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Abstract

In this research, a new solution methodology for two-stage decision making under 

uncertainty and ambiguity is presented by using the deviation robust (min-max regret) 

criterion where the structure of the first stage problem is a mixed integer (binary) 

linear programming model and the structure of the second stage problem is a linear 

programming (LP) model. In the structure of the problem considered, each uncertain 

parameter can, independently of other parameters’ settings, take its value from a real 

compact interval with unknown probability distribution. This new algorithm can be 

very useful in making deviation robust decisions under ambiguity when the joint 

probability distributions of key parameters are unknown and the only information 

available to decision maker are the potential ranges of uncertain parameters. Decision 

making problems of this type are very difficult to solve in general with the large 

number of uncertain parameters. The proposed algorithm coordinates four 

mathematical stages to efficiently solve the overall optimization problem. The 

algorithm sequentially solves and updates a relaxation problem until both feasibility 

and optimality conditions are satisfied. The feasibility and optimality verification 

steps involve the use of bi-level programming, which coordinate a Stackelberg game 

between the decision environment and decision makers. The proposed algorithm also 

incorporates approximation algorithms; priority based procedures, and accelerated 

Benders’ decomposition algorithms to efficiently solve the overall optimization 

problem. A number of applications of the proposed algorithm on supply chain 

netw ork infrastructure design problem s are also dem onstrated.
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Chapter 1 

INTRO DUCTIO N

1.1 Introduction

In the real world, one can not avoid facing the necessity of making crucial 

decisions at every juncture. These decisions can have either a short term impact or a 

long term impact on subsequent outcomes. The facility location problem is one good 

example of long-term decision problems that are affected by a high level of 

uncertainty (i.e., demand uncertainty and supply uncertainty). Examples of these 

decisions include setting up a hospital system or a new school system to serve a 

certain region of population or setting up a supply chain infrastructure to serve a 

certain region of a company’s customers. In order to make good long-term decisions 

under uncertainty, we first have to understand different types of decision making 

problems. The decision making problem can be categorized into three broad 

categories. (Taha, 1997)

1. Decision-making under certainty where all the parameters are deterministic.

2. Decision-making under risk where parameters have some type of probability 

distribution.

3. Decision-making under uncertainty where the probability distribution 

associated with the parameter is either unknown or cannot be determined.

The deterministic approach either completely ignores uncertainty or uses 

historical data and trends to determine the most likely scenario. This approach will 

use one instance of the data (most likely) as input to a decision model to generate an 

optimal decision with the use o f single or multiple objectives. The major drawback of 

the deterministic approach is that it ignores instances other than the most likely one.

1
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If an instance occurs that is different from the most likely instance, the generated 

solutions will be sub-optimal or even infeasible as there is usually no adjustment 

possible once the initial decision has been made. This approach is, most of the time, 

unacceptable in situations where the initial decision impacts various subsequent 

processes in future scenarios. For example, initial decisions like locating a 

manufacturing plant cannot be changed at whim.

The second categoiy is also known as the stochastic optimization approach. This 

approach uses a probabilistic model to incorporate the possibility of occurrence of 

several instances. The problem is in obtaining information on the probability value 

with which these instances might be realized. The decision model will then try to 

generate a decision that will maximize or minimize an expected performance measure 

where the expectation is taken over the assumed or known probability distributions. 

This model usually assumes statistical independence between the various uncertain 

factors that may actually exist in the input data. This approach requires an intensive 

effort to assign probabilities to various data instances (future scenarios). When the 

number o f scenarios is large and decision environments have multiple interdependent 

uncertain factors, this will be a futile exercise. Decision makers also will have 

difficulty in assigning exact probabilities to future scenarios which are interdependent 

on several factors.

The failure of both deterministic and stochastic approaches to model uncertainty is 

in their inability to recognize that associated with eveiy decision is a whole 

distribution of outcomes depending on what data scenario is actually realized, and 

thus any approach that evaluates decisions using only one data scenario, either the 

most likely, is bound to fail (Kouvelis and Yu, 1996). As a decision maker, we may 

be interested in having information about the whole distribution of outcomes and

2
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planning for the worst case scenario especially for decisions of a unique nature which 

may be encountered only once. This is achieved by taking into account the risk of 

poor system performance for some realizations of data scenarios rather than 

optimizing expected system performance over all potential scenarios or just 

performance of the most likely scenario. Thus the performance of a decision across 

all potentially realizable scenarios is important. The decision making process based 

on uncertain information is often evaluated later as if the actual scenario realization 

has been known in advance of the decision. In these situations, a decision maker is 

rightfully concerned not only with how a decision’s performance varies with the 

various data scenario realizations. He is also concerned with the comparison of actual 

system performance under the decision made versus the optimal performance that 

could have been achieved if perfect information on the scenario realization had been 

available prior to the decision making process. Neither deterministic nor stochastic 

optimization approaches can capture such concerns.

In the third category of decision making, there is a lack of complete knowledge 

about the random state of nature, which is subsequently reflected as considerable 

input data uncertainty to the supporting decision model. This dissertation falls into 

this third category which is known as the robust optimization approach. Instead of 

searching for the best solution for the most likely scenario or the best long run 

average optimal solution (which may not be obtainable due to the ambiguity in the 

input data), this approach searches for a solution that performs well (reasonable 

objective function value) across all possible input scenarios w ithout attem pting to 

assign probabilities to any scenario. Many criteria can be used to select among robust 

decisions. These criteria are, for instance, min-max criterion (absolute robust 

criterion), min-max regret criterion (deviation robust criterion), and min-max relative

3
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regret criterion (relative robust criterion). This approach is appropriate in two 

situations. The first situation is when decision makers are interested in hedging 

against the risk of poor system performance for some realizations of data scenarios as 

opposed to optimizing expected system performance over all potential scenarios, or 

just performance of the most likely scenario. The second situation (ambiguity 

situation) is when decision makers do not have enough historical information for 

uncertain parameters in the problem. Because, in this case, the expected performance 

of the solution cannot be measured, the robust optimization approach would be more 

appropriate.

As previously stated, there are three classical criteria in the robust decision 

making approach (Kouvelis and Yu, 1996). The first one is the min-max criterion also 

referred to as absolute robust criterion under which the robust decision is one for 

which the lowest (highest) level of benefit (cost) taken across all possible future input 

data scenarios is as high(low) as possible. This approach results in conservative 

decisions, as it concentrates the decisions only on the worst instance. Another 

approach is the min-max regret criterion also referred to as deviation robust criterion 

where the objective is to find the long-term decision which minimizes the maximum 

regret value overall possible input scenarios. The regret value under a specific input 

scenario is the difference between the resulting benefit (cost) to the decision maker 

based on the robust long-term decision and the benefit (cost) from the optimal 

decision that the decision maker would have taken if it is known with certainty that 

this specific input scenario will happen. T he third approach is know n as the m in-m ax  

relative regret criterion also referred to as relative robust criterion where the objective 

is to find the long-term decision which minimizes the maximum relative regret value 

overall possible input scenarios. The relative regret value under a specific input

4
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scenario is defined as one minus the ratio of the resulting benefit to the decision 

maker based on the robust long-term decision and the corresponding benefit from the 

optimal decision that the decision maker would have taken when certain that a 

specific input scenario was to happen. It is worth noting that the decision making 

processes based on the last two criteria are less conservative since they take into 

account the magnitude of missed opportunities of a decision by benchmarking its 

performance with the performance of the optimal “realized” decision. This proposed 

research employs the deviation robust criterion for decision making under uncertainty.

In many decision making problems, mixed integer (binary) linear programming 

(MILP) models can often be applied to find optimal solutions to these decision 

problems (e.g. network infrastructure design problem and facility location problem in 

supply chain). In many cases, decision makers are facing with long-term decisions 

(e.g. capacity decision and/or location decision) that have to be made before the 

realization of uncertain parameters (first stage decisions). After these first stage 

decisions are made and decision makers obtain more information on model 

parameters, the short term decisions (second stage decisions) are then made under the 

fixed setting of the first stage decisions. This type of decision making process is 

referred to as two-stage decision making process.

The focus o f  this dissertation is the development o f efficient algorithms for solving 

and understanding the two-stage decision making problem under interval data 

uncertainty when the base model of the problem can appropriately be formulated as a

M ILP m odel by utilizing various types o f  approxim ation algorithm s, priority  based

procedures, and accelerated Benders’ decomposition algorithms. In this work, an 

assumption is made that all the first stage decision variables are binary variables and 

all the second stage decision variables are continuous variables. In the structure of

5
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problem considered, each uncertainty parameter can take its values from a real 

compact interval with unknown probability distribution. This new algorithm can be 

effectively used in making deviation robust decisions when the joint probability 

distributions of key parameters are unknown and the only information available to 

decision makers are the potential range of uncertain parameters, fn the following 

subsection, we give the more precise problem statement of this research.

1.2 Problem Statement

In this work, we address the two-stage decision making problem under 

uncertainty (ambiguity), where the uncertainty appears in the values of key 

parameters of a mixed integer linear programming formulation is presented as

max{c7jc+<777 +| W.y<h +T.x, W2y  = h2+T2x, jce{0,l}w,)>>0,}. In the model, let the
*,y

vector x represent the first-stage decision setting that has to be made before the 

realization of uncertainty and let the vector y  represent the second-stage decision

setting that can be made after the realization of uncertainty. Let the vectors

and the matrices T\, T2, W\, and W2 represent parameters of the decision model.

In the problem considered, each uncertain parameter (except parameters 

q,W,,W2) can take its value from a real compact interval with unknown probability 

distribution independently of other parameters’ settings. We assume that the model 

parameters W\ and W2 are deterministic and each element of the parameter q can 

independently take its value from a finite set of real numbers.

As there is a lack of complete knowledge about the probability distribution of 

uncertain parameters in the considered problem, decision makers are not able to 

search for the first-stage decision setting (long term decision) with the best long run 

average performance. Instead, decision makers are searching for the first-stage

6
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decision setting that performs well (reasonable objective function value) across all 

possible input scenarios without attempting to assign assumed probability distribution 

to any ambiguous parameter. This resulting first-stage decision setting is referred to 

as the robust decision setting. In this research, we develop a new optimization 

algorithm for assisting decision makers who search for the robust first-stage decision 

setting under the deviation robustness definition (min-max regret robust solution) 

defined in Kouvelis and Yu (1996).

Traditionally, a min-max regret robust solution can be obtained by solving a 

scenario-based extensive form model of the problem which is also a mixed integer 

(binary) linear programming model (explained in detail in Chapter 3). The size of this 

extensive form model grows rapidly with the number of scenarios used to represent 

uncertainty as does the required computation time to find optimal solutions. 

Unfortunately in our case, the considered problem contains infinite number of 

scenarios to which the extensive form model can not be applied. In addition, the 

direct application of the Benders’ decomposition also does not work for a problem 

with infinite number of possible scenarios.

In this research, we develop a new min-max regret robust optimization algorithm 

for two-stage mixed integer (binary) linear programming problems under this 

structure of parametric uncertainty. The algorithm is designed explicitly to handle an 

infinite set o f possible scenarios. The algorithm can determine the robust values of 

the first-stage decision variables when the only information available to decision 

m akers at the tim e o f  m aking the first stage decisions are a real com pact interval 

containing possible values for each uncertain parameter with unknown probability 

distribution. The algorithm sequentially solves and updates a relaxation problem until 

both feasibility and optimality conditions of the overall problem are satisfied. The

7
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feasibility and optimality verification steps involve the use of bi-level programming, 

which coordinates a Stackelberg game (Von Stackelberg, 1943) between the decision 

environment and decision makers which is explained in Chapter 3.

This dissertation expands on the pioneering work done by Assavapokee et 

al.(2004, 2008a and 2008b) in solving large-scale two-stage decision problems under 

the interval data uncertainty and under the full factorial scenario design o f data 

uncertainty by using deviation robust criterion.

We propose three main algorithmic improvements to the initial algorithm 

(Assavapokee 2004, 2008b) that will significantly speed up the computation time 

required by the algorithm.

The first improvement is the application of accelerated Benders’ decomposition 

algorithm for solving the relaxation problem of the extensive form model. Even 

though the algorithm intends to keep the size of the relaxation problem at reasonable 

size, the number of scenarios considered by the relaxation problem may become 

relatively large for some practical decision problems. As a consequence, an efficient 

solution methodology for solving the relaxation problem is required in order to 

maximize the efficiency of the overall optimization algorithm. Fortunately, the 

relaxation problem has a unique structure that is suitable for Benders’ decomposition 

algorithm. We propose to develop the special type of Benders’ decomposition 

referred to as Accelerated Benders’ decomposition algorithm suitable for solving this 

relaxation problem. This accelerated Benders’ decomposition algorithm generates 

both strong optim ality  and feasibility cuts for the m aster problem . This application o f  

the accelerated Benders’ decomposition algorithm will not only increase the 

efficiency of the algorithm in solving the relaxation problem per iteration but also 

increase the efficiency of the overall algorithm.

8
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The second and third improvements are the application of the priority based 

procedure, and the use of approximation algorithms, in solving the bi-level mixed 

integer nonlinear optimization problem required for checking the optimality condition 

of the overall algorithm. Even though the work by Assavapokee (2004, 2008b) 

presented the model transformation procedure that can transform the required bi-level 

mixed integer nonlinear optimization structure into a single-level mixed integer linear 

programming structure with complementary slackness constraints which is much 

easier to solve, the required computation time for solving this mathematical model is 

still relatively expensive compared to other components in the overall optimization 

algorithm. The main idea of the second improvement is to apply approximation 

algorithms to approximately solve this required bi-level programming problem and to 

classify the potential of each candidate solution generated by the algorithm. Only the 

candidate solution with promisingly high potential will be given the attention from the 

overall algorithm in solving its associated bi-level program to optimality. On the other 

hand, the candidate solution with significantly low potential will be discarded by the 

algorithm and there is no requirement in solving its associated bi-level programming 

problem. This application of this priority screening procedure will definitely increase 

the efficiency of the overall algorithm.

1.3 Structure of Dissertation

The dissertation is organized as follows. We first summarize the literature review 

of the related topics and then describe the new robust optimization methodology. The 

developed methodology will be validated using demonstrative examples. Chapter 2 

contains the review o f literature relevant to this dissertation. The literature will be 

classified into four areas: robust optimization, bi-level programming, decomposition 

methodology, and approximation algorithms. Chapter 3 contains the detailed

9
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formulation and detailed explanation of mathematical programming models required 

by the algorithm. Chapter 4 presents the case study results of the proposed algorithm 

to demonstrative examples on supply chain infrastructure design problem under 

interval data uncertainty. Chapter 5 presents the conclusions, summary and future 

directions for the research.

10
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Chapter 2 

LITERATURE REVIEW

2.1 Introduction

This chapter presents the literature that is relevant to the development of the work 

in this dissertation. For the sake of clarity this chapter has been divided into four 

major sections. These sections are Robust Optimization, Bi-level Programming, 

Decomposition and Approximation Algorithms. Section 2.2 reviews the literature in 

the area of Robust Optimization. Section 2.3 reviews the literature in the area of Bi

level Programming. Section 2.4 reviews the literature on Decomposition 

methodology such as Benders and Accelerated Benders. Finally, Section 2.5 presents 

literature on approximation algorithms that can be used to efficiently search for a 

good solution in the real compact interval.

2.2 Literature Review on Robust Optimization

In mathematical programming most of the models developed are assumed to have 

input data that is precisely known and can be fixed at some specific value. However, 

most practical problems of interest have parameters whose values are uncertain. 

These data uncertainties affect the quality and feasibility of the model. If the realized 

value of the data is significantly different from the assumed value, the optimal 

solution found using the assumed value may no longer be optimal or even feasible. In 

the study carried out by Ben-Tal and Nemirovski (2000) they suggest that for most 

practical applications of Linear Programming, a small uncertainty in the data can 

make the usual optimal solution useless practically. Therefore we must design 

optimization models that take into account uncertainty in the data. Such models are 

also known as robust models.

11
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One of the main approaches to handle uncertainty is the robust optimization. The 

aim of this approach is to produce solutions that will have a reasonable objective 

function value under any likely input data scenario to the decision model over a pre

specified time period. One possible criterion of selecting robust decision is the min- 

max regret criterion. Here we calculate the “regret” associated with every input data 

scenario. The “regret” of a scenario is measured as the closeness between the optimal 

objective function value for that scenario and the objective function value of the 

chosen solution for that scenario. The min-max criterion is then applied to the regret 

values, so as to choose the decision with the least maximum regret. A solution to a 

mathematical program is robust with respect to optimality if it remains close to 

optimality for any input data scenario. Robust optimization models can be divided 

into two broad categories: regret models and variability models.

A robust approach to solving linear optimization problems with uncertain data 

was first proposed by Soyster (1973). He proposed a linear optimization model to 

construct a solution that is feasible for all data that belong in a convex set. The 

resulting model can be considered conservative in that optimality is reduced in order 

to ensure robustness. In other words, we will accept a suboptimal solution for the 

nominal values of the data in order to ensure that the solution remains feasible and 

near optimal when the data changes.

Kouvelis and Yu (1996) summarize the work done in min-max regret 

optimization up to 1997. They also provide justification for the min-max regret 

approach and various aspects o f  applying it in practice. They define “close” to  the 

optimal solution in several different ways. They define two regret criteria for 

robustness. The robust deviation decision is the decision that exhibits the best worst- 

case deviation from optimality. In other words, the robust deviation solution is one

12
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that minimizes the maximum regret over all possible realizations of the parameters in 

the model. This is the robustness definition used in this dissertation. The robust 

relative decision is the decision that exhibits the best worst-case percentage deviation 

from optimality. Another definition presented is that of absolute robustness. 

Absolute robustness evaluates the objective function value in each scenario without 

reference to the best possible decision that could have been made in that scenario and 

thus defines a solution that minimizes the maximum total costs. This approach is 

appropriate for high risk or highly competitive environments where even the worst 

case must guarantee a certain level of performance.

The robust deviation measure is chosen in this dissertation because it incorporates 

more information in the solution than absolute robustness which is useful for practical 

problems. Also, robust deviation gives more importance to scenarios that tend to 

produce large objective values compared to the other two measures. The use of the 

relative robustness measure results in more opportunity lost compared to the robust 

deviation measure. This is because scenarios that would tend to have very small 

positive or negative objective functions tend to always dominate solutions using a 

relative robustness measure.

Kouvelis and Yu (1996) used the scenarios approach to capture uncertainty for 

determining robustness. This approach can also be found in the stochastic 

optimization literature. Scenarios are decided upon and weights are placed on the 

realization of the scenarios. The final solution must satisfy each scenario and 

m inim ize som e objective based on the difference betw een the proposed solution and 

optimal solution. In this respect the concept is close to robustness approach used in 

this dissertation.

13
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The deviation robust approach has been used by Ammons and Realff (1999) to 

solve a mixed integer linear programming model for the robust infrastructure design 

for carpet recycling problems. Newton (2000) introduced a continuous robust 

approach using the deviation robustness definition. He used the information from 

parameter possible ranges for making robust infrastructure decisions for the reverse 

logistics problems instead of using discrete scenarios to capture uncertainty. This 

approach has many limitations in that it cannot handle the uncertainty when any 

coefficient of a continuous variable in the model is random. This approach also 

requires the assumption that there always exists a feasible robust infrastructure 

solution for the problem, which is not always true in general.

Gutierrez, Kouvelis, and Kurawarwala (1996) apply a different robustness 

approach which requires a robust network design to be within p% of the optimal 

solution for any realizable scenarios. They achieve this by the addition of a constraint 

to the model to ensure robustness. The model is solved by modifying Benders’ 

decomposition algorithm to use cuts from one master problem on all scenarios. An 

alternative definition of robustness is to find a near-optimal solution that is not overly 

sensitive to any specific realization of the uncertainty (Bai, Carpenter and Mulvey, 

1997). The goal is to minimize expected cost (maximize expected profit) and to 

reduce the variability over all possible scenarios.

The above robust optimization models thus include a measure of variability rather 

than regret. Variability can be measured either by variance (Hodder and Dincer, 

1986; M ulvey, V anderbei and Zenios, 1995; Bok, Lee, and Park, 1998) or by standard 

deviation (Goetschalckx, et al., 2001), both of which make the objective function a 

nonlinear function. Other measures of variability, include the von Neumann- 

Morganstem expected utility function (Bai, Carpenter and Mulvey, 1997) and the
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upper partial mean (Ahmed and Sahinidis, 1998), to allow asymmetry, but these 

functions are often hard to compute. When coefficients in a model are uncertain, the 

functional constraints may not necessarily be satisfied for all scenarios and therefore, 

it is convenient to introduce additional variables called recourse variables that 

represent the slack or surplus in the functional constraints. These variables are 

included in the objective function as an infeasibility penalty (Mulvey, Vanderbei and 

Zenios, 1995; Yu and Li, 2000).

Mulvey, Vanderbei, and Zenios (1995) were the first to present robust 

optimization as the integration of goal programming formulations with a scenario- 

based description of the problem data. In their work solution robustness is defined as 

the case when the optimal overall solution is near optimal for every possible demand 

scenarios and model robustness when the optimal overall solution is almost feasible 

for all scenarios. Solution robustness is achieved by the addition of variance or utility 

functions, to the objective function. A feasibility penalty function which is a function 

of the demand slack is added to the objective function to encourage model robustness. 

A penalty is assessed when the slack holds the positive or negative value, so the 

penalty applies when the model is infeasible, and when there is excess capacity.

Bok, Lee, and Park (1998) defined a quadratic objective function to maximize the 

expected net profit with penalties for the expected deviation of profit and excess 

capacity where the scenarios consist o f different demand levels, each with an 

associated probability. The two-stage stochastic program is solved using Benders’ 

decom position m ethodology. A hm ed and Sahinidis (1998) use the definition o f  

robustness of Mulvey, Vanderbei, and Zenios (1995), but propose alternative 

formulations to the mean plus variance objective function.
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Ben-Tal and Nemirovski (1998, 1999, and 2000) address the robust solutions 

(min-max/max-min objective) by allowing the uncertainty sets for the data to be 

ellipsoids, and propose efficient algorithms to solve convex optimization problems 

under data uncertainty. However, as the resulting robust formulations involve conic 

quadratic problems, such methods cannot be directly applied to discrete optimization. 

Ben- Tal and Nemirovski (1998) study convex optimization problems for which the 

data is not specified exactly and is only known to belong to a given uncertainty set U, 

yet the constraints must hold for all possible values of the data from U. This works 

lays the foundation of robust convex optimization. They also show that if U is an 

ellipsoidal uncertainty set, then for some of the most important generic convex 

optimization problems (linear programming, quadratically constrained programming, 

semi definite programming and others) the corresponding robust convex program is 

either exactly, or approximately, a tractable problem which lends itself to efficient 

algorithms such as polynomial time interior point methods. Ben-Tal and Nemirovski 

(2000) also address Linear Programming (LP) problems with uncertain data. The 

focus is on uncertainty associated with hard constraints: those which must be 

satisfied, irrespective of the actual realization of the data (within a prescribed 

uncertainty set). They suggest a modeling methodology in which an uncertain LP is 

replaced by its Robust Counterpart (RC). They then develop the analytical and 

computational optimization tools to obtain robust solutions of an uncertain LP 

problem via solving the corresponding explicitly stated convex RC program. They 

show that the RC of an LP w ith ellipsoidal uncertainty set is com putationally 

tractable, since it leads to a conic quadratic program, which can be solved in 

polynomial time.
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Averbakh (2001) showed that polynomial solvability is preserved for a specific 

discrete optimization problem (selecting p  elements of minimum total weight out of a 

set of m elements with uncertainty in weights of the elements) when each weight can 

vary within an interval under the min-max-regret robustness. However, the approach 

does not seem to generalize to other discrete optimization problems.

Bertsimas and Sim (2003) propose an approach to address data uncertainty for 

discrete optimization and network flow problems that allows controlling the degree of 

conservatism of the solution, and is computationally tractable both practically and 

theoretically. They propose a robust integer programming problem of moderately 

larger size that allows controlling the degree of conservatism of the solution in terms 

of probabilistic bounds on constraint violation. This approach is useful when both the 

cost coefficients and the data in the constraints of an integer programming problem 

are subject to uncertainty. When only the cost coefficients are subject to uncertainty 

and the problem is a 0 -  1 discrete optimization problem on n variables, then they 

solve the robust counterpart by solving at most n + 1 instances of the original 

problem. Thus, the robust counterpart of a polynomial solvable 0 - 1  discrete 

optimization problem remains polynomial solvable. Thus robust matching, spanning 

tree, shortest path, matroid intersection, etc. are polynomial solvable. They also show 

that the robust counterpart of an NP-hard a-approximable 0 - 1  discrete optimization 

problem, remains a-approximable. Finally, they propose an algorithm for robust 

network flows that solves the robust counterpart by solving a polynomial number of 

nominal minimum cost flow problems in a modified network.

Bertsimas and Sim (2004) present a new robust approach to solve linear 

optimization problems with uncertain data. They propose an approach that makes the 

tradeoff between optimality and feasibility more attractive. They thus try to reduce
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the “price of robustness”. In particular they adjust the level of conservatism of the 

robust solutions in terms of probabilistic bounds of constraint violations. They 

propose a robust formulation that is linear, is able to withstand parameter uncertainty 

under the model of data uncertainty U without excessively affecting the objective 

function, and readily extends to discrete optimization problems. Their method is as 

follows. Consider the f* constraint o f the nominal problem a’x< bt . Let J (be the set

of coefficients atj, j  e  J t that are subject to parameter uncertainty. For every i they 

introduce a parameter T, , not necessarily integer that takes values in the 

interval [0 ,|/, | ] . The role of the parameter T, is to adjust the robustness of the 

proposed method against the level of conservatism o f the solution. The goal is to be 

protected against all cases that up to [ r ,  Jo f  the coefficients a , j  e  J t are allowed to

change and one coefficient atj changes by (T( - [ r ,  J ) a , , . They stipulate that nature

will be restricted in its behavior, in that only a subset of the coefficients will change in 

order to adversely affect the solution. They thus develop an approach that has the 

property that if  nature behaves like this, then the robust solution will be feasible 

deterministically and moreover even if more than [ r j  change, then the robust

solution will be feasible with very high probability.

Butler (2003) proposes a new definition of a robust solution by combining the 

expected value and the relative robustness definition for an application of supply 

chain design for new product distribution. Montemanni, R. and Gambardella,L.M. 

(2002) apply the relative robustness criterion to the shortest path problem defined on a 

directed graph G = (V,A), where V is a set o f vertices and A is a set o f arcs. A starting

vertex s e V ,  and a destination vertex / e Fare given and an in te rv a l^ ,utj^ ,
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with m)7 >ljj> 0 , is associated with each arc (i,j) e A . Intervals represent ranges of 

possible costs. They model uncertainty about the exact value of these costs. Their 

work is concerned with transport problems, and for this reason each , utj J is an

interval of possible travel times for the road associated with arc (/, j ) .

Assavapokee (2004, 2008a) present a scenario relaxation (SR) algorithm for 

solving large-scale general scenario-based min-max regret and min-max relative 

regret robust optimization problems for two-stage mixed integer linear programming 

formulations. Results are reported showing the significant improvement in 

computation time of the scenario relaxation algorithm over the extensive form 

method. They also develop two new robust optimization algorithms under deviation 

robust criterion for two-stage decision making under interval data uncertainty 

(Assavapokee 2004, 2008b) and under full-factorial scenario design (Assavapokee et 

al., 2007a) for the mixed integer (binary) linear programming formulation. In 

Assavapokee (2004, 2008b), they present a min-max regret robust optimization 

algorithm for two stage decision making under uncertainty where the structure of the 

first stage problem is a mixed integer linear programming model and the structure of 

the second stage problem is a linear programming model. In the structure o f problem 

considered, the parametric uncertainty is represented by real compact intervals. Their 

algorithm can be effectively used in making min-max regret robust decisions when 

the joint probability distributions of key parameters are unknown and the only 

information available to decision maker are the potential ranges of uncertain 

parameters. The algorithm coordinates three mathematical programming 

formulations to solve the overall optimization problem. They also provide a counter

example that illustrates the insufficiency of the robust solution obtained by only 

considering a finite number of scenarios generated by end points of all compact

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



intervals. They also demonstrate the application of the algorithm on a supply chain 

network infrastructure design problem.

Assavapokee et al., (2007a) present a modified min-max regret robust 

optimization algorithm where each uncertain parameter can, independently of other 

parameters’ setting, take its value from a finite set of real numbers with unknown 

probability distribution. This structure of parametric uncertainty is referred to as the 

full-factorial scenario design of data uncertainty. The proposed algorithm is shown to 

be very effective for solving large-scale scenario based min-max regret robust 

optimization problems under this structure of parametric uncertainty. The algorithm 

coordinates three mathematical programming formulations to effectively solve the 

overall optimization problem.

Assavapokee et al., (2007b) modify the previous algorithm to solve the problem 

under the relative robust criterion. The algorithm also coordinates three 

computational stages to effectively solve the overall optimization problem. Bi-level 

programming formulations and fractional programming concepts are the main 

components of the proposed algorithm.

2.3 Literature Review on Bi-level Programming

The bi-level programming problem (BLPP) is a static variation of the problem 

introduced by Von Stackelberg (1952) in the study of unbalanced economic markets. 

In the basic model, control of the decision variables is partitioned amongst the players 

who seek to optimize their individual payoff functions. Perfect information is 

assumed so that both players know the objective and feasible choices available to the 

other. The leader goes first and attempts to optimize his objective function. In doing 

so he must anticipate all possible responses of his opponent, termed the follower. The 

follower observes the leader’s decision and reacts in a way that is personally optimal
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without regard to external effects. Because the set o f feasible choices available to 

either player is interdependent, the leader’s actions affects both the follower’s payoff 

and allowable actions and vice versa. The fact that the game is said to be ‘static’ 

implies that each player has only one move. The vast majority of research on bi-level 

programming has centered on the linear version of the problem, alternatively known 

as the linear Stackelberg game (Bard, 1999).

The general structure of a bi-level programming problem has been put forward by 

Bard (1999). Suppose that the higher-level decision maker or leader has control over

the vector x ^ X ^ R  an(j t},at subunits, collectively called the follower, have 

control over the vector y e  Y <^Rm. The leader goes first and selects an x  in an attempt 

to minimize F(x, y(x)) subject perhaps to some additional constraints. The notation 

y(x) stresses the fact that the leader’s problem is implicit in the y  variables. The 

follower observes the leader’s actions and reacts by selecting a y  to minimize the 

objective function fix, y), subject to a set of constraints in the y  variables for the 

particular value of jc chosen. When the feasible region of either player can be 

described by inequality constraints, the general bi-level programming is written as

F o r x G  X  <z R " , y e Y  c  R m, F  : X x Y  -> R l,a n d  f  : X  x Y  -> R l 
min F ( x ,  y ) = c,x + d xy  1
xeX > L e a d e r ' s objective function

subject to Axx  + Bxy  < bx J
min f ( x , y )  = c2x + d 2y  ]
ysY > Fol lower ' s objective function

subject  to A2x +  B2y  < b2 J
where c ,,c 2g R " , d x, d 2 e R m ,b, e  R p ,b2 e  R q ,A,  e  R pxn, B , e R pxm,
A2 e R qxn,a n d  B2 e R qxm.

The sets X  and Y  place additional restrictions on the variables such as 

nonnegativity or integrality requirements. After the leader selects the x value, the first
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term in the follower’s objective function becomes a constant and can be removed 

from the problem. Thus / (jt, j )  can be replaced by / (y ) . Thus y  can be viewed as a 

function of x.

The definitions are used for the solution model of the BLPP model.

a. Constraint region of the BLPP;

S = \ ( x ,y ) \x & X ,y & Y ,A lx + Bly < b l,A2x + B2y < b 2^

b. Feasible set for the follower for each fixed x e X :

S(x) =  2̂ X+B2y <  j

c. Projection of S  onto the leader’s decision space:

S(X)  = {x e X  | By e Y, Axx + Bxy  < b ^ ^ x  + B2y  <b2]

d. Follower’s rational reaction set for jc g S ( X ) :

P(x) = {y e Y | y  e arg min [ / ( x ,  y)  | y  e S(x) J
e. Inducible region:

IR = {(x, y) | (x, y ) e S , y &  P(x)}

To ensure that the BLPP model is well posed, we assume that S  is nonempty and 

compact; i.e. P(X) </>. The rational reaction set P(x) defines the response while the 

inducible region (IR) represents the set over which the leader may optimize. The 

BLPP model can be written as min [F(x,y) \ (x,j;) e IR] . To have an explicit

representation of the inducible region, we can use Karush-Kuhn-Tucker (KKT) 

conditions to rewrite the follower problem. The resultant BLPP model is
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min F(x, y) = cxx  + dxy  
subject to AjX + Bxy  < bx and A2x + B2y  < b2 

uB2- v - - d 2
u(b2 -  A,x -  B2y)  = 0 and vy -  0 
J C > 0 , y > 0 , M > 0 , v > 0  

where u e R q and v e R m.

Bard (1999) suggests the use of the Big M method with binary variables to 

handle nonlinear constraints (complementary slackness conditions) in this model. 

The drawbacks of this method however do come up in practical applications and is 

explained later when we discuss the three stage algorithm. This research applies bi

level programming in the second, third and fourth stages of the algorithm. Bi-level 

linear optimization was first proposed in the mid-1960's in the initial work by Baumol 

and Fabian (1964). The linear bi-level programming problem was first shown to be 

NP-hard by Jeroslow (1985). Bard (1991) provided an alternative proof by 

constructively reducing the problem of maximizing a strictly convex quadratic 

function over a polyhedron to a linear max-min problem.

In general, there are three different workable approaches for solving a linear bi

level programming problem. The first approach makes use of the theorem that the 

solution of the linear bi-level programming problem occurs at a vertex of S  and 

involves some form of vertex enumeration in the context of the simplex method. 

Candler and Townsley (1982) were the first to develop an algorithm that was globally 

optimal. Their algorithm repeatedly solves two linear programs, one for the leader in 

all of the x  variables and a subset of they variables associated with an optimal basis to 

the follower’s problem, and the other for the follower with all the x  variables fixed. 

They thus explore optimal bases of the follower’s problem for x  fixed and then return 

to the leader’s problem with the corresponding basic y  variables. They are able to 

provide a monotonic decrease in the number of follower bases that have to be
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examined by focusing on the reduced cost coefficients of the y variables not in an 

optimal basis of the follower’s problem.

The second approach for solving the linear bi-level programming problem known 

as the “Kuhn-Tucker” approach is to use a branch and bound strategy to deal with the 

complementarity constraints. Omitting or relaxing this constraint leaves a standard 

linear programming which is easy to solve. The various methods proposed employ 

different techniques for assuring that complementarity is ultimately satisfied (Bard 

and Moore, 1990; and Judice and Faustino, 1992).

The third method is based on some form of penalty approach. Aiyoshi and 

Shimizu (1984) addressed the general bi-level programming problem by first 

converting the follower’s problem to an unconstrained mathematical program using a 

barrier method. The corresponding stationary conditions are then appended to the 

leader’s problem, which is solved repeatedly for decreasing values of the barrier 

parameter. To guarantee convergence the follower’s objective function must be 

strictly convex. A different approach using an exterior penalty method was proposed 

by Shimizu and Lu (1995) that simply requires convexity of all the functions to 

guarantee global convergence.

Edmunds and Bard (1991) present two algorithms for solving various versions of 

the leader follower game when certain convexity conditions hold. They use a hybrid 

branch and bound scheme which does not guarantee global optimality for one 

algorithm. Another algorithm is based on objective function cuts and is guaranteed to 

converge to  an £  -optim al solution, barring num erical stability problem s w ith the 

optimizer. They also examine the performance of the two algorithms using randomly 

generated test problems.
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Dempe et al., (2005) present a mathematical framework for the problem of 

minimizing the cash-out penalties of a natural gas shipper. The problem is modeled 

as a mixed-integer bi-level programming problem having one Boolean variable in the 

lower level problem. Such problems are difficult to solve. To obtain a more tractable 

problem they move the Boolean variable from the lower to the upper level problem. 

The implications of this change of the problem are investigated thoroughly. The 

resulting lower level problem is a generalized transportation problem. The 

corresponding results are then used to find a bound on the optimal function value of 

the initial problem.

Bjomdal and Jomsten (2005) present a bi-level programming formulation of a 

deregulated electricity market. They show that the relation of the deregulated 

electricity market to general economic models can be formulated as bi-level 

programming problems. They also provide an explanation of the reason why several 

theorems can be proven to be false for electricity networks. The interpretation of the 

deregulated electricity market as a bi-level program also indicates the magnitude of 

the error that can be made if the electricity market models studied do not take into 

account the physical constraints of the electric grid or oversimplification of the 

electricity network to a radial network.

Cao et al., (2006) present a capacitated plant selection problem in a decentralized 

manufacturing environment where the principal firm and the auxiliaiy plants operate 

independently in an organizational hierarchy. A non-monolithic model is developed

for plant selection in the decentralized decision m aking process. T he developed 

model considers the independence relationship between the principal firm and the 

selected plants. It also takes into account the opportunity costs of over-setting 

production capacities in the opened plants. The developed mathematical
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programming model is a two-level nonlinear programming model with integer and 

continuous decision variables that is transformed into an equivalent single level 

model, linearized and solved.

2.4 Literature Review on Decomposition Methods

In general, a decomposition principle is a systematic procedure for solving large- 

scale general mathematical programs or specific mathematical programs with special 

structure. The strategy of a decomposition procedure is to iterate between two 

separate mathematical programs. Information is passed back and forth until a point is 

reached where the solution to the original problem is achieved. It is not unusual for 

realistically sized mathematical models to produce mixed integer linear programs with 

many thousands or even millions of rows and columns. To solve such problems, 

some method must be applied to convert the large problems into one or more 

appropriately coordinated smaller problems o f manageable size.

In some applications of linear programming the constraints of the problem can be 

divided into two groups, one group of “easy” constraints and another of “hard” 

constraints. This usually happens in network set up problems where the constraints 

that describe the network (the easy constraints) are augmented by additional 

constraints of a more general form (the hard constraints). This can also happen in 

“block angular” problems described below where there are a small number of 

constraints that involve all the variables (the hard constraints) but if these are removed 

the problem decomposes into several independent smaller problems, each of which is 

easier to solve. The “hard” constraints need not be in themselves intrinsically 

difficult, but rather they can complicate the linear program, making the overall 

problem more difficult to solve. If these “complicating” constraints could be removed 

from the problem, then more efficient techniques could be applied to solve the
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resulting linear program. The Decomposition Principle is a tool for solving linear 

programs having this structure. Popular decomposition methodologies include 

Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960), Benders’ decomposition 

(Benders, 1962) and Lagrangian relaxation techniques (Falk, 1967). The Benders 

Decomposition technique is based on delayed constraint generation while Dantzig- 

Wolfe decomposition is based on delayed column generation.

To explain the concept in detail, let us consider the development of a master 

corporate plan for several production facilities. Although each facility has its own 

independent capacity and production constraints, the different facilities are tied 

together at the corporate level by budgetary constraints. The resulting model consists 

of two types of constraints: hard representing the corporate budgetary constraints; and 

soft representing the internal capacity and production restrictions of each facility. The 

layout of the constraints for n activities (facilities) is shown in Figure 2.1. In the 

absence of the common constraints, all the activities operate independently. The 

decomposition algorithm improves the computational efficiency of the problem by 

breaking it down into n sub problems that can be solved almost independently. The 

resulting “block angular structure” is observed in Figure 2.2.

Maximize z = C.X, +C7X 7 + .... + C„X„1 1  L L n n

subject to A{X x +A2X 2+.......+ AnX n = b0

Dix i =*,
D2X 2 = b2

D X n~bn 
X j >  0, j  = 1,2,..., n

Figure 2.1: General Form of the Model
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Figure 2.2: Block Angular Structure

Benders (1962) presented a classical solution approach to solve combinatorial 

optimization problems, based on the ideas of partition and delayed constraint 

generation. The method partitions the problem to be solved into two simpler 

problems, named master and subproblem. The master problem is a relaxed version of 

the original problem containing only a subset of the original variables and the 

associated constraints. The sub-problem is the original problem with the variables 

obtained in the master problem fixed and is used to generate cuts for the master 

problem. The master and subproblems are solved iteratively until no more cuts can be 

generated. This is usually obtained by the use of a e-optimal termination criterion. 

The conjunction of the variables found in the last master and subproblem iteration is 

the solution to the original formulation. The decomposition approach is justified only 

if the master and subproblem approach can be solved efficiently. As the number of 

scenarios increases we would need to solve the master and subproblems several times. 

For a network design problem, the master problem could deal with integer variables 

that define the network while the subproblem works with the continuous variables
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representing the actual flow of commodities for the tentative network obtained in the 

master problem.

Geoffrion and Craves (1974) present a solution technique based on Benders 

Decomposition to solve the multicommodity capacitated single-period distribution 

system design problem of optimal location of intermediate distribution facilities 

between plants and customers. The model which is formulated as a mixed integer 

linear program was solved to optimality and proven with a small number of Benders 

cuts. They also provide a discussion on the reason this problem class appears to be so 

amenable to solution by Benders' method.

Magnanti and Wong (1981) propose a methodology for improving the 

performance of Benders decomposition when applied to mixed integer problems. 

They introduce a new technique for accelerating the convergence of the algorithm and 

theory for distinguishing “good” model formulations of a problem. The acceleration 

technique is based upon selecting from among the alternate optima of the Benders 

subproblem to generate strong or pareto-optimal cuts. The cut generation technique 

leads to very efficient algorithms that exploit underlying structure of the models 

especially for network location problems. They also suggest criteria for comparing 

various mixed integer formulations of a problem and to choose formulations that 

provide stronger cuts for Benders decomposition.

Magnanti et al., (1986) extended the study to the context of the uncapacitated 

network design problem. They show that the generality of Benders decomposition by 

proving that som e know n cuts are actually Benders cuts for particular choices o f  the 

integer variables. The master problem proposes a tentative network by setting the 

integer variables and the subproblem finds the continuous variables flow distribution. 

They show that for this particular case, Pareto-optimal cuts can be generated at the
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price of solving k minimum cost flow problems (one for each commodity). They also 

advocate the use of Benders decomposition in conjunction with other approaches.

Gutierrez et al., (1996) extended the work of Magnanti et al., (1986). They 

proposed a robust approach able to consider the uncertainty in the transportation costs 

and in the demands. The data uncertainty is described through a set of scenarios, each 

with different values for the transportation costs. The solution of the model is done 

by the use of a multi-master Benders algorithm, where an individual master problem 

is associated with each possible scenario. Each time a master problem is solved there 

is a cross generation of Benders cuts, i.e. the subproblem generates a cut for each of 

the master problems. They conclude that this cross generation accelerates the 

convergence of the algorithm.

Randazzo and Luna (2001) present a comparison of some optimal methods 

applied to a problem of local access network design. They define two equivalent flow 

formulations for the problem, the first a single commodity and the second being a 

multicommodity flow model. The objective in both cases is the cost minimization of 

the sum of the fixed (structural) and variable (operational) costs of all the arcs 

composing an arborescence that links the origin node to every demand node. The 

weak single commodity flow formulation is solved by a branch-and-bound strategy 

that applies Lagrangian relaxation for computing the bounds. The strong 

multicommodity flow model is solved by a branch-and-cut algorithm and by Benders 

decomposition. Their experience suggests that a certain number of the modeling and 

solution strategies can be applied to  frequently occurring problem s w here basic 

optimal solutions to the linear program are automatically integral which also solves 

the combinatorial optimization problem. They conclude that a well tailored Benders 

partitioning approach emerges as a robust method to cope with the fabricated cases
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where the linear programming relaxation exhibits a gap between the continuous and 

the integral optimal values. The most important conclusion is the fact that Benders 

decomposition although slower than the branch- and-cut on six of the 30 instances 

was the only algorithm able to solve to optimality all instances within the limit time 

(24 hours).

The decomposition methodology that we use to solve one of the mathematical 

models (section 3.5.1) in this dissertation is an accelerated Benders’ decomposition 

algorithm (Santoso, 2005). This is possible because of the special block angular 

structure of this specific mathematical model. This specific model contains only one 

set of binary decision variables for all input scenarios. If their values can be fixed, the 

problem can be partitioned into several linear programming problems (one for each 

scenario) that can be solved independently. For this reason, this specific 

mathematical model is an ideal problem structure for applying the Accelerated 

Benders’ decomposition algorithm.

Geoffrion (1972) generalized the Bender’s approach to a broader class of 

problems in which the parameterized subproblem is not constrained to be a linear 

program. Nonlinear convex duality theory was employed to derive the natural 

families of cuts corresponding to those in Bender’s case. The main result is an 

extension of Bender’s approach to a more general class of problems with the help of 

nonlinear duality theory. The problems are of the type 

maximize f ( x , y )  subject to G(x, y) > 0 , x z X , y e Y  (2.4.1)

where y  is a vector of hard variables in the sense that eq. 2.4.1 is a much easier 

optimization problem in x  when y  is temporarily held fixed. G is an /w-vector of 

constraint functions defined on X  x Y a  Rp x Rq. The situations modeled are of the 

type:
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a. For fixed y, eq. 2.4.1 separates into a number of independent optimization 

problems, each involving a different subvector of x.

b. For fixed y, eq. 2.4.1 assumes a well-known special structure (block angular 

structure) for which efficient solution procedures are available; and

c. Equation 2.4.1 is not a concave program in x and y  jointly, but fixing y  renders 

it so in x.

Geofffion postulated that it is easier to obtain computational economies by looking at 

problem eq. 2.4.1 in y  space instead of the xy-space. The key idea to achieve this is 

the concept of projection, also known as partitioning. The projection of eq. 2.4.1 onto

y  is

maximize v(y) subject toy e T n  V (2.4.2)
y

where
v(y) = supremum / (x,y)subject toG(x,y) > 0 , x e l  (2.4.3)

X

and

V = {y: G(x, y) > 0 for some x e l } .  (2.4.4)

Here v(y) is the optimal value of eq. 2.4.1 for fixed y  and since y  is designated as a

hard variable, evaluating v(y) is easier to solve that eq. 2.4.1. Equation 2.4.3 can also

be represented as

maximize/ (x, y) subject to G(x, y) > 0. (2.4.5)
x e X

The set V consists of those values of y  for which eq. 2.4.5 is feasible; Y n V  can be 

considered as the projection of the feasible region of eq. 2.4.1 onto y-space. They 

also define

T*(y;w) = supremum|/(x,y) + «'G(x,y)j,y e Y,u > 0, (2.4.6)
x e X

L(y;A)  = supremum j A'G(x,y)|, y e Y , A >  0. (2.4.7)
x e X

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The generalized Benders decomposition procedure can be summarized in the 

following steps:

1. Let a point y e Y n F  be known. Solve sub-problem for y  using eq. 2.4.5 

and obtain an optimal (or near-optimal) multiplier vector u and the 

functionZ*(y\u) . Putp = \ , q  =0, w1 -  u,  Lower Bound (LB)= v(y).

2. Select the convergence termination parameter s  > 0.

3. Solve the current relaxed master problem

maximize y0 subject to y0 < L* (y; uJ), j  = 1,2,...... ,p,
ysY
'o

L (y;A J)> 0, 7  = 1,2,....... ,q,

by any applicable algorithm. Let (y,y0)be an optimal solution, y0 is an upper 

bound (UB) on the optimal value of eq. 2.4.1. If LB = y0- s ,  terminate.

4. Solve the revised subproblem for y . Either the quantity v(y) is finite. If

v(y) > y0 -  s  terminate. Otherwise determine an optimal multiplier vector u .

If none exists a near optimal multiplier vector satisfying

y0 > supremum j f ( x , y )  + u G(x,y)  I will suffice. Determine the function
xeX \ )

L (y;u) . Increase p  by 1 and put up = u.  If v(y) > LB , put LB = v(y). LB is 

a lower bound on the optimal value of eq. 2.4.1. Return to step 4.

5. If 2.4.5 is infeasible for y  determine X in A satisfying

supremum!(AG(x,y)> <0. Determine the function L,(y,A).  Increase q by 1
xeX ( J

and put Xq = X . Return to step 3.
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2.5 Literature Review on Approximation Algorithms

Heuristic algorithms (including artificial intelligence based heuristics, simulated 

annealing and genetic algorithms) have been used to tackle discrete optimization 

problems in recent years. Bi-level programming problems inherit many structural 

properties from discrete optimization at least if the lower level problem is replaced by 

it’s (under convexity and regularity assumptions equivalent) Karush-Kuhn-Tucker 

conditions. The use of heuristic algorithms to solve bi-level programming problems 

has been done in the research Anandalingam et al., (1983), Friesz et al., ( 1992,1993), 

Gendreau et al., (1996) and Marcotte (1986).

Only a very few results are available at the moment with respect to algorithms 

solving mixed-discrete bi-level programming problems. Such algorithms are the 

following: branch-and-bound algorithms for exact and approximate solutions 

(Edmunds and Bard, 1992), (Bard and Moore, 1990), and (Wen and Yang, 1990), 

algorithms being based on cutting plane algorithm (Dempe, 1996b) and the k-th best 

algorithm (Thirwani and Arora, 1997). Other algorithms include trust region methods 

of (Marcotte et al., 2001), (Scholtes and Stohr, 1999).

2.6 Summary

In this chapter, we summarize the work done in the areas of Robust Optimization, 

Bi-level Programming, Decomposition methods and search algorithms for Bi-level 

programming. In the next chapter we explain the existing three-stage algorithm 

developed by Assavapokee (2004, 2008b) and its drawbacks. We then propose a 

modified four stage algorithm that eliminates these drawbacks with the help of new 

solution techniques utilizing Accelerated Benders Decomposition methods, priority 

based solution procedure, and approximation algorithms.
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Chapter 3 

M ETHODO LOG Y

3.1 Introduction

This chapter begins by reviewing key concepts of scenario based min-max regret 

robust optimization (i.e., types of decisions and extensive form formulation). We then 

explain the concept of the two-stage decision making process and give a summary of 

the three-stage deviation robust algorithm developed by Assavapokee (2004, 2008b). 

We also discuss the inherent drawbacks of the algorithm. Next the proposed four- 

stage deviation robust algorithm is presented that improves the solution time by 

augmenting the existing three-stage deviation robust algorithm by the use of 

approximation and decomposition algorithms. The methodology o f the new 

algorithm is then summarized and explained in detail, and each of its four stages is 

specified. The chapter concludes with the theoretical result that the algorithm always 

terminates at the min-max regret robust optimal solution (if one exists) in a finite 

number of iterations. The case studies to validate the algorithm are presented in 

Chapter 4.

3.2 Deviation Robust Optimization Models

We address the problem where the basic components of the model’s uncertainty 

are represented by a finite set of all possible scenarios of input parameters, referred as 

the scenario set Q . The problem contains two types of decision variables. The first 

stage variables model binary choice decisions, which have to be made before the 

realization of uncertainty. The second stage decisions are continuous recourse 

decisions, which can be made after the realization of uncertainty. Let vector xm
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denote binary choice decision variables and let vector y  denote continuous recourse

decision variables and let and T2m denote model

parameters setting for each scenario oj e Q .  If the realization of model parameters is 

known to be scenario ta a priori, the optimal choice for the decision variables xm and 

ym can be obtained by solving the following model (1):

O* =

maxc/*«, +<ijya
x**y*

s*- Wx J o , - Tx J m^ K  

WlJa> -T lJc ,  = K ,  
xa e {0,1}|jcJ and y m>0

When parameter uncertainty (ambiguity) exists, the search for the min-max regret 

robust solution comprises finding binary choice decisions, x , such that the function 

max(0’ - z ’(i))is minimized where

£ (* )  =

max q j y .>0

sJ- wxay . ^ K +Txo>x 
W 2 J * = K + T .'laX

+ c„. x V<y e Q

In the case when the scenario set Q is a finite set, the optimal choice of decision 

variables x (min-max regret robust solution) can be obtained by solving the following 

model (2):

min 5

si. S > O l - q J y a - c J x

W x J < o  - T l m X < k a ,

W2 J a , - T2a,X = Ka>

x e { 0 , l f

Vea g Q
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This model (2) is usually referred to as the extensive form model of the problem. 

If an optimal solution for the model (2) exists, the resulting binary solution is the 

optimal setting of decision variables jc . Because the model (2) has the dual structure 

of the block angular structure, the method of Benders (1962) is applicable and 

appropriate to solving these types of model when a large number of scenarios are 

considered. Unfortunately, when the scenario set Q. is infinite, the problem cannot be 

solved directly by using the model (2).

Because of the failure o f the extensive form model and the Benders’ 

decomposition algorithm for solving a large scale problem of this type, a new 

algorithm, which can effectively overcome these limitations of the extensive form 

model and the Benders’ decomposition algorithm, is proposed by Assavapokee (2004, 

2008b). A key insight of this new algorithm is to recognize that, even for an infinite 

set of scenarios, it is possible to identify a finite set of scenarios that need to be 

considered as part of the iteration scheme with the use of bi-level programming. We 

now discuss the three-stage algorithm developed by (Assavapokee, 2004, 2008b) for 

handling uncertainty in model’s parameters when there are infinite numbers of 

possible scenarios in the following section.

3.3 Three-Stage Algorithm for Interval Data Uncertainty

In the three-stage algorithm developed by (Assavapokee, 2004) to handle model 

parameter uncertainty they assume that each uncertain parameter can take its value 

from a real compact interval (infinite number o f possible scenarios). The parameters 

in the model (1) can be classified into eight major types as shown in the following 

model (3):
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max c j x m + q /y a

W l J a ,  ~ T > J a ,  ^  L
^ 2 m y a  ~  ^2a>Xa> ~  ^hm 

^€{0,1}^' and ya >0

Let the random vector £ = {c,q,hi,h2,Tl,T2,Wl,W2) denote the parameters 

defining the objective function and the constraints of the optimization problem. In 

this research, they assume that each component of £ of type c,hx,h1,Tx, and T2 can 

independently take its values from a compact interval of real values. In other words, 

for the element p  of the vector £ , p  can take any value from the real compact interval

[pL, p u] where p L and p u represent the lower and the upper bound values of the 

parameter p  respectively. In addition, the component of £ of type q can 

independently take its value from a finite set of real values. The scenario set Q is 

generated by all possible values of the parameter vector The three-stage 

optimization algorithm presented in (Assavapokee, 2004, 2008b) for solving min-max 

regret robust optimization problem under scenario set Q is summarized below.

3.3.1 Summary of Three-Stage Algorithm

Step 0) (Initialization) Choose a subset f i c Q  and set A" = oo and Ai = 0. 

Determine the value of e  (predetermined small nonnegative real value) and proceed to 

Step 1.

Step 1) Solve the model (1) to obtain O* V o e  Q . If the model (1) is infeasible for 

any scenario in the scenario set Q , the algorithm is terminated; the problem is ill- 

posed. Otherwise the optimal objective function value to the model (1) for scenario a  

is designated as G'm . Proceed to Step 2.
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Step 2) (Solving the Relaxation Problem and Optimality Check) Solve the relaxation 

of the model (2) by considering only the scenario set Q instead of Q . If the relaxed 

model (2) is infeasible, the algorithm is terminated with the confirmation that no 

robust solution exists for the problem. Otherwise, set X a = x* (optimal solution from 

the relaxed model (2)) and set AL = S’ (optimal objective function value from the 

relaxed model (2)). If {Au- AL}< s, the robust solution associated with Au is the 

globally s-optimal robust solution and the algorithm is terminated. Otherwise the 

algorithm proceeds to Step 3.

Step 3) (Feasibility Check) Solve the Bi-level-1 model specified below in section 

3.5.3 by using the X n information from Step 2. If the optimal objective function 

value of the Bi-level-1 model is nonnegative (feasible case), proceed to Step 4. 

Otherwise (infeasible case), Q < -O u { © * }  where a \  is the infeasible scenario for 

X n generated by the Bi-level-1 model in this iteration and return to Step 1.

Step 4) (Generate the Scenario with Maximum Regret Value for X n and Optimality 

Check) Solve the bi-level-2 model specified below in section 3.5.2 by using the 

information from Step 2. Let o>*2 and A"’ denote the scenario with maximum regret 

value for X n and the optimal objective function value generated by the Bi-level-2 

model respectively in this iteration. Set Au <- min {A17*, Au}. If {Au- AL}< e, the 

robust solution associated with Au is the globally ^-optimal robust solution and the 

algorithm is terminated. Otherwise, Q <-Q u{ffl'2} and return to Step 1.

They define the algorithm Steps 1 and 2 as the first stage of the algorithm and the 

algorithm Step 3 and Step 4 as the second and the third stage o f the algorithm 

respectively. Figure 3.1 illustrates the schematic structure of this algorithm.
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The main purpose o f the first stage is to generate a candidate robust decision, X a , 

based on a currently considered finite small subset of scenarios, Q and to perform the 

optimality check of the overall algorithm. After the candidate robust decision has 

been generated using the model (1) and the relaxed model (2), the optimality 

condition is checked. If the optimality condition is satisfied, the algorithm terminates 

with the globally optimal (or the s  -optimal) solution to the problem. Otherwise, the 

candidate robust decision, X n , (the optimal setting of vector x  from the relaxed 

model(2)) and the lower bound on the min-max regret value (the optimal objective 

function value of the model (2)) are then passed on to the second stage. Let AL 

denote this lower bound value.

F i r s t  S t a g e

S e c o n d  S t a g e

T h i r d  S t a g e

X a s o l u t i o n  

a n d  A  L

F e a s i b i l i t y  c h e c k  
(Bi - l eve l - l  m o d e l )

O p t i m a l i t y  c h e c k  a n d  G e n e r a t e  
c a n d i d a t e  r o b u s t  s o l u t i o n  

X n  u s i n g  m o d e l  ( l ) a n d  ( 2 ) .

O p t i m a l i t y  c h e c k
G e n e r a t e  s c e n a r i o  w i t h  m a x i m u m

r e g r e t  p o s s i b l e  f o r  X n  s o l u t i o n

(Bi - l evel -2 m o d e l ) .

Figure 3.1: Schematic Structure of the Algorithm.

The main purpose of the second stage is to perform a feasibility check on the 

candidate robust decision, X n forwarded from the first stage over all possible

scenarios. To achieve this goal, the algorithm solves the bi-level programming model, 

referred to as the bi-level-1 model which is discussed extensively in section 3.5.3 If 

the optimal objective function value of this bi-level-1 model is negative, the algorithm 

has found an infeasible scenario (&>]) for the candidate robust decision, X n . The

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



information of this infeasible scenario (®*) is then passed back to the first stage 

requesting a new candidate robust decision. Otherwise, the candidate robust decision 

X n is feasible for all possible scenarios and the information on X n and A1 is 

forwarded to the third stage of the algorithm.

The main purpose of the third stage is to determine a new scenario with the 

highest regret value for the current candidate robust decision, X n and to perform the 

optimality check of the overall algorithm. To achieve these goals, the algorithm solves 

another bi-level programming model, referred to as the bi-level-2 model which is 

discussed extensively in section 3.5.2, to obtain a new scenario (a>'2) with the 

maximum regret value for X Q and the upper bound value on the min-max regret 

value (the minimum between the optimal objective function value of the Bi-level-2 

model and the current upper bound value). Let Au denote this upper bound value. 

By using the information on A" and A1, the algorithm will either confirm the globally 

optimal (or thee-optimal) solution to the problem (if (Au- AL}< e) or forward the 

information on scenario co2 and Au to the first stage requesting a new candidate 

robust decision (if {Au- AL}> e).

3.3.2 Drawbacks of 3 stage algorithm

We now discuss the existing drawbacks of this three-stage algorithm. In the first 

stage, the algorithm generates a candidate robust decision X n by considering only the 

subset o f  scenarios Q  (relaxation problem ). Though the algorithm  intends to  keep the 

size of the relaxation problem of the model (2) at the reasonable level, the number of 

scenarios considered by the relaxation problem may become relatively large for some 

practical decision problems. When the number of scenarios in the scenario set Q
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becomes large, solving the relaxed model (2) directly is definitely computationally 

intensive. This is a first main drawback of the existing three-stage algorithm. For this 

reason, the application of accelerated Benders decomposition method is proposed to 

improve the computational efficiency of this stage in the proposed four-stage 

algorithm.

In the third stage, the scenario with maximal regret possible under the current 

candidate robust decision is generated by using the bi-level-2 model. This bi-level-2 

model has the bi-level program structure with mixed integer nonlinear structure for 

the leader problem and linear structure for the follower problem. The structure of the 

bi-level-2 model is explained in detail in Assavapokee (2004, 2008b) and in Section 

3.5.2. The three-stage algorithm requires solving one bi-level-2 model in every 

iteration. Though the model transformation procedure that can transform the required 

bi-level mixed integer nonlinear optimization structure into a single-level mixed 

integer linear programming structure with complementary slackness constraints was 

presented, the required computation time for solving this mathematical model is still 

relatively expensive compared to other components in the overall optimization 

algorithm. The obvious drawback of the current algorithm in the third stage is that all 

candidate solutions are treated equally and they all require the execution of the bi- 

level-2 model. In the current algorithm, there is no logical mechanism to classify the 

quality o f the candidate solutions. In order to improve the performance of the current 

algorithm, it seems logical to only seriously consider candidate solutions with 

prom ising potential and consider lightly or discard candidate solution w ith low or zero 

potential. In the proposed algorithm, we incorporate the approximation algorithms for 

approximately solving the bi-level-2 model in order to quantify the potential of each 

candidate solution. In the following sections, we propose the contributions and the
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procedures of the improved four-stage algorithm for the deviation robust optimization 

problem in detail.

3.4 Contributions of the Dissertation

The main contributions of the dissertation are

1. The proposed algorithm utilizes accelerated Benders’ decomposition 

methodologies to speed up the solution procedure of the relaxed model (2) and the 

overall robust optimization algorithm. This improvement involves the use of 

special feasibility and optimality cuts developed especially for the problem.

2. The proposed algorithm utilizes the priority based solution procedure to quantify 

the quality of each candidate solution proposed from the first and second stages to 

minimize the number of times required in optimizing the bi-level-2 model. The 

algorithm requires optimizing the bi-level-2 model only for the solutions with 

promising potential. This framework can be achieved by utilizing appropriate 

approximation algorithms to approximately solve the bi-level-2 model in order to 

achieve the potential measurement for each candidate solution.

3.5 Four Stage Algorithm

In this section, an improved robust optimization algorithm of the algorithm 

developed by Assavapokee (2004, 2008b) for two-stage decision making under 

uncertainty and ambiguity under deviation robust criterion is presented. This 

improved algorithm is also an iterative algorithm. The algorithm solves the overall 

robust optimization problem iteratively in four computational stages. The key concept 

of this four-stage algorithm is also based on convergence of the upper and the lower 

bounds on the min-max regret value similar to the three stage algorithm developed by 

Assavapokee (2004, 2008b).
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The four-stage algorithm utilizes the insight that solving the bi-level-2 model is 

computationally intensive compared to the other stages of the algorithm. Thus if we 

can reduce the number of times the bi-level-2 model is solved, the overall 

performance of the algorithm will be improved. The three-stage algorithm required 

solving the bi-level-2 model in every iteration. It treats each candidate solution 

equally and there is no method to classify the potential of each candidate solution in 

every iteration. In the four-stage algorithm we solve the bi-level-2 model only for 

those candidate solutions with promising potential by using the following screening 

criterion. For a given solution, x , we can approximately determine its potential by 

calculating the quantity A1' as follow instead of directly solving the bi-level 2 model

= max{0* - Z*(jc)} where Q 'c QcoeQ'

Note that A1' < max{0* -  Z* (x)} = Af/  (objective function from the bi-level-2 model) 

Let us define the notation a>] e argmax{0* -  Z* (jc)}
oeQ

•  A  I IGiven the value of A j, we will use the following rules to classify the quality of 

the solution jc :

1. A solution x  is classified as the solution with no potential if A^ > A(/. This 

type of solution will not be considered further by the algorithm.

2. A solution jc is classified as a solution with possible potential if 

Au > A " > e  + AL. This type of solution will be recorded into the set of 

possible solutions for further consideration by the algorithm.

3. A solution x  is classified as a solution with promising potential if

s  + Al > A* . The bi-level-2 model will be solved for the solution o f this type 

to calculate the value of A" in order to update the value of Au .
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Figure 3.2 illustrates the classification procedure.

A X

A L s  +  A 1
u

A _ = m a x { O n - Z  ( x ) }  w h e r e  Q ' c D

Figure 3.2: Classification of candidate solutions

As described below, we propose a four-stage optimization algorithm for solving

min-max regret robust optimization problem under scenario set £2 that proceeds as 

follows. Figure 3.2 illustrates the schematic structure of this new algorithm.

Summary of Four-Stage Algorithm

Step 0) (Initialization) Choose a finite subset Q c D  and set A" = oo and AL = 0 . 

Determine the value of s  (predetermined small nonnegative real value), set S = <f>, and 

proceed to Step 1.

Step 1) Solve the model (1) to obtain O’ V o e Q . If the model (1) is infeasible for

any scenario in the scenario set Q , the algorithm is terminated; the problem is ill- 

posed. Otherwise the optimal objective function value to the model (1) for scenario co 

is designated as 0* . Proceed to Step 2.

Step 2) (Solving the Relaxation Problem and Optimality Check) Solve the relaxation 

of the model (2) by considering only the scenario set Q instead of Q by using the
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Benders’ decomposition algorithm. If the relaxed model (2) is infeasible, the 

algorithm is terminated with the confirmation that no robust solution exists for the 

problem. Otherwise, set X n = x (optimal solution from the relaxed model (2)) and 

set A7 = S' (optimal objective function value from the relaxed model (2)). If {Au- 

Al }< s ,  the robust solution associated with Au is the globally s-optimal robust solution 

and the algorithm is terminated. Otherwise the algorithm proceeds to Step 3.

Step 3) (Prioritizing candidate solutions and Optimality check) Check the list of

potential solutions S  for the solution ¥  such that < s .

If such a solution exists, S <— S -  {A"'} and the bi-level-2 model is solved under the 

fixed setting of the discrete solution ¥ ,  Otherwise the algorithm proceeds to Step 4 

along with the current candidate robust solution (X n ) and the updated Au and AL.

The results from this bi-level-2 model are the maximum regret value ^  associated

with the solution ¥  and a scenario o/x , associated with this maximum regret value of 

¥ .

Set f i < - Q u  {(Ox), and then set Au <- min{A^. , Au }.

If {Au- AL}< s, the robust solution associated with Au is the globally s-optimal robust 

solution and the algorithm is terminated. Otherwise set S  <- S - D  such that 

D -  {X  g S  | A^ > Au}. The algorithm then repeats the Step 3.

Step 4) (Feasibility Check) Solve the bi-level-1 model by using the Xn information

from Step 3. I f  the optim al objective function value o f  the b i-leve l-1 m odel is

nonnegative (feasible case), proceed to Step 5. Otherwise (infeasible case), 

Q < - O u  {a>\} where o)\ is the infeasible scenario for X n generated by the bi-level- 

1 model in this iteration and return to Step 1.
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Step 5) (Prioritizing candidate solutions) Solve the bi-level-3 model by using the 

information to determine a new scenario m' with the highest approximated regret 

value for the current candidate robust solution ( X n ). If Af/, set

O <- Q u  {© } and the algorithm proceeds to Step 1. Otherwise the algorithm 

proceeds to Step 6.

Step 6) Set S <— S<u {Xn }. If ^  < s , proceed to Step 7.

Otherwise return to Stepl.

Step 7) set S < - S - { 2 fn} and solve the bi-level-2 model for the discrete solution 

X a . Let o)*Xa and a uXo denote the scenario with maximum regret value for X n and 

the optimal objective function value generated by the bi-level-2 model respectively in 

this iteration. The new generated scenario <aXa is then added to the set Q . Set Au <—

min { , Au}. If {Au- AL}< s, the robust solution associated with Au is the

globally e-optimal robust solution and the algorithm is terminated. Otherwise, set

S 4— S — D such that D = {X e S  | ^  and the algorithm returns to Step 1.

The Steps 1 and 2 are defined as the first stage of the algorithm, Step 3 as the 

second stage, Step 4 as the third stage and Steps 5, 6, and 7 as the fourth stage of the 

algorithm respectively. Figure 3.3 illustrates a schematic structure of this algorithm.
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First Stage

Xn and A Second Stage

New Scenarios 
and Au

Infeasibility
information

Fourth Stage

Xn, AL and A* Third Stage
Xn, A 7' and A'

Feasibility Check for Xn 
(Bi-level-1 Model)

• Generate new candidate robust solution 
Xn using model (1) & (2) and update the 
lower bound (AL ) of min-max regret 
value. •  Check the list of solutions for 

the potential solution and
update the upper bound ( A u ) 
of min-max regret value and the 
list of solutions.

• Optimality Check•  Approximate the value of the maximum 
regret possible for Xn

•  Update the list of solutions
• Check the list of solutions for the 

potential solution and update the upper
bound ( Au ) of min-max regret value

• Optimality Check

Figure 3.3: Schematic Structure of Proposed Four-Stage Algorithm

Similar to the first stage of the algorithm presented in Figure 3.1, the first stage of 

this new algorithm starts by initializing required parameter values and generating a 

candidate robust decision, X n , and the lower bound on min-max regret value (A7 ) 

based on a considered finite subset of scenarios Q by using the model (1) and the 

relaxed model (2). This information is then passed on to the second stage.

The second stage starts by checking if there is any solution with promising 

potential in the current potential solution list S. The promising potential solution, X ,  

is the solution such that Aux, - A l <s . If  the promising potential solution exists, it is 

removed from S  and the bi-level-2 model is optimally solved for this solution. The 

results from solving the bi-level-2 model are a new generated scenario and the 

maximum regret value (A",) for the selected potential solution. This new scenario is

then added to the scenario set Q and we update Au <— min{^", , Au }. By using the

Au and AL information, the optimality condition can be checked (Au -  AL < s ). If 

the optimality condition is satisfied, the algorithm terminates with the solution
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associated with the maximum regret value o f Au as a e-optimal robust solution. 

Otherwise, the algorithm update the potential solution list by deleting any solution, X, 

in the list such that Aux > Au . This process is repeated until there is no more 

promising potential solution in S. If this is the case, the candidate robust decision 

( X n ) and the updated Au and AL information are forwarded to the third stage of the 

algorithm.

Similar to the second stage o f the algorithm presented in Figure 3.1, the main 

purpose of the third stage is to perform a feasibility check on the candidate robust 

decision over all possible scenarios by using the bi-level-1 model. After the bi-level-1 

model is transformed and solved, if there is any infeasible scenario under the current 

candidate robust decision, the information of the infeasible scenario is detected and is 

sent back to the first stage requesting a new candidate robust decision. Otherwise, the 

candidate robust decision (X 0 ) and the updated upper and lower bound information 

are forwarded to the fourth stage of the algorithm.

The main purpose of the fourth stage is to determine a new scenario with the 

highest approximated regret value ( AuXq ) for the current candidate robust decision 

( X a ) by using approximation algorithms. Note that the approximation is performed 

in such a way that A'^ < A"q . After this approximation is performed, if  AuXa > Au , 

the generated scenario is added to the scenario set Q and the first stage is repeated. 

Otherwise, the candidate robust solution X a is added to S. The algorithm then 

checks whether the candidate robust solution is a promising potential solution. If this 

is the case, it is removed from S  and the bi-level-2 model is solved for this solution. 

The new generated scenario is then added to the scenario set Q and the Au value is
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updated, A" <— min{A"Q , Ar/}. By using the Au and A7' information, the optimality

condition can be checked (Aw -  AL < s ). If the optimality condition is satisfied, the 

algorithm terminates with the solution associated with the maximum regret value of 

Au as a s-optimal robust solution. Otherwise, the algorithm updates S  by deleting 

any solution, X, such that A ">A " and the first stage is repeated. In following 

sections, we discuss the methodologies utilized in each stage of the algorithm in 

detail.

3.5.1 The First Stage

The purposes of the first stage are (1) to find xn e argmin jmax{0* -Z * (i)} j, (2) to 

find A1' = minmax{Cf - Z ’ (jt)}, and (3) to determine if the algorithm has discovered
x

an optimal robust solution for the problem. The first stage utilizes two main 

optimization models: the model (1) and the relaxed model (2). The model (1) is used 

to calculate 0* for all scenarios o e Q c Q .  If the model (1) is infeasible for any 

scenario a> e Q , the algorithm is terminated with the conclusion that there exists no 

robust solution to the problem. Otherwise, once all required values of 0* V o e f l  

are obtained, the relaxed model (2) is solved. In this research, we recommend solving 

the relaxed model (2) by utilizing the Benders’ decomposition techniques as follow. 

The relaxed model (2) has the structure represented by model (4): 

min(max(0* -  cTmx -  qTJ J )
x ,y„ me Cl

s-t-
W l J m ~ T l m X  =  h m -  V ( 0  €  Q

^ > 0

JC e  (0,1}W

This model can also be rewritten as the following model 5:
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m in{/(x)|xe{0 ,l}W} where f ( x )  = rna\(O l-Qm(x )~ c7mx) anda>e£2

Q J X) = max q lya 
y.i o

S-t- Wlmya,^ha,+Tl J  ( * w )

W 2 J a , = K + T l J  (*W )

where the symbols in parenthesis next to the constraints denote to the corresponding

dual variables. The results from the following two lemmas are used to generate the

master problem and sub problems of the Benders’ decomposition for the relaxed

model (2).

Lemma 1: / (3c) is a convex function on x .

Proof: / (x) = max(<9* - Q (x) - c' y)  is a convex function on 3c because of thecoeCl

following reasons. (1) Qm(x) and cojx  are concave functions on 3c;

(2) (-l)*concave function is a convex function; (3) Summation of convex functions is 

also a convex function; and (4) Maximum function of convex functions is also a 

convex function.

Lemma 2: (-c^(i) -  « ffl(0>i(0 f  -  (n2MiU{t) f  T2m(i))' e 0 / (*(/)) where 

<»(/)eargmax{0* - c ^ x ( i ) - Q m(x(i))}, df {x(/)) is sub-differential o f the function /

at 3c(/> and ( ■ >  ) *s ^  optimal solution of the dual problem in the

calculation of Qm{:c) when <o = a>(i) and 3c = 3c(/).

Proof: From duality theory:

Q w ( i ) ( X (  0) = (̂ 1 ,®(/),i(/)) ( b \a i i ) + T , mCOX ( 0 )  + 2, m(i), *(/)) 0h .m (i) + ̂ 2 a ,0 X (  0) 

and 2 <b(/)(x) < (n\ x(i)) ( f y a i ( t )  + + (^2,w(i),x(i)) (̂ 2m(i) 2̂a((/x) f°r arbitrary X.

Thus> Qa,(i)(x ) -& *)(* (0 ) ^ (<a,(/),x(/))r TIm(9{x - X(i)) + (n2MiXm)TT2m(i)(x - x(0) and
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^m(i) Qai(l) (X) ~ Om(0 Qw(i) (X(0 ) ( ( ^ 1,<»(/),*(/) ) Îcop) +  ( ^ 2,<»(/),*(/)) ) (X X(0 ) ■

From - c i oJC = - c ^ )x ( 0 - c ^ o(x -x (0 )  and f ( x )  = max(0* -  Qa(x) - c > ) ,

/ (* )  * O*(0 -  f i* )(*) -■cTa(t)x

— 0<o(i) ~ fi»(i) (*(*')) — ̂ , 5 ( 0  + (—ICŵ  — — (̂ 2,<»(/),*(/)) ) (x ~ x(i))

From ®(/) e argmaxJO* -c lx ( i )~ Q m(x{i))},
(yen

/(* )  ^ /(* (0 )  + lom ~ T2c,fii)(* ~ *(0)

Based on the results of the Lemma 1 and 2, we briefly state the general Benders 

decomposition algorithm as it applies to the relaxed model (2).

Benders Decomposition Algorithm for the Relaxed Model (2):

Step 0: Set lower and upper bounds lb = -oo and ub = +oo respectively. Set the 

iteration counter k= 0.  Let Y° includes all cuts generated from all previous iterations 

of the proposed three-stage algorithm. All these cuts are valid because the proposed 

algorithm always add more scenarios to the set Q and this causes the feasible region 

of the relaxed model (2) to shrink from one iteration to the next. Let x* denote the 

incumbent solution.

Step 1: Solve the master problem

lb = min 0
e,x

s.t. 0 > a ] x  + bi Vi = 1,2,...,* (3.5.1.1)

( 0 , i ) e F

If the master problem is infeasible, stop and report that the relaxed model (2) is 

infeasible. Otherwise, update k = k + 1 and let x(*)be an optimal solution of the 

master problem.
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Step 2: For each © e Q ,  solve the following sub problem 

&,(*(*)) = max qTmym
ya > 0

st. WxJ m < k m + Tle>x(k) (3.5.1.2)

W2«X = k a + T^x ik ) {nM k ) )

where the symbols in parenthesis next to the constraints denote to the corresponding

dual variables. If the sub problem is infeasible for any scenarios e Q , go to Step 5.

Otherwise, using the sub problem objective values, compute the objective function

value f  (x(k)) = -  clw x(k) -  Q a ^ x lk ) )  corresponding to the current feasible

solution x(k) where m{k) e arg max{Cf - c^x(k) - Qm(x(k))}. If ub > f(x (k ) ) ,

update the upper bound ub = f  (x(k)) and the incumbent solution x = x (k ) .

Step 3: If ub -lb  < X, where A>0  is a pre-specified tolerance, stop and return jc* as 

the optimal solution and ub as the optimal objective value; otherwise proceed to 

Step 4.

Step 4: For the scenario 6>(£) e  arg max{0* - c l x ( k ) - Q m(x{k))}, let

( >  ̂ 2  a>(k),x(k)) be the optimal dual solutions for the sub problem 

corresponding to Jc(A:) and m(k) solved in Step 2. Compute the cut coefficients

= ~ (pa(k) + ) l̂<o<*) + ) ^2oK*))’ atl^ ^k ——akX{k) + f  {x{k)) ,

and go to Step 1.

Step 5: Let S e C l  be a scenario such that the sub problem is infeasible. Solve the

following optimization problem where 0 and 1 represent the vector with all elements 

equal to zero and one respectively.
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m i n ^  + T^x(k))7 v, + (h2i} + T2£>x(k))r v2

St. W ^ \ +W lv 2 > 0 (3.5.1.3)

0 < v, < 1, -  1 < v2 < I

Let v* and v* be the optimal solution of this optimization problem. Set k = k -  1 and 

Yk <- Yk u  {x I ( ^ . + 7 ^ * /  V* +  V* > 0} and go to Step 1.

If the relaxed model (2) is infeasible, the algorithm is terminated with the 

conclusion that there exists no robust solution to the problem. Otherwise, its results 

are the candidate robust decision, xa = x ,  and the lower bound on min-max regret

value, Al = max{0* -Z*(x*)} obtained from the relaxed model (2). The optimality

condition is then checked. The optimality condition will be satisfied when 

Au -  AL < s , where s > 0  is pre-specified tolerance. If the optimality condition is 

satisfied, the algorithm is terminated with the s  -optimal robust solution. Otherwise 

the solution xa and the value of A1' are forwarded to the second stage.

3.5.2 The Second Stage

In the second stage, we first check the set of solutions S  for the solution with 

promising potential. A solution X ’ is said to be the solution with promising potential

if and only if where = max{0*-Z*(jc)} and Q ' c Q .  Thex oeO’

methodology for calculating the ^  value is explained in detail in Section 3.5.4. If

such a solution X '  exists, it is first removed from the set of solutions S  and the bi

level-2 model is solved under the fixed setting of the discrete solution X .  Otherwise 

the algorithm proceeds to the third stage with the current candidate robust solution 

( xn ) and the updated values of Au and AL.
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The main purpose of the bi-level-2 model is to identify a scenario cox, associated

with the largest regret value for the solution X ’. In other words, the bi-level-2 model 

searches for the scenario <ax, such that

value overall possible scenarios, max {O’ - Z ' ( X r) j , for the candidate robust solution

X ' . The follower problem on another hand is tasked to respond with the setting of 

vector y 2 that maximizes the value of Z*(X') , under the setting of the vector £

established by the leader problem. The structure of the bilevel-2 model is represented 

by the model (5):

m ax q Ty x + c T x x -  q Ty 2 -  c TX  '

o)x , eargm ax{0;-Z *(X ')}  . (3.5.2.1)

In the bilevel-2 model, the leader problem is tasked with finding the setting of the

vector £ = (c,Tv T2,h ,g ,q )  and the vector (jc,,y t) that result in the maximum regret

s.t. ^ iT i ^ hx + TjX, 

W2y, = h 2 +  T2x x

V/

Vi e L, V/ 

Vi e E ,  V/ 

Vi e L

Vi e E

Q j  G  { Q  H I ) ’ *! j W ’ — ’ Q  j ( m j ) }  

y x > 0 jc, e {0,1}^' 

m ax q 1 y 2

s.t. w iy 2 < hx + TxX  ’

W2y 2 = h2 + T2X  ' 

y 2 > 0
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The solution methodology for solving the model (5) consists o f the following two 

main steps.

3.5.2.1 Parameter Preprocessing Step

From the structure of the model (5), some elements of the vector £ can be 

predetermined to attain their optimal setting at one of their bounds.

Preprocessing Step for c: Each element c/ of the parameter vector c is represented in 

the objective function of the model (5) as c,^, -  c ,X ' l . From any given value of X \ ,  

the value of c, can be predetermined by the following simple rules. If the value of 

X is one, the optimal setting of c, is c* = c f . Otherwise, the optimal setting of c,

* U
IS  c ,  =  c ,  .

Preprocessing Step for T: Each element Tw of the parameter matrix T is presented in 

the functional constraints of the model (5) as

E ^ A ^ + T a + E ^ A  - + E v * .
j  k * l  7 k * l

For any given X '  information, the value of Tw can be predetermined at if the 

value of X ',  is zero. In the case when the value of X \  is one, the optimal setting of 

Tw satisfies the following set of constraints illustrated in eq. 3.5.2.1.1 where the new 

variable TXul replaces the nonlinear term Tulxu in the model (5). The insight of this 

set of constraints eq. 3.5.2.1.1 is that, if the value of x„ is set to be zero by the model, 

the optimal setting of Tw is . Otherwise, the optimal setting of Tul can take any 

value from the compact interval [7^, ]
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T X i a - T ltt + T ‘ ( \ - x u )<. 0 

- T X UI + TU, - T " {  l ~ x v ) < 0

Tu,xu ^  T X UI < T ^X U . (3.5.2.1.1)

Tui ^  Tui + x u (Tu, ~ Tui)
Tu, < Tul < T "

Preprocessing Step for a: Each element % of the parameter vector q is presented in 

the objective function of the model (5) as q ty u -  qjy2j • Each parameter qj can 

independently take its values from the ascending ordered set of real values 

{qm ,qj(2),...,qJ(mj)} , where mj represents the number of possible values for qj. For

simplicity, the notations q'j and q" are used to represent the terms qm  and qj(mj) 

respectively. For any given X '  information, in the case where the value of y 2J is 

forced by other parameters setting to be zero, the parameter qj value can be 

predetermined to be q' = q" . In other cases, we add the decision variables QYtj and 

QY2j to replace the terms q ^  and qjy2j respectively in model (5) and a set of 

variables and constraints illustrated in eq. 3.5.2.1.2 to replace the constraint 

qt &{qm ,qj(2),...,qJ(mJ)} in the model (5) where y urj and y Lrj represent the upper bound

and the lower bound of variable yrj respectively for r = 1, 2. A Special Ordered Set

of type One (SOS1) is defined to be a set of variables for which not more than one 

member from the set may be non-zero.
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try try

rry

QY\j ~ X^(v)Zl7(s)

y t bim  ZZrn. ) ^ , > ‘<.v), < y tJ - y ! j ( l - b i jU)), 

z \ m  ^  y i j  -  y i j  0  -  biJM ) Vs 6 {1, mj}

m
e ^ = Z  W a „  (3.5.2.1.2)

5=1
y^jbi ju)  — z 2j(s) ~  y2jbij(s)> z 2j(s) -  y 2j ~ y i j ( ^ ~ b i J(x)X

z 2j(s) > y 2l - y U2j(x - b i j{s)) Vse ,w/'}

It is worth pointing out that the optimal setting of each parameter in the bilevel-2 

model does not always reside at its upper or lower bounds.

3.5.2.2 Problem Transformation Step

Because the follower problem of the model (5) has a linear program structure and 

it affects the leader decisions only through its objective function, the follower 

problem can be replaced by the explicit representation of its optimality conditions 

including primal constraints, dual constraints, and complementary slackness 

conditions. Thus, the model (5) can be transformed into a single level mixed integer 

nonlinear programming problem with complementary slackness constraints as shown 

in model (6):
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m ax{<7 r + c T x, -  q T y  2 -  c T X  ' }

s.t. fV,y,  < h, + T,xx

W 2y x = h2 + r 2x, 

w \ f i  = K  -  s, + r , x  '
W 2y 2 = h2 + T 2X  '

W 7 + W2T w 2 — a = q
Wjjj,,. = 0 V / e L

a j y 2j = 0 V /

c f  < c, < c vt VI

K  ^ Tut < Txun V i e L  VI

T2lh < T2U < T2uu V i e  E VI

hu ^  K  ^  hu V i  e L

hii < h2i * h2i V i e  E

Q  j  6  ^  J O )  ’ ^ 7 ( 2 ) ’ • " >  9  j ( m j )  } V 7

y x > 0 , y 2 > 0 , f ,  > 0, a > 0,w, > 0,x,  e {0,1} l-»i I

Finally, the model (6) is transformed into a single level MILP problem with 

complementary slackness constraints as shown in the model (7) by including all 

additional constraints and variables presented in the preprocessing steps. The last 

step is to handle the complementary slackness conditions. The direct approach of 

Bard and Moore (1990) is used, in which the constraints are branched directly rather 

than using a classical relaxation method. The latter approach has been shown to be 

ineffective (Assavapokee 2004) for bi-level programming problems because high 

numerical precision is required to avoid the leader problem perturbing the follower 

problem optimal solution.
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Model 7:

max A"‘ = £  QYlJ + £  + Z  c*xu “ Z  QYu
j\In d  _ q t =\ j\ In d  _ ? y = 0  /  j\In d  q t =\

~ Z  9 tJy2J - ' Z ci x 'i
j \ ln d  _ q j= 0  I

s-t. Z  -  Z  Z  K ,* u * K  V i e L
j  l\Ind _ Tlt l - l  l\ In d _ T u l=0

J J ^2Uy tj - I JTX2i l =h2l V i e E
j i

Z * * V 2, -  Z  V / -  Z  K , x \  + S u = K
j  / |/««/ _ 7i// =1 /|//irf _ 7 ’u /=0

Z  -  Z  = h2, V i e E

Z  ^ 1 9 WU + Z  ^ 2 9 w2/ -  °J = 9 j  V j  such  th a t I n d  _ q j  = 1
iei /e£

Z  ^ 1 9  wu + Z  W2 ijw 2 i -  a j  = 9j V j  such  th a t I n d  _  ? ,  = 0

T 2 i i X u  < TX2il < T “,xu Vi e E,Vl
TX2il<T2ll- T 2Lu( l - x u ) Vi e E, VI
TX2ll>T2il- T 2un( l - x u ) Vi e E ,V l
wtls1( = 0  V/ e L

aj y2j = 0 Vj
Txlu <,Tw <.T” V i e L  VI
TL < T2iI < T^, V i e E  VI

hu < K  ^  K  V i e L
h ’2, < h2i < h'i V i e E

Yij ^ °> yij ^  °» su ^  °> aj ^ °> wn ^  °> xu G {O’1} Vi  e L ,V j,V l

Condition to add constraints Constraint reference Constraint index set

IndJTu, = 1 (3.5.2.1.1) For all i e L , l

Indqj = 1 (3.5.2.1.2) For all j

where

f 1, if T, v a lu e  cannot be predetermined
Ind Tul = f

[0, otherwise

f 1, if q, value cannot be predetermined 
Ind_qi -  \

10, otherwise
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. |  Preprocessed value of Tw, if Tul can be preprocessed 
1,7 [0, Otherwise

, J Preprocessed value of qp  if q2 can be preprocessed 
[o, Otherwise

For any branch and bound scheme, the branching rules are always critical. For 

the model (7), branching priorities are recommended as follows: (i) complementary 

slackness conditions, (ii) binary decisions on the parameters bounds, and (iii) first- 

stage binary decisions. Using this approach, the model (7) can be solved.

The optimal objective function value Au* of the model (7) is used to update the 

value of Au by setting A" to min{At/*, Au}. The optimality condition is then 

checked. If the optimality condition is satisfied, the algorithm is terminated with an 

s  -  optimal robust solution which is the discrete solution with the maximum regret of 

Au from the model (7). Otherwise, add scenario mx, which is the combination of the 

optimal settings o f ,fVn W2 from the model (7) to the scenario set Q

and set S < ^ S - D  such that D = {X  e  S  \ Aux > A77} and the second stage is repeated.

3.5.3 The Third Stage

The main purpose of the third stage algorithm is to identify a scenario a>\ e Q 

which admits no feasible solution to Z*(xn) for a> -  a>\ . To achieve this goal, the 

algorithm solves a bi-level programming problem referred to as the bi-level-1 model 

by following two main steps. In the first step, the algorithm starts by pre-processing 

model parameters. At this point, some model parameters’ values in the original bi

level-1 model are predetermined at their optimal setting by following some simple 

preprocessing rules. In the second step, the bi-level-1 model is transformed from its 

original form into a single-level mixed integer linear programming structure. Next
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we describe the key concepts of each algorithm step and the structure o f the bi-level-1 

model.

Recall that the scenario set Q is generated by all possible values of the 

parameter vector %. Let us define £(a>) as the specific setting of the parameter 

vector £ under scenario a  e Q and H = {%(&>) \ a  e Q} as the support of the random 

vector £ . The following model (8) demonstrates the general structure of the bi-level- 

1 model

min 84
s.t. £ e  S

max 8
y , S , S y , S 2 , S

s.t. Wty  + s = h l + Ttxn 

W2y  + s, = h 2 + T2xn 

- W 2y  + s2 = - h 1 - Ti*n 

8 \ < s ,  S \ < s x, 8 \ < s2, y > 0

In the bi-level-1 model, the leader’s objective is to make the problem infeasible 

by controlling the parameters’ settings. The follower’s objective is to make the 

problem feasible by controlling the continuous decision variables, under the fixed 

parameters setting from the leader problem, when the setting of binary decision 

variables is fixed at xn . In the model (8), S represents a scalar decision variable and

0 and I  represent the vector with all elements equal to zero and one respectively. 

The current form of the model (8) has a nonlinear bi-level structure with a set of 

constraints restricting the possible values of the decision vector

Because the structure of the follower problem of the 

model (8) is a linear program and it affects the leader’s decisions only through its
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objective function, we can simply replace this follower problem with explicit 

representations of its optimality conditions. These explicit representations include the 

follower’s primal constraints, the follower’s dual constraints and the follower’s strong 

duality constraint.

Furthermore, from the special structure of the model (8), all elements in decision 

variable matrixes Tt , Wx and vector /t, can be predetermined to either one o f their 

bounds even before solving the model (8). For each element of the decision matrix 

W\ in the model (8), the optimal setting of this decision variable is the upper bound of 

its possible values. The correctness of these simple rules is obvious based on the fact 

that y  > 0. Similarly, for each element of the decision vector /j, and matrix 71, , the 

optimal setting of this decision variable in the model (8) is the lower bound o f its 

possible values.

Lemma 3: (Assavapokee 2008b) The model (8) has at least one optimal solution 

T*,h{,W*, T*,h*, and W2 in which each element of these vectors takes on a value at 

one of its bounds.

Proof: Because the optimal setting of each element of Tx,hy, and Wx already takes 

its value from one of its bounds. We only need to prove this Lemma for each element 

of T2 , ^ ,  and W2 . Each of these variables T2il, h2i, and W2ij appears in only two

constrains in the model (8) X  + *vi, = >̂, + X  T2,ixcu and
i  i

- ^ JW2ijyJ +s2j=-h2j- ^ jT2ilxn i. It is also easy to see that .v1( = -v2, and
j i

min{.s’lj,.v2(} = - 1.s]; - ,v2l | /2 . This fact implies that the optimal setting of y  which 

maximizes min{j1(.,j2l.} will also minimize \su - s 2i\/2  and vice versa under the
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fixed setting of £ . Because 1.s,, —s2l\/2  = \h2i+ '^  T2dxiV -  ̂  W2 vy} | , the optimal
i )

setting of T2U, l andW2 will maximize min j ^ ,  I
y£Z(*a) I  j

where z (x n) = {y > 0 1 Wxy  < /j, + Ttxn, W2y  <h1+ T2xa) . In this form, it is easy to 

see that the optimal setting of variables T2i1 , /22j and W2ij will take on one of their 

bounds.

Let us define the notations L and E  to represent sets of row indices associating 

with less-than-or-equal-to and equality constraints in the model (1) respectively. Let 

us also define the notations V /e L , w2i and w2i Vi e E to represent dual 

variables of the follower problem in the model (8). Even though there are six sets of 

follower’s constraints in the model (8), only three sets of dual variables are required. 

Because of the structure of dual constraints of the follower problem in the model (8), 

dual variables associated with the first three sets of the follower’s constraints are 

exactly the same as those associated with the last three sets. After replacing the 

follower problem with explicit representations of its optimality conditions, we 

encounter with a number of nonlinear terms in the model including: W2tjy ] , W2:jw2i,

W2uw2i ’ Kiwii ’ Kiw2i > T2iiw2i» and T2ilw2i. By utilizing the result from Lemma 3, we 

can replace these nonlinear terms with the new set of variables WY2jj, WW2ij, WW2jj, 

HW2i, UW2j, TW2iI, and TW2ll with the use of binary variables. We introduce 

binary variables biT ^M K i , and biW2lJ which take the value of zero or one if 

variables T2i, , h2l, and W2ij respectively take the lower or the upper bound values.

The following three sets of equations 3.5.3.1, 3.5.3.2 and 3.5.3.3 will be used to relate 

these new variables with nonlinear terms in the model. In these constraints, the
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notations y Uj , w2l' and w2lu represent the upper bound value of the variables y}, w2i

and w2i respectively. Terlaky (1996) describes some techniques on constructing 

these bounds of the primal and dual variables.

Tw = T ^ H ^ u - T ^ ) b iT ,2 il

Ttw :. < Tw:„ < T'',w2il 2i — 1 " 2 il — 1 2il **21

T 2H W 2, ^  T W Z i  ^  T 2 ilW ~2,

TW+ > T2uuw+2i -  (11% I + I T2lu |X <  XI -  biT2U )

T K  * n ,w +2l + (| # ,  I + | T2U |) ( <  )(biT2il)
TW2il > 7 > "  -  (| T2H | + 1 T2i1 \)(W-l> )(1 -  biT2il)l 2 il 

r U

2il

n lTW2-„ < +(\T2u„\ + \ I)(w-2")(biT2il)
biT2il g {0,1}

V/ e E, V/

h2i= t t ,+ { % - % i)bih2l 

< HW2] < / £ <

^ , w-,<HW2- < ^ w2,

- < \ K \  + \ %  1X0 ( 1  - b i K )  
HW2j < h^ y2l + (| / £  | + 1 K, l ) «  )(bifh, )

m r -  > % w-2i -  (I /£  I + 1 fh  |) « )(1 -  b y ) 

h w - < /* > - + ( i ^ i + i  k , \ ) y - ) i b y )  
b y ^ i  0,1}

V i e E

(3.5.3.1)

(3.5.3.2)
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W^y j <WY2ij<W ^yj

wY2iJ * K y j - d w2uI + 1K \ ) i y uj ) ( y -b iw 2ij) 
WY2ij < W ^ . + i | | + | | ) ( ^ ) ( * / r 2,)

H T>i < 0TT+ < W^w* 

w £ w - * m r - * i r Z w - Vz e E, V/ (3.5.3.3)

^  *  » S * £  -  (I ^  I + 1 » s  I X < X 1 - W ^ )  
ww^j * K < + ( K i  + i ^  i x < x w ^ )

^  * ^ > 2 1  -  (I ^  I + 1 K j  \ ) ( w 2 l’ ) { \ - b i w 2l j )

ww2]j ± K w2,+ (i K  i + 1 » S  d k t  ) )
6iW2j,e{0,l}

After applying pre-processing rules, the follower problem transformation, and the 

result from Lemma 3, the model (8) can be transformed from a bi-level nonlinear 

structure to a single-level mixed integer linear structure presented in the model (9). 

The table in the model (9) is used to identify some additional constraints and 

conditions for adding these constraints to the model (9). These results greatly 

simplify the solution methodology of the Bi-level-1 model. If the optimal setting of 

the decision variable 8  is negative, the algorithm will add scenario co\, which is

generated by the optimal setting of Al,/z2,7'1,7’2,B'l, and W2 from the model (9) and 

any feasible combination of c and q , to the scenario set Q and return to the first 

stage algorithm. Otherwise the algorithm will forward the solution xn and the value 

of Al to the fourth stage algorithm.
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Model (9):

m in  8  

s.t.

' Z w uJ y J + ^ = f > u + I l Tlflx ai V i e L
j  i

X w Y2iJ+su = h2i+ £ T2ilxni V i e E
j  I

~ Z  WY 2 o + s 2 i = ~ h2 i -  Z  r2H*ni V i e  E
j  /

8  < st Vi  e L, 8  < su Vi  e E,  8  < s 2i Vi  e E

Z  K  w u +z ( W W 2U -  W W 2iJ ) > 0 Vj
i e L  i&E

Z - W + Z  ( W 2 i +  w 2 i )  =  1
i g Z, i' g £

= Z f ■K  + Z  V »  + Z f ^ ^  + Z  ( TW 2+n - t w - , ) x
i&L \  I J  i e E  \  /

wu > 0  V / e L, w2j > 0  Vi  e E,  w2i > 0 Vi  e E , y } > 0 Vy

Condition to Add the Constraints Constraint Reference Constraint Index Set
Always (3.5.3.1) For all i e  E , For all /
Always (3.5.3.2) For all i  e  E
Always (3.5.3.3) For all / e  E , For all j

3.5.4 The Fourth Stage

The main purpose of the fourth stage is to determine a new scenario co' with the 

largest approximated regret value ( k uXa ) for the current candidate robust decision ( jcn ).

Note that the approximation is performed in such a way that k l,x  ̂ < A',  ̂.

In this thesis, we apply the Full Factorial approach developed by Assavapokee 

(2007a) as the approximation algorithm in finding the value of AXq • The intuitive

idea under the Full Factorial approach is as follow. Instead of searching for the 

scenario with maximum regret value through all possible points in the continuous 

interval for each uncertain parameter, we perform the search in a finite number of 

combinations of discrete points in each continuous interval. In other words, we 

discretize each compact interval into a finite set of discrete values that the parameters
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can take and solve the modified bi-level-2 model (bi-level-3 model) under this 

problem setting instead of solving the original bi-level-2 model. Figure 3.4 illustrates 

this discretization process.

1 i ! i ! [ !

Po

PL

P1

i
I

P2 P3

I

P4

I I
i I

P

Figure 3.4 Discretization of the Compact Interval

The result from the bi-level-3 model is the approximated maximum regret value

A FT

. Based on our numerical experiment, the computation time required to find the

approximated maximum regret value using the bi-level-3 model is significantly less 

than the required computation time to find the maximum regret value using the bi

level-2 model. By using this type of approximation algorithms, the algorithm can 

quickly identify the quality of the given solution. We define the set f l 'c Q  as the 

finite set of all possible combinations of the discretized points.

In the bilevel-3 model, the leader’s objective is to find the setting of the decision 

vector %' = {c ,q , \ ,h l ,Tx ,7  ,IF ) and decision vector ( jc, ,J>,) that result in the 

maximum regret value possible over all scenarios in the scenario set Q ', 

max{Cf , for the candidate robust solution xn . Let us define £\a)) as theoeCl'

specific setting of the parameter vector under the scenario coe Q ' and

S ' = | o) g Q'} as the support of the random vector The follower’s
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objective is to set the decision vector y2 to correctly calculate the value of Z* (Jcn)

under the fixed setting of decision vector £ established by the leader. The general 

structure of the Bi-level-3 model is represented in the following model (10).

The solution methodology for solving the model (10) can be structured into two

main steps. These two main steps include (1) the parameter pre-processing step and

(2) the model transformation step. Each of these steps is described in detail in the 

following subsections 

Model (10):

m ax  { q T y x + c T x,  -  q T y 2 -  c T x a )}

s.t. % e E

W , y ,  < h, + Tt x t 

W iy^ = h2 + T1x l 

m ax q Ty ,
, p2 > 0

s .t. W , y 2 < h, + Tt x n 

w  2y 2 = K + T2xn

3.5.4.1 Parameter Pre-Processing Step

From the structure of the model (10), many elements of decision vector £ can be 

predetermined to attain their optimal setting at one of their bounds. In many cases, 

simple rules exist in identifying the optimal values of these elements of decision 

vector £  when the information on xn is given even before solving the model (10). 

The following section describes these simple pre-processing rules for elements of 

vector c and m atrix 7j in the vector £ .

Pre-Processing Step fo r  c

The elements of decision vector c represent the parameters corresponding to 

coefficients of binary decision variables in the objective function of the model (1).
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Each element c, of vector c is represented in the objective function of the model (10) 

as: (c,xu -C/X^) ■ From any given value o fx^ , the value of c, can be predetermined 

by the following simple rules. If x(ll is 1, the optimal setting of cl is c]= cl. 

Otherwise the optimal setting of c, is c*= c " .

Pre-Processing Step fo r  Tx

The elements of decision vector Tx represent the coefficients of the binary 

decision variables located in the less-than-or-equal-to constraints of the model (1). 

Each element Tul of matrix Tx is represented in the constraint of the model (10) as

2  w\ijy\j -  >+ t uix\i +2  T\ikxu and 2  u?2j -  *i<+ Tmxai +2  T\*xnk. From any
j  k * l j  k * t

given value ofxm, the value of Tul can be predetermined at T'h = if jcn/= 0. In the 

case when xn/= 1, the optimal setting of Tu, satisfies the following set of constraints 

illustrated in eq. 3.5.4.1.1 where the new variable TXUil replaces the nonlinear term 

Tulxu in the model (10). The insight of this set of eq. 3.5.4.1.1 is that if the value of 

xu is set to be zero by the model, the optimal setting of Tul is 7jf, and TXUU = 0. 

Otherwise the optimal setting of Tul can not be predetermined and TXIW = Tul.

TXiui — Tu, + Tul( 1 — xi;) < 0

~ T X nu + Tlu -  (1 -  xu ) < 0 (3.5.4.1.1)

Tuixu — T X Ujl < Tu,x u 

T ^ < T u l <T^l + xu ( T ^ - T hJ)

3.5.4.2 Problem Transformation Step

In order to solve the model (10) efficiently, the following two main tasks have to 

be accomplished. First, a modeling technique is required to properly model the
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constraint £ 'e S ' .  Second, an efficient transformation method is required to 

transform the original formulation of the model (10) into a computationally efficient 

formulation. The following two subsections describe techniques and methodologies 

for performing these two tasks.

3.5.4.3 Modeling Technique for the Constraint S'

Consider a variable p  which only takes its value from p  distinct real values, p(\h 

P(2), ..., p(p). This constraint on the variable p  can be formulated in the mathematical

p ^
program tning model as: p  = X P(i)bi» 2Lbi> = l> bi> -  0 V/ = 1’- ’P

/=! /=1

and {bi^bii’—Mp} is SOS1. A Special Ordered Set of type One (SOS1) is defined to 

be a set of variables for which not more than one member from the set may be non

zero. When these nonnegative variables, bij V/ = 1 are defined as SOS1, there 

are only p  branches required in the searching tree for these variables.

3.5.4.4 Final Transformation Steps for the Bi-level-3 Model

Because the structure of the follower problem in the model (10) is a linear 

program and it affects the leader’s decisions only through its objective function, the 

final transformation steps start by replacing the follower problem with explicit 

representations of its optimality conditions. These explicit representations include the 

follower’s primal constraints, the follower’s dual constraints and the follower’s strong 

duality constraint. The model (11) illustrates the formulation of the model (10) after 

this first transformation where decision variables wu V/ e  L and w2, V/ e E 

represent the dual variable associated with follower’s constraints. The model (11) is a 

single-level mixed integer nonlinear optimization problem. By applying results from
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parameter pre-processing steps and modeling technique previously discussed, the 

final transformation steps are completed and are summarized below 

Model (11):

max{£ 9,.Vi, + Z  ci xu ~ Z  Qjyij ~ Z  ci
i  i i  i

S . t .  ( ' 6  S '

£  W luy t/ < * „ + £  Tu, x u V i z L  
/  i

V / e L
j  i

Z  W 2IJy tJ = *2, + X  T2llx u V i e £
j  I

Z  w m y i j  = A2,+Z Ti u x ai  V / g £
j  i

Z ^  ^21/W2/  ̂ 9; V/
leZ, /e £

Z  *1/ + Z  +  Z  h 2i + Z  T 2, t x n i  =  Z
\  I J  /e E I J  J

w u > 0 V i e L ,  y XJ > 0 , y 2 J > 0  Vj ,  e { 0 , l }  V /

Final Transformation Steps

Parameter c : By applying the preprocessing rule, each variable c, can be fixed at 

*c,.

Parameter Tx: By applying previous results, if the parameter Tw can be 

preprocessed, then fix its value at the appropriate value of T'n. Otherwise, first add a 

decision variable TXna and a set of constraints illustrated in eq. 3.5.4.1.1 to replace 

the nonlinear term Tulxu in the model (11), then add a set of variables and constraints 

illustrated in eq. 3.5.4.4.1 to replace part of the constraint £ ' e H ' for Tul in the model 

(11), and finally add a variable TWul and a set of variables and constraints illustrated 

in eq. 3.5.4.4.2 to replace the nonlinear term Tulwu in the model (11), where wXj and 

w'u represent the upper bound and the lower bound of dual variable wu respectively
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Tm = T Tms)biTuiM’T biTmS) = '> biT\m  > 0 V'v 6 and (3.5.4.4.1)
5=1 5=15=1

Parameter T2: We first add a decision variable TX2iil and a set of constraints 

illustrated in eq. 3.5.4.4.3 to replace the nonlinear term Tvlxu in the model (11), then 

add a set of variables and constraints illustrated in eq. 3.5.4.4.4 to replace part of the 

constraint S ' for T2iI in the model (11), and finally add a variable TW2jl and a set 

of variables and constraints illustrated in eq. 3.5.4.4.5 to replace the nonlinear term 

T2ilw2i in the model (11), where w2i and w2i represent the upper bound and the lower

bound of variable w2i respectively

2Ul(s)

(3.5A4.3)

T2„ = 2 > 2,m biT2im, I > T M(S) -1 , biTlil(s) >0V.ve {1,2,...,^} and (3.5.4.4.4)
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iw>ii ~~ŷ 7,its\zn%,i(s\
5=4

4t»T2j(s) —ZIŴ )̂ <n$*7^(s), Zm^l(x) <vî  —vî .(l b tT ^ \ 

ZIK(s) ^  - ^ ( l - ^ c , )  Vse{X...,%,}

(3.5.4.45)

Parameter \  and ^ : We first add a set of variables and constraints illustrated in 

equations 3.5.4.4.6 and 3.5.4.4.7 to replace part of the constraint £ 'e  S ' for \ t and 

h2l respectively in the model (11). We then add variables HWU, HW2j and a set of 

variables and constraints in equations 3.5.4.4.8 and 3.5.4.4.9 to replace the nonlinear 

terms l\pvu and h2iw2i respectively in the model (11)

K  - I W « W  H H l l m> O V s s { l , l - A , }
5=1 5=1

and <J{biHw .} is SOS1
Vs 1 >

Ai, _
K  = Z lfhn,)biH2n,)> Y sbiH2 m = 1’ ^ 2 i ( ^ 0 V i e { U '- ^ i}

5=1 5=1

and u {biH2j(s)} is SOS1

5=1

<biHm  <ZHIVm  <\%biHm , ZHfVm  <wj, -w £ (l-& fl,w ),

5=4

w£M^(s) <ZHfVm  <W >7^(S), ZHfVm  -w £(l

(3.5.4.4.6)

(3.5.4.4.7)

(3.5.4.4.8)

(3.5.4.4.9)

Parameter q : We first add a set of variables and constraints illustrated in eq.

3.5.4.4.10 to replace part of the constraint ^ 'e S '  for qj in the model (11). We then 

add decision variables QYXJ, QY2j and a set of variables and constraints in eq.
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3.5.4.4.11 to replace the nonlinear terms <jry_y,. and qjy2j respectively in the model 

(11) where y  ’n and y'rj represent the upper bound and the lower bound of variable 

y rj respectively for r = 1 and 2

= i < l j W biQ m ,  T b i Q j(s)=\ ,  biQJ(s) > 0 Vs e {1,2,...,^} (3.5.4.4.10)
5=1 5=1

and is SOS1

s=4

5=1

Parameter Wy and W2: We first add a set of variables and constraints illustrated in 

equations 3.5.4.4.12 and 3.5.4.4.13 to replace part of the constraint £ 'e  S ' for WUJ 

and W2ij respectively in the model (11). We then add a set of variables and 

constraints illustrated in equations 3.5.4.4.14 and 3.5.4.4.15 together with variables 

WYUiJ,WY21ij,WYuv,WY22ij,WWljj, and WW2jj to replace the nonlinear terms WUjy u ,

w 20 y i j  w \ i j y i j  > w 2ijy 2j »W w w u , and W2ijw2i in the model (11)
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»!*■
O V se O A ...,^ }

S=1 «=1

and u{biWms)} is SOS1

**2? l̂if _

w*, = L wm »biWim> L biWw> =>• biW*m  2 0
5=1 5=1

M lu { « i r w ,)}isSOSl

5̂
3 iw^ w <3$ * ^ ,  ZffYms) <y{J -rfj(\-biWm)\

m m̂ y y -yy('-bifvm ) V sg {U ,^ }

^ = |
5=1

3 ^ , ,  ~^%2g(s) -y2]b̂ Uj(s)y ^%3ij(s) --̂ 2y ’

5=1

M ^ w < Z ^ (S) <u(> -^(, ,  Z ^ . w <H. - m£(1-&-^(s)),

SMi Vve{!,..,^ }

WY2Uj= f w m s)ZW Y2 im
5=1

J^W ^w ^ZWT21Wi) ^ y ' j b i W ^ ,  ZW Y2 im  < y u - y ^ \ - b i W 2 m ),

Z W Y 2Mj (s ) -  K j  “ ^ j O -  W ^ 2 ; ,< s ) )  V i  G  ( 1 , . . . ,  W 2y }

W%2,j = ̂ y^2ij(s)^%2ij(s)
5=1

y L2 jb iW 2'j ( s ) < Z m r v iJ (s )< y l b i W m s ) ,  Z W Y ^ K y ^ - y ^ l - b i W ^ ) ,  -. 

Z » ^ w ^ 2, - 3 ^ a  - W ^ w) V, g {1,...,^}

w w ^ J ^ w ^ z w w ^
5=1

w2ibiW2iJis) < ZW fV2 m  < w 2ibiW2 m , z m v m s )  < w 2i - < (1  - b iW 2 im ), 

z m m  ^ 2, - ^ - b i W 2iKs)) Vs g  {1,...,%}
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By applying these transformation steps, the model (11) can now be transformed 

into its final formulation as a single level mixed integer linear programming problem 

as shown in the model (12). The table in the model eq. 3.5.4.4.16 is used to identify 

some additional constraints and conditions for adding these constraints to the model 

(12):

A u '* = m a x { £ 0 ^  + Y f , x v

j  i j  I

S .t  'Zw ym <i{,+ £  i x m + Y .  ‘K a ,
j  l\Mi,=  1 /|A>4=0

i Vie &
j  i

YWY]7j,<K+  E  X  V/eZ
j  l[lniu= \ l\bidiI=0

= V X 2̂
j  I

Y w w U]+Yw w Vj>qj

V /e£

Vy

(
Y m v+y m » +1l  X  iw^ + X  + X X 7^ * ,  = Z 0 l
/eZ /€£• /eZ /|/«s^= 1 /[Zr»sk=0 y  /eZ V, I J  j

y\j y y  ty'> ww Vi eL, x,; e{0,l} V/

Condition to Add the Constraints Constraint Reference Constraint Index Set

il3

3.5.4.1.1, 3.5.4.4.1, 

3.5.4.4.2

For all i g  L , For all /

Always 3.5.4.4.3, 3.5.4.4.4, 

3.5.4.4.5

For all / e  E , For all /

Always 3.5.4.4.6, 3.5.4.4.8 For all i  g  L

Always 3.5.4.4.7,3.5.4.4.9 For all i g  E

Always 3.5.4.4.10,3.5.4.4.11 For all j

Always 3.5.4.4.12,3.5.4.4.14 For all i e  L ,  For all j

Always 3.5.4.4.13,3.5.4.4.15 For all i g  E , For all j
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Where

1 if Tul value cannot be predetermined.
IndH =

0 otherwise

. [ Preprocessed value of Tul if Tul can be preprocessed
-Mi/ [0 Otherwise

The bi-level-3 model can now be solved as a mixed integer linear program by solving 

the model (12). The optimal objective function value of the model (12), A"q , is used

to determine the quality of the solution xn . In addition, we do not have to solve the

model (12) to optimality in every iteration to generate the scenario co'. We can stop 

the optimization process for the model (12) as soon as the feasible solution with the 

objective value larger than the current value of Au has been found. We can use the 

resulting feasible setting of £ ’ = (c,q,hl,h2,Tl ,T2,Wl,W2)' to generate the scenario 

m' in the current iteration.

After the bi-level-3 model is solved, if AvXa > Af/, the generated scenario is added 

to the scenario set f2 and the first stage is repeated. Otherwise, the candidate robust 

solution xn is added to S. The algorithm then checks whether the candidate robust 

solution is a promising potential solution. The solution xn is considered promising if 

Au > Aj >e + AL.Q

If the solution xQ is a promising potential solution, it will be removed from the 

set S  and the bi-level-2 model is solved for this solution. The new generated scenario 

is then added to the scenario set Q and the Au value is 

updated, Au <— min{A^ , Al/}. By using the Au and A7' information, the optimality

condition can be checked ( Au -  AL < s  ). If the optimality condition is satisfied, the
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algorithm terminates with the solution associated with the maximum regret value of 

Au as a e-optimal robust solution. Otherwise, the algorithm updates S  by deleting 

any solution, X, such that k ux > Au and the first stage is repeated.

The following Lemma 4 provides the important result that the proposed four- 

stage algorithm always terminates at an ^-optimal robust solution in a finite number 

of algorithm steps.

Lemma 4: The four-stage algorithm terminates in a finite number of steps. When the 

algorithm has terminated with e  > 0 , it has either detected infeasibility or has found a 

£-optimal robust solution to the original problem.

Proof: The result follows from the proof in Assavapokee (2007a, 2008b) and the 

definition of Au and AL and the fact that in the worst case the algorithm enumerates 

all scenarios coe Q and I QI is finite.
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Figure 3.5 details the information flow of the proposed algorithm.

Is A -A L <£■?

1. Select initial subset of scenarios^ 
from se t O  (the s e t of all 
scenarios)
2. We add this subset to se t Q (set 
of scenarios under consideration)

Set Au = o o , AL =  - o o

S T O P  \
Prototo m  m o d e led  I 

incorrectly  J

Select

X ' e  arg min A*
X e S

i f  X '  = null. Ax■ = o o

Solve Model (1) to generate 0*u for eachQ

i s  M o d e m  fea s ib le ?

S olve  R e la x ed  M odel (2) fo r all 
sc e n a rio s  in Q

is  re la x ed  M odel (2)

STOP 
Infeasible Problem

Xq  =x * and LB -  5* (from Model (2 ))

S o lve  Bilevel 1 M odel with 
Xq inform ation

S o lve  th e  approxim ation  
algorithm  by u sin g  Y0 

inform ation to  g e n e ra te

Axa
a n d  th e  ad tft io n a l sc en a rio

S = S u { X 0 )

S  = S -  {X1} S olve  B iev e l 2  m ode l 
with X1 in fo rm a Hon to  g e n e ra te

\ux.ando)' Set

I s A u > A"?

A = Au

Is Ai„ - A1 < e i

S = S - { X Q } 
S o l v e  B i l e v e l  2  m o d e l  

w i t h  Y q  t o  g e n e r a t e
Ay and o '

Is Au ~ A L < e l

^  N O

Deiete a ft otomonts X  in  
S such tha t
— u  t ,Ax  £ A

Dohto a t! ohments  Xm  
S such that

—c  , ,
Ax  >  A

S o lve  M odel (1) to  g e n e ra te  0 * „  
for g e n e ra te d  s c e n a rio  a n d  a d d  

th e  sc en a rio  to  Q

<  Is AU >AUXJ  

r r s  |

S e tX < ^ = X o

AU =Ay

" Is Au - A L < e l

. .

J  J  S T O P  \
X o c ,  is  e-opbm al solu tion /1

Figure 3.5: Flow Chart of Four-Stage Algorithm

In the next chapter, we apply the 4 stage algorithm to solve a facility location 

supply chain problem under interval data uncertainty.
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Chapter 4 

CASE STUDY

4.1 Introduction

In this chapter, we apply the proposed four-stage algorithm to a hypothetical 

robust supply chain facility location problem with infinite number of possible 

scenarios that rules out an extensive scheme. We consider a supply chain in which 

suppliers send material to factories that supply warehouses that supply markets as 

shown in Figure 4.1 (Chopra and Meindl, 2003). Location and capacity allocation 

decisions have to be made for both factories and warehouses. Multiple warehouses 

may be used to satisfy demand at a market and multiple factories may be used to 

replenish warehouses. It is also assumed that units have been appropriately adjusted 

such that one unit o f input from a supply source produces one unit of the finished 

product. In addition, each factory and each warehouse cannot operate at more than its 

capacity and a linear penalty cost is incurred for each unit of unsatisfied demand. The 

model requires the following inputs:

Suppliers Factories Warehouses Markets

Figure 4.1: Stages in the Supply Chain Network (Chopra and Meindl, 2003).

In the deterministic case, the goal is to identify factory and warehouse locations as 

well as quantities shipped between various points in the supply chain that minimize 

the total fixed and variable costs. In this case, the overall problem can be modeled as 

the mixed integer linear programming problem presented in the following model (13):
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Table 4.1: Description of Model Parameters and Variables

m : Number of markets We : Potential warehouse capacity at site e

n : Number of potential factory location f u : Fixed cost of locating a plant at site /

I : Number of suppliers

t : Number of potential warehouse 
locations

Dj : Annual demand from customer j  

Kt : Potential capacity of factory site /' 

Sh : Supply capacity at supplier h

xi : = 1 if plant is opened at site 
: = 0 otherwise

x\hi : = Transportation quantity from 
supplier h to plant i

xsej : = Transportation quantity from 
warehouse e to market j

f 2e : Fixed cost of locating a warehouse at 
site e

c\ht : Cost of shipping one unit from 
supplier h to factory i

cue ■ Cost of shipping one unit from factory 
to warehouse e

ciej : Cost of shipping one unit from 
warehouse e to market j

Pj : Penalty cost per unit of unsatisfied 
demand at market j

ze : = 1 if warehouse is opened at site e\
: = 0 otherwise

X2 ,e : = Transportation quantity from 
plant /' to warehouse e

Sj : = Quantity of unsatisfied 
Demand at market j

l n

j =1
min Z A * ,  + Y , f l e Ze + Z Z C2 ̂ l i e  + Z Z C3 + Y . P j Sj

/=1 e=l h= 1 /=1 i=\ e=\ e=\ j =1

s l- ZTi*/ <Sh V he  {1,...,/}, ^ y lhi - j ] y 2,e =0 Vi e {1
i = l  h—\ e=l

t n m

^  K ,x , v / e { l , = °  V e € { W }
e=l 1=1 j =1

m  /

Z y^ej Z  w ez e Ve e { 1 , Z > W + SJ = DJ y j  e 0.-.W}
j= \ e=\

*  0, yHe ^ 0, y 3eJ > 0, Sj > 0, e {0,1}, and z, e {0,1}

4.2 Case Study

When some parameters in this model are uncertain (ambiguous), the goal becomes 

to identify robust factory and warehouse locations (long term decisions) with an 

objective utilizing the deviation robust definition. Transportation decisions (short
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term decisions) are now recourse decisions which can be made after all model 

parameters’ values are realized. We consider 9 possible setting of the parameters as 

summarized in the table below.

Table 4.2: Test Problem settings

Problem
set

1

l(suppliers)

6

n(factories)

6

t(warehouses)

6

m(markets)

6
2 6 6 6 6
3 6 6 6 6
4 6 6 6 6
5 8 8 8 8
6 8 8 8 8
7 8 8 8 8
8 8 8 8 8
9 8 8 8 8

Each problem in the set above contains different sets of uncertain parameters and 

different sets of possible locations which can result in a large number of possible 

scenarios. The key uncertain parameters in these problems are the supply quantity at 

the supplier, the potential capacity at the factory, the potential capacity at the 

warehouse, and the unit penalty cost for not meeting demand at the market.

We assume that each uncertain (ambiguous) parameter can take its values from 

the real compact interval between 80% and 120% of its approximated value. The 

distance between each pair of locations is calculated based on the latitude and the 

longitude of each location.

The case study is solved on a Windows XP-based Pentium Dual Core CPU 2.00 

GHz personal computer with 2.00 GB RAM using a GAMS optimization program 

together with CPLEX 10 for the optimization process.
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4.3 Case study results

We apply the proposed algorithm to the 9 test problems shown in Table 4.2 by 

considering two different settings of initial scenarios. In the first setting, we consider 

only one scenario in the starting scenario set. In the second setting, we consider 16 

scenarios in the starting scenario set. The 16 starting scenarios are obtained by 

considering the combinations of upper and lower bounds for each type of uncertain 

parameters. We have four main types of uncertain parameters in the problem set. 

Hence the starting scenario set of these problems consists of 16 (24) scenarios. The 

different case studies we run to gauge the performance of the four-stage algorithm are 

detailed in Table 4.3.

Table 4.3: Case study settings

Case
study PI

Benders
decomposition

4 stage 
algorithm

1 1 Yes Yes
2 16 Yes Yes
3 1 No Yes
4 16 No Yes
5 1 No No
6 16 No No

We can now summarize the various insights observed from the computational 

effort. All results illustrate the significant improvement in computation time of the 

proposed algorithm over the existing methods. They also illustrate the applicability 

and effectiveness of our four-stage algorithm for solving large scale min-max regret 

robust optimization problems that have a mixed integer (binary) linear programming 

base model with interval data uncertainty.

The following Tables 4.4 & 4.5 summarizes the performance by using the new 4 

stage algorithm, for both the 1 starting scenario and the 16 starting scenarios cases.
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Table 4.4: Performance of 4 stage algorithm with 1 starting scenario

|Q|=1
Time in seconds

Problem set Bender App time Bi-level 2 Overall # of scns/itns
1 29.47 33.7 146.213 209.383 29/28
2 14.86 1469.79 264 1748.65 18/17
3 12.13 24.5 216.51 253.14 16/15
4 25.29 1702.35 1077.45 2805.09 23/22
5 137.44 142.08 3704 3983.52 15/14
6 550.35 26552.44 36623.13 63725.92 43/42
7 221.2 948 29173.14 30342.34 20/19
8 548.45 77.13 8655.52 9281.1 36/35
9 952.1 12816.18 38396.64 52164.92 49/48

Table 4.5: Performance of 4 stage algorithm with 16 starting scenarios

|0|=16
Time in seconds

Problem set Bender App time Bi-level 2 Overall # of scns/itns
1 10.04 15.7 146.213 171.953 26/10
2 6.19 1310.51 264 1580.7 27/11
3 6.85 9.01 216.51 232.37 21/5
4 5.31 1201.11 1077.45 2283.87 24/8
5 37.61 178.697 3704 3920.307 22/6
6 149.85 24394.77 36623.13 61167.75 33/17
7 39.83 1069.56 29173.14 30282.53 26/10
8 158.36 36.21 8655.52 8850.09 27/11
9 110.94 8125.81 38396.64 46633.39 31/15

The following Tables 4.6 & 4.7 summarizes the performance by using the 4 stage 

algorithm without the use of Benders decomposition in the first stage. The notation 

MILP2 in the following tables represents solving the Model (2) without Benders’ 

decomposition.
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Table 4.6: Performance without Benders decomposition and with
Approximation algorithm and 1 starting scenario

|0|=1
Time in seconds

Problem set MILP2 App time Bi-level 2 Overall # of scns/itns
1 237 33.7 146.21 416.91 28/27
2 39.92 1469.79 264 1773.71 17/16
3 42.85 24.5 216.51 283.86 16/15
4 149.1 1702.35 1077.45 2928.9 23/22
5 388.43 142.08 3704 4234.51 15/14
6 7782.77 26552.44 36623.13 70958.34 43/42
7 840.37 948 29173.14 30961.51 20/19
8 4630.19 77.13 8655.52 13362.84 36/35
9 17509.4 12816.18 38396.64 68722.22 48/47

Table 4.7: Performance without Benders decomposition and with 
Approximation algorithm and 16 starting scenarios

|0|=16
Time in seconds

Problem set MILP2 App time Bi-level 2 Overall # of scns/itns
1 75.08 15.7 146.21 236.99 26/10
2 40.61 1310.51 264 1615.12 27/11
3 22.59 9.01 216.51 248.11 21/5
4 22.79 1201.11 1077.45 2301.35 24/8
5 119.7 178.69 3704 4002.41 22/6
6 918.3 24394.77 36623.13 61936.17 33/17
7 322.4 1069.56 29173.14 30565.08 26/10
8 748.5 36.21 8655.52 9440.21 27/11
9 1089 8125.81 38396.64 47611.37 31/15

The following Tables 4.8 & 4.9 summarizes the performance by using the old 3 

stage algorithm.
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Table 4.8: Performance using the 3-stage algorithm
with 1 starting scenario

|0|=1
Time in seconds

Problem set MILP2 Bi-level 2 Overall # of scns/itns
1 151.59 784.06 935.65 21/20
2 52.41 7929.68 7982.09 18/17
3 37.69 1396.37 1434.06 15/14
4 165.82 6532.56 6698.38 23/22
5 1009.11 28048.43 29057.54 25/24
6 N/A N/A N/A N/A
7 3418.18 112316.3 115734.5 32/31
8 7141.49 93430.95 100572.4 41/40
9 28747.36 328046.77 356794.1 58/57

Table 4.9: Performance using the old 3 stage algorithm with 16
starting scenarios

|Q|=16
Time in seconds

Problem set MILP2 Bi-level 2 Overall # of scns/itns
1 76.15 798.06 874.21 26/10
2 45.25 6856.32 6901.57 27/11
3 22.46 1097.44 1119.9 21/5
4 22.62 6220.5 6243.12 24/8
5 117.43 26615.26 26732.69 22/6
6 1104.25 1086922.56 1088026.81 34/18
7 319.45 105732.52 106051.97 26/10
8 761.25 89832.8 90594.05 27/11
9 1103.44 172808.52 173911.96 31/15

The following tables 4.10 & 4.11 summarize the improvement in computation 

times between the 3-stage algorithm and the new 4-stage algorithm.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.10: Improvement of 4 stage algorithm over 3-stage algorithm
with 1 starting scenario

|Q|=1

New Algorithm Old
Algorithm

Reduction in computation 
time (%)Problem

set
Without
Bender

With
Bender

1 416.913 209.383 935.65 77.62%
2 1773.71 1748.65 7982.09 78.09%
3 283.86 253.14 1434.06 82.35%
4 2928.9 2805.09 6698.38 58.12%
5 4234.51 3983.52 29057.54 86.29%
6 70958.34 63725.92 N/A N/A
7 30961.51 30342.34 115734.5 73.78%
8 13362.84 9281.1 100572.4 90.77%
9 68722.22 52164.92 356794.1 85.38%

Table 4.11: Improvement of 4 stage algorithm over 3-stage algorithm 
with 16 starting scenarios

|Q|=16

New Algorithm Old
Algorithm

Reduction in computation 
time (%)Problem

set
Without
Bender

With
Bender

1 236.993 171.953 874.21 80.33%
2 1615.12 1580.7 6901.57 77.10%
3 248.11 232.37 1119.9 79.25%
4 2301.35 2283.87 6243.12 63.42%
5 4002.417 3920.307 26732.69 85.34%
6 61936.17 61167.75 1088026.81 94.38%
7 30565.08 30282.53 106051.97 71.45%
8 9440.21 8850.09 90594.05 90.23%
9 47611.37 46633.39 173911.96 73.19%

In conclusion the tables 4.10 & 4.11 illustrate that there are significant 

improvements in computational performance between the old and the new algorithms. 

The minimum improvement from all cases is 58.12%. The maximum improvement 

from all cases is 94.38%. The average value of the percentage improvement from all 

cases is 79.24%. Further ways to improve the algorithms performance are mentioned 

in Chapter 5.
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Chapter 5 

SUM M ARY AND FUTURE RESEARCH DIRECTIO N

5.1 Summary of Research

In this research, we develop a new min-max regret robust optimization algorithm 

for two-stage mixed integer (binary) linear programming problems under interval data 

uncertainty based on the original work by Assavapokee (2004, 2007a, 2008b). The 

algorithm is designed explicitly to handle an infinite set of possible scenarios. The 

algorithm can determine the robust values of the first-stage decision variables when 

the only information available to decision makers at the time of making the first stage 

decisions are a real compact interval containing possible values for each uncertain 

parameter with unknown probability distribution. The algorithm sequentially solves 

and updates a relaxation problem using decomposition algorithms, priority based 

methods, approximation algorithms, and bi-level optimizations until both feasibility 

and optimality conditions of the overall problem are satisfied. We significantly 

reduced the number of times the Bi-level 2 model had to be solved using priority 

methods to classify quality of solutions. Solving the Bi-level 2 method in the previous 

algorithm was a bottleneck with respect to computationally efficiency. Thus our 

results show that our algorithm provides an optimal solution with a significant 

improvement in computation time for the large-scale robust optimization problem.

We also prove that the algorithm terminates in a finite number of steps. The 

theoretical contribution of this research is that we generated new and improved 

approaches to generate Min-Max regret robust first-stage solution when the uncertain 

parameter independently takes its value from a real compact interval. We also came 

up with a practical approach for deviation robust decision making under uncertainty.
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5.2 Applications of the proposed algorithm

The algorithm is very useful for facility location problems such as locating 

hospitals, distribution centers, manufacturing plants, where the first stage long term 

decision has to be made well in advance of the second stage decisions. In addition the 

concepts can also be applied to problems that involve human life such as evacuation 

during disaster scenarios. In such cases, since we are dealing with human lives, we 

cannot be satisfied with solutions that perform better on the average. Hence the 

deviation robust algorithm can be used to plan evacuation meeting points and also the 

infrastructure.

5.3 Future Research

Even though computation time was reduced significantly we believe the algorithm 

can be further improved by exploring the following methods. In practical applications 

the problem set can get very large. We can explore other meta-heuristic 

approximation methods instead of the Full Factorial Method as the Full Factorial 

method still takes a significant amount of time. In addition generalized Benders 

Decomposition method could be used to further improve the solution time of the bi

level programming problems.

The future direction of the research should be to explicitly explore the procedures 

suggested above in order to further improve the performance of our algorithm. The 

approach can also be extended to using the Relative Robust criterion to evaluate 

overall performance and compare it to the Deviation Robust method.
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