SPATIAL OPTIMIZATION METHODS AND SYSTEM FOR
REDISTRICTING PROBLEMS

by
Hai Jin

Bachelor of Engineering
Wuhan University, 2006

Master of Arts
Wuhan University, 2008

Submitted in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy in
Geography
College of Arts and Sciences
University of South Carolina
2017
Accepted by:

Diansheng Guo, Major Professor
Michael Hodgson, Committee Member
Cuizhen (Susan) Wang, Committee Member
Joshua Cooper, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

ProQuest Number: 10642073

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10642073

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 — 1346

© Copyright by Hai Jin, 2017
All Rights Reserved.

ACKNOWLEDGEMENTS

I’'m sincerely grateful to all the people who have supported me during this
journey.

First and foremost, |1 would like to thank my advisor, Dr. Diansheng Guo, for his
continuous guidance, encouragement, and support throughout my doctoral work.

I wish to thank my committee members, Dr. Michael Hodgson, Dr. Cuizhen
(Susan) Wang, and Dr. Joshua Cooper for their support and suggestions for my
dissertation.

| wish to thank the department staff members and my fellow graduate students for
their support and help.

Finally, I want to thank my parents for their unconditional support.

ABSTRACT

Redistricting is the process of dividing space into districts or zones while
optimizing a set of spatial criteria under certain constraints. Example applications of
redistricting include political redistricting, school redistricting, business service planning,
and city management, among many others. Redistricting is a mission-critical component
in operating governments and businesses alike. In research fields, redistricting (or region
building) are also widely used, such as climate zoning, traffic zone analysis, and complex
network analysis. However, as a combinatorial optimization problem, redistricting
optimization remains one of the most difficult research challenges. There are currently
few automated redistricting methods that have the optimization capability to produce
solutions that meet practical needs. The absence of effective and efficient computational
approaches for redistricting makes it extremely time-consuming and difficult for an
individual person to consider multiple criteria/constraints and manually create solutions

using a trial-and-error approach.

To address both the scientific and practical challenges in solving real-world
redistricting problems, this research advances the methodology and application of
redistricting by developing a new computational spatial optimization method and a
system platform that can address a wide range of redistricting problems, in an automated
and computation-assisted manner. The research has three main contributions. First, an

efficient and effective spatial optimization method is developed for redistricting. The new

method is based on a spatially constrained and Tabu-based heuristics, which can optimize
multiple criteria under multiple constraints to construct high-quality optimization
solutions. The new approach is evaluated with real-world redistricting applications and
compared with existing methods. Evaluation results show that the new optimization
algorithm is more efficient (being able to allow real-time user interaction), more flexible
(considering multiple user-expressed criteria and constraints), and more powerful (in
terms of optimization quality) than existing methods. As such, it has the potential to
enable general users to perform complex redistricting tasks.

Second, a redistricting system, iRedistrict, is developed based on the newly
developed spatial optimization method to provide user-friendly visual interface for
defining redistricting problems, incorporating domain knowledge, configuring
optimization criteria and methodology parameters, and ultimately meeting the needs of
real-world applications for tackling complex redistricting tasks. It is particularly useful
for users of different skill levels, including researchers, practitioners, and the general
public, and thus enables public participation in challenging redistricting tasks that are of
immense public interest. Performance evaluations with real-world case studies are carried
out. Further computational strategies are developed and implemented to handle large
datasets.

Third, the newly developed spatial optimization method is extended to solve a
different spatial optimization problem, i.e., spatial community structure detection in
complex networks, which is to partition networks to discover spatial communities by
optimizing an objective function. Moreover, a series of new evaluations are carried out

with synthetic datasets. This set of evaluations is different from the previous evaluations

with case studies in that, the optimal solution is known with synthetic data and therefore
it is possible to evaluate (1) whether the optimization method can discover the true
pattern (global optima), and (2) how different data characteristics may affect the
performance of the method. Evaluation results reveal that existing non-spatial methods
are not robust in detecting spatial community structure, which may produce dramatically
different outcomes for the same data with different characteristics, such as different
spatial aggregations, sampling rates, or noise levels. The new optimization method with
spatial constraints is significantly more stable and consistent. In addition to evaluations
with synthetic datasets, a case study is also carried out to detect urban community
structure with human movements, to demonstrate the application and effectiveness of the

approach.

Vi

TABLE OF CONTENTS

ACKNOWIBAGEMENTS ...t bbbt ii
ADSTTACT ...ttt bbbt 1\
LISE OF TADIES ...t IX
S o) T U= PSSR X
Chapter 1 INTrOQUCTIONo.viiiiiiieee e bbb 1
Chapter 2 Related reSEAICIcoviiiiic et 5
2.1 General methods for non-spatial combinatorial optimization...............cc.cccceeunee. 5
2.2 Specific methods for geographic distriCting.........cccoocererininiiiieieec e 7
Chapter 3 A new computational method for geographic redistricting problems.............. 13
3.1 Criteria for rediStriCting.........coeiieiieeiic e 14
3.2 A new spatial optimization algorithm based on Tabu search................c.ccc....... 17
3.3 Optimization strategies for different types of criteria...........ccccoeevviveiiereennenn, 29
K I o] o Tod V] o] o PSSP 32
Chapter 4 Performance evaluation, user interaction, and computational solution for large
0 Fo U =] PR 33
4.1 Performance evaluation with case StUdIES..........cccevvriieiiniinicie e 34
4.2 Visual interface and user interaction to integrate human inputs............cccccue..... 45
4.3 Computational solutions for handling large data volumecccccoveeieinnnnn, 51
OO0 o [od [1 1] o] o FO SRR 59

Chapter 5 Discover spatial community structure in movements—an extention of the
OPLIMIZAtION MELNOMceeeeieece et 60

vii

T8 A [01 €0 o (1 T 4 o] ST URTT 61
5.2 Related reSEarChc.ooviieicc e 63
5.3 Detecting spatial community structure with optimizationcc.ccocevvnnnnne 69
5.4 Evaluation with Synthetic datacocvieiiiiiii e 73
5.5 Case study with urban population MOVEMENTS...........ccvvivereriienieeienie e 81
ST ©0] o] 111 [o FO SR 84
Chapter 6 Discussion and fULUIE WOIK.............ccoiiiiiiiiieieie e 86
RETEIENICES ...ttt bbbttt ne bt 89

viii

LIST OF TABLES
Table 3.1 Different optimization MEtNOUS.covieiiiiriieie e 28
Table 4.1 Evaluations with lowa data for optimizing population equality (PopDev). 37
Table 4.2 Evaluation with lowa data, optimizing population equality and compactness. 38
Table 4.3 Evaluations with South Carolina data, optimizing population equality only ... 40
Table 5.1 Synthetic data of trajectories with 10% noise or random moves..............c....... 75

Table 5.2 Synthetic data of trajectories with 20% noise or random moves..............c....... 75

LIST OF FIGURES

Figure 3.1 Multi-object moves under the contiguity CONStraint............ccccceverereieninnnne. 18
Figure 3.2: An overview of the Tabu-based optimization algorithm.................ccccovrenne. 19
Figure 3.3 The contiguity relationship among the spatial objectsccccooceieiiniinne. 23
Figure 3.4 Composite moves (i.e., multi-object moves) for cut pointsc.ccocevvreenne. 23
Figure 4.1 lowa counties and their population (2010 CENSUS).cccoververierenenenerienienns 35

Figure 4.2 An lowa plan of four districts with a population deviation (PopDev) of 4.5.. 37

Figure 4.3 Population of South Carolina voting precincts (2010 Census).cccccceeveene.. 39
Figure 4.4 A user-drawn community of interest (COI).cocovvveieiieiieiecc e 41
Figure 4.5 A plan with a majority-minority diStriCt...........cccccoveiiiieviciecc e 42
Figure 4.6 Middle school student enrollments in Prince William County, Virginia........ 43

Figure 4.7 A school redistricting plan for middle schools in Prince William County...... 44
Figure 4.8 lowa congressional redistricting with the 2000 census datacccv...... 46
Figure 4.9 The redistricting system, iRedistrict, based on the new optimization method.47

Figure 4.10 Visual interface to support an interactive and iterative optimization process48

Figure 4.11 Results at different clustering levels with South Carolina data..................... 55
T TU =R 2 o F=To (0o o OO PPPPR 57
Figure 4.13 AKKa distributed SYSIEMccvviiiieiieccie e 59
Figure 5.1 An illustration of graph construction from trajectories...........cccccoevveviveiiveennn. 70
Figure 5.2 Synthetic data for eXperiments.cccocveiiieiie e 75
Figure 5.3 Experimental results for data with 10% noise or random moves.................. 77

Figure 5.4 Experiment result for the data with 20% noise or random moves 78
Figure 5.5 Normalized mutual information (NMI) values of each result..............cc......... 79

Figure 5.6 The top row shows the community detection results of the original synthetic
data With 1000 CIUSTEIS......cueiirieiiisieeiieiieie ettt bbb nne s 80

Figure 5.7 Eleven discovered spatial communities (colored polygons) from the mobile
phone data iN SNANGNATc.coiiiiiiee e 83

Xi

CHAPTER 1
INTRODUCTION

Geographic districting problems (a.k.a. redistricting, zoning, or regionalization
problems in different application contexts) are to group small geographic units into larger
districts to optimize an objective function (i.e., a set of criteria) under a set of constraints.
From the perspective of optimization, they can be considered as combinatorial
optimization problems, which are to find an optimal (or near-optimal) solution from a
large set of alternatives (Papadimitriou and Steiglitz 1998). Different from other
combinatorial optimization problems, geographic districting problems usually consider
spatial criteria and constraints such as spatial contiguity and compactness, which are
difficult to integrate with mathematical models commonly used in non-spatial
combinatorial optimization methods such as integer programming. Redistricting
optimization has been shown to be NP-hard (Puppe and Tasnadi 2008, Altman 1997).

Redistricting problems are encountered in many application domains such as
political redistricting, school redistricting, and business service zone planning. The
primary difference among these applications from the perspective of optimization is that
the objective function and constraints being considered in the optimization process are
different. For example, the criteria and constraints considered for political redistricting
include geographic contiguity, equal population, majority-minority district, preserving

communities of interest, and spatial compactness (Levitt and Foster 2008), while school

redistricting may consider other criteria such as travel distance for students, school
capacity, and socioeconomic balance within and cross school districts.

Redistricting problems have attracted extensive research efforts in developing
automated redistricting approaches based on clustering (Forrest 1964), location-allocation
(Hess et al. 1965, Kalcsics, Nickel and Schr&der 2005), space partitioning (Ricca,
Scozzari and Simeone 2008, Novaes et al. 2009), integer programming (Caro et al. 2004),
graph partitioning (Mehrotra, Johnson and Nemhauser 1998b), genetic algorithms
(Forman 2002), Tabu search (Bozkaya, Erkut and Laporte 2003, Ricca and Simeone
2008), and simulate annealing (Browdy 1990, D'Amico et al. 2002). Since geographic
districting is an NP-complete problem, no method can guarantee to find the best solution
unless the problem is very small, for which an exhaustive search is possible.

Existing automated methods, however, mostly remain in the academic domain
since they do not meet practical needs—the methods are either limited to small data sets
or cannot produce results with sufficient optimization quality. Current redistricting
software tools' that practitioners commonly use rely entirely on a manual approach, with
which the user has to optimize the redistricting criteria with a trial-and-error approach.
With such software, even expert users will need days or even weeks to manually

construct a districting solution, which still may not be of sufficient quality in terms of

! There are many commercial redistricting software packages, such as: ArcGIS Redistricting
Extension and Maptitude. There are also a number of web-based redistricting tools to allow users

manually draw districts, such as Dave's redistricting site

(http://gardow.com/davebradlee/redistricting), and Azavea’s web-based redistricting

(http://www.redistrictingthenation.com). These tools are all manual.

http://gardow.com/davebradlee/redistricting
http://www.redistrictingthenation.com/

satisfying all criteria and constraints. For political redistricting, for example, each state or
city in the U.S. usually has one or more full-time technicians, who often need months of
preparation to generate just a few redistricting plans.

To address both the research challenge and practical need in solving real-world
redistricting problems, this research develops a new spatial optimization method and a
comprehensive system for redistricting. Specifically, my dissertation work achieves the
following three objectives.

(1) Develop an efficient and effective spatial optimization method for

redistricting. The developed method can optimize multiple criteria under multiple
constraints and construct high-quality districting optimization solutions. The new
optimization method is more efficient (being able to allow real-time user interaction),
more flexible (considering multiple user-expressed criteria and constraints), and more
powerful (in terms of optimization quality) than existing methods. The outcome of this
task is evaluated by comparing with existing automated optimization methods with real-
world case studies.

(2) Develop a redistricting framework and system, iRedistrict, based on the new

optimization method to integrate a variety of optimization criteria and constraints and

provide user-friendly visual interface for incorporating domain knowledge, configuring
optimization criteria and methodology parameters, and ultimately meet the needs of real-
world applications. It is particularly useful for users of different skill levels, including
researchers, practitioners, and the general public, and thus enables public participation in
challenging redistricting tasks that are of immense public interest. Performance

evaluations with real-world case studies are carried out. It potentially can enable broad

public participation in redistricting practices, which are currently inaccessible to the
public.

(3) Extend the spatial optimization method to solve a different spatial

optimization problem, i.e., spatial community structure detection in complex networks.

Spatial community structure detection is to partition spatially embedded networks to
reveal spatial communities by optimizing an objective function. Moreover, a series of
new evaluations are carried out with synthetic datasets. This set of evaluations is different
from the previous evaluations with case studies in that, the optimal solution is known
with synthetic data and therefore it is possible to evaluate (1) whether the optimization
method can discover the true pattern (global optima), and (2) how different data
characteristics may affect the performance of the method.

This dissertation is organized into six chapters. Chapter 1 gives a brief
introduction and summary of the dissertation work. Chapter 2 presents a comprehensive
literature review. Chapter 3 introduces the new computational method for geographic
redistricting problems. Chapter 4 evaluates the performance of the new method with real-
world redistricting problems, presents the visual interface for user interaction, and
introduces a set of computational solutions for handling large datasets in real applications.
Chapter 5 presents a new application of the optimization method to detect spatial
community structure detection in complex networks. Chapter 6 gives a conclusion for

discussions on future work.

CHAPTER 2
RELATED RESEARCH

2.1 General methods for non-spatial combinatorial optimization

Algorithms for combinatorial optimization problems can be either exact or
approximate. Exact algorithms are guaranteed to find an optimal solution, while
approximate algorithms aim to find near-optimal solutions in a reasonable time. Since
many combinatorial optimization problems are NP-complete, exact algorithms such as
integer linear programming can only be used when the input data size for the problem is
very small. Redistricting problems in real world are often too large for exact methods.
Therefore in this section | focus on approximate algorithms that are based on
metaheuristics. More complete discussion of algorithms for combinatorial optimization
can be found in (Nemhauser and Wolsey 1999, Papadimitriou and Steiglitz 1998).

Metaheuristics are high-level strategies that use different heuristic methods to
explore the search space and final near-optimal solutions (Blum and Roli 2003).
Metaheuristics for combinatorial optimization include Genetic Algorithms, Ant Colony
Optimization, Simulated Annealing, Iterated Local Search, and Tabu Search.

Genetic Algorithms (Holland 1975) encode a candidate solution of an
optimization problem as a string. Through the evolution of a solution population (i.e., a
set of strings), one can find better solutions, which are evaluated with a fitness function.

For each generation, some individual solutions of the current population are selected to

generate a new population of solutions. The selected solutions are recombined through
operations such as crossover and mutation of their string-based representation. The
solutions with higher fitness values have more chance to be selected. This process is
repeated until a certain stopping condition is met, and the best solution in the final
population will be the final output.

Ant Colony Optimization (Dorigo, Caro and Gambardella 1999) is inspired by the
behavior of ants and based on a parameterized probabilistic model. Stochastic solution
construction procedures called artificial ants are often used, which iteratively add solution
components to partial solutions based on information about a promising solution and
previously acquired good solutions.

Simulated Annealing (Kirpatrick, Gelatt and Vecchi 1983) tries to solve
optimization problems by simulating the physical annealing process. A simulated
annealing method starts with an initial solution and a temperature parameter. At each
step, the current solution is replaced with a random neighbor in the search space, with a
probability that is a function of the temperature and the differences between their object
function values. Such a process can escape local optima by allowing moves resulting in
worse solutions with a probability, and the probability is decreasing along with the
decrease of temperature.

Iterated Local Search (Lourenco, Martin and Sttizle 2003) is based on the idea
that iteratively builds a sequence of solutions to find better solutions. ILS starts with an
initial solution and finds a local optimum with a local search such as hill climbing. Then

it perturbs the solution and restarts the local search to find another local optimum. The

process is repeated until a certain stopping condition is met. The best among the local
optimal solutions will be the final solution.

Tabu Search (Glover 1990) improves local search by using a short term memory
(a Tabu list) to escape from local optima and avoid cycles. Tabu search finds a best move
at each step even if the move is non-improving. A Tabu method keeps a list of objects
that have recently been moved, which cannot move again. The list (called Tabu list) is a
queue of a certain length (i.e., Tabu length k). Once an object is moved, it is inserted to
the end of the queue. If the queue is full (i.e. having more than k objects), then the first
object in the queue will be dropped and can move again. Periodically, the list is cleared
and all objects can move (which is called restart). The Tabu search stops at a predefined
condition such as the total number of moves or a maximum number of consecutive non-

improving moves.

2.2 Specific methods for geographic districting

Methods for geographic districting can be generally divided into two main
categories: divisive methods and agglomerative methods (Di Cortona et al. 1999).
Divisive methods consider the space as a whole and divide it into different districts, while
agglomerative methods consider the territory as a set of units and group the units into
districts. Divisive methods include the successive dichotomies strategy (Forrest 1964)
and the wedge-cutting strategy (Chance 1965). Agglomerative methods are more
commonly used, and can be further divided into several major approaches: location-
allocation methods, multi-kernel growth techniques, set-partitioning techniques, local

search methods, and metaheuristics.

2.2.1 Methods based on location-allocation

In location-allocation methods, each unit is assigned to a territory center
according to certain criteria and constraints, and then units assigned to the same territory
center are grouped into a district (Hess et al. 1965). Kalcsics, Nickel, and Schrcder
(2005) combined a location-allocation method with optimal split resolution techniques,
but the running time was too high to be practically useful. Segura-Ramiro et al. (2007)
proposed a heuristic method based on location-allocation to solve a territory design
problem for a beverage distribution firm. They extended the location-allocation method
by Kalcsics, Nickel, and Schr&ler (2005) to handle contiguity constraint and multiple
balancing constraints such as balancing the number of customers and sales volume. The
method tries to minimize a dispersity measure to achieve compact districts. A local
search was applied after an iteration of the location-allocation process to improve the
dispersity measure. Experiments showed that this method could produce solutions of
good quality but the execution time was long and the results were not comparable to
those of other methods. Ko et al. (2015) integrated redistricting and location-allocation

problems and used intra-district service transfer to address work overload problems.

2.2.2 Methods based on multi-kernel growth

Multi-kernel growth techniques first select some units as seeds, which gradually
grow into districts. Vickrey (1961) selected one seed at a time and generated the next
seed until a region was completed. A unit was first selected randomly as the reference

area, and the unit farthest from this reference area was selected as the seed for a region.

Neighboring unassigned units were added to this region until a certain condition was met,
and then the farthest unassigned unit from the reference area was selected as the next
seed. This method is further studied in other researches (Gearhart and Liittschwager
1969, Openshaw 1977). Its main problem is that the condition for stopping the growth of
a region is difficult to define and the quality of final regions are not sufficiently good for

practical uses.

2.2.3 Methods based on set-partitioning

Set-partitioning methods first generate a large set of candidate districts that meet
the required conditions such as contiguity, compactness and population, and then some
candidate districts are selected based on an objective function to form a district plan
(Garfinkel and Nemhauser 1970). Mehrotra et al. (1998a) developed a column generation
algorithm to consider more candidate districts. Different criteria can be used to generate
the candidate districts, but only a small number of units can be processed by set-

partitioning methods due to the combinatorial complexity.

2.2.4 Methods based on local search

Local search methods try to improve an initial districting plan by moving units
between neighboring districts to optimize the objective function of some criteria. Nagel
(1965) proposed two types of moves: moving one unit at a time and trading units between
two neighboring regions. Several conditions must be met in this process, such as spatial
contiguity and the number of districts. Sammons (1978) allowed the non-improving

moves in the process to escape from local optima. Yamada (2009) formulated

redistricting as a mini-max spanning forest problem, and used local-based search methods
to solve it. Since these methods need an initial districting plan, they can be used to
improve the plans generated by other approaches. Local search methods are relatively

fast but less powerful in optimization since it can only search a small solution space.

2.2.5 Methods based on metaheuristics

Metaheuristics used for redistricting include simulated annealing, Tabu search,
and genetic algorithms. Browdy (1990) proposed a simulated annealing method for
redistricting to make non-improving moves with a certain probability. Huntley (1996)
developed an algorithm based on simulated annealing for multi-objective service
districting problems and used it to a school districting problem considering criteria of
school utilization, efficient transport, and proximity of students to schools. Bergey,
Ragsdale, and Hoskote (2003) used simulated annealing to improve the performance of a
genetic algorithm. Rincon-Garcia et al. (2013) used a multi-objective simulated annealing
algorithm to deal with the redistricting problem. Bennett (2010) studied the home
healthcare nurse districting problem as a set partitioning model and combined column
generation and local search to find solutions. The author argued that a major advantage of
the method was easy adaptation for different scenarios such as different workload balance
parameters and nurse team sizes. Joshi (2011) developed a constraint-based polygon
spatial clustering algorithm for redistricting. The algorithm consists of three steps: select
seeds, find the best cluster to grow, and find the best polygon to be added to this cluster.
The algorithm was applied to the congressional redistricting problem and the school

districting problem, and its performance was better than simulated annealing (Macmillan

10

2001) and genetic algorithms (Bacao, Lobo and Painho 2005) in terms of the criteria
including equal population and compactness. Zhang and Brown (2013) used a method
similar to the constraint-based polygonal spatial clustering algorithm to generate
districting plans for police patrol.

Bozkaya (1999) developed an algorithm based on Tabu Search for political
districting problems. The algorithm uses a region growing method to generate a starting
solution, and then iteratively makes moves between neighboring districts based on the
Tabu Search principles. A meta-heuristic called Probabilistic Diversification and
Intensification could be integrated with the Tabu search to improve performance.
Bozkaya et al. (2003) formulated the redistricting problem as a multi-criteria problem,
and used a Tabu search and adaptive memory heuristic to solve the problem. Gonzalez-
Ramirez et al. (2011) used a hybrid approach that combined the greedy randomized
adaptive search procedure (GRASP) and the Tabu search to solve a districting problem of
a parcel company. Assis et al. (2014) used a solution based on GRASP to address a
multcriteria capacitated redistricting problem in power meter reading.

Xiao (2003, 2008) proposed a framework for the implementation of evolutionary
algorithms for different geographical optimization problems such as redistricting. The
framework used a graph-based representation to formulate different geographical
optimization problems, and different algorithms are designed for initialization,
recombination, and mutation operations in the evolutionary algorithm. This evolutionary
algorithm was applied to the lowa congress redistricting, and good solutions could be
found. However, it is not as efficient and effective compared to other methods (Kim

2011). The author also suggested that problem-specific knowledge and heuristic methods

11

could be combined to improve the performance. Chou et al. (2012) used Interactive
Evolutionary Computation (IEC) with Validated Surrogate Fitness functions to discover
good redistricting plans for the Philadelphia City Council. Hu et al. (2014) developed a
non-dominated sorting genetic algorithm to tackle a bi-objective model for the location
and districting planning of earthquake shelters. Castelli et al. (2015) used geometric
semantic genetic operators that employed semantic information directly in the
evolutionary search process to improve its optimization ability for the electoral
redistricting problem. Liu et al. (2016) developed a scalable evolutionary computational
approach to use massively parallel high performance computing for political redistricting.
Vanneschi et al. (2017) used a multi-objective genetic algorithm Pareto-based NSGA-I1I
with a variable neighborhood search strategy to address the electoral redistricting
problem.

The common challenge to these metaheuristics methods in solving spatial
districting problems is to satisfy spatial constraints (such as contiguity) while exploring
the solution space. One of the key contributions of the proposed methodology is to
develop an efficient approach that can simultaneously guarantee spatial contiguity,

computational efficiency, and effective searching strategies.

12

CHAPTER 3
A NEW COMPUTATIONAL METHOD FOR GEOGRAPHIC
REDISTRICTING PROBLEMS

This Chapter introduces a new spatial optimization method for redistricting,
which extends the traditional Tabu search heuristic with a novel strategy for enforcing
geographic contiguity and an efficient way for defining, finding, and evaluating candidate
moves. The new algorithm significantly improves both the efficiency and optimization
quality for solving redistricting problems and thus enables automated or semi-automated
solutions for real-world redistricting tasks. The algorithm is designed to address a wide
range real world redistricting problems. | first review and categorize various criteria and
constraints used in different real-world redistricting problems, and then develop a generic
spatial optimization algorithm to flexibly incorporate different sets of criteria and
constraints, with efficient and effective optimization strategies.

This Chapter focuses on the presentation of the core algorithms. Chapter 4 will
present performance evaluations with real-world case studies, comparison with existing
methods, visual interfaces for user interaction, and computational solutions for handling

large datasets.

13

3.1 Criteria for redistricting

Existing research in the literature usually deals with different geographic
districting problems separately and develops methods (or extensions) for each specific
problem. This research categorizes and integrates different criteria to help develop a
general framework for solving a wide range of redistricting problems. For political
redistricting alone, Williams (1995) classified the optimization criteria into three types:
demographic (e.g., equal population and minority representation), geographic (e.g.,
contiguity, compactness, and community integrity), and political (e.g., proportionality
and similarity to the existing plan). However, this type of classification is not based on
how each criterion is optimized. For example, equal population and minority
representation are both demographic criteria but they require different strategies to
optimize. This research classifies districting criteria based on how they can be optimized.

| surveyed the criteria, constraints, and objective functions used in different
districting problems, extracted a set of commonalities and generic criteria, and developed
an optimization framework based on the categorization to allow flexible combinations of
criteria and thus meet the needs of different redistricting problems. Moreover, for each
type of criteria, a specific optimization strategy can be developed to maximize the
computational speed and optimization performance. Following are the categorized high-

level groupings of redistricting criteria.

1) Geographic constraints, including spatial contiguity, must-link constraint,

cannot-link constraint, and fixed location constraint. Contiguity constraint

requires that each district must be contiguous. Must-link constraint requires two

14

()

(3)

objects must stay in one district, while cannot-link constraint means the opposite.
Many districting problems, especially service districting problems, require that
each district contain exactly one fixed location. These constraints can be treated
similarly, where the spatial connectivity are checked when a plan is initialized and
when objects are moved between districts. Moreover, by exploiting such
constraints, a more efficient strategy can be constructed to only explore the search

space that satisfies the constraints.

Balance of district sizes, such as equal population, equal household, balance of
workload, and balance of the demand. These criteria require that a certain
measure or variable value be nearly the same across all districts. To optimize such
criteria, the optimization method can adopt specialized strategy to efficiently find
candidate solutions such as trading units between districts and building indices to
speed up such searches. This group of criteria can either be integrated in the
objective function or treated as constraints (where the measure value must be

within a certain range to a target value).

District-specific targets such as majority-minority districts. This type of criteria
is only evaluated for certain districts. For example, a majority-minority district is
a district where a minority constitutes the majority of the voting age population in
the district. There may be a required number of such districts for a specific
redistricting task. Such criteria require that the optimization process be able to

achieve different target values for different districts.

15

(4)

()

Global criteria such as compactness, total workload, travel distance, similarity to
the existing plan, and preserving the political boundaries. The uniqueness of such
criteria lies in the fact that the solution is evaluated as a whole. This type of
criteria potentially can be the performance bottleneck in the optimization speed
because a local change has to be evaluated by looking at its global impact. For
example, trading two units between two school districts may significantly change
the short-path bus route in one or both. These criteria have no specific target for a
district but a general target for the whole plan. They are usually integrated in the

objective function.

Vague and subjective criteria such as preserving communities of interest or
neighborhood, where different users may have different understanding of
“neighborhood” or “communities”. Therefore, communities of interest or
neighborhood usually cannot be clearly defined, and local knowledge is needed.
To incorporate such criteria, a visual interface and user interaction are needed so
that the user can choose or draw neighborhoods on the map and then the
computational algorithms can consider those inputs. This is a process that

integrates human judgments and computational algorithms.

For a specific task, a subset of criteria can be selected interactively and different

optimization strategies are then integrated to achieve the best possible optimization

quality and efficiency.

16

3.2 A new spatial optimization algorithm based on Tabu search

With the systematic categorization of different criteria summarized above, this
research develops a new spatial optimization algorithm based on the Tabu search. The
new algorithm guarantees geographic contiguity, achieves high efficiency, and at the
same time significantly improves optimization quality over existing methods. The
objective function consists of a set of user-selected criteria, each of which has an optional
weight. The general steps of the new spatial optimization algorithm are shown in
Algorithm 1, to give an overall understanding of the method. Details for each step and

related algorithms will be explained in subsequent sections.

Algorithm 1: General Steps
1. Initialization—create an initial plan, by randomly portioning the space into a set
of geographically contiguous regions;
2. Optimization—repeat the following steps until a stop condition is met:
i. Find all candidate moves within the current solution;
ii. Find the best move among all candidates, or the best switch of two candidate
moves, according to an objective function;
iii. Accept the best move or switch to modify the current solution, and update the
best solution if the new solution is better;
3. Output—output the best solution recorded during the optimization.
4. Repetition (Optional)—repeat steps 1-3 to generate a set of alternative solutions,

which the user can interactively examine and compare.

17

One of the major contributions of the new method is that it analyzes the contiguity
relationship among objects in each district and efficiently identifies all possible moves
along the border, including both single-object moves and multiple-object moves (as
shown in Figure 3.1). Each move modifies the district boundary by moving an object (or
multiple objects) to the neighboring district or switching objects between neighboring
districts. Each move maintains all considered constraints such as geographic contiguity.
Existing approaches can only allow single-object moves or switches while the new

approach also allows multi-object moves.

Single-Object Moves | Pairs to
Multi-Object Moves | Switch

ASB {1}, {5}, {14}
{2,1}, {10, 14}
BSA {6}, {17}
{11,9,17}, {9, 17}

ASC {14}
{10, 14}

C>A {15}
{21, 15, 23}
{8}, {12}, {17}
bt 1,9,17), 9,17}
{13}, {18} | 18 pairs
Cc->B |{16, 13}, {19, 13, 16, 20, 24},
{22, 15,21, 23}, {21, 15,23} ;

2 ! / 24

Total: 24 moves, 29 switches 28 \“\ \\? N

/

10 pairs

1 pair

Figure 3.1 Multi-object moves under the contiguity constraint.

In the new approach, if an object on the border between two districts cannot move
due to the contiguity constraint, the method finds a minimal set of objects that will move
together with the object to maintain contiguity (Figure 3.1). In other words, in this new
method, all objects on the border between two districts can move—some move by

themselves and others move with two or more objects. For example, in Figure 3.1, if we

18

move the object (or polygon) 9 from district B to A, the contiguity of the district B will
be broken. In the new method, object 9 and object 17 will move together. This new
moving strategy is then combined with the Tabu search heuristics to enable a new

optimization algorithm, as shown in Figure 3.2.

Start with an initial plan P,
P LetP=P; P, = P,; TabuList=; NIM=0

+

Identify candidate moves "
Including both single- and multi-object moves in P New P

y

P,

Find the best move or pair-switch
which should not be on the Tabu List

v

Apply the best move or switch to create a new P
If Pis better than the best plan, then set P, = P,
and set NIM (i.e., non-improving moves) = 0.
Otherwise NIM = NIM + 1.

v

Stop Searching if NIM > maxNIM (i.e., a specified
threshold) or there is no candidate to move.

Stop [I ‘erontinue

Restart Tabu Search? Update Tabu List

If Py is better than P, Add the move to Tabu
(i.e., the search has List. Drop the first move
found a better plan), in Tabu List if it is full
restart with P, = P, (i.e., |Tabu List| > k)

No[l

Output P, as the final plan.

Restart

Figure 3.2: An overview of the Tabu-based optimization algorithm.

19

Figure 3.2 shows an overview of the new optimization algorithm, which is a Tabu
search combined with the new contiguity-enforcing moving strategy. Tabu search
methods have been used in many different applications and been shown to outperform
alternative approaches (Glover 1990, Battiti and Bertossi 1999, Bozkaya et al. 2003). The
algorithm progressively improves the quality of an initial plan by iteratively moving
objects from one district to another. First, candidate moves are identified (including both
single-object and multi-object moves). Second, the best move among them is identified
and applied. The moved objects will be placed on the Tabu list for a certain period and
cannot be moved again during that period, which is the key strategy in the traditional
Tabu search heuristic. After each move, the list of candidate moves will be updated, and
the best will be found and moved again. This process repeats until a stopping condition is

met. Below | will explain the key steps in the algorithm in detail.

3.2.1 Initialization under contiguity constraint

To generate an initial redistricting plan, a simple seed-growing method is used,
which randomly groups objects into r geographically contiguous districts (see Algorithm
2). First, r seeds (spatial objects) are selected randomly, each representing a district. Then
districts grow one at a time by adding a non-assigned neighboring object to it. This
process repeats until all objects are assigned to a district. Other initialization methods
may also be used to generate an initial plan. The choice of an initialization method is not
critical as long as it is a random process and can generate different plans when repeated.
The initialization method should guarantee that each district is geographically

contiguous.

20

Algorithm 2: Initialization under contiguity constraint
Input: S: a set of spatial objects, |S| = n;
C: a n*n contiguity matrix;
r: the number of districts, 1< r <<n;
Steps:
1. Randomly select r objects from S, each being a district Dp,, m=1 .. r;
2. For each district Dy:
a. Randomly select one of its unassigned neighbors b (if any);
b. Assign b to Dy,

3. Repeat step 2 until all objects in S are assigned to a district.

3.2.2 Efficient algorithm for identifying multi-object moves

To efficiently identify all candidate moves (including both single-object moves
and multi-object moves), | developed an efficient algorithm that can find all possible
moves in linear time. Let us view the contiguity relations among spatial objects within a
district as a graph G, where each spatial object is a node and two geographic neighbors
are connected with an edge. If the removal of an object u from G cuts the graph into two
or more disconnected components, object u is called an articulation point (a.k.a. cut
point) in G. A bi-connected component is a maximal sub-graph of G that cannot be
disconnected by deleting any object (Gabow 2000b). For example, the contiguity graph
of district C in Figure 3.1 is shown in Figure 3.3, which has four cut points and five bi-

connected components.

21

First, the algorithm finds all cut points and bi-connected components in each
district with a depth-first search (DFS) method, which was first described in (Tarjan
1972), and later improved by (Gabow 2000b, Tarjan 1972). The complexity of the DFS
algorithm is O(n).

Second, the algorithm identifies a multi-object move for each cut point. Figure 3.4
shows an example and Algorithm 3 shows the algorithmic steps. By definition, bi-
connected components (BCCs) are connected only through cut points. If we view each
BCC as a single “object”, the contiguity graph becomes a spanning tree, with cut points
as the connecting “edges”. A BCC is a leaf in this tree if it only connects to one cut point
(such as bcc_1 and bee_5 in Figure 3.3). Since the removal of a cut point can cut a graph
into two or more components, our strategy is to let the largest component represent the
district and combine other components with the cut point to make a multi-object move.
The size of a component can be defined as the number of spatial objects it contains or by
other quantitative measures (such as the total population). The algorithm starts from a
leaf BCC and traverses the tree from bottom up to find all multi-object moves. During the
scan, the attribute values within a multi-object move are aggregated so that each multi-
object move becomes a new “object”. Aggregating information within a multi-object
move speeds up the search for the best move since it does not need to visit all objects in
each multi-object move.

The time complexity of Algorithm 3 is O(n), where n is the number of objects in
the district. Algorithm 3 is repeated for each district. Each non-cut point forms single
object move and each cut point leads a multi-object move. Out of these moves, those on

the border of two districts will be considered candidate moves. The same object (e.g.,

22

object 14 in A) may move to different neighboring districts (e.g., B or C), which are
viewed as two different candidate moves. The list of candidate moves is updated after
making a move (and thus creating a new plan), which is repeated many times in the

optimization process (Step 2 in Algorithm 1).

Figure 3.3 The contiguity relationship among the spatial objects in the district C in Figure
3.1. Neighbors are connected with edges, cut points are underlined, and dash-line ellipses
show five bi-connected components.

Figure 3.4 Composite moves (i.e., multi-object moves) for cut points. Each cut point will
move as a composite move to maintain contiguity. For example, object 22 will move
together with objects 15, 21, and 23 so that the remaining graph is still contiguous.

23

Algorithm 3: Identifying multi-object moves

Input:

Steps:

Sq: the set of spatial objects in a district d;
Cq: a contiguity matrix of the objects in Sg;
Agy: attribute vector for each object in Sg;

CompositeMoves = J; LeafBCC = IJ;
Find all cut points and biconnected components with DFS (Sq, Cy). (See
(Gabow 2000a) for the details of the DFS algorithm.)
bce.CPT: the set of cut points that a biconnected component bcc contains;
cpt.BCC: the set of biconnected components that a cut point cpt belongs to;
cpt.maxC = &, which will keep the largest component for cpt;
cpt.restC = &; which will keep the union of other components of cpt;
For each biconnected component bcc:
If (Jbcc.CPT|=1): add bcc to LeafBCC,;
Repeat the following steps until LeafBCC is empty;
bcc = next biconnected component in LeafBCCs;
cpt = the only cut point in bcc.CPT;
I. If size(bcc)> size(cpt.maxC):
cpt.restC = cpt.restC v cpt.maxC;
cpt.maxC = bcc;
Else: cpt.restC = cpt.restC U bcc;
ii. Remove bcc from cpt.BCC;
ii. If |cpt.BCC|=1 and size(cpt.maxC) < size(Sq)-size(cpt.maxC
cpt.restC) + 1
cpt.restC = cpt.maxC U cpt.restC;
bceR = the only remaining biconnected component in cpt.BCC;
cpt.BCC = G;
Remove cpt from bccR.CPT;
If (JbccR.CPT| =1):
Add bccR to LeafBCC;
iv. If cpt.BCC = &:
cpt = aggregation of the vectors Aq in cpt.restC;
Add cpt to CompositeMoves as a new composite move.

24

3.2.3 Efficient evaluation of candidate moves

Based on a given objective function f, each candidate move m is given a score oJp,
which is the difference in the overall objective value caused by the move. In other words,
om = (P) — f (Pm), where P is the current plan and Py, is the new plan after making the
move m. The move with the largest score is the best move (assuming the objective
function is to be minimized). To achieve the best possible efficiency, the score for each
move is calculated based on its aggregated attribute values and the aggregated
information of the two involved districts. This strategy is called “dynamic scoring”
(Altman and McDonald 2009). For example, given two districts A and B, and a set of
candidate moves between them, the aggregated attribute values for each district may
include its total population and dissolved shape boundary, which depend on the chosen
set of optimization criteria. By aggregating data to districts it allows fast calculation of
the score for each move without going through the entire dataset repeated and thus
greatly improves efficiency. As such, it can calculate scores of all moves and find the

best move in linear time.

3.2.4 Pair switch of candidate moves

Pair switches, i.e., exchanging two candidate moves between two neighboring
districts, can be considered as combining two moves into one move, which are often
needed to achieve better scores on certain criteria, such as equal population in
redistricting (Bozkaya et al. 2003, Nagel 1965). Compared with existing methods that use
pair switches, the pair switching in this research is unique and more effective since a

switch can involve more than two objects. As shown in Figure 3.1, for example, the two

25

sets of polygons {2, 1} and {9, 17} can be switched to their opposite district. Not all pairs
can be switched due to the contiguity constraint. For example, in Figure 3.1, object 14
and object 17 cannot be switched although each can move. This situation can be quickly
identified by checking the following condition. Let M; and M, be two candidate moves,
B:1 and B, be the boundary shared by each move with their destination district,
respectively. Let Bs be the shared boundary between M; and M,. If B; < Bs or B, < B,

then we cannot switch the two moves.

3.2.5 Efficient evaluation of pair switches

Evaluating pair switches can be time consuming if it enumerates and evaluates all
possible pairs of moves. Based on the fact that pair switches are mainly used to optimize
population equality, a new strategy is developed to efficiently find the best switch
without enumerating all pairs. Suppose there are two districts A and B, each having a set
of candidate moves. To find the best pair to switch, the moves in each district are sorted
by their population. Then, given a move u in A, its population, and the population of A
and B, we can calculate the target population of an ideal move in B to switch with u.
Since the moves in B are already ordered, with a binary search we can quickly locate the
move m in B with a population that is closest to the target population. We then search a
certain number of moves on both sides of m in the order to find the “best” move v to
switch with u in terms of the overall objective function. Note that this “best” move is for
paring with u only. Repeat this for each move in A, we can get the best switch between A

and B. The time complexity for evaluating pair switches is O(nlogn), where n is the

26

number of moves in A and B. The best move identified in Section 3.2.3 is compared with

the best switch identified here to determine which the overall best move is.

3.2.6 A new Tabu search algorithm

What makes the Tabu search heuristic unique is its short-memory strategy to
avoid repeating the search paths that are already investigated and thus may force the
search to escape local optima. Specifically, the search process uses a Tabu list to
remember the most recent moves, which are prohibited to move again until they are
removed from the list. The length of the Tabu list (k—the number of prohibited moves) is
normally much smaller than the data set size (n). In our experiments, k = 0.08n. A Tabu
search allows non-improving moves, i.e., it is acceptable that the best move does not
improve the objective value. By allowing non-improving moves, it hopes to escape a
local optimum and eventually found a better solution. The search stops when the number
of consecutive non-improving moves exceeds a threshold (maxNIM). In our experiments,
we set maxNIM = 3n.

By changing several parameters, we can easily convert the algorithm in Figure 3.2
to two other trajectory-based optimization methods: the local greedy search (hill
climbing) and the Kernighan—Lin algorithm. If k = 0 (i.e., no tabu) and maxNIM = 0 (i.e.
does not allow non-improving moves), it becomes a local greedy search method. Local
greedy search only accepts improving moves and stops at a local optimal. It is fast but
often poor in optimization quality. If we set k = co and maxNIM = o (i.e. each move can
move once and only once—in this case the search stops when there is no valid move),

then it is the same as the Kernighan—Lin algorithm, which was originally developed for

27

graph partitioning (Kernighan and Lin 1970) and has been used in many optimization
problems applications such as complex network analysis (Newman 2006a).

Moreover, by turning on and off new our contiguity-enforcing approach (which
allows multi-object moves, as explained in Section 3.2.2), the algorithm presented in
Figure 3.2 can be configured to become six different methods, as summarized in Table
3.1. If multi-object moves are not allowed (i.e., without our new approach), we have three
traditional trajectory-based optimization methods: local greedy search, Kernighan—Lin
(K-L) algorithm, and Tabu search. If our new contiguity-enforcing approach is integrated
to allow multi-object moves, we have three new optimization methods: Greedy*, K-L*,
and Tabu*, where the star (*) indicates the capability of multi-object moves. Our
experiments show that each of the three new methods significantly outperforms its

traditional version by a large margin and yet remains efficient.

Table 3.1 Different optimization methods.

_ Maximum number
Multi- _ _
) Tabu List | of consecutive non-))
object)) Time Complexity
Length (k) | improving moves
moves
(maxNIM)
Greedy No k=0 maxNIM =0 O(mnlogn), m<<n
K-L No kK=o maxNIM = oo O(mnlogn)
Tabu No k<<n maxNIM = 3n O(mnlogn)
Greedy* Yes k=0 maxNIM =0 O(mnlogn), m<<n
K-L* Yes k=ow maxNIM = oo O(mnlogn)
Tabu* Yes k<<n maxNIM = 3n O(mnlogn)

28

3.2.7 Computational complexity

The overall complexity of the optimization method is O(mknlogn), where m is the
number of criteria considered, k is the number of iterations during Tabu search, and n is
the number of spatial units. Since m is generally small, k and n are the determining

factors.

3.3 Optimization strategies for different types of criteria

Different types of criteria can be used in the spatial optimization algorithm
introduced in Section 3.2. A specific redistricting task may consider multiple criteria and
give each criterion a weight. The objective function f is the weighted combination of
measures of the selected criteria:

f =Xéciwem, 3.1)
where w, is the weight for criterion ¢, m is the measure of criterion ¢, and k is the
number of selected criteria. Note that the measures are all transformed and normalized so
that a smaller measure value means a better quality. One of the main steps in the
optimization process is to find the best move among the candidate moves based on the
objective function. To achieve an overall efficiency for the algorithm, different types of

criteria may need different optimization strategies, which 1 will explain below.

3.3.1 Geographic constraints
Geographic constraints are not in the objective function but are maintained and
checked during the optimization process. To enforce spatial contiguity, a contiguity

matrix is created. In the initialization process, the contiguity matrix is used to construct

29

an undirected graph. Each unit is a vertex, and two neighboring units are connected by an
edge. The contiguity graph is used in the whole optimization process to make sure the
generated regions are contiguous. Particularly, the identification of candidate moves, as
introduced in Section 3.2, heavily rely on the contiguity graph to achieve high efficiency

in finding all possible moves in a linear time.

3.3.2 Balance of district sizes

Balance of district sizes is one of the most common criteria for redistricting
problems. In optimizing measures for balanced sizes, the pair switching strategy in
Section 3.2.3 is very important. The balance of district sizes is normally measured by a
“deviation” (Dev) value—the sum of absolute differences between each district’s actual
size (p;) and its ideal size, which is the total size (P) divided by the total number of

districts r.

P
— T
Dev = 2.i-, |Pi —7

(3.2)

In some redistricting problems, the ideal size can be different for each district. For
example, in school redistricting, the ideal size depends not only on the total student
population and the total number of districts, but also on the capacity of each school (c;).

p c;P
! Z{:l Ci

Dev =37_,; (3.3)

Multiple sizes can be considered at the same time, and each size can be assigned a
weight. For example, in school redistricting, the ratio of the number of students to the
capacity should be considered for different grades, and the deviation measure can be

calculated as follows:

30

CigPg
O
Zi=1 Cig

(3.3)

_ N m
Dev = i=12g=1 Wy ‘pig -

where g is the grade, m is the total number of grades, and wy is the weight for grade g.

3.3.3 District-specific targets

Some criteria are only evaluated for certain districts. For example, in political
redistricting, it is required for certain states (e.g., South Carolina) that there must be one
or more majority-minority districts, in which the minority groups (e.g., Black population)
make up a majority of the population. So the percentages of different racial groups will
only be evaluated for some of the districts, and different targets can be set for different
districts. In the initialization process, the targets are set for districts whose initial
measures are close to the targets. The optimization algorithm calculates the measures for

only the districts where the targets are set.

3.3.4 Compactness

Certain redistricting tasks require that the shape of each district should be as
compact (or simple) as possible. For example, as a means to prevent gerrymandering, the
constitution of lowa specifically requires that the political redistricting process must
consider compactness of each district. One commonly used compactness measure is the

Polsby-Popper index, which divides the area (¢;) of the district by the area of a circle
with the same perimeter (p,) as that of the district (Polsby and Popper 1991). This

measure ranges from 1 (perfect circle) to zero. This measure can be part of the overall
objective function. There is no specific optimization strategy for the compactness

measure.

31

1 4T
Compactness =-),_ .
ri=1 pi2

(3.4)

3.3.5 Travel distance

For redistricting problems such as school redistricting and business service area
redistricting, travel distance is an important factor to be considered. For example, the
average travel distance to school needs to be minimized for school redistricting. The
travel distance is calculated for every pair of the unit and the fixed location (e.g. school),
and a distance matrix is created. The average travel distance is constantly updated using
the distance matrix in the optimization process. Since the average distance can be
affected by a few large distances, an average distance order measure can be used as a
proxy. The distances from all units to a fixed location are ordered, and each distance is
assigned an order number starting from 1. The optimization algorithm tries to minimize

the average distance order measure, and tries to assign a unit to its closest fixed location.

3.4 Conclusion

This chapter presents a new computational method for geographic redistricting
problems. Different criteria for different redistricting problems are reviewed and
categorized. Based on the categorization, a new spatial optimization algorithm is
developed to flexibly incorporate different sets of criteria and constraints. This new
spatial optimization algorithm integrates the Tabu search with a new contiguity-enforcing
approach that allows multi-object moves. It can guarantee geographic contiguity, achieve
high efficiency, and at the same time significantly improve optimization quality over

existing methods with innovative search strategies.

32

CHAPTER 4
PERFORMANCE EVALUATION, USER INTERACTION, AND
COMPUTATIONAL SOLUTION FOR LARGE DATASETS

The key contributions of the new spatial optimization method include (1)
computational efficiency—the new optimization strategies significantly improve the
computational efficiency of existing methods and thus enable applications with
redistricting optimization while allowing real-time user interaction, (2) optimization
quality—the method reliably achieves much higher optimization quality than existing
methods, and (3) flexibility—with both efficiency and quality the method provides a
flexible framework to consider different sets of criteria and produce results that meet
practical needs.

This Chapter presents a series of performance evaluations of the new method with
real-world case studies and comparisons with existing methods. This Chapter also
presents a redistricting system, iRedistrict, which is based on the new method and has
visual interfaces that allow users to define subjective criteria (e.g., community of
interest), interactively configure optimization criteria and parameters, and visually
evaluate, explore, and manage optimization outcomes. Lastly, this Chapter presents a set
of computational solutions for handling large datasets in real applications. Combinatorial
optimization problems are computationally demanding and most existing optimization

methods can only deal with very small datasets to produce acceptable results. While the

33

new method presented in this dissertation is already significantly faster than existing
methods, it still needs further computational solutions to handle large datasets, such as
tens of thousands spatial objects, to produce optimization results that meet practical

requirements.

4.1 Performance evaluation with case studies

Redistricting problems are encountered in many different application domains
including political districting, school districting, sales districting, and community
structure detection. The primary difference among these application problems is the set of
criteria and constraints being considered in the optimization process. The new method
introduced in Chapter 3 can consider different sets of criteria and constraints. | carried

out several case studies to demonstrate and evaluate the method.

4.1.1 lowa congressional redistricting

The criteria for congressional redistricting, established by the lowa Constitution,
include population equality, geographic contiguity, compactness, and respect for political
subdivisions (county boundaries). It does not require majority-minority districts, since the
minority group in lowa is not sufficiently large. The lowa state has 99 counties, which
are to be divided into four congressional districts after the 2010 census. The total
population of lowa is 3,046,355. The lowa Code also states that areas are not considered
contiguous if they only meet at the points of the adjoining corners. In other words, two
areas are considered contiguous if and only if they share at least a common border

segment. Figure 4.1 shows the 99 counties with their population values labeled.

34

T 10776 9566

40 16303 12438

24276
10680 14867

131090 20858
17534 12453

211226

8698 7970 \ 35625

6403 12887

Figure 4.1 lowa counties and their population (2010 census).

1) Optimizing population equality only

The first experiment considers only the population equality criterion. Population
equality is measured with a “deviation” value (PopDev), which is the sum of absolute
differences between each district’s actual population and its ideal population, which is the
total size divided by the total number of districts. For lowa, the ideal population for each
district is 761588 or 761589 (as 3,046,355 / 4 = 761588.75, which is used internally in
the algorithm as the ideal population).

The six methods, as introduced in Chapter 3, are included in this experiment. The

Greedy (local greedy search), K-L (Kernighan—Lin), and Tabu methods are three

35

optimization methods, while Greedy*, K-L*, and Tabu* are the new optimization
methods developed in this research with the new contiguity-enforcing and optimization
strategies. Specifically, Tabu* is the chosen new method in this research as it consistently
achieves the best performance across all experiments.

Each method generates 1000 plans on an i7-3770 (3.40 GHz) machine. The
summary statistics of the 1000 PopDev values for each method are shown in Table 4.1,
which show that each of the new optimization methods significantly outperforms its
traditional version. Particularly, the Tabu* method (i.e., the new optimization method of
this research) reliably achieves the best performance, with average = 133 and standard
deviation = 68, which statistically outperforms all other methods. The best plan of the
1000 results found by Tabu* by only optimizing the population equality criterion has a
PopDev value of 4.5, which is probably the global optimal solution. The theoretical
global optimal value for PopDev is 1.5 since the ideal population (761588.75) is not a
whole number. Figure 4.2 shows the map for this plan. The computational time for
Tabu* in this experiment is 33 seconds for generating 1000 plans, i.e., it takes 0.03
second to optimize each plan.

The standard deviation for the Tabu* method is 68, which is much smaller than
all other methods. This indicates that performance of the Tabu* method is robust. With
different random initializations, the method can always reliably reach a high-quality
solution. This is important for several reasons. First, it shows that the optimization
method can effectively escape local optima. Second, in practice, we do not need to
repeatedly run the method many times in search of a good solution and thus it becomes

possible for real-time and interactive use.

36

Table 4.1 Evaluations with lowa data for optimizing population equality (PopDev).

Traditional optimization methods

New methods

1000 Runs
Greedy K-L Tabu | Greedy* | K-L* | Tabu*
Min 646 421 109 81 33 4.5
5% 3937 1432 650 559 165 51
Q1 (25%) 7037 3184 1364 1400 369 89
Median (50%b) 9531 4684 2149 2697 579 133
Q2 (75%) 12546 6436 3590 4881 976 181
95% 18372 9092 7020 11036 | 1854 253
Max 169308 87299 70167 70167 8224 497
Standard Deviation 8051 4077 3066 4611 668 68

Figure 4.2 An lowa plan of four districts with a population deviation (PopDev) of 4.5.

37

2) Optimizing both population equality and shape compactness.

The second experiment considers both population equality and compactness. As
explained in Chapter 3, the compactness is measure with the Polsby-Popper index, which
divides the area of the district by the area of a circle with the same perimeter as that of
the district (Polsby and Popper 1991). This measure ranges from 1 (perfect shape) to
zero.

In this experiment we focus on the difference between Tabu and Tabu*. Each
method generates 1000 plans on an i7-3770 (3.40 GHz) machine. The summary statistics
of the two sets of measure values for each method are shown in Table 4.2. Note that a
larger value for compactness means a more compact shape, while a smaller value for
PopDev means better population equality. Internally in the algorithm, these measures are
transformed and normalized before being combined into an objective function. The

results show that Tabu* again significantly outperforms its traditional version.

Table 4.2 Evaluation with lowa data, optimizing population equality and compactness

1000 Runs Tabu Tabu*
PopDev | Compactness | PopDev | Compactness

Min 141 0.137 15 0.181
5% 802 0.169 79 0.219
Q1 (25%) 1678 0.201 155 0.256
Median (50%) 2634 0.230 226 0.284
Q2 (75%) 3987 0.265 319 0.318
95% 8198 0.317 479 0.378
Max 113794 0.407 1202 0.458
StdDev 4788 0.047 128 0.046

38

4.1.2 South Carolina congressional redistricting

The criteria for congressional redistricting in South Carolina include population
equality, contiguousness, compactness, majority-minority districts, and communities of
interest. County boundaries, municipality boundaries, and voting precinct boundaries
should be considered when practical and appropriate, since they are considered as one
kind of evidence of communities of interest. In this research, voting precincts are used as
the spatial units. South Carolina has 2122 voting precincts (Figure 4.3), which are to be
divided into 7 congressional districts based on 2010 census data. The total population of
South Carolina is 4,625,364 and therefore the ideal population for each district is
660,766. In calculating the PopDev measure, the value 4,625,364 / 7 = 660766.285714 is

used. The theoretical global optimal value is 2.857142.

e
o
‘ﬂ'h

I

ol

Figure 4.3 Population of South Carolina voting precincts (2010 census).

39

1) Optimizing population equality only

The South Carolina data set is much larger than the lowa data set in terms of the
number of spatial objects (units) and thus requires more computational time. However,
more spatial objects actually make it easier to find the global optimum when only
considering population equality. The best results from 1000 runs of the three traditional
optimization methods are comparable with those of the new optimization methods
integrated with the new methods, and except Greedy, all methods found many solutions
to achieve the theoretical global optimal value. The new methods are more significantly
more robust and consistent, evidenced by their very small standard deviation values. It is
interesting to notice that the K-L method (which can be considered a special case of Tabu
with a Tabu list of infinite length) and its new extension K-L* slightly outperform Tabu
and Tabu*, respectively. This provides important insights on the configuration of Tabu

parameters in relation to data size, which is a future direction for this research.

Table 4.3 Evaluations with South Carolina data, optimizing population equality only.
Values are rounded a whole number or keeping one decimal digit for values less than 10.
The theoretical global optimal value is 2.857142, which is rounded to 2.9 in the table.

1000 Runs Traditional optimization methods Combined with our approach
Greedy K-L Tabu Greedy* K-L* Tabu*

Min 4.3 2.9 2.9 4.3 2.9 2.9

5% 20 2.9 2.9 14 2.9 2.9

Q1(25%) 61 2.9 4.8 46 2.9 43

Median (50%) 305 4.3 8.3 113 4.3 6.3

Q2(75%) 222392 5.7 16 364 5.7 9.8

95% 753547 13 20369 352285 9.4 17

Max 1744267 966028 1510368 1167422 54 120

StdDev 268679 77558 97871 137487 3 13

40

2) Optimizing population equality, compactness, and majority-minority districts

In this case study, three criteria are considered: population equality, district
compactness, and creating a majority-minority district in which the minority population is
the majority. In order to create a majority-minority district, a community of interest (COI)
is outlined on the map by the user, which contains precincts with a large percentage of
minority population (Figure 4.4). The optimization method will take this COI as input,
optimize a district containing the COI to generate a majority-minority district, and in the

meantime optimize all chosen criteria to generate a plan of seven districts.

N

Uz

¥

%
by
-
5
"'

A

*
L
B
<7

Loz

L

N

W
5
0
P
*‘.‘?
5
p
Ll
%
R
i
or T
4

25
P
2
7
IS
BEP {: !
RN
RIS
e
-2

t’
120N
<

i
ey
4.
%
&
e

iy

%4
2 &
y
Y%

]
e
ja
2

N
I3

AL
AN
23
~
5.
T

Mg

7

74
3

s
e

L
g

"’ir
Ot
o
=
A
£
Lt
&

e
<
D%, U8
G e
A
507

“'

‘ [Legend 77 i
Black
25

a2
YA
g
S

CEmmm

Figure 4.4 A user-drawn community of interest (COl).

Figure 4.5 shows an outcome plan, in which the PopDev value (69) is very good,
each district has a compact shape, and there is a majority-minority district (with 53.52%

minority population). In addition to the optimization quality and efficiency, another

41

advantage of the new method is that it is flexible to consider various criteria, allows

interactive user inputs and visual inspection (which will be elaborated in Section 4.2).

District 3

District 4 N

A District 2 \

Districts

Digtrict 6

) —
A District 7 /
. .
N

Figure 4.5 A plan with a majority-minority district.

4.1.3 School redistricting

School redistricting is different from political redistricting in two important
aspects. First, the optimization criteria to be considered are quite different. Common
criteria and constraints considered in school redistricting are listed below, among which
the first two are considered as constraints. Second, each district is constructed around a
fixed location, i.e., school. This location is not only important for certain criteria such as
distance to school but also critical in determining the district boundary, which should

contain the location.

o Spatial contiguity

42

o Each district contains one and only one school

o Balance the number of students to school capacity (for each grade)
. Shape compactness

. Average distance to school

o Existing school district boundaries

In this case study, we use a real-world scenario. Prince William County, Virginia
has used the redistricting method and system developed in this research to redraw the
boundaries of the school districts for its16 middle schools (Figure 4.6). All the six criteria
listed above are used. Particularly, the projected student populations for each grade in
future years are considered in evaluating the balance between student population and
school capacity for each district. The choice, configuration, and weight of each criterion

can be set interactive with visual interfaces (which is introduced in Section 4.2).

| Legend
ST0_MS

l>?5

Dsa.?s
D3?.53
J24-3?
J14.24
J5-14
i

Figure 4.6 Middle school student enrollments in Prince William County, Virginia

43

Figure 4.7 shows one of the school redistricting plans, which achieves very good
scores across the chosen criteria, much better than one could achieve with a manual
approach as used in most of the current practices of school redistricting. Most importantly,
the new method and its implemented system give general users the immense power to
construct redistricting plans and participate in the redistricting process, which is

impossible with existing methods and available software tools.

Paotomac Midd

Grahiam Park Midal

Reciishict

Figure 4.7 A school redistricting plan for middle schools in Prince William County.

44

4.2 Visual interface and user interaction to integrate human inputs
4.2.1 Subjective criteria

There are vague and subjective criteria that cannot be clearly defined, such as
preserving communities of interest. Different people may have different understandings
of “communities”, for which local knowledge is needed. For such vague and subjective
criteria, visual interface is needed to dynamically integrate human judgments with the
computational method. For example, the user may draw several areas to indicate
communities of interest to be preserved. Then the algorithm will optimize selected
criteria under these constraints, i.e., each user-drawn community will not be split during
the Tabu search. Figure 4.8 (Maps D to F) shows three selected results with such user
provided constraints. For example, Map D and Map E are two different plans for the
same set of user drawings, while Map F is a plan for a different set of drawings.

The results in Figure 4.8 are for the 2000 census data, which clearly show the
capability and potential of the new method, with the ability to integrate user inputs on the
fly. The population deviation value of each plan in Figure 4.8 is far below 0.1% of the
total population. The compactness values of four plans (C-F) that considered shape are all
better than (or at least equivalent to) that of the official plan in lowa (2000-2010).
Moreover, this is done without much technical challenge or investment of time for the
user. With existing redistricting software, even a technical person or expert may need
several days to construct just one plan of a similar quality. The algorithm can easily

consider more criteria in the optimization process, which are introduced in Section 3.1.

45

Automated Redistricting

= .

A) PopDev = 33 (pop only) (B) PopDev =119 (some shape) C) PopDev = 593 (more shape)

User-centered Interactive Redistricting

i

(D) PopDev = 87 (E) PopDev = 155 F) PopDev = 403

Figure 4.8 lowa congressional redistricting with the 2000 census data. Maps (A-C) show
three selected results with the new method without user drawing. Maps (D-F) show three
selected results with user drawings (indicated by the green semi-transparent areas).
PopDev is the measure for equal population, which is the total deviation between district
population and its target population, which is the smaller the better.

4.2.2 Visual interface and user interaction

The overall visual interface for the optimization method is shown in Figure 4.9.
The user can choose criteria to be used, configure the parameters for each criteria, set
parameters for the optimization method (such as the number of districts in each plan and
the number of plans to be created), visually examine the criteria scores of outcome plans
in a scatterplot, view a specific plan in the map, and specify preferences for vaguely

defined criteria (such as communities of interest) with direct drawing on the map.

46

2 iRedistrict: A REDISTRICTING SYSTEM
File Tools Algorithm Plans Map €Ol Views About

B Contrel i Gl
“Puuzowo +| OO HEE -tk #Fn | Q
Optimization Criteria & Algorithm
Pop | Shape | Boundary B3 | @
@ Enchic
Threshold: Weight:[50 |
wasue v #Di;trids: #Flans:| 1000 | Run District 2
| Plans { Distrctinfo |
|ShapeCompacin... | Sorted by:
| Al criteria -
Sorted Plans:
B Legend & i b E ﬁl‘

POP2010

=211226
[B District 3
l 165,224 - 211,226

District1

414,5(0.41)
218:5(0.39)

D 103,172 - 165,224

D 66,155 - 102,172

J 26,306 - 66,135
J 13,956 - 26,306

[xmpne [| Draw COI | | Delete this COI ‘ ‘ Delete All | Save

163 480 757
|Pop Equality

Selected Plans

’7‘117(0‘41] '| SaveCsV | Relabel | Report “

Load | [¥] Show COI

["B Repent

FID | District | POP2010 | WHITE | BLACK | AMEINDIAN | ASIAN | HAWAIAN | OTHER |
District 1 767624 691960 25829 1989 14728 36 26,800

o
1 District 2 76157 06979 9413 371 11903 . 918
2 District3 761612 679,087 28,963 2420 18173 40 32559
3 District4 761548 703533 24943 2954 8290 %06 20922

Figure 4.9 The redistricting system, iRedistrict, based on the new optimization method.

Figure 4.10 summarizes the analytics process for redistricting, including five
interacting components: (A) data mapping, (B) user drawing to express constraints, (C)
configuration of the optimization algorithm, (D) visual examination and comparison of
alternative plans, and (E) managing desirable plans that are accumulated through an
iterative process (Guo and Jin 2011a). The algorithm can run many times to create a set
of alternative plans, with each run starting with a random initial plan. The user can
visually examine the alternative plans to find the best and add them to a list of selected
plans. If the alternative plans are not good enough, the user can use tools such as “edit”
and “lock” to improve the plans. Through such an interactive and iterative process, the

user can quickly obtain a set of high quality plans.

47

1) Mapping

The user can choose the variable to be

choropleth map. The number of classes and the color scheme can also be defined. The

labels can be shown if needed. A legend panel i

for each class. This map can help the user understand the distribution of the selected

variable, which in turn facilitates the understa

specific plan shown in the map.

classified for the unit layer and create a

s shown to display the color and the break

nding of the optimizaiton quality for the

Data Input
- Variables " i
Po2010 | IO DEEE [webe @6 } (A) Univariate mapping =
lete this c0|‘ | Delete AII‘ ‘ Save| Laad| Show COI } (8) User free drawing to p
express constraints
- Optimization Criteria & Algorithm | -
{ Pop ",Ismpc | Boundary &3 [u?'t i'
R Algorithm configuration
Threshold: |0.0 Weight: | 5.0 and executon
KL_TABU_3 'J!Dimich =2Plans: 1000 [Run | -
_.l'- Plans { District info |
ShapeCompactn... + Sorted by:
All criitena b
Sorted Plans: . A .
17(041) -] Visual examination,
ﬁ;&g — comparison, and selection gt/
133042) (D) of alterna.twel plans, with
707(0.46) plotted criteria scores and a
504.5(0.43) -
aman linked map (rot shown)
414.5(0.41)
414.5(0.47)
218.5(0.39) L
159,500,381 b
[Pop Equality ‘q Add to selected

r Selected Plans

117(0.41)

e | s | e] J

Selected desired plans =

(E) (accumulated iteratively)

!ﬂ Qutput Plans

Figure 4.10 Visual interface to support an inter

48

active and iterative optimization process

2) Community of Interest (COI)

A COlI tool bar can be shown if the user wants to draw on the map to express
constraints. It’s a free drawing tool, which means the user can draw any type of polygon
shapes. The user can click on the map to add a vertex, and double click to close the
polygon. The unit objects intersected by the polygon will be considered as a COl, and
thus won’t be broken during the optimization process. The COI will be assigned a name
and added to the COI dropdown list. The user-drawn COls can be saved as a shapefile
and loaded back later. Actually, the user can load any shapefile and choose some
polygons from it to be COls.

3) Algorithm configuration and execution

The user can enable the required criteria for redistricting and set the parameter for
them such as the weight and the threshold (Figure 4.10(C)). More criteria can be added
by clicking the “+” button on the criteria tab row. The user can choose the type of the
criterion and input a unique name for it. A new tab for the added criterion will be shown.
Unused criteria can also be removed. In this way, the user can easily define the required
criteria for different redistricting problems.

The user can then configure the optimizaton algorithm, the number of districts,
and the number of plans to be generated. By clicking the “run” button, the chosen
optimization algorithm will be run with the configured criteria and constraints to generate
the required number of redistricting plans.

4) Visual examination and comparison of alternative plans

After the redistricitng plans are generated, they are added to a plan list and shown

on a scatter plot (Figure 4.10(D)). The default name of a plan is composed of the scores

49

of the two most common critera: popualtion equality and compactness. By default, the
plan list is sorted by the combined score of all selected criteria (i.e the value of the
objective function). The user can sort the plan list by the score of one criterion by using
the “sorted by” dropdown list. The scatter plot shows the distribution of the scores of two
criteria (population equality and compactness by default). The user can choose the
criterion for each axis and compare the scores of different plans. The plan list and the
scatter plot are linked, which means that clicking a plan on the list will highlight the plan
on the scatter plot , and vice vesa. When a plan is clicked on the list or the scatter plot,
the map will be updated to show its districts, and the report table in the report panel will
be updated to show the attributes of the districts. The user can configure the attributes to
be shown in the report table.

5) Managing plans

After examining and comparing the alternative plans, the user can add desired
plans to the selected plan list (Figure 4.10(E)). The user can rename the selected plans.
The labels of the districts in a selected plan can also be changed. The selected plans can
be saved as a csv file, in which each column represents a plan. The saved csv file can be
loaded back and added to the plan list. The current selected plan can also be saved as a
shapefile of all districts, or several shapefiles each of which represents a district.

6) Locking districts

Sometimes an alternative plan is not good enough, but some of the districts are
pretty good. In this case, the user can use the “lock” tool to lock the good districts and run
the optimization algorithm again. The locked districts will be kept in the generated plans.

7) Editing plans

50

An “edit” tool is provided to change an alternative plan based on the user’s
judgement. The user can drawn an polygon (like drawing COIs) to select some units, and
a popup menu is then displayed to show a list of the districts that are neighboring these
units. The user can choose the district these units will be moved to. If this change breaks
the spatial contiguity, the user will be warned. The scatter plot, the plan list, and the
report table will be updated after the change. If the user thinks the change is good, editing
mode can be stopped and the change can be saved. The plan can be reverted to the

previous state if the change is not good.

4.3 Computational solutions for handling large data volume

As explained in Chapter 3, the overall complexity of the optimization algorithm is
O(mknlogn), where m is the number of criteria considered, k is the number of iterations
during Tabu search, and n is the number of spatial units. To handle large datasets (e.g., n
> 10,000), several strategies are developed by reducing k and/or n while not significantly

sacrificing optimization quality.

4.3.1 Mega districts

In order to decrease the number of units in the redistricting optimization process,
the whole area is divided into a small number of mega districts. The equal-population
rule requires that the population of each mega district should be as close as possible to a
whole number of ideal district population. Then, a redistricting process is done in each
mega district. Let us use the largest state, California, as an example. California has 58

counties, 1081 census places/cities, around 25,000 VTDs, and about 500,000 blocks.

51

California needs 53 congressional districts. Keep in mind, as required by the redistricting
rule, larger units should be used whenever possible. The user will first divide the state
into a small number (of the user’s choice) of mega districts at the county level. The
equal-population rule requires that the population of each mega district should be as close
as possible to a whole number of ideal district population. With the interactive process, a
list of mega-district plans can be generated. If none of them sufficiently meets the equal
population requirement, the user can break one or several counties into smaller units
(such as VTDs) and optimize again. Once satisfied, the user then partitions each mega
district separately. Since human’s understanding of space is inherently hierarchical
(Hirtle and Jonides 1985, Kuipers 2000), to divide a large state into many districts, it is
more intuitive to take such a hierarchical process.

1) Mega district generation

The number of mega districts is determined by the defined max unit number of a
mega district. The mega districts are generated using the same redistricting algorithm, but
only the population and the shape compactness are considered. The target population for
a mega district is a whole number of ideal district population so that the sum of the
district numbers in mega districts is equal to the original required number of districts.

2) Plan generation

In each mega district, plans with a certain number of districts are generated using
the redistricting algorithm, and the best plans are selected based on the measures. These
best plans are then combined to form the final plans for the whole area. For example, if 2
best plans in each of 4 mega district are selected, 2* = 16 final plans can generated by

combining them.

52

Algorithm 4: Mega districts

Input:

Steps:

n: the number of units in the whole area;

totalPop: the total population of the whole area;

r : the number of required districts;

ki: the number of required districts in the i mega district;

Divide the whole area into mega districts

i. Set Npax to be the maximum number of units in a mega district;

ii. Set the number of mega districts = Min(Ceil(n / Nppax),7/2) , Where
Ceil() returns the smallest integer that is greater or equal to the input
value. This makes sure the number of units in each mega district is less
than Nmax and each mega district has at least two districts;

iii. Setk; =~ (i=1,2,..,1);

iv. Repeat the following until Yi_, k; =7 :

Kit+;
i++;

v. SET the target population for the iy, mega district targetPop; = k; *
totalPop/r;

vi. Create m mega districts using the redistricting algorithm with the equal
population and shape compactness criteria;

Run the redistricting algorithm in each mega district

i. Split the original data set into each mega district;

ii. Set the criteria for each mega district;

iii. Create a certain number of sub-plans with k; districts for the i, mega
district;

iv. Select the top sub-plans based on the measure;

Combine the sub-plans in mega districts to form the final plans for the

whole area

i. Select one sub-plan in each mega district;

ii. Combine these sub-plans to generate a final plan that covers the whole
area.

53

4.3.2 Clustering

Clustering is a bottom-up process to decrease the number of units in the
redistricting optimization process. The number of clusters is determined by a defined max
population of a cluster. First, each unit is considered as a cluster. Then, a cluster is
selected randomly, and its one neighbor is temporarily added to it. The measure of the
new cluster is calculated and recorded, and the cluster is then reset. The neighbor that
results in the best measure will be permanently added to the cluster. The process is
repeated until there is no cluster to be merged under the max population constraint. These

clusters are used instead of the original units in the redistricting process.

Algorithm 5: Clustering

Input:
n: the number of units in the whole area;
totalPop: the total population of the whole area;
Chmin: the minimum number of clusters;
maxClusterPop : the maximum population of a cluster (totalPop/Cpin);
Steps:
1. Each unit is considered as a cluster at the beginning;
2. Repeat the following steps until no clusters can be merged:
i. Randomly select a cluster.
ii. For each neighbor of the cluster:
a. Temporarily add this neighbor to the cluster;
b. If the population of the new cluster < maxClusterPop:
Calculate the measure of the new cluster
iii. Select the neighbor that results in the best measure and add it permanently

to the cluster.

54

6000
80000

@ c
>)
e w4000
] =
£ 75000 3
g g
2 a
2000-
70000
! 0 ‘ ‘
0 500 1000 1500 2000 0 500 1000 1500 2000
Number of clusters Number of clusters
(A) (B)

0.5 25000-

0.4 20000
w 000
w
QL
5
R S B - @500
£ @
Q £
Co2 =
0.2 0
2 10000
©
=
w

0.1 5000-

0.0 0

0 5(‘,“(] 1000 15‘(][) 2000 4] 500 ‘H]IU[) 1500 2000
Number of clusters Number of clusters
(C) (D)

Figure 4.11 Results at different clustering levels with South Carolina data

Since it is slow to optimize both population equality and shape compactness with
the South Carolina data used in Section 4.1.2, the clustering method can be used to
improve the speed. 7 different clustering levels were used by setting the maximum
population of a cluster, which was defined by a percentage of the total population of 2122
voting districts. The 7 different percentages used were 1/200, 1/300, 1/400, 1/500, 1/600,
1/700, and 1/800. At each clustering level, 10 sets of clusters were generated. For each

set of clusters, 100 redistricting plans were derived while optimizing both population

55

equality and shape compactness. The results are shown in the Figure 4.11, and each point
in the plots represents 100 redistricting plans. The running time decreases significantly
when the number of clusters becomes small (Figure 4.11(D)), and the quality of the
redistricting plans can still remain at an acceptable level. For example, at the 1000-cluster
level, both the population equality and the shape compactness are still good enough,
while the running time can be much shorter than that at the original unit level. In practice,
the user can set the number of clusters based on the number of districts and the quality

requirement.

4.3.3 Parallel and distributed computing

Mega districts and clustering are trying to decrease the number of units, while
parallel and distributed computing is to do several things a