable  
`

= |�
`

|

for all ` 2 L; see also [13]. The latter equation can be equivalently written as  2
`

= �

2
`

and

 

`

� 0 for all `. To express the gas flow equations in a matrix-vector form, stack all edge

quantities in vectors � := [�1 · · · �
L

]>,  := [ 1 · · ·  
L

]>, c := [c1 · · · c

L

]>, and ↵ :=

[↵1 · · · ↵
L

]>. Excluding the reference bus, collect also nodal quantities in ⇡ := [⇡1 · · · ⇡
N

]>
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and s := [s1 · · · s

N

]>.

The connectivity of the gas network graph is captured by the L⇥ (N + 1) incidence matrix

Ã with entries

Ã

`,n

=

8
>>>>>>>><

>>>>>>>>:

+1, n = i

�1, n = j

0, otherwise

8 ` : (i, j) 2 L. (3.5)

Isolating the first column corresponding to the reference node, matrix Ã can be partitioned as

Ã = [a0 A]. Having introduced the reduced incidence matrix A, equation (3.1) is equivalent

to s0 = a>
0 � and s = A>�. Because Ã1 = 0, equation s0 = a>

0 � can be ignored assuming

balanced steady-state injections satisfying s0 = �1>s. The gas flow problem can now be

compactly expressed as [13]

A>� = s (3.6a)

B(⇡ � ⇡) = c� �� � p

2
0b0 (3.6b)

�� � =  � (3.6c)

 � 0 (3.6d)

�

l

� 0, 8l 2 L
a

(3.6e)

where � denotes the Hadamard (entry-wise) product. Matrix B and vector b0 are defined

as [13]

B := dg(↵)[A]+ � [�A]+ (3.7a)

b0 := dg(↵)[a0]+ � [�a0]+ (3.7b)
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where the positive part operator [x]+ := max{0, x} is applied entrywise for vectors and

matrices.

If the gas network is a tree, then L = N and matrices A and B are square and invertible. In

this case, the vector of gas flows � can be readily found from (3.6a) and the vector of nodal

pressures ⇡ can be subsequently calculated through (3.6b). In practice though, natural gas

networks exhibit a non-radial structure [3].

For a gas network without compressors, matrix dg(↵) becomes the identity matrix I
L

and

thus B = A and b0 = a0. Under this setup, pipeline flows can be found as the minimizers

of the convex optimization problem [15]

min
�

LX

`=1

a

`

3
|�

`

|3 (3.8a)

s.to A>� = s. (3.8b)

Moreover, the related nodal pressures p can be recovered through the (N +1)-length vector

⇠ of the optimal Lagrange multipliers corresponding to (3.8b). In detail, vector ⇠ can be

shifted by a constant without loss of optimality. If this constant is selected such that the

first entry of ⇠ is p

2
0, the remaining entries of ⇠ are equal to the squared nodal pressures.

This approach fails in the presence of compressors, for which case the scheme described next

could be followed.
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3.3 Semidefinite program relaxation (SDR)

Based on the previous modeling, the gas flow problem entails finding the 2N + L un-

knowns (�, ,⇡) through the N linear equations of (3.6a) and the 2L quadratic equations

of (3.6b)–(3.6c) under the L + L

a

linear inequalities of (3.6d)–(3.6e). Since the system in-

volves quadratic equations, it is hard to solve in general. Nevertheless, computational tasks

pertaining to quadratic (in)equalities have been successfully tackled using the powerful tool

of semidefinite programming (SDP) relaxations with applications in various fields including

clustering in data mining [39]; beamforming and symbol detection in wireless communica-

tions [28]; power system operation tasks [40], [41]; and phase retrieval in signal process-

ing [42]; to name a few. Spurred by these results, the gas flow problem is tackled next as an

SDP.

The GF problem involves non-homogeneous quadratic functions of the unknowns since the

linear functions of (3.6a) are coupled with the homogeneous quadratic functions in (3.6d)–

(3.6e). To convert all functions to homogeneous quadratic ones [28], let us augment the

unknown variables as x := [�>  > ⇡> 1]> having length K := 2L+N+1. The vector x will

be also referred to as the system state vector. Each equation in (3.6a)–(3.6c) is expressible

as a homogeneous quadratic equality constraint on x as

x>M
k

x = s

k

(3.9)

where M
k

2 SK and s

k

2 R for k = 1, . . . , K�1. In detail, if equality k in (3.9) corresponds

to:
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(a) the i-th linear equality in (3.6a), then s

k

:= q

i

and

M
k

:=
1

2

2

66666666664

0 0 0 a
i

0 0 0 0

0 0 0 0

a>
i

0> 0> 0

3

77777777775

where a
i

is the i-th column of A;

(b) the `-th entry of (3.6b), then s

k

:= �p

2
0b0,` and

M
k

:=
1

2

2

66666666664

0 �c

`

dg(e
`

) 0 0

�c

`

dg(e
`

) 0 0 0

0 0 2 dg(b
`

) 0

0> 0> 0> 0

3

77777777775

where b
`

is the `-th row of B;

(c) the `-th entry of (3.6c), then s

k

:= 0 and

M
k

:=
1

2

2

66666666664

dg(e
l

) 0 0 0

0 � dg(e
l

) 0 0

0 0 0 0

0> 0> 0> 0

3

77777777775

.

(d) To guarantee that the last entry of x is unity, introduce the additional constraint x2
K

= 1.

The latter can also be posed as in (3.9) by selecting s

K

:= 1 and M
K

:= e
K

e>
K

. If x
K

turns

out to be �1, then vector �x is a GF solution in lieu of x.



Abhi Ojha Chapter 3. Steady State gas Flow 24

Likewise, the linear inequalities in (3.6d)–(3.6e) are written as

x>N
m

x  0 (3.10)

for N
m

2 SK . If inequality ` in (3.10) corresponds to:

(a) the `-th inequality in (3.6d), then

N
m

:=
1

2

2

66666666664

0 0 0 0

0 0 0 �e
`

0 0 0 0

0> �e>
`

0> 0

3

77777777775

; or

(b) the `-th inequality of (3.6e), then

N
m

:=
1

2

2

66666666664

0 0 0 �e
`

0 0 0 0

0 0 0 0

�e>
`

0> 0 0

3

77777777775

.

Solving (3.6) can be now expressed as the feasibility problem:

find x (3.11)

s.to x>M
k

x = d

k

, k = 1, . . . , K

x>N
m

x  0, m = 1, . . . , L+ L

a

.

Nonetheless, solving (3.11) remains computationally hard because the problem involves

quadratic (in)equalities as well. To tackle the non-convexity, we leverage the technique
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of semidefinite program relaxation (SDR) [28]. To that end, introduce the matrix variable

X 2 SK and upon enforcing X = xx>, rewrite problem (3.11) equivalently as

find
X=xx

>
(X,x) (3.12)

s.to Tr(M
k

X) = d

k

, k = 1, . . . , K

Tr(N
m

X)  0, m = 1, . . . , L+ L

a

.

The constraint X = xx> can be equivalently expressed asX ⌫ 0 and rank(X) = 1. By intro-

ducing these two constraints in (3.12), the original variable x can be eliminated. Moreover,

the resultant feasibility problem can be transformed to a minimization problem by assigning

the objective Tr(MX) for some M 2 SK

+ :

min
X⌫0

Tr(MX) (3.13)

s.to Tr(M
k

X) = d

k

, k = 1, . . . , K

Tr(N
m

X)  0, m = 1, . . . L+ L

a

rank(X) = 1.

Enforcing the rank constraint in (3.13) though is NP hard in general [28]. The SDR technique

suggests relaxing the feasible set of (3.13) by dropping its rank constraint to get:

min
X⌫0

Tr(MX) (3.14a)

s.to Tr(M
k

X) = d

k

, k = 1, . . . , K (3.14b)

Tr(N
m

X)  0, m = 1, . . . , L+ L

a

(3.14c)
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that is a convex SDP problem. Due to the relaxation, the optimal value of (3.14) serves as

a lower bound on the optimal value of (3.13). Moreover, if the minimizer X̂ of (3.14) turns

out to be rank-1, then X̂ is feasible for the problem in (3.13) as well, the optimal values in

(3.13) and (3.14) coincide, and therefore X̂ is a minimizer of the non-convex SDP in (3.13).

In this case, the relaxation is deemed exact, and the sought solution x̂ to (3.12) is obtained

by simply decomposing X̂ as X̂ = x̂x̂>.

The existence of a rank-1 solution for (3.14) depends on the network parameters along with

the specification vector d := [d1 · · · d
K

]>. On the other hand, the matrix M 2 SK

+ appearing

in the objective of (3.14) o↵ers multiple degrees of freedom. Inspired by an approach followed

to obtain solutions to the power flow problem via a relaxed SDP [43], [44], the next section

selects M to favor a rank-1 minimizer of (3.14).

3.4 Objective function design

To design matrix M, consider the mapping s(x) : RK ! RK whose k-th entry is s

k

(x) :=

x>M
k

x for k = 1, . . . , K. The associated Jacobian matrix evaluated at x is

J(x) = 2[M1x . . . M
K

x]. (3.15)

Since the mapping s(x) is continuous, the inverse function theorem asserts that s(x) is

invertible close to x if J(x) is invertible. By the definition of s(x), the Jacobian matrix J(x)

is sparse for all x. However, the invertibility of J(x) depends on x, and it thus hard to

characterize. For this reason, we resort to studying the generic rank of J(x), which is the
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maximal rank over all possible values for the non-zero entries of J(x).

Proposition 1. The Jacobian matrix J(x) associated with the mapping s(x) is full rank in

general.

Proof of Prop. 1. The generic rank of J(x) is characterized using a result from [45]. Specifi-

cally, given a matrix C 2 RN⇥N , construct a graph with 2N nodes. Nodes {v
i

}N
i=1 correspond

to the rows of C and nodes {u
j

}N
j=1 correspond to its columns. An edge is drawn between

nodes v
i

and u

j

only if C
ij

6= 0. If each node u

j

can be matched to a di↵erent node v

i

, then

C is full rank in general.

To apply the previous result, it is not hard to verify that the sparsity pattern of J(x) is

captured by the binary matrix

J
b

=

2

66666666664

|A| I
L

I
L

0

0 I
L

I
L

0

0 |A|> 0 0

0> 0> 0> 1

3

77777777775

where |A| is the matrix with the absolute values of A. The last column of J
b

can be matched

to its last row due to the entry 1. Moreover, its third block column can be matched to its

second block row due to I
L

. The remaining entries of J
b

form the matrix

J̃
b

=

2

664
|A| I

L

0 |A|>

3

775 .

Consider a spanning tree on the graph G representing the gas network. Without loss of

generality, pipelines can be renumbered so that A is partitioned as A = [A>
s

A>
n

]>, where
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the N ⇥N submatrix A
s

corresponds to the pipelines comprising the spanning tree, and the

(L � N) ⇥ N submatrix A
n

to the remaining pipelines. Matrix J̃
b

can be then partitioned

as

J̃
b

=

2

6666664

|A
s

| I
N

0

|A
n

| 0 I
L�N

0 |A
s

|> |A
n

|>

3

7777775
.

The third block column of J̃
b

can be matched to its second block row due to I
L�N

and the

remaining submatrix is

Ĵ
b

=

2

664
|A

s

| I
N

0 |A
s

|>

3

775 .

Heed that each column of |A
s

| corresponds to a node in G excluding node 0. Since every

such node can be the destination end of a pipeline in the spanning tree, every column of

|A
s

| is guaranteed to have an 1 entry at a di↵erent row. Hence, the first column block of

Ĵ
b

is matched to its first row block. By the same argument, the second block row of Ĵ
b

is

matched to its second block column. A perfect matching has thus been found between the

columns and rows of J(x).

Proposition 1, guarantees only the generic invertibility of J(x). Nevertheless, all the Jacobian

matrices evaluated during the numerical tests of Section 3.6 were invertible.

Let us next derive the dual problem of the relaxed SDP in (3.14). To this end, let � 2 RK

and µ 2 R2L be the Lagrange multipliers corresponding to (3.14b) and (3.14c), respectively.
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The dual problem of (3.14) is the SDP

max
�,µ�0

� �>d (3.16)

s.to M+
KX

k=1

�

k

M
k

+
2LX

m=1

µ

m

N
m

⌫ 0.

To simplify the presentation, define the matrix

Z(�,µ) := M+
KX

k=1

�

k

M
k

+
2LX

m=1

µ

m

N
m

. (3.17)

In addition, let function h2(Z) be the sum of the two smallest eigenvalues of Z, which is

known to be concave over SK

+ [27].

Adopting the approach in [43], the next result provides su�cient conditions for M to yield

an exact gas flow relaxation for a specific state vector x̂.

Proposition 2. Consider a gas network state x̂ with specifications ŝ := s(x̂) and invertible

Jacobian matrix J(x̂). If there exists a vector �̂ such that:

(c1) Mx̂+ 1
2J(x̂)�̂ = 0;

(c2) Ẑ := Z(�̂,0) ⌫ 0; and

(c3) h2(Ẑ) � ✏ for an ✏ > 0;

then X̂ := x̂x̂> is the unique minimizer of (3.13) for specifications ŝ.

Proof of Proposition 2. The objective in (3.14) is bounded below by zero. Assuming there

exists feasible matrix X � 0, strong duality holds between (3.14) and its dual problem in

(3.16), and the Karush-Kuhn-Tucker (KKT) conditions apply [46, Lemma 1].
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By (c2), matrix Ẑ is dual feasible. It further holds that:

Ẑx̂ = Mx̂+
KX

k=1

�

k

M
k

x̂ = Mx̂+ J(x̂)�̂ = 0

where the second equality follows from the definition of the Jacobian matrix in (3.15), and

the third one from condition (c1). Then, it holds that ẐX̂ = Ẑx̂x̂> = 0. Because the

{µ̂
m

}2L
m=1 corresponding to �̂ and Ẑ have been set to zero, µ

m

Tr(N
m

X̂) = 0 holds for all m.

Therefore, X̂ and Ẑ satisfy the complementary slackness conditions.

Since X̂ and Ẑ satisfy the KKT conditions, they are primal and dual optimal. This proves

that x̂ is a minimizer of (3.14); its uniqueness is addressed next.

Because Ẑx̂ = 0 and Ẑ ⌫ 0, the smallest eigenvalue of Ẑ is zero. From (c3), the second

smallest eigenvalue of Ẑ is strictly positive, and therefore rank(Ẑ) = K� 1. Complementary

slackness asserts that every minimizer X̃ of (3.14) satisfies ẐX̃ = 0. The latter implies that

rank(X̃)  1; see [46]. Since X̃ = 0 is not feasible, all minimizers of (3.14) have to be

rank one, i.e., they are of the form X̃ = x̃x̃> for some x̃ with d(x̃) = d̂.The invertibility of

J(x̂) guarantees that the mapping d(x̂) is locally invertible, and hence, there is no x̃ with

x̃ 6= x̂ matching the specifications ŝ. The latter proves the uniqueness of x̂ and concludes

the proof.

Proposition 2 asserts that if M satisfies (c1)–(c3), then the relaxation in (3.14) is exact

for a given system state x̂ with invertible Jacobian matrix J(x̂). This fact may seem to

be of limited interest, since it guarantees the success of SDR only for this particular x̂.

Nevertheless, the continuity argument adopted in [43, Th. 2] on the exactness of SDR for
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the power flow problem applies here too. Therefore, it follows that the relaxation in (3.14)

is exact for all realizable states x with an invertible Jacobian matrix lying in a ball around

x̂.

To design matrixM such that the SDR is exact over a wider range of system states, conditions

(c1)–(c3) can be enforced for multiple system states of interest x
i

for i = 1, . . . , R. These

states could reflect representative flow patterns in the natural gas network and could be

selected based on the experience of the gas network operator. The task of findingM satisfying

the conditions of Prop. 2 for {x
i

}R
i=1 can be posed as the feasibility problem [43]

find (M, {�
i

}) (3.18a)

s.to Mx
i

+ 1
2J(xi

)�
i

= 0, 8 i (3.18b)

Z(�
i

,0) ⌫ 0, 8 i (3.18c)

h2(Z(�i

,0)) � ✏, 8 i (3.18d)

where ✏ > 0. Given that function h2(Z) is concave over SK

+ , the feasibility problem in (3.18)

is convex. In fact, it can be converted to an SDP minimization by (i) appending a linear

objective over M such as Tr(M); and (ii) converting the constraints in (3.18d) into a set of

SDP constraints.

The key point in converting (3.18d) is that the sum of the two smallest eigenvalues of a

positive semidefinite matrix Z admits the SDP characterization [47, pp. 67–68]:

h2(Z) = max
W,�

� Tr(W)� 2� (3.19a)

s.to Z+ �I+W ⌫ 0 (3.19b)
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W ⌫ 0. (3.19c)

Expressing h2(Z) as in (3.19) implies that if there exist (W, �) satisfying (3.19b)–(3.19c)

and also Tr(W) + 2� + ✏  0, then h2(Z) � �Tr(W)� 2� � ✏.

Designing M can be now posed as the SDP:

find (M, {W
i

,�
i

, �

i

}R
i=1) (3.20a)

s.to Mx
i

+ 1
2J(xi

)�
i

= 0, 8 i (3.20b)

M+
KX

k=1

�

i,k

M
k

⌫ 0, 8 i (3.20c)

Tr(W
i

) + 2�
i

+ ✏  0, 8 i (3.20d)

M+
KX

k=1

�

i

(k)M
k

+ �

i

I+W
i

⌫ 0, 8 i (3.20e)

W
i

⌫ 0, 8 i (3.20f)

where �
i,k

is the k-th entry of variable �
i

. Note that in transitioning from (3.18) to (3.20),

each matrix Z(�
i

,0) has been substituted by its definition in (3.17). Moreover, the constraint

in (3.18d) has been transformed to constraints (3.20d)–(3.20f).

Adding more points while designing M could yield a better coverage of the operating con-

ditions of the gas network. On the other hand, adding more test points {x
i

} increases the

computational complexity of the problem in (3.20). It should be underlined however that

the task of designing M is performed once, whereas solving the GF equations via (3.14) is

executed in real-time multiple times per day.
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3.5 An alternative approach

By introducing the matrix variable X = xx> in Section 3.3, we were able to construct all

monomials of first and second degree involving the variables {�
`

, 

`

}
`

and {p
n

}
n

. However,

the gas flow equations in (3.6) involve only the products {�2
`

, 

2
`

,�

`

 

`

}
`

and {p2
n

}
n

. Building

on this observation, an alternative SDR solver for the gas flow task is devised next.

Since nodal pressures appear only squared in (3.6), define the variable � with entries �
n

= p

2
n

for all n 2 N . For every line ` 2 L, define x
`

:= [�
`

 

`

1]> and introduce the constraint

X
`

= x
`

x>
`

. Similar to Section 3.3, the gas flow problem can be formulated as the SDP:

min
{X`⌫0},�⌫0

X

`2L

Tr(M`X
`

) + g>� (3.21a)

s.to
X

`2L

A

`,i

Tr(M̄1X`

) = s

i

8 i 2 N (3.21b)

c

`

Tr(M̄2X`

) = b>
`

� + p

2
0b0,l 8 ` 2 L (3.21c)

Tr(M̄3X`

) = 0 8 ` 2 L (3.21d)

Tr(M̄4X`

) = 1 8 ` 2 L (3.21e)

Tr(N̄1X`

)  0 8 ` 2 L (3.21f)

Tr(N̄2X`

)  0 8 ` 2 L
a

(3.21g)

where A
`,i

is the (`, i)-th entry of A and b>
`

is the `-th row of B. The matrices appearing in

(3.21) are defined as:

M̄1 :=
1
2(e1e

>
3 + e3e

>
1 ) M̄2 :=

1
2(e1e

>
2 + e2e

>
1 )
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M̄3 :=
1
2(e1e

>
1 � e2e

>
2 ) M̄4 :=

1
2e3e

>
3

N̄1 := �1
2(e2e

>
3 + e3e

>
2 ) N̄2 := �1

2(e1e
>
3 + e3e

>
1 )

where e1, e2, and e3 are the canonical vectors in R3. Since � is not part of any X
`

, its inner

product with a vector d has been added in the cost. The SDR solver of (3.21) is successful

if all the minimizing {X
`

} are rank-1. The parameters {M`} and g are designed next to

promote such rank-one minimizers.

Let (�̄, �̄, µ̄, �̄, ✓̄, ⌫̄) be the Lagrange multipliers associated with constraints (3.21b)–(3.21g),

respectively. The dual problem of (3.21) can be written as:

max � �̄>
s� ⇡

2
0�̄

>
b0 � �̄>1

over �̄, �̄, µ̄, �̄, ✓̄ ⌫ 0, ⌫̄ ⌫ 0

s.to Z
`

(�̄, �̄, µ̄, �̄, ✓̄, ⌫̄) ⌫ 0 8`

g �B>�̄ = 0

where Z
`

(�̄, �̄, µ̄, �̄, ✓̄, ⌫̄) := M` +
P

N

i=1 �̄iA`,i

M̄1 + �̄

`

c

`

M̄2 + µ̄

`

M̄3 + �̄

`

M̄4 + ✓̄

`

N̄1 + ⌫̄

`

N̄2.

Extending the results of Proposition 2, it can be verified that if there exist vectors �̄
⇤
, �̄

⇤
,

µ̄⇤ and �̄⇤ such that:

(c1⇤) Ẑ
`

:= Z
`

(�̄
⇤
, �̄

⇤
, µ̄⇤

, �̄⇤
,0,0) ⌫ 0 8`;

(c2⇤) Ẑ
`

x̂
`

= 0 8`;

(c3⇤) h2(Ẑ`

) � ✏ for an ✏ > 0 8`; and

(c4⇤) �̂ � (g �B>�̄
⇤
) = 0;
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then X̂
`

= x̂
`

x̂>
`

for all ` 2 L and �̂ are the unique minimizers of (3.21) for input speci-

fications (p0,q). Assuming a realistic scenario in which �̂ � 0, (c4⇤) can be equivalently

expressed as: g �B>� = 0.

Enforcing conditions (c1⇤)� (c4⇤) for multiple system states {x
i

}R
i=1 leads to the feasibility

problem of finding {M`}
`2L and g.

find
⇣
{M`}L

`=1,g, {�̄i

, �̄
i

, µ̄
i

, �̄
i

}R
i=1

⌘
(3.22)

s.to Zi

`

⌫ 0 8`, i

Zi

`

xi

`

= 0 8`, i

h2(Z
i

`

) � ✏ 8`, i

g = B>�̄
i

8 i

where ✏ > 0. Using the alternative representation for h2(Zi

`

), problem (3.22) can be expressed

and solved as an SDP similar to (3.20).

3.6 Numerical tests

The developed SDR approaches for solving the gas flow equations were tested on a benchmark

system that is part of the Belgian natural gas network [3], see Fig 3.4 for the entire network.

The network contains 20 nodes connected with 19 pipelines, two of which are active ones

with compressor ratios equal to 1.5, see Fig. 3.2. Although the original network contains

loops, its publicized version has been simplified to a tree. Additional pipelines were added
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Figure 3.3: Modified Belgian gas network [3].

between nodes 13-16, and 7-19. Pairs of pipelines running in parallel were replaced by a

single equivalent pipeline. The characteristics of pipelines are presented in Table 3.1. All

SDP problems were solved on a laptop with a 2.7 GHz Intel Core i5 processor with 8GB

RAM using the SDPT3 solver in YALMIP [48], [49].

At first, matrix M was designed according to the process of Section 3.4 using R system

states {x
i

}R
i=1 constructed as follows. A vector of nominal nodal pressures was set to the

values shown in the second column of Table 3.2. Given nodal pressures, pipeline flows were

found using the Weymouth equation in (3.6b). These nodal pressures and pipeline flows

comprised vector x1. Nodal gas injections were calculated from (3.6a) and are shown in the

third column of Table 3.2. The nominal pressure vector was subsequently perturbed using

a zero-mean Gaussian distribution with standard deviation of 0.25% the nominal pressure

to generate (R� 1) additional pressure vectors {⇡
i

}R
i=2. Repeating the previous process for

all pressure vectors, a total of R valid system states {x
i

}R
i=1 was obtained. The points were
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Figure 3.4: Belgian gas network [4].

used to find M by solving (3.20) for ✏ = 0.1.

Due to the nonlinear nature of the gas flow equations, small variations to nodal pressures

result in large variations in gas injections and flows. This is demonstrated in Table 3.2 whose

fourth and fifth columns show respectively the perturbations and injections corresponding

to x2. Slight perturbations of pressures from x1 (second column) to x2 (fourth column) yield

large variations or even sign reversals in gas injections (third and fifth columns).

Having designed matrix M, we then tested the e�cacy of the developed SDR gas flow

solver over multiple randomly generated gas network states. These validation states were

constructed following a process similar to the one described for designing M; yet now per-
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Table 3.1: Pipeline Description

From To a

`

From To a

`

0 1 0.0275 10 11 1.157

1 2 0.0413 11 12 1.1025

2 3 0.7166 12 13 0.1378

4 5 9.9745 13 14 0.2756

5 6 6.7270 14 15 0.6981

3 6 4.4073 10 16 19.4384

3 13 1.5159 16 17 155.7688

7 8 0.1095 17 18 587.1301

8 9 0.4379 18 19 35.9467

9 10 0.5473 16 15 1.1025

17 19 1.1025

turbation was set to ⇣0.25% of the nominal pressure vector with ⇣ ranging from 0 to 1 in

increments of 0.05. For each value of ⇣, 200 system states were generated. States for which

gas flows on active pipelines did not agree with the prescribed direction were ignored. An

insight on how perturbed pressures a↵ect gas injections is shown in Fig. 3.5.

For every test system state x, the related specifications d(x) were provided as inputs to the

SDR technique. The design process took 317, 776 and 2361 seconds for R equal to 3, 4, and
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5, respectively.

If the SDP optimization in (3.14) yielded a rank-1 minimizer X̂, the related x̂ was calculated

via the decomposition X̂ = x̂x̂>. If additionally the obtained x̂ was within a Euclidean

distance of 10�6 from the actual x, the SDR was deemed successful. The same gas flow

equations were also solved using the Newton-Raphson iterates initialized at the actual state

perturbed by a vector whose entries were drawn uniformly in the range ±0.025%. The prob-

ability of the Newton-Raphson algorithm converging to the actual state, and the probability

of successful recovery of the gas flow solution using SDR scheme is plotted against ⇣ in

Fig. 3.6. As evidenced by 3.6, the developed SDR scheme operates over a wider range of gas

network conditions, while its performance improves for increasing R.

We subsequently evaluated the alternative SDR scheme of section 3.5. The process of de-

signing {M`}L
`=1 took 4, 6, and 8 seconds for R equal to 8, 16, and 24, respectively. To

demonstrate the success of alternative approach for a wide range of gas network conditions,

the probability of success was plotted against ⇣ in Fig. 3.7. As evidenced by Fig. 3.7, the

alternative SDR scheme has higher probability of success for a wide range of gas network con-

ditions. Finally, note that irrespective of the approach used to design the objective function,

the time taken to compute x was 5 seconds.
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3.7 Conclusions

Solving the gas flow equations governing routinely the operation of natural gas networks has

been posed as a set of quadratic equalities and inequalities. The latter has been reformu-

lated as a feasibility problem that is also computationally intractable. The problem has been

relaxed to a semidefinite program minimization upon dropping the rank constraints. The

objective function has been carefully designed so that the relaxation is successful around pre-

specified states of possible interest. The advantages of the method over the classic Newton-

Rapshon approach were demonstrated using a Belgian natural gas network. Spurred by these

promising results, our current work focuses on improving the computational complexity of

the solver by exploiting the sparse problem structure. Distributed implementations of the

technique scalable to networks having thousands of nodes could be pursued. Variations of

the gas flow problem with di↵erent specification sets such as fixed pressures at some key

buses, could be also of interest to gas network operators. The developed computational

toolbox is expected to help in understanding and properly modeling the coupling between

natural gas and the electric grid infrastructures.



Abhi Ojha Chapter 3. Steady State gas Flow 41

Table 3.2: Nominal & Perturbed Gas Pressures and Injections

Node Nominal Nominal Perturbed Perturbed

pressures injections pressures injections

0 56.5885 14.1383 56.5885 -12.8207

1 56.5395 5.1280 56.6285 30.2602

2 56.4029 -3.9246 56.5173 -0.9886

3 54.8771 0.0007 54.7747 -2.0105

4 53.8119 2.8146 53.9231 2.9580

5 53.0726 -4.0337 53.1077 -2.0875

6 53.1667 -5.2562 53.0597 -7.3482

7 49.5265 22.0105 49.4716 20.3114

8 60.1084 0.0019 60.1225 0.9686

9 58.3168 -6.3653 58.4502 -5.6113

10 57.1563 -0.0002 57.2892 1.0736

11 55.2782 -2.1200 55.1836 -3.9245

12 53.9699 1.1991 54.0969 2.3477

13 53.7673 0.9608 53.8902 2.8507

14 52.4579 -6.8484 52.4541 -8.3078

15 50.8311 -38.8262 50.9074 -38.0651

16 56.2715 23.2105 56.2706 22.5182

17 62.2422 0.0000 62.2179 0.0137

18 34.3912 -0.2220 34.4627 -0.2055

19 32.4096 -1.9190 32.4570 -1.9323
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Figure 3.5: Injection variability for perturbing nodal gas pressures by ⇣ = 0.5 (top) and

⇣ = 1.0 (bottom).
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Figure 3.6: Probability of success for Newton-Raphson and the SDR schemes.
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Figure 3.7: Probability of success for the alternative SDR scheme.



Chapter 4

Optimal dispatch of coupled

electricity and natural gas networks

4.1 Introduction

In this chapter, the problem of optimal dispatch of coupled natural gas and electric power

systems is tackled. Unlike the previous chapter where gas flow was considered to be steady

state, this chapter considers gas flow dynamics. The gas and power systems are coupled

through gas-fired generators. For modeling the power system DC power flow equations are

considered.

After developing a spatially and temporally discretized dynamic gas and power flow model

in Section 4.2, it is first recognized in Section 4.3 that the optimal dispatch task can be

44
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tackled using the feasible point pursuit (FPP) approach of [29]. Secondly, a distributed

algorithm using ADMM is developed in Section 4.4 to solve every iteration of FPP. The

proposed algorithm has a closed-form solution for select iterative subproblem. Numerical

tests conducted on a part of a Belgian gas network coupled with the IEEE 14-bus power

network demonstrate the success of distributed algorithm over a wide range of load profiles.

Numerical results corroborate enhancements in computationally e�ciency over the MINLP

approaches and the devised FPP approach . The chapter is concluded in Section 4.6.

4.2 Problem statement

In the previous chapter, an algorithm was developed for solving the steady-state gas flow

equations. However, the interconnection of gas and power networks introduces dynamics in

the natural gas system primarily due to the presence of renewable generation on the power

system side. This demands investigating the dynamic model of coupled gas and electric

power systems.

After reviewing the physical models governing natural gas networks and electric power sys-

tems, this section formulates the problem of their joint dispatch. Natural gas networks

are operated at high pressures of 10 to 100 bars, flows amount to millions of cubic feet,

and pipelines have diameters in the range of 16–48 inches [5], [36]. Under isothermal con-

ditions, the gas flow in a pipeline is described by the mass conservation and momentum

equations [36], [50]. These equations can be simplified upon ignoring terms related to inertia
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and kinetic energy, and if the pipeline is assumed to be lying horizontally without tilt. Then,

the flow rate � in kg/m2s and the pressure ⇡ in bars, at time t and distance x along a pipeline

satisfy the partial di↵erential equations [51]

⌫

@⇡

@t

+
@�

@x

= 0 (4.1a)

⇡

@⇡

@x

+ µ�|�| = 0 (4.1b)

where µ and ⌫ are positive constants determined by the diameter of the pipeline, its friction

coe�cient, the ambient temperature, and the compressibility of gas. If the gas injection

and withdrawal at the endpoints of a pipeline are equal and time-invariant, equation (4.1a)

asserts that pressure remains time-invariant as well. Under the same steady-state conditions

and by integrating (4.1b) across space, it can be readily shown that the squared pressure

across a pipeline drops quadratically with respect to the gas flow, a physical law known as

the Weymouth equation [37].

Di↵erent from power systems, fluctuations in gas demands can incur spatiotemporal varia-

tions in pressures and flows lasting for several hours. To integrate gas dynamics into power

system operation, our coupled formulation relies on the dynamic gas flow model in (4.1)

that is typically handled through discretization [51], [21]. The time horizon is divided into

T +1 time slots of duration �
t

indexed by t 2 T := {0, 1, . . . , T}. Moreover, each pipeline is

discretized spatially into segments of length �
x

as shown in Fig. 4.1. Consider the pipeline

segment (i, j) running across gas nodes i and j. Let �t

ij

denote the flow leaving node i, and

�

t

ji

the flow entering node j through segment (i, j) at time t. Since gas network operators

typically know the direction of gas in pipelines [8], the flows �t

ij

and �t

ji

are assumed positive.
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Figure 4.1: Gas network segments.

A gas network node i may be the endpoint of a pipeline or of a pipeline segment introduced

for discretization. Either way, its pressure at time t is represented by variable ⇡t

i

. Pressures

are bounded above due to pipeline limitations and below due to contractual agreements for

gas delivery [5]. Thus, the nodal pressures are confined within

⇡

i

 ⇡

t

i

 ⇡

i

, 8t 2 T . (4.2)

Adopting the implicit method of finite di↵erences, the gas dynamics in the pipeline segment

(i, j) can be approximated as [51], [21]

⌫̃

ij

(⇡t

i

+ ⇡

t

j

) = ⌫̃

ij

(⇡t�1
i

+ ⇡

t�1
j

) + �

t

ij

� �

t

ji

(4.3a)

(⇡t

i

)2 � (⇡t

j

)2 = µ̃

ij

(�t

ij

+ �

t

ji

)2 (4.3b)

for t 2 T and where µ̃
i,j

:= µ

ij

/�

x

and ⌫̃
i,j

:= ⌫

i,j

/�

t

if (µ
ij

, ⌫

ij

) are the constants correspond-

ing to (µ, ⌫) in (4.1) for this specific pipeline.

The interconnection of an electric power system with a natural gas network is represented

by a directed graph G := (N0,L). The graph vertices N0 model gas injection/withdrawal
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nodes; power injection/withdrawal buses; or zero-injection junction nodes. Junction nodes

include the intermediate points needed for spatially segmenting pipelines. For simplicity,

every network node hosts at most one producer or consumer of gas or power. The vertex

subsets N
g

and N
p

consist of gas network and the power system nodes, respectively. While

N
g

[N
p

= N0, system nodes hosting gas-fired generators constituting N
g

\N
p

.

The edge set L is partitioned into the subset L
g

associated with gas pipeline segments and

the subset L
p

associated with transmission lines. Without loss of generality, the edges in

L
g

are oriented in the direction of gas flow, while the edges in L
p

are assigned an arbitrary

direction.

The node in N
g

hosting the largest gas producer is indexed by i = 0 and its pressure is fixed

to a known value ⇡0 [5]. If variable �t

i

captures the gas injection at node i 2 N
g

at time t,

flow conservation implies

�

t

i

=
X

(i,j)2Lg

�

t

ij

�
X

(j,i)2Lg

�

t

ji

, 8i 2 N
g

, t 2 T . (4.4)

To model gas demands and procurement capacities, gas injections are constrained within

known ranges

�

t

i

 �

t

i

 �

t

i

, 8t 2 T . (4.5)

For the intermediate nodes introduced for spatially discretizing pipelines it holds that �t

i

=

�

t

i

= 0; for nodes procuring gas �t

i

� 0; and those nodes consuming gas �
t

i

 0 at all t 2 T .

To guarantee (4.2) despite the pressure drop dictated by (4.3), gas networks are equipped

with compressors across specific pipelines. Let L
a

⇢ L
g

be the subset of pipeline segments
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with a compressor installed. The compressor on segment (i, j) 2 L
a

amplifies the pressure

between its endpoints as [52]

⇡

t

i

= ↵

t

ij

⇡

t

j

, 8t 2 T (4.6)

by a given ratio ↵t

ij

, while the flow rate remains unaltered �t

ij

= �

t

ji

at all t 2 T . Because

the cost of operating a compressor depends on (�t

ij

,↵

t

ij

) and ⇡t

i

, the ratios ↵t

ij

are oftentimes

optimally selected [53]. Nevertheless, to keep the problem tractable, compression ratios are

assumed known here.

Since gas withdrawals are primarily dependent on active power generation, the commonly

used linearized DC flow model is adopted for the electric power system; see also [54], [55], [56].

According to this model, the power flow on transmission line (i, j) 2 L
p

with per unit

reactance x

ij

is approximated by (✓t
i

� ✓

t

j

)/x
ij

, where ✓t
i

is the voltage angle at node i 2 N
p

and time t expressed in radians. The ensuing constraints guarantee that power flows remain

within the transmission line limits p
ij

�p

ij


✓

t

i

� ✓

t

j

x

ij

 p

ij

, 8(i, j) 2 L
p

, t 2 T . (4.7)

Analogously to (4.4), if pt
i

is the active power injection at node i 2 N
p

and time t, conservation

of power implies

p

t

i

=
X

(i,j)2Lp

✓

t

i

� ✓

t

j

x

ij

�
X

(j,i)2Lp

✓

t

j

� ✓

t

i

x

ji

, 8i 2 N
p

, t 2 T . (4.8)

Nodal power injections are constrained due to generation and demand requirements as

p

t

i

 p

t

i

 p

t

i

, 8i 2 N
p

, t 2 T . (4.9)
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For power generators p

t

i

� p

t

i

� 0 capture generation capacities or bids; for elastic loads

p

t

i

 0; and for inelastic loads pt
i

= p

t

i

 0 at all t 2 T .

Gas-fired generators constitute the links between the two infrastructures. A gas-fired gen-

erator sited on node i 2 N
g

\N
p

withdraws gas �t

i

from the gas network and converts it to

electric power pt
i

. The conversion is typically modeled by an a�ne heat-rate curve [57]:

��t

i

= �

i

p

t

i

+ �

i

, 8i 2 N
g

\N
p

, t 2 T (4.10)

described by the known parameters (�
i

, �

i

).

Based on the aforementioned modeling, the optimal gas power flow problem (OGPF) can be

formally stated as the problem of minimizing the total cost of gas and power supply subject

to the gas system (4.2)–(4.6), the power system (4.7)–(4.9), and the coupling constraints in

(4.10), that is

min
X

t2T

2

4
X

i2Np

b

t

i

p

t

i

+
X

i2Ng\Np

a

t

i

�

t

i

3

5 (4.11)

over {pt
i

, ✓

t

i

}
i2Np , {�t

i

, ⇡

t

i

}
i2Ng , {�t

ij

}(i,j)2Lg , 8t 2 T

s.to (4.2)� (4.10).

Both gas and power procurement costs are modeled as linear with corresponding coe�cients

(prices or bids) at
i

and b

t

i

. Note that the cost of running a gas-fired generator is accounted

for as a power-related cost. Given the gas dynamics of (4.3), the gas flows and pressures

that can be realized over T depend on the initial gas system state {�0
ij

}(i,j)2Lg and {⇡0
i

}
i2Ng

that is included in the given problem parameters of (4.11).
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Problem (4.11) minimizes a linear objective subject to a�ne (in)equalities and the quadratic

equations in (3.6b). The latter constraints make (4.11) a non-convex quadratically con-

strained quadratic program (QCQP), and it thus hard to solve in general. Nevertheless,

computational tasks pertaining to quadratic constraints have been successfully tackled using

the powerful tool of feasible point pursuit (FPP) [29], with applications in power system

operation among other fields [58]. The technique of FPP is adopted to tackle the OGPF

next.

4.3 Feasible point pursuit-based solver

The OGPF can be posed as a QCQP upon replacing the quadratic equality (3.6b) by the

two inequalities

(⇡t

i

)2  (⇡t

j

)2 + µ̃

ij

(�t

ij

+ �

t

ji

)2 (4.12a)

(⇡t

j

)2 + µ̃

ij

(�t

ij

+ �

t

ji

)2  (⇡t

i

)2. (4.12b)

By linearizing the RHS of (4.12) around (⇡̌t

i

, ⇡̌

t

j

, �̌

t

ij

, �̌

t

ji

) and upon introducing the slack

variables (�t
ij

, ✏

t

ij

), the inequalities in (4.12) are replaced by

(⇡t

i

)2  ⇡̌

t

j

(2⇡t

j

� ⇡̌

t

j

) + µ̃

ij

(�̌t

ij

+ �̌

t

ji

)(2�t

ij

+ 2�t

ji

� �̌

t

ij

� �̌

t

ji

) + �
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(4.13a)

(⇡t

j

)2 + µ̃

ij

(�t

ij

+ �

t

ji

)2  ⇡̌

t

i

(2⇡t

i

� ⇡̌

t

i

) + ✏

t

ij

. (4.13b)

Adding the sum of the slack variables in the cost of the OGPF in (4.11) and replacing the
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Algorithm 2 Feasible point pursuit (FPP) algorithm

1: Initialization: Set k = 0 and randomly initialize all the points in the set Z(t).

2: Solve (4.14).

3: Set ⇡̌t

i

(k + 1) = ⇡

t⇤
i

(k), ⇡̌t

j

(k + 1) = ⇡

t⇤
j

(k), �̌t

i,j

(k + 1) = �

t⇤
ij

(k) and �̌t

j,i

(k + 1) = �

t⇤
ji

(k).

4: Set k = k + 1 till convergence.

constraints in (4.3) with (4.13) leads to the optimization

min
X

t2T

2

4
X

i2Np

b

t

i

p

t

i

+
X

i2Ng

a

t

i

�

t

i

+ 

X

(i,j)2Lg

(�t
ij

+ ✏

t

ij

)

3

5 (4.14)

over {�t

i

, ⇡

t

i

}
i2Ng , {pt

i

, ✓

t

i

}
i2Np , {�t

ij

, �

t

ij

, ✏

t

i,j

}(ij)2Lg , t 2 T

s.to (4.2), (4.5)� (4.9), (4.13)

�

t

ij

, ✏

t

ij

� 0, 8(i, j) 2 N
g

.

Problem (4.14) is convex and can be solved using the FPP algorithm as explained in Algo-

rithm 2. If the slack variables turn out to be zero, FPP is said to have converged to a KKT

point [59], [29].

Note that the FPP algorithm solves a convex QCQP at every iteration. For a large system

having more than 10 nodes where (4.14) is solved for 24 hours with time periods of one hour

each, the number of variables is very large. Thus, a distributed algorithm using ADMM is

required to solve each FPP iteration.
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4.4 Distributed algorithm

The alternating direction method of multipliers (ADMM) algorithm solves convex optimiza-

tion problems by partitioning the problem into smaller pieces, which are easier to handle.

It enjoys the good convergence properties of method of multipliers and decomposability of

dual decomposition [27]. For applications in the field of power systems see [33], [34]. In this

section, ADMM is used to solve each iteration of problem (4.14). Furthermore, closed form

solutions are obtained for select the ADMM subproblems.

It is known that ADMM can be very slow to converge to high accuracy. However, convergence

to modest accuracy levels occurs within few iterations, which is acceptable for most practical

applications [60] including optimal dispatch of coupled natural gas and power.

Applying ADMM to the optimal dispatch problem has the following advantages:

1. For every iteration of x-update step in (2.6a), each node and pipeline only need to

solve a local subproblem.

2. Communication is required only between a node and the pipeline segments connected

to the node.

3. There is a closed-form solution for the y-update step in (2.6b).

Consider partitioning the coupled gas and power system into |N
g

| nodal areas and |L
g

|

pipeline segment areas and one power system area. Each node i 2 N
g

\N
g

\N
p

is an agent
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represented by A

i

. The variables maintained by the agent A
i

belong to the set A
i

defined as

A
i

:= {⇡t

i

, �

t

i

, �

t

ij

}
j2Ni,t2T

where N
i

is a set of all the nodes adjacent to i.

Every node i belonging to the set N
g

\ N
p

is an agent represented by B

i

, which holds the

variables belonging to the set B
i

defined as

B
i

:= {⇡t

i

, �

t

i

, �

t

ij

, p

t

i

}
j2Ni, t2T .

Similar to the nodal agents, the variables maintained by each pipeline agent C

ij

for all

(i, j) 2 L
g

\L
a

belong to the set C
ij

as follows

C
ij

:= {�t

ij

, �

t

ji

, ⇡

t

i

, ⇡

t

j

, �

t

ij

, ✏

t

ij

}
t2T .

For an active pipeline (i, j) 2 L
a

, define another agent denoted by D

i,j

that maintains the

variables belonging to the set D
i,j

as shown

D
ij

:= {⇡t

i

, ⇡

t

j

}
t2T .

Finally, all the variables corresponding to the power system are maintained by a single agent

denoted by E. The variables held by E belong to the set E , which is defined as

E := {pt
i

, ✓

t

i

}
t2T .

Note that the sets A
i

, B
i

, C
ij

, D
ij

and E have partial overlapping, which is illustrated in

Fig 4.2.
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Figure 4.2: Overlapping between di↵erent areas.

To enable a truly decentralized solution, an auxiliary variable is introduced per pair of shared

variables (variables lying in the overlapping regions), as follows:

⇡

t

i

(A
i

) = ⇡̂

t

i

, (4.15a)

⇡

t

i

(C
i,j

) = ⇡̂

t

i

, (4.15b)

⇡

t

i

(B
i

) = ⇡̂

t

i

, (4.15c)

⇡

t

i

(D
ij

) = ⇡̂

t

i

, (4.15d)

�

t

ij

(A
i

) = �̂

t

ij

, (4.15e)

�

t

ij

(B
i

) = �̂

t

ij

, (4.15f)

�

t

ij

(C
ij

) = �̂

t

ij

, (4.15g)
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Algorithm 3 FPP and ADMM
1: Initialization: Set k = 0 and randomly initialize all the points in the set Z(t).

2: Solve (4.16), (4.17), (4.18), (4.20) and (4.21).

3: Perform the y-update step and Lagrange multiplier step described in (2.6b) and (2.6c),

respectively.

4: Set ⇡̌t

i

(k + 1) = ⇡

t⇤
i

(k), ⇡̌t

j

(k + 1) = ⇡

t⇤
j

(k), �̌t

i,j

(k + 1) = �

t⇤
ij

(k) and �̌t

j,i

(k + 1) = �

t⇤
ji

(k).

5: Set k = k + 1 till convergence.

�

t

ji

(C
ji

) = �̂

t

ji

, (4.15h)

p

t

i

(B
i

) = p̂

t

i

, 8i 2 N
g

\N
p

(4.15i)

p

t

i

(E) = p̂

t

i

, 8i 2 N
g

\N
p

. (4.15j)

where the term in parenthesis indicates the set in which the variable belongs to. For nota-

tional brevity, the parenthesis is ignored later in the text and the variable set is understood

from context.

The next step is to decouple the optimization problem in (4.14) and write optimization

subproblems for each agent. To that end, define Lagrange multipliers �1,t
i

, �2,t
i

, �3,t
i

, �4,t
i

, �1,t
ij

,

�

2,t
ij

, �3,t
ij

, �3,t
ji

, �4,t
i

and �5,t
i

corresponding to equations (4.15a)–(4.15j), respectively.

According to (2.6a), each nodal agent {A
i

}
i2Ng\Ng\Np solves the following minimization prob-

lem for all t 2 T :

min a

t

i

�

t

i

+
⇢1

2
(⇡t

i

� ⇡̂

t

i

+ �

1,t
i

)2 +
⇢2

2

X

j2Ni

(�t

ij

� �̂

t

ij

+ �

1,t
ij

)2 (4.16)

over �

t

i

, �

t

ij

, ⇡

t

i
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s.to (4.2), (4.4), (4.5)

Similarly, for all t 2 T each agent {B
i

}
i2Ng\Np solves:

min
⇢3

2
(pt

i

� p̂

t

i

+ �

5,t
i

)2 +
⇢4
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ij
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)2 (4.17)

over �

t

i

, �

t

ij

, ⇡

t

i

s.to (4.2), (4.4), (4.5), (4.10)

The agent C
ij

corresponding to the non-active pipeline (i, j) 2 L
g

\L
a

, tackles the following

optimization problem:

min
⇢6

2
(⇡t

i

� ⇡̂
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i
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)2 +
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ij
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ji

, ⇡

t

i

, �
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ij

, ✏

t

ij

s.to �

t

ij

, ✏

t

ij

� 0, (4.3)

The active pipeline agent {D
ij

}(i,j)2La seeks to solve the following minimization problem for

all t 2 T :

min
⇢8

2
(⇡t

i

� ⇡̂

t

i

+ �

4,t
i

)2 (4.20)

over ⇡

t

i

, ⇡

t

j

s.to (4.6)
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Finally, for all t 2 T , agent E handles the below mentioned minimization problem:

min b

t

i

p

t

i

+
⇢9

2
(pt

i

� p̂

t

i

+ �

5,t
i

)2 (4.21)

over p

t

i

, ✓

t

i

s.to (4.7)� (4.9).

Note that {⇢
n

}9
n=1 are positive constants.

In general, the auxiliary variable update step or the y-update step described in (2.6b) handles

optimization problem of the form:

min
y

(y � ŷ + �1)
2 + (y � ỹ + �2)

2
,

where �1 and �2 are variables corresponding to (2.6c). Taking derivative with respect to y

and equating it to zero yields

y

⇤ =
ŷ + ỹ � �1 � �2

2
. (4.22)

From equations (2.6b) and (2.6c), it is easy to verify that �1 +�2 = 0. Thus, the minimizer

y

⇤ has the closed-form expression y

⇤ = 1
2(ŷ + ỹ).

The auxiliary variables defined in (4.15) are updated using the aforementioned closed-form

expression and the Lagrange multipliers are updated according to (2.6c).

4.5 Numerical tests

The developed FPP and ADMM approaches for solving optimal dispatch problem were tested

on a part of the Belgian natural gas network [3], coupled with the 14-bus IEEE benchmark
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Figure 4.3: Coupled gas and power system network. Red and yellow arrows indicate gas flow

from the gas network to the gas fired generator connected to the power network.

power network as shown in Fig. 4.3. The gas network contains 24 nodes connected with 21

passive and 2 active pipelines, two of which are active ones with compressor ratios equal to

1.5. Although the original network contains loops, its publicized version has been simplified

to a tree. The power network is radial and is connected to gas network via gas fired generators

placed at nodes 5 and 12. All FPP and ADMM problems were solved on a laptop with a 3.1

GHz Intel Core i7 processor with 16GB RAM using the SDPT3 solver in YALMIP [48], [49].

At first, nominal nodal gas and power demands were set to fixed values taken from the

data provided in [3] and the IEEE 14-bus power system benchmark data, respectively. The

variation in gas and power demand at nodes with respect to time can be seen in Fig 4.4

and Fig 4.4, respectively. For every one hour, several di↵erent realistic demand profiles were

created by increasing or decreasing the demands at various gas and power system nodes such.

For implementing the FPP algorithm, the points ⇡̌t

i

, ⇡̌

t

j

, �̌

t

ij

, �̌

t

ji

were initialized at 0 and the
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Figure 4.4: Gas demand profiles.

iteration index was set to k = 0. Given nodal demands and the pressure at the reference

node, flows, gas and power injections and the voltage phase were found after solving problem

(4.14) as per the Algorithm 2. The FPP algorithm converges in a few iterations as shown in

Fig. 4.6.

Having solved the optimal dispatch problem using FPP-based approach, we then tested the

distributed implementation devised in Section 4.4. The auxiliary variables ⇡̂t

i

, �̂t

i,j

, p̂t
i

, and

the Lagrange multipliers �1,t
i

, �2,t
i

, �3,t
i

, �4,t
i

, �1,t
i,j

, �2,t
i,j

, �3,t
i,j

, �4,t
i

, �5,t
i

and �6,t
i

were set to 0 at

the beginning of every iteration of FPP. Given the previously generated demand profiles and

reference node pressure each iteration of FPP was solved using ADMM. The obtained values
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Figure 4.5: Gas demand profiles.

of pressure, flows, voltage phase and power demands match the results of FPP algorithm.

The gas flow out of node 16 and power generated by the generator connected at node 16 of

the gas network is shown in Fig. 4.7, which corroborates to the fact that the relationship is

a�ne. The pressure variations at the nodes containing the gas-fired generators is shown in

Fig. 4.8. The developed FPP+ADMM approach works on large networks with thousand of

nodes, while its performance improves with better initial point selection.
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Figure 4.6: Convergence plot for FPP algorithm.

4.6 Conclusion

The optimal dispatch problem for coupled natural gas and electric power system infrastruc-

tures has been posed as a convex minimization problem. It has been solved using the FPP

algorithm, which converges in a few iterations. For addressing the need to solve optimal

dispatch for large networks, distributed algorithm has been developed using ADMM. The

developed computational toolbox helps in understanding the dynamics and modeling the

coupling between natural gas and the electric grid infrastructures.
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Figure 4.7: a) Gas flow out of node 16 of the gas network. b) Power generator by the gas-fired

generator at node 16 of the gas network
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