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San Nicolás de los Garza, Nuevo León, México
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Chapter 1

Introduction

In this doctoral thesis we focus on studying facility location problems considering customer
preferences. In these problems, there is a set of customers or users who demand a service or
product that must be supplied by one or more facilities. By facilities it is understood some
object or structure that offers some service to customers. One of the most important assump-
tions is that customers have established their own preferences over the facilities and should be
taken into account in the customer-facility assignment. In real life, customers choose facilities
based on costs, preferences, a predetermined contract, or a loyalty coefficient, among others.
That is, they are free to choose the facilities that will serve them.

The situation described above is commonly modeled by bilevel programming, where the
upper level corresponds to location decisions to optimize a predefined criteria, such as, min-
imize location and distribution costs or maximize the demand covered by the facilities; and
the lower level is associated to -customer allocation- to optimize customer preferences. The
hierarchy among both levels is justified because the decision taken in the upper level directly
affects the decision’s space in the lower level.

In this thesis, different variants of bilevel facility location problems considering cus-
tomer preferences are studied:

• The uncapacitated facility location problem (named UFLBP) is analyzed. To find feasi-
ble solutions for the problem we propose a hybrid metaheuristic method that combines
evolutionary algorithms and path relinking. In addition, we perform a study that shows
the importance of solving to optimality the lower level problem.

• A variant of the p-median problem (named p-median BPO) is studied. We develop two
reformulations of the mathematical bilevel program and also, we propose an equivalent
single-level reformulation of the problem. In addition, we propose a scatter search
algorithm to find good quality feasible solutions.

• A maximal covering location problem (named MCLP) is also studied. We introduce
a mathematical model, develop two classic reformulations and propose a genetic algo-
rithm to find good quality feasible solutions. Also, we propose a reformulation that
reduces the problem into a single-level one. In addition, we propose a GRASP-Tabu
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CHAPTER 1. INTRODUCTION 2

hybrid algorithm which obtains good quality solutions in a reasonable computational
time for larger instances.

• A variant of the capacitated facility location problem with unitary demands (named
CFLBP) is investigated. We analyze and exploit the properties of the problem, which
allow us to obtain feasible bilevel solutions. We propose a genetic algorithm to find
good quality feasible solutions for the problem.

• A second variant of the CFLBP with customer demands (named BCFLP) is considered.
Customer demands add a significant degree of complexity to the problem, because the
lower level is NP-hard. Therefore, there is no guarantee of finding the optimal solution
of the lower level, and hence, to the bilevel problem. We introduce the necessary defi-
nitions to obtain an approximated inducible region. For the bilevel model, we propose
three versions of a heuristic algorithm based on cross entropy. The obtained results
provide important information on the impact of not being able to obtain bilevel feasible
solutions.

All location problems in this thesis take into account the preferences of the customers.
The lower level problem is associated to the customers’ allocation. To have a well defined
bilevel programming problem, the lower level problem must have a unique optimal solution
for any fixed upper level’s decision. For all uncapacitated problems, we guarantee the unique-
ness of the optimum of the lower level, representing customer preferences as consecutive
integer numbers. The proof of this results is given in [136]. In these problems, the lower
level problem is solved to optimality by using an ordered matrix of preferences, which is a
methodology proposed in [92]. When capacities and demands are considered in the lower
level, the optimistic version is considered to have well posed the bilevel problem. In other
words, if multiple optimal solutions for a given upper level’s decision can be found, then the
one which incurs in the best upper level’s objective function value is selected. This occurs in
CFLBP and BCFLP.

1.1 Location problems
Location theory is one of the areas of operational research that has stood out most because
of its real-life applications. In [47] facility location problems are defined as “given a certain
metric space and a set of known points, determine a series of additional points to optimize
a function of the distance between new and existing points”. Theory of facility location and
some applications can be found in [43]. There are several ways to classify location problems;
for instance, based on the type of constraints and objective function.

One of the classical location problems is the p-median problem. The objective of this
problem is to locate p facilities in such a way that distribution costs are minimized. The for-
mulation of the problem, its properties and some contributions about it can be found in [47].
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Another problem that has been extensively studied in the literature is the uncapacitated
facility location problem. In this problem, the number of facilities to locate is not fixed be-
forehand. Instead, fixed costs are considered for each potential facility location. This problem
has also been studied considering capacity constraints, which adds a degree of difficulty. In
this situation, facilities have a capacity that should not be exceeded and the demand points or
customers have a demand that must be supplied. For more information, see [47].

Coverage problems have also attracted the attention of researchers. The main purpose of
these types of problems is to locate facilities to provide a service to customers that are within
a predetermined threshold distance (see [34]).

There are other types of location problems that are not mentioned above, for example:
sequential location, undesirable or obnoxious facilities, fixed-charge, p-center, anti-covering,
hub location, competitive location, facility location under uncertainty, etc (see [47], [101],
and [43]). In some cases, for these problems the notion of preferences may be considered.

The fundamental difference between the classic problems mentioned above and those
studied in this thesis is that, customers are allocated based on their preferences and not to the
nearest facility, which is the common criterion for allocation.

1.2 Bilevel programming
Multilevel programming is a mathematical modelling technique used to consider nested com-
ponents involved in a particular situation. It is an important tool for handling situations where
the decision process can not be assumed to be performed in a simultaneuos way, because the
decision made by one of the decision makers directly affects the decision of the other decision
makers. In [25] was first defined the area of multilevel programming as a generalization of
mathematical programming. The particular case in which only two decision levels are con-
sidered corresponds to Bilevel Programming (BP). In other words, instead of considering two
interrelated processes in an independent way, BP is convenient for simultaneously considering
both parties in a hierarchized manner during the decision-making processes.

In a general way, a bilevel programming problem can be approached from two perspec-
tives: game theory and mathematical programming. From the game theory point of view, there
are two competing decision-makers associated with the upper level and lower level problems
(leader and follower, respectively). In that hierarchized sequential game, first the leader es-
tablishes its strategy, then the follower rationally reacts by choosing its best strategy having
complete knowledge of the leader’s decision. Also, it is assumed that perfect information is
given since the leader will decide its strategy first, and, after that, the follower will decide his
own strategy.

From the mathematical programming point of view, a bilevel programming problem
consists of a mathematical programming problem in which the variables can be partitioned
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into two subsets. The main issue is that one of the subsets of variables must be determined
by the optimal solution of another mathematical programming problem; that is, a bilevel
programming problem is a mathematical programming problem with another optimization
problem in its constraints. To clarify the idea, the general formulation presented in [11] is
shown below:

min
x∈X

F (x, y) (1.1)

subject to: G(x, y) ≤ 0 (1.2)
min
y∈Y

f(x, y) (1.3)

subject to: g(x, y) ≤ 0 (1.4)

where F, f : Rn ×Rm → Rl, G : Rn ×Rm → Rp, and g : Rn ×Rm → Rq.

In this formulation, it can be seen that the decision variables of the leader is the vector x
and the vector y is defined by the follower. The leader aims to minimize the function F (x, y)
under the constraints (1.2) and (1.3). The follower wants to optimize the function f(x, y)
considering the constraints (1.4).

In problems modelled with bilevel programming, even when the functions are continu-
ous and bounded, there can be no guarantee that the optimal solution exists. Most of these
problems are non-convex, and if there are multiple leaders or multiple followers, we must first
find the Nash equilibrium between them. The bilevel programming problems are NP-hard
(see [8]). Some properties, solution algorithms, optimality conditions and computational dif-
ficulties can be found in [11], [38], [140], [9], [39], [13], [10], [13] and [37].

Interesting literature reviews regarding applications in planning, distribution, location,
pricing, network design, humanitarian logistics, and environmental models, modelled as bilevel
programming problems, appear in [11], [31], [71], [137], [71] and [5].

1.3 Motivation and contribution
Although facility location problems have been of interest to the scientific community, there is
only one paper where the p-median problem with customer preferences modelled with bilevel
programming is studied. In this thesis and in [3], some reformulations are proposed to reduce
the bilevel problem into a single-level one. The difference between both works is that we pro-
pose a heuristic algorithm to solve the p-median problem and they propose another heuristic
but to solve the reformulation of the problem.

We also propose a hybrid algorithm for the UFLBP. This algorithm outperforms the
evolutionary algorithm in the literature. Besides, we show the impact in the algorithm’s per-
formance when solving the lower level through three different exact or heuristic approaches.
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To the best of our knowledge, the capacitated version of the problem has not been stud-
ied, may be because the lower level problem is NP-hard. The incorporation of capacity con-
straints in the facilities and demand associated to each customer, converts the lower level
problem into the well-known generalized assignment problem (GAP). Due to the complexity
of the GAP, the follower’s optimal solution cannot be computed in a straightforward manner.
We propose appropriate definitions of the concepts for approximating the inducible region for
handling solutions that do not belong to the bilevel feasible region. Also, we explored the
case when demands are unitary (CFLBP). By considering this assumption, we exploit struc-
tural properties of the lower level problem. The resulting problem is a transportation one,
therefore the problem can be solved to optimality. As the capacity and demand are integers,
then there is at least one integer optimal solution.

We also propose the first model in the literature that handles a covering problem con-
sidering customer preferences (MCLP). The problem considers firms that are already in the
market and a new firm that wants to locate p facilities in order to maximize the captured
demand. In the same manner than the other problems studied in this thesis, customers are
allowed to freely choose their allocation to the facilities within a threshold distance. In the
upper level, facilities are located in order to maximize the demand covered, whereas in the
lower level, customers are allocated to the facilities based on their preferences to maximize a
utility function.

1.4 Objective
The primary objective of this thesis is to study facility location problems with customer pref-
erences and to propose solution methodologies that provide good quality solutions at a low
computational cost.

For each problem studied, we analyze the properties of the model and develop classical
reformulations of bilevel programming to reduce the problem into a single-level. Due to the
computational time required to solve the reformulations, we propose heuristic algorithms that
provide near optimal solutions with reasonable computational time.

1.5 Structure of the thesis
Based on the problems mentioned above, the chapters of this thesis are divided according
to the classification of the facility location problems. In the Chapter 2 a literature review is
presented. In Chapter 3, the uncapacitated facility location problem (UFLBP) with customer
preferences is presented. A hybrid algorithm is developed for solving a set of benchmark in-
stances. The algorithm hybridizes an evolutionary algorithm with path relinking. In Chapter
4, the p-median bilevel problem with order (p-median BPO) is presented. To solve the prob-
lem, an algorithm based on scatter search is developed. In Chapter 5, the bilevel maximal
covering location problem (MCLP) is proposed. The problem is solved via reformulations
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and by a genetic algorithm. Then, to obtain better results, we propose a hybrid algorithm that
combines GRASP an tabu search.

In Chapter 6, the bilevel capacitated facility location problem with customer patroniza-
tion towards a list of preferences is introduced. We analyze two cases for the problem. In
the first version, the lower level corresponds to a transportation problem (CFLBP), and a ge-
netic algorithm is proposed to solve it. Finally, we considered a general case, where the lower
level is the well-know generalized assignment problem (BCFLP). Three versions of a cross
entropy method are proposed to solve this problem, in two of them semi-feasible solutions
are obtained. In Chapter 7, the conclusions of this thesis are presented. Finally, an appendix
with the detailed information of each article derived from this study is included. Also, the
research visits, participations in conferences, summer/winter schools and some distinctions
are mentioned.



Chapter 2

Literature Review

Location theory is an area of operations research which has attracted the attention of re-
searchers due to the necessity to locate facilities that provide a service or product requested by
users. One of the main problems is named the facility location problem, which stems from the
Weber’s problem. The latter consists in determining the point that minimizes the sum of the
Euclidean distances from that point to all other given points (see [139]). In the facility loca-
tion problem there is a set of customers that are distributed in a predefined space. Customers
desire that their demands of a particular service or product are met by one or more facilities.
The problem is to determine where to locate facilities and how customers would be allocated
in order to minimize location and distribution costs associated with that particular decision.

There are different versions of facility location problems without capacity constraints.
For example, the simple plant location problem (SPLP) arises when the facility has an infi-
nite capacity and can meet customer demands, the model for this problem was proposed in
[78]. Another version of the problem appears when a new objective function is considered as
in [107]. The authors include the most popular objectives functions of location models and
penalize the distance between the customer and the facility according to the position occupied
by the customer. A taxonomy of location models including relevant issues and a classification
is provided in [34].

An important consideration is that in classical facility location problems, customers are
allocated by the locator. But, it could appear a situation in which the locator is not in charge
of this allocation. Instead of that, customers are free to select the facility that will serve them.
For instance, practical applications can be found in public sectors in which customers behav-
ior cannot be imposed by the locator. This situation can be studied considering customers
as other decision makers with a predefined hierarchy among the locator and them. One way
to achieve this is to use customer preferences. In other words, each customer establishes an
order for ranking the most preferred facilities based on its own criterion.

Facility location problems considering customer preferences have been studied with a
bilevel programming (BP) approach. For example, in the uncapacitated bilevel facility loca-
tion problem. A leader seeks to open facilities aiming to minimize the sum of locating and
distributing costs, while a follower allocates customers to their most preferred facility. The

7
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follower’s decision will affect the distributing cost, modifying the leader’s objective function.
The customers’ freedom to choose the facilities that will serve them adds more reality to the
problem. In real life, customers choose facilities based on costs, preferences, a predetermined
contract, or a loyalty coefficient, among others. Next, some papers devoted to location prob-
lems considering customer preferences are discussed.

Integer single-level formulations for the SPLP had been proposed in the literature, where
customer preferences are taken into account by including additional constraints. In fact, [66] is
the first paper in which a customer’s ordered list of preferences (assuming an unknown num-
ber of facilities should be located -the simple plant location problem with order (SPLPO))
was considered. A greedy heuristic based on branch and bound was developed to solve the
SPLPO. Numerical experiments on small-size instances (5 facilities and 8 customers) were
conducted to validate the proposed solution method. Later, [8] demonstrated that the facility
location problem with customer preferences and its variations are NP-hard problems. In [26],
new valid inequalities yielding tightened bounds for the integer problem are proposed. The
valid inequalities were added to the formulation which was then solved by commercial solver,
a reduction in the integrality gap is obtained in reasonable computational time.

Although the uncapacitated facility location problem with customer preferences can be
modeled as a single-level problem, an alternative and natural manner for formulating it is as a
bilevel programming problem. [67] is the seminal paper in which a bilevel model was devel-
oped for this problem. Since bilevel programming problems are non-convex and very difficult
to solve, a single-level reformulation was made. Also, the authors used pseudo-boolean func-
tions for a relaxed version of the problem obtaining valid lower bounds. In [136], the bilevel
problem was reduced to a single-level one by using clique inequalities; this technique allows
the existence of a new family of valid inequalities instead of increasing the number of vari-
ables. The authors found a lower bound which is not worse than the one obtained in [67].

The SPLPO is also studied in [135], in which some valid inequalities related with cus-
tomer preferences are introduced. A reduction of the bilevel problem into a single-level one
is made. Then, a linear relaxation of the single-level resulting model is made yielding lower
bounds. A simulated annealing method was implemented for obtaining upper bounds. Fi-
nally, considering both bounds, a branch and cut technique was applied for solving the re-
duced problem. In [92], a comparison between three metaheuristics is presented. The authors
directly solved the bilevel version of the SPLPO. The implemented metaheuristics are based
on a swarm particle optimization, simulated annealing and an adapted neighborhood search
method. For dealing with the optimal solution of the lower level problem, they rearranged
the customer preferences matrix. By doing this, they reduced the required time for solving
the follower’s problem with an optimizer. Computational testing was conducted for large-size
instances showing that the performance of the adapted neighborhood search method outper-
forms the other algorithms.

Also, in [22], the bilevel version of the SPLPO is considered and two reformulations
using the primal-dual relationships of the lower level problem are proposed. As a result of
the reformulation, a single-level mixed integer programming problem arises. After showing
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the limitations for optimally solving both reformulations with an optimizer, an evolutionary
algorithm that considers Stackelberg’s equilibrium was proposed. The evolutionary algorithm
was applied to solve the bilevel version of the problem, not the reformulations; it could solve
instances up to 500 facilities and 1000 customers showing good performance. Also, the algo-
rithm reached the optimal solutions in more than half of the runs and, if not possible, small
optimality gaps were found.

In the case that the total number of facilities to be located is known and no fixed cost as-
sociated with the facilities are considered, the problem is called p-median (see [64]). Several
surveys have been published summarizing and differentiating interesting contributions related
with this problem (see [131], [97], [91], [116], [54], [49]). As it has been mentioned in [47],
due to its nature, the p-median problem could be applied for modelling a wide range of appli-
cations. For example, for locating hospitals, schools or warehouses (geographical decisions).
Also, for clustering, assigning tasks or scheduling events (non-geographical). From another
perspective, it has applications in public decision making since the objective of the p-median
problem could be seen as maximizing accessibility to the facilities. From the private decision
making point of view, the problem can be used in location decisions where distribution costs
need to be minimized. In [73] is showed that this problem is NP-hard. Efficient exact methods
and heuristics have been developed. For a detailed review about both kind of solution meth-
ods, see [112] and [98], respectively.

After intensive research, we found only two articles that consider customer preferences
in p-median problems. First, in [3] presented a bilevel formulation and described some single-
level reformulations yielding to lower bounds. The reformulations are based on different ver-
sions of pseudo-booleans functions. Then, a ranking among the obtained lower bounds is
done. Moreover, a hybrid genetic algorithm with local search was designed for obtaining up-
per bounds. Their algorithm considers four crossover types (uniform, greedy, single-point,
and path relinking) and local search procedures as mutations (Lin-Kernighan heuristic). They
validated the algorithm using instances involving 100 facilities and 100 customers. Their re-
sults showed that solving the reformulations is time consuming, and the optimum value is not
obtained, whereas the hybrid genetic algorithm finds better solutions in less time. The work
in [3] differs from the work presented in Chapter 4 of this thesis mainly in terms of the fact
that their heuristic is applied to the single-level reformulation of the problem. Additionally,
our proposed methodology only explores on the location decision space while the allocation
of the customers is optimally done, and it is capable to obtain good quality solutions for larger
size instances in reasonable computational time.

Later, in [21], a similar bilevel model than the one studied in this thesis is presented.
The main difference is that in addition to the cardinality constraint, fixed costs for locating fa-
cilities were considered. This fact differentiates that problem with the variant of the p-median
problem under study in this thesis. Note that in the case when homogeneous fixed costs are
assumed, both models are the same. However, in the instances tested in [21] heterogeneous
fixed costs were considered. For solving that problem, two single-level reformulations were
developed. Numerical experimentations were performed over a set of instances concluding
that exact methods require significant computational effort. Therefore, this thesis formally
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presents the p-median problem with order and proposes an efficient hybrid algorithm to solve
its bilevel model.

Other problems that have a natural modelling with bilevel programming are the com-
petitive facility location (CFL) problems. In [70], the concept of competition between two
firms for locating facilities is introduced. The problem was treated as a two stage process; in
the first stage, both firms decide the location of the facilities, while in the second stage the
firms choose the optimal prices for the offered products. CFL problems can be divided in
two main categories (see [65]): the (r|Xp)-medianoid and the (r|p)-centroid problems. Both
problems are modelled under the Stackelberg or leader-follower approach, which results in
bilevel models. In the (r|Xp)-medianoid, the follower locates r facilities assuming that the
leader has p facilities from a set of potential sites Xp. In the (r|p)-centroid problem the leader
locates p facilities knowing that the follower will react locating r facilities. This kind of prob-
lems can also be seen as sequential discrete models (see [52]). Spatial market competition is
introduced, differentiating this problem from others. The assumption, that the spatial market
is a closed linear segment in which the customers demands are uniformly distributed among
the segment, is made. Also, inelastic demands, homogeneous products being offered at fa-
cilities, and both firms considering mill pricing, are expected. Therefore, customers will buy
the cheaper products without regard to the distance from the facilities, and both firms will
have the same cost function. As a result of that paper, the Hotelling’s law was established,
which states that both firms will cluster their facilities to the center of the market. Besides
the discussion about the Stackelberg equilibrium, an analysis for some scenarios in which the
Nash equilibrium does not exist is presented. Finally, different variations of the problem are
mentioned, such as the optimization of a social function, and the existence of product trans-
portation in multidimensional spaces, among others.

After Hotellings’ contribution, many researchers were motivated to tackle these prob-
lems. In [46], a very complete taxonomy that involves many specific components of the
competitive facility location problem is given. The proposed taxonomy contains the number
of involved decision-makers, the price policy, the characteristics of the game (sequential, si-
multaneous, etc), and the customer’s behavior. For a detailed review of competitive facility
location problems, the reader is referred to [45], [76], [104] and [122].

Under the bilevel discrete competitive location problem framework, but considering
preferences for allocating customers to facilities, we can mention [14]. In that study, two
competing companies which successively will locate their facilities to maximize their profits
were considered. Beresnev [14] identifies the following three components in the problem: 1)
a leader company who seeks to locate their facilities considering the follower’s response, 2)
a follower company who considers the facilities located by the leader and makes its decision
to maximize its own market capture, and 3) a set of customers who are free to choose the
facility that will meet their demand. The selected rule for allocating customers to facilities is
based on a pre-established list of preferences that customers have regarding being supplied by
the facilities. To solve the problem, upper bounds are computed through an auxiliary pseudo-
boolean function. Later, in [15], an extension of the previous work is presented. Cooperative
and non-cooperative solutions for the same problem are presented. Also, the previous upper
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bounds are used to obtain initial solutions, which are improved by two local search algorithms.
Numerical results show that better performance occurs when a generalized neighborhood is
considered in the local search.

None of the papers above mentioned considers capacity constraints. After an intensive
literature search regarding this issue, only [27] was found. In that paper, a problem in which
the leader locates the facilities and decides their corresponding capacity for minimizing the
costs is considered. The follower selects the fraction of customer demands satisfied by each
facility aiming to maximize the profit given from the customers-facilities allocation. The fol-
lower’s decision affects a set of constraints in the leader’s problems, complicating the bilevel
problem. A decomposition approach for solving the problem is proposed showing good per-
formance. The main difference with the problem proposed in Chapter 5 is that in [27] the
lower level problem is a linear programming problem, which can be optimally solved by ex-
act methods.

One of the problems addressed in the present thesis is the capacitated facility location
problem with customer preferences under a bilevel programming scheme. The lack of papers
dedicated to this particular problem is possibly due to the fact that the resulting lower level
problem is NP-hard. The incorporation of capacity constraints and customer demand con-
straints converts the lower level problem into the well-known generalized assignment problem
(GAP). Due to the complexity of the GAP, the follower’s optimal solution cannot be com-
puted in a straightforward manner. Feasible bilevel solutions requires the follower’s optimal
response for each leader decision -that is, points in the inducible region; a NP-hard problem
cannot be optimally solved, however (in general). Also, if a refined method that obtains a
good quality solution for the follower is implemented, then the performance (in terms of com-
putational time) of the algorithm designed for solving the bilevel problem will be negatively
affected.

In the majority of papers that analyze bilevel programming problems, the incumbent
lower level problem can be optimally solved by an optimizer or an exact method. A small
number of papers handle a lower level problem which is NP-hard. The common solution
methodology is to develop an efficient heuristic algorithm to obtain an acceptable follower’s
response; by doing this, semi-feasible solutions for the bilevel problem are found. The impor-
tance of having tightened bounds for the lower level problem is evident.

To illustrate this, some papers dealing with a complex lower level problem are pre-
sented. For example, [89] considers a generalization of bilevel network design with conges-
tion effects. In that problem, the follower’s decision variables are given by the solution of
an equilibrium problem formulated as a variational inequality. Four heuristic procedures are
proposed for solving the problem, providing upper and lower bounds for the optimal bilevel
solution. Also, [55] studies a bilevel urban transportation network design model. The upper
level concerns a network design problem and the lower level involves a signal setting problem.
A Scatter Search algorithm is implemented for solving the bilevel problem. To avoid finding
the optimal solution for the follower, a local approach was designed to get the follower’s re-
sponse. Moreover, the signal setting problem was formulated as an asymmetric equilibrium
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assignment problem in which the variables related with signal setting and traffic flows are
determined by the assignment procedure. Under this scheme, the decision is related only with
the topological configuration; by doing this, it is easier to obtain approximate bilevel solutions.

In [19] a new formulation for the ring star problem as a bilevel model is proposed; in
such, they considered the existence of a leader and two independent followers. One of the
followers must solve a travelling salesman problem and the use of a greedy algorithm with
2-opt and 3-opt local searches is applied. Then, in [23] a topological design of Local Area
Networks bilevel problem is considered. The lower level must construct a capacitated span-
ning tree and it is solved by a greedy constructive algorithm similar than Kruskal’s algorithm.
Also, in [6] an ant colony optimization algorithm for solving a bilevel production-distribution
problem was implemented. They illustrated the behavior of the algorithm when the lower
level is solved in an exact manner or by a heuristic procedure. In the case when the heuristic
procedure was applied to the lower level, it corresponds to a differential evolution algorithm.

In [125], a mathematical model for the problem in which two competing firms locate
the same number of facilities is presented; the authors propose two alternatives for obtain-
ing good solutions. First, they solved the leader problem with a heuristic and the follower
problem in an exact way and, then, applied the heuristic algorithm to both levels of the prob-
lem. Numerical results show the first approach requires a significant amount of time, while
the second approach decreases the computational time, but also worsens the quality of the
bilevel solution. Also, [16] deals with a competitive facility location problem, in particular
with the (r/Xp)-medianoid. A greedy algorithm was proposed for estimating an approximate
follower’s solution for each leader’s decision. In [77], a competitive facility location prob-
lem in which a company operates the existing facilities and a new company enters the market
is analyzed. The leader is the company that desires to enter the market and the follower is
the company that controls the facilities already existing in the market. In this problem, the
follower can react in different ways, that is, by opening new facilities, closing some existing
ones, or adjusting the attractiveness levels of the facilities. Both levels are modeled as mixed-
integer non-linear problems. A tabu search method is proposed for solving the problem. The
follower’s solution is found through a branch and bound method applied to the relaxation of
the lower level problem, yielding a lower bound for its objective function. If integrality is
obtained despite the relaxation, then a bilevel feasible solution is obtained. Other solution
approaches are proposed, such as, the ε-optimal solution’s method which enumerates all the
possible locations for the follower, and then, the optimal solution of the resulting non-linear
problem is computed. Also, a reformulation is made by using KKT optimality conditions and
solved by an algorithm called GMIN-αBB; only small size instances were able to be tested in
a reasonable computational time.

The hub location problem is another problem that is related with the facility location
problem. Let be G = (N,A) a graph where N is the set of nodes and A is the set of edges.
A flow wij should be sent from each node i to each node j, (i, j ∈ N). An alternative is to
select some nodes to become hubs and use them as redistribution points for achieveing a more
efficient flow in the network. The problem consists of deciding which nodes should become
hubs and how the flow in the network should be redistributed. When a non-hub node has to be
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assigned to exactly one hub, it is a single-allocation hub location problem. In many situations
a limit exists on the maximum amount of flow which can be processed in each hub. These ca-
pacity constraints lead to the capacitated single-allocation hub location problem (CSA-HLP).
In single-allocation models, binary variables are required in the allocation phase, multiple al-
location allows different delivery patterns which implies the use of continuous variables and
simplifies the problem. For more information see [32], [4] and [24].

In [108], an alternative formulation based on the ordered median objective function,
which unifies several hub location models -namely the Single Allocation Ordered Median Hub
Location problem (SA-OMHLP), is introduced. This problem provides a common framework
to represent many of the considered criteria in the literature of hub location. In this model,
single-allocation means that all the outgoing flow is delivered through the same hub, but the
incoming flow can come from different hubs. Recently, [109] deals with the capacitated ver-
sion of this problem. These authors recognize that although capacitated models are more
realistic, the difficulty to solve them increases with respect to their uncapacitated versions.
They used the most promising formulations of the non-capacitated version of the problem
(the “covering” formulations) and tried to adapted for the capacitated problem. The model
incorporates capacity constraints on the incoming flow at the hubs coming from origin sites
or even simpler, on the number of non-hub nodes assigned to each hub.

Having an ordering problem within a location one increases its complexity in both,
the formulation and the methodology of solution. The Discrete Ordered Median Problem
(DOMP) was introduced in [100], in which two formulations are proposed: as an integer lin-
ear program and as an integer nonlinear program. Then, in [18] an alternative integer linear
programming formulation for the DOMP is proposed. A comparison with the existing ones is
made showing that the proposed formulation is better. Moreover, some properties regarding
optimal solutions that allows the elimination of a subset of variables are found. Taking ad-
vance of the properties, a branch and bound algorithm was developed and used for solving a
set of benchmark instances.

In [72], an extension of the DOMP called the ordered capacitated facility location prob-
lem is proposed and it is modelled from three different points of view. In the first model the
demands can be split; in the second model fixed costs for locating facilities are considered;
and in the third model the shipping and locating costs are taken into account in the objective
function. Also, in the third model they examine three approaches for incorporating shipping
costs: i) customers pay this cost, ii) distribution centers pay this cost, and iii) logistic providers
pay this cost. To consider the above mentioned approaches they used the objective function
proposed in [101]. The locating and shipping costs are ordered before the evaluation of the
objective function is made.

A hierarchical location model for public facility planning is presented in [133]. Taking a
p-median model as a basis, a new model that adds constraints on the minimum and maximum
capacity of facilities and deletes the constraint on the number of open facilities is derived. The
authors analyze the spatial pattern of customer-facility assignments resulting from different
assignment constraints. Location models with capacity constraints do not have the single and
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closest assignment properties. Facilities have a limited capacity and customers are diverted
to other facilities, or customers are “captured” to ensure the minimum capacity of a facility.
In public location models, a solution that makes that customers belonging to the same facility
are split or users from neighboring sites will be assigned to different facilities, are difficult to
interpret by decision makers and difficult to explain to customers.

Another classical facility location problem is the covering problem. Covering problems
have also attracted researchers’ attention for the past 50 years due to their significant impact
in real-life situations. The main purpose of these problems is to locate facilities that can
provide services to customers within a predetermined coverage radius. This is a reasonable
assumption specially in those cases where some type of service will be useless above a certain
distance. Classical covering problems, were the coverage radius is given, can be divided into
set covering and maximal covering. The set covering problem was introduced in [64], where
the aim was to minimize the number of facilities required to cover all demand points. The
maximal covering location problem (MCLP) was proposed in [29], where a limited number
of facilities has to be located to maximize the demand covered. Since then, many extensions
have been proposed and many applications in different domains have been studied. Detailed
surveys on covering location and its applications in real-life situations can be found in [124],
[49] and [57].

After an intensive literature review, only in [82] customer preferences were considered
for covering problems. The problem maximizes the weighted covered demand with respect to
customer preferences. They also considered a minimum and maximum number of customers
served by a facility. A method based on Lagrangian relaxation and primal heuristics was pro-
posed to obtain upper and lower bounds for the optimal solutions. The proposed algorithm
provided good quality solutions.

In [82], there is a decision maker who controls both variables (allocation and location)
and he/she gives an integrated solution taking into account customer preferences. However,
if customers can decide their allocation among the open facilities, then the problem is ap-
proached from a quite different point of view. In the latter situation, there are two decision
makers involved in the decision process and a hierarchy exists among them. Bilevel program-
ming is very suitable for handling this situation. It is assumed, that upper level will decide
the location of the facilities and that customers will be allocated in the lower level. This is the
approach considered in this thesis.



Chapter 3

Uncapacitated Facility Location Problems

3.1 Analyzing the performance of a hybrid heuristic for a
bilevel location problem using different approaches to
tackle the lower level

To obtain bilevel feasible solutions, the lower level problem must be optimally solved by
an optimizer or by an exact method. But, this is not always possible and the current prob-
lem needs to be solved somehow. Hence, a heuristic procedure that balances efficiency and
computational effort would be desired. Commonly, the use of heuristic procedures for solving
bilevel problems results very costly in terms of computational time due to the number of times
that the lower level problem is solved. Then, the exploration of methodologies in which the
search is guided without the resolution of the lower level turns out to be a matter of interest,
see [6], [127], [128] and [129].

The objective of this work is to show the impact of not solving the lower level in an
optimal manner during the resolution of a bilevel programming problem. We select a prob-
lem where the lower level problem is not difficult to be optimally solved. The motivation of
this is for comparing the performance of the case when solving to optimality and when not.
We propose a hybrid algorithm for solving the bilevel version of the uncapacitated facility
location problem with customer preferences. Also, a discussion about the effects that result
from solving the allocation problem with an optimizer, with an alternative exact procedure or
with a methodology that avoids solving it at each step is presented. The article is organized
as follows: in section 3.1.1 we present the classical mathematical bilevel formulation of the
problem. Section 3.1.2 describes the proposed algorithm that hybridizes an evolutionary al-
gorithm with path relinking. The computational experimentation and the results are shown in
section 3.1.3.

15
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3.1.1 Description of the problem
In this section the bilevel problem and its mathematical formulation are described. The bilevel
model considered in this paper is proposed in [136], where the leader aims to minimize locat-
ing and distributing costs. The follower aims to minimize the customer preferences. The sets,
parameters, and decision variables involved in the mathematical formulation and the assump-
tions considered during the research are presented next.

Let i ∈ I and j ∈ J be the indices of the potential facilities and customers, respectively.
Let cij represent the costs of supplying all demand of customer j from a facility located at
i. Let fi denote the cost of locating facility i. Finally, gij represents customer j preference
towards facility i.

The sets of variables are:

yi =

{
1, if a facility i is located
0, otherwise

and

xij =

{
1, if facility i satisfies the demand of customer j
0, otherwise

The following two assumptions are considered in the problem:

• Customer preferences are represented by an ordered list, where 1 indicates the most
preferred facitity and |I|-th represents the least preferred facility.

• Uncapacitated facilities, therefore, a facility can supply multiple customers but a cus-
tomer must be served by a single facility.

The mathematical model for the UFLBP is as follows:

min
y,x

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (3.1)

subject to: yi ∈ {0, 1} ∀i ∈ I (3.2)

x ∈ arg min
∑
i∈I

∑
j∈J

gijxij (3.3)

subject to:
∑
i∈I

xij = 1 ∀j ∈ J (3.4)

xij ≤ yi ∀i ∈ I, j ∈ J (3.5)
xij ∈ {0, 1} ∀i ∈ I, j ∈ J (3.6)

The problem in the upper level is defined by (3.1)-(3.3), where (3.1) represents the
leader’s objective function who seeks to minimize both location and distribution costs, (3.2)
establish the binary constraints for each variable yi and (3.3) is the constraint that indicates
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that variables xij are controlled by the follower, these variables are determined by the optimal
solution of the lower level. This problem is defined by equations (3.3)-(3.6); the follower’s
objective function is defined in (3.3) that minimizes the ordered preferences of the customers,
(3.4) ensure that each customer is supplied by a single facility, (3.5) indicates that customers
allocation can be made only to the located facilities, and finally, (3.6) indicates the binary
constraints for the decision variables xij .

The existence and uniqueness of the lower level’s solution is guaranteed because for this
study, customer preferences are different from each other. In other words, it is not allowed
to assign the same preference value to more than one facility. The proof which validates the
latter is shown in [136]. Under this assumption, it is guaranteed that the bilevel problem is
well defined.

3.1.2 A hybrid evolutionary algorithm with path relinking
In this section, the hybrid algorithm and its components are described. Hybrid algorithms
combine advantages of two or more heuristics to find good quality solutions for a problem.
The combination usually obtains either better solutions or a quicker convergence than the use
of only one heuristic. An example of hybrid algorithms can be found in [62]. In that paper,
the authors identify connections and contrasts between genetic algorithms and tabu search. In
[126], a variable population-size genetic algorithm and a particle swarm optimization algo-
rithm are hybridized, the computational results in benchmark functions showed that the hybrid
algorithm has a good performance.

In this chapter a hybridization between an evolutionary algorithm and path relinking is
proposed. The main idea for including the path relinking scheme is basically to substitute the
classical random crossover. The motivations for developing an evolutionary algorithm (EA)
are: a population based algorithm allows the search space to be expanded due to the obtaining
of several solutions and not only one; and it is well-known that EAs can handle not-easy-to-
solve problems in an efficient manner.

The EA consists in three mechanisms: in the first one, the construction of the initial
population containing feasible solutions is made; the second mechanism concerns to the ap-
plication of the genetic operators -crossover and mutation-; and the last one is the selection
mechanism to implement the survival-of-the-fittest principle, which depends of two features,
quality and diversity. We decided to implement a combinatorial method called Path Relinking
(PR) for reaching a local optimum, this procedure is added into the crossover. Path relinking
begins with a pair of good quality solutions, parts from one of them and changes its com-
ponents, once at a time, to convert this initial solution into the second one. In [134] a brief
description of the PR is given, here the authors mentioned that the main objective is to explore
the search path between a set of (two) solutions. Additionally, PR generates a set of new so-
lutions from the good solutions in the set. Also in [115], PR is described as an intensification
strategy to explore trajectories connecting elite solutions obtained by heuristic methods. The
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PR proposed in this study, explores paths using only the leader’s solutions. If the second so-
lution is identical to the first one, then the method stops and returns the best solution found
in the trajectory. It is important to highlight that since the aim of the proposed algorithm is
to solve a bilevel problem, to compute the objective function value, the follower’s problem is
solved in each movement.

The addition of PR to other algorithmic frameworks has shown good performance and
has attracted the attention of researchers. For example, in [115] there is a description of the
hybridization of path relinking with Scatter Search (SS) and a Genetic Algorithm (GA), and
showed that the use of PR almost always improves the performance of a heuristic. Also, in
[111] a project scheduling problem is considered, where a hybridization of PR and a GA is
developed to find good quality feasible solutions for the problem. The performance of the hy-
brid algorithm is tested using a set of instances available, and they showed that hybridization
is efficient for this specific problem. Moreover, the combination of PR with SS is analyzed
in [40]. They solved the capacitated p-median problem (CpMP). In the CpMP it is required
to partition over a set of costumers, each with a given demand, in exactly p clusters. They
conducted a series of experiments on different sets of test instances, and the results were sat-
isfactory in terms of the quality of the solutions found. Furthermore, they mention that the
combination of PR with SS gave good results. Recently, in [51] and [103] path relinking is
also hybridized with other heuristics showing good results. Based on these results, we were
motivated for hybridizing this procedure within the evolutionary framework.

The principal components involved in the hybrid algorithm are detailed and depicted in
Algorithm 3.1.1. It can be seen that an initial population is generated (Pt) inGenerateInitial
Population and then the fitness of each solution of it is calculated in Fitness. After, the se-
lection of the parents is carried out through tournaments in Selection and enter to the genetic
operators: crossover and mutation. This process is repeated until it reaches number of gener-
ations, that is, t = Generations.

Algorithm 3.1.1 Pseudocode Evolutionary algorithm.
1: procedure EVOLUTIONARY ALGORITHM

2: Pt ← ∅
3: Pt ← GenerateInitialPopulation(Pt)
4: f ← Fitness(Pt)
5: while t < Generations do
6: Pt+1 ← Selection(Pt, Pt+1, f)
7: Pt+1 ← Crossover(Pt)
8: Pt+1 ←Mutation(Pt)
9: Pt ← Pt+1

10: t← t+ 1
11: end while
12: returnPt
13: end procedure
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Solution encoding: The leader’s solutions are represented as a binary strings of size |I|,
that indicate if the facility is opened (value 1) or not (value 0). The follower’s problem must
be solved and the solution must be used to compute the leader’s objective function value.

Initial population: In this mechanism, a predetermined number of solutions is gener-
ated. Feasible solutions are created in a random manner. For each solution, a vector of size |I|
of independent random numbers uniformly distributed over the interval [0,1] are generated.
That vector if filled out component by component as follows: if the respective number is less
(greater) than 0.5, then the corresponding facility remains closed (opened).

Selection mechanism: The strategy used is a tournament selection. This procedure con-
sists in randomly matching each solution with another one from the population, and the best
of both solutions is selected.

Crossover (Path relinking): The path relinking procedure is used in the crossover. In
this case, pairs of solutions are selected in a random way from the population and a crossover
point is randomly selected. Here, the first solution through movements becomes into the sec-
ond one, but only after the crossover point. That is, both solutions are identical as from the
crossover point. Then, in each movement a new solution is generated so a trajectory is created.
After, the two best solutions are chosen. The crossover point is used in order have a starting
point for changing the elements of the first solution. This means that if the first component
in the first solution is different at the second solution after the crossover point, this one will
be changed; that is, if component is 1, then it will be changed into 0; or vice versa. This
procedure is repeated for all subsequent elements until all components are explored.

A pseudocode of PR is shown in Algorithm 3.1.2. Here, after having generated the
crossing point, the amount of different elements there are after this point in the two solutions
is calculated, i.e., D. Then, for each of these components, the change is made from 0 to 1 or
vice versa in the solution (y′) inChange. Then, the lower level is solved in SolveLowerLevel
considering this change (x) and the fitness is calculated (c(y′)) in Fitness. If this value is bet-
ter than the incumbent, the change is made (ynew).
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Algorithm 3.1.2 Pseudocode of path relinking.
1: procedure PATH RELINKING(y1, y2)
2: ynew ← ∅
3: D ← d(y1, y2)
4: min←∞
5: for i = 1 : NumDiference do
6: y′ ← Change(y1, D, i)
7: x← SolveLowerLevel(y′)
8: c(y′)← Fitness(y′, x)
9: if c(y′) < min then

10: min← c(y′)
11: ynew ← y′

12: end if
13: end for
14: return ynew
15: end procedure

In Figure (3.1), an illustrative example of PR is showed. It can be seen two initial so-
lutions. Suppose that the crossover point occurred between the fourth and fifth component of
the solutions. Note that the fifth component of the first solution is 1, and that of the second
solution is 0, then in the first movement the solution generated will be identical to the first
solution but the fifth component will have the value of 0. Now, the value of the sixth com-
ponent of the first solution is 0 and that of the second solution is 1, then that change is made
and that generates a second solution in the second movement. The process is repeated until
all possible changes are explored, that is, until a solution that is identical before the crossover
point to the first parent and identical to the second after the crossover point is generated.

Figure 3.1: Path relinking.

Mutation: The mutation involves changing some components of the string from 0 to 1
or vice versa. The associated probability for switching a component is given by a random
number generated for each component. Then, the components of the solutions are mutated
in an independent manner; that is, the mutation of a component does not affect the mutation
probability of another one.
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Finally, population is updated in an elitist way. We now comment on the performance
of the proposed algorithm using a set of benchmark instances.

We used different methodologies to solve the UFLBP. First, we considered the evolu-
tionary algorithm (EA) proposed in [22] and hybridized it with a path relinking procedure
(PR) included in the crossover phase. Furthermore, within this hybridization, we propose
three alternative ways to solve the lower level problem, which are: (i) to optimality by using
a commercial solver, (ii) to optimality by using an ordered matrix of preferences proposed in
[92] and (iii) by not solving the lower level at each movement explored in the PR.

The latter alternative is based on the fact that for having feasible solutions for the bilevel
problem, the lower level needs to be optimally solved for each leader’s solution. It is evi-
dent that a local procedure, such as PR, a new leader’s solution is obtained in each move and
for measuring the impact of that specific move the lower level problem needs to be solved.
Hence, the computational cost for following that scheme is high for a bilevel problem. Thus,
it is interesting to investigate the possibility of not solving the lower level for the new leader’s
solution during all the PR procedure. By doing this, semi-feasible solutions (feasible for the
leader but not optimally for the follower) are being considered in the PR but after the method-
ology is done, the lower level is optimally solved for the incumbent solution. That is, bilevel
feasibility is achieved with the latter.

Owing to the high computational cost of using an optimizer for solving the lower level
problem, the methodology proposed in [93] is considered, wherein the customer preferences
matrix is rearranged by ordering it into another matrix with ordered facilities indices (based
on the customer preferences). The methodology is explained below.

For each customer j ∈ J , the array with potential facilities is ordered according to the
preferences of customer j, where the most preferred facility index is at the beginning of the
array and the least preferred is at the end. The arrays of all customers are stored in a matrix
called the matrix of ordered preferences. Then, Each customer j ∈ J is allocated to the first
open facility according to the ordered preferences specified above. The process is repeated
until all customers are allocated to an open facility. Thus, optimal allocation of the customers
to the located facilities is obtained.

3.1.3 Computational experimentation
The experimentation was conducted on 3.60 GHz Intel Core i7-4790 with 32.00GB RAM run-
ning under Windows 8.1 Pro operative system. The algorithms were implemented on Visual
Studio Express 2012 with C++ and for the first alternative, the lower level was solved with
CPLEX 12.6.1. The set of benchmark instances is the same that the one used in [22]. The
set consists of 36 instances of three different sizes: 12 small, 12 medium, and 12 large-size
instances. The small-size ones contain 50 facilities and 50 customers. On the other hand, the
medium-size instances contains 50 facilities and 75 customers. Finally, 75 facilities and 100
customers are considered in the large-size instances.
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Initial testing indicates that the required time to solve the small-size instances with the
proposed hybrid algorithm (EA+PR) with CPLEX is 4410.455 seconds on average. As a con-
sequence of the excessive computational time required by CPLEX for solving the lower level,
we decided to discard this approach. Hence, we used the ordered matrix of customer prefer-
ences for solving the lower level.

In the case where the lower level was not optimally solved during each move in the PR
(this approach will be referred as EA+PRw), two approaches for allocating customers were
proposed. For example, consider the situation presented in Figure 3.2.a, where an ordered
pair associated with each customer represents the nearest open facility and the most preferred
open facility, respectively. Also, consider the case when facility [3] is opened and facility [4]
is closed, under the approach when the lower level is not solved at each move of the PR, the
customers that were allocated to facility [4] are now unassigned (see Figure 3.2.b). Hence,
the first approach considered is when customers will be assigned to their nearest facility (see
Figure 3.2.c). The second approach is when customers will be assigned to their most pre-
ferred facility (see Figure 3.2.d). Both approaches do not guarantee the customer’s optimal
allocation and semi-feasible solutions are being considered at that time. Remember that the
customers that are assigned under these two approaches are the customers that are left unallo-
cated when an facility is closed. That is, there is not a reallocation for all customers when a
facility is closed and another opened. Then, when the allocation is with the second approach,
this is not the optimal allocation. However, once the PR procedure has finished, the optimal
resolution of the lower level is done for obtaining bilevel feasible solutions.

Regarding the EA+PRw, the two considered approaches were analyzed and it can be
observed that both have good quality solutions (see Figures 3.3 and 3.4). Moreover, it can
also be observed that within the first 20 generations the “most preferred” approach has a
better development, but in the next generations, their performance is almost the same for the
“nearest” and “most preferred” approaches. Since this behavior was observed for all instances,
half of the computational experimentation was done with the “nearest” approach and the other
half under the “most preferred” approach.

In order to assess the performance of the hybrid algorithm, a properly parameter identi-
fication has to be done. The parameters considered in the EA+PR are: size of the population
(n), number of generations (G), and the number of tournaments (T ). Initially the number of
generations was of 500, but due to the convergence in EA+PR and EA (EA+PR is faster than
the EA) this number was reduced, see Figures 3.5 and 3.6. The selected parameters for the
EA were selected exactly as in [22]; the corresponding values are n = 100, G = 150 and
T = 5.

In Tables 3.1, 3.2 and 3.3 the results obtained from running 10 times the EA, EA+PR and
EA+PRw with each instance are shown. Table 3.1 corresponds to the results for the small-size
instances, this set is composed by three subset of instances -132, 133, 134- that differ from
each other on the values of distribution and fixed costs. All those instances consider four
different matrices of preferences. The same procedure is used in the medium and large-size
instances, their results are presented in Tables 3.2 and 3.3, respectively. Each table contains
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Figure 3.2: Exemplification for reallocating the customers.

Figure 3.3: Illustrating the convergence for both approaches of EA+PRw in instance a-1
medium.

the gap between the optimal value and the best value obtained for each approach (EA, EA+PR
and EA+PRw) of the 10 runs, named “best gap”. Also, the “average gap”, which is the gap be-
tween the optimal value and the average value of the 10 runs. And finally, the “average time”
-in seconds- used for solving each instance is shown. The gaps described above are computed
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Figure 3.4: Illustrating the convergence for both approaches of EA+PRw in instance b-2 large.

Figure 3.5: Illustrating the convergence for EA and EA+PR in instance 132-1.

Figure 3.6: Illustrating the convergence for EA and EA+PR in instance b-1 large.
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as follows: gap = 100((x − x∗)/x∗), where x represents the value of objective function of a
solution and x∗ the value of objective function of optimal solution. It is convenient to remark
that optimal values for these instances are known from previous works from the literature.

Table 3.1: Results for the small-size instances
EA EA+PR EA+PRw

Instance Best
gap

Average
gap

Time
(sec)

Best
gap

Average
gap

Time
(sec)

Best
gap

Average
gap

Time
(sec)

132-1 0.00% 5.41% 1.51 0.00% 5.73% 0.76 0.00% 7.91% 0.72
132-2 0.00% 4.40% 1.45 0.00% 4.14% 0.74 0.00% 4.46% 0.73
132-3 0.00% 7.81% 1.53 0.00% 6.90% 0.77 0.00% 8.59% 0.73
132-4 0.00% 4.05% 1.49 0.00% 4.12% 0.78 0.00% 4.08% 0.74
133-1 0.00% 5.13% 1.53 0.00% 4.61% 0.76 0.28% 5.03% 0.74
133-2 0.00% 5.99% 1.51 0.00% 6.99% 0.72 0.00% 6.42% 0.71
133-3 0.00% 7.45% 1.54 0.15% 6.98% 0.79 0.15% 7.96% 0.73
133-4 0.00% 2.34% 1.50 0.00% 2.04% 0.75 0.00% 2.47% 0.71
134-1 0.00% 6.72% 1.52 0.00% 6.07% 0.78 0.00% 6.78% 0.74
134-2 0.00% 6.20% 1.54 0.00% 5.67% 0.78 0.00% 6.44% 0.73
134-3 0.00% 5.72% 1.52 0.00% 5.00% 0.78 0.00% 5.69% 0.74
134-4 0.00% 4.95% 1.50 0.00% 5.07% 0.75 0.00% 5.21% 0.71

Table 3.2: Results for the medium-size instances
EA EA+PR EA+PRw

Instance Best
gap

Average
gap

Time
(sec)

Best
gap

Average
gap

Time
(sec)

Best
gap

Average
gap

Time
(sec)

a-1 0.09% 4.89% 2.07 0.00% 4.44% 1.04 0.09% 5.04% 0.93
a-2 0.00% 6.51% 2.08 0.00% 5.59% 1.11 0.00% 6.86% 1.00
a-3 0.04% 4.72% 2.08 0.00% 4.22% 1.10 0.00% 4.93% 0.98
a-4 0.00% 5.48% 2.07 0.00% 5.02% 1.07 0.00% 5.57% 1.00
b-1 0.00% 5.68% 2.06 0.00% 5.76% 1.08 0.00% 6.08% 1.00
b-2 0.10% 3.70% 2.07 0.00% 3.10% 1.12 0.00% 4.72% 1.08
b-3 0.00% 5.06% 2.07 0.00% 4.52% 1.10 0.49% 5.57% 1.02
b-4 0.00% 4.80% 2.04 0.02% 4.45% 1.02 0.52% 5.06% 0.98
c-1 0.26% 2.95% 2.03 0.26% 2.54% 1.10 0.26% 2.96% 1.04
c-2 0.25% 3.46% 2.04 0.00% 3.12% 1.10 0.00% 3.92% 1.04
c-3 0.00% 3.71% 2.01 0.00% 3.52% 1.06 0.00% 3.91% 1.00
c-4 0.00% 3.03% 2.04 0.00% 2.72% 1.05 0.00% 3.14% 0.99

Table 3.3: Results for the large-size instances
EA EA+PR EA+PRw

Instance Best
gap

Average
gap

Time
(sec)

Best
gap

Average
gap

Time
(sec)

Best
gap

Average
gap

Time
(sec)

a-1 0.00% 9.76% 3.55 0.00% 8.89% 2.07 0.00% 9.89% 1.84
a-2 0.00% 6.94% 3.49 0.00% 6.30% 2.02 0.00% 7.12% 1.77
a-3 0.00% 7.23% 3.48 0.00% 6.25% 2.09 0.00% 7.23% 1.86
a-4 0.00% 5.85% 3.61 0.00% 5.08% 2.11 0.00% 5.72% 1.85
b-1 0.77% 5.39% 3.67 0.77% 4.72% 2.35 0.87% 6.09% 2.09
b-2 1.01% 4.71% 3.65 0.29% 4.00% 2.16 0.63% 5.29% 2.05
b-3 0.00% 4.37% 3.65 0.00% 4.07% 2.13 0.86% 4.48% 2.00
b-4 0.00% 6.47% 3.71 0.00% 5.88% 2.25 1.14% 6.74% 2.08
c-1 0.00% 4.04% 3.69 0.00% 3.65% 2.22 0.00% 4.21% 2.00
c-2 0.00% 3.82% 3.65 0.00% 4.17% 2.28 0.00% 4.62% 2.05
c-3 0.00% 4.53% 3.61 0.00% 4.05% 2.12 0.00% 4.91% 2.00
c-4 0.00% 4.67% 3.69 0.00% 4.35% 2.25 0.00% 5.14% 2.05

It can be observed from Table 3.1 that there is not a difference in the best gap between
EA and EA+PR. In other words, both algorithms show the same effectiveness but compu-
tational times of EA+PR are about half the computational times of EA computational time.
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Regarding the EA+PRw, computational times are shorter than the other ones. However, in
terms of quality, it is observed that EA and EA+PR provide better solutions than those pro-
vided by EA-PRw.

From Table 3.2, it can be seen again that, both EA and EA+PR seems to have the same
good performance. However, the required computational time of EA+PR remains as low as
half of the EA. Moreover, the average gaps in c-3 and c-4 instances are smaller values than the
average gaps of EA. This means that solution quality is better for all solutions in the last popu-
lation of EA-PR when it is compared with solutions in the last population of GA. On the other
hand, when comparing the EA+PR with EA+PRw, it is noticed that the performance (in terms
of solution quality), is worse for EA-PRw when compared with EA+PR performance. In a
reasoned way, this was expected; that is, avoiding to solve the lower level problem at each
move during the local search leads into a blinded exploration. Furthermore, semi-feasible
solutions are being considered, which later will have to be repaired for reaching bilevel feasi-
bility.

Finally, the behavior discussed in the above paragraphs is maintained for the large-size
instances. The “best gap” and “average gap” columns do not show a significant difference be-
tween EA and EA+PR. However, as before, the computational time required for the EA+PR
is smaller than computational times of EA. In addition, the EA+PR has a better performance
in terms of quality than EA+PRw but the required computational times are almost the same.
This is caused because in the EA+PRw when a facility is closed, the customers associated to
it, need to be reallocated following a predefined criterion. Hence, a quickly reallocation is
made; but the required time for solving the lower level problem using the ordered matrix of
preferences is very low. Then, when the algorithm reaches its stop criterion, the cumulative
time reduction is not as significant as we expected.
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The average gap values obtained by both, EA+PR and EA+PRw, are plotted in Figure
3.7 for all the tested instances. The results support the ideas obtained from the discussion
previously presented; that is, the performance of the EA+PRw is not as good as the EA+PR
in most of the cases due to the semi-feasible solutions. It can be seen from Figure 3.7 that
only twice (instances 132-4 and 133-2) the value for the EA+PRw is better than the value that
corresponds for the EA+PR, but in all other instances it is worst. For example in the 132-1 and
b-2 (medium-size) instances the difference between the gaps is 2.17 and 1.62, respectively.

Figure 3.7: Comparing the average gaps.



Chapter 4

p-Median Problems

4.1 Solving the p-median bilevel problem with order through
a hybrid heuristic

The following example illustrates the impact of introducing customer preferences in a facility
location problem. Consider five potential facilities and seven customers; also, assume that
two facilities must be located. The corresponding costs and customer preferences (a pre-
established order set with customers preferences towards facilities) are shown in Figure 4.1.
Here, i denotes facilities and j denotes customers, where i ∈ I and j ∈ J . The cij represent
the cost of supplying the entire demand of customer j from facility i. Each customer j has a
preference of being served by facility i, represented by gij . Finally, p represents the number
of facilities that must be located and F is the leader’s objective function value.

For the example, suppose that the located facilities are {2, 3}. Using the classical the
p-median problem, customers {1, 2, 5}will be allocated to facility 2 and customers {3, 4, 6, 7}
to facility 3. The associated cost is 18 (see Figure 4.1.a). Then, using the p-median BPO prob-
lem, customers will be allocated using their preferences. In this case, customers {1, 2, 4, 5, 7}
will be allocated to facility 2 and customers {3, 6} to facility 3; the cost of this solution 21
(see Figure 4.1.b). Now, consider an alternative solution that opens {1, 4}. In the p-median
problem, customers will be partitioned in {1, 2, 3, 4} and {5, 6, 7} for facility 1 and 4, respec-
tively; incurring in a cost of 18 (see Figure 4.1.c). In the problem when the preferences are
considered, customers {1, 2, 3} are allocated to facility 1 and customers {4, 5, 6, 7} to facility
4. The cost of this decision is 19 (see Figure 4.1.d).

Despite the fact that both solutions have the same objective value in the p-median prob-
lem, the second solution is better for the problem studied in this chapter. It can be noticed
that considering customer preferences negatively affects the costs, but allows to include the
opinion of the customers into the decision process. When the order of the facilities coincides
with the order given by the distances (or costs), the p-median BPO is reduced to the p-median
problem. Hence, the p-median BPO is also NP-hard.

In location problems, it is important to consider customer opinion when opening new

28
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Figure 4.1: Example with I = {1, ..., 5}, J = {1, ..., 7} and p = 2.
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facilities because in many real cases, customers are free to meet their demand from the fa-
cility they desire. This decision is usually made based on factors such as cost, preferences,
predetermined contracts, and a certain coefficient of customer loyalty.

4.1.0.1 Main contributions

In this chapter, the p-median BPO, which is a variant of p-median problem that considers cus-
tomer preferences, is presented. This problem is formulated as a bilevel optimization model
in which the leader aims to minimize distribution costs and the follower optimizes customer
preferences. This hierarchy is considered not only because of the importance of considering
customer preferences but also bearing in mind that the main objective is minimizing the cost
associated with distribution from the facilities to customers. In order to have a baseline for
measuring the effectiveness of the proposed hybrid algorithm, two reformulations are pro-
posed. The first reformulation is based on a classical tool for reducing bilevel problems into
single-level ones. The second one is an alternative and equivalent integer model based on a
set of closest assignment constraints. Moreover, a hybrid heuristic algorithm based on scatter
search is developed for finding good quality solutions of the bilevel model.

Hence, one of the main contributions of this research is the study of this problem as a
bilevel model for the first time. As it is mentioned in Chapter 1, Alekseeva and Kochetov [3]
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and Camacho-Vallejo et al. [21] are related with this problem but the employed methodolo-
gies and research aims are quite different. Moreover, they did not studied the bilevel version
of the problem but single-level models.

The other contribution is the development of a hybrid heuristic algorithm that can effi-
ciently solve small, medium and large size instances of the bilevel version of the p-median
BPO. Part of the algorithm’s success is due to the proposed reduction of the neighborhood
size for local search and greedy components. Also, the objective function value calculation is
optimized by following the ideas described in Marić et al. [93]. A comparison between the
hybrid heuristic and other algorithms shows the advantages of the proposed algorithm.

The outline of the remainder of this chapter is as follows. Section 4.1.1 describes the
mathematical formulation of the problem. In Section 4.1.2, two reformulations of p-median
BPO (reducing it to a single-level mixed-integer program and a binary program) are presented.
In Section 4.1.3, an algorithm based on scatter search hybridized with GRASP that considers
Stackelberg equilibrium is proposed. In Section 4.1.4, the results obtained from the compu-
tational experimentation by the proposed algorithm, two versions of scatter search, a genetic
algorithm and the reformulations are summarized.

4.1.1 Description and mathematical formulation of p-median BPO
This problem is formulated as a bilevel optimization model. In this formulation the leader
minimizes the distribution costs and the follower minimizes customer preferences. The ob-
jective of the problem to locate p facilities that minimize the distribution cost and the ordered
preferences of customers in a hierarchized manner.

Let I and J be the indices of the facility location and customers, respectively, where
i ∈ I and j ∈ J . Let cij represents the cost of supplying the entire demand of customer j
from facility i. Each customer j has a preference of being served by facility i, represented by
gij . Finally, p represents the number of facilities that must be located. The decision variables
of this bilevel model are xij , which denotes whether facility i satisfies the demand of customer
j, and yi, which denotes whether a facility is located in site i. Both decision variables are bi-
nary.

The following assumptions are also considered in the model:

• Customers a priori establish their ordered preferences for facilities as a list of numbers
from 1 to |I|, where 1 is the most preferred facility and |I| is the least preferred facility.

• Facilities have no capacity constraints associated with them, i.e., a facility can supply
several customers, but each customer must be served by a unique facility by establishing
the required number of facilities.
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The corresponding mathematical model for the p-median BPO is as follows.

min
y

∑
i∈I

∑
j∈J

cijxij (4.1)

subject to:
∑
i∈I

yi = p (4.2)

yi ∈ {0, 1} ∀i ∈ I (4.3)

x ∈ arg min
∑
i∈I

∑
j∈J

gijxij (4.4)

subject to:
∑
i∈I

xij = 1 ∀j ∈ J (4.5)

xij ≤ yi ∀i ∈ I, j ∈ J (4.6)
xij ∈ {0, 1} ∀i ∈ I, j ∈ J (4.7)

The upper level problem is defined by (4.1)-(4.4), where (4.1) is the leader’s objective
function, representing the minimization of distribution costs; (4.2) indicates the total number
p of facilities to be located; (4.3) establishes the binary constraints for each variable yi; and
(4.4) indicates that the variables xij , which are controlled by the follower, are determined
implicitly by the optimal solution of the lower level problem. This problem is defined by
(4.4)-(4.7), where the follower’s objective function is (4.4), which aims to minimize customer
preferences toward the facilities; (4.5) ensures that each customer is supplied by exactly one
facility; (4.6) indicates that the assignment of customers is guaranteed only for the located
facilities; and (4.7) indicates the binary constraints on the decision variables xij .

To ensure that p-median BPO is well defined, a unique optimal solution in the lower
level problem for any fixed leader’s decision y should exists. This property is maintained by
the structure of preferences. The proof of this result is given in Vasil’ev et al. [136]. In the
case that multiple followers’ optimal responses exist, a bilevel problem needs to assume well-
known optimistic or pessimistic approaches.

Notably, despite that only the follower’s variables xij are involved in the leader’s objec-
tive function, the leader’s variables yi are considered when solving the lower level problem.
In other words, the leader’s decision directly affects the distribution cost associated with the
facility-customer assignment made by the follower.

4.1.2 Single-level reformulations
In this section, two reformulations of the p-median BPO are developed. The first reformula-
tion relies on the primal-dual optimality conditions of the lower level problem. The second
reformulation is an integer single-level model tantamount to p-median BPO. The fact that a
subset of the problem’s variables is determined implicitly by the optimal solution of another
optimization problem, namely the problem given by (4.4)-(4.7), motivated us to reformulate
the bilevel model as a single-level one. Hence, the resulting model could be solved by an
optimizer.
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4.1.2.1 Reformulation based on the primal-dual optimality conditions of bilevel prob-
lems

Note that if the leader’s variables y are fixed, then the lower level involves the classical disag-
gregated SPLP constraints. Consequently, the single assignment property is hold (see Krarup
and Pruzan [75], and Galvão [56]) assuring that a customer will be entirely supplied by its
most preferred facility. Hence, binary variables xij can be relaxed without affecting the inte-
ger optimal solution. Hence, xij ≥ 0 will be considered instead of xij ∈ {0, 1}, ∀i ∈ I, j ∈ J .
Now, the primal-dual optimality conditions of the lower level problem could be properly de-
termined.

Let αj,∀j ∈ J and βij,∀i ∈ I, j ∈ J be the dual variables associated with the follower’s
primal constraints. The resulting dual problem is as follows:

max
α,β

∑
i∈J

αj +
∑
i∈I

∑
j∈J

βijyi (4.8)

subject to: αj + βij ≤ gij ∀i ∈ I, j ∈ J (4.9)
βij ≤ 0 ∀i ∈ I, j ∈ J (4.10)
αj unrestricted ∀j ∈ J (4.11)

Following the scheme presented in Marcotte et al. [90] and Camacho-Vallejo et al.
[22]. The reformulation consists in replace the lower level problem by its primal and dual
constraints assuring that its optimal solution is obtained. The complementary slackness con-
straints are chosen to guarantee lower level’s optimality. Therefore, the reformulated model
consists in minimizing the upper level objective function considering leader’s constraints, the
follower’s primal and dual constraints and the corresponding complementarity slackness con-
straints.
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Then, the non-linear reformulated model is as follows.

min
y,x,α,β

∑
i∈I

∑
j∈J

cijxij (4.12)

subject to:
∑
i∈I

yi = p (4.13)

yi ∈ {0, 1} ∀i ∈ I (4.14)∑
i∈I

xij = 1 ∀j ∈ J (4.15)

xij ≤ yi ∀i ∈ I, j ∈ J (4.16)
αj + βij ≤ gij ∀i ∈ I, j ∈ J (4.17)

xij(αj + βij − gij) = 0 ∀i ∈ I, j ∈ J (4.18)
βij(xij − yi) = 0 ∀i ∈ I, j ∈ J (4.19)

xij ≥ 0 ∀i ∈ I, j ∈ J (4.20)
βij ≤ 0 ∀i ∈ I, j ∈ J (4.21)
αj unrestricted ∀j ∈ J (4.22)

As it is mentioned above, the problem described by (4.12)-(4.22) is obtained by consid-
ering the leader’s variables yi as parameters of the lower level problem. Constraints (4.15),
(4.16), and (4.20) ensure primal feasibility; (4.17) and (4.21)-(4.22) ensure dual feasibility;
and (4.18) and (4.19) force complementarity slackness. It is convenient to remark that the
latter constraints are nonlinear. However, since xij and (xij − yi) are binary, (4.18) and (4.19)
can be linearized using the following inequalities.

αj + βij − gij ≥ −M(1− xij) ∀i ∈ I, j ∈ J (4.23)
βij ≥ −M(1 + (xij − yi)) ∀i ∈ I, j ∈ J (4.24)

where M is a positive and sufficiently large constant.

Then, the primal-dual reformulation (P-D.R) is given by (4.12)-(4.17) and (4.20)-(4.24),
which is a mixed-integer programming problem equivalent to p-median BPO. A similar de-
scription of this reformulation is given in Camacho-Vallejo et al. [21].

4.1.2.2 Reformulation based on the most preferred assignment constraints

In this subsection, we describe another equivalent single-level formulation for the p-median
BPO. To ensure that customer preferences continue to be taken into account in the problem
(the follower’s problem), (4.29) is proposed. The later equation can be seen as a most pre-
ferred assignment constraint. Hence, the resulting optimization model (MPAC.R) is a binary
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linear programming problem, which is expressed below:

min
y,x

∑
i∈I

∑
j∈J

cijxij (4.25)

subject to:
∑
i∈I

yi = p (4.26)∑
i∈I

xij = 1 ∀j ∈ J (4.27)

xij ≤ yi ∀i ∈ I, j ∈ J (4.28)∑
i∈I

xijgij ≤ yigij +Gmax(1− yi) ∀i ∈ I, j ∈ J (4.29)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (4.30)
yi ∈ {0, 1} ∀i ∈ I (4.31)

where Gmax = maxi∈I,j∈J{gij}+ 1.

The key point in this single-level model relies in equation (4.29), which is a type of clos-
est assignment constraint (see [48]). Since customers will be allocated to their most preferred
facility, that decision continues to be considered in the most preferred assignment constraint
(4.29). In other words, the current reformulation (4.25)-(4.31) keeps taking into account the
ordered customer preferences. In detail, if facility i is located, then Gmax(1− yi) equals zero
and (4.29) implies that among all the possible allocations, customer j will be assigned to it
most preferred located facility. On the contrary, if facility i is not located, gijyi equals zero
and (4.29) is relaxed since Gmax acts as the upper bound for all ordered preferences.

Regarding the size of the models presented, note that if the problem is formulated as
a bilevel model, it will have only two constraints (without considering the sign constraints),
one of which is another optimization problem. In the P-D.R, the problem size increases sig-
nificantly by adding 4|I||J | + |J | additional constraints and |I||J | + |J | additional decision
variables to the model. In the MPAC.R, the number of variables is maintained, but the num-
ber of constraints is increased; in the latter case, there are 2|I||J | + |J | + 1 constraints in
total. All these approaches have their own difficulties because in the bilevel model, there is
an optimization problem within a constraint, which complicates its resolution. In contrast, the
reformulated models have a large number of constraints that cause a nonpolynomial increase
in the computational time required to solve them using an optimizer.

However, despite having a greater number of constraints, the reformulated models can be
solved using software meant for optimizing mathematical programming problems. Moreover,
to the best of our knowledge, no commercially available software is capable of solving a
general bilevel problem. It is important to highlight that p-median BPO, P-D,R and MPAC.R
are equivalent formulations for the problem herein studied.
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4.1.3 Proposed algorithm’s description
In this section, a hybrid heuristic algorithm based on scatter search and GRASP for solving
p-median BPO is proposed. Since p-median BPO is a combinatorial problem and a subset of
its variables is determined implicitly by solving another mathematical programming problem,
the difficulty in solving the problem increases. The aim is that the proposed algorithm finds
optimal or good quality solutions to p-median BPO within reasonable time.

4.1.3.1 Objective value calculation

In general, developing algorithms for solving bilevel problems need to consider solving the
lower level problem to optimality, when the follower’s variables affect the leader’s objective
function. As it can be seen in Equation (4.1), this is the case of the p-median BPO. Therefore,
part of the algorithm’s efficiency relies in the manner the lower level is solved.

For handling the semi-assignment lower level problem, the following scheme was im-
plemented: each time an upper level solution is built, the lower level must be solved exactly.
Again, owing to the high computational cost of using an optimizer for solving the lower level
problem, the methodology proposed in [93] is considered.

From a game theoretic point of view, the proposed algorithm considers a classical non-
cooperative Stackelberg game, which reflects the competitive case of a leader seeking to min-
imize distribution costs and a follower seeking to minimize customer preferences. During
the iterative process for constructing solutions for the bilevel problem, consideration of the
optimal follower’s response to a leader’s decision reflects the aim of finding Stackelberg’s
equilibrium. This equilibrium is achieved when the leader selects its best decision consid-
ering the optimal follower reaction. This is the most appropriate approach used for solving
bilevel problems.

4.1.3.2 Scatter Search

The scatter search metaheuristic is applied to the p-median BPO owing to its versatility and
good performance in solving complex problems. Scatter search is a population-based algo-
rithm that has some similarities to genetic algorithms. The main differences are in terms of
the use of systematic strategies rather than random operators and in the number of solutions
that conform to the population (reference set). For a detailed description of this metaheuristic
and its applications, see [81].

This metaheuristic starts by creating a set of solutions called the Population consisting
of Psize elements. From which b elements are extracted from this Population to form the ref-
erence set, which should contain b/2 good quality solutions and b/2 diverse solutions. Then,
a set that contains all possible combinations of pairs of solutions belonging to the reference
set is created. Once the new solution set is created, it is input to the improvement method,
which is divided into two phases: 1) the feasibility phase, which seeks to convert an infeasi-
ble solution into a feasible one because the combination method does not guarantee that the
solutions developed are feasible, and 2) the improvement phase, which attempts to improve
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the current solution by a local search procedure. This set of combined solutions are used to
update the reference set. The algorithm’s stop criterion is met when there are no new solutions
to be generated, that is, when the reference set is not updated. Figure 4.2 shows a schematic
of scatter search.

Figure 4.2: Schematic of the scatter search algorithm.

An adapted and detailed description of the five methods shown in Figure 4.2 for solving
p-median BPO is presented. Note that because scatter search is a metaheuristic, the differ-
ent components of the algorithm may vary and need to be specially adapted according to the
problem at hand.

Diversification Generation Method

Before the description, it is convenient to highlight that a solution in the algorithm corre-
sponds to a leader’s decision y. A feasible solution is constructed iteratively by locating a
facility in each iteration until the solution reaches the desired cardinality, i.e., until p facili-
ties are located. Then, in order to generate a pool of Psize solutions called Population, two
different approaches are implemented. The first approach consists in a random construction;
that is, p random facilities are included into the current solution. The second approach is a
greedy construction, in which in order to decide the facilities that are going to be located in a
particular solution, a greedy function that measures the local contribution of each element to
the partial solution is considered. The greedy function is defined as the sum of the distribution
costs associated with locating a specific facility. In order to create different greedy solutions,
the first facility included in the solution will be selected in a random fashion. By doing this,
the local contribution associated with the remaining facilities will be modified.
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Reference Set Update Method

After creating the initial Population, a subset named reference set (RefSet) with b solu-
tions is created. RefSet must contain good quality and diverse solutions. To meet these
criteria, the best b/2 solutions in Population are included in RefSet. The solution quality
is based on the leader’s objective function value. The other b/2 solutions are also selected
from Population, but maximizing the minimum distance of the solutions already included in
the RefSet to maintain diversity. Because of the representation of the leader’s solutions, a
metric of distance is considered as the sum of the absolute values of the differences among
its variables. That is, d(y, y′) =

∑
i∈I |(yi − y′i)|, where y and y′ are solutions of the sets

Population and RefSet, respectively. Then, RefSet is updated according to the following
criterion: each combined solution can enter this set if and only if it improves the worst ob-
jective value associated with the solutions already in the set. The method stops when no new
solutions can be included.

Subset Generation Method

The intention of this method is to generate subsets of fixed size that contain solutions be-
longing to RefSet applying the solution combination method. In our case, we consider all
subsets of size 2. In other words, all possible pairs of solutions are explored. Since scatter
search is an iterative algorithm, we keep a record about the combinations performed in order
not to combine repeated pairs. The algorithm stops when all the possible pairs generated in
the subset generation method has been combined. Note that if the RefSet do not vary from
one iteration to another, no new unexplored pairs will be available.

Solution Combination Method

This method combine pairs of solutions for obtaining new solutions. The method consid-
ers a score associated with each component of a pair of combined solutions. Without loss of
generality, consider a pair of solutions formed by solutions y1 and y2. Let yi be the i-th com-
ponent of a given solution y. For each i in the new combined solution, the score is computed
as follows:

scorei =
LOF 1y1

i + LOF 2y2
i

LOF 1 + LOF 2
(4.32)

where LOF 1 and LOF 2 indicate the leader’s objective function value associated with
solutions y1 and y2, respectively. Then, a vector of appropriate dimensions is filled with randi
random numbers, where 0 ≤ randi ≤ 1. If randi ≤ scorei, the corresponding component of
the new combined solution will take the value of 1; otherwise, it will take the value of 0.

In order to illustrate the combination method, consider the example shown in Figure
4.3. The purpose of the formula given by (4.32), is to favor those facilities that are located in
both solutions (see the 8th component of y1 and y2). In this case, the corresponding score is 1
(score8 = 1), and that facility will remain located in the combined solution. Analogously, if
a facility is not located in both solutions, then it cannot be located in the combined solution.
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Figure 4.3: Combination method.

Improvement Method

This method consists of two phases: feasibility and improvement. The feasibility phase en-
sures that the combined solution has exactly p located facilities. A solution may be infeasible
after the combination method because it may have more or fewer located facilities than p.
For example, this fact can be appreciated in the combined solution shown in Figure 4.3 in
which p = 3 and ycombined contains five located facilities. To obtain a feasible solution, this
phase may proceed in two ways: locate or close the necessary facilities until the number p is
reached. The criterion followed for locating facilities is the same as that in the initial construc-
tion phase. In contrast, for removing facilities, the impact of the leader’s objective function
is computed after removing a specific facility. The most convenient facility, in terms of the
leader’s objective value, is removed. Once the combined solution is feasible, it enters the
improvement phase. Here a local search is applied, which involves interchanging all facilities
in the current solution with the candidate facilities (e.g. [132]), that is, a closed facility is
exchanged for an open. The interchange that leads to the best reduction in the distribution
cost is performed -that is, the best improvement strategy. Then, the local search continues
exploring the subsequent neighborhoods until no further improvement is achieved.

4.1.3.3 GRASP

The greedy randomized adaptive search procedure (GRASP) is a metaheuristic designed to
solve combinatorial optimization problems (e.g., [114]). Each iteration of the heuristic con-
sists of two phases: 1) a constructive phase, where a good feasible solution is found, and 2) a
local search phase which seeks to improve the current solution.

In the first phase, a solution is build iteratively adding an element at each iteration. In
order to select these elements, a greedy function that measures the local contribution of each
element to the partial solution is considered. Based on the contribution of all candidate ele-
ments, a restricted list of candidates is created. The procedure is adaptive because the costs
associated with the candidate elements are updated in each iteration in order to reflect the
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changes caused by the selection of the previous elements. Moreover, the process is random-
ized because of the random selection of items from the restricted list of candidates. A local
search method is always beneficial to improve the initial solution. In each iteration in the local
search, a portion of the solution is replaced with the most convenient part within a neighbor-
hood. The procedure ends when no there is an improvement in the neighborhood.

Constructing a solution

The details of the construction phase are given below and shown in Algorithm 4.1.1. To
decide the facilities that are going to be located in a particular solution, the same greedy func-
tion described in Section 4.1.3.2 is considered.

A crucial part of the construction phase is the selection of a candidate facility as a part
of the current solution. First, it is important to remember that for evaluating each candidate’s
inclusion in the solution, the lower level needs to be solved optimally. Since evaluation of
all possible candidates is computationally expensive, only a percentage of the total number of
potential candidate facilities (N < |I|) is considered. That is, a reduction on the neighbor-
hood size is proposed. Thus, candidates in this reduced list are chosen randomly. Then, each
candidate is added into the solution (y) in an independent manner, the lower level is solved
for obtaining the customer allocation and the leader’s cost is computed in Compute change.
Now, the minimum and maximum leader’s costs (cmin and cmax, respectively) for the current
reduced candidate list can be determined. Hence, the threshold value cmin + α(cmax − cmin)
is calculated, where 0 ≤ α ≤ 1 indicates the desired degree of randomness. For each can-
didate facility in the reduced list, we verified whether the associated leader’s cost is lower
than the threshold value; if so, that candidate facility is introduced in the restricted candidate
list (RCL). Then, the selection of elements in the RCL is randomly performed. The selected
facilities are included in the current solution and the entire process is repeated until a stopping
criterion is met; in this case, until the solution has obtained p located facilities.
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Algorithm 4.1.1 Construction procedure in GRASP.
1: procedure CONSTRUCTION( )
2: RCL← ∅
3: y ← ∅
4: while |y| < p do
5: Candidates← I
6: count = 0
7: repeat
8: Randomly select e ∈ Candidates
9: ε(i)← e

10: y′ ← y ∪ {e}
11: x← Solve lower level(y′)
12: Ω(i)← Compute change(y′)
13: y ← y′

14: Candidates← Candidates \ {e}
15: count = count+ 1
16: until count = N
17: cmax ← max{Ω(k) : k = 1, ..., N}
18: cmin ← min{Ω(k) : k = 1, ..., N}
19: RCL← {k = 1, ..., N : Ω(k) ≤ cmin + α(cmax − cmin)}
20: Randomly select k ∈ RCL
21: y ← y ∪ {ε(k)}
22: I ← I \ {ε(k)}
23: end while
24: return y
25: end procedure

Intensification of the initial solution

Because it is not possible to ensure that a good solution for the problem will be generated
by GRASP in the construction phase, it is convenient to conduct a local search. Due to the
cardinality of the solution is fixed (p facilities), the local search only involves interchanges
between a located facility with an unlocated one, i.e., interchange of a facility that is in the
current solution with one that is not. This local search procedure guarantees feasibility of the
solution and stops when no further improvement is possible. The main difference with the
improvement method used in scatter search is that, in GRASP a neighborhood reduction is
considered for the local search. Algorithm 4.1.2 shows the pseudocode of the proposed local
search.

As it is mentioned above, the evaluation of the leader’s objective function for each pos-
sible solution explored in the local search, the customers-facilities allocation problem needs
to be solved. For reducing this effort, we proceed in a similar manner to that in the GRASP
construction phase, meaning we examine only a fraction of the potential candidate facilities.
This fraction is denoted by N . One half of the selected potential candidates is chosen based
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on their quality (C1) and the other half is selected randomly (C2). The quality of the i-th can-
didate facility is measured using the maximum suitability ratio, that is, rmax(i) = maxj{rij},
where rij = (cmax(j)− cij)/gij and cmax(j) = maxi{cij} represents the maximum distribu-
tion cost for each customer j. This ratio reflects the suitability of introducing a facility into
the solution, i.e., for a small δ > 0, cmax(j) − cij ≤ δ implies that for customer j, facility
i corresponds to a high distribution cost regardless of the value of gij , which represents the
customer preferences. In the case that cmax(j) − cij >> 0, preference value gij plays a key
role in the selection. Clearly, lower values of gij are desired (most preferred). Then, for each
potential candidate facility i, the maximum value rmax(i) is computed and its corresponding
quality is measured. After selecting the potential candidates, a movement of the local search
(interchange) is performed. Note that the potential candidates must be selected again for each
improved solution until the local search stops.
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Algorithm 4.1.2 Local search procedure.
1: procedure LOCAL SEARCH

2: For a given solution y
3: flag = true
4: while flag = true do
5: I ′ ← I \ {facilities in solution y}
6: C1 ← ∅
7: C2 ← ∅
8: B ← 0
9: flag = false

10: for j = 1, ..., |J | do
11: cmax(j) = argmax{cij : i ∈ I ′}
12: end for
13: for all i = 1, ..., |I ′|, j = 1, ..., |J | do
14: rij = (cmax(j)− cij)/gij
15: end for
16: for i = 1, ..., |I ′| do
17: rmax(i) = argmax{rij : j ∈ J}
18: end for
19: for k = 1, ..., N/2 do
20: e1

k = argmax{i ∈ I ′ \ (C1 ∪ C2) : rmax(i)}
21: C1 ← C1 ∪ {e1

k}
22: Randomly select e2

k ∈ I ′ \ (C1 ∪ C2)
23: C2 ← C2 ∪ {e2

k}
24: end for
25: while Exists an unexplored pair (y(i) ∈ y, ek ∈ C1 ∪ C2) do
26: y′ ← Interchange(y(i), ek)
27: x← Solve lower level(y′)
28: c(y′)← Compute change(y′)
29: B ← max{0, c(y)− c(y′)}
30: if B > 0 then
31: y ← y′

32: flag = true
33: end if
34: end while
35: end while
36: return y
37: end procedure

4.1.3.4 Hybrid algorithm

Hybrid algorithms have attracted the attention of the researches over the last years (see [130]).
The aim of hybridizing algorithms is to enhance the advantages given by particular compo-
nents of each algorithm. In this algorithm, we are combining two metaheuristics: scatter
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search and GRASP (SS-GRASP). Some cases of success when combine these two meta-
heuristics can be found in [58], [123], [74], [33], [95], [23]. In the proposed hybrid algorithm,
GRASP is used in the diversification generation method, that is, for constructing good quality
and diverse solutions. The GRASP considered in scatter search is depicted in Algorithm 4.1.3.

Algorithm 4.1.3 Pseudocode of GRASP for the diversification generation method.
1: procedure GRASP
2: Population← ∅
3: k ← 1
4: yk ← ∅
5: while k ≤ Psize do
6: yk ← Construction(yk)
7: yk ← LocalSearch(yk)
8: Population← Population ∪ {yk}
9: k ← k + 1

10: end while
11: returnPopulation
12: end procedure

It is important to notice that the GRASP used for the diversification generation method
considers the reduced neighborhood scheme proposed above. The reference set update method,
the subset generation method and the solution combination method are the same explained in
Section 4.1.3.2. Then, for the improvement method the same local search implemented for
GRASP is considered. A pseudocode of the proposed heuristic is depicted in Algorithm 4.1.4.

We can see that the initial population (InitialSet) of the scatter search is generated
through a GRASP procedure, then a local search (LocalSearch) is applied to this population.
Then, a subset of the population, called a reference set or RefSet, is created (ReferenceSet
UptadeMethod). Then, all possible subsets of size two of the RefSet are formed (Subset
GenerationMethod). Subsets are passed to a combination method (SolutionCombination
Method) and then to a local search (LocalSearch). Finally, theRefSet is updated (Reference
SetUptadeMethod) and the algorithm ends when there are no pairs to be explored.
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Algorithm 4.1.4 Pseudocode of the hybrid algorithm (SS-GRASP).
1: procedure HYBRID ALGORITHM

2: InitialSet← GRASP (Psize)
3: RefinedSet← ∅
4: for (yk ∈ InitialSet) do
5: RefinedSet← LocalSearch(yk)
6: end for
7: RefSet← ReferenceSetUptadeMethod(RefinedSet)
8: while (unexplored pairs exist) do
9: Subsets← SubsetGenerationMethod(RefSet)

10: SolutionSet← ∅
11: for (subsetk ∈ Subsets) do
12: ȳk ← SolutionCombinationMethod(subsetk)
13: SolutionSet← LocalSearch(ȳk)
14: end for
15: RefSet← ReferenceSetUptadeMethod(RefSet, SolutionSet)
16: end while
17: returnRefSet
18: end procedure

4.1.4 Computational experiments
Computational testing was conducted to analyze both the capability of optimally solving the
reformulations and the performance of the developed heuristics algorithms. For the compu-
tational experiments, a set of 36 instances reported in [26] and a set of 36 larger instances
used in [22] were adapted by omitting the fixed costs and fixing a p valuea. Within the first
set of instances, three different subsets of 12 instances were tested, which can be classified as
small, and medium-size instances. The small-size instances consisted of 50 facilities and 50
customers (50 × 50), and the medium-size instances were 50 × 75 and 75 × 100. For this set
of instances, the value of p was selected as the same reported in [26]. Regarding the second
set of instances, the structure is the same as the one described above. This is, three subsets are
considered, in which each subset contains 12 instances of size 100 × 1000, 300 × 1000 and
500 × 1000, respectively. The number of facilities to be located in the larger-size instances
was selected in a random way between 5% and 10% of the potential facilities (|I|).

Experiments were performed on a PC with a 3.1 GHz Intel(R) Core i5-4440 processor
and 8 GB RAM. The codes of the heuristic algorithms were implemented in Visual Studio
2013 using C++. CPLEX 12.6.1 was also used for the experiments pertaining the reformula-
tions.

The computational testing can be divided in two main parts. First, the instances were
solved with CPLEX using the three single-level formulations of p-median BPO: (i) P-D.R
(ii) MPAC.R, and (iii) an adaptation of the single-level integer formulation proposed in [135],

aThe instances are available at: http://www.fcfm.uanl.mx/es/PCOM/instancias
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referred as V&K.R. In order to adapt the latter formulation, fixed costs were omitted from
the leader’s objective function and the constraint that forces to locate exactly p facilities is
included; the remaining structure of the problem is the same. The second part of the compu-
tational experimentation was concerned with the proposed heuristic algorithm and the other
heuristics developed for comparison; that is, scatter search with random construction (SSr),
scatter search with greedy construction (SSg), and a Genetic algorithm (GA). Parameter tun-
ing was conducted for improving their performance. To measure the efficiency of the tested
algorithms, they were applied to solve the same set of instances as those considered in the
reformulations.

It is natural to compare a hybrid heuristic against one heuristic that is being combined to
conform it. The reason for this comparison is to measure the impact that the hybridization has
on the incumbent solution. Moreover, based on [98], which is a survey regarding metaheuristic
approaches for solving the p-Median problem, a Genetic Algorithm (GA) similar than the one
proposed in [42] was implemented. Their same solution coding and standard genetic operators
as the ones described that paper were used in our implementation. The main motivation for
selecting a GA is that it is a population-based metaheuristic as the hybrid proposed heuristic.
In the same manner as that for the algorithms described in Section 4.1.3, the lower level was
re-solved after a facility was included in the solution within the GA.

4.1.4.1 Numerical results

A parameter tuning for the tested heuristic algorithms is conducted. Since the proposed heuris-
tic hybridizes scatter search and GRASP, we decided to calibrate its parameters first. This
effort will serve us to calibrate SSr, and SSg. Based on the results, α = 0.4 and N = 6
(number of candidates) were selected. The parameters considered in SSr and SSg are set as
the same of the ones used in the SS-GRASP. However, it is important to highlight that the full
neighborhood is explored in their improvement phase. Regarding the GA, its parameters were
tuned replicating the same methodology describe in [22]. The selected parameters are as fol-
lows: the population size was fixed to 100 and the probabilities to enter into the crossover and
mutation were set to 0.75 and 0.15, respectively. Instead of considering a maximum number
of generations as a stop criterion, the GA was run until the same time needed for the hybrid
heuristic was reached. This stop criterion will lead us to directly compare the performance of
both algorithms.

The considered instances were solved and the results are summarized in Tables 4.2-
4.1.3. The structure of tables corresponding to each different set of instances is as follows:
the first column lists the label that indicates the corresponding instance, the second column
lists the number p of located facilities, and the third column lists the optimal values of the
leader’s objective function. Then, for each single-level reformulation its optimality gap and
the required time (in seconds) for each instance is shown. This gap is the one displayed by
CPLEX when the 6 h set as maximum time was reached. Furthermore, the second part of
the tables is devoted to the tuned heuristics. The results can be divided in five parts, namely,
the results of the SSr, SSg, SS-GRASP, and GA. Columns %B, %A and %W indicate the
percent deviation of the best value reached for the algorithm, average value between the runs
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and worst value between the runs with respect to the optimum value or better known value,
respectively. Also, the column t(s) shows the average time required (in seconds) for solving
each instance. Note that the GA was stopped when it reaches the same time as the hybrid
algorithm. In order to give an idea about the behavior of the solution methods in the same
size instances, the average value for the corresponding column is included in the last row. As
noticed before, there exists a certain degree of stochasticity in the four approaches; hence,
each instance was run 10 times. For the first set of instances, the reference value used for
computing the latter percent deviations coincides with the optimum given by the single-level
reformulations.

Table 4.1: Comparison for the 50 × 50 instances.
P-D.R MPAC.R V&K.R SSr SSg SS-GRASP GA

Inst p Opt % t (s) % t (s) % t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W
132 1 8 1022749 0.00 253.99 0.00 1.93 0.00 1.78 0.00 0.29 1.45 1.63 0.00 1.18 11.85 2.30 0.00 0.14 1.45 0.44 3.94 6.48 11.61
132 2 9 1056019 0.00 700.87 0.00 2.08 0.00 1.86 2.65 2.66 2.78 1.29 0.00 2.42 5.55 1.98 0.00 0.51 2.02 0.49 3.35 5.47 7.60
132 3 6 1083801 0.00 1294.67 0.00 2.22 0.00 2.38 0.00 0.00 0.00 1.16 0.00 0.00 0.00 1.43 0.00 0.40 3.98 0.34 0.00 3.79 6.17
132 4 5 986779 0.00 34.57 0.00 1.82 0.00 1.60 0.00 0.00 0.00 0.90 0.00 0.00 0.00 1.33 0.00 0.14 1.39 0.32 0.00 0.28 1.39
133 1 7 998271 0.00 94.85 0.00 1.16 0.00 1.27 0.00 0.13 1.32 1.29 0.00 0.39 3.88 1.74 0.00 0.13 1.32 0.39 0.00 0.00 0.00
133 2 5 965442 0.00 7.60 0.00 1.17 0.00 1.06 0.00 0.00 0.00 1.05 0.00 0.00 0.00 1.21 0.00 0.36 3.61 0.35 0.00 5.52 10.92
133 3 6 1083831 0.00 113.73 0.00 1.92 0.00 1.71 0.00 0.59 3.49 1.14 0.00 1.67 2.39 1.36 0.00 0.23 2.30 0.41 2.39 4.10 6.81
133 4 9 940194 0.00 966.76 0.00 1.69 0.00 1.49 0.00 0.00 0.00 1.08 0.00 0.29 1.98 1.72 0.00 0.02 0.20 0.41 0.00 0.70 1.64
134 1 4 1104639 0.00 86.15 0.00 3.07 0.00 3.21 0.00 0.00 0.00 0.86 0.00 0.00 0.00 1.03 0.00 0.43 4.30 0.46 0.00 0.43 4.30
134 2 7 971632 0.00 140.29 0.00 1.22 0.00 1.32 0.00 1.78 2.96 1.13 0.00 0.89 2.96 1.63 0.00 0.21 2.15 0.35 0.00 1.21 3.25
134 3 6 1043409 0.00 358.64 0.00 3.47 0.00 3.56 0.00 1.41 1.75 1.34 0.00 0.33 1.63 1.69 0.00 0.12 0.29 0.37 0.00 0.63 2.32
134 4 3 1160465 0.00 16.50 0.00 2.28 0.00 2.19 0.00 0.00 0.00 0.78 0.00 0.00 0.00 0.95 0.00 0.12 1.18 0.37 0.00 0.00 0.00

Average 0.00 339.05 0.00 2.00 0.00 1.95 0.22 0.57 1.15 1.14 0.00 0.60 2.52 1.53 0.00 0.23 2.02 0.39 0.81 2.38 4.67

Table 4.2: Comparison for the 50 × 75 instances.
P-D.R MPAC.R V&K.R SSr SSg SS-GRASP GA

Inst p Opt % t (s) % t (s) % t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W
a 1 7 1176842 32.64 21600.00 0.00 17.03 0.00 16.62 0.00 2.14 3.60 1.67 0.00 1.18 2.96 2.65 0.00 0.59 2.96 0.68 2.96 4.84 6.45
a 2 6 1231027 29.27 21600.00 0.00 19.25 0.00 21.23 0.00 0.02 0.08 1.57 0.00 0.05 0.08 2.73 0.00 0.01 0.08 0.70 0.08 2.53 5.57
a 3 7 1138492 0.00 6894.26 0.00 19.98 0.00 12.64 0.00 0.34 2.20 1.89 0.00 0.24 1.22 3.91 0.00 0.10 0.52 0.69 0.00 1.29 2.61
a 4 5 1274992 0.00 4752.11 0.00 13.85 0.00 15.51 0.00 0.11 1.09 1.67 0.00 0.11 1.09 1.09 0.00 0.22 1.09 0.64 0.00 0.44 1.09
b 1 8 1036201 22.55 21600.00 0.00 16.29 0.00 16.01 0.00 3.20 4.48 1.98 0.00 2.73 4.71 2.99 0.00 0.19 0.62 0.75 4.48 4.88 5.33
b 2 9 1092675 35.11 21600.00 0.00 25.31 0.00 27.54 0.00 0.58 2.24 2.28 0.00 0.14 1.38 3.77 0.00 0.52 1.04 0.82 1.38 2.93 4.79
b 3 9 976995 0.00 4233.79 0.00 11.13 0.00 11.33 0.00 2.18 7.12 2.30 0.00 0.54 5.36 3.49 0.00 0.63 2.20 0.81 0.00 3.29 7.12
b 4 9 990407 26.11 3589.00 0.00 9.65 0.00 9.68 0.00 0.00 0.00 1.76 0.00 0.00 0.00 2.95 0.00 0.26 0.85 0.67 1.78 3.88 5.62
c 1 11 1097176 41.02 21600.00 0.00 19.63 0.00 19.26 0.00 1.06 1.92 2.28 0.00 0.81 1.92 3.77 0.00 0.31 0.63 0.83 0.63 3.20 7.14
c 2 10 1038938 0.00 9401.08 0.00 10.64 0.00 10.66 0.00 0.52 2.17 2.72 0.00 0.97 5.31 3.61 0.00 0.30 1.25 0.72 2.28 5.10 8.83
c 3 12 977987 0.00 8664.12 0.00 7.69 0.00 7.31 0.00 0.00 0.00 2.15 0.00 0.00 0.00 5.21 0.00 0.27 0.98 0.82 0.00 6.15 12.67
c 4 11 1129174 28.93 21600.00 0.00 14.30 0.00 23.23 0.00 1.32 1.58 2.15 0.00 2.08 4.01 3.55 0.00 0.47 1.58 0.79 0.00 4.01 6.22

Average 17.97 13927.86 0.00 15.40 0.00 15.92 0.00 0.96 2.21 2.04 0.00 0.74 3.34 3.31 0.00 0.32 1.15 0.74 1.13 3.55 6.12

Table 4.3: Comparison for the 75 × 100 instances.
P-D.R MPAC.R V&K.R SSr SSg SS-GRASP GA

Inst p Opt % t (s) % t (s) % t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W
a 1 4 1783375 35.46 21600.00 0.00 102.03 0.00 91.46 0.00 0.67 6.67 6.22 0.00 0.52 1.58 6.20 0.00 1.57 3.98 1.58 0.00 3.42 9.69
a 2 3 2078834 0.00 3498.09 0.00 77.59 0.00 80.60 0.00 0.00 0.00 4.66 0.00 0.00 0.00 5.10 0.00 0.17 0.58 1.43 0.00 0.16 0.97
a 3 3 2041922 0.00 8543.12 0.00 79.98 0.00 82.60 0.00 0.03 0.33 5.52 0.00 0.07 0.33 5.28 0.00 0.13 0.33 1.60 0.00 0.62 1.29
a 4 4 1914302 31.05 21600.00 0.00 173.27 0.00 145.40 0.00 0.22 0.48 5.41 0.00 0.16 1.67 7.42 0.00 0.32 1.60 1.67 0.00 1.65 2.60
b 1 8 1535299 37.88 21600.00 0.00 893.49 0.00 833.52 0.00 1.76 5.15 9.48 0.00 1.76 3.47 9.58 0.00 0.36 0.89 3.54 1.75 4.72 6.57
b 2 8 1605970 47.52 21600.00 0.00 944.19 0.00 1032.20 0.00 0.59 2.49 9.07 0.00 0.25 1.48 9.22 0.00 0.21 0.70 2.00 1.13 3.46 6.25
b 3 8 1602332 39.14 21600.00 0.00 613.04 0.00 680.95 0.00 1.16 3.22 7.58 0.00 1.91 4.52 8.58 0.00 0.39 1.30 2.46 3.52 6.42 9.19
b 4 9 1366849 0.00 18412.37 0.00 555.87 0.00 503.48 0.00 1.92 4.81 9.33 0.00 3.10 5.37 9.44 0.00 0.63 1.57 2.04 4.81 9.06 10.70
c 1 6 1642970 0.00 9686.41 0.00 166.55 0.00 157.08 0.00 0.35 1.74 7.16 0.00 0.17 1.74 7.39 0.00 0.17 0.56 1.78 0.93 4.47 6.56
c 2 11 1402881 48.45 21600.00 0.00 632.06 0.00 636.93 0.55 1.40 2.15 9.01 0.55 1.82 2.97 13.90 0.00 0.64 1.06 2.25 5.24 7.82 9.90
c 3 8 1538034 43.20 21600.00 0.00 490.82 0.00 470.83 0.00 0.17 1.71 7.92 0.00 0.74 2.45 9.57 0.00 0.17 0.84 1.98 4.35 5.77 7.26
c 4 4 1465545 42.40 21600.00 0.00 481.26 0.00 465.14 0.00 0.66 6.59 9.58 0.00 0.23 1.13 10.80 0.00 0.40 1.13 2.12 0.74 3.85 8.83

Average 27.09 17744.98 0.00 434.18 0.00 431.68 0.05 0.74 2.95 7.58 0.05 0.89 2.23 8.54 0.00 0.43 1.21 2.04 1.87 4.29 6.65

For the first set of instances, let us discuss the results obtained from the single-level
reformulations. From Tables 4.1, 4.2, and 4.3, we can see that P-D.R was unable to find the
optimal value in 14 of the 36 instances within the 6 h time limit. In contrast, both MPAC.R
and V&K.R were able to optimally solve the 36 small and medium-size instances. However,
there is no evidence to guarantee that MPAC.R requires less time than V&K.R when solving
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the integer reformulations. The time required to obtain an optimal solution for a 50 × 50
instance varies between 1 and 3.5 s, that for a 50 × 75 instance varies between 7.3 and 27.5 s,
and that for a 75 × 100 instance varies between 77.5 and 1032.2 s.

Regarding the comparison among the heuristics. From Table 4.1, it can be inferred that
both the SSr and SSg reach the optimal solution in the 12 instances. Also, it can be seen
that GA reaches the optimal solution in 9 of the 12 instances; and in 2 instances obtained
the optimal value in the 10 runs, see %A column. However, the SS-GRASP clearly outper-
forms the other two algorithms in terms of solution quality. Also, SS-GRASP reached the
optimal solution for all instances. Furthermore, the average percentage deviation was lower
than 0.51% for all small-size instances. Moreover, the time consumed by the SS-GRASP is
smaller than SSr and SSg in all instances, which indicates that the hybridization of SS and
GRASP is fruitful.

In Table 4.2, the results of the experiments conducted using the 50 × 75 instances are
presented. The computational times of the five algorithms increased as expected, but the
increase was not as pronounced as that of the single-level reformulations. In contrast, SS-
GRASP maintained the required time under 1 s and reached the optimal value in all 12 in-
stances. Both scatter search approaches keep the good performance. For these three heuristics,
the behaviors of %B and %A remain the same as those in the case of the previous small-size
instances. In contrast, the quality of the solutions obtained using GA started deteriorating.
For example, the GA reached the optimal solution only in 9 of the 12 instances. Furthermore,
the results of the 75 × 100 instances indicate that the SS-GRASP maintains its efficient per-
formance, reaching the optimal value in all instances within a reasonable computational time.
On average, the proposed heuristic reaches near optimal solutions, less than 1% in 11 of the
12 instances. The time is significantly reduced with respect of SSr and SSg.

For the large-size instances, the results are summarized in Tables 4.4, 4.5 and 4.6. These
tables are similar than in the previous ones. The main difference is that Best Known column,
indicates the best value obtained either by a reformulation or a heuristic; and it is used as
the reference value used for computing the average deviations. Also, if NEM appears, then
it means that the computer ran out of memory while solving the instance. That is, when the
message “not enough memory” was given as the output in the optimizer.

Table 4.4: Comparison for the 100 × 1000 instances.
P-D.R MPAC.R V&K.R SSr SSg SS-GRASP GA

Inst p Opt % t (s) % t (s) % t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W
capa 1 7 22696982 95.57 21600.00 52.10 21600.00 52.20 21600.00 0.00 0.22 2.80 68.32 0.00 0.37 1.74 77.34 0.00 0.00 0.00 3.64 4.49 0.42 8.85
capa 2 9 22824578 96.77 21600.00 56.40 21600.00 51.36 21600.00 0.00 0.00 0.00 62.14 0.00 0.72 1.45 74.63 0.00 0.02 0.08 4.19 5.01 0.60 7.10
capa 3 5 22666586 60.98 21600.00 51.19 21600.00 51.19 21600.00 0.00 0.15 1.12 85.87 0.00 0.60 1.12 93.39 0.00 0.03 0.07 3.46 1.44 0.36 4.90
capa 4 7 22760224 68.30 21600.00 53.16 21600.00 56.83 21600.00 0.00 0.00 0.00 78.40 0.00 0.05 0.99 84.56 0.00 0.00 0.00 3.26 2.28 0.69 3.89
capb 1 5 22368690 58.45 21600.00 48.54 21600.00 48.49 21600.00 0.00 0.70 2.59 92.74 0.00 1.52 3.63 96.45 0.00 0.00 0.00 3.27 0.00 0.07 2.45
capb 2 8 22687400 86.80 21600.00 51.04 21600.00 51.04 21600.00 0.57 1.05 2.37 118.90 0.00 0.69 1.28 124.10 0.00 0.00 0.00 3.47 0.00 0.42 2.53
capb 3 5 22307101 57.79 21600.00 48.09 21600.00 48.09 21600.00 0.00 0.00 0.00 97.62 0.00 3.83 8.28 105.40 0.00 0.00 0.00 3.05 0.00 0.17 2.69
capb 4 6 22516656 60.48 21600.00 51.20 21600.00 51.47 21600.00 0.09 3.20 7.48 94.68 0.00 1.02 2.03 98.35 0.00 0.00 0.00 3.27 0.00 0.44 3.59
capc 1 5 21908918 75.05 21600.00 49.11 21600.00 49.11 21600.00 0.00 0.16 2.43 86.91 1.12 2.51 3.89 94.38 0.00 0.00 0.00 2.78 0.00 0.17 2.47
capc 2 10 22186853 88.49 21600.00 56.60 21600.00 56.60 21600.00 0.00 0.03 1.92 108.40 0.34 0.53 0.73 114.90 0.00 0.02 0.08 3.33 3.10 1.62 3.60
capc 3 9 22334094 63.67 21600.00 56.33 21600.00 56.33 21600.00 0.39 2.74 6.75 97.49 0.00 0.26 0.53 109.50 0.00 0.00 0.00 3.56 6.42 0.99 9.62
capc 4 10 22158302 71.44 21600.00 56.05 21600.00 55.86 21600.00 0.24 0.90 4.18 102.40 0.24 0.37 3.94 129.60 0.00 0.00 0.00 4.51 3.51 1.07 3.79

Average 73.65 21600.00 52.48 21600.00 52.38 21600.00 0.11 0.76 2.64 91.16 0.14 1.04 2.47 100.22 0.00 0.01 0.02 3.48 2.19 0.59 4.62

For 100 × 1000 instances, the optimizer was not able to optimally solve any problem
within the time limit. Moreover, the optimality gap reached by CPLEX was around the 50%
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Table 4.5: Comparison for the 300 × 1000 instances.
P-D.R MPAC.R V&K.R SSr SSg SS-GRASP GA

Inst p Opt % t (s) % t (s) % t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W
biga 1 22 19009700 - NEM - NEM - NEM 0.00 1.59 3.11 221.15 0.07 1.70 8.93 294.28 0.00 0.28 0.75 6.99 3.59 5.27 7.35
biga 2 21 19285300 - NEM - NEM - NEM 0.50 2.13 7.27 198.43 0.00 0.94 5.55 301.49 0.00 0.80 1.33 8.01 2.22 3.74 5.66
biga 3 30 19247800 - NEM - NEM - NEM 0.00 0.58 1.74 227.33 0.05 2.41 6.47 268.58 0.00 1.15 2.12 7.31 3.93 6.50 8.45
biga 4 24 19760700 - NEM - NEM - NEM 1.68 2.65 4.68 204.62 1.23 3.10 5.92 239.18 0.00 1.48 2.27 6.74 3.79 5.20 7.87
bigb 1 25 19203100 - NEM - NEM - NEM 0.55 3.43 5.48 227.02 0.00 1.40 6.59 338.22 0.00 0.50 0.91 8.73 4.50 6.10 9.03
bigb 2 27 18791400 - NEM - NEM - NEM 0.00 0.32 2.34 250.13 0.00 1.38 4.24 287.70 0.00 0.84 1.69 7.92 8.63 10.59 12.12
bigb 3 19 19428000 - NEM - NEM - NEM 0.00 1.17 1.83 183.70 0.00 0.81 3.68 253.49 0.00 0.59 1.20 6.77 0.46 3.40 5.18
bigb 4 22 19774100 - NEM - NEM - NEM 0.00 1.97 3.06 180.39 0.00 1.59 3.69 252.78 0.00 0.90 1.67 8.00 3.40 5.42 8.59
bigc 1 21 19631100 - NEM - NEM 88.50 21600 1.76 2.90 4.72 233.24 1.51 3.25 4.59 280.32 0.00 0.78 1.87 8.37 2.63 4.09 5.49
bigc 2 25 18750300 - NEM - NEM - NEM 0.82 1.16 3.46 219.23 2.03 3.40 3.75 278.96 0.00 0.55 1.14 6.19 3.53 5.03 7.85
bigc 3 27 18974800 - NEM - NEM - NEM 0.36 1.74 2.74 161.93 1.43 4.45 5.92 194.58 0.00 1.10 1.94 7.01 5.15 6.35 9.18
bigc 4 17 19715500 - NEM - NEM - NEM 1.51 4.14 5.38 176.05 0.00 0.72 2.37 214.26 0.00 0.56 1.24 7.01 2.00 3.85 5.76

Average - - - - - - 0.60 1.98 3.82 206.94 0.53 2.10 5.14 266.99 0.00 0.79 1.51 7.42 3.65 5.46 7.71

Table 4.6: Comparison for the 500 × 1000 instances.
P-D.R MPAC.R V&K.R SSr SSg SS-GRASP GA

Inst p Opt % t (s) % t (s) % t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W t (s) %B %A %W
largea 1 35 18409200 - NEM - NEM - NEM 0.00 0.87 6.91 549.59 0.00 0.16 1.17 611.24 0.00 1.03 2.04 12.20 7.77 9.49 10.91
largea 2 47 17822100 - NEM - NEM - NEM 2.45 3.18 4.88 591.44 1.82 2.24 4.77 664.93 0.00 0.83 1.67 12.45 1.58 12.84 13.89
largea 3 49 17380300 - NEM - NEM - NEM 0.00 1.72 6.13 637.82 2.15 2.73 3.93 706.67 0.00 0.92 1.70 10.72 5.74 16.03 17.06
largea 4 38 18212500 - NEM - NEM - NEM 2.41 2.82 4.75 494.63 0.00 1.74 5.49 543.55 0.00 0.86 1.86 12.98 7.55 11.16 12.14
largeb 1 44 17811000 - NEM - NEM - NEM 1.98 2.47 3.91 447.01 0.00 0.95 1.43 514.57 0.00 1.79 2.85 12.98 7.24 16.24 17.76
largeb 2 38 18132800 - NEM - NEM - NEM 1.54 1.82 2.37 545.97 0.00 2.38 7.28 627.34 0.00 1.13 2.51 13.18 11.38 13.42 14.38
largeb 3 40 17795700 - NEM - NEM - NEM 0.00 0.46 5.36 472.21 1.56 1.87 3.62 554.17 0.00 1.56 3.27 13.45 3.57 12.18 13.36
largeb 4 48 17827900 - NEM - NEM - NEM 2.39 2.84 4.94 436.74 1.34 3.32 4.26 526.48 0.00 1.68 2.62 13.72 3.94 12.71 13.95
largec 1 43 17585000 - NEM - NEM - NEM 0.00 2.79 3.43 551.11 2.69 3.76 8.73 680.16 0.00 1.20 2.62 13.11 5.87 13.49 14.44
largec 2 36 18314300 - NEM - NEM - NEM 1.87 3.65 6.75 460.55 2.05 2.58 2.93 585.95 0.00 1.00 1.83 11.70 8.57 10.54 11.76
largec 3 41 18048400 - NEM - NEM - NEM 0.00 2.21 4.78 576.37 0.00 0.52 1.25 688.42 0.00 1.69 2.44 14.23 8.91 12.95 14.78
largec 4 39 17567500 - NEM - NEM - NEM 0.00 3.75 5.68 432.08 2.89 3.27 8.91 529.43 0.00 2.05 2.76 11.97 4.65 13.34 14.81

Average - - - - - - 1.05 2.38 4.99 516.29 1.21 2.13 4.48 602.74 0.00 1.31 2.35 12.72 6.40 12.87 14.10

for MPAC.R and V&K.R. Furthermore, regarding with the 300 × 1000 instances, the perfor-
mance of the optimizer get worse. For the P-D.R and MPAC.R reformulations, the memory
ran out for all the 12 instances and in 11 for the V&K.R reformulation. However, for the other
instance the gap reached was of 88.5%. As it was expected, the results for the 500 × 1000
instances do not show any significant information; the NEM status appeared in all the refor-
mulations for the 12 instances. Based on these results, it is evident that the reformulations are
not able to solve large-size instances and the use of heuristics algorithms is justified.

Regarding the heuristics, Table 4.4 shows that the SSr, SSg, and GA reached the best
value obtained by the SS-GRASP only in 8, 9, and 5 of the 12 instances, respectively. Also,
their percentage deviations of the best value are lower than 3.20%, 3.83%, and 6.42%. As
it is described above, the SS-GRASP reached the best known solution in all the instances.
Furthermore, it obtained the best known solution in the 10 runs for 9 of the 12 instances, see
%A column. The latter clearly indicates the efficient performance of this proposed algorithm.

Finally, Tables 4.5 and 4.6 evidence an increasing in the required time due to the in-
crease in the size of the instances. We can see that the GA not reached the best known value
obtained by the SS-GRASP in any of the 24 instances. On the contrary, SSr and SSr reach the
best solution in 11 of the 24 instances, each of them. It can be inferred from the %B columns
that the worst values reached by the SSr are 1.76% (Table 4.5) and 2.45% (Table 4.6); by the
SSg are 2.03% and 2.89%; and by the GA are 8.63% and 11.38%, respectively. On the other
hand, for the percentage deviation for the average values, the SS-GRASP shows a 2.05% as
the greater gap obtained in these 24 instances, which is an acceptable value taking into ac-
count the size of the instances.

It is worthy to mention that despite the fact the scatter search algorithms (SSr and SSg)
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show an acceptable performance in terms of solution quality; the computational time dra-
matically augments as the size of instance increases. The latter could be attached to the fact
that a full exploration of the neighborhood considered in the local search is made. Hence,
the reduction in the neighborhood size positively impacts the performance of the SS-GRASP.
Moreover, from the last row of Tables 4.1-4.6 it can be seen that the average of percentage
deviations is maintained for all the instances regardless the size of the instance. This is a good
attribute for the proposed hybrid heuristic.

4.1.4.2 Comparing the required computational time

After discussing the efficiency of the hybrid algorithm for solving p-median BPO, we com-
pared the required time for optimally solving both integer single-level reformulations MPAC.R
and V&K.R. Figure 4.4 plots the required time for solving the first 48 instances reported for
the MPAC.R, V&K.R, and the proposed heuristic. It is evident that plotting the time reported
in the P-D.R column or the two larger set of instances will not give any relevant information.
Because the whole set of instances is divided into six equal different subsets, the plotted results
appear in a grouped manner (four groups in this case). The first 12 data entries correspond
to the 50 × 50 instances, entries 1324 correspond to the 50 × 75 instances, the following
entries correspond to the 75× 100 and the final 12 entries are associated with the 100× 1000
instances. To display the results properly, the data were plotted on a logarithmic scale. The
reason for scaling one axis is the magnitude of the reported values of the 75 × 100 and 100 ×
1000 instances solved using CPLEX. In Figure 4.4, it can be seen that although the required
time of the SS-GRASP increases, the increase is a small polynomial one, whereas the increase
corresponding to the single-level reformulations seems to be exponential (in the cases that the
instances were solved).

Figure 4.4: Required computational time for solving instances.



Chapter 5

Covering Problems

5.1 A Bilevel Maximal Covering Location Problem
A bilevel model for the problem herein studied is presented. In addition, two equivalent
single-level reformulations are studied. Also, a genetic algorithm (GA) is proposed to obtain
good quality lower bounds for the problem, where the objective function value is computed
following the ideas described in [92] and [22]. The proposed algorithm is tested with a set
of randomly generated instances. The parameter tuning conducted for the genetic algorithm
is detailed in a didactical manner. In order to evaluate the behavior of the proposed genetic
algorithm, the obtained solutions are compared with the lower bounds obtained with one of
the single-level reformulations, within a three-hour time limit. According to this comparison,
the proposed genetic algorithm provides very good quality solutions with small computational
effort.

Later, analyzing the previous results we decided to improve the quality of the solutions
and the required computational time. For this, another equivalent single-level reformulation, a
greedy randomized adaptive search procedure (GRASP) heuristic and a hybrid GRASP-Tabu
heuristic are proposed. The hybrid GRASP-Tabu heuristic combines GRASP and tabu search
to efficiently find lower bounds for large-scale instances for the maximal covering location
problem with customer preference ordering. According to computational results, despite their
simplicity, the proposed algorithms provide optimal or near optimal solutions in a small com-
putation time.

The remainder of this chapter is as follows. Section 5.1.1 presents the problem’s de-
scription and the proposed mathematical bilevel model. In Section 5.1.2, two reformulations
of the bilevel problem that reduce it into a single-level one are described. Section 5.1.3 de-
tails the description of the genetic algorithm developed to obtain good quality solutions of the
bilevel problem. The computational experimentation conducted to assess the performance of
the proposed genetic algorithm is shown in Section 5.1.5. The third proposed reformulation
is presented in 5.1.6. In section 5.1.7, the GRASP and the hybrid GRASP-Tabu algorithms
are described. Finally, computational experiments regarding the single-level reformulation,
GRASP and GRASP-Tabu are reported in 5.1.8.

50
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5.1.1 Problem statement and mathematical model
In this section, the problem and a mathematical formulation of the maximal covering location
bilevel problem (MCLBP) are described. The problem studied considers a firm that wants to
enter a market where a set of firms already exist. The firm wants to locate p facilities to max-
imize captured demand. We assume that customers have the freedom to patronize the facility
of their preference within a predefined distance threshold. This situation can be formulated as
a bilevel programming problem, where the upper level is associated with the new competitor
and the lower level corresponds to the customers. The upper level decides the location of a
limited number of facilities, and the lower level allocates customers to their most preferred
facility. It is also assumed, that existing facilities will remain opened as they belong to other
firms.

Notation

Now, let us properly define the sets, parameters and decision variables involved in the pro-
posed formulation for the MCLBP.

Sets
I1 Set of potential facilities
I2 Set of existing facilities
J1 Set of customers uncovered by I2

J2 Set of customers covered by I2

I(j) Patronizing set of customer j ∈ J (i.e. the set of facilities that cover customer j)
J(i) Patronizing set of location i ∈ I (i.e. the set of customers that are covered by location i)

where I = I1 ∪ I2, and J = J1 ∪ J2.

Parameters
Dj Demand associated with customer j ∈ J
p Number of facilities that the leader will open for entering in the market
gij Preference of the customer j ∈ J towards the facility i ∈ I
dij Distance from customer j ∈ J to facility i ∈ I
r Predetermined coverage radius

Binary decision variables
Leader yi binary variable which indicates whether the facility i ∈ I1 is opened or not.
Follower xij binary variable which indicates whether the customer j ∈ J is allocated

to the facility i ∈ I or not.

Finally, it is convenient to mention that customer preferences are assumed to be consecutive
integer numbers from 1 to |I(j)|. Also, for identifying sets I(j) and J(i) the following in-
equality must be considered, dij ≤ r, i ∈ I, j ∈ J .
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The proposed mathematical model for the MCLBP is as follows:

max
y,x

∑
i∈I1

∑
j∈J(i)

Djxij (5.1)

subject to: yi = 1 ∀i ∈ I2 (5.2)∑
i∈I1

yi = p (5.3)

yi ∈ {0, 1} ∀i ∈ I (5.4)
where x solves

max
x

∑
i∈I

∑
j∈J(i)

gijxij (5.5)

subject to:
∑
i∈I(j)

xij = 1 ∀j ∈ J1 (5.6)

xij ≤ yi ∀i ∈ I1, j ∈ J(i) (5.7)∑
i∈I(j)

xij ≤ 1 ∀j ∈ J2 (5.8)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J(i) (5.9)

Expression (5.1) is the leader objective function which maximizes demand covered by open
facilities. Constraints (5.2) ensure that existing facilities will remain open. Constraints (5.3)
guarantee that exactly p facility locations will be selected by the firm. The follower’s objective
function is given by (5.5) which maximizes customer preferences. Constraints (5.6) guarantee
that customers already covered by an existing facility will remain covered by an open facility.
Constraints (5.7) ensure that demand cannot be allocated to locations where no facility exists.
These constraints also ensure that if the demand of customer j is allocated to facility i, this
facility belongs to the patronizing set of customer j (i.e. i ∈ I(j)). Constraints (5.8) guaran-
tee that the demand not covered by the existing facilities can be covered by at most one open
facility or remain uncovered. Finally, the binary nature of the leader’s and follower’s decision
variables is specified in (5.4) and (5.9).

In order to have a well-defined bilevel problem it is important to carefully analyze the exis-
tence and uniqueness of the lower level optimal solution. In other words, if the follower’s
problem has a non-unique optimal solution for any leader’s decision, then the bilevel problem
is ill-posed. Fortunately, in our case, the lower level has a unique optimal solution for any
leader’s decision since customer preferences are positive consecutive numbers from 1 to |I|.
The proof of this important result is given in [136].

5.1.2 Model reformulations
The MCLBP described in the previous section will be reduced into a single-level mixed inte-
ger programming problem. The reformulation is made following the classical approach of us-
ing the primal-dual relationships for the follower’s problem when follower’s problem satisfies
strong duality. To ensure optimality for the follower’s problem, two schemes are commonly
considered: (i) force the equality of the objective functions of both primal and dual problems
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and (ii) include the complementarity slackness constraints. In this section, both schemes are
presented.

For a given fixed leader’s decision vector ŷ the follower’s problem can be seen as a parametrized
optimization problem. The LP relaxation of the resulting problem is:

max
∑
i∈I

∑
j∈J(i)

gijxij (5.10)

subject to:
∑
i∈I(j)

xij = 1 ∀j ∈ J2 (5.11)

∑
i∈I(j)

xij ≤ 1 ∀j ∈ J1 (5.12)

0 ≤ xij ≤ ŷi ∀i ∈ I, j ∈ J(i) (5.13)

The optimal solution of the LP relaxation of the lower level problem can be easily computed
in the following manner. If ŷi = 0, then xij = 0, ∀j ∈ J . Let I ′ be the index set of the facility
locations selected by the leader, I ′ = {i ∈ I1 : ŷi = 1}, and let I? = I ′ ∪ I2 be the set of
open facilities. Then, the demand of each customer is allocated to the most preferred facility
location within the open facilities of the patronizing set of that customer, that is, customer j is
allocated to the open facility i(j) = arg maxi∈I(j)∩I?{gij} whenever I(j)∩I? 6= ∅, otherwise,
the demand of customer j is not covered by open facilities. Therefore, the optimal solution
for the LP relaxation is as follows: xi(j),j = 1,∀i ∈ I, j ∈ J such that I(j) ∩ I? 6= ∅, and
xij = 0,∀i ∈ I \ I?, j ∈ J , and ∀i ∈ I, j ∈ J such that I(j) ∩ I? = ∅

As can be observed, the optimal solution of the LP relaxation of the follower’s problem is
always an integer solution, and therefore, the lower level problem satisfies strong duality.

In order to reformulate the bilevel problem by any of both approaches described above, the
dual problem associated with the follower’s problem will be needed.

Let αj for all j ∈ J2, βij for all i ∈ I1, j ∈ J(i) and γj for all j ∈ J1 be the dual variables
associated with the linear relaxation of the follower’s problem defined by (5.5)- (5.9). Then,
the corresponding dual problem is as follows:

max
α,β,γ

∑
j∈J1

αj +
∑
i∈I1

∑
j∈J(i)

yiβij +
∑
j∈J2

γj (5.14)

subject to: αj + βij ≥ gij ∀j ∈ J1, i ∈ I1 ∩ I(j) (5.15)
βij + γj ≥ gij ∀j ∈ J2, i ∈ I1 ∩ I(j) (5.16)

αj ≥ gij ∀j ∈ J1, i ∈ I2 ∩ I(j) (5.17)
γj ≥ gij ∀j ∈ J2, i ∈ I2 ∩ I(j) (5.18)
βij ≥ 0 ∀i ∈ I1, j ∈ J(i) (5.19)
γj ≥ 0 ∀j ∈ J2 (5.20)

The first approach considered for reformulating the bilevel problem consists in adding the
constraint that indicates the equality of the objective functions of the linear relaxation of the
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follower’s problem and its dual. It is easy to see that the second term in the dual’s objective
function is non-linear. Hence, an auxiliary variable is introduced for linearizing it. Let δij =
yiβij for all i ∈ I1, j ∈ J(i). It is worthy to note that, since yi only can take the values 0 or 1,
then δij = βij when yi = 1 and δij = 0 when yi = 0. Therefore, the following constraints are
added:

δij ≥ 0 ∀i ∈ I1, j ∈ J(i) (5.21)
δij ≤ Myi ∀i ∈ I1, j ∈ J(i) (5.22)
δij ≤ βij ∀i ∈ I1, j ∈ J(i) (5.23)

δij +M ≥ βij +Myi ∀i ∈ I1, j ∈ J(i) (5.24)

where M is a sufficiently large positive constant.

As a result, the resulting single-level mixed integer programming problem is as follows:

max
y,x,α,β,γ,δ

∑
i∈I1

∑
j∈J(i)

Djxij (5.25)

subject to: yi = 1 ∀i ∈ I2 (5.26)∑
i∈I1

yi = p (5.27)∑
i∈I(j)

xij = 1 ∀j ∈ J1 (5.28)

xij ≤ yi ∀i ∈ I1, j ∈ J(i) (5.29)∑
i∈I(j)

xij ≤ 1 ∀j ∈ J2 (5.30)

αj + βij ≥ gij ∀j ∈ J1, i ∈ I1 ∩ I(j) (5.31)
βij + γj ≥ gij ∀j ∈ J2, i ∈ I1 ∩ I(j) (5.32)

αj ≥ gij ∀j ∈ J1, i ∈ I2 ∩ I(j) (5.33)
γj ≥ gij ∀j ∈ J2, i ∈ I2 ∩ I(j) (5.34)∑

i∈I

∑
j∈J(i)

gijxij =
∑
j∈J1

αj +
∑
i∈I1

∑
j∈J(i)

δij +
∑
j∈J2

γj (5.35)

δij ≥ 0 ∀i ∈ I1, j ∈ J(i) (5.36)
δij ≤ Myi ∀i ∈ I1, j ∈ J(i) (5.37)
δij ≤ βij ∀i ∈ I1, j ∈ J(i) (5.38)

δij +M ≥ βij +Myi ∀i ∈ I1, j ∈ J(i) (5.39)
yi ∈ {0, 1} ∀i ∈ I (5.40)
xij ≥ 0 ∀i ∈ I, j ∈ J(i) (5.41)
βij ≥ 0 ∀i ∈ I1, j ∈ J(i) (5.42)
γj ≥ 0 ∀j ∈ J2 (5.43)

The second approach followed is based on the use of the optimality slackness constraints as-
sociated to both primal and dual follower’s problems. These constraints substitute the equality
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of the respective follower’s objective functions. The constraints included are:

(αj + βij − gij)xij = 0 ∀j ∈ J1, i ∈ I1 ∩ I(j) (5.44)
(βij + γj − gij)xij = 0 ∀j ∈ J2, i ∈ I1 ∩ I(j) (5.45)

(αj − gij)xij = 0 ∀j ∈ J1, i ∈ I2 ∩ I(j) (5.46)
(γj − gij)xij = 0 ∀j ∈ J2, i ∈ I2 ∩ I(j) (5.47)
(yi − xij)βij = 0 ∀J ∈ J, i ∈ I1 ∩ I(j) (5.48)1−
∑
i∈I(j)

xij

 γj = 0 ∀j ∈ J2 (5.49)

It is evident that constraints (5.44)-(5.49) are not linear. Bearing in mind that in the comple-
mentarity equations (5.44)-(5.47), the term xij is binary; in (5.48), the term yi − xij can only

take 0 or 1 values; and since
∑

i∈I(j) xij ≤ 1, ∀j ∈ J1, then
(∑

i∈I(j) xij

)
in equation (5.49)

will be equal to 0 or 1, the set of constraints (5.44)-(5.49) can be substituted by the following
constraints:

αj + βij − gij ≤ M (1− xij) ∀j ∈ J1, i ∈ I1 ∩ I(j) (5.50)
βij + γj − gij ≤ M (1− xij) ∀j ∈ J2, i ∈ I1 ∩ I(j) (5.51)

αj − gij ≤ M (1− xij) ∀j ∈ J1, i ∈ I2 ∩ I(j) (5.52)
γj − gij ≤ M (1− xij) ∀j ∈ J2, i ∈ I2 ∩ I(j) (5.53)

βij ≤ M (1− yi + xij) ∀j ∈ J, i ∈ I1 ∩ I(j) (5.54)

γj ≤ M

∑
i∈I(j)

xij

 ∀j ∈ J2 (5.55)

where, as before, M is a sufficiently large constant.

Therefore, the second reformulation from is the following single-level mixed integer linear
programming problem:
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max
y,x,α,β,γ

∑
i∈I1

∑
j∈J(i)

Djxij (5.56)

subject to: yi = 1 ∀i ∈ I2 (5.57)∑
i∈I1

yi = p (5.58)∑
i∈I(j)

xij = 1 ∀j ∈ J1 (5.59)

xij ≤ yi ∀i ∈ I1, j ∈ J(i) (5.60)∑
i∈I(j)

xij ≤ 1 ∀j ∈ J2 (5.61)

αj + βij ≥ gij ∀j ∈ J1, i ∈ I1 ∩ I(j) (5.62)
βij + γj ≥ gij ∀j ∈ J2, i ∈ I1 ∩ I(j) (5.63)

αj ≥ gij ∀j ∈ J1, i ∈ I2 ∩ I(j) (5.64)
γj ≥ gij ∀j ∈ J2, i ∈ I2 ∩ I(j) (5.65)

αj + βij − gij ≤ M (1− xij) ∀j ∈ J1, i ∈ I1 ∩ I(j) (5.66)
βij + γj − gij ≤ M (1− xij) ∀j ∈ J2, i ∈ I1 ∩ I(j) (5.67)

αj − gij ≤ M (1− xij) ∀j ∈ J1, i ∈ I2 ∩ I(j) (5.68)
γj − gij ≤ M (1− xij) ∀j ∈ J2, i ∈ I2 ∩ I(j) (5.69)

βij ≤ M (1− yi + xij) ∀j ∈ J, i ∈ I1 ∩ I(j) (5.70)

γj ≤ M

∑
i∈I(j)

xij

 ∀j ∈ J2 (5.71)

yi ∈ {0, 1} ∀i ∈ I (5.72)
xij ≥ 0 ∀i ∈ I, j ∈ J(i) (5.73)
βij ≥ 0 ∀i ∈ I1, j ∈ J(i) (5.74)
γj ≥ 0 ∀j ∈ J2 (5.75)

Since no commercial software exists for solving general bilevel programming problems, these
single-level reformulations can be used for solving the problem. Unfortunately, only limited
size instances (up to 1000 customers and 100 facilities) can be optimally solved by the pro-
posed reformulations within a reasonable amount of computer effort. Due to this fact, a
heuristic method is proposed for obtaining lower bounds for the MCLBP. The next section
describes the genetic algorithm proposed for solving the bilevel model defined in (5.1)-(5.9).

5.1.3 Genetic algorithm
Genetic algorithms have been used to find feasible bounds for a wide variety of applications,
and they have been a very powerful technique for handling complex problems. In this study,
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we propose a genetic algorithm (GA) to find lower bounds for MCLBP. GAs have been ap-
plied for many bilevel programming problems with good results. For example, in [96], [68],
[20] GAs were used to solve linear bilevel problems; in [102] GAs were used to solve linear
and non-linear bilevel problems, in [83] a GA was used to solve a special class of non-linear
bilevel programming problem and in [138] a GA was used to solve a quadratic bilevel prob-
lem. In addition, [16] proposed a GA for a competitive facility location problem, and [7] used
a GA to analyze the vulnerability of a power system. Recently, [23] proposed a GA to obtain
good quality configurations for the topological design of LANs. Now, we describe the GA
proposed in this study.

To a large extent, the efficiency of genetic algorithms depends on correctly encoding a prob-
lem’s solution. In this study, leader’s solutions are coded with a vector of size p in which
each position indicates the index of an opened facility; indices are ordered in an increasing
manner. The follower’s solution is coded with a vector of size |J | (i.e. the total number of
customers). In this vector, the value of the jth position corresponds to the facility to which
customer jth is allocated (a zero value means that customer j is not covered by any open fa-
cility). For example, consider a problem with 8 customers, 10 potential facilities and p = 5.
Also, let [2, 5, 6, 8, 9] be a solution for the leader’s problem, and let [5, 11, 6, 2, 9, 3, 5, 8] be a
solution for the follower’s problem. We observe that customers 1 and 7 are allocated to facil-
ity 5, customer 3 is allocated to facility 6, customer 4 is allocated to facility 2, customer 5 is
allocated to facility 9, customer 8 is allocated to facility 8 and customers 2 and 6 are allocated
to existing facilities 11 and 3, respectively. It is worth noting that facilities 3 and 11 belong to
competitors and they are the most preferred facility for customers 6 and 2, respectively.

It is important to highlight that the solutions considered in our GA are the ones associated
with the leader’s decision. For each leader’s solution, the follower’s problem is solved to
optimality. The optimal solution of the lower level can be found efficiently, by rearranging
the preferences matrix in the same way as in [92] and [22], but considering the covering con-
straint.

Initial population

To generate the initial population, a biased random methodology is used. The locations are
randomly selected from the set of non-opened potential locations until p locations are opened.
The probability to open facility i is computed in the following manner:

qi =

∑
j∈J(i) bj∑

i∈I1
∑

j∈J(i) bj
(5.76)

for all i ∈ I1, in order to favor those locations that might cover more demand.

Selection mechanism

One of the most common methods for avoiding premature convergence in the selection phase
is the tournament strategy. This strategy consists in the following: for each solution of the
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population, five tournaments are made against another solution randomly selected from the
population (as in [22]). In each tournament the leader’s objective function values (fitness)
are compared. The number of times that each solution wins a tournament is recorded. After
the tournaments are performed, the solutions of the populations are sorted in non-increasing
order with respect to the number of times that each solution wins the tournaments. An elitist
selection is made to prevail the good quality solutions.

Genetic operators

Genetic operators are used to obtain new solutions to explore the solutions’ space. The aim
is to reach better solutions starting from the current ones. Two different operators are con-
sidered: crossover and mutation. Crossover operator generates two solutions (offspring) that
will inherit some characteristics from the two selected initial solutions (parents). The muta-
tion operator generates a new solution (offspring) that is not very different from the selected
initial solution.

Now we describe the crossover operator used in the proposed GA. Two solutions (chromo-
somes) are selected from the current population. A random integer number between 1 and
p − 1 that is used to define the position in which both chromosomes will be divided is gen-
erated. The two parent chromosomes are combined using the first part of one of the parents
and the second part of the other to generate two offspring. It is evident that the heritability
principle for crossover in genetic algorithms is maintained, due to the fact that the offspring
will have similar characteristics than the parents. However, the offspring not always represent
feasible solutions since it might be possible that they contain the same opened facility in two
different positions. In this case, the infeasible chromosome is eliminated. Finally, repeated
solutions are eliminated from the population.

The aim of the mutation operator is to incorporate diversity in the current population. This
procedure ensures that the resulting solution will be different from the original one. The mu-
tation operation is applied to a single solution at a time in the following way: a position is
selected randomly and the facility in that position is replaced by a non-open facility randomly
selected.

The genetic algorithm used in this chapter can be summarized in the following way. An ini-
tial population is generated. In order to apply the genetic operators to the best solutions, the
tournament procedure is executed. Then, the best half of the population is used to apply the
genetic operators. For each of these solutions, the genetic operator to be applied is randomly
selected. If the crossover is going to be applied the second parent is randomly selected from
the best half of the population. Otherwise, the mutation operator is applied to that solution.
The population is updated in an elitist way based on tournaments results. The stopping cri-
terion is a fixed number of generations. It is convenient to highlight that after a new leader’s
solution is obtained, the lower level problem is optimally solved and then the solution fitness
value is computed.
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5.1.4 Preliminary tests and parameter tuning
A set of 60 randomly generated instances was used in this study for testing the proposed al-
gorithm. We generated the random instances using a methodology based on the procedure
described in [113]. First, t points were generated in a unit square and the corresponding ma-
trix of Euclidean distances was computed. Then, m of those points were randomly selected
to be facility locations, and the other n = t −m points were set as customers. Then, the set
of m facilities was randomly divided into two sets. We selected 10% of the facilities to be the
existing ones, and the remaining 90% were set as the potential facility locations. Finally, cus-
tomer preferences towards facilities were generated using the process described in [26]. Test
instances were partitioned in six subsets according to their size. It is convenient to note that
for each size, a specific coverage ratio r was selected. The first three subsets are considered
medium size (block M); while, the others are referred as large size instances (block L). The
description of the sizes is shown in Table 5.1. The coverage ratio r of subsets 1 to 6 were set
to 0.80, 0.70, 0.50, 0.30, 0.25 and 0.20, respectively.

It is required to determine the value of three parameters for the proposed genetic algorithm:
population size, number of generations and probability of selecting the crossover operator. To
select the most appropriate parameter values, preliminary tests with different values for each
parameter were conducted. Four different population sizes (Psize) were considered: 100, 200,
500, and 1000 individuals. For the number of generations, two values proportional to the total
number of facilities were considered: 2|I|, and 3|I|. Four values for the crossover probability
were used: 0.65, 0.75, 0.85, and 0.95 (therefore, mutation probabilities were 0.35, 0.25, 0.15,
and 0.05, respectively).

To conduct a full factorial design, the algorithm would need to be executed (4)(2)(4)=32 times
for each instance. Therefore, to avoid an excessive computational effort, a subset of 30 in-
stances (block M) was considered for running all the 32 possible parameter configurations.
After a preliminary test, we noticed that the behavior of the algorithm was very similar for
same size instances. Thus, to adjust the algorithm parameters, we selected three instances of
each size of block M.

Table 5.1: Instances characteristics.
Block M Block L

Customers 225 450 675 900 1350 1800
Facilities 25 50 75 100 150 200

For each instance, the algorithm was executed five times for each of the 32 parameter config-
urations. The following values of the leader’ objective function were recorded: the best value
out of the five executions and its average. Also, the average CPU time of the five executions
was recorded. For all configurations, the algorithm obtained the optimum or the best known
solution, for every instance, in at least one out of the five runs (this was validated comparing
the obtained value against the value obtained by one of the reformulations described previ-
ously).
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Table 5.2: Percentage deviations between the optimum and the GA with Psize=100.
Configuration 225×25-01 225×25-08 225×25-10 450×50-13 450×50-16 450×50-18 675×75-23 675×75-25 675×75-29

(2|I|,0.65) 0.00 0.00 0.00 0.05 0.36 1.16 0.64 0.38 0.84
(2|I|,0.75) 0.00 0.00 0.00 0.04 0.33 0.31 1.06 0.17 0.56
(2|I|,0.85) 0.00 0.00 0.00 0.15 0.00 0.43 0.05 0.30 0.31
(2|I|,0.95) 0.00 0.00 0.00 0.04 0.24 0.40 0.07 0.12 0.53
(3|I|,0.65) 0.00 0.00 0.00 0.05 0.24 0.42 0.59 0.61 0.88
(3|I|,0.75) 0.00 0.00 0.00 0.03 0.45 0.55 0.60 0.13 0.84
(3|I|,0.85) 0.00 0.00 0.00 0.05 0.24 0.33 0.32 0.48 0.69
(3|I|,0.95) 0.00 0.00 0.00 0.39 0.00 0.00 0.18 0.12 0.66

Table 5.3: Percentage deviations between the optimum and the GA with Psize=200.
Configuration 225×25-01 225×25-08 225×25-10 450×50-13 450×50-16 450×50-18 675×75-23 675×75-25 675×75-29

(2|I|,0.65) 0.00 0.00 0.00 0.00 0.00 0.09 0.03 0.07 0.32
(2|I|,0.75) 0.00 0.00 0.00 0.04 0.00 0.00 0.18 0.00 0.43
(2|I|,0.85) 0.00 0.00 0.00 0.03 0.00 0.00 0.17 0.00 0.18
(2|I|,0.95) 0.00 0.00 0.00 0.01 0.00 0.00 0.14 0.00 0.25
(3|I|,0.65) 0.00 0.00 0.00 0.01 0.00 0.00 0.12 0.05 0.32
(3|I|,0.75) 0.00 0.00 0.00 0.02 0.08 0.00 0.08 0.21 0.00
(3|I|,0.85) 0.00 0.00 0.00 0.02 0.00 0.00 0.12 0.15 0.12
(3|I|,0.95) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.18

Analyzing the results, it was observed that solution quality improved when population size
was increased from Psize = 100 to Psize = 200, and from Psize = 200 to Psize = 500. But, the
solution quality did not improved when Psize was increased from 500 to 1000. For the smaller
instances, the optimal solution was obtained regardless the size of the population. It was also
observed, as it was expected, that the CPU time was increased in a significant way as the pop-
ulation size grows. For example, when Psize = 500 or Psize = 1000, the algorithm obtained
the optimum or the best known objective values in the five runs, but the CPU time increased
drastically (more than 10 times with respect to Psize = 100). Then, we compared solution
quality and CPU time for Psize = 200 and Psize = 100. Tables 5.2 and 5.3 show the results
for the sampled instances and each parameter configuration. We observed that the quality of
the solutions obtained for both population sizes (100 and 200) was very similar. Additionally,
increasing population size from 100 to 200, also increased significantly the CPU time.

Figure 5.1 exemplifies the impact in the algorithm’s performance when increasing the popu-
lation size from 100 to 200 for two particular instances. For this comparison, we selected the
two instances with the highest deviation with respect to the optimum or best known solution.
The figure shows the average percentage deviation of the leader’s objective function with re-
spect to the optimum or best known solution (Figure 5.1.a), and the average percentage time
increased when the population size is increased (Figure 5.1.b). In both graphs, the horizontal
axis indicates each parameter configuration. We observed that if population size was reduced
from 200 to 100, in the worst case, solution quality worsens only 1.063 %. However, increas-
ing population size from 100 to 200 incremented CPU time to more than double. Therefore,
the improvement obtained in the objective function value did not justify the increase in popu-
lation size. Thus, population size was set to 100, since the worst percent deviation with respect
to the optimum or best known objective function value was 1.16 %, which is acceptable for a
problem of this nature.

To adjust the parameters associated with the number of generations and the probability for
selecting the genetic operators, we used only the test results for the case when Psize=100. To
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Figure 5.1: Impact from increasing the population size.

select those values, we aimed to determine which configuration dominates the others. Figure
5.2 shows the objective function values against execution times for every sampled instance.
The eight possible configurations are plotted for each sampled instance. The label in each
point indicates the corresponding configuration (the order is the same as in the previous ta-
bles). In this analysis, if two configurations have the same value for one criterion, the one that
has the worst value in the other criterion is considered as the dominated solution.

Analyzing Figure 5.2, it can be appreciated that there are some configurations that are non-
dominated in most of the sampled instances. For example, configuration (2|I|, 0.65) -label 1-
is non-dominated because it is the one with the lowest required CPU time. This is because the
probability of selecting the mutation operator is high, which implies that fewer solutions are
explored because with mutation operator only one offspring is obtained, while with crossover
two offspring are generated. Furthermore, it can be seen that configurations (2|I|, 0.75) and
(2|I|, 0.85) -labels 2 and 3 respectively- tend to be non-dominated in most of the sampled in-
stances. On the contrary, configurations (3|I|, 0.85) and (3|I|, 0.95) -labels 7 and 8- required
large CPU times, but they did not find the best solutions in terms of quality. Note that for the
225×25 instances, all parameter configurations obtained the optimum value, hence CPU time
was used to decide dominance among them.

Table 5.4: Dominance between the configurations.
(2|I|,0.65) (2|I|,0.75) (2|I|,0.85) (2|I|,0.95) (3|I|,0.65) (3|I|,0.75) (3|I|,0.85) (3|I|,0.95)

225×25-01 7 5 6 4 3 2 1 0
225×25-08 7 5 6 4 3 2 1 0
225×25-10 5 6 7 4 2 3 1 0
450×50-13 4 6 1 3 2 3 0 0
450×50-16 1 1 6 3 2 0 0 0
450×50-18 0 4 1 2 1 0 0 0
675×75-23 1 0 6 4 1 0 0 0
675×75-25 2 5 2 4 0 1 0 0
675×75-29 1 4 5 4 0 0 0 0

Total 28 36 40 32 14 11 3 0

Table 5.4 shows a summary of this analysis. It can be seen that configuration (2|I|, 0.85)
dominates most of other parameter configurations in the sampled instances. Based on this, we
set the number of generations to two times the number of facilities in each instance, i.e. 2|I|.
The probability of selecting crossover operator was set to 0.85, encouraging the crossover
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Figure 5.2: Dominance among configurations for sampled instances.

operator.

5.1.5 Computational experimentation
To evaluate the quality of the solutions obtained with the proposed GA, the reformulations
described in section 5.1.2 were implemented using the commercial software CPLEX 12.6.1.
Preliminary tests indicated that bounds obtained with the LP relaxation of the first reformu-
lation are rather loose; hence, a considerable enumerative effort is needed by CPLEX to find
optimal solutions for the test instances. A comparison between both reformulations showed
that the second one provides tighter lower bounds, therefore, it was used to find optimal or
near optimal values for the tested instances. Each instance was executed with a CPU time
limit of three hours. The genetic algorithm was coded in Visual Studio 2010 in C++ language.
All tests were performed using a personal computer having an Intel (R) Core processor with
8GB of RAM.

The values used for the algorithm’s parameters were the ones detailed in the previous section,
that is, Psize=100, 2|I| as the number of generations and 0.85 for the crossover probability.
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Due to stochasticity immersed in the heuristic, each instance was executed ten times. The
results obtained by the proposed GA are presented in Tables 5.5 and 5.6. The information in
Tables 5.5 and 5.6 is the following, the first column is the instance name, the second column
is the CPU time used by CPLEX to solve the instance (in all cases where this value is equal
to 10,800, means that the optimal solution was not obtained in the time limit set for the tests).
The next four columns show results obtained with the GA (percentage gaps of the best, av-
erage and worst solution values obtained by GA with respect to the optimal or best solution
obtained with CPLEX within a three-hour time limit), the last column shows the average CPU
time used by the proposed GA.

Table 5.5: Results for the instances in block M
CPLEX GA

Instance CPU Time Best Average Worst CPU Time
225×25-01 1.09 0.00 0.00 0.00 2.34
225×25-02 1.19 0.00 0.00 0.00 2.36
225×25-03 1.42 0.00 0.00 0.00 2.41
225×25-04 1.05 0.00 0.00 0.00 2.43
225×25-05 1.30 0.00 0.00 0.00 2.26
225×25-06 1.42 0.00 0.00 0.00 2.43
225×25-07 1.70 0.00 0.46 1.15 2.49
225×25-08 1.28 0.00 0.00 0.00 2.32
225×25-09 1.31 0.00 0.00 0.00 2.31
225×25-10 1.75 0.00 0.00 0.00 1.91
450×50-11 10.92 0.00 0.24 1.19 9.06
450×50-12 16.64 0.00 0.37 0.93 8.94
450×50-13 11.33 0.05 0.15 0.56 8.60
450×50-14 8.45 0.00 0.24 0.83 8.74
450×50-15 14.52 0.00 0.26 0.98 8.08
450×50-16 13.75 0.00 0.00 0.00 4.12
450×50-17 9.41 0.00 0.27 0.87 4.40
450×50-18 14.77 0.00 0.43 0.82 4.33
450×50-19 7.52 0.00 0.26 1.30 4.63
450×50-20 5.98 0.00 0.00 0.00 4.29
675×75-21 44.98 0.31 0.87 1.54 10.37
675×75-22 296.02 0.47 0.74 1.35 10.27
675×75-23 25.81 0.00 0.05 0.13 10.47
675×75-24 33.97 0.37 0.65 0.93 10.62
675×75-25 37.44 0.00 0.30 0.66 11.21
675×75-26 15.72 0.00 0.40 1.46 11.73
675×75-27 43.64 0.17 0.31 0.45 12.04
675×75-28 28.42 0.54 0.71 0.97 11.77
675×75-29 83.52 0.00 0.31 0.92 12.70
675×75-30 37.39 0.65 1.01 1.40 12.14

It can be observed in Table 5.5, that in the first subset of instances the GA always obtained
the optimal value. Moreover, it can be seen that (with the exception of instance 225×25-07)
the algorithm obtained the optimal solution in the ten runs. For the subset of instances with
size 450×50, it can be noted that the algorithm was able to found the optimal value in 9 of
the 10 instances. In the case when optimality was not reached (450×50-13), the percentage
gap of the best solution obtained by the GA is 0.05%. For this second set of instances, the
percentage gap never exceeded 1.3%. For the third subset of instances, the algorithm found
optimal solutions for four out of the ten instances. In this case, the worst percentage gap never
exceeded 1.54%. For this set of instances, the CPU time required by the genetic algorithm
was smaller than the time required by CPLEX in all cases.
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Table 5.6: Results for the instances in block L
CPLEX GA

Instance CPU Time Best Average Worst CPU Time
900×100-31 241.75 0.00 0.21 0.41 26.96
900×100-32 466.06 0.00 0.35 0.46 29.70
900×100-33 204.33 0.00 0.23 0.43 28.29
900×100-34 103.66 0.01 0.47 0.82 26.98
900×100-35 1342.30 0.02 0.24 0.39 28.85
900×100-36 176.20 0.10 0.37 0.60 27.77
900×100-37 3270.64 0.00 0.60 0.83 26.89
900×100-38 88.14 0.00 0.20 0.32 28.50
900×100-39 351.01 0.02 0.22 0.30 28.07
900×100-40 182.02 0.10 0.25 0.39 26.43

1350×150-41 10800.00 0.10 0.39 0.66 85.48
1350×150-42 10800.00 0.68 0.89 1.23 93.07
1350×150-43 10800.00 0.36 0.55 0.65 91.63
1350×150-44 10800.00 -0.45 -0.22 0.02 84.02
1350×150-45 10800.00 0.45 0.73 0.94 80.41
1350×150-46 309.64 0.35 1.51 2.02 83.38
1350×150-47 10800.00 0.05 0.60 0.87 83.63
1350×150-48 10800.00 2.29 2.48 2.60 82.46
1350×150-49 3952.89 0.41 0.63 0.81 84.70
1350×150-50 10800.00 0.76 1.38 1.77 89.86
1800×200-51 10800.00 0.90 1.18 1.48 231.45
1800×200-52 10800.00 0.64 0.91 1.05 251.10
1800×200-53 10800.00 -0.16 0.44 0.62 204.46
1800×200-54 10800.00 0.36 0.70 0.97 221.57
1800×200-55 10800.00 -0.30 -0.14 0.11 223.89
1800×200-56 10800.00 0.57 1.07 1.53 223.89
1800×200-57 10800.00 0.11 0.34 0.60 210.52
1800×200-58 10800.00 -0.50 -0.06 0.21 216.30
1800×200-59 10800.00 -0.03 0.27 0.58 228.00
1800×200-60 10800.00 0.76 1.16 1.44 236.82

With respect to larger instances, it can be clearly observed from Table 5.6 that the proposed
GA required much less CPU time than CPLEX. In 18 instances CPLEX did not found the
optimal value within three-hour time limit. In ten out of the 30 instances the proposed GA ob-
tained the same or better lower bound than CPLEX. In general, we observed that the proposed
GA is robust, since the worst average gap never exceeded 1.77%. We can also observe that
for the set of 900×100 instances, the GA solved to optimality half of the instances and for
the other half the worst optimality gap was 0.83%. For the second and third subsets, since the
optimum is not known for most of the instances, the comparisons were made against the best
known solution (optimal solution is known only for instances 1350×15-46 and 135×150-49).
In those cases, when a negative value appears, it indicates that the GA outperformed CPLEX
(five out of 18 instances).

5.1.6 A direct single-level reformulation
Also, a direct single-level reformulation that ensures the optimality of the follower’s problem,
which forces customer demand to be allocated to the most preferred facility is proposed. Af-
ter performing preliminary computational tests with all the reformulations proposed in this
chapter, it was observed that the linear relaxation bounds are much better for the direct single-
level reformulation. The latter will be named as the single-level maximal covering location
problem (SLMCLP ) reformulation.
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Since the follower’s problem ensures that the demand of customers that are within the cov-
erage radius of one or more facilities is allocated to the most preferred facility, the bilevel
mathematical program can be formulated as a single-level program. As in [26], we consider
a single-level reformulation of the problem by replacing the follower’s decision problem with
a set of valid inequalities that ensure that whenever a customer is within the coverage radius
of more than one facility, customer demand will always be allocated to the most preferred
facility.

For each j ∈ J , let i1, i2, . . . , i|I(j)| be the elements in I(j) such that gi1,j > gi2,j > . . . >
gi|I(j)|,j . Then, to ensure that the demand of each customer is allocated to the most preferred
facility, the following valid inequalities are included:

|I(j)|∑
s=k+1

xis,j + yik ≤ 1 ∀j ∈ J, k ∈ 1, . . . , |I(j)| − 1 (5.77)

These inequalities ensure that if there is no open facility in the kth preferred location for
customer j, then the customer must be allocated to a facility whose location is less preferred
than the kth location or their demand is not allocated to any open facility. Then, the problem
can be modelled with the following single-level mathematical programming model.

(SLMCLP ) max
y,x

∑
i∈I1

∑
j∈J(i)

Djxij (5.78)

subject to: yi = 1 ∀i ∈ I2 (5.79)∑
i∈I1

yi = p (5.80)

yi ∈ {0, 1} ∀i ∈ I (5.81)∑
i∈I(j)

xij = 1 ∀j ∈ J2 (5.82)

xij ≤ yi ∀i ∈ I, j ∈ J(i) (5.83)∑
i∈I(j)

xij ≤ 1 ∀j ∈ J1 (5.84)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J(i) (5.85)
|I(j)|∑
s=k+1

xis,j + yik ≤ 1 ∀j ∈ J, k ∈ 1, . . . , |I(j)| − 1 (5.86)

In the above formulation, we observe that constraints xij ∈ {0, 1}, i ∈ I, j ∈ J(i) can be re-
placed by xij ≥ 0, i ∈ I, j ∈ J(i). Given any feasible solution, where I∗ = {i ∈ I : yi = 1}
denotes the set of open facilities, for a given customer j ∈ J , let i1, i2, . . . , i|I(j)| such that
gi1j > gi2j > . . . > gi|I(j)|j . Then, if xikj > 0 by constraints (7), this implies that yik = 1. In
addition, by constraints (10) and (7), yir = 0 and xirj = 0 for all r = 1, . . . , k−1. Otherwise,
xikj cannot be greater than zero because if yir = 1, for some r = 1, . . . , k − 1, xikj should
be zero to satisfy constraints (10) associated with facility location ir and customer j. Finally,
xirj = 0 for all r = k + 1, . . . , |I(j)| given that yik = 1. Therefore, by constraints (6) or
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constraints (8) and assuming that Dj > 0, xikj = 1.

Here, we prove the equivalence between MCLP and SLMCLP .

Proposition 1 If (x, y) is a feasible solution for MCLP , then valid inequalities (5.86) are
satisfied and therefore (x, y) is also feasible for SLMCLP .

Proof Let x be the optimal solution for the lower level problem for a given feasible solution
of the leader’s solution y.

Therefore, in any feasible solution of the bilevel problem, for each customer j ∈ J and a
given k ∈ [1, |I(j)|], we have the following cases.

1. yik = 0. We observe that in any feasible solution of MCLP , ∀j ∈ J ,
∑
i∈I(j)

xij is at

most 1 since if j ∈ J2, then
∑
i∈I(j)

xij = 1 and if j ∈ J1, then
∑
i∈I(j)

xij ≤ 1. Therefore,

|I(j)|∑
s=k+1

xis,j ≤ 1 since the set {ik+1, . . . , i|I(j)|} ⊂ I(j).

2. yik = 1. Therefore, xis,j = 0 for all s > k since constraints (5.82)–(5.84) ensure that
the demand of each customer is allocated to at most one open facility and if xis,j = 1 for
some s > k, this will contradict the optimality of the lower level problem. In addition,
since it is an uncapacitated problem and gik,j > gis,j for all s > k, the demand of
customer j can be allocated to their kth preferred location because there is a facility
located at that site (i.e., yik = 1).

Therefore, in both cases, constraints (5.86) hold.

Proposition 2 Let (x?, y?) be an optimal solution of SLMCLP . Then, x? is the optimal
solution of the lower level problem in MCLP for the given y?; therefore, (x?, y?) is feasible
for MCLP .

Proof Let I? = {i ∈ I : y?i = 1}. For each j ∈ J , we have the following mutually exclusive
cases.

1. If j ∈ J2, then the demand of customer j must be allocated to exactly one open fa-
cility because their demand is already covered by existing facilities. Therefore, let ik
be the facility to which the demand of customer j is allocated, i.e., x?ik,j = 1 for some
k ∈ [1, |I(j)|]. Then, x?is,j = 0 for all s ∈ I(j) \ {k} because constraints (5.82) must
hold. In addition, y?ik = 1 because x?ik,j ≤ y?ik . Constraints (5.86) ensure that y?is = 0
for all s < k since if y?is = 1 for some s < k, x?ik,j must be equal to 0. Therefore,
the demand of customer j is allocated to their most preferred facility among the open
facilities, i.e., ik = arg maxi∈I(j)∩I?{gij}.
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2. If j ∈ J1, then the demand of customer j must be allocated to at most one open facility
because constraints (5.84) must hold. Therefore, in the same way as in the case where
j ∈ J1, if the customer demand is allocated to facility ik, this means that x?ik,j = 1
for some k ∈ [1, |I(j)|] and x?is,j = 0 for all s ∈ I(j) \ {k}. In addition, yik = 1
since x?ik,j ≤ y?ik ; thus, constraints (5.86) ensure that yis = 0 for all s < k and ik =
arg maxi∈I(j)∩I?{gij}. If the demand of customer j is not allocated, this means that
y?i = 0 and x?ij = 0,∀i ∈ I(j) because if y?k = 1 for at least one k ∈ I(j), this will
contradict the optimality of the SLMCLP because demands are assumed to be positive
and therefore the objective value can be increased by Dj by setting x?kj = 1.

Proposition 3 MCLP and SLMCLP provide the same optimal solutions.

Proof Let (x?, y?) be an optimal solution for MCLP . By Proposition 1, we know that this
solution is also feasible for SLMCLP . Assume that there exists an optimal solution (x, y)
for the single-level formulation such that∑

i∈I1

∑
j∈J(i)

Djxij >
∑
i∈I1

∑
j∈J(i)

Djx
?
ij.

By Proposition 2, we know that this solution is also feasible for the bilevel formulation; there-
fore, it contradicts the optimality of (x?, y?) for MCLP .

Conversely, let (x?, y?) be an optimal solution for SLMCLP . By Proposition 2, we know
that this solution is also feasible for MCLP . Assume that there is another feasible solution
(x, y) for MCLP such that ∑

i∈I1

∑
j∈J(i)

Djxij >
∑
i∈I1

∑
j∈J(i)

Djx
?
ij.

By Proposition 1, (x, y) is also feasible for the SLMCLP , thereby contradicting the optimal-
ity of (x?, y?) for the SLMCLP .

From the latter results, it can be concluded that both mathematical formulations are equivalent.

Note that this single-level reformulation can be used to obtain a reference value in order to
measure the performance of the proposed algorithms.

5.1.7 GRASP and Hybrid GRASP-Tabu heuristics
Artificial intelligence (AI) has been applied in many domains, such as robotics, speech recog-
nition, planning and programming for many tasks, logistics planning, pattern recognition, and
VLSI design ([120]). When attempting to provide solutions to such problems, AI encounters
many obstacles. One obstacle is related to the fact that many of the problems involve com-
binatorial problems in which finding all possible alternative solutions and investigating them
is, in practical terms, impossible. In such situations, it is very useful to have informed search
strategies that enable more efficient search processes. Heuristic and metaheuristic methods
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help manage these complex decision problems by taking advantage of the structure and char-
acteristics of the problems to be solved, thereby providing AI with efficient search methods
([60]).

The GRASP metaheuristic was first proposed by [50]. It is an iterative search procedure. In
each iteration, a new solution is constructed by a greedy randomized procedure, which is then
improved using a local search procedure. In [50], the authors give an intuitive justification for
GRASP as a repetitive sampling technique. In each iteration of the greedy algorithm, a new
element is selected from a restricted candidate list and added to the solution. The mean and
variance of the sample distribution are a function of the cardinality of the restricted candidate
list used in the constructive phase of GRASP. Since sample solutions are selected randomly
by order statistics, one can intuitively expect that the best value found should outperform the
mean value.

Tabu search ([60] and [61]) relies on the use of adaptive memory and responsive exploration.
It uses adaptive memory to record historical information of the search process. The term re-
sponsive exploration refers to the ability of the method to make strategic choices to achieve
effectiveness.

Memory structures used by tabu search operate by referencing four dimensions: recency, fre-
quency, quality, and influence. The simplest forms of tabu search only use recency-based
memory to avoid cycling. The memory structures are used to record the attributes of solutions
recently visited, which are labeled tabu-active, and solutions that contain tabu-active attributes
are forbidden. Therefore, the use of recency-based memory is an aggressive exploration strat-
egy that attempts to go beyond local optimality because it prevents revisiting solutions visited
in the recent past. Aspiration criteria can also be used to override tabu restrictions (remove
tabu-active attributes). The simplest form of an aspiration criterion is to remove the tabu clas-
sification of a solution that is better than the best solution found so far.

Long-term memory is often used by a tabu search procedure for intensification or diversifi-
cation purposes. Intensification strategies can be used to exploit features historically found
to be good, while diversification strategies encourage the search process to explore unvisited
regions of the solution space. Commonly, frequency-based memory is used to implement in-
tensification and diversification strategies.

The quality dimension refers to the ability to differentiate the merit of solutions visited during
the search, whereas the influence dimension refers to the impact of the choices made during
the search process relative to both quality and structure of the visited solutions.

In the following, we describe the two proposed heuristics to find lower bounds for MCLP :
a GRASP heuristic and a hybrid GRASP-Tabu heuristic, which is a combination of GRASP
and tabu search.
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5.1.7.1 GRASP Heuristic

The proposed GRASP heuristic iteratively constructs an initial feasible solution that is subse-
quently improved by a local search that explores one neighborhood. The incumbent solution
is updated each time an iteration obtains a better solution. The algorithm terminates when the
termination criterion is met. Here, we first describe the greedy randomized procedure used in
the proposed GRASP heuristic and then describe the local search procedure.

Greedy Randomized Procedure

To find initial feasible solutions to MCLP , a set S ⊂ I1 of p facilities must be selected
such that customer demand covered by the firm is maximized. The greedy randomized pro-
cedure of the proposed GRASP heuristic is an iterative procedure that constructs an initial
feasible solution. In each iteration, a facility from the set of potential facilities I1 is selected
and covered customers are assigned to their most preferred facility among the existing facili-
ties. A greedy function is used to evaluate the contribution to the leader’s objective function
of each candidate facility in I1. For each candidate facility, the greedy function measures the
additional demand that can be covered by the facility by considering the follower’s reaction.
The demand that can be captured by a candidate facility is the demand of customers within
its coverage radius and that is not covered by any open facility or a demand that is covered
by some facility in I2 but the customer prefers the candidate facility among all open facilities.
Next, we explain the constructive procedure in detail.

Let Covered be the set of customers covered by open facilities. Initially, Covered is equal
to J2. In addition, A : J → S ∪ I2, where A(j) := i if customer j is allocated to facility
i. For each j ∈ J , A(j) := arg maxi∈(S∪I2)∩I(j){gij}, if (S ∪ I2) ∩ I(j) 6= ∅. Otherwise,
A(j) := null, which means that customer j in not within the coverage radius of any open fa-
cility and therefore j 6∈ Covered. Initially, S is equal to ∅ and it is updated at the end of each
iteration. To select the facility to be open at each iteration, the greedy value wi is computed
for each potential facility i ∈ I1 \ S. As mentioned previously, this greedy value wi measures
the increase in the leader’s objective function value to open a facility at location i. In other
words, for each customer j covered by i (i.e., j ∈ J(i)), the demand is added to wi in either
of the following two situations: 1) j was not previously covered j /∈ Covered, and 2) j was
covered by a facility A(j) ∈ I2 and i is more preferred than A(j). For each i ∈ I1 \ S, we
have the following.

βij =

{
Dj if j /∈ Covered or (gij > gA(j),j and A(j) ∈ I2)
0 otherwise ,∀j ∈ J(i)

therefore

wi =
∑
j∈J(i)

βij (5.87)
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Letwmin = mini∈I1\S {wi} andwmax = maxi∈I1\S {wi}. In addition, let T = wmin+α(wmax−
wmin) be a threshold value, where α ∈ (0, 1) is a parameter that controls the degree of greedi-
ness or randomness of the greedy procedure. We randomly select a facility i∗ from a restricted
candidate list RCL that contains candidate facilities whose wi ≥ T . Facility i? is added to the
set of open facilities S. At the end of each iteration, the Covered set is updated and customers
j ∈ J(i∗) are allocated to i∗ if they were not previously covered or if i∗ is more preferred than
its previous assignment A(j). In addition, A(j) is updated for all j ∈ Covered. In other
words, Covered is set to

⋃
i∈(S∪I2) J(i), which is the set of all customers within the coverage

radius of some open facility. For all j ∈ Covered, A(j) is set to arg maxi∈(S∪I2)∩I(j){gij},
which means that each covered customer is allocated to their most preferred location among
all locations in S ∪ I2. The constructive phase ends when p facilities are selected. The ran-
domized greedy procedure of the proposed GRASP heuristic is given in Algorithm 5.1.1.
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Algorithm 5.1.1 Greedy randomized procedure
1: function GREEDYRANDOMIZED(α)
2: SolV alue← 0
3: selected← 0
4: S ← ∅
5: Covered← J2

6: for all j ∈ J2 do
7: A(j)← arg maxi∈I2 {gij : j ∈ J(i)}
8: end for
9: repeat

10: for all i ∈ I1 \ S do
11: for all j ∈ J(i) do
12:

βij ←
{
Dj if j /∈ Covered or (gij > gA(j),j and A(j) ∈ I2)
0 otherwise

13: end for
14: wi ← 0
15: for all j ∈ J1 do
16: wi ← wi + βij
17: end for
18: end for
19: wmin ← mini∈I1\S {wi}
20: wmax ← maxi∈I1\S {wi}
21: T ← wmin + α(wmax − wmin)
22: RCL← {i ∈ I1 \ S : wi ≥ T}
23: select i∗ randomly from RCL
24: S ← S ∪ {i∗}
25: selected← selected+ 1
26: Covered←

⋃
i∈(S∪I2) J(i)

27: A(j)← arg maxi∈(S∪I2)∩I(j) {gij}
28: DemandCovered← DemandCovered+ wi∗
29: until selected = p
30: returnSolV alue
31: end function

Local search Procedure

Each initial solution generated by the randomized greedy procedure of the GRASP heuris-
tic is improved by a local search procedure. In this manner, the local search procedure in
a GRASP heuristic is used as an intensification strategy [114]. In our case, the local search
procedure explores the neighborhood wherein one open facility is exchanged with a closed fa-
cility, i.e., the exchange opens a closed facility i1 ∈ I1 \ S and closes an open facility i2 ∈ S.
A solution to the maximal covering location problem with customer preference ordering is
represented by a pair (S,A), where S is the set of open facilities and A : J → S ∪ I2, as de-
fined in the previous section. Therefore, the neighborhood N(S,A) of a given solution (S,A)
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is expressed as follows.

N(S,A) = {(S ′, A′) : S ′ = S \ {i2} ∪ {i1}, i2 ∈ S, i1 ∈ I1 \ S,
A′(j) = arg maxi∈(S′∪I2)∩I(j) {gij} ,∀j ∈ ∪i∈(S′∪I2)J(i),

A′(j) = null,∀j /∈ ∪i∈(S′∪I2)J(i)
}

Here, N(S,A) is the set of all solutions that can be obtained by opening a closed facility and
closing an open facility.

Let

δi1,i2j =


−Dj , if A(j) = i2 and (j /∈ ∪i∈S\{i2}∪{i1}J(i) or arg maxi∈(S∪I2)\{i2}∪{i1}{gij} ∈ I2)

Dj , if j ∈ J(i1) and (j 6∈ ∪i∈(S∪I2)J(i)) or (A(j) ∈ I2 and gA(j),j < gi1,j))

0, otherwise

for all j ∈ J , denote the leaders’ objective function change associated with customer j when we
exchange facility i1 with facility i2. As can be seen, the objective function value decreases by Dj if
the demand of customer j is covered by facility i2 in solution (S,A), i.e., A(j) = i2 and

• the demand of customer j cannot be covered by the set of the leader’s opened facilities S\{i2}∪
{i1} after the exchange is performed, or

• the demand of customer j will be allocated to some facility in I2 according to preferences (i.e.,
arg maxi∈(S∪I2)\{i2}∪{i1}{gij} ∈ I2).

On the other hand, the objective function value will increase by Dj when the demand of customer j is
covered by facility i1 (i.e., j ∈ J(i1)) and

• the demand of customer j is not covered in the current solution (i.e., j 6∈ ∪i∈(S∪I2)J(i)), or

• the demand of customer j is allocated to some facility in I2; however, according to customer
preferences, it will be reallocated to facility i1 because gA(j),j < gi1,j .

Then, the leader’s objective function change associated with the exchange of facility i1 with facility i2
is expressed as follows.

∆i1,i2 =
∑
j∈J

δii,i2j

Here, ∆i1,i2 measures the impact to the leader’s objective function value by computing the customer’s
demand change when facility i1 ∈ I1 \ S is opened and the impact to the customer’s demand change
when facility i2 ∈ S is closed by considering the follower’s reaction with respect to customer prefer-
ences.

The local search of the proposed GRASP heuristic uses the best improvement strategy (i.e., the best
solution in N(S,A) is selected) and terminates when the objective function value cannot be improved
further (all solutions in N(S,A) are worse than the current solution). The local search procedure of
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the proposed GRASP heuristic is given in Algorithm 5.1.2.

Algorithm 5.1.2 Local search procedure
1: function LOCALSEARCH(SolV alue)
2: Best← SolV alue
3: Stop← false
4: repeat
5: for all i2 ∈ S and i1 ∈ I1 \ S do
6: for all j ∈ J do
7:

δi1,i2j =


−Dj , if A(j) = i2 and (j /∈ ∪i∈S\{i2}∪{i1}J(i) or arg maxi∈(S∪I2)\{i2}∪{i1}{gij} ∈ I2)

Dj , if j ∈ J(i1) and (j 6∈ ∪i∈(S∪I2)J(i)) or (A(j) ∈ I2 and gA(j),j < gi1,j))

0, otherwise

8: end for
9: ∆i1,i2 ← 0

10: for all j ∈ J do
11: ∆i1,i2 ← ∆i1,i2 + δii,i2j

12: end for
13: end for
14: ∆← max{∆i1,i2 : i2 ∈ S and i1 ∈ I1 \ S}
15: if ∆ > 0 then
16: (i∗1, i

∗
2) ∈ arg maxi2∈S,i1∈I1\S{∆i1,i2}

17: S ← S ∪ {i∗1} \ {i∗2}
18: Best← Best+ ∆
19: for all j ∈ J do
20: A(j)← arg maxi∈(S∪I2)∩I(j) {gij}
21: end for
22: else
23: Stop← true
24: end if
25: until Stop
26: returnBest
27: end function

The proposed GRASP heuristic is given in Algorithm 5.1.3. The termination criterion is a predeter-
mined number of iterations without improvement.
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Algorithm 5.1.3 GRASP heuristic
1: function GRASP(NumberOfIterations, αinitial, αfinal, ItersF ixed, Increment)
2: IterCount← 1
3: α← αinitial
4: Best← 0
5: while (IterCount ≤ NumberOfIterations) do
6: if (IterCountmod Iterfixed = 0) then
7: if (α = αfinal) then
8: α← αinitial
9: else

10: α← α + Increment
11: end if
12: end if
13: SolV alue← GreedyRandomized(α)
14: SolV alue← LocalSearch(SolV alue)
15: if (SolV alue > Best) then
16: Best← SolV alue
17: IterCount← 0
18: end if
19: IterCount← IterCount+ 1
20: end while
21: returnBest
22: end function

5.1.7.2 Hybrid GRASP-Tabu Heuristic

Hybrid algorithms have been widely used to solve difficult problems ([17], [88], and [130]). These
combinations enhance the advantages of using a single methodology to obtain better solutions. The
combination of GRASP with Tabu search was first studied in [80]. Hybrid methods using GRASP with
Tabu search have been used to find feasible bounds for many problems ([1], [30], [36], [41], [44], [80],
and [85]). In this study, we propose a procedure that combines GRASP and Tabu search. The Tabu
search procedure is used instead of the local search in the algorithm’s improvement phase.

Tabu search is commonly used to solve difficult problems. It was first proposed in [59] and it is de-
scribed in detail in [60]. In this methodology, short-term and long-term memory are used to escape
local optima in order to better explore the solution space. Three elements must be defined to implement
tabu search: tabu attributes, tabu-tenure (a parameter that indicates the number of iterations in which an
attribute will be active), and the aspiration criterion (criterion to override tabu-active attributes). Tabu-
active attributes are those that are forbidden in a solution. The short-term memory of a tabu search
contains a list of selected attributes that occur in recently visited solutions to prevent revisiting these
solutions.
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Algorithm 5.1.4 Tabu search procedure
1: function TABUSEARCH(SolV alue)
2: Best← SolV alue
3: StopCriterion← false
4: repeat
5: for all i2 ∈ S and i1 ∈ I1 \ S do
6: for all j ∈ J do
7:

δi1,i2j =


−Dj , if A(j) = i2 and (j /∈ ∪i∈S\{i2}∪{i1}J(i) or arg maxi∈(S∪I2)\{i2}∪{i1}{gij} ∈ I2)

Dj , if j ∈ J(i1) and (j 6∈ ∪i∈(S∪I2)J(i)) or (A(j) ∈ I2 and gA(j),j < gi1,j))

0, otherwise

8: end for
9: ∆i1,i2 ← 0

10: for all j ∈ J do
11: ∆i1,i2 ← ∆i1,i2 + δii,i2j

12: end for
13: end for
14:

Candidates← {(i1, i2) : i1 ∈ I1 \ S, i2 ∈ S and (i2 6∈ TabuList or SolV alue+ ∆i1,i2 > Best)}

15: ∆← max{∆i1,i2 : (i1, i2) ∈ Candidates}
16: (i∗1, i

∗
2) ∈ arg max{∆i1,i2 : (i1, i2 ∈ Candidates}

17: S ← S ∪ {i∗1} \ {i∗2}
18: for all j ∈ J do
19: A(j)← arg maxi∈(S∪I2)∩I(j) {gij}
20: end for
21: Update TabuList
22: SolV alue← SolV alue+ ∆
23: if SolV alue > Best then
24: Best← SolV alue
25: end if
26: Update StopCriterion
27: until (notStopCriterion)
28: returnBest
29: end function

In our implementation, the tabu attributes are defined in a simple manner. Once a facility i ∈ S is
closed, it must remain closed for a number of iterations. To implement this, a fixed size list with a first
in-first out discipline is maintained. Therefore, if facility i? ∈ S is closed at iteration t, the index of
facility i? will be appended to the tabu list. If the fixed size of the tabu list is r, opening facility i? will
be forbidden in iterations t+1, t+2, . . . , t+r. We also use the standard aspiration criterion every time
a solution with a tabu-active attribute is better than the incumbent solution, i.e., the tabu restrictions
are ignored. Therefore, at any iteration of the procedure, the candidate neighbor solutions will be those
that do not contain tabu-active attributes or satisfy the aspiration criterion (line 14 in Algorithm 5.1.4).
The proposed hybrid GRASP-Tabu heuristic is given in Algorithm 5.1.5. The termination criterion is
a predetermined number of iterations without improvement.
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Algorithm 5.1.5 Hybrid GRASP-Tabu heuristic
1: function HYBRID(NumberOfIterations, αinitial, αfinal, ItersF ixed, Increment)
2: IterCount← 1
3: α← αinitial
4: Best← 0
5: while (IterCount ≤ NumberOfIterations) do
6: if (IterCountmod Iterfixed = 0) then
7: if (α = αfinal) then
8: α← αinitial
9: else

10: α← α + Increment
11: end if
12: end if
13: SolV alue← GreedyRandomized(α)
14: SolV alue← TabuSearch(SolV alue)
15: if (SolV alue > Best) then
16: Best← SolV alue
17: IterCount← 0
18: end if
19: IterCount← IterCount+ 1
20: end while
21: returnBest
22: end function

5.1.8 Additional computational experimentation
To evaluate the performance of the proposed heuristic methods, we use the same set of instances de-
scribed in section 5.1.4. To evaluate the quality of the solutions obtained by the proposed heuristics,
the single-level reformulation was coded and run using the FICO XPRESS 7.8 commercial software.
Both heuristics (the GRASP heuristic and hybrid GRASP-Tabu heuristic) were coded in C++. The
single-level reformulation and both heuristics were run on an Intel Xenon(R) processor at 3.10 GHz
with 8 GB of RAM. The computational experimentation for both heuristics and the obtained results
are discussed below.

The FICO XPRESS Optimization Suite provides a mathematical programming framework with dif-
ferent algorithms to solve LP problems and mixed integer LP problems (MIP). For LP problems, it
includes the primal simplex, dual simplex, and Newton barrier algorithms. For MIP problems, the
solver provides a powerful branch and bound framework that uses heuristic methods to quickly de-
termine good solutions and cutting planes to strengthen the LP relaxations. The use of heuristics and
cutting planes to provide primal and dual bounds might allow considerable reduction of enumerative
effort. In addition, the MIP solver uses pre-solve procedures that might help reduce the problem matrix
and in turn the dimension of the problem, thereby making it easier to solve. In preliminary tests with
FICO XPRESS, it was observed that, for the largest instances, executing single-level reformulation for
each instance could take more than 15 hours. In addition, in preliminary tests, it was observed that
executing the proposed heuristics for each instance never exceeded 250 seconds. Thus, a time limit
of three hours (two orders of magnitude larger than the time required by the heuristics for the largest
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instances) was set to run the single-level reformulation in FICO XPRESS.

Here, an evaluation of the proposed GRASP heuristic is described. The GRASP heuristic has two
parameters that need to be adjusted: the α value and the termination criterion (number of iterations
without improvement). The selection of the α parameter in the construction phase of a GRASP heuris-
tic may affect the solution quality; therefore, it is very important to select an appropriate value for α.
However, due to difficulty in setting a value for α that is suitable for all instances of a given problem,
several options have been used in previous works. A trial-and-error strategy is often used to find the
most suitable parameter value for each data instance. Other implementations ([106], [36], and [117])
automatically tune the α value using a reactive procedure. These procedures are usually based on
probabilities to select α values from a discrete set of values, i.e., the α value used in each iteration. For
these procedures to work correctly, the heuristic algorithm must perform many iterations. In this study,
the solution quality of the proposed algorithms is sufficient without requiring many iterations; thus, a
reactive procedure is not necessary. Instead, in all tests, the α parameter was varied from 0.75 to 0.95,
starting at 0.75 and increasing α by 0.05 every five iterations.

The criterion used to terminate the GRASP heuristic is a fixed number of iterations without improve-
ment. Two sets of tests were performed to evaluate the quality of the results obtained with the proposed
GRASP heuristic and heuristic robustness. In the first set of tests, the termination criterion was 50 iter-
ations without improvement, and in the second set of tests, the termination criterion was 100 iterations
without improvement. Each set of tests consisted of running each test instance five times. To evaluate
solution quality, the best solution from the five runs was compared to the optimum or best known so-
lution of each instance, and, to evaluate heuristic robustness, the deviation between the best and worst
solutions was measured.

Tables 5.7 and 5.8 describe the results obtained with the proposed GRASP heuristic. The first column
shows the size of the instances, and the next three columns show the average percentage deviation of
the best solutions obtained in each instance with respect to the optimal or best known solution (Avg.
Best %), the average percentage deviation of the solution’s mean with respect to the optimal or best
known solution (Avg. Mean %), and the average percentage deviation of the worst solutions obtained
with respect to the optimal or best known solution (Avg. Worst %). Finally, the last two columns show
the average CPU time in seconds required by the GRASP heuristic and XPRESS, respectively.

Note that, for instances of size 1800×200, XPRESS was not able to find the optimal solution in the
three-hour time limit for nine out of the ten instances. In addition, for these nine instances, the best
feasible solution value obtained by XPRESS was worse than the solution obtained by the GRASP
heuristic. In both sets of tests, the algorithm found the optimal or best known solution for all instances
in at least one out of the five runs. Moreover, the average percentage deviation of the worst solutions
obtained with respect to the optimal or best known solution never exceeded 0.032% for the experiment
with termination criterion of 50 iterations without improvement and 0.031% for the experiment with
100 iterations. Clearly, the algorithm is more robust by increasing the number of iterations without im-
provement in the termination criterion given that the deviation between the best and the worst solutions
is reduced.

Table 5.9 shows the results of the proposed hybrid GRASP-Tabu heuristic. As with the GRASP heuris-
tic tests, the α parameter was varied from 0.75 to 0.95, starting at 0.75 and increasing by 0.05 every
five iterations. In addition, for this test, the number of iterations without improvement was set to 50,
and Tabu tenure was set to seven iterations. Again, the test consisted of five runs for each test instance.
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Table 5.7: GRASP Heuristic Results (50 Iterations)

Size
Avg. Avg. Avg. CPU XPRESS

Best % Mean % Worst % (sec) CPU(sec)
225 x 25 0.000 0.000 0.000 0.0 1.9
450 x 50 0.000 0.001 0.005 0.0 6.4
675 x 75 0.000 0.018 0.031 1.5 21.1

900 x 100 0.000 0.002 0.010 4.5 65.3
1350 x 150 0.000 0.004 0.018 24.1 2562.6
1800 x 200 0.000 0.011 0.032 79.1 >10800.0

Table 5.8: GRASP Heuristic Results (100 Iterations)

Size
Avg. Avg. Avg. CPU XPRESS

Best % Mean % Worst % (sec) CPU (sec)
225 x 25 0.000 0.000 0.000 0.0 1.9
450 x 50 0.000 0.000 0.000 0.2 6.4
675 x 75 0.000 0.018 0.031 3.1 21.1

900 x 100 0.000 0.002 0.010 9.0 65.3
1350 x 150 0.000 0.001 0.003 44.3 2562.6
1800 x 200 0.000 0.005 0.015 142.6 >10800.0

To evaluate the solution quality, the best solution from the five runs was compared with the optimum
or best known solution of each instance, and, to evaluate heuristic robustness, the deviation between
the best and worst solutions was measured. Clearly, the hybrid GRASP-Tabu heuristic gives the best
quality results. The average percentage deviation of the solution’s mean with respect to the optimal or
best known solution in the worst case was 0.006%, which is much lower compared with the 0.018%
of the GRASP heuristic. In addition, the average percentage deviation of the worst solutions obtained
with respect to the optimal or best known solution was improved substantially for instances greater
than 675×75. In only three out of the 60 instances, the algorithm did not find the optimal or best
known solution in the five runs, clearly showing that the algorithm is robust. Finally, although the
average CPU time was greater for the hybrid GRASP-Tabu heuristic, the average time only increased
slightly than the CPU time of the GRASP heuristic and remained much lower than the CPU time of
the mathematical model run in FICO XPRESS.

The detailed results for each instance are shown in Table 5.10. The first column shows the name of
each instance, and the second column shows the optimal or best known solution. The following three
columns show the best, average, and worst percentage deviations of the solutions with respect to the
optimal or best known solution. The last column shows the average CPU time in seconds.
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Table 5.9: Hybrid GRASP-Tabu Results

Size
Avg. Avg. Avg. CPU XPRESS

Best % Mean % Worst % (sec) CPU (sec)
225 x 25 0.000 0.000 0.000 0.0 1.9
450 x 50 0.000 0.000 0.000 1.4 6.4
675 x 75 0.000 0.006 0.031 7.6 21.1

900 x 100 0.000 0.000 0.000 13.9 65.3
1350 x 150 0.000 0.000 0.000 58.8 2562.6
1800 x 200 0.000 0.001 0.001 172.8 >10800.0
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Table 5.10: Detailed Hybrid GRASP-Tabu Results
Name

Optimal Best Avg. Worst
CPU

or Best Known % % %
mcb225x25-01 20870 0.000 0.000 0.000 < 1.00
mcb225x25-02 18562 0.000 0.000 0.000 < 1.00
mcb225x25-03 19546 0.000 0.000 0.000 < 1.00
mcb225x25-04 21236 0.000 0.000 0.000 < 1.00
mcb225x25-05 20160 0.000 0.000 0.000 < 1.00
mcb225x25-06 19458 0.000 0.000 0.000 < 1.00
mcb225x25-07 20243 0.000 0.000 0.000 < 1.00
mcb225x25-08 20511 0.000 0.000 0.000 < 1.00
mcb225x25-09 19815 0.000 0.000 0.000 < 1.00
mcb225x25-10 20210 0.000 0.000 0.000 < 1.00
mcb450x50-11 73623 0.000 0.000 0.000 1.80
mcb450x50-12 79903 0.000 0.000 0.000 1.20
mcb450x50-13 76999 0.000 0.000 0.000 2.20
mcb450x50-14 68361 0.000 0.000 0.000 1.20
mcb450x50-15 73454 0.000 0.000 0.000 1.60
mcb450x50-16 72540 0.000 0.000 0.000 1.20
mcb450x50-17 79528 0.000 0.000 0.000 1.20
mcb450x50-18 75316 0.000 0.000 0.000 1.20
mcb450x50-19 74286 0.000 0.000 0.000 1.00
mcb450x50-20 80620 0.000 0.000 0.000 1.20
mcb675x75-21 182743 0.000 0.000 0.000 7.40
mcb675x75-22 176540 0.000 0.061 0.306 10.40
mcb675x75-23 183008 0.000 0.000 0.000 7.00
mcb675x75-24 177188 0.000 0.000 0.000 8.20
mcb675x75-25 185892 0.000 0.000 0.000 8.00
mcb675x75-26 176562 0.000 0.000 0.000 6.00
mcb675x75-27 201912 0.000 0.000 0.000 6.80
mcb675x75-28 188272 0.000 0.000 0.000 6.20
mcb675x75-29 203018 0.000 0.000 0.000 8.80
mcb675x75-30 183625 0.000 0.000 0.000 7.20

mcb900x100-31 300826 0.000 0.000 0.000 12.60
mcb900x100-32 325846 0.000 0.000 0.000 12.60
mcb900x100-33 328118 0.000 0.000 0.000 15.00
mcb900x100-34 309788 0.000 0.000 0.000 11.60
mcb900x100-35 318625 0.000 0.000 0.000 15.20
mcb900x100-36 319178 0.000 0.000 0.000 13.40
mcb900x100-37 314034 0.000 0.000 0.000 15.80
mcb900x100-38 327188 0.000 0.000 0.000 12.00
mcb900x100-39 317017 0.000 0.000 0.000 17.80
mcb900x100-40 298779 0.000 0.000 0.000 13.20
mcb1350x150-41 693053 0.000 0.000 0.000 59.20
mcb1350x150-42 723185 0.000 0.000 0.000 65.80
mcb1350x150-43 742178 0.000 0.000 0.000 61.20
mcb1350x150-44 688609 0.000 0.000 0.000 66.00
mcb1350x150-45 684277 0.000 0.000 0.000 61.80
mcb1350x150-46 695860 0.000 0.000 0.000 44.00
mcb1350x150-47 690537 0.000 0.000 0.000 48.60
mcb1350x150-48 693398 0.000 0.000 0.000 61.60
mcb1350x150-49 731687 0.000 0.000 0.000 50.60
mcb1350x150-50 723746 0.000 0.000 0.000 69.00
mcb1800x200-51 1281284 0.000 0.000 0.000 144.40
mcb1800x200-52 1356246 0.000 0.006 0.010 211.80
mcb1800x200-53 1258479 0.000 0.000 0.000 163.80
mcb1800x200-54 1314660 0.000 0.001 0.004 168.60
mcb1800x200-55 1300838 0.000 0.000 0.000 145.20
mcb1800x200-56 1256017 0.000 0.000 0.000 157.60
mcb1800x200-57 1290808 0.000 0.000 0.000 206.20
mcb1800x200-58 1280134 0.000 0.000 0.000 180.20
mcb1800x200-59 1287646 0.000 0.000 0.000 201.00
mcb1800x200-60 1331171 0.000 0.000 0.000 149.20



Chapter 6

Capacitated Facility Location Problems

In the case when customer preferences are taken into account, the uncapacitated facility location prob-
lem that minimizes the total cost has a natural bilevel formulation. Since the lower level corresponds
to an allocation problem, the bilevel problem can be easily reformulated as a single-level one. This
single-level formulation is not so evident when capacity constraints are considered. First, it is neces-
sary to specify the meaning of the capacity constraint. Moreover, as in ([133]), different assignment
constraints can be considered. So, it is interesting to explore these alternatives to identify under which
assumptions the original bilevel problem can be formulated through an adequate set of constraints as a
single-level problem. Otherwise, it would be necessary to study properties of the bilevel feasible set.

The capacity constraints can be given in terms of number of customers or amount of demand. These
constraints can refer to a minimum of demand satisfied by a facility to be open or a maximum of de-
mand attended by each facility. It is possible that the leader wishes to open a facility but none of the
customers prefer it, so it does not have sense to open it.

In this chapter we presented two models. In the former, unitary demand is considered and the lower
level problem is converted into the transportation problem. In the latter, generalized demand is con-
sidered. In this case, the the lower level problem is the well-known generalized assignment problem
(GAP). In the first case, the lower level problem can be optimally solved, but in the second case the
complexity of the lower level problem demands alternatives for obtaining -in general- the follower’s ra-
tional reaction set. Hence, the bilevel attainable solutions are defined for solving this particular bilevel
problem in an efficient manner.

The remainder of the chapter is structured as follows: Section 6.1.1 states the mathematical formulation
of the bilevel capacitated facility location problem with unitary demand. In Section 6.1.2, an equivalent
single-level reformulation is proposed. Section 6.1.3 describes the proposed algorithm, which is a
genetic algorithm. Then, the computational experimentation and its corresponding interpretation of
the results are shown in Section 6.1.4. After that, the case when the demand is generalized is analyzed;
hence, the bilevel formulation of the corresponding problem is presented in Section 6.2.1. In Section
6.2.2, the definitions of the necessary concepts for approximating the inducible region are presented.
Section 6.2.3 presents a bound for the bilevel problem based on a reformulation considering the linear
relaxation of the lower level problem. An analysis of the difficulty in obtaining upper or lower bounds
in bilevel programming (in particular in this problem) is made in Section 6.2.4. In Section 6.2.5, the
description of the heuristic algorithm implemented for solving this version of the problem is detailed.
Computational experimentation is given in Section 6.2.6. In particular, the methodology followed is

81
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explained and a comparison among the different versions of the proposed algorithms’ performance is
presented.

6.1 Capacitated facility location problem with unitary de-
mand

6.1.1 Mathematical model
Let I denotes the facilities and J the customers, where I = 1, ..., n and J = 1, ...,m. Let cij represent
the costs for supplying the demand of the customer j by the facility i. Also, fi denotes the fixed cost
for opening the i-th facility. Each customer j has a preference to be served by facility i, represented by
gij . Finally, qi represents the capacity in facility i in terms of the maximum number of customers that
can be attended in a facility. The binary decision variables of the bilevel problem are: yi that represent
whether the facility i is opened or not and xij that represent whether facility i satisfies the demand of
the customer j.

Then, the mathematical model would be as follows:

min
y

n∑
i=1

m∑
j=1

cijxij +
n∑
i=1

fiyi (6.1)

subject to:
n∑
i=1

qiyi ≥ m (6.2)

yi ∈ {0, 1} i = 1, ..., n (6.3)

where xij is the optimal solution of the problem:

min
x

n∑
i=1

m∑
j=1

gijxij (6.4)

subject to:
n∑
i=1

xij = 1 j = 1, ...,m (6.5)

m∑
j=1

xij ≤ qiyi i = 1, ..., n (6.6)

xij ∈ {0, 1} i = 1, ..., n, j = 1, ...,m(6.7)

In this case, despite the fact that the preferences are given as ordered consecutive integer numbers,
the uniqueness in the follower’s problem is not guaranteed. The latter is caused by the capacities
considered in each facility. Hence, in order to have well posed the bilevel problem the optimistic
version is considered. In other words, if multiple optimal solutions for a given leader’s decision can be
found, then the one which incurs in the best leader’s objective function value is selected. The specific
procedure for obtaining all the multiple optimal follower’s solutions is explained in the section that
corresponds to the algorithm’s description.

6.1.2 Single-level reformulation
Due to the lack of a commercial software capable to solve the bilevel problem described in the previous
section, other resolution schemes are explored. One of the most common approaches is to reformulate
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the lower level problem. We developed a reformulation of the bilevel problem by reducing it to a
single-level mixed-integer programming problem. As we mentioned earlier, under the assumptions
herein considered, the lower level is a transportation problem with n facilities with an offer of 0 or qi
depending on the leader’s variables and m customers with demand equals to 1. We study properties on
the optimal solution of the following problem in order to characterize the inducible region:

P (y) : min
x

n∑
i=1

m∑
j=1

gijxij (6.8)

subject to:
n∑
i=1

xij = 1 j = 1, ...,m (6.9)

m∑
j=1

xij ≤ qiyi i = 1, ..., n (6.10)

xij ∈ {0, 1} i = 1, ..., n, j = 1, ...,m (6.11)

Now, let us formulate the lower level problem in another way. Let I = {i ∈ {1, ..., n} : yi = 1}. That
is, I is the set of open facilities in a solution y of the upper level problem. Then, the problem can be
formulated as follows.

min
x

n∑
i=1

m∑
j=1

gijxij (6.12)

subject to:
∑
i∈I

xij ≥ 1 j = 1, ...,m (6.13)

−
m∑
j=1

xij ≥ −qi i ∈ I (6.14)

xij ≥ 0 i ∈ I, j = 1, ...,m (6.15)

In can be noted that equation (6.13) now is an inequality. This change does not affect the model due to
the sense of the objective function, which is of minimization. Therefore, the variable xij will take the
minimum value, that is, 1. Equation (6.14) is multiplied by a -1. In addition, the variable yi is omitted
because in this problem only the open facilities are being considered. Also, the integrity constraint
of the variables xij is changed by (6.15), then the lower level corresponds to a linear programming
problem.

The dual of lower level problem is defined by:

max
u,v

m∑
j=1

uj −
∑
i∈I

qivi (6.16)

subject to: uj − vi ≤ gij i ∈ I, j = 1, ...,m (6.17)

uj ≥ 0 j = 1, ...,m (6.18)

vi ≥ 0 i ∈ I (6.19)

Note that, in the reformulation of the lower level problem, the variables {xij , i /∈ I, j = 1, ...,m}
are not included since xij ≤ yi and their value is automatically assigned once the leader variables
are known. This fact implies that in the dual problem, only card(I) + m dual variables are defined.
By duality theory ([12]), if one problem possesses an optimal solution, then both problems possess
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optimal solutions and both optimal objective values are equal. In this case, the lower level problem
has a bounded optimal solution since it is a transportation problem with an offer greater or equal to the
number of customers.

Let {xij , i ∈ I, j = 1, ...,m} verifying (6.13)-(6.15) and {f(uj , vi), i ∈ I, j = 1, ...,m} verifying
(6.17)-(6.19) such that:

∑
i∈I

m∑
j=1

gijxij =

m∑
j=1

uj −
∑
i∈I

qivi (6.20)

Then, the vector (x, u, v) satisfies the complementary slackness conditions and x and (u, v) are opti-
mal solutions to the primal and dual problems, respectively. Therefore, for each value of y, decision
variables controlled by the leader, (y, x) provides a bilevel feasible solution if and only if there exists
(u, v) such that:

xij = 0, i /∈ I, j = 1, ...,m (6.21)∑
i∈I

xij ≥ 1 j = 1, ...,m (6.22)

m∑
j=1

xij ≤ qi i ∈ I (6.23)

uj − vi ≤ gij i ∈ I, j = 1, ...,m (6.24)

uj ≥ 0 j = 1, ...,m (6.25)

vi ≥ 0 i ∈ I (6.26)∑
i∈I

m∑
j=1

gijxij =
m∑
j=1

uj −
∑
i∈I

qivi (6.27)
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Bearing in mind (6.21)-(6.27), the problem under study can be reformulated as follows:

min
y,x,u,v

n∑
i=1

m∑
j=1

cijxij +
n∑
i=1

fiyi (6.28)

subject to:
n∑
i=1

qiyi ≥ m (6.29)

xij ≤ yi i = 1, ..., n, j = 1, ...,m (6.30)
n∑
i=1

xij ≥ 1 j = 1, ...,m (6.31)

m∑
j=1

xij ≤ qiyi i = 1, ..., n (6.32)

uj − vi ≤ gij +M(1− yi) i = 1, ..., n, j = 1, ...,m (6.33)

vi ≤ Myi i = 1, ..., n (6.34)
n∑
i=1

m∑
j=1

gijxij −
m∑
j=1

uj +

n∑
i=1

qivi = 0 (6.35)

yi ∈ {0, 1}, i = 1, ..., n (6.36)

xij ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m (6.37)

uj ≥ 0, j = 1, ...,m (6.38)

vi ≥ 0, i = 1, ..., n (6.39)

It is important to remark that this reformulation is equivalent to the original bilevel problem introduced
in the previous section.

6.1.3 Proposed algorithm
Due to the existing complexity when solving bilevel programming problems, many heuristic and meta-
heuristic algorithms have been proposed for obtaining optimal or good quality solutions. One meta-
heuristic that has been extensively applied to this kind of problems is the genetic algorithm. For
example, in [86] a genetic algorithm for solving Stackelberg-Nash equilibrium of nonlinear multilevel
programming with multiple followers in which there might be information exchange among the follow-
ers is designed. That genetic algorithm might involve some iterative process or evolution subprocess
for solving Nash equilibrium of followers for each control vector revealed by the leader. In [68] and
[84] the lower level problem is replaced by the Karush-Kuhn-Tucker optimality conditions yielding a
single-level optimization problem, a genetic algorithm is implemented to solve the resulting problem.

A genetic algorithm for the linear bilevel problem in which both objective functions are linear and the
common constraint region is a polyhedron is developed in [20], the algorithm aims to combine clas-
sical extreme point enumeration techniques with genetic search methods by associating chromosomes
with extreme points of the polyhedron. In [23] a genetic algorithm for obtaining good quality config-
urations of the topological design of LANs is proposed, the solution method considers the Stackelberg
equilibrium to solve the bilevel problem and deals with the fact that the follower’s problem cannot be
optimally solved in a straightforward manner.
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In this section, a genetic algorithm is proposed for solving the capacitated facility location problem
with preferences. It is important to highlight that the solutions considered in the genetic algorithm are
the ones associated with the leader’s decision. This is the typical way to design algorithms for bilevel
problems due to the necessity of having the follower’s optimal solution for each leader’s decision.

Taking advantage of the structure of the lower level, which is a transportation problem with integer
supply and integer demand, the transportation simplex algorithm is proposed for its resolution. Also,
owing to the existence of capacity in the problem, multiple solutions for allocating the customers to
their preferred facilities when a predefined number of facilities has been located may exist, and it is
considered in the genetic algorithm. Due to the fact that it is assumed the optimistic approach, a lex-
icographical method that guarantees the best convenience for the leader with an optimal solution of
the follower is applied. That is, once the leader makes a decision the follower reacts returning his
best solution. Then, the problem of the leader is solved again but with an additional restriction, the
equality of the objective function of the follower and the best solution of the follower obtained above.
If the solution obtained by the leader is different, then there are multiple solutions and the new solution
obtained is taken. As well, the genetic algorithm examines whether all open facilities in the solution
are used, this is, if an open facility does not have assigned customers to it, it is closed and the corre-
sponding fixed cost is not considered in the objective function of the upper level.

Two versions of the proposed genetic algorithm are implemented. Both versions are detailed explained
below.

Coding of the solutions

It is important to mention that part of the genetic algorithm’s efficiency relies in having a convenient
solution coding. Therefore, the coding of a leader’s solution consists in a binary vector of size n in
which each position indicates the index of an opened facility. If the n-th position is 1, then the n-th
facility is opened, otherwise the facility is closed.

Initial population

A biased random methodology is considered to generate the initial population. First, two random
numbers are generated between 10 and 10,000, later n random numbers between those values are gen-
erated. Now, these values will be fictitious fixed costs and are denoted as ai. Then, a chromosome is
generated by solving the following problem:

min
y

∑
i∈I

aiyi (6.40)

subject to:
∑
i∈I

qiyi ≥ m (6.41)

0 ≤ yi ≤ 1 ∀i ∈ I (6.42)

Due to the nature of the variable y, the optimal solution of the problem may have fractional elements.
These elements will be repaired doing 1 all values that are greater than 0. Once the open facilities have
been identified, their preferences, capacities and distribution costs are considered and the lower level
problem is solved. After the fitness of the chromosome (solution) is evaluated by calculating the value
of the objective function of the upper level, the initial population is formed to have Psize chromosomes
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within the initial population (Pob).

Genetic operators

Genetic operators contribute to obtaining new solutions thus favouring the exploration of the search
space. The basic operators used are: mutation and crossover. The mutation operator will give a new
different solution (offspring) which is not very different from the selected solution. On the other hand,
crossover will generate two new solutions (offspring) that inherit some characteristics from the two
selected initial solutions (parents). The main contribution of crossover is expanding in the search space
of possible solutions and the objective of the mutation is the introduction of randomness in the chro-
mosomes of the population.

Crossover 1:
The strategy used is the single-point crossover. Each solution of Pob is paired with another randomly
selected solution (parent solutions), and then a random crossover point is selected. After that, the parts
of both solutions are exchanged, that is, the part of the solution that is left to the crossover point with
the part of the other solution that is right to the crossover point. In this way the offspring inherit char-
acteristics of both parents.

Crossover 2:
In this the crossover operator a procedure is performed to create a specific probability distribution
by weighting the associated capacity with the open facilities in parent solutions. The main idea is
to assign to each of these facilities a probability proportional to its capacity. In this procedure, each
solution of the set Pob is paired with another solution randomly selected (parents solutions) of Pob.
Later, the capacity of each open facility on the chromosome is identified, this calculation is done for
both parents. If a facility is open in both parents, then the capacity is doubled; in this way that facility
will have higher probability for staying opened. Therefore, a radius is calculated for all the facilities as
follows:

ri =
q1
i + q2

i∑
i∈Ip(q1

i + q2
i )

(6.43)

where q1
i and q2

i denote the capacities of the facility of the parent 1 and parent 2, respectively. Also, let
Ip indicates the open facilities in the parents solutions.

If the radius is equal to zero for any facility, then this facility will not be considered as a candidate
because ri = 0 indicates that the facility i is closed in both parents.

Finally, a probability to each facility is assigned. The idea is to divide the interval [0, 1] in subintervals
of length ri, that is, assign to each open facility a subinterval. Then, a random number between 0 and 1
is generated and the facility that corresponds to that subinterval is opened. The number of facilities that
are opened in the offspring is the number corresponding to the lower cardinality between both parents.
In case when the offspring is infeasible due to capacity constraints, it will enter to the repairing scheme.

Mutation 1:
A solution is selected from set Pob. After that, a facility is randomly chosen from the solution and its
value is modified (from 0 to 1 or from 1 to 0).
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Mutation 2:
A solution is selected from set Pob. After that, two random numbers are generated: one that corre-
sponds to an open facility and other one to a closed facility. Finally, both facilities are exchanged and
an offspring is obtained.

Repairing scheme

Taking into account the existence of capacity constraints the offspring generated can be infeasible.
Then these solutions are repaired as follows:

Repairing scheme 1:
First, one facility from the facilities that are not in the current solution is randomly selected. Then, this
facility is opened in the current solution. If the solution continuous being infeasible then the procedure
is repeated until it changes its status.

Repairing scheme 2:
First, from the facilities that are not opened in the current solution, the one that has more capacity is
found, and this facility is opened in the offspring. If the offspring continuous being infeasible then the
procedure is repeated until it changes its status.

Selection mechanism

The selection mechanism implemented is an elitist one, aiming to keep the best chromosomes. The so-
lutions are ordered according to their objective function value and the best Psize solutions are selected.

The differences between the two versions implemented of the proposed genetic algorithm are the
genetic operators and the repairing scheme. We denote as genetic 0 to the algorithm that contains
crossover 1, mutation 1 and repairing scheme 1 within its implementation. Therefore genetic 1 is the
one that uses crossover 2, mutation 2 and repairing scheme 2. In the next section the results obtained
from both versions are presented.

6.1.4 Computational experimentation
The considered set of instances was taken from the instances generated in [69]. In that paper, the
procedure with the 71 problems were generated is explained. These instances have to be modified to
obtain facilities’ capacity in terms of the number of customers who can be served from it. We compute
d̄ as the mean of the customer demands. Let be Qi the capacity of the facility i, then qi = dQi

d̄
e. The

preferences are generated in a similar way than in [26]. The size of the instances is described below.

Table 6.1: Number of facilities and customers
Instance Facilities Customers
p01-p12 10 50
p13-p24 20 50
p25-p40 30 150
p41-p55 10-30 70-100
p56-p71 30 200
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The computational experimentation was conducted in a workstation with an Intel (R) Core processor
and 32GB of RAM. The code was implemented in C++ language and CPLEX 12.6.1 was used for
solving the reformulation.

Both versions of the genetic algorithm described above are analyzed. Each problem has been solved
with each genetic algorithm (0 and 1) allowing (rep=1) or not (rep=0) repeating individuals, with 10
initial populations (sem) and 10 replicates each (run). We save the value of the solution after 1, 5, 10
and 30 seconds.

First, the genetic algorithms and repetition of chromosomes are analyzed (see Figure 6.1). In the Figure
6.2 it can be seen the interaction between the type of genetic, the repetition of chromosomes and the
seed population.

Figure 6.1: Main effects plot for sucess.

Note that the genetic 0 and the non-repetition of chromosomes have greater effect. From the above
graphs, we concluded that we will not continue considering the repetition of chromosomes, because in
general, for any problem and genetic algorithm the results are worse. In some particular problems, the
behavior was different from the other ones. Hence, only the results for the first 40 problems are shown,
see Figure 6.3.

From the above figure, it can be concluded that the success is greater when the chromosomes are not
repeated. Then, repeating chromosomes is discarded and all the following results are not allowing
repetition. Also, the number of iterations performed on each problem is analyzed, see Figures 6.4 and
6.5.
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Figure 6.2: Interaction plot for sucess.

Figure 6.3: Individual value plot of success with rep=0 and rep=1.

Now, analyzing the number of iteration in which the best value was reached, it can be seen that this
occurs realtively soon in almost all problems (see Figure 6.6).
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Figure 6.4: Number of iterations in problems h p01 to h p13.

Finally, the success rate for each genetic algorithm applied to each problem after n seconds is presented
in Figure 6.7. A success is defined as achieving the best value.

Therefore, more statistical tests analyzing both genetic algorithms are performed. First, the interaction,
the effect, the independence among variables, the effect of each genetic, among others are analyzed.
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Figure 6.5: Number of iterations in problems h p14 to h p71.

As a conclusion, both algorithms behave reasonably well, although the genetic 0 is slightly better than
the genetic 1, being less stuck in local optimum and reaching the optimum in less time and in more
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Figure 6.6: Number of iteration in which the best value has been reached.

Figure 6.7: Variable success after 1,5,10 and 15 seconds.
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problems. So, we decided to consider the genetic 0. for the final experimentation.

The following tables show the results obtained (6.2 and 6.3). The first column called “instance” cor-
responds to the instance label, the “Optimum / Best” and “Time” columns indicate the best value of
the objective function and the time obtained with the reformulation presented in Section 6.1.2. A time
limit of two hours were considered. On the other hand, due to the existence of randomness, the genetic
algorithm was executed ten times for each problem. The last three column shows the average percent-
age deviation of the best solutions obtained in each instance with respect to the optimal or best known
solution (Best), the average percentage deviation of the solution’s mean with respect to the optimal or
best known solution (Average), and the average percentage deviation of the worst solutions obtained
with respect to the optimal or best known solution (Worst).

From the above results, it can be appreciated that the best value found by CPLEX within the time limit
coincides with that obtained by the genetic algorithm in instances p25 to p36 and p59 to p66. This
seems to indicate that the value found by CPLEX may be optimal. On the other hand, the genetic
algorithm found a better value of the objective function in the instances p56-p58 and p67-p69. Also, it
is easy to see that in only three instances the GA did not find the optimum in the ten runs, in p18, p57
and p62. However, the algorithm obtained optimal solutions in 7 out of 10, 1 out of 10, and 9 out of
the 10 runs, respectively. It should be noted that although in the instance p57 only found it in 1 out of
9 in the first five seconds, at the end of the 30 seconds had found the optimum in 7 out of 10 runs.
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Table 6.2: Results obtained from the computational experimentation.
Reformulation Genetic algorithm

Instance Optimum/Best Time (second) Best Average Worst
p01 19902 0.34 0.0000 0.0000 0.0000
p02 19034 0.30 0.0000 0.0000 0.0000
p03 19151 0.33 0.0000 0.0000 0.0000
p04 21949 0.31 0.0000 0.0000 0.0000
p05 19519 0.04 0.0000 0.0000 0.0000
p06 19458 0.05 0.0000 0.0000 0.0000
p07 19456 0.06 0.0000 0.0000 0.0000
p08 21309 0.04 0.0000 0.0000 0.0000
p09 18794 0.61 0.0000 0.0000 0.0000
p10 16571 0.30 0.0000 0.0000 0.0000
p11 19048 0.34 0.0000 0.0000 0.0000
p12 18544 0.39 0.0000 0.0000 0.0000
p13 17723 94.44 0.0000 0.0000 0.0000
p14 16139 65.02 0.0000 0.0000 0.0000
p15 18055 125.39 0.0000 0.0000 0.0000
p16 19206 142.81 0.0000 0.0000 0.0000
p17 17234 71.02 0.0000 0.0000 0.0000
p18 16349 58.55 0.0000 0.0030 0.0099
p19 18115 99.66 0.0000 0.0000 0.0000
p20 19883 111.64 0.0000 0.0000 0.0000
p21 17253 47.22 0.0000 0.0000 0.0000
p22 16415 54.47 0.0000 0.0000 0.0000
p23 18146 39.94 0.0000 0.0000 0.0000
p24 18321 79.78 0.0000 0.0000 0.0000
p25 40164 7200.00 0.0000 0.0000 0.0000
p26 43187 7200.00 0.0000 0.0000 0.0000
p27 41500 7200.00 0.0000 0.0000 0.0000
p28 45474 7200.00 0.0000 0.0000 0.0000
p29 45026 7200.00 0.0000 0.0000 0.0000
p30 44075 7200.00 0.0000 0.0000 0.0000
p31 42246 7200.00 0.0000 0.0000 0.0000
p32 48460 7200.00 0.0000 0.0000 0.0000
p33 42184 7200.00 0.0000 0.0000 0.0000
p34 38846 7200.00 0.0000 0.0000 0.0000
p35 40657 7200.00 0.0000 0.0000 0.0000
p36 45392 7200.00 0.0000 0.0000 0.0000
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Table 6.3: Results obtained from the computational experimentation (continuation).
Reformulation Genetic algorithm

Instance Optimum/Best Time (second) Best Average Worst
p37 35593 1654.36 0.0000 0.0000 0.0000
p38 35355 1354.81 0.0000 0.0000 0.0000
p39 35642 386.00 0.0000 0.0000 0.0000
p40 36354 391.16 0.0000 0.0000 0.0000
p41 11574 0.36 0.0000 0.0000 0.0000
p42 9708 30.63 0.0000 0.0000 0.0000
p43 8637 1007.52 0.0000 0.0000 0.0000
p44 16426 0.52 0.0000 0.0000 0.0000
p45 12514 56.52 0.0000 0.0000 0.0000
p46 10741 1412.67 0.0000 0.0000 0.0000
p47 13534 0.42 0.0000 0.0000 0.0000
p48 11070 40.22 0.0000 0.0000 0.0000
p49 9175 1120.75 0.0000 0.0000 0.0000
p50 16749 0.44 0.0000 0.0000 0.0000
p51 15510 108.08 0.0000 0.0000 0.0000
p52 21872 0.38 0.0000 0.0000 0.0000
p53 20358 140.14 0.0000 0.0000 0.0000
p54 19114 0.34 0.0000 0.0000 0.0000
p55 17405 117.67 0.0000 0.0000 0.0000
p56 64807 7200.00 -0.0003 -0.0003 -0.0003
p57 70253 7200.00 -0.0002 -0.0001 -0.0001
p58 81921 7200.00 -0.0024 -0.0024 -0.0024
p59 75080 7200.00 0.0000 0.0000 0.0000
p60 61711 7200.00 0.0000 0.0000 0.0000
p61 62790 7200.00 0.0000 0.0000 0.0000
p62 72339 7200.00 0.0000 0.0005 0.0051
p63 66531 7200.00 0.0000 0.0000 0.0000
p64 60709 7200.00 0.0000 0.0000 0.0000
p65 63290 7200.00 0.0000 0.0000 0.0000
p66 69953 7200.00 0.0000 0.0000 0.0000
p67 70125 7200.00 -0.0107 -0.0107 -0.0107
p68 62665 7200.00 -0.0053 -0.0053 -0.0053
p69 67509 7200.00 -0.0072 -0.0072 -0.0072
p70 71740 7200.00 0.0000 0.0000 0.0000
p71 66950 7200.00 0.0000 0.0000 0.0000
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6.2 Capacitated facility location problem with generalized
demand

None of the papers mentioned in the literature review present an appropriate definition of the concepts
for approximating the inducible region or for handling solutions that do not belong to the bilevel feasi-
ble region. We define attainable bilevel solutions based on an efficient approximation of the inducible
region. Furthermore, heuristic algorithms are developed for solving the bilevel capacitated facility
location problem. The impact of having refined methods for obtaining the follower’s best acceptable
response is shown. Hence, an alternative for solving this complex problem is proposed within this
section.

6.2.1 Bilevel model description
Let I = {1, 2, ..., n} be the set of potential location for the facilities, J = {1, 2, ...,m} be the set of
customers served by the facilities. The parameters, cij be the associated costs for allocating customer
j to facility i and fi be the fixed cost for opening a facility in the potential location i. Also, let dj
be the demand associated with each customer j and bi the capacity for each facility i. As in previous
chapters, let gij be the preference of customer j toward facility i.

Let also define the variables:

yi =

{
1, if a facility is located in potential location i
0, otherwise

and

xij =

{
1, if a facility i supplies the demand of customer j
0, otherwise

The mathematical model for the Bilevel Capacitated Facility Location Problem (BCFLP) considering
the preferences of the customers towards the facilities is set as follows:

min
y,x

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (6.44)

subject to: yi ∈ {0, 1} ∀i ∈ I (6.45)

x ∈ arg max
∑
i∈I

∑
j∈J

gijxij (6.46)

subject to:
∑
i∈I

xij = 1 ∀j ∈ J (6.47)∑
j∈J

djxij ≤ biyi ∀i ∈ I (6.48)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (6.49)

Equation (6.44) denotes the leader’s objective function, which minimizes locating and distributing
costs. In (6.45), the binary nature of the leader’s decision variables is stated. Constraint (6.46) is the
follower’s objective function which maximizes the preferences set by the customers. The requirement
that a customer’s whole demand must be met is guaranteed by equation (6.47). The capacity constraint
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for the facilities is considered in (6.48), where the located facilities will supply the demand of all the
possible customers without exceeding their production capacity. In (6.49), a single facility will supply
the demand of a customer. In the BCFLP, the leader has control over the decision variables yi; that is,
the leader will choose where potential facilities will be located. On the other hand, the follower con-
trols the decision variables xij ; that is, the follower will allocate the customers to the most convenient
facilities from a subset (decided by the leader) of located ones.

As in the previous section, to have well-posed the bilevel problem studied in this section, the optimistic
or pessimistic approach must be specified. Both decision variables appearing in the leader’s objective
function imply the classical optimistic approach. This approach can be seen from two different perspec-
tives: (1) the follower has a cooperative behavior or (2) the leader selects the most favorable follower’s
decision with respect to its own objective value, being aware the follower’s objective function value
remains the same.

6.2.2 Concepts and terminology
The following concepts are used in [99] and [11] for problems where the lower level can be solved
to optimality. Hence, the necessary concepts for having well-posed the bilevel problem defined in the
previous section are introduced. Because the lower level problem of the BCFLP is NP-hard, the bilevel
feasibility for the proposed solutions is defined as follows:

Definition 1. Let x = (x11, x12, ..., x1m, x21, x22, ..., x2m, ..., xn1, xn2, ..., xnm) be the decomposed
vector which indicates the customer’s demand covered by the facilities. Also, let y =(y1, y2, ..., yn) be
the vector of the potential located facilities. Then, the constraint set of the BCFLP is:

S = {(x, y) : yi ∈ {0, 1},
∑
i∈I

xij = 1,
∑
j∈J

djxij ≤ biyi and xij ∈ {0, 1} ∀i ∈ I, j ∈ J}(6.50)

Definition 2. For a given leader’s decision y fixed, constraints (6.47)-(6.49) define the follower’s feasi-
ble set S(y) as follows:

S(y) = {x :
∑
i∈I

xij = 1,
∑
j∈J

djxij ≤ biyi and xij ∈ {0, 1} ∀i ∈ I, j ∈ J} (6.51)

The complexity required to solve a general case of the lower level is evident, it is a NP-hard problem.
Hence, obtaining optimal solutions is not guaranteed for all instances. Moreover, applying refined
numerical methods for solving the follower’s problem will negatively affect the performance of any
algorithm developed for solving the bilevel problem. Due to these facts, a definition of a set of bounds
for any leader’s decision y is introduced.

Definition 3. Let ε > 0 be a tolerance value. Hence, the bounds set B(y) can be defined as:

B(y) = {x : x ∈ S(y), and
∑
i∈I

∑
j∈J

gijxij + ε =
∑
i∈I

∑
j∈J

gijx
∗
ij} (6.52)

In a general way, the optimal solutions of the lower level problem cannot be obtained by an exact
method. Furthermore, it can be seen from the definition stated above that B(y) contains solutions
yielding to lower bounds. The configuration of the lower level solution affects the quality of the upper
level’s objective function in a non-predictable way. The importance of having good quality solutions
will affect the efficiency of B(y) and, consequently, the bilevel attainability of solutions. In other
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words, near optimal solutions x will be desired to improve the B(y) set and to maintain it very close
to the inducible region associated with the integer bilevel problem; that is, when ε has a value close to
zero.

Follower’s rational reaction set must be adjusted for solving the BCFLP. The solution xmay be seen as
the follower’s rational reaction for a fixed leader’s decision y. By rational, we mean the follower will
react in a logical sense; that is, if optimal solutions are very difficult or time-consuming to obtain, the
follower will accept near optimal solutions as his reaction.

Definition 4. The rational reaction set P (y) may be defined as:

P (y) = {x : x ∈ B(y)} (6.53)

Definition 5. The approximate inducible region IR considered for the BCFLP is defined by the set:

IR = {(x, y) : (x, y) ∈ S and x ∈ B(y)} (6.54)

From the latter definition, the approximate inducible region will represent the approximate region at
the leader’s problem. The points belonging to the defined approximate inducible region will be referred
to as the bilevel attainable solutions.

Definition 6. A solution (x, y) will be a bilevel attainable solution if (x, y) ∈ IR.

As mentioned before, the optimal reaction of the follower cannot be assured since the lower level
problem is NP-hard. In any event, we seek to obtain the best bilevel attainable solution -a solution
(x̂, ŷ) ∈ IR corresponding to the minimum objective function value reached, according to:∑

i∈I

∑
j∈J

cij x̂ij +
∑
i∈I

fiŷi (6.55)

Hence, the need of considering efficient methods for obtaining solutions in the lower level problem
is evident. In Section 6.2.6, computational results from different strategies for solving the lower level
(obtaining bounds) are presented. Finally, as mentioned in the previous section, an optimistic approach
is assumed. In other words, in the case when P (y) is not a singleton (if multiple optimal solutions
for the lower level problem exist), then the follower selects the solution that corresponds to the best
leader’s objective function value.

6.2.3 A bound for the BCFLP
In this section, a bound for the bilevel capacitated facility location problem is presented. The common
bound for bilevel programming problems consists in ignoring the follower’s objective function and
solving the resulting problem. Since we are considering a minimization problem, the resulting bound
under that scheme is a lower one. By doing so, the upper level’s decision maker will decide both de-
cision variables. Hence, he will select the best decisions based on his own objective function without
regarding the lower level.
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Therefore, the single-level reformulation used for obtaining classical lower bounds of the problem
(6.44)-(6.49) is as follows:

min
y,x

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (6.56)

subject to: yi ∈ {0, 1} ∀i ∈ I (6.57)∑
i∈I

xij = 1 ∀j ∈ J (6.58)∑
j∈J

djxij ≤ biyi ∀i ∈ I (6.59)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (6.60)

This scheme is very useful for validate the bilevel structure of a problem. This is, if the optimal solution
of the single-level problem (6.56)-(6.60) is the same than the optimal solution of the bilevel problem
(6.44)-(6.49), then it implies that the most preferred facilities coincide with the closest ones; and the
bilevel formulation lost it sense. Moreover, since the decision of the lower level decision maker is not
being taken into account, the upper level objective function cannot be affected in any way. Hence, the
optimal solution of the problem (6.56)-(6.60) will be a lower bound for the bilevel problem.

However, very poor quality bounds may be obtained. Hence, a different analysis to obtain bounds
is conducted in this thesis. The proposed bound is based on a reformulation of the BCFLP’s LP-
relaxation, into a single-level mixed integer programming problem. Since the follower’s problem is
an integer maximization problem, its LP-relaxation will result in an upper bound for the follower’s
problem. Then, one would expect the inducible region to be overestimated and the minimization over
that region to be a upper bound for the bilevel problem. In general, this is not true, however, since
the leader’s objective function partially depends on the solution given by the follower. Moreover, the
inducible region cannot be predicted due to the appearance of solutions that overestimate or underes-
timate the objective function value without a pattern. In Section 6.2.4, an explanation of this fact is
discussed, and an illustrative example is presented.

As stated above, to obtain a bound, a relaxation of the binary constraints of the follower’s problem is
considered -that is, substitute xij ∈ {0, 1} by xij ≥ 0. By doing this, the resulting lower level problem
is a linear programing problem. Hence, the well-known reformulation for bilevel programming prob-
lems in which the lower level problem is replaced by its primal-dual constraints is developed. Let uj
and vi be the dual variables associated with the follower’s problem.

Therefore, the dual formulation of the follower’s problem is:

min
u,v

∑
j∈J

uj +
∑
i∈I

biyivi (6.61)

subject to: uj + djvi ≥ gij ∀i ∈ I, j ∈ J (6.62)

vi ≥ 0 ∀i ∈ I (6.63)

To guarantee the optimality of the lower level problem’s relaxation, two frameworks are considered:
establish the equality of both objective functions, primal and dual ones; or, include the complemen-
tary slackness constraints. First, for the reformulation R1, the constraint that ensures both objective
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functions have the same value is amended in the problem. This constraint is as follows:∑
i∈I

∑
j∈J

gijxij =
∑
j∈J

uj +
∑
i∈I

biyivi (6.64)

Equation (6.64) is nonlinear, but it can be linearized in a classical manner by introducing the artificial
variable zi, and then making the substitution zi = yivi. If yi = 0 then zi = 0; and if yi = 1 then
zi = vi. This can be done by adding the following constraints, in which M1 is a sufficiently large
positive constant:

zi ≥ 0 ∀i ∈ I (6.65)

zi ≤ M1yi ∀i ∈ I (6.66)

zi ≤ vi ∀i ∈ I (6.67)

zi −M1yi ≥ vi −M1 ∀i ∈ I (6.68)

Then, the equation that will ensure the optimality is given by:∑
i∈I

∑
j∈J

gijxij =
∑
j∈J

uj +
∑
i∈I

bizi (6.69)

The first reformulation R1 of the relaxed BCFLP results in a mixed integer programming problem,
which is composed of the following equations:

min
y,x,u,v,z

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (6.70)

subject to:
∑
i∈I

xij = 1 ∀j ∈ J (6.71)∑
j∈J

djxij ≤ biyi ∀i ∈ I (6.72)

uj + djvi ≥ gij ∀i ∈ I, j ∈ J (6.73)∑
i∈I

∑
j∈J

gijxij =
∑
j∈J

uj +
∑
i∈I

bizi (6.74)

zi ≥ 0 ∀i ∈ I (6.75)

zi ≤ M1yi ∀i ∈ I (6.76)

zi ≤ vi ∀i ∈ I (6.77)

zi −M1yi ≥ vi −M1 ∀i ∈ I (6.78)

yi ∈ {0, 1} ∀i ∈ I (6.79)

xij ≥ 0 ∀i ∈ I, j ∈ J (6.80)

vi ≥ 0 ∀i ∈ I (6.81)
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The second framework mentioned above that guarantees the optimality of the relaxed lower level prob-
lem is described. This second reformulation R2 is based on the complementary slackness constraints.
For the follower’s problem under study, these equations are as follows:

xij(uj + djvi − gij) = 0 ∀i ∈ I, j ∈ J (6.82)

vi(biyi −
∑
j∈J

djxij) = 0 ∀i ∈ I (6.83)

Similarly equations (6.82) and (6.83) are nonlinear and a linearization is needed to improve the treata-
bility of the problem. Let M2 be a sufficiently large positive constant. First, consider equation (6.82)
to linearize it. Remember that constraint (6.62) and that xij demands non-negativity. The introduction
of auxiliary variables αij ∈ {0, 1} is made, including the following constraints:

xij ≤ M2(1− αij) ∀i ∈ I, j ∈ J (6.84)

uj + djvi − gij ≤ M2αij ∀i ∈ I, j ∈ J (6.85)

For linearizing equation (6.83), a similar procedure to the one formerly described can be conducted.
That is, considering another constantM3, non negativity of vi, constraint (6.48) and auxiliary variables
βi ∈ {0, 1} the resulting constraints will be added in the model:

biyi −
∑
j∈J

djxij ≤ M3βi ∀i ∈ I (6.86)

vi ≤ M3(1− βi) ∀i ∈ I (6.87)

The resulting linearized single-level mixed integer programming problem R2 is:

min
y,x,u,v,α,β

∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (6.88)

subject to:
∑
i∈I

xij = 1 ∀j ∈ J (6.89)∑
j∈J

djxij ≤ biyi ∀i ∈ I (6.90)

uj + djvi ≥ gij ∀i ∈ I, j ∈ J (6.91)

xij ≤ M2(1− αij) ∀i ∈ I, j ∈ J (6.92)

uj + djvi − gij ≤ M2αij ∀i ∈ I, j ∈ J (6.93)

biyi −
∑
j∈J

djxij ≤ M3βi ∀i ∈ I (6.94)

vi ≤ M3(1− βi) ∀i ∈ I (6.95)

yi ∈ {0, 1} ∀i ∈ I (6.96)

xij ≥ 0 ∀i ∈ I, j ∈ J (6.97)

vi ≥ 0 ∀i ∈ I (6.98)

αij ∈ {0, 1} ∀i ∈ I, j ∈ J (6.99)

βi ∈ {0, 1} ∀i ∈ I (6.100)
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Without considering the variables’ sign constraints, R1 model contains mn+ 3n+ 1 additional func-
tional constraints and m + 2n extra variables. On the other hand, 5mn + 2n new constraints and
mn+m+ 2n more variables are added in R2. Therefore, the R2 model will always be larger than the
R1 model in terms of the number of constraints and variables, even in the smallest case.

Considering both reformulations of the relaxed BCFLP are equivalent, and based on the fact R2 has
a larger number of variables and constraints, solely the R1 model was considered to obtain bounds
for the BCFLP. If the number of customers is larger than the number of facilities, then the optimality
gap may be small (see [28]). On the other hand, a methodology for evaluating the quality of the
bilevel solution obtained by the relaxed R1 model has not been proposed in the literature. Despite this,
solutions provided by both reformulations are bounds for the BCFLP.

6.2.4 Analyzing the complexity in obtaining good quality bounds on the
BCFLP

In this section, a discussion about the efficiency of obtaining lower or upper bounds for the BCFLP
is presented. As mentioned in Section 6.2.2, the lower level is determined by the well-known GAP,
a NP-hard problem. Hence, finding the optimal solution for the follower is impossible in an efficient
and general way. The bilevel problem requires the optimal follower’s solution, however. Knowing
the limitations the follower has to achieve this, a rational response can be allowed for having bilevel
attainable solutions.

Since bilevel attainable solutions are not bilevel feasible (in the strict sense), one assumes bounds exist
for the BCFLP. Nevertheless, there is no guarantee the bilevel attainable solutions are upper or lower
bounds. Actually, the methodology described in section 6.2.3 cannot assure the obtained solutions are
upper or lower bounds. This shows the enormous difficulty in solving bilevel problems, especially
those with a NP-hard problem in one of its two hierarchized decision levels.

Regarding the condition of the solutions obtained from relaxing the lower level problem (see sec-
tion 6.2.3), first, denote the leader’s objective function given in equation (6.44) as F (x, y) and the
follower’s objective function defined in equation (6.46) as f(x, y). Also, let y be a fixed leader’s deci-
sion. Considering the follower’s problem and since the linear relaxation of the follower’s variables xLP
is considered and that it is a maximization problem, a greater or equal value of the follower’s objective
function is expected, f(x∗LP , y) ≥ f(x, y) for any feasible solution x ∈ {0, 1}, where x∗ and x∗LP
are the optimal solutions of the lower level, integer and relaxed respectively. Then, an approximation
of the inducible region (IRLP ) is formed by all the pairs of solutions (x∗LP , y) obtained through this
linear relaxation. Therefore, one would also expect the solutions belonging to IRLP overestimate (in
terms of the leader’s objective function value) the solutions in the inducible region (IR) of the integer
bilevel problem, F (x∗LP , y) ≥ F (x∗, y). This is not true for all the solutions, however, because some
(x∗, y) ∈ IR satisfy F (x∗, y) > F (x∗LP , y). Due to this fact, it cannot be assured that upper bounds
for the BCFLP are obtained through the lower level’s linear relaxation.

To illustrate this finding, a small example is shown. The problem consists of 7 facilities and 4 cus-
tomers, and the parameters of the problem are presented in Figure 6.8. For example, consider the
case when the leader locates the first and fourth facilities, that is, y = (1, 0, 0, 1, 0, 0, 0). Hence, the
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optimal follower’s response (in a coded way for simplicity) is x∗ = {x11 = x14 = x42 = x43 = 1}
with f(x∗, y) = 20. On the other hand, the optimal solution for the linear relaxation of the follower’s
problem is x∗LP = {x11 = x42 = x43 = 1, x14 = 0.122, x44 = 0.878} with f(x∗LP , y) = 20.878.
Therefore, computing the corresponding leader’s objective function values results in F (x∗, y) = 285
and F (x∗LP , y) = 280.610; that is, the bilevel solution given by the linear relaxation of the lower level
problem does not yield to a upper bound. Not all the solutions have the same behavior -there are some
bilevel solutions that satisfy F (x∗LP , y) ≥ F (x∗, y).

Figure 6.8: Parameters for the illustrative example.

In an analogous way, one can analyze the case for the supposed lower bounds. For a given leader’s
decision y, if the lower level problem is solved by a heuristic algorithm, there is no guarantee the
obtained solutions xHeu are optimal. Additionally, since the follower aims to maximize, a pair of
solutions (xHeu, y) should satisfy f(xHeu, y) ≤ f(x∗, y) for the optimal follower’s solution x∗,
yielding to a lower bound. Then, the inducible region is underestimated, which would suggest that
F (xHeu, y) ≤ F (x∗, y). As in the case for the upper bounds, this is not true for all the solutions,
however.

Considering again the example presented in Figure 6.8, suppose that the leader has made a decision
y = (0, 0, 0, 1, 0, 0, 1). For the integer case, the follower’s optimal solution is x∗ = {x42 = x44 =
x71 = x73 = 1} with f(x∗, y) = 24. Now, consider the lower level problem is solved through a
heuristic algorithm. Based on the criteria selected for the heuristic, the follower’s rational response
is xHeu = {x43 = x44 = x71 = x72 = 1} with f(xHeu, y) = 23. Finally, from evaluating those
solutions in the leader’s objective function we will have F (x∗, y) = 243 and F (xHeu, y) = 248. This
result shows that solving by a heuristic algorithm the lower level may result in leader’s objective func-
tion values greater than the ones obtained in an optimal manner.

After having analyzed this small example, one notes the validation of the lower or upper bounds for
the BCFLP cannot be done. In the case when the linear relaxation is made, one would expect to obtain
upper bounds, but this is not always correct. Also, when a heuristic algorithm is used for solving
the lower level problem, the finding of lower bounds would be expected. Again, this is not true in a
general way. Moreover, under both approaches, there will be solutions that become an overestimation
or underestimation of the bilevel optimal solution. Despite the impossibility of making claims about
the classification of bounds, the BCFLP needs to be solved in an efficient way. The results presented
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in Section 6.2.6 show the inefficiency of solving the BCFLP by using the reformulation R1 for all
instances. Therefore, the design of a refined heuristic algorithm, able to solve large-size instances of
the problem in an efficient manner, is needed. The proposed algorithm is based in the cross entropy
metaheuristic for seeking leader’s solutions and uses three different schemes for solving the follower’s
problem -the detailed description is presented in the next section.

6.2.5 A cross entropy method for the BCFLP
In this section, three solution procedures are proposed. The first obtains bilevel feasible solutions,
while the other two obtain bilevel attainable ones. The main differences between the three proposed
procedures are based on the strategy for solving the GAP that appears in the lower level. For dealing
with the upper level problem, a Cross Entropy heuristic is developed.

6.2.5.1 Cross Entropy method

Cross Entropy (CE) (see [35], [79], [119]) is a method developed for the estimation of rare-event prob-
abilities. Then, due to its potential, CE is adapted for solving combinatorial optimization problems.
CE is a two-phase iterative method in which a random sample is generated by a specified mechanism;
then, the parameters of the generator mechanism are updated considering the data sample results to
improve the sample in the next iteration.

Within the CE method, an efficient or optimal solution for the lower level problem must be obtained.
To achieve this, three alternatives are considered. The first two methods follow GRASP principles; one
constructs solutions based only on customer’s preferences, and the second one considers a generalized
regret measure. The third method uses CPLEX for getting the exact solution, in instances when this is
possible.

GRASP is a multi-start procedure composed of two phases: (i) construction and (ii) improvement. In
each iteration, GRASP looks forward to construct a solution in a greedy randomized adaptive fashion
by using a Restricted Candidate List (RCL). Then, the current solution enters into the improvement
phase for conducting a local search keeping the best solution found (see [50]). Within the proposed al-
gorithm, two different construction methods that follow GRASP principles were developed for solving
the lower level problem -customer-facility allocation. The two versions of construction methods differ
from each other in the way the evaluation of a candidate’s contribution is made -the criterion used for
selecting the allocation when a solution is being created. The first version uses customer preferences,
while in the second one, an adaptation of the generalized regret measure proposed in [105] is consid-
ered. Although the proposed construction methods employ a greedy randomized adaptive component
during construction, they cannot be considered a GRASP because we do not consider the improvement
phase (due to the increase in the required computational time); hence, the efficiency of the methods is
diminished.

In Algorithm 6.2.1, a general pseudocode for the CE proposed is depicted. All the procedures men-
tioned in this procedure will be detailed later in this section.
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Algorithm 6.2.1 Pseudocode of the CE method.
1: procedure CROSS ENTROPY(maxIter, N, d, λ)
2: k ← 1
3: nbIter ← 0
4: t← 0
5: pti ← 0.5 ∀i ∈ I (initial probability)
6: y incumbent← ∅ (incumbent leader’s solution)
7: F ∗ ←∞ (incumbent leader’s objective function value)
8: while (nbIter < maxIter) do
9: while (k ≤ N) do

10: y ← Facilities Location(pt)
11: x← Customers Allocation(y)
12: F ← Evaluate UpperLevel(y, x)
13: Sample obj(k)← F
14: Sample sol(k)← y
15: k ← k + 1
16: end while
17: Sample obj ← sort(Sample obj) (in increasing order)
18: Sample sol← sort(Sample sol) (corresponding with Sample obj)
19: F ← Evaluate UpperLevel(y, x)
20: F incumbent← Sample obj(1)
21: y incumbent← Sample sol(1)
22: qi =

∑n
k=1 y

k
i /d ∀i ∈ I where d denotes the d-th first solutions of Sample sol

23: p
(t+1)
i = λ(qi) + (1− λ)pti ∀i ∈ I

24: if (F incumbent < F ∗) then
25: F ∗ ← F incumbent
26: y∗ ← y incumbent
27: end if
28: nbIter ← nbInter + 1
29: t← t+ 1
30: end while
31: returnF ∗, y∗
32: end procedure

As illustrated in the pseudocode in 6.2.1, for initializing the CE method a set of N leader’s solutions
needs to be constructed. For each of these solutions, the lower level problem is solved and evaluated.
This information is needed for selecting a sample of size d (d < N ), which contains the best solutions
(in terms of quality), and for updating the probabilities given for each potential facility within the con-
struction phase; this procedure is repeated until the maximum number of iterations is reached. The best
solution and its corresponding objective function value found for the leader is stored and is presented
as the algorithm output.

In the following section, the procedure for locating facilities (constructing leader’s solutions) is de-
tailed.
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6.2.5.2 Facility Location Procedure

Each iteration starts with the decision of whether to locate a facility. In an iteration t, this decision is
conditioned by a probability value pti, ∀i ∈ I . Furthermore, binary variables yi are taken as indepen-
dent Bernoulli random variables. At the beginning of the procedure, the initial probabilities are set to
p0
i = 0.5,∀i ∈ I , which indicates all the facilities have the same chances to be located. As the proce-

dure goes forward, these probabilities will update favoring the most convenient facilities according to
the information provided by the previously constructed samples. For conducting this, the value qi, the
proportion of times that facility is located among the n best solutions, is computed. Finally, for each
facility i ∈ I , the probabilities are updated in the following manner: p(t+1)

i = λ(qi)+(1−λ)pti, where
λ indicates a smoothing parameter.

Every constructed set of located facilities is inspected to assure feasibility; that is, the sum of the
capacities associated with the located facilities must be enough to cover the customers’ total demand.
Hence, once a feasible set of located facilities is obtained, allocation of customers based on their
preferences is performed.

6.2.5.3 Customers Allocation Procedure

As mentioned above, three strategies for allocating customers to facilities (solving the follower’s prob-
lem) were implemented: Optimizer, Construction-p, and Construction-r. In the first, the lower level
problem is solved through a commercial software optimizer. Then, in the Construction-p, a greedy
function for measuring the candidates based on the customer’ preferences is considered. Finally,
Construction-r is a variant of the latter. The main difference is that a regret cost is measured for
comparing the impact of allocating a customer to its second-most preferred facility instead of the first
one.

Optimizer

For this procedure, CPLEX was used to solve the lower level problem for each leader’s decision;
bilevel feasible solutions resulted under this approach. For the tested instances, the optimizer always
reached the optimal solution as long as the leader’s solution was feasible in terms of capacity con-
straints.

Construction-p

To initialize this procedure, the best preference value for each non-allocated customer towards the
located facilities is identified. Then, considering these preferences, a restricted candidate list (RCL1)
is created with the facility-customer pairs associated to the α% best preferences values that can be
satisfied by the available capacity. Therefore, one facility-customer pair is randomly selected from
RCL1. In each iteration, the procedure adds to the solution a feasible allocation of a customer to a
facility.After each allocation, the available capacity of the facility is updated and the procedure contin-
ues until all customers are allocated to a located facility. A pseudocode of this procedure is displayed
in Algorithm 6.2.2.
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Algorithm 6.2.2 Pseudocode of the Construction-p procedure.
1: procedure CONSTRUCTION-P(α, y)
2: A← {1, 2, ...,m} (set of customers that needs to be allocated)
3: L = {i ∈ I : yi = 1} (set of located facilities)
4: d accumi ← 0,∀i ∈ L (accumulative demand for the located facilities)
5: Gj ← {gij : i ∈ L},∀j ∈ J (set of preferences for the located facilities)
6: x← ∅
7: while (A 6= ∅) do
8: Randomly selects j ∈ A
9: cmax ← argmax{Gj}

10: cmin ← argmin{Gj}
11: RCL1 ← {i ∈ L : gij ≥ cmax − α(cmax − cmin), dj + d accumi ≤ bi}
12: Randomly selects i ∈ RCL1

13: x← {(i, j)} ∪ x
14: A← A \ {j}
15: d accumi ← d accumi + dj
16: end while
17: returnx
18: end procedure

Construction-r

As mentioned before, this procedure only differs from Construction-p by the function used for mea-
suring the convenience of including a facility-customer pair in the solution under construction. This
function is inspired in a generalized regret measure that intends to simulate the scenario when a cus-
tomer is allocated to its second-most preferred facility instead of to the first one. For example, consider
Figure 6.9, the regret value for the customer ĵ would be 4 -since its two greater preferences are 10 and
6, respectively-, that is, R(ĵ) = 4. On the other hand, for the customer j̃, R(j̃) = 6, which implies it
would be more convenient to allocate the customer j̃ to its most preferred facility. If the allocation is
not made at this step, there is a risk that in further iterations the most preferred facility does not have
the capacity to serve him.

Figure 6.9: Illustrative example of the regret measure.
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As described in the illustrative example, the two best preference values for each non-allocated cus-
tomers to the located facilities are identified. Then, a restricted candidate list (RCL2) is created using
the difference between these two best values for each customer and considering the available capacity
in the facilities. Therefore, RCL2 includes customers with the α% greatest difference values. From
RCL2, a customer is randomly selected and assigned to its most preferred feasible facility. Available
capacity for this facility is updated, and the procedure continues until every customer is allocated to a
facility. The corresponding pseudocode of this procedure is depicted in Algorithm 6.2.3.

Algorithm 6.2.3 Pseudocode of the Construction-r procedure.
1: procedure CONSTRUCTION-R(α, y)
2: A← {1, 2, ...,m} (set of customers that needs to be allocated)
3: L = {i ∈ I : yi = 1} (set of located facilities)
4: x← ∅
5: d accumi ← 0,∀i ∈ L (accumulative demand for the located facilities)
6: G1

j ← {gij : i ∈ L},∀j ∈ J (set of the most preferred preferences)
7: G2

j ← {gij : i ∈ L},∀j ∈ J (set of the second most preferred preferences)
8: Rj ← {G1

j − G2
j : i1, i2 ∈ L},∀j ∈ J (set of the differences between these two best

preferences)
9: while (A 6= ∅) do

10: Randomly selects j ∈ A
11: cmax ← argmax{Rj}
12: cmin ← argmin{Rj}
13: RCL2 ← {i ∈ L : gij ≥ cmax − α(cmax − cmin), dj + d accumi ≤ bi}
14: Randomly selects i ∈ RCL2

15: x← {(i, j)} ∪ x
16: A← A \ {j}
17: d accumi ← d accumi + dj
18: end while
19: returnx
20: end procedure

6.2.6 Computational experimentation
In this section, the results obtained from the computational experimentation are discussed. First, the
bounds presented in Section 6.2.3 were obtained by an optimizer. Second, the three versions of the
proposed CE method were tested. Finally, an analysis from the obtained results and a discussion about
the ε value introduced in Section 6.2.2 is presented.

6.2.6.1 Computational environment and instance’s description

A workstation with an Intel (R) Core processor with 32GB of RAM was used for conducting the com-
putational experimentation. The code was implemented in Visual Studio 2012 in C++ language. The
optimizer used for obtaining the bounds and for solving the lower level problem in one of the CE’s
schemes was CPLEX 12.6.1.
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The instances were adapted from the Capacitated warehouse location set contained in the well-known
Beasley’s OR library; these instances include the number of facilities (m) and the number of customers
(n). For each customer, its demand and the cost for allocating it to each facility is given. For each
facility, the capacity and the fixed location cost are included; the preferences are missing, however. To
deal with this issue, we implemented the method provided in [26], which generates random preferences
but maintains some rationality with respect to their allocation costs.

We implement an enumerative algorithm for comparing the values given by the reformulation used
for obtaining classical lower bounds. The lower level is optimally solved by an optimizer for each
upper level’s decision. By doing this, bilevel feasible solutions are obtained and the optimal solution
is guaranteed.

6.2.6.2 Enumerative algorithm

Due to the limitations of the enumerative algorithm, we decided to test only with some small size in-
stances. For example, for the 16×50 instances, there are only 26,333 feasible solutions; but, for a set
of dimensions 25×50 there are 33,554,431 feasible solutions. Moreover, the lower level is optimally
solved for each of these solutions. This clearly limits the capability of the enumerative algorithm for
solving medium or large size instances. Then, we decided to prove some instances of size 15×30 .
Also, the aim of this work is to measure the efficiency of the proposed bounds and for doing that, the
optimal solution of the tested instances is required.

Table 6.4: Results obtained from the computational experimentation with homogeneous pro-
duction capacity.

Enumerative algorithm Classical lower bounds
Instance Optimum Time (s) Bound Time (s) Gap (%)
16×50-41 1,518,736 1,697.72 964,895 1.02 36.47
16×50-42 1,640,170 1,072.51 1,016,155 1.11 38.05
16×50-43 1,599,687 907.21 1,064,678 2.20 33.44
16×50-44 1,648,478 1,001.80 1,129,726 7.19 31.47
16×50-51 1,416,440 1,186.43 1,014,038 1.56 28.41
16×50-61 1,307,693 1,230.22 932,616 0.64 28.68
16×50-62 1,305,170 1,288.15 977,799 0.56 25.08
16×50-63 1,322,223 1,234.80 1,010,808 1.02 23.55
16×50-64 1,405,077 1,260.28 1,042,331 2.02 25.82

From Table 6.4, it can be appreciated that -as it is expected- the enumerative algorithm consumes a
significant amount of time for solving small size instances. The scheme for obtaining the classical
lower bounds is very fast. However, the optimality gaps are very large -between 23.55% and 38%-.
Furthermore, when considering instances with different structure, the behavior very similar -see Table
6.5-.

Figure 6.10 in a logarithmic scale- the required time for the two considered schemes is shown. The find-
ings are very intuitive, that is, the enumerative algorithm consumes more time than the other method.
The first reformulation, which gives poor quality bounds, is the less time consuming for the first set of
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Table 6.5: Results obtained from the computational experimentation with heterogeneous pro-
duction capacity.

Enumerative algorithm Classical lower bounds
Instance Optimum Time (s) Bound Time (s) Gap (%)
15×30-p7 5,102 5,705.18 4,366 8.14 14.43
15×30-p8 8,908 5,022.95 7,926 7.50 11.02
15×30-p9 3,363 2,235.52 2,480 3.33 26.26

15×30-p10 24,012 3,076.26 23,144 7.63 3.61
15×30-p12 4,417 6,186.57 3,711 11.14 15.98
15×30-p13 4,569 4,837.69 3,760 9.67 17.71
15×30-p14 6,700 6,026.05 5,965 6.92 10.97
15×30-p15 8,909 1,079.64 7,816 5.94 12.27
15×30-p16 12,262 1,024.27 11,543 6.39 5.86
15×30-p17 10,700 6,299.82 9,884 5.97 7.63

instances.

Figure 6.10: Consumed time (in seconds).

Given that the results obtained with the reformulation provides lower bound of poor quality, and that
computational effort of the exact procedure is significantly large, we decided not to test the other in-
stances with these two procedures.

Therefore, the instances were tested with the reformulations R1 and R2 of the relaxed BCFLP, and the
cross entropy method. the constructed set contains 49 instances classified into four subsets, as summa-
rized in Table 6.6.
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Table 6.6: Classification of instances.
Instance label # Instances m n

Set A 13 16 50
Set B 12 25 50
Set C 12 50 50
Set D 12 100 1000

6.2.6.3 Computing a bound

The bound given by the reformulations of the bilevel model based on the relaxation of the follower’s
variables is computed. Remembering that R1 is given by equations (6.70)-(6.81) and R2 is defined by
(6.88)-(6.100), both reformulations reach the same bound. In Tables 6.7 and 6.8, the leader’s objective
function reached by CPLEX and the respective time consumed (in seconds) by both reformulations are
presented when solving Sets A and B. For these tests, a maximum time limit of 3 hours was set as a
stopping criterion.

Table 6.7: Bounds obtained from the relaxation of the set A.
Instance Bound Time R1 Time R2
16x50-41 1512700.00 196.94 322.92
16x50-42 1737580.00 197.77 930.63
16x50-43 1604880.00 86.28 671.41
16x50-44 1675090.00 89.11 1141.61
16x50-51 1437680.00 49.41 1768.69
16x50-61 1289980.00 15.39 55.78
16x50-62 1309990.00 17.16 46.66
16x50-63 1322760.00 25.83 118.42
16x50-64 1385040.00 30.72 32.98
16x50-71 1248140.00 15.22 4.72
16x50-72 1248140.00 5.58 5.39
16x50-73 1248140.00 5.11 3.58
16x50-74 1248140.00 2.47 6.00

Both reformulations are significantly affected by the increase in the size of the instance. Moreover, R1
and R2 were incapable of obtaining bounds for sets C and D due to memory limitations. Therefore, this
scheme for obtaining bounds can only be used on limited size instances. Later, we will compare the
quality of the bounds against bilevel feasible solutions. For instances 16×50-71 to 16×50-74 (see 6.7),
the obtained bound is the same, but this is due to the particular instance’ structure; the only difference
among them is that fixed costs and customer preferences are modified -this is the reason that leads to
the same value. This structure remains in instances 25×50-101 to 25×50-104 (see 6.8).

6.2.6.4 The results obtained by the Cross Entropy method

The results obtained from the three different versions of the CE method proposed in Section 6.2.5 are
presented. The use of CPLEX for solving the lower level problem yields bilevel feasible solutions,
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Table 6.8: Bounds obtained from the relaxation of the set B.
Instance Bound Time R1 Time R2
25x50-81 1418770.00 10800.00 10800.00
25x50-82 1419720.00 10800.00 10800.00
25x50-83 1416500.00 10800.00 10800.00
25x50-84 1483020.00 10800.00 10800.00
25x50-91 1291310.00 8592.06 10800.00
25x50-92 1319430.00 4815.75 10800.00
25x50-93 1329850.00 976.80 10800.00
25x50-94 1312320.00 816.98 10800.00

25x50-101 1248140.00 567.25 55.48
25x50-102 1248140.00 615.67 33.38
25x50-103 1248140.00 432.86 64.42
25x50-104 1248140.00 98.53 25.31

while the use of the construction methods detailed in subsection 6.2.5.3 provides bilevel attainable so-
lutions (introduced in Section 6.2.2).

Before conducting the experimentation, the parameters’ calibration was done. The parameters involved
in the CE are as follows:
1. the size of the set of solutions (N);
2. the number of elite solutions selected from the set of N solutions (d);
3. the smoothing parameter in the CE (λ);
4. the allowed degree of randomness for creating the RCL in the construction methods (α); and
5. the maximum number of iterations (maxIter).

For calibration purposes, we used CALIBRA, a procedure created for tuning parameters in heuristic-
based algorithms. This automated procedure combines Taguchi’s design of experiments and a local
search procedure. For more detailed information, see [2]. Hence, as input to that procedure we se-
lected some values or ranges for varying the parameters. For N , three values were considered: n,
m + n and mn. For d, we selected 20% and 50% of the size of N . The λ used in the CE framework
and the α considered in the construction methods were varied from the interval [0, 1] with increments
of 0.1. Finally, three options for maxIter were taken -50, 75 and 100. The parameter setting based on
the CALIBRA results are shown in Table 6.9.

Table 6.9: Parameter setting.
Instance label N d λ α maxIter

Set A m+ n 20% 0.8 0.9 75
Set B m+ n 20% 0.8 0.9 75
Set C m+ n 20% 0.2 0.3 100
Set D n 20% 0.2 0.3 100

Once the parameters were calibrated for each set of instances, the computational experimentation was
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conducted. Due to the randomness considered in the proposed algorithm, 10 replicates for each in-
stance were run. The average of the results are displayed in Tables 6.10-6.13, in which three main
blocks can be observed, each of them corresponding to the schemes proposed for solving the lower
level problem. The block for the results obtained by the Optimizer scheme indicates the following:
the “Best” (“Worst”) column contains the best (worst) leader’s objective function value, the “Aver-
age” column displays the mean value from the final set of solutions obtained by the CE method,
and the “Time” column shows the required time (in seconds) for solving the instance. Then, for
the other two blocks, Construction-p and Construction-r, the average deviations for the Best and
Average values are shown. The formula used for computing the average deviation is the following:
value = 100 ∗ ((Construction−Optimizer))

Optimizer . Furthermore, the required time is shown for each scheme.

Table 6.10: Results obtained by the CE method over the set A.
Optimizer Construction-p Construction-r

Instance Best Average Worst Time Best Average Worst Time Best Average Worst Time
16×50-41 1518740 1518740 1544660 191.26 0.66 0.85 0.29 2.22 -0.90 -0.77 2.81 2.53
16×50-42 1643020 1643020 1697990 217.63 3.22 3.31 5.06 2.10 -3.25 -1.09 -2.14 2.53
16×50-43 1599690 1599690 1701190 183.52 4.66 8.69 9.78 2.14 -7.65 -6.45 -1.85 2.62
16×50-44 1640690 1640690 1690210 223.63 2.72 3.24 0.74 2.19 -0.76 -0.04 -1.28 2.49
16×50-51 1416440 1416440 1467310 116.34 -0.22 -0.22 -1.44 1.71 0.71 0.80 0.69 2.02
16×50-61 1285510 1285510 1307930 92.81 -0.02 -0.02 -0.08 1.57 -0.52 -0.52 -0.16 1.98
16×50-62 1316000 1316000 1328290 93.24 -1.01 -1.01 0.80 1.55 -0.23 -0.23 -0.28 1.89
16×50-63 1322760 1322760 1391930 90.22 0.00 0.00 -0.92 1.61 0.00 0.00 -1.73 2.00
16×50-64 1379490 1379490 1393190 91.31 1.09 1.09 5.33 1.55 0.88 0.88 0.39 1.92
16×50-71 1310310 1327679 1358650 23.84 -4.74 -0.65 -1.59 1.64 0.00 0.00 0.74 2.06
16×50-72 1248140 1248140 1387340 23.75 0.00 0.00 0.00 1.52 3.71 3.71 0.00 1.85
16×50-73 1248140 1248140 1338330 23.88 0.00 0.63 0.00 1.54 6.28 6.28 0.00 1.90
16×50-74 1248140 1248140 1309700 23.51 0.00 0.00 -4.70 1.46 4.93 4.93 3.32 1.75

Table 6.11: Results obtained by the CE method over the set B.
Optimizer Construction-p Construction-r

Instance Best Average Worst Time Best Average Worst Time Best Average Worst Time
25×50-81 1285780 1332652 1420690 187.07 8.25 7.53 9.64 3.20 3.50 0.94 1.20 3.77
25×50-82 1317690 1321149 1464700 200.49 1.41 1.15 -2.53 3.11 2.79 4.58 -1.08 3.70
25×50-83 1386660 1404591 1460210 172.15 -0.43 -1.00 -1.70 3.12 -0.03 -0.32 2.29 3.70
25×50-84 1296910 1383558 1533670 183.38 3.13 6.68 1.28 3.15 -0.95 -1.70 0.79 3.72
25×50-91 1245750 1334335 1406920 105.23 -1.10 -2.98 0.97 2.77 -0.02 -0.19 0.14 3.43
25×50-92 1250750 1260838 1297780 115.01 0.97 0.18 0.09 2.73 0.02 0.25 -0.32 3.25
25×50-93 1251590 1267030 1386590 121.78 2.62 7.29 9.72 2.76 0.52 2.09 8.43 3.22
25×50-94 1235870 1237775 1347250 123.47 8.73 8.57 3.15 2.61 1.35 1.23 -0.70 3.10
25×50-101 1248140 1277096 1436970 33.58 0.00 0.23 -3.37 2.60 4.48 2.28 -3.37 3.01
25×50-102 1248140 1292498 1515950 33.61 0.00 2.37 -5.81 2.58 4.35 2.24 -9.72 3.14
25×50-103 1284260 1288151 1375480 33.60 0.00 -0.06 -3.45 2.70 0.00 1.15 0.50 3.17
25×50-104 1248140 1248140 1500280 33.61 0.00 0.00 1.22 2.48 4.85 4.85 -10.00 2.96

Tables 6.10-6.13 show positive and negative values appear in the Construction-p and Construction-r
blocks; bilevel attainable solutions do not guarantee to be bilevel feasible. On the contrary, solutions
obtained in the Optimizer block are bilevel feasible.

Some findings are stated next. For the set A (see Table 6.10), the average time for reaching bilevel
feasible solutions is 107.3 seconds per instance. Regarding the bilevel attainable solutions within the
Construction-p framework, the average deviations vary from -4.74 to 4.6, taking 1.75 seconds. This
procedure found bilevel feasible solutions in four out of thirteen instances. On the other hand, the
Construction-r scheme shows a similar performance with a range from -7.65 to 6.28 requiring 2.12
seconds for solving the problem and obtaining feasible ones in two out of thirteen instances. Further-
more, the worst values in Construction-r vary from -4.70 to 9.78, and in Construction-p between -2.14
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Table 6.12: Results obtained by the CE method over the set C.
Optimizer Construction-p Construction-r

Instance Best Average Worst Time Best Average Worst Time Best Average Worst Time
50×50-111 1622350 1653775 1746090 162.95 0.45 0.18 0.47 8.70 -0.93 -0.45 -0.07 10.46
50×50-112 1508580 1548539 1694920 170.67 2.18 3.89 1.17 8.66 1.05 1.85 -1.49 10.26
50×50-113 1785740 1858121 1975270 164.12 -2.44 -3.15 -2.15 8.52 -3.69 -1.49 2.02 10.37
50×50-114 1730630 1903997 2111150 168.11 6.09 1.58 3.55 8.49 0.05 -2.79 -0.53 10.11
50×50-121 1527760 1666469 1823710 153.51 4.19 0.58 0.68 8.37 9.42 1.31 -1.18 10.16
50×50-122 1582400 1787738 2010260 144.00 1.13 1.77 -0.13 8.30 7.05 1.43 -0.79 10.05
50×50-123 1634770 1677889 1794690 144.32 1.14 -0.18 0.59 8.36 -1.44 -1.03 -2.58 10.21
50×50-124 1748210 1839056 2053000 149.08 1.27 -0.01 -2.23 8.27 -1.21 -0.41 -1.93 10.10
50×50-131 1504200 1547155 1676960 55.88 -2.14 -0.77 -0.27 8.32 -0.65 -1.79 -0.25 10.13
50×50-132 1711810 1764714 1849340 56.02 -5.24 -1.79 0.56 8.31 -3.39 -2.99 0.15 10.04
50×50-133 1574220 1660547 1784690 55.98 3.00 2.28 1.68 8.22 4.42 1.93 1.43 9.98
50×50-134 1600350 1720798 1882520 55.92 8.14 3.89 0.66 8.24 7.98 2.56 0.75 10.11

Table 6.13: Results obtained by the CE method over the set D.
Optimizer Construction-p Construction-r

Instance Best Average Worst Time Best Average Worst Time Best Average Worst Time
100×1000-a1 80822500 89091800 99840400 1055.65 -1.79 -4.63 -6.99 77.39 -10.40 -4.69 -0.95 103.38
100×1000-a2 75313600 88666890 97543600 1064.32 1.82 -1.03 -1.13 80.26 1.32 -2.38 -1.46 103.25
100×1000-a3 69542400 92042730 98428800 1035.64 7.08 -1.72 -2.16 77.62 9.71 -3.55 1.02 103.48
100×1000-a4 79891300 87541290 98104200 1014.37 -0.25 -1.10 -0.64 80.87 3.48 5.24 0.26 105.33
100×1000-b1 55453300 57340260 59605400 1056.32 -2.11 0.91 1.80 80.93 -0.97 0.14 -1.86 106.26
100×1000-b2 53409500 57153520 61518400 1011.68 -2.98 -0.36 -5.21 79.80 2.31 0.98 -3.06 107.30
100×1000-b3 54476400 56782440 58724700 1019.56 -1.40 -1.28 1.53 82.35 1.89 0.36 -0.03 106.87
100×1000-b4 55340300 57401730 58940000 1028.82 -0.31 0.19 2.98 81.85 -2.43 -0.48 0.86 106.82
100×1000-c1 47124900 48564430 49939500 1037.25 0.16 0.02 1.89 80.41 -0.82 0.38 0.05 106.81
100×1000-c2 47383200 49082320 50170300 1036.41 2.24 -1.13 -0.16 81.81 -1.77 -1.15 -0.69 107.33
100×1000-c3 45506800 49002530 51167800 1027.08 1.52 -0.40 -0.82 82.11 3.94 -0.09 -0.20 107.67
100×1000-c4 48343700 49439660 50862700 1014.64 -0.38 -0.01 -0.65 79.83 -4.05 -0.85 -0.03 107.39

and 3.32.

From Tables 6.11 and 6.12, it appears the time was slightly increased (as expected). It took 111.92
and 123.38 seconds on average for solving the sets B and C under the Optimizer scheme, respectively.
Both constructions procedures demand similar time. The Construction-p procedure reaches the best
feasible solution, however in four out of twelve instances for set B. In addition, the higher values of
the average deviations are not greater than 10.00 and the worst value varies between -10.00 and 9.64.
For the set D (Table 6.13), the behavior of the CE method is maintained despite a significant increase
in the number of customers. The quality of the bilevel attainable solutions is not compromised, and
the required time is still reasonable. On the contrary, obtaining bilevel feasible solutions seems to be a
demanding task. This fact confirms an accurate alternative manner for solving the problem is useful.

In Figure 6.11, the required average time for solving an instance by each scheme is shown. A loga-
rithmic scale was used for improving the readability. Both approaches employed for obtaining bilevel
attainable solutions significantly reduce the computational time needed for obtaining bilevel feasible
ones. In the next subsection, an analysis of the efficiency of bilevel attainable solutions is presented.

6.2.6.5 Analyzing the efficiency of the bilevel attainable solutions

In Section 6.2.2, bilevel attainable solutions were defined as solutions in which the lower level problem
has not been solved in an optimal way. Good lower level solutions are desired, however, to have an ef-
ficient set of bounds. Hence, a small value of ε introduced in Definition 3 is needed for approximating
accurately the inducible region; it represents the allowed level for not reaching the optimal value.
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Figure 6.11: Computational time required for the three schemes of the CE method.

In Figure 6.12, for 49 instances, the average deviations of the bilevel attainable solutions with respect
to the bilevel feasible ones are plotted. Suppose that 0.05 is the value set for ε. Therefore, for the
Construction-p, in 43 out of 49 instances the attainable solutions are within the allowed range. For the
Construction-r, a similar performance is reported with 42 out of 49 instances in which the attainable
solutions are accepted. The latter observations confirm the construction procedures proposed as alter-
native methods for dealing with the lower level problem are very good options when bilevel feasible
solutions cannot be obtained.

Figure 6.12: Behavior of the attainable solutions against feasible ones.
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Finally, to conclude the analysis of the computational results, the quality of the bounds obtained by R1
and R2 are compared with the best bilevel feasible solutions reached by the CE under the Optimizer
approach. The leader’s objective function values for sets A and B are plotted in Figure 6.13. The
results support the discussion presented in Section 6.2.4, in which the identification of lower or upper
bounds could not be stated for this problem. In Figure 6.13, it appears that sometimes the value for the
bound is higher than the value corresponding to the bilevel feasible solutions and in other occasions it
is lower.

Figure 6.13: Comparing the bounds.



Chapter 7

Conclusions and Further Research
Directions

In this doctoral thesis we studied several bilevel facility location problems with customer preferences.
First, we analyzed the case without capacity restrictions. A hybrid evolutionary algorithm (EA) with
path relinking (PR) for solving the uncapacitated facility location problem (UFLBP) with customer
preferences is proposed. A computational analysis which involves three approaches for dealing with
preference orderings in the lower level problem, is presented. First the EA is implemented in the same
manner as it was proposed in [22]. Then, the hybrid EA+PR is developed for exploiting the bilevel
structure of the problem. Finally, a variant of the hybrid named EA+PRw was tested. In the vari-
ant considered, the lower level problem is not solved at each iteration of path relinking. According
to computational experimentation, it seems that the computational time required to solve the lower
level is very short. For example, as we shown in section 3.1.3, EA+PR has a better performance than
EA+PRw; and regarding with the computational time, there is an insignificant difference between both
algorithms. However, if solving the lower level requires an excessive computational time, then it will
be convenient not to solve the lower level for each leader’s solution. Thus, semi-feasible solutions
will be recommended for guiding the search. As a result of the latter approach, it is observed that the
quality of the solutions would not improve significantly, in spite of that the computational time will de-
crease noticeably. Hence, the importance of having alternative options for optimally solving the lower
level problem instead of using commercial optimization software is remarked. Nevertheless, this issue
depends on the structure of the problem being studied.

Future research directions could involve the advantage of some particular properties existing in the
lower level that may help to sort this problem. That is to avoid a blind search in the lower level,
because of the use of semi-feasible solutions due to the fact that the lower level is not solved in sev-
eral consecutive iterations in the methodology selected. For example, recently in [127] an attempt for
approximating the lower level optimal solutions without explicitly solving it is presented. The approx-
imation consists in create quadratic functions based on a set of initial bilevel feasible solutions. Then,
for an upper level solution, the lower level reaction is approximated by using those functions. After a
fixed number of steps following this approach, the lower level is optimally solved for each upper level
solution. By doing this, bilevel feasible solutions are obtained replacing the bilevel semi-feasible ones.
These ideas can be used in the EA+PRw for improving its performance.

Another option is to apply a decomposition approach based on the primal and dual relationships of the
problem as proposed in [94], that describes how it is applied for obtaining high quality solutions in a

118
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short term generation planning. In that problem, the computational effort is increased in an exponential
manner as the number of the components involved in the problem also augments. Hence, the decom-
position approach shown that it is a good alternative for dealing with high complexity problems.

Also, we explored a variant of the p-median problem. This variant is based on the assumption that cus-
tomers are free to choose the located facility that will serve them (p-median BPO). In this problem, two
different decision makers consider a predefined hierarchy. The first decision maker (leader) chooses
which facilities are to be located, and the second one (follower) controls allocation of customers to the
located facilities. The latter decision is based on the assumption that the customers have an ordered list
of preferences associated with all possible facilities and they try to optimize those preferences. Then,
the leader locates the facilities that minimize distribution costs.

To solve the problem, two single-level reformulations were presented. The first one follows a well-
known technique for reformulating bilevel problems based on the primal-dual relationships of the
follower’s problem. The second one is based on closest assignment constraints that express consid-
eration of the preferences. Also, an adaptation of a single-level reformulation in the literature for the
SPLPO (which a similar problem to the p-median BPO) is made. Numerical results show that the
use of optimization software for solving any of the reformulations is inefficient for medium and large-
size instances. Furthermore, a hybrid heuristic procedure that combines scatter search and GRASP
for leader’s solutions considering the optimal response of the follower (Stackelberg’s equilibrium) was
developed. The algorithm’s efficiency was validated using the same set of instances used for the re-
formulations and via a comparison against other heuristic algorithms (a scatter search with random
construction, a scatter search with greedy construction, and a genetic algorithm). The obtained results
indicate that the performance of the proposed heuristic is very good in terms of the value of the leader’s
objective function and the required time. The algorithm reaches the optimal solution or the best known
values within a short computational time and obtains low average percent deviation values for all in-
stances. Moreover, it can be seen from the reported results that the hybrid heuristic’s performance does
not depend on the instance size. It is well known that the quality of the solution is directly related with
the time that the algorithm is executed (see [87]), but the hybrid heuristic reported very good results in
both criteria.

Further research direction may be to take advantage of the bilevel structure of the problem and consider
an optimality condition decomposition approach, as the one proposed in [63]. The latter approach is
suitable when a decomposable form could be find in a specific problem involving complexity con-
straints. In this case, we have an optimization problem within the constraints under a decomposable
structure. Other decomposition approaches have been applied for solving bilevel problems (see, [141],
[121], [110] and [53]).

Furthermore, we proposed for the first time in the literature a maximal covering problem that considers
customer preferences (MCLP). The problem considers two decision levels, one associated with facil-
ities location, and the other related to allocation of customers to opened facilities. The upper level
maximizes the demand covered, while the lower level maximizes customer preferences. We propose a
genetic algorithm (GA) to find good quality lower bounds for the problem. The algorithm is tested with
a set of randomly generated instances. To evaluate the proposed algorithm, we present two single-level
reformulations of the bilevel problem. Both reformulations are based on the strong duality property
of the follower’s problem. One of the reformulations is based on equalizing the primal and the dual
objective functions of the follower’s problem, and the other introduces in the problem the comple-
mentary slackness conditions. Since the upper bounds of the second reformulation are tighter than the
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upper bounds of the first one, it is used to evaluate the quality of the solutions obtained by the GA. The
reformulation was executed using the commercial software CPLEX with a three-hour time limit.

The performance of the proposed GA depends largely in a proper selection of the algorithm param-
eters. The algorithm requires to determine the values for three parameters: population size, number
of generations, and probability of selecting the crossover operator. To set the best possible values,
a calibration of these parameters was conducted. This calibration was done through a full factorial
design with predefined values for each parameter. Tests results showed that populations of 100 and
200 chromosomes were adequate to obtain good quality lower bounds. Finally, comparing quality and
execution times, the population size was set to 100 chromosomes. Then, an analysis of the dominance
among combinations of crossover probabilities and number of generations was done. After this analy-
sis, the best configuration of the parameters was selected for the computational experiment.

The proposed GA was tested with six sets of instances of different sizes. The GA always obtained
lower bounds of very good quality for all sets. The average gap of the GA solutions when compare
to the optimal or best known solution was 0.085%, for medium-size instances, and 0.253% for large-
size instances. The proposed GA, obtained better lower bounds than CPLEX for five instances. With
respect to CPU time, the proposed GA required much less CPU time than CPLEX. It is important to
mention that CPLEX was not able to find the optimal solution for any of the largest-size instances in a
three hour time limit. In general, we observed that the proposed GA is robust, since the worst average
gap never exceeded 1.77%.

To reduce CPU time and improve solutions quality obtained with the two reformulations and the GA
mentioned above, a single-level equivalent model and a hybrid heuristic were presented. The equiva-
lence between these two models was also discussed. Two heuristic algorithms were proposed to obtain
lower bounds to the optimal solution of the problem: a GRASP heuristic and a hybrid GRASP-Tabu
heuristic that replaces the local search phase of the GRASP heuristic with a Tabu search procedure.

The single-level reformulation was solved for all instances using mathematical programming software
(FICO XPRESS) with two purposes: (1) to evaluate the quality of the solutions obtained by the pro-
posed heuristics and (2) to evaluate the efficiency of an exact method as instance size increases.

The heuristic solutions were compared with solutions of the single-level reformulation of the problem.
According to the results of the computational tests, the two proposed heuristics provided good quality
solutions. In 51 out of the 60 test instances, the proposed heuristics found the optimal solution in at
least one of the five executions. In addition, for the remaining nine instances, for which the optimality
of the solutions could not be verified within the three hour time limit using FICO XPRESS, the heuris-
tics provided better lower bounds than those obtained with FICO XPRESS. However, the proposed
GRASP-Tabu hybrid heuristic outperformed the GRASP heuristic because it is more robust without
significantly increasing CPU time. The results indicate that the enumerative effort required by FICO
XPRESS increases considerably as instance size grows. In preliminary tests, for the largest instances,
FICO XPRESS required more than 15 hours. Note that, in the worst case, the time required by the
proposed heuristic never exceeds 250 seconds, thereby demonstrating the efficiency of the proposed
heuristics.

Metaheuristic methods and cutting-plane methods are very useful to design special purpose exact meth-
ods. Metaheuristics can provide high-quality incumbents and primal bounds in Branch & Bound meth-
ods, and cutting-plane methods improve dual bounds. Together, they might reduce the enumerative
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effort of an exact method. A future direction of this research can be the combination of heuristics
and cutting planes for the design of an exact method for the maximal covering location problem with
customer preference ordering. Another future research direction can be to consider heuristic methods
for the bilevel formulation of the problem based on a two-player, two-stage strategic game with perfect
information, similar to the ones proposed in [118].

Another extension of the problem that we investigated is the capacitated version. First, we studied
the problem when demand is unitary (CFLBP). Then, we exploited the properties of the lower level to
solve it to optimality, this is a transportation problem. We developed a reformulation of the problem
and proposed a genetic algorithm where of the lower level problem is solved with simplex method of
the transportation problem. Numerical results showed that the genetic algorithm had a good perfor-
mance.

As short-term future work, we will perform an experiment design in which the probability of crossing
and/or mutation is modified. Also, we analyzed the data and everything seems to indicate that there is
no effect caused by the seeds. As the statistical analysis can be more complex due to lack of indepen-
dence if the initial population is fixed, then the initial population will be created each time in the final
experimentation. On the other hand, we intuit that preferences influence calculation times and target
value. So we have thought that two groups of problems can be considered. The first group would be the
current problems, in which the preferences are different for each problem because they are generated
individually. The second group, to respect the idea of Holmberg, we will choose a set of preferences
in each block of problems with equal costs.

Furthermore, the behavior of the second level decision makers can be different depending on the rela-
tionship between the customers. When the second level objective function is defined as the sum of the
preferences we assume that there exists cooperation between customers. They accept a solution which
is “good” for all of them because minimize the sum of preferences. When a facility with capacity to at-
tend three customers is preferred by four customers, it is not clear that the rejected customer will accept
that for the common good. One possibility is to generalize the follower’s problem and to consider a
ordered p-median problem with λ weights which represent different criteria to the compute the optimal
allocation {xij}. Another possibility is to include constraints that determine a unique allocation at the
second level. For instance, a leader’s decision on facility location {yi} would be feasible if and only if
all of the customers are attended by their preferred open facility. In this case, it is interesting to prove
which assumptions on the matrix G = (gij) guarantee that there exists a feasible solution.

Later, we studied the problem with generalized demand (BCFLP). This version of the problem has
not been investigated. The difficulty that this problem presented is because the problem of the lower
level corresponds to the generalized assignment problem that is NP-hard. Due to the high complexity
that exists when dealing with the lower level problem, which is NP-hard, alternative concepts were in-
troduced for proposing efficient solution methods. We introduced bilevel attainable solutions as good
options when obtaining bilevel feasible solutions are very difficult or impossible.

The obtained results from the computational experimentation show that the classical reduction of
bilevel programming problems gives poor quality lower bounds. It is well-known that this behav-
ior takes place because the objective function of the lower level is not being taken into consideration
during the decision process. In order to compare the obtained bounds, an enumerative algorithm was
implemented. Also, a bound was developed from relaxing the integrity conditions in the lower level
problem. The obtained bound cannot be stated as an upper or lower bound, however; a discussion is
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presented in Section 6.2.4.

A Cross Entropy method is proposed for solving the problem under study. Three different approaches
for solving the lower level were considered; the first one obtains bilevel feasible solutions, while the
other two reach bilevel attainable solutions. The good performance of the proposed algorithm and the
suitability of the bilevel attainable solutions is validated from the computational experimentation. For
instance, in [6] a heuristic algorithm is applied to solve a lower level transportation problem. There-
fore, a comparison with bilevel feasible solutions is made, and the unpredictable behavior of the bilevel
problem is shown.

Numerical results show that if a small tolerance value of 5% is considered, then the CE method found
acceptable solutions more than 86% of the time. Moreover, the required time was significantly re-
duced. Hence, bilevel attainable solutions are good alternatives for handling bilevel problems with a
complex lower level problem.

Two straightforward further research directions are identified: (1) analyze techniques that allow deter-
mination of the ε value during the lower level’s resolution; and (2) employ state-of-the-art methods for
solving the lower level problem in an optimal manner to find bilevel feasible solutions for the larger-
size instances. The first is to consider inelastic demands -that is, if a customer is not allocated to his
most preferred facility, his demand will be reduced, affecting the leader’s objective function. In this
case, the follower’s variables denote the fraction of customer’s demand satisfied. Another idea is to add
constraints that balance demand among the located facilities. Finally, we will consider a user’s equilib-
rium in the lower level for simulating the case when all the customers are independent from each other,
but have a constraint that links them all together. The latter can be seen as multiple non-independent
followers.
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[21] CAMACHO-VALLEJO, J., CASAS-RAMÍREZ, M., AND MIRANDA, P. The p-median bilevel
problem under preferences of the customers. In R.Z. Rı́os-Mercado et al. (Eds.), Recent Ad-
vances in Theory, Methods and Practice of Operations Research (pp. 121-127). Monterrey :
UANL-Casa Universitaria del Libro (2014).

[22] CAMACHO-VALLEJO, J., CORDERO-FRANCO, A., AND GONZÁLEZ-RAMÍREZ, R. Solving
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[56] GALVÃO, R. Uncapacitated facility location problems: contributions. Pesquisa Operacional
24, 1 (2004), 7–38.
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[63] GONZÁLEZ, X., RAMÍREZ, J., MARMOLEJO, J., AND CAICEDO, G. Methodology for multi-
area state estimation solved by a decomposition method. Electric Power Systems Research 123,
1 (2015), 92–99.

[64] HAKIMI, S. Optimum locations of switching centers and the absolute centers and medians of a
graph. Operations Research 12, 3 (1964), 450–459.



BIBLIOGRAPHY 131

[65] HAKIMI, S. On locating new facilities in a competitive environment. European Journal of
Operational Research 12, 1 (1983), 29–35.

[66] HANJOUL, P., AND PEETERS, D. Facility location problem with clients’ preference orderings.
Regional Science and Urban Economics 17, 3 (1987), 451–473.

[67] HANSEN, P., KOCHETOV, Y., AND MLADENOVIC, N. Lower bounds for the uncapacitated
facility location problem with user preferences. Preprint G-2004-24, Mart 2004, GERAD-HEC.
Montreal, Canada (2004).

[68] HEJAZI, S., MEMARIANI, A., JAHANSHAHLOO, G., AND SEPEHRI, M. Linear bilevel pro-
gramming solution by genetic algorithm. Computers & Operations Research 29, 1 (2002),
1913–1925.

[69] HOLMBERG, K., RONNQVIST, M., AND YUAN, D. An exact algorithm for the capacitated
facility location problems with single sourcing. European Journal of Operational Research
133, 1 (1999), 544–559.

[70] HOTELLING, H. Stability in competition. The Economic Journal 39, 153 (1929), 4157.
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[117] R ÍOS-MERCADO, R., AND FERNÁNDEZ., E. A reactive grasp for a commercial territory design
problem with multiple balancing requirements. Computers & Operations Research 36, 3 (2009),
755–776.

[118] ROBBINS, M., AND LUNDAY, B. A bilevel formulation of the pediatric vaccine pricing prob-
lem. European Journal of Operational Research 264, 1 (2016), 634–645.

[119] RUBINSTEIN, R. The cross-entropy method for combinatorial and continuous optimization.
Methodology and Computing in Applied Probability (1999), 127–190.

[120] RUSSELL, S., AND NORVIG, P. Artifitial intelligence: A modern approach. New Jersey, United
States: Prentice Hall (2010).

[121] SAHARIDIS, G., AND LERAPETRITOU, M. Resolution method for mixed integer bi-level linear
problems based on decomposition technique. Journal of Global Optimization 44, 1 (2009), 29–
51.
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