
Solving Mixed-Integer Linear and
Nonlinear Network Optimization

Problems by Local Reformulations
and Relaxations

Lösungsmethoden für gemischt-ganzzahlige lineare
und nichtlineare Netzwerkoptimierungsprobleme

basierend auf lokalen Reformulierungen und
Relaxierungen

Der Naturwissenschaftlichen Fakultät

der Friedrich-Alexander-Universität Erlangen-Nürnberg

zur

Erlangung des Doktorgrades Dr. rer. nat.

vorgelegt von

Maximilian Merkert

aus Kaiserslautern

Als Dissertation genehmigt

von der Naturwissenschaftlichen Fakultät

der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 02.11.2017

Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer

Gutachterin: Prof. Dr. Frauke Liers

Gutachter: Prof. Dr. Rüdiger Schultz

Gutachter: Prof. Dr. Christoph Helmberg

Acknowledgements

First of all, I would like to thank my supervisors Frauke Liers and Alexander Martin.
They enabled me to work in a fruitful environment on a number of interesting projects
with various academic and industrial partners. I also wish to express my deepest
gratitude for their guidance not only on mathematical issues but also on more general
topics regarding life in academia.

I am also grateful to Johannes Jahn, Rüdiger Schultz and Christoph Helmberg for
agreeing to be involved in the examination process.

During my time in Erlangen, I have experienced that mathematical research is team
work to a great extend. Therefore, I wish to thank my coauthors Andreas Bärmann,
Thorsten Gellermann, Frauke Liers, Alexander Martin, Nick Mertens, Dennis Micha-
els, Oskar Schneider, Christoph Thurner, Robert Weismantel and Dieter Weninger for
the pleasant and productive collaborations. Moreover, many thanks to all my collea-
gues at FAU Erlangen-Nürnberg and from the Collaborative Research Center TRR 154
for many valuable discussions as well as the supportive atmosphere and many social
events. It was a pleasure to work with you!

Furthermore, I want to thank Nina Gunkelmann, Andreas Bärmann, Lena Hupp,
Nick Mertens, Dennis Michaels and Dieter Weninger for proof-reading parts of this
thesis and helpful remarks.

I gratefully acknowledge the computing resources provided by the group of Mi-
chael Jünger and the technical support by Thomas Lange in Cologne as well as by
Denis Aßmann and Thorsten Gellermann in Erlangen. Further thanks go to Christina
Weber, Beate Kirchner and Gabriele Bittner for administrative aid.

Last but not least, my special thanks go to my parents for all their support ever
since I can remember, and to my partner for her great continual believe in me.

3

Abstract

Since the beginnings of network optimization, the number of use cases has grown
enormously and can be expected to further expand in an increasingly interconnected
world. The wide range of modern applications include optimization tasks on energy
networks, telecommunication networks and in public transport, just to name a few.
Although many traditional network optimization problems are NP-hard in their ba-
sic version, applications pose additional challenges due to more complicated—often
nonlinear—dependencies or the sheer size of the network.

In this thesis, we develop methods that help to cope with those challenges. A com-
mon strategy will be to improve mathematical programming formulations locally by
modeling substructures in an integrated way. The resulting reformulations and relax-
ations will allow for global methods that either solve the problem to exact optimality
or up to a predefined precision.

For large-scale network expansion problems, a solution method is proposed that
is based on iterative aggregation. Starting with an initial aggregation, we solve a se-
quence of network design problems over increasingly fine-grained representations of
the original network. This is done until the whole network is represented sufficiently
well in the sense that an optimal solution to the aggregated problem can easily be ex-
tended to an optimal solution of the original problem. Global optimality is guaranteed
by a subproblem that computationally is less expensive and either proves optimality
or gives an indication of where to refine the representation. In this algorithmic scheme,
locally relaxing the problem allows us to focus on the critical part of the network.

In many optimization problems on transportation networks—especially those ari-
sing from energy applications—the main challenge is connected to the problem’s non-
linear features, arising, for example, from laws of physics. Gas networks represent a
typical example for such a nonlinear network flow setting that we will repeatedly re-
fer to throughout this work. A common and established solution approach consists of
constructing a piecewise linear approximation or relaxation. We study how to streng-
then the resulting mixed-integer programming formulation for specific substructures
in the network. We find effective cutting planes and derive a complete description for
induced paths of arbitrary length—using graph-theoretic arguments related to perfect
graphs.

A generalization of key properties of this special case leads to an abstract defini-
tion in terms of clique problems on a specific type of graph. This abstract setting also
comprises a basic version of the project scheduling problem and still allows us to give
totally unimodular reformulations that are of linear size. Moreover, questions regar-
ding recognizability of this structure will be discussed.

We also discuss the concept of simultaneous convexification that can be seen as a
continuous counterpart to our approach for piecewise linearized problems. The re-
sulting reformulations can improve relaxations employed by general-purpose MINLP
solvers, which usually rely on convexifying nonlinear functions separately.

Computational results demonstrate the practical impact of the methods developed
in this thesis, in many cases using real-world data sets.

5

Zusammenfassung

Seit den Anfängen der Netzwerkoptimierung ist die Zahl der Anwendungsfälle im-
mens gewachsen und angesichts einer zunehmend vernetzten Welt ist ein weiterer
Anstieg zu erwarten. Die Spannbreite moderner Anwendungen umfasst Optimie-
rungsprobleme auf Energienetzen, Telekommunikationsnetzen und Verkehrsnetzen,
um nur einige zu nennen. Auch wenn viele traditionelle Netzwerkoptimierungspro-
bleme bereits in ihrer Grundversion NP-schwer sind, stellen Anwendungen weitere
Anforderungen aufgrund komplexerer - oftmals nichtlinearer - Abhängigkeiten oder
der schieren Größe der zugrunde liegenden Netzwerke.

In dieser Arbeit werden Methoden entwickelt, um mit diesen Herausforderungen
umzugehen. Die wesentliche Strategie wird darin bestehen, mathematische Problem-
formulierungen lokal zu verstärken, indem ausgewählte Substrukturen als Ganzes er-
fasst und modelliert werden. Die resultierenden Reformulierungen und Relaxierun-
gen unterstützen globale Methoden, die entweder exakte oder bis auf eine vordefi-
nierte Genauigkeit optimale Lösungen finden.

Für große Netzausbauprobleme wird eine Lösungsmethodik basierend auf iterati-
ver Aggregation entworfen. Beginnend mit einer Startaggregation lösen wir eine Folge
zunehmend detaillierter Vergröberungen des ursprünglichen Netzwerks, bis die Dar-
stellung hinreichend genau ist, sodass seine Optimallösung leicht auf das ursprüngli-
che Problem übertragen werden kann. Exaktheit wird dabei durch ein Subproblem si-
chergestellt, das entweder Optimalität bestätigt oder Ansatzpunkte zur Verfeinerung
der Darstellung liefert. In diesem Schema erlaubt somit eine lokale Relaxierung die
Fokussierung auf kritische Teile des Netzwerks.

In vielen Optimierungsproblemen auf Transportnetzen, insbesondere für Energie-
träger, besteht die wesentliche Herausforderung in den auftretenden Nichtlinearitä-
ten, die beispielsweise physikalischen Gesetzen geschuldet sind. Gasnetwerke sind
hierfür ein typisches Beispiel, auf das wir uns mehrfach in dieser Arbeit beziehen
werden. Ein etablierter Lösungsansatz besteht in der Konstruktion stückweise line-
arer Approximationen oder Relaxierungen. Es wird untersucht, wie die entstehende
Formulierung für bestimmte Substrukturen verstärkt werden kann. Dabei finden wir
effektive Schnittebenen und leiten mittels graphentheoretischer Argumente eine voll-
ständige Beschreibung für induzierte Pfade her.

Eine Abstraktion wesentlicher Eigenschaften dieses Spezialfalls führt auf Cliquen-
probleme auf bestimmten Graphen. Dieser abstrakte Rahmen umfasst auch eine Ba-
sisversion des Projektplanungsproblems und erlaubt es weiterhin, eine total unimo-
dulare Reformulierung von linearer Größe nachzuweisen. Weiterhin werden Fragen
zur Erkennbarkeit dieser Struktur behandelt.

Außerdem wird das Konzept der simultanen Konvexifizierung diskutiert, das als
kontinuierliches Gegenstück zu unserem Ansatz für stückweise linearisierte Probleme
angesehen werden kann. Die entstehenden Reformulierungen verstärken Relaxierun-
gen, auf die allgemeine MINLP-Löser typischerweise angewiesen sind.

Rechenergebnisse unter Einbeziehung realer Datensätze zeigen den praktischen
Einfluss der in dieser Arbeit entwickelten Methoden.

7

Contents

1 Introduction 17

2 Preliminaries 21
2.1 A Selection of Problems on Transportation Networks 21

2.1.1 The Basic Linear Network Flow problem—Notations 22
2.1.2 Analyzing Infeasibility of the Linear Network Flow Problem . . . 25
2.1.3 The Network Design Problem . 28
2.1.4 Further Extensions of Linear Network Design Problems 29
2.1.5 Gas Network Optimization . 32

2.2 Modeling Piecewise Linear Functions . 37
2.2.1 The Multiple Choice Method . 38
2.2.2 The Convex Combination Method 38
2.2.3 The Incremental Method . 40
2.2.4 Logarithmic Models . 41
2.2.5 Nonseparable Multivariate Functions 42
2.2.6 Piecewise Linear Approximations and Relaxations 42

3 Solving Network Expansion Problems by Iterative Graph Aggregation 45
3.1 What is Aggregation? . 45
3.2 The Single-Commodity Network Expansion Problem 47
3.3 An Iterative Graph Aggregation Scheme 48

3.3.1 Graph Aggregation and the Aggregated Master Problem 48
3.3.2 The Local Subproblems and Graph Disaggregation 50
3.3.3 Correctness of the Algorithm . 51
3.3.4 Relation to Benders Decomposition 52
3.3.5 The Global Subproblem . 54

3.4 Implementation . 56
3.4.1 Sequential Aggregation (SAGG) 57
3.4.2 Integrated Aggregation (IAGG) . 57
3.4.3 The Hybrid Aggregation Algorithm (HAGG) 57
3.4.4 Details of the Implementation . 58

3.5 Computational Results . 59
3.5.1 Benchmark Instances . 60
3.5.2 Computational Results on Scale-Free Networks 60

9

Contents

3.5.3 Disaggregation According to the Global Subproblem 68
3.5.4 Performance on a Real-World Street Network 69

3.6 Extending the Aggregation Scheme to More Complex Network Design
Problems . 70
3.6.1 Multi-Commodity Flow . 70
3.6.2 Routing Costs . 72
3.6.3 Time-Expanded Networks . 73
3.6.4 Multi-Scenario Problems . 74

3.7 Aggregation for Topology Planning Problems on Gas Transportation
Networks . 74

4 Structural Investigations of Piecewise Linearized Flow Problems 81
4.1 The Piecewise-Linearized-Flow Polytope 82
4.2 Polyhedral Studies and a New Class of Perfect Graphs 84

4.2.1 Paths of Length Two . 84
4.2.2 Paths of Arbitrary Length . 88
4.2.3 Transferability to a Formulation According to the Incremental

Method . 98
4.2.4 Junctions . 99

4.3 Computational Results . 102
4.3.1 Separation Algorithms . 102
4.3.2 Benchmark Instances and Test Environment 103
4.3.3 Computational Results on Random Networks 104
4.3.4 Performance on a Real-World Network Topology 107
4.3.5 Continuous Piecewise Linear Objectives and the Incremental For-

mulation . 108
4.4 Further Remarks on Extending Applicability 110

5 Staircase Compatibility 113
5.1 The Clique Problem with Multiple-Choice Constraints 113
5.2 Staircase Compatibility . 115

5.2.1 Two Applications of (CPMCS) . 117
5.3 Efficient MIP-Formulations for (CPMCS) 120
5.4 Computational Results . 128

5.4.1 Computational Results for Energy-Efficient Timetabling 128
5.4.2 Computational Results for Piecewise Linearized Path Flows . . . 134

5.5 Recognizability of Staircase Relations . 136
5.5.1 Complexity of Recognition Problems 136
5.5.2 An MIP formulation for the Recognition Problem with Fixed

Partitioning . 139
5.5.3 On Defining Staircase Graphs . 141

10

Contents

6 Simultaneous Convexification 145
6.1 The Simultaneous Convex Hull of Functions 146
6.2 Application to Gas Network Optimization 149
6.3 Computational Experiments on the Potential of Simultaneous Convexi-

fication . 152
6.4 Further Remarks and Outlook . 155

7 Conclusions and Outlook 157

11

List of Figures

2.1 Piecewise linear approximation and relaxation of the pressure loss al-
ong a pipe . 43

3.1 Illustration of graph aggregation . 49
3.2 Illustration of a subproblem of the aggregation scheme 50
3.3 Disaggregation of a component in case its subproblem is infeasible. . . . 52
3.4 Schematic outline of the aggregation schemes 58
3.5 Performance profile for the three aggregation methods on random scale-

free networks with 100 nodes . 62
3.6 Average number of components in the last iteration of IAGG 63
3.7 Performance profiles for large random scale-free networks, comparing

the three aggregation methods . 65
3.8 Performance profile for all instances from Table 3.3, comparing MIP and

IAGG . 66
3.9 Remaining fraction of nodes in the final aggregation 67
3.10 Illustration: time-expanded graph . 73

4.1 Illustration of the proof of Theorem 4.17 95
4.2 Example illustrations for the proof of Theorem 4.22. 97
4.3 Illustration of the proof of Theorem 4.25 101
4.4 Performance profile for instances on scale-free networks of varying size 105
4.5 Piecewise constant and continuous piecewise linear objective functions . 108

5.1 Illustration of the proof of Lemma 5.5. 117
5.2 Power consumption profile of a timetabling instance before and after

optimization . 129
5.3 Example profiles for an ICE-3 on a 30 minutes journey climbing an in-

clination . 132
5.4 Construction of the compatibility graph for the proof of Theorem 5.19 . 138
5.5 Construction of the compatibility graph for the proof of Theorem 5.20 . 139
5.6 The graph from Example 4.6 is chordal but not a staircase graph 142

6.1 Example junction of degree three . 149
6.2 Test network for the computations in Section 6.3 152

13

List of Tables

3.1 Results for the three aggregation algorithms on random scale-free net-
works with 100 nodes . 61

3.2 Results for MIP and IAGG on random scale-free networks with 100 nodes 63
3.3 Configuration scheme for test instances 64
3.4 Results for MIP and IAGG on medium-sized and large scale-free instances 66
3.5 Results on scale-free networks with 3000 nodes 67
3.6 Results for different disaggregation policies 68
3.7 Results on aggregations algorithms for a real street network 69
3.8 Results for small multi-commodity instances with 100 nodes 71
3.9 Results for medium-sized multi-commodity instances with 3000 nodes . 71

4.1 Results for instances on scale-free networks of varying size, 10 intervals
per arc . 104

4.2 Results for instances on scale-free networks with 100 nodes, varying
number of intervals per arc . 106

4.3 Results for instances on a gas network topology with 592 nodes, varying
number of intervals per arc . 107

4.4 Results for instances with continuous piecewise linear objective on scale-
free networks of varying size, 10 intervals per arc 109

4.5 Results for instances with continuous piecewise linear objective on scale-
free networks of varying size, 10 intervals per arc, using the Incremental
Method . 110

5.1 Computational results for energy-efficient timetabling 133
5.2 Number of instances solved and average solution times for instances

on a gas network topology with 592 nodes and a varying number of
intervals per arc. 135

5.3 Number of instances solved and average solution times for instances
on a gas network topology with 592 nodes and a varying number of
intervals per arc, using the Incremental Method. 135

6.1 Percentage of gap closed between optimal solution and root relaxation
due to separate and simultaneous convexification for scenarios on a
small test network. 153

15

List of Tables

6.2 Gap closed by sampling weight vectors for scenarios on a small test
network. 154

16

Chapter 1

Introduction

The field of network optimization covers a wide range of problems regularly faced in
real-world applications and, consequently, has attracted a lot of attention among rese-
archers. In particular, whenever an application involves routing some kind of quantity
in a feasible or optimal way on a discrete structure, we may regard the problem as a
network flow problem where ‘flow’ may refer to different types of physical (e.g. water,
natural gas, industrial goods, passengers) as well as notional quantities (information).
This makes this type of problem a powerful concept for unifying problems from diffe-
rent areas.

In many modern applications, the network optimization problems involved add a
lot of intricacy to classical network optimization problems. The main challenges—in
addition to the problem simply being NP-hard—are often due to huge infrastructures
that we wish to look at in an integrated way, or nonlinear dependencies, e.g. due to
modeling laws of physics. A direct approach for solving such a problem in practice
consists of modeling it as a mixed-integer linear or nonlinear program and handing it
to a general-purpose solver.

In this thesis, solution methods are developed that are based on strong reformulati-
ons and/or relaxations of standard formulations. They are tailored for specific situati-
ons that we try to keep as general as possible. However, the presentation of a method,
especially when it comes to proof-of-computations, might focus on specific example
applications or instances that can be considered typical and particularly well-suited.
Possibilities for extensions to more general cases are sketched at various occasions.

A common theme of our methods will be to consider substructures of the under-
lying network in an integrated way. The formulation for the target substructure is
locally improved, exploiting the structure of the network and/or other features of the
problem type. Here, ‘improving the formulation’ may also result in a relaxation that
simplifies the solver’s task but still gives strong bounds—as long as global (approx-
imate) optimality is ensured by other means within the overall algorithmic scheme.
In contrast, a reformulation is usually expected to give a formulation that is equivalent
to the original one—though we will not apply any rigorous definition to this term.
However, reformulations can be beneficial for general-purpose solvers in a number
of ways, some of which will be represented in this work: reformulations may streng-

17

Chapter 1. Introduction

then relaxations naturally employed by solvers within their branch-and-bound pro-
cess. The most prominent example are cutting-plane methods that strengthen the
problem’s linear relaxation. For nonlinear programs, strong convex relaxations are
of similar relevance. In other cases, the strength of reformulations may have emerged
empirically, where explanations are related to sparsity or better chances for a more
balanced branch-and-bound tree.

Many chapters contain computational experiments to show the potential of the
proposed methods in practice. To construct test instances, we incorporate data from
real-world applications. In particular, as we concentrate on network structure, a realis-
tic network topology is important as, for instance, transportation networks tend to be
relatively sparse. Test examples will be obtained from public transport and energy ap-
plications. In particular, we use optimization problems on transportation networks for
natural gas as an example for mixed-integer nonlinear network flow problems multi-
ple times throughout this work.

The Structure of this Thesis

This thesis is organized as follows: Chapter 2 introduces some basic theoretical back-
ground for the following chapters to build upon, concerning two major topics: on
the one hand, Section 2.1 presents a selection of problems in network optimization—
of course biased with respect to their importance for this work. In particular, basics
of gas network optimization will be covered in Subsection 2.1.5. On the other hand,
Section 2.2 covers modeling techniques for piecewise linear functions; those represent
a strong tool for tackling nonlinear problems.

In Chapter 3, we present an exact approach for solving network design problems
that is based on an iterative graph aggregation procedure. After an introductory dis-
cussion on aggregation and its role in optimization literature in Section 3.1, we briefly
recall the network expansion problem in Section 3.2. In Section 3.3, we present a
detailed description of the iterative aggregation scheme for network expansion pro-
blems, including details on the master problems and subproblems used in each itera-
tion. In Subsection 3.3.4, we also relate our method to Benders decomposition. Then, in
Section 3.4, we report some implementation details and describe three different itera-
tive aggregation algorithms. In Section 3.5, we show computational results on single-
commodity instances of the network expansion problem on random scale-free as well
as realistic network topologies. Possible extensions to more complicated network ex-
pansion problems are discussed in Section 3.6 for mixed-integer linear problems and
in Section 3.7 for gas networks.

In Chapter 4, we study polyhedra in the context of network flow problems, in
which the flow value on each arc lies in one of several predefined intervals. This is
motivated by nonlinear problems on transportation networks, where nonlinearities
are handled by piecewise linear approximation or relaxation. After introducing the
setting and our polytope of interest in Section 4.1, we study the geometric structure of
that polytope when the problem is defined on simple network structures in Section 4.2.

18

Starting with two adjacent arcs, we move on to the cases of paths and stars. For the
former, a complete description is derived in Subsection 4.2.2; our proof relies on a
new class of perfect graphs. We also show how to obtain corresponding results for a
formulation based on the Incremental Method in Subsection 4.2.3. Section 4.3 presents
empirical studies on the performance of the derived cutting planes, showing that they
lead to a significant improvement when used within a state-of-the-art MIP-solver. The
chapter concludes with some further remarks in Section 4.4.

Chapter 5 deals with clique problems with multiple-choice constraints, which are
introduced in Section 5.1. The definition of staircase compatibility in Section 5.2 gene-
ralizes common properties of two applications as we will also see in that section, one
of which may arise from the setting in Subsection 4.2.2. Following that, in Section 5.3
two totally unimodular formulations for the clique problem with multiple-choice con-
straints under staircase compatibility are presented. In Section 5.4, we evaluate our
reformulations from a computational point of view by applying them to two diffe-
rent real-world applications. These include energy-efficient railway timetabling in ad-
dition to piecewise linearized network flow problems on gas networks. Moreover,
Section 5.5 addresses several questions on the recognizability of staircase relations.

Chapter 6 gives an outlook on potentials and possibilities for computing strong
convex relaxations for optimization problems on gas networks in the spirit of Chap-
ter 4, i.e. we strengthen the formulation by considering substructures of the network
consisting of more than two nonlinear functions simultaneously. In Section 6.1, we
give some theoretical background on simultaneous convexification, i.e. computing the
convex hull of vector-valued functions. After that, we focus on optimization problems
on gas networks in Section 6.2, in particular to the simultaneous convex hull of functi-
ons related to a junction in the network. In Section 6.3, the potential of our approach
is discussed on the basis of computational experiments on a small test network. An
outlook is given in Section 6.4.

Finally, Chapter 7 summarizes the results, highlights some key observations and
mentions some open questions for further investigation.

Incorporation of Collaborative Work

Parts of this thesis are based on joint work with other authors that has been published
elsewhere.

Chapter 3 is based on the article Solving Network Design Problems via Iterative Aggre-
gation, published in Mathematical Programming Computations [BLM+15]. It is joint work
with Andreas Bärmann, Frauke Liers, Alexander Martin, Christoph Thurner and Die-
ter Weninger. It was a team effort from the very beginning and the resulting methods
emerged from many fruitful discussions we had on a day-to-day basis. I contribu-
ted significantly to all aspects of this work. Additionally, in this thesis extensions
of the algorithms from [BLM+15] (other than a direct multi-commodity version) to
more general cases of network expansion problems are discussed in Sections 3.6 and
Sections 3.7, and a new version of the algorithms for the single commodity network

19

Chapter 1. Introduction

expansion problem has been enabled by Theorem 3.4.
Chapter 4 is based on the article Structural Investigation of Piecewise Linearized Net-

work Flow Problems, which is joint work together with my supervisor Frauke Liers, and
has been published in the SIAM Journal on Optimization [LM16]. I had the freedom to
work independently on that topic to a large extend, complemented by regular joint
discussions.

Major parts of Chapter 5 are based on the paper Staircase Compatibility and its Appli-
cations in Scheduling and Piecewise Linearization, which is joint work with Andreas Bär-
mann, Thorsten Gellermann and Oskar Schneider. It has been published as a technical
report [BGMS16] and a corresponding journal article has been submitted. This project
emerged when Andreas and I together realized striking parallels between piecewise
linearized flow problems and problems in energy-efficient timetabling he had been
working on, and we eventually came up with the definition of staircase compatibi-
lity. Many theoretical results were worked out in joint sessions between all authors.
Oskar, who did his master thesis in this context, developed the implementation for
the computations in Subsection 5.4.1. In the present work, I extended the chapter by
Section 5.5, which goes beyond [BGMS16]and addresses recognizability issues.

Finally, Chapter 6 is part of unpublished work within a joint project in progress
together with Frauke Liers, Alexander Martin, Nick Mertens, Dennis Michaels and
Robert Weismantel. The computational experiments in that chapter have been perfor-
med by myself.

A brief note on collaborative work will also be given in the introduction of the
respective chapters.

20

Chapter 2

Preliminaries

In this chapter, we will introduce some basic notions and concepts we will work with
throughout the subsequent chapters. On the one hand, we will discuss some typical
problems on transportation networks together with suitable mathematical program-
ming models; on this occasion, we will also introduce notations and conventions rela-
ted to networks that will be used throughout this work. On the other hand, as several
chapters deal with piecewise linearization (or feature related models), the concepts
of piecewise linear approximation—including several important formulations for mo-
deling a piecewise linear function—will be covered as well. Readers who have a strong
background in those topics may skip this chapter for now (at their own risk) and only
come back on demand. Notes referring back to this chapter will be found in a number
of passages throughout this work.

In any case, it is assumed that the reader has basic knowledge in some essential
areas of discrete optimization such as linear and integer programming, polyhedral
theory, complexity theory as well as basic notions of graph theory. Otherwise he or
she may want to consult classic textbooks addressing those topics, e.g. [GLS88] (algo-
rithmic aspects of linear and convex programming, polyhedral theory, among others),
[GJ79] (NP-completeness, featuring many famous NP-complete problems), [KV07]
(combinatorial optimization), [Sch86] (a large 3-Volume compendium dealing with va-
rious topics in discrete optimization), [AMO93] (especially for classical network flow
algorithms), [BMMN95] (network design models), depending on the area needing a
refreshment or a lookup reference. However, some definitions which are beyond the
basic notions of the respective fields mentioned will be given at the respective passa-
ges.

2.1 A Selection of Problems on Transportation Networks

Problems on transportation networks will be a repetitive theme throughout this work,
as almost all chapters aim at devising methods to solve a transportation problem of
some kind—or can be motivated by such a problem. Therefore, we will now introduce
a few typical problems on networks. Starting with classical linear problems, we will

21

Chapter 2. Preliminaries

work our way up to nonlinear nonconvex problems. The problems discussed are of-
ten studied in different contexts and can be found in many textbooks e.g. [BMMN95].
Most problems will be of importance in one or several of the subsequent chapters,
being either directly targeted by methods developed in this work or appearing as sub-
problems. Also a couple of related problems or variations are mentioned that appear
interesting in the given context, even if their role in this work is not central. The follo-
wing list of problems is of course by no means comprehensive, neither is the selection
meant to reflect a problem’s popularity or overall importance outside of this work.

2.1.1 The Basic Linear Network Flow problem—Notations

Network flow problems are defined on some network, which will be given as a di-
rected graph G = (V,A) with a set of vertices (or nodes) V and a set of edges or arcs
(or directed edges) A ⊆ V × V . The problem asks for finding a feasible or optimal
flow of goods through the network such that a certain demand pattern is satisfied or
optimized with respect to an objective function—or asks for (optimal) decisions that
enable such flows.

We will discuss some notation using the example of the following basic version:
together with the network, we are given demands dv for each node v ∈ V and nonne-
gative capacities ca for each arc a ∈ A. The aim is to find a feasible routing of continu-
ous quantities of a single good through the network such that each node’s demand is
satisfied and the flow on each arc does not exceed the arc’s capacity. This problem is
referred to as b-transshipment, e.g. in [Sch86, Chapter 11, Volume A] (though ‘d-trans-
shipment’ would be more suitable for our notation). It is described by the following
linear programming model:

find x(2.1a)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = dv (∀v ∈ V)(2.1b)

xa ≤ ca (∀a ∈ A)(2.1c)

x ∈ R|A|+ .(2.1d)

For each arc a ∈ A, there is a nonnegative variable x representing the flow along
that arc. Equations (2.1b) ensure flow conservation. Here, δ+(v) denotes the set of arcs
leaving node v, while the set of nodes entering node v is denoted by δ−(v). In this
work, we interpret dv as a surplus (rather than an amount requested, as may be the
convention used in other sources), hence we call a node with positive demand a source
and a node with negative demand a sink. It is of course necessary to have

(2.2)
∑
v∈V

dv = 0

for the problem to be feasible. Equation (2.2) will be called flow balance.

22

2.1. A Selection of Problems on Transportation Networks

Equations (2.1c) restrict the arc flows to the corresponding capacities. Our mo-
deling at this point assumes one-way arcs. If the graph is undirected and flow can go
in both directions, we can model this by having two arcs per undirected edge, both
with the same capacity, obtaining a bidirected graph. This is the case for the majority
of graphs in Chapter 3. Alternatively, we may allow potentially negative flow in the
interval [−ca, ca]. This will be more convenient in Chapter 4. Both alternatives are
equivalent as long as it can be assured that there is an optimal solution that does not
simultaneously send positive flow along the forward and backward arc of an edge (for
which there is no equivalent in the version that relaxes (2.1d)).

If we dropped Equations (2.1c), flow would always be sent along a shortest path
and it suffices to determine which sources serve which sinks. This is usually called
the Transportation Problem. As the structure of the network is not of importance for this
problem, we will not discuss its usual modeling here in more detail. However, I would
like to mention that the early work [Bal65], which inspired the aggregation algorithms
developed in Chapter 3, aims to solve transportation problems (the concept of graph
aggregation will be defined in that chapter).

As it is stated above, (2.1) is a feasibility problem (indicated by ‘find x’, instead of
a maximization or minimization). Some very classic problems of combinatorial opti-
mization are obtained when considering specific objectives and/or small variations in
the constraints.

The Maximum Flow Problem One may give a designated source-sink pair (s, t) of
nodes and ask to maximize the flow from s to t through the network. In this setting,
usually the demand at all other nodes is 0 (if not, this can be easily achieved by a
standard trick, see below). Formally, the demand d at the source node s is then a
variable whose value is to be maximized. The problem can be modeled as follows:

max d(2.3)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa =


d if v = s
−d if v = t

0 otherwise
(∀v ∈ V)

xa ≤ ca (∀a ∈ A)

x ∈ R|A|+

d ∈ R+.

The Minimum Cost Flow Problem By adding a linear objective

min
∑
a∈A

kaxa

to (2.1) we obtain the Minimum Cost Flow Problem. The (usually nonnegative) objective
coefficients ka can be interpreted as costs associated with routing a unit of flow along

23

Chapter 2. Preliminaries

arc a. A variation with additional lower and upper bounds on the flow values is called
the Circulation Problem.

Both the Maximum Flow Problem and the Minimum Cost Flow Problem are well
known to be solvable in strongly polynomial time and a number of sophisticated com-
binatorial algorithms exist for obtaining good bounds on the degree of the polynomial.
For the Maximum Flow Problem, there is the Preflow-Push Algorithm. The generic ver-
sion has a running time of O(n2m), where as usual n = |V | and m = |A| denote the
number of vertices and arcs of the network, respectively. This bound can be further
improved by using special data structures and clever analysis. The implementation
of the FIFO Preflow-Push Algorithm by Goldberg and Tarjan [GT88] achieves a bound
on the time complexity of O(nm log(n

2

m
)). Details on polynomial maximum flow algo-

rithms can be found e.g. in [AMO93, Chapter 7].
The Minimum Cost Flow Problem can be also solved in strongly polynomial time

by a number of combinatorial algorithms. The most famous is probably the Mini-
mum Mean Cycle-Canceling Algorithm [GT89], which has a worst-case time complexity
of O(n2m3 log(n)); it is presented together with other efficient minimum cost flow al-
gorithms (many of which involve scaling techniques) in [AMO93, Chapter 10]. The
fact that the Maximum Flow Problem and the Minimum Cost Flow Problem can be
written as a linear program also allows to solve them in polynomial time by the Ellip-
soid Method—although this is not competitive in practice. For details on this method,
consult e.g. [GLS88, Chapter 3] or [KV07, Chapter 4].

However, whenever we have to solve linear network flow problems as subpro-
blems in this work—which happens to quite some extend in Chapter 3, we will use
a standard LP-solver that relies on the Simplex Method. Although theoretically it has
exponential worst-case complexity, the Simplex Method is fast in practice, and a po-
tential speedup by using specialized implementations is negligible as the implemen-
tation only spends a tiny fraction of the total running time with solving network flow
subproblems.

Model (2.1) represents the flow formulation (or arc-based formulation) for network
flow problems that models flow by explicit flow variables on each arc. Besides being
probably the most popular and intuitive formulation, it is well established and extre-
mely flexible in the sense that it is applicable (and practical) for a large variety of net-
work flow problems. Models using a flow formulation will be our choice throughout
this work for computational experiments, in particular for demonstrating the practical
impact of the aggregation algorithms developed in Chapter 3. However, it should be
mentioned that there are alternatives, e.g. path formulations and the cut-set formulations.
Path formulations state problem constraints in terms of variables associated with fea-
sible source-sink paths; whereas the cut formulations—when applicable—fully define
the problem in terms of flow conservation equations for certain subsets of nodes. We
do not want to go into detail here and just point out that those alternative formulations
can be particularly well suited for some special types of more complicated network
problems. For instance, path formulations tend to be popular for multi-commodity
flow problems [BHJS94], whereas cut-based formulations are more common in the

24

2.1. A Selection of Problems on Transportation Networks

context of network design problems [Bar96]. Advantages of the latter formulation
for multi-scenario network design problems will also be remarked in the respective
paragraph in Subsection 2.1.4 below. We will briefly discuss the applicability of our
aggregation algorithms to those formulations in Section 3.6.

2.1.2 Analyzing Infeasibility of the Linear Network Flow Problem

If Problem (2.1) is infeasible, one may want to localize the main reason for infeasibi-
lity in the network. Such information is very valuable for guiding disaggregation in
Chapter 3. For linear network flow problems this is nicely possible by using duality
theory. Therefore, we will write (2.1) as a maximum flow problem.

Firstly, Problem (2.1) can be transformed to have a single source and a single sink.
We introduce a super source s and a super sink t together with additional artificial
arcs from s to all source nodes, and from all sink nodes to t. The idea is that s supplies
all sources with their original demands dv, and t collects all incoming flows from the
sinks. Let V+ denote the set of sources, i.e. nodes v with dv > 0, and V− denote the
set of sinks of Problem (2.1). Then consequently, an arc (s, v) from the super source to
some source v ∈ V+ has capacity |dv|, the same goes for an arc (v, t) from some sink
v ∈ V− to t. After that, we can solve the problem as a maximum flow problem. This
has the advantage that by the well-known correspondence between maximum flows
and minimum cuts we can determine a set of edges in the network that limit the flow
in case (2.1) is infeasible. At this point, we assume that s and t are connected in the
network.

We obtain the following model:

max d(2.4)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa =


d if v = s
−d if v = t

0 otherwise
(∀v ∈ V ∪ {s, t})

xa ≤ ca (∀a ∈ A)

x(s,v) ≤ dv (∀v ∈ V+)

x(v,t) ≤ − dv (∀v ∈ V−)

x ∈ R(|A|+|V+|+|V−|)
+

d ∈ R+.

It is easy to see that Problem (2.1) is feasible if and only if (2.4) has a solution where
the optimal objective d∗ is equal to D :=

∑
v∈V+ dv, the total amount of flow to be

routed. By construction, this is only possible if all artificial arcs are saturated.
Otherwise, if d∗ < D, we compute the minimum cut corresponding to the optimal

flow. Consider the dual linear program of (2.4), which is given below. Let Ã be the
set of arcs of the underlying augmented graph of Problem (2.4), including the artificial
arcs. If a = (s, v) or a = (v, t) is an artificial arc, ca is interpreted as |dv| according to

25

Chapter 2. Preliminaries

(2.4) above.

min
∑
a∈Ã

caωa(2.5)

s.t. πu − πv + ωa ≥ 0 (∀a = (u, v) ∈ Ã)

πt − πs ≥ 1

πv ∈ R (∀v ∈ V ∪ {s, t})

ωa ∈ R+ (∀a ∈ Ã)

In (2.5), πv denote dual variables corresponding to the flow conservation constraint
at some node v ∈ V ∪{s, t}. The value of those variables is also called the node potential
at node v. For an arc a ∈ Ã, the variable ωa represents the dual variable corresponding
to the capacity constraint belonging that arc. It expresses the potential drop along arc
a. We will stick to this notation for duals of linear network flow problems throughout
this work. Now, arcs a with ωa > 0 form a cut in the graph for any feasible solution.
By complementary slackness, we know that ωa > 0 implies xa = ca, so this gives a
minimum cut that limits the flow from s to t.

In Chapter 3, where this will be of importance, we do not have to implement (2.5)
explicitly in practice. Dual information is comfortably available from LP-solvers after
the primal has been solved successfully, so we can just read off a minimum cut from
the dual of the of the capacity constraints (‘shadow prices’). If the minimum cut is not
unique, the node potential π might not drop from 1 directly to 0 (from t to s); instead,
we may observe 0 < ωa < 1 for some a, with the interpretation that the potential drops
stepwise over several minimal cuts. In this case, the set {a ∈ Ã | ωa > 0} would
strictly contain minimum cuts, which might not be what we want. However, the con-
straint matrix of linear network flow problems is well known to be totally unimodular
[Sch86, Chapter 13, Volume A], and hence, all basic feasible solutions are naturally in-
teger. Since we generally use the Simplex Algorithm for solving linear programming
subproblems (as already mentioned above), we will obtain a basic feasible solution
that is integral, which in this case means that {a ∈ Ã | ωa > 0} is an elementary mini-
mum cut, i.e. removing any arc from the cut leaves the network connected.

If we want to interpret this cut C̃ ⊆ Ã back in Problem (2.1), we have to ignore
artificial cut arcs but only consider arcs C := C̃ ∩ A of the original network. We can
guarantee the following:

Proposition 2.1. If (2.1) is infeasible, there is at least one source-sink pair (v+, v−), v+ ∈
V+, v− ∈ V− such that there is no path from v+ to v− in the graph G′ = (V,A\C).

Proof: If C̃ ⊇ δ+(s), we know by the Max-Flow Min-Cut Theorem that the maximum
flow in problem (2.4) is equal to

∑
a∈δ+(s) ca =

∑
v∈V+ dv = D. Therefore, (2.1) is fea-

sible. The same follows if C̃ ⊇ δ−(t). Hence, there must be v+ ∈ V+, v− ∈ V− with
(s, v+) /∈ C̃ and (v−, t) /∈ C̃. As we know that C̃ cuts all paths from s to t in the
augmented graph, there can be no path from v+ to v− in the original graph. �

26

2.1. A Selection of Problems on Transportation Networks

Hence, if the cut C̃ consists of artificial arcs only, then either

a) Problem (2.1) is feasible.

b) In the original graph not every source is connected to every sink.

In Chapter 3 we can exclude b) by the structure of the instances considered, and the-
refore ensure that we always obtain an interpretable cut if the input problem of type
(2.1) is infeasible.

In formulation (2.5), we see that any feasible solution (π̂, ω̂) is dominated by the
solution (π̂, ω) with π = π̂ and

ωa = max{π̂v − π̂u, 0} (∀a = (u, v) ∈ A)

If the graph is undirected—expressed by either modeling discussed in Subsection 2.1.1,
we have the equations

πu − πv + ωa = 0 (∀a = (u, v) ∈ A)

instead of inequalities in the dual problem. Hence, the ω-variables can directly be
eliminated from formulation (2.5) and we obtain a dual network flow problem of the
following form:

min
∑

v∈V ∪{s,t}

c̃vπv(2.6a)

s.t. πv − πu ≥ 0 (∀a = (u, v) ∈ Ã)(2.6b)

πt − πs ≥ 1(2.6c)

πv ∈ R (∀v ∈ V ∪ {s, t})(2.6d)

for suitable c̃a, where the ω-variables have been replaced in (2.6a). Constraints (2.6b)
remain to represent the nonnegativity of ω.

Such a representation using only π-variables will be used in Chapter 5 to show that
a certain formulation represents a dual network flow problem and is therefore totally
unimodular. As total unimodularity only depends on the constraint matrix, we can
allow a slightly more general version with arbitrary right-hand side in constraints of
type (2.6b):

min c̃Tπ(2.7)

s.t. πv − πu ≤ ka (∀a = (u, v) ∈ A)

πv ∈ R (∀v ∈ V ∪ {s, t})

Such a formulation may be obtained by dualizing a Minimum Cost Flow Problem.

27

Chapter 2. Preliminaries

2.1.3 The Network Design Problem

The next problem we consider involves making a decision on how to design the net-
work in order to enable a certain flow. As before, each arc a ∈ A possesses initial arc
capacities ca ≥ 0. In addition, each arc can be upgraded by installing a module with
an upgrade capacity of Ca at a price of ka per unit, available in integral multiples ya.
The aim is to determine a feasible routing of a specified demand vector d ∈ R|V | that
incurs a minimal-cost upgrade of the network while respecting the capacities of the
arcs. A mixed-integer programming (MIP) formulation of the single-commodity flow
network design problem is given by

min
∑
a∈A

kaya(2.8)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = dv (∀v ∈ V)

xa ≤ ca + Caya (∀a ∈ A)

x ∈ R|A|+

y ∈ Z|A|+ .

The above formulation only considers a single type of additional module per net-
work arc. Note, however, that an extension to multiple types of additional modules
with varying cost and capacity is possible in a straightforward way.

In contrast to the problems on networks that we examined so far, the capacitated
network design problem (NDP) is well known to be NP-hard [JLK78]. A standard
solution method is Lagrangian relaxation, which was first proposed in [Geo74]. Re-
ference [Lem01] evaluates advanced theoretical results and numerical aspects, and
relates it to other techniques such as column generation. In [KR79], relationships to
surrogate duality in integer programming are investigated. Another approach that
has been used intensively for capacitated network design problems is Benders decom-
position. This method was first proposed in [Ben62]. More theoretical background
can be found in [MD77] and [HO03]. The work [Cos05] gives a broad survey on the
application of Benders decomposition to fixed-charge network design problems. A
favorable cut selection criterion for Benders cuts is proposed and analyzed computa-
tionally in [FSZ10].

Note that some or even all of the initial arc capacities ca may have a value of zero.
This basically means that the arc is nonexistent unless it is constructed for the setup
cost of ka. In this case, the variable ya is often restricted to be binary rather than in Z+,
with the interpretation that ya determines whether the connection a is established or
not. However, in practical applications, it is very common that a relatively developed
network has to be upgraded in order to allow for the routing of additional demand
requirements. In this case, we call (2.8) a network expansion problem, though this of
course is not a formal definition.

In Chapter 3, an algorithmic scheme for solving network expansion problems is
proposed that is based on iterative graph aggregation.

28

2.1. A Selection of Problems on Transportation Networks

2.1.4 Further Extensions of Linear Network Design Problems

There is an abundance of additional constraints that network design problems—or
network flow problems in general—may have. We briefly discuss some of them here
that we will revisit in Chapter 3 in connection with the question of applicability of our
aggregation algorithms. In this subsection we only consider extensions of the network
design problems that are still representable as an MILP, whereas the subsequent sub-
section will introduce gas network optimization as an example of a nonlinear network
flow problem.

Multi-Commodity Flows Instead of having a single commodity and scalar demands
at each node, the problem may feature multiple commodities i ∈ Id, where Id is some
discrete index set, that have to be routed through the network simultaneously. There-
fore, the demand of a node is a vector specifying that node’s demand for each commo-
dity. We can extend (2.8) to model multi-commodity flow problems by increasing the
dimension of the flow variables in order to track the flow on that arc for each commo-
dity, and adapting the constraints as follows:

min
∑
a∈A

kaya(2.9)

s.t.
∑

a∈δ+(v)

xa,i −
∑

a∈δ−(v)

xa,i = dv,i (∀v ∈ V, ∀i ∈ Id)

∑
i∈Id

xa,i ≤ ca + Caya (∀a ∈ A)

x ∈ R|A×Id|+

y ∈ Z|A|+ .

The combination of network extensions together with multiple commodities actually
requires additional modeling decisions regarding the intended interaction between
network extensions and forward and backward arcs. The reason is that in contrast to
all previous models we cannot guarantee that there is always an optimal solution that
does not simultaneously send positive flow along the forward and backward arc of an
edge. Forward and backward flow simply may belong to different commodities and
therefore can not be treated as canceling out each other. Formulation (2.9) implies the
following choice: upgrading an arc increases the capacity only for one direction. The
alternative can also be reasonable depending on the application, e.g. when dealing
with a telecommunication network. This can be modeled by merging all variables ya
where a represents the same edge connection. This has been the choice in the com-
putations on multi-commodity flow network design in Chapter 3, Subsection 3.6.1. A
common special case of (2.9) restricts each demand to be nonzero only at two nodes,
i.e. the demand is given by source-sink pairs. This is motivated e.g. by applications
in logistics, where passengers or communication messages have a single origin and
destination.

29

Chapter 2. Preliminaries

Routing Costs In network design problems we are mainly interested in the net-
work’s minimal extension that enables a feasible routing whereas the costs of realizing
the routing itself are negligible in comparison. However, if we want to account for rou-
ting costs in our model formulation, we only have to modify the objective function

min
∑
a∈A

faxa + kaya,

where fa specifies the charge per unit of flow along arc a. Though this seems like
a minor change, it can have severe consequences for solution algorithms. One thing
to mention is that the cut formulation is no longer directly applicable, as it has no
representation for the actual flows.

Instationary flows via time-expanded graphs Flows in transportation networks are
often instationary in their essence. Stationary models as the ones stated above are often
times still useful, as their solutions represent steady states that a network can attain
over a longer period of time, and which are therefore desirable. However, we will
briefly describe how to model instationary flows via time-expanded graphs. Suppose
network arcs have nonnegative travel times ∆ta ∈ R+ that indicate the time that the
flow needs to bridge the distance from the source node of arc a to its target node. Given
a time horizon of T , the task is to find a network expansion of minimal cost that allows
all flow to be routed within time T . For this problem we consider an equidistant time-
discretization of the time horizon into a set of possible starting times T = {0, . . . , T}
such that t + ∆ta is either an element in T or greater than the time horizon T , for all
t ∈ T and a ∈ A. For the sake of simplicity we assume T = Z ∩ [0, T].

This can be represented as a classical network design-problem on the so-called
time-expanded graph Gtexp = (Vtexp, Atexp). It is constructed by creating |T |-many co-
pies of G, one for each time step, i.e. Vtexp = V × T . The arc set is defined by

a = ((v1, t1), (v2, t2)) ∈ Atexp ⇔ (v1, v2) ∈ A and t1 + ∆t(v1,v2) = t2,

i.e. traveling from v1 to v2 is feasible in G and the travel time of that arc is equal to
the difference of the time indices of both nodes in Gtexp. In addition, we have the arc
((v, t), (v, t + 1)) ∈ Atexp with infinite capacity for all v ∈ V, t ∈ T \{T} if ‘waiting’ at a
node is feasible in the application context. In this case, a node’s original demand dv is
assigned to its ‘latest’ copy (v, T). As before, there are arc capacities that must not be
exceeded at any time step in T , so they can be assigned to the corresponding arcs in
Atexp.

This way, we can solve instationary network design problems by solving a problem
of type (2.8), but on a larger graph. However, important properties of G might of
course not transfer to Gtexp, e.g. if G is bidirected (as in Chapter 3), the time-expanded
graph is usually not, as sending flow ‘to the past’ is not feasible.

30

2.1. A Selection of Problems on Transportation Networks

Multiple Scenarios In applications we often have a fixed given network topology,
on which there are several scenarios to be solved that vary in the node demands—
or sometimes other data such as e.g. initial arc capacities or the type of expansion
modules. However, we will focus on demands here. We speak of a Multi-Scenario
Problem if we seek a decision (network expansion) that allows for a feasible routing of
all given scenarios of a set U of possible scenarios. We obtain a problem formulation
of the following type:

find y(2.10)

s.t. ∀S ∈ U ∃x ∈ R|A|+ : (x, y) is feasible for (2.8)

y ∈ Z|A|+ .

This is a bilevel problem, where we have to make a first-stage decision on the expan-
sion y before the uncertainty is observed, and a second-stage decision on the routing
that may depend on the scenario. Using the terminology of robust optimization, we
call U the uncertainty set. It may not necessarily be finite, but separating over U (i.e.
determining a scenario S ∈ U that does not allow for a feasible routing or determining
that no such scenario exists) should be possible if we want to stand a chance for sol-
ving (2.10) to optimality. This is true e.g. if U is polyhedral, which leads to the so-called
Hose polytope. For investigations on the complexity of single-commodity network de-
sign with a Hose polytope as the scenario set, see e.g. [CJL+16]. The paper makes use
of the fact that one can remove the second stage by switching to a cut-formulation,
since this formulation can express feasibility without flow variables.

Alternatively, whenever we have a finite uncertainty set U = {S1, . . . , Sk}, a well-
known technique for resolving the second stage is constructing the so-called determi-
nistic equivalent of (2.10). This is done by creating a copy xa,i of flow variable xa for
every possible scenario Si, i = 1, . . . , k, with the meaning that xa,s represents an opti-
mal choice for xa in case of scenario s. This leads to the following formulation:

min
∑
a∈A

kaya(2.11)

s.t.
∑

a∈δ+(v)

xa,s −
∑

a∈δ−(v)

xa,s = dv (∀v ∈ V, ∀s ∈ U)

xa,s ≤ ca + Caya (∀a ∈ A, ∀s ∈ U)

x ∈ R|A×U|+

y ∈ Z|A|+ .

Note that throughout this work, a demand pattern constituting an instance of the
problem will be called a scenario even if we do not consider the problem as a multi-
scenario problem—especially in Chapter 6, where we consider different demand sce-
narios and objective functions on the same gas network.

It goes without saying that this list of linear extensions of network design problems
introduced above—in order to be referred to in Chapter 3—is not exhaustive. Plenty

31

Chapter 2. Preliminaries

of variants and additional constraint can be found across the literature and of course
also combinations of them are possible.

2.1.5 Gas Network Optimization

As an example of a nonlinear network flow problem, we will consider optimization
tasks on gas networks. In gas network optimization flow may not be split arbitrarily
at a node, but is driven by a potential, namely the pressure. Gas flow is bound to be
directed from higher to lower pressure following certain physical laws. In this regard,
gas networks are similar to water supply networks or electricity networks [GMMS12,
KW84].

In order to model gas networks, we introduce additional variables pv describing
the pressure at node v. Though pv can be seen as a node potential, we do not use
π-variables as in the dual flow problem (2.5) to be consistent with the literature. Mo-
reover, pv does not have the same interpretation as a shadow price that is valid for π
in the linear case. Following a convention, the flow on an arc a will be denoted by
qa (instead of xa) in the context of gas network optimization throughout this work.
Furthermore, arcs will also be called pipes and are naturally undirected. Therefore
we allow q-variables to be negative, with the interpretation that there is positive flow
against the pipe’s formal direction.

Passive Networks

An important source of nonlinearity is due to the pressure loss along pipes. It is the
only source of nonlinearity in so-called passive networks, which consist of pipes only
and do not feature elements to actively operate the network. Therefore, gas flow is
fully determined by the laws of physics.

At a high level of detail, the pressure loss along pipes can be modeled by the Euler
Equations, a set of nonlinear hyperbolic partial differential equations that are suitable
to describe compressible fluids [Fei93]. They consist of the Continuity Equation, the
Momentum Conservation Equation and the Energy Conservation Equation and involve ad-
ditional quantities as the gas temperature, density and velocity, among others.

In order to obtain an algebraic pressure loss equation, we have to make some sim-
plifying assumptions. As pipes in Germany are usually well beneath the ground, we
may assume constant temperature. Also, if we are interested in solutions that are
stable over time, we may impose stationarity, which is also an implicit assumption in
most linear network flow models discussed so far. This means that all time derivatives
vanish. Further simplifications include horizontal pipes and the so-called compressi-
bility factor being constant.

After applying the simplifications, the set of differential equations can be solved
analytically, leading to an algebraic approximation that is commonly used in practice,
called the Weymouth Equation (see [KHPS15, Equation (7.2)]), in our case for the special

32

2.1. A Selection of Problems on Transportation Networks

case of horizontal pipes). It has the form

∆(p2) = λq|q|

for some parameter λ ∈ R+ that depends on pipe properties as length, diameter and
roughness. Here, ∆(p2) denotes the reduction of the squared pressure along a pipe (cf.
formulation (2.12) below). A detailed derivation of this algebraic model can be found
in [Gei11b, Chapter 6 & Appendix B] or [KHPS15, Section 2.3.1]. Though the model is
used in the computations mentioned in Chapter 3, Section 3.7, the principal approach
is mainly independent from the chosen pipe model—as long as it can be handled by a
tractable global optimization method. On the contrary, in Chapter 6 we will explicitly
make use of the quadratic nature of this model. In addition, fixed flow directions will
be assumed there in order to get rid of the non-smoothness. The setting in Chapter 4
is suited to deal with problems featuring low-dimensional nonlinearities as the right-
hand side of the above equation, though the abstract setting in that chapter is more
general and no particular structure on the nonlinearity is assumed.

The above approximation yields an example for a nonconvex problem on trans-
portation networks, where nonlinearities are sufficiently ‘well-behaved’ to allow for
structure-exploiting approaches such as simultaneous convexification in Chapter 6.

We can give the following nonlinear programming formulation for a gas network
feasibility problem on passive networks:

find q, p(2.12)

s.t.
∑

a∈δ+(v)

qa −
∑

a∈δ−(v)

qa = dv (∀v ∈ V)

p2u − p2v = λaqa|qa| (∀a = (u, v) ∈ A)

qa ∈ [qa, qa] (∀a ∈ A)

pv ∈ [pv, pv] (∀v ∈ V).

Source and sink nodes (in this context also called entries and exits, respectively)
usually have a minimum and/or maximum pressure requirement, denoted by pv and
pv respectively, that is specified by the gas provider or consumer. Still, also pressure
bounds for inner nodes, i.e. nodes that are neither sources nor sinks, can be stated by
technical limitations. There are also lower and upper bounds qa and qa for the flow on
each pipe, though they usually are not a limiting factor in the network. The absolute
value of a flow of course could be reformulated by a binary variable, obtaining a mixed
integer nonlinear programming formulation with smooth nonlinearities. Note that for
passive networks we may replace all pressure variables by variables representing the
squared pressure, thus directly removing some nonlinearities.

So far, all constraints are derived from physical laws such that it is not surprising
that for a given demand vector dv, fixing a single pressure value in a connected net-
work already guarantees uniqueness of a solution. A proof is given in [RMWSB02].

33

Chapter 2. Preliminaries

Active Elements

Real-world gas networks have active elements that allow operation of the gas network,
e.g. by shutting off connections or raising the pressure. We will briefly discuss diffe-
rent important types of active elements in the following. However, we will not give
full details as the specific modeling will not be important for the methods developed
in the subsequent chapters. Instead, their focus clearly is on the network part and
the nonlinearities that are present on every arc. In Chapter 3, Section 3.7 the presen-
ted adaptation of the iterative aggregation scheme is meant to deal with networks
featuring active elements. Yet, the treatment of active elements by the solver is not in-
fluenced by the algorithm apart from assigning them either to the aggregated master
problem or to the subproblem. Readers interested in a high level of detail on modeling
gas network elements are referred to [KHPS15, Chapter 2.3].

Active elements are usually modeled as a special type of arc. Valves are the sim-
plest type of active element. A valve is either open or closed. An open valve essentially
is a pipe that causes no pressure drop, hence the pressure values on both endpoints
of the valve have to agree. If the valve is closed, no flow is allowed to pass and the
pressure values on the valve’s endpoints are decoupled.
Valves are discrete structures that essentially allow modification of the network topo-
logy. They are usually modeled via a binary variable that indicates whether the valve
is open or closed. In a network design setting as in Chapter 3, Section 3.7, they can
also be used to model whether a new pipe should be built rather than being physi-
cally present in the network already. In this case, the candidate pipe’s building costs
are attached to the choice of the valve being open.

Control Valves are a type of directed active element that allow to reduce the pres-
sure for gas flowing in a specific direction. Similar to valves, control valves are either
open or closed, and if closed they prevent any flow from passing along both directi-
ons. Consequently, pressure values at the control valve’s endpoints are decoupled.
If a control valve is open, flow is allowed to pass in a given direction, and the pres-
sure is reduced by a controllable amount in a given range that is determined by the
valve specification. That means that they introduce a continuous degree of freedom
for the network operator. In practice, control valves are used to regulate pressure at
transition points between network components that typically have different overall
pressure levels. They can be modeled by several linear equations with an additional
binary variable that represents whether or not the control valve is open [Gei11b].

Compressors are directed active elements that allow to increase gas pressure. The
possible pressure values at the target node of the compressor depend on the inflow
and the inlet pressure. The operating range of a compressor is determined by its so-
called characteristic diagram, which originates from least-square fits of measured data
points. There are different approximation levels of the operating range. In this work,
we will just assume that the compressor model can be handled by a global mixed inte-
ger nonlinear programming solver (possibly after piecewise relaxation). For example,
we might think of a polyhedral approximation model in terms of bounds for the com-

34

2.1. A Selection of Problems on Transportation Networks

pression ratio, pressure increase and power consumption, which has been the choice
in [Gei11b]. In a simplified model, all those quantities can be described in terms of the
inflow and the inlet and outlet pressure values, in the case of the power consumption
by a nonlinear inequality (that might as well be approximated linearly). In real-world
gas networks, compressors are essential to compensate for the pressure loss over long
distances due to pipe friction. Also, compressors can be operated in bypass mode,
where flow may pass in both directions without being compressed. Depending on the
modeling, compressors induce quadratic or more complicated nonlinearities in addi-
tion to a binary variable that indicates whether the compressor is operated in bypass
mode. As compressors consume energy, this is a common choice to optimize in real-
world instances.

Compressors are usually grouped—conceptually as well as geographically—into
Compressor stations that comprise several compressor machines. Those can be inter-
connected in various different ways, e.g. a subgroup of compressors may be run in
series or in parallel. Usually not every conceivable interconnection diagram is techni-
cally realizable or sensible in realistic cases. Therefore, a discrete set of feasible con-
figurations may be decided on beforehand such that the operator only has to choose
one of those possibilities to specify routing inside a compressor station.
The task of choosing optimal configurations adds a lot of complexity to the problem,
which makes large compressor stations a main computational challenge on the discrete-
optimization side.

Real-world gas networks contain additional elements that cause pressure loss, even
though it is not their dedicated purpose, e.g. filtration plants, measuring devices, gas-
preheaters and gas-coolers. While their functionality is usually not included in most
models, we may account for the pressure loss by modeling them as Resistors. Each
resistor may be modeled as increasing pressure reduction, either flow-dependent or by
a given constant that only depends on the particular element. Moreover, the pressure
loss due to a resistor may depend on the direction of transition. Resistors can lead to a
pressure drop behavior that is different from that of a pipe. In particular, it cannot be
compensated by adapting the pipe’s λ-parameter.

A full MINLP-model extending (2.12) can be found in [Gei11b, Chapter 6]. As
already mentioned, the reader interested in the topic of modeling and solving gas
networks optimization will find detailed examination in [KHPS15].

The Network Design Problem on Gas Networks

As for the linear case, we may pose the problem of optimally extending a given net-
work for gas networks as well. However, in order to model this problem in a sensible
way, upgrading an arc should—in contrast to (2.8)—not simply effect the arc’s ‘capa-
city’, i.e. the corresponding flow bound in (2.12). First of all, the upgrade should reflect
the effect of adding an appropriate arc parallel to the existing one, and increasing the
flow bound does not implement this concept for gas networks. Secondly, flow bounds
are often times not the limiting factor in a gas network optimization problem, so up-

35

Chapter 2. Preliminaries

grading it may not lead to feasibility for any upgrade (see [KHPS15, Chapter 11] for
experiments on that topic).

Instead, for a network design problem on a gas network we use a formulation that
models extensions as ordinary network arcs but with the difference that additional
arcs come together with a valve each such that access to the new arc is only granted
by opening its valve. That way, we can associate the cost of creating the arc to a bi-
nary variable that represents whether the valve is open. Remember that closed valves
effectively change the topology such that the connection may as well not exist.

For the sake of clarity, the model below assumes a passive network and accordingly
only considers network extensions consisting of additional arcs. Though note that
upgrade candidates that involve the construction of additional active elements may
be modeled in the same way.

Given a set Aext of possible upgrade arcs—that may or may not be parallel to al-
ready existing arcs—we extend (2.12) as follows: for each extension arc e ∈ Aext con-
necting nodes u and v with associated building cost ke, we create an artificial network
node ne. This node is connected to the remaining network via a valve avalve,e = (u, ne)
and a pipe apipe,e = (ne, v). The modified node and pipe sets including those additional
constructions are denoted by A′ and V ′ respectively. New valves are subsumed in the
set Avalve, where each valve a ∈ Avalve has an associated binary variable ya that indi-
cates the valve’s status. There is no need for shutting off new arcs at both endpoints.
This is because no solution can send nonzero flow from the reverse side into the new
arc due to the flow conservation at its inner node. We may use the following model
for extending (2.12) to a network design problem:

min
∑

a∈Avalve

kaya(2.13a)

s.t.
∑

a∈δ+(v)

qa −
∑

a∈δ−(v)

qa = dv (∀v ∈ V ′)(2.13b)

p2u − p2v = λaqa|qa| (∀a = (u, v) ∈ A′)(2.13c)

qa ≤ qaya (∀a = (u, n) ∈ Avalve)(2.13d)

qa ≥ qaya (∀a = (u, n) ∈ Avalve)(2.13e)

pu − pn ≤ (pu − pn)(1− ya) (∀a = (u, n) ∈ Avalve)(2.13f)

pu − pn ≥ (pu − pn)(1− ya) (∀a = (u, n) ∈ Avalve)(2.13g)

qa ∈ [qa, qa] (∀a ∈ A′)(2.13h)

pv ∈ [pv, pv] (∀v ∈ V ′)(2.13i)

ya ∈ {0, 1} (∀a ∈ Avalve).(2.13j)

Equations for extension pipes are integrated in (2.13c), whereas Equations (2.13d)
to (2.13g) model the behavior of a valve. The pressure bound at all artificial nodes
ne can be copied from the extension’s start node, while the flow bounds for apipe,e are
determined by that of the extension candidate.

36

2.2. Modeling Piecewise Linear Functions

Problems of type (2.13) will be considered towards the end of Chapter 3.

2.2 Modeling Piecewise Linear Functions

In the last section, we have seen network problems involving nonlinearities. A com-
mon and established approach for dealing with those nonlinearities consists of con-
structing piecewise linearizations or relaxations of the involved nonlinear functions.
The resulting MIP can then be solved by any general-purpose MIP solver. This is es-
pecially attractive for problems like (2.12), in which nonlinearities can be modeled as
low-dimensional nonlinear functions. For this problem, the nonlinear constraint on
the pressure loss along a pipe is separable, and it is sufficient to linearize the function

(2.14) f : I → R, q 7→ q|q|,

where I ⊂ R is a compact interval, in order to obtain an MIP as we can use variables
for squared pressure.

In this section, we will first discuss several methods for modeling piecewise linear
functions, including some interesting properties and interconnections. In the course of
this, we concentrate on univariate functions. Most of the popular methods can be ex-
tended to arbitrary dimensions; we will discuss the principal idea behind this briefly
in Subsection 2.2.5 and otherwise refer the reader to [GMMS12] for more details. The
concepts of piecewise linear approximation and relaxation will be introduced after-
wards, in Subsection 2.2.6. In the following, let

φ : I → R, x 7→ φ(x)

be a piecewise linear one-dimensional function on a connected compact domain I =
[l, u] ⊂ R with breakpoints B1 = l, B2, . . . , Bk, Bk+1 = u. In particular, φ is linear on
each segment [Bi, Bi+1], i = 1, . . . , k. In the following, we implicitly assume φ to be con-
tinuous, though non-continuous functions can be modeled in the same style, as long
as the function value at each breakpoint Bi may be chosen freely by the model within
the highest and lowest function value in a neighborhood of Bi (or the correct choice is
enforced by the objective function anyway). In Chapter 4, we will deal, among other
things, with piecewise constant—but not continuous—objective functions that way.

Most of the formulations used in practice are locally ideal, i.e. for a single piecewise
linear function their linear relaxation is equal to the convex hull of feasible points. Ho-
wever, this property is usually lost as soon as multiple piecewise linear functions are
considered simultaneously. Chapter 4 deals with strengthening the formulation for
multiple functions in the context of network flow problems for specific substructures.
The choice of linearization method in practice mainly relies on empirical investigati-
ons for the particular application. For exemplary fields of application, the reader is
referred to the references within [SLL13, Table 1].

37

Chapter 2. Preliminaries

2.2.1 The Multiple Choice Method

We start with the Multiple Choice Method (MCM) [JL84]. In this context we have a
binary variable zi, i = 1, . . . , k for each segment that indicates whether the value of x
is contained in that segment [Bi, Bi+1]. In addition, there is a ‘copy’ xi of x for every
segment that is only activated if zi = 1, and forced to zero otherwise. The following
MIP describes the piecewise linear function φ, i.e. it has exactly the set of points on the
function graph of φ, {(x, y) | y = φ(x)}, as the feasible set.

find x, y, z(2.15a)

s.t. x =
k∑
i=1

xi(2.15b)

y =
k∑
i=1

φ(Bi)zi + (xi −Bizi)
φ(Bi+1)− φ(Bi)

Bi+1 −Bi

(2.15c)

xi ≥ Bizi (∀i ∈ {1, . . . , k})(2.15d)

xi ≤ Bi+1zi (∀i ∈ {1, . . . , k})(2.15e)
k∑
i=1

zi = 1(2.15f)

xi ∈ [Bi, Bi+1] (∀i ∈ {1, . . . , k})(2.15g)
x, y ∈ R(2.15h)

zi ∈ {0, 1} (∀i ∈ {1, . . . , k})(2.15i)

In this formulation, (2.15b) establishes the intended connection between x and the
copies xi, i = 1, . . . , k; y can then be computed using the formula in (2.15c). Note that
it is linear as Bi and φ(Bi) are constants. Constraints (2.15d) and (2.15e) ensure that
xi is zero unless segment i is active, which corresponds to zi = 1. Finally, exactly one
segment can be active, which is encoded in (2.15f). The Multiple Choice Method leads
to locally ideal formulations (see [VAN10]).

2.2.2 The Convex Combination Method

Another intuitive formulation is the Convex Combination Method (CCM), also known as
λ-Method [Dan60]. The idea behind this method is that each point on a linear segment
can be represented as a convex combination of the segment’s two endpoints. Again,
we have a binary variable zi, i = 1, . . . , k for each segment. In addition, for each
breakpoint we introduce an auxiliary continuous variable—typically named λ—that
regulates the weight of that breakpoint for averaging.

find x, y, λ, z(2.16a)

38

2.2. Modeling Piecewise Linear Functions

s.t. x =
k+1∑
i=1

Biλi(2.16b)

y =
k+1∑
i=1

φ(Bi)λi(2.16c)

λ1 ≤ z1(2.16d)

λi+1 ≤ zi + zi+1 (∀i ∈ {1, . . . , k})(2.16e)
λk+1 ≤ zk(2.16f)

k+1∑
i=1

λi = 1(2.16g)

k∑
i=1

zi = 1(2.16h)

λi ∈ [0, 1] (∀i ∈ {1, . . . , k + 1})(2.16i)
x, y ∈ R(2.16j)

zi ∈ {0, 1} (∀i ∈ {1, . . . , k})(2.16k)

We have to make sure that only breakpoints adjacent to the active segment may
be used for the convex combination. That means that at most two λ-variables may be
nonzero, and those have to be adjacent. This is known as λ forming a Special Ordered
Set Of Type II (SOS2). The SOS2 condition can be enforced by a special branching
scheme as proposed in [BT70]. However, it can also be modeled by mixed-integer
constraints; in CCM this is traditionally implemented by (2.16d) to (2.16f).

However, this basic version of CCM is not locally ideal. Instead, a locally-ideal
improved variant is proposed in [Pad00]. It asks for replacing (2.16d) to (2.16f) by the
constraints

j∑
i=1

λi ≤
j∑
i=1

zi (∀j ∈ {1, . . . , k})

k∑
i=j

λi+1 ≤
k∑
i=j

zi (∀j ∈ {1, . . . , k})

in order to model the SOS2 condition.

The Convex Combination Method and the Multiple Choice Method both share the
same logic with respect to the meaning of the binary variables: namely, there is a bi-
nary variable for every segment and the active segment is indicated by its correspon-
ding binary variable having a value of 1, while all others have a value of 0. The main
part in Chapter 4 is designed to fit this setting, though we will also discuss transfera-
bility of the results to another important formulation method in Section 4.2.3.

39

Chapter 2. Preliminaries

2.2.3 The Incremental Method

In contrast to MCM and CCM, the Incremental Method (or δ-Method) [MM57] uses a
different logic to encode the active segment. It introduces continuous δ-variables in
addition to the usual binary variables—again one for each segment—that start from
the leftmost breakpoint and ‘fill up’ from there until a particular point x is reached.

find x, y, δ, z(2.18a)

x = B1 +
k∑
i=1

(Bi+1 −Bi)δi(2.18b)

y = φ(B1) +
k∑
i=1

(φ(Bi+1)− φ(Bi))δi(2.18c)

δi ≤ zi (∀i ∈ {1, . . . , k})(2.18d)

zi+1 ≤ δi (∀i ∈ {1, . . . , k − 1})(2.18e)
k∑
i=1

zi = 1(2.18f)

δi ∈ [0, 1] (∀i ∈ {1, . . . , k})(2.18g)
x, y ∈ R(2.18h)

zi ∈ {0, 1} (∀i ∈ {1, . . . , k})(2.18i)

By construction, the z-variables are decreasing, where a ‘jump’ zi = 1, zi+1 = 0
means that x lies in the i-th segment [Bi, Bi+1]. In this formulation, we use norma-
lized variables δi that indicate the fraction of segment i that is on the left side of x.
Constraints (2.18d) and (2.18e) represent the so-called filling condition. Together they
control that δi may only start filling, i.e. have a nonzero value, if the previous segment
is already filled completely, i.e. δi−1 = 1 or i = 1. Finally, x and y are determined using
(2.18b) and (2.18c), respectively, which both form telescope sums. The Incremental
Method also yields locally ideal formulations.

In Chapter 4, we will consider the projection of polyhedra related to modeling
piecewise linear functions to the integer variables. In this regard, polyhedra obtained
from a modeling according to MCM and CCM agree, as they use the same logic with
respect to the integer variables. Concerning the Incremental Method, there is a well-
known linear bijection T that establishes a connection between its binary variables and
those of the other two methods. It is given by

T : Pδ → PMCM, T (z)i =

{
zi − zi+1, i ∈ {1, . . . , n− 1}
zn, i = n

.

40

2.2. Modeling Piecewise Linear Functions

with inverse

T−1 : PMCM → Pδ, T−1(z)i =
n∑
j=i

zj,

where PMCM denotes the polytope from the formulation according to the Multiple
Choice Method (or the Convex Combination Method), and Pδ the polytope correspon-
ding to the incremental formulation, cf. [Vie15].

The existence of such a transformation implies a one-to-one correspondence bet-
ween the extreme points of PMCM and Pδ. Also, following [Vie15], we obtain a complete
description of Pδ by taking a complete description of PMCM and for each inequality, re-
placing every occurrence of a z-variable by T (z).

We will use this connection in Chapter 4, Section 4.2.3, to translate polyhedral re-
sults to a formulation based on the Incremental Method. Moreover, in Chapter 5 the
transformation T will play an important role to turn a formulation into an equivalent
dual flow problem (see (2.5))—although the formulation did not originate from the
context of modeling piecewise linear functions.

Although all of the above methods lead to locally ideal formulations (except the ba-
sic version of CCM) and there being a close connection between the binary variables
of those formulations, their performance in practice may vary significantly, depending
on the application. The Incremental Method has proven very useful for certain appli-
cations and is widely used in practice, e.g. for optimization problems on gas networks
[Gei11b]. A recent in-depth computational study for piecewise linear functions in the
context of gas network optimization [CPSM14], sees the Incremental Method coming
out on top, outperforming the Multiple Choice Method even by several orders of mag-
nitude for some test sets. One possible explanation for the success of this method is
that it leads to more balanced branch-and-bound trees. A clear performance gap is
also observed in the computations in Chapters 4 and 5, where it turns out that the
facets of the respective polyhedra are overall sparser when described in terms of the
Incremental Method.

2.2.4 Logarithmic Models

One further method—or rather, technique to modify other linearization methods—
should be mentioned, namely logarithmic modeling. All methods so far use binary vari-
ables to somehow indicate the active segment, and have one such binary variable for
each segment. Those formulations involve redundancy in the sense that knowing the
value of one binary variable can allow to derive the value of a lot of other variables. In
contrast, as one can distinguish 2n cases by using n binary variables, it should be possi-
ble to have a formulation that uses much fewer binary variables than the formulations
above. Consequently, formulations using only a logarithmic number of variables have
been proposed [VN11]. For example, there is a logarithmic version for CCM. The idea
behind it is to encode the active segment using a Gray Code. It encodes every segment

41

Chapter 2. Preliminaries

i = 1, . . . , k by a binary code c(i) such that the code for adjacent segments only dif-
fers by one digit. This allows to force the SOS2 condition with logarithmically many
variables z1, . . . , zdlog2(k)e directly by the following constraints:

j−2∑
i=1

λi +
k∑

i=j+1

λi ≤
∑

{l|c(j)l=1}

(1− zl) +
∑

{l|c(j)l=0}

zl (∀j ∈ {1, . . . , k}),

cf. [GMMS12]. For a more general presentation of a logarithmic convex combination
model see [VAN10].

Despite having drastically fewer variables, logarithmic models are often times not
computationally superior to methods with linearly many binary variables. In particu-
lar, for solving gas network optimization problems, [Gei11b, Chapter 8] and [CPSM14]
came to the conclusion that the Incremental Method is preferable.

2.2.5 Nonseparable Multivariate Functions

Based on the modeling techniques for piecewise linear univariate functions presented
in the previous section, there are also models for nonseparable multivariate functions
φ : D → R. In this context, it is usually assumed that the domain D is compact, and
that there is a triangulation of D into simplices (or more general polytopes) such that
φ is linear on each simplex. Furthermore, φ should be continuous, though—as for the
univariate case—there exist extensions to so-called semi-continuous functions.

With simplices taking the role of segments, MCM is relatively straightforward to
extend, while still leading to locally ideal formulations. CCM can also be extended,
though one has to be careful in order to obtain a locally ideal formulation (the so-called
disaggregated convex combination model). Extending the Incremental Method is relatively
elaborate as one has to determine an ordering of the simplices that has to satisfy some
consistency condition—which is trivially satisfied for the canonical ordering in dimen-
sion 1. However, finding such a consistent ordering is possible in arbitrary dimension,
a detailed presentation can be found in [GMMS12]. For more details and exact model
formulations (for polytopes instead of simplices) see [VAN10].

2.2.6 Piecewise Linear Approximations and Relaxations

For constructing a piecewise linear approximation of a univariate function f , one selects
breakpointsBi, i = 1, . . . , k+1 and replaces f by the unique piecewise linear function φ
that agrees with f on all breakpoints, i.e. φ(Bi) = f(Bi) for all i = 1, . . . , k+1. In case f
is multivariate, φ is not uniquely determined by this condition. Hence, in addition one
has to fix a triangulation of the selected breakpoints into simplices. On each simplex S,
the restriction φ|S is then uniquely determined as the linear function that agrees with f
on all the vertices of S. The piecewise linear approximation function φ can be modeled
by one of the modeling methods reviewed above, thus removing the nonlinearity f
from the problem formulation.

42

2.2. Modeling Piecewise Linear Functions

If one wants to obtain a piecewise linear relaxation of the original problem formula-
tion rather than an approximation, one may add or subtract a sufficiently large error
term ε > 0 (that may depend on the segment) to f ’s piecewise linear approximation φ
such that the resulting area contains the function graph of f , i.e. φ(x) − ε ≤ f(x) ≤
φ(x) + ε for all x ∈ D. In the resulting MIP formulation, the variable y representing the
function value f(x) in Formulations (2.15), (2.16) and (2.18) is relaxed to satisfying

(2.20) y ∈ [φ(x)− ε, φ(x) + ε].

In contrast, piecewise linear approximation requires y = φ(x) (see Figure 2.1). Con-
dition (2.20) leads to a proper relaxation of the original problem which comes with
the usual advantages, e.g. its optimal value provides a dual bound for the original
problem.

q

q|q|

Figure 2.1: Piecewise linear approximation (brown function) and relaxation (green
area) of the function (2.14) on the interval [−4, 4].

In order to determine suitable values for ε, one has to be able to compute the maxi-
mum overestimation and the maximum underestimation of f by φ, i.e. maxx∈S(f(x)−
φ(x)) and maxx∈S(φ(x) − f(x)), respectively, for every segment (or simplex) S. As f
is nonlinear, this task already is hard in general, but can be computed efficiently for
certain classes of nonlinear functions, including (2.14). The density of breakpoints
may be chosen such that an a-priori defined ε can be used. Condition (2.20) can be di-
rectly incorporated into all common piecewise linear modeling methods (see [Gei11b,
Section 4.4]).

This is also possible in arbitrary dimension with a suitable extension of piecewise
linear modeling to the multivariate case. However, one should note that this approach

43

Chapter 2. Preliminaries

becomes less attractive in higher dimensions as the number of simplices needed for
a fine-grained triangulation—e.g. such that the diameter of each simplex is below a
given threshold—grows exponentially in the dimension.

For a detailed description of using piecewise linear relaxations for solving non-
convex MINLPs, together with computational results, see [GMMS12]. It is one of the
methods connected with recent advances on the so called nomination validation pro-
blem on gas networks, which can nowadays be solved satisfactorily for country-size
real-world gas networks [PFG+15].

44

Chapter 3

Solving Network Expansion Problems
by Iterative Graph Aggregation

Mathematical network optimization tasks often times have to be solved for very large
underlying networks resulting from country size instances or a high level of detail for
the network’s representation. In case of NP-hard problems as e.g. the network design
problem (see Subsection 2.1.3), this poses challenges to state-of-the-art solution appro-
aches to the extend that some practical instances cannot be solved with the techniques
that are currently available within an acceptable time frame. A question that arises
naturally is whether the problem sizes can be reduced in practice. In this chapter, we
focus on aggregation methods. Major parts of the chapter are based on joint work
with Andreas Bärmann, Frauke Liers, Alexander Martin, Christoph Thurner and Die-
ter Weninger, published in [BLM+15].

3.1 What is Aggregation?

The term aggregation exists in many disciplines and has been used in many different
contexts in the literature. Compliant with the very general idea of ‘A whole formed
by combining several separate elements’(given by Oxford Dictionary [Oxf] for the ge-
neral noun aggregate), we use the term aggregation to describe a coarsening process that
condenses data and omits details. Important reasons for performing aggregation on
problem data include that the problem might simply be too large for solving it accu-
rately in its full size, or that expensive computations are not reasonable for part of
the data, e.g. because they will likely not matter. Aggregation techniques typically
combine parts of the original problem to obtain an aggregated problem and solve this
aggregated instance. Though aggregation is meant to ensure a global view on the com-
plete problem, the resulting method represents a heuristic one, if no estimation of the
error due to aggregation is available. However, in this chapter we will only consider
algorithms that still solve the original problem to optimality. Such methods typically
involve disaggregation. This can be seen as an inverse procedure that reintroduces
more detailed information, leading to a modified aggregated problem. The process is

45

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

iterated until some the stopping criteria are satisfied.

Aggregation is naturally part of intuitive human decision making in complicated
scenarios. As an example, when planning to travel to an overseas location, naturally
the first thing to look for is a suitable flight connection. Only in a second step, one
checks how to complete the route by connections to and from airports—often even
after the flight has been booked. The reasoning behind this is simple: while reaching
nearby airports will most likely not pose major problems regardless of the flight, avai-
lability and associated costs (in terms of money and travel time) of flight connecti-
ons depend heavily on the time of departure and are considered ‘critical’ for the con-
nection.

Aggregation techniques have frequently been investigated. In [Bal65], a solution
method for large-scale transportation problems is suggested that does not consider
all data simultaneously. Instead, a sequence of aggregated problems is solved while
more and more data is reintroduced during the algorithm until the optimal solution is
found, which is certified by a duality-based optimality criterion. This is conceptually
very similar to the algorithms developed in this chapter and [Bal65] was indeed a main
inspiration for this work.

An survey of features that are characteristic for aggregation and disaggregation
techniques can be found in [RPWE91], though the authors quote from [Iji71]:

. . . it is difficult to systematize various aggregation issues that have been
raised in the literature according to subject matter unless the nature of the
subject is considerably limited . . .

Reference [Zip77] derives a posteriori and a priori bounds for the linear programming
case. A survey on aggregation techniques has been given in [DRV87] and there is
a book about aggregation in the context of large-scale optimization [LT03]. In addi-
tion, aggregation techniques are applied to a wide field of applications, including the
optimization of production planning systems [Lei95, Lei98], and gas network optimi-
zation [RMWSB02]. Various articles on aggregation are surveyed in [Fra85]. There
are only few results about the usability of aggregation techniques in discrete problem
settings. In [Ros74], aggregation of equations is described, [CH77] analyzes aggrega-
tion of inequalities and [HS90] presents column aggregation in integer programming.
Aggregation has proven useful for handling highly symmetric problems. In [LMT09],
it is one of several tools to grind a very hard problem instance from coding theory;
[SW12] uses aggregation to form a master problem of a decomposition method for
multi-activity shift scheduling. Especially, shortest path algorithms based on graph
contractions [Gei11a] are very successful in practice. Recent examples for the use of
aggregation are [MAdC+11] for a vehicle routing application with time windows and
[NK07] for scheduling the excavation at an underground mine.

In practical applications, it is very common that a relatively developed network has
to be upgraded in order to allow for the routing of additional demand requirements.
In such a network expansion problem, typically only a small percentage of the arcs

46

3.2. The Single-Commodity Network Expansion Problem

has to be upgraded. These arcs are frequently referred to as bottlenecks. Bottleneck arcs
constitute the limiting factor for additional demands to be routed on top of those that
can already be accommodated. As an example application, in its initial state in 2010,
the German railway network was able to accommodate about 80 % of the forecasted
demand for the year 2030. An appropriate upgrade requires capacity-increasing mea-
sures on less than 20 % of the tracks. This fact is a motivation to devise an algorithm
that continuously updates a set of potential bottleneck arcs, whereas non-bottleneck
arcs are aggregated.

3.2 The Single-Commodity Network Expansion Problem

In the following, we will develop an exact approach based on iterative aggregation
for solving single-commodity network expansion problems. This type of problem has
been introduced in Subsection 2.1.3, where the term expansion refers to the fact that we
assume that we already have a relatively developed network that has to be upgraded.

We will work on the mixed-integer programming formulation (2.8), restated here
for convenience:

min
∑
a∈A

kaya(3.1)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = dv (∀v ∈ V)

xa ≤ ca + Caya (∀a ∈ A)

x ∈ R|A|+

y ∈ Z|A|+ .

We assume that the underlying graph G = (V,A) is bidirected. Each arc a ∈ A posses-
ses initial arc capacities ca ≥ 0. In addition, it can be upgraded by installing a module
with an upgrade capacity of Ca at a price of ka per unit, available in integral multiples
ya. The flow on arc a is represented by the variable xa. The aim is to determine a fea-
sible routing of a specified demand vector d ∈ R|V | that incurs a minimal cost upgrade
of the network while respecting the capacities of the arcs. Although the method is not
restricted to single-commodity network design problems, we focus on this case in the
following for ease of exposition.

The algorithmic idea presented in the following can be extended to more complex
problems as e.g. the problems discussed in Subsection 2.1.4. In some cases, for in-
stance for multi-commodity flow problems, this can be done in a very straightforward
way to obtain a first raw version of an aggregation algorithm, though there might be
room (and need) for improvement by incorporating problem specific additional en-
hancements. We will sketch some ideas for extending our algorithms in Sections 3.6
and 3.7.

47

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

3.3 An Iterative Graph Aggregation Scheme

The proposed aggregation scheme for solving (3.1) works as follows:

1. Choose an initial aggregation by partitioning the node set of the graph into com-
ponents.

2. Solve the network expansion master problem over the aggregated graph.

3. Solve subproblems, to check whether the optimal solution of the master problem
can be extended to a solution on the original graph;

(a) In case of feasibility: terminate and return a network expansion.

(b) In case of infeasibility: refine the partition and go to Step 2.

The above procedure can be seen as a method that computes a reduced version of
the network consisting of bottlenecks only. We will prove in Subsection 3.3.3 that at
termination, the returned solution is globally optimal for the original network, which
makes the devised method an exact algorithm for solving network expansion pro-
blems. The algorithm is detailed in the following.

3.3.1 Graph Aggregation and the Aggregated Master Problem

The quite intuitive concept of graph aggregation can be formalized as follows:

Definition 3.1 (Graph Aggregation). Let G = (V,A) be a directed graph and ϕ : V →
{1, . . . , k} be a surjective clustering function for some positive integer k. Then the graph
obtained by graph aggregation of G with respect to ϕ, denoted by Gϕ = (Vϕ,Aϕ), has the
node set

Vϕ = {V1, . . . , Vk},where Vi = ϕ−1(i) ⊆ V, i ∈ {1, . . . , k}.
The sets Vi, i = 1, . . . , k will be referred to as (aggregate) components. The arc set Aϕ of
Gϕ is defined by

Aϕ = {(Vϕ(u), Vϕ(v)) | a = (u, v) ∈ A with ϕ(u) 6= ϕ(v)},

i.e. Aϕ can be interpreted as a subset of A. To put it differently, Gϕ results from con-
tracting all edges a = (u, v) ∈ A with ϕ(u) = ϕ(v).

Note that G as well as Gϕ are allowed to contain multiple arcs between the same
two nodes and that parallel arcs may be introduced during aggregation. Figure 3.1
illustrates the above definition.

In order to define an aggregated version of Problem (3.1) on the aggregated graph
Gϕ, we have to specify the demands of aggregate nodes as well as the capacity and
upgrading capability of aggregate arcs: The aggregated demand vector dϕ is defined
as the total net demand inside a component, i.e.

dVi =
∑
v∈Vi

dv, i = 1, . . . , k.

48

3.3. An Iterative Graph Aggregation Scheme

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 3.1: Aggregation of a graph with respect to a clustering function ϕ with
ϕ−1(1) = {1, 7, 10}, ϕ−1(2) = {2, 3, 4, 5, 6}, ϕ−1(3) = {8, 9, 12, 15}, and ϕ−1(4) =
{11, 13, 14}. Nodes in the same component are encircled.

The capacity of an arc a = (Vϕ(u), Vϕ(v)) ∈ Aϕ is simply identical to that of the corre-
sponding original one in A, and also installable upgrades of an arc a ∈ Aϕ are inher-
ited. In order to simplify notation, we identify a component Vi ∈ Vϕ with its index i
and identify each arc a ∈ Aϕ with the corresponding original one in A.

The master problem with respect to Gϕ can then be stated as follows:

min
∑
a∈Aϕ

kaya(3.2)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = dv (∀v ∈ Vϕ)

xa ≤ ca + Caya (∀a ∈ Aϕ)

x ∈ R|Aϕ|
+

y ∈ Z|Aϕ|
+ .

Note that by definition of the aggregated demand vector, the flow conservation con-
straint at an aggregate node i ∈ Vϕ is exactly the sum of the original flow conservation
constraints of all nodes v ∈ Vi. As a result, any solution of (3.1) is also a solution of (3.2)
with the same objective function value, and hence (3.2) is a relaxation of (3.1). Con-
sequently, the optimal value of (3.2) with respect to an arbitrary clustering function

49

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

9

5 13

6

3

1
5

5

-4

-8

0

-15

(a) The induced demands for component
{8, 9, 12, 15}.

-4

-8

-6

18

6

3

15

5

(b) The associated feasibility subproblem for
component {8, 9, 12, 15}.

Figure 3.2: Illustration of a subproblem of the aggregation scheme: Figure 3.2a
shows part of the solution of the master problem which sends flow into component
{8, 9, 12, 15} (encircled) via several arcs. The corresponding subproblem for this com-
ponent is depicted in Figure 3.2b.

gives a lower bound on the optimal value of the original problem.

3.3.2 The Local Subproblems and Graph Disaggregation

The solution of (3.2) induces new demands within the aggregated components. We
define subproblems whose purpose is to validate whether these demands can be rou-
ted without additional capacity upgrades inside the components. Moreover, in case of
a negative answer, we obtain information on where to refine the representation of the
graph in a subsequent master problem.

Let Hi = (Vi, Ai) be the subgraph of G = (V,A) induced by component Vi of the
partition of V according to ϕ, i.e. Vi = {v ∈ V | ϕ(v) = i}, i = 1, . . . , k and Ai is the
restriction Ai = A|Vi×Vi .

Checking extendibility of an optimal solution of (3.2) can be done by solving a
maximum-flow problem within each component as follows. The nodes Vi of Hi have
an original demand of dv, v ∈ Vi. The optimal flows obtained from the master problem
induce new demands withinHi as each flow xa on an arc a = (u, v) ∈ Aϕ, where u ∈ Vi
and v ∈ Vj , changes the demand of u to d̃u := du + xa and that of v to d̃v := dv − xa.

An example of this situation is depicted in Figure 3.2.
The resulting problem for component i is the following basic network flow feasibi-

50

3.3. An Iterative Graph Aggregation Scheme

lity problem (cf. (2.1)):

find x(3.3)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = d̃v (∀v ∈ Vi)

xa ≤ ca + Caỹa (∀a ∈ Ai)

x ∈ R|Ai|
+ ,

where ỹ as the network design solution determined by the master problem is fixed
and d̃v denotes the adapted demands as described above.

As explained in Subsection 2.1.2, we can formulate such a problem as a maximum-
flow problem with a single source and a single sink. This reformulation is helpful for
determining a disaggregation in case of infeasibility.

If the subproblem for a component Vi is feasible, the component requires no further
examination in the current iteration. The algorithm terminates as soon as all subpro-
blems are feasible. In contrast, an infeasible subproblem indicates that the master pro-
blem mistakenly neglected the capacity limitations within the component. When an
infeasible subproblem is encountered, the partition is refined in order to consider ad-
ditional arcs in the master problem. This arc set is chosen as a minimum cut that limits
the flow. Details of this have been covered in Subsection 2.1.2. Note that we assume G
to be connected and bidirected and that the disaggregation will be done in a way that
ensures that also all components are strongly connected. Therefore, Proposition 2.1
guarantees that this cut always contains edges of H such that we get a directive on
where to refine the representation. An example illustration of the disaggregation step
is shown in Figure 3.3a.

Updating the master problem is done by disaggregating the infeasible component
along this minimum cut. Let without loss of generality Vk be an infeasible component
and let V 1

k , . . . , V
l
k be the components into which Vk disaggregates. We define a new

clustering function ϕ : V → {1, . . . , k+l−1}with ϕ(v) = ϕ(v) if v /∈ Vk and ϕ(v) = k+i
if v ∈ V i

k ⊂ Vk, see Figure 3.3b. The resulting refined aggregated master problem
therefore is a relaxation not only of the original problem but also of all aggregated
master problems of previous iterations.

3.3.3 Correctness of the Algorithm

We show next that for nonnegative expansion costs, the above method always termi-
nates with an optimal solution to the original network expansion instance.

Theorem 3.2 (Correctness of the Algorithm). For nonnegative expansion costs k in (3.1),
the proposed algorithmic scheme always terminates after a finite number of iterations with an
optimal solution to the network expansion problem for the original graph.

Proof: Termination follows from the fact that only finitely many disaggregation steps
are possible until the original graph is reached. Clearly, the returned solution is feasi-
ble for the original network by the termination criterion.

51

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

-4

-8

-6

18

6

3

1
5

5

(a) Disaggregation along a minimal cut

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

(b) Resulting graph after disaggregation

Figure 3.3: Disaggregation of a component in case its subproblem is infeasible.

In order to prove optimality, let (x̃, ỹ) be the optimum solution of the final master
problem on Gϕ with objective value z̃ =

∑
a∈A kaỹa. As (3.2) is a relaxation of (3.1) for

nonnegative expansion costs k, we know that z̃ gives a lower bound z̃ ≤ z∗ on the
optimum objective value z∗ of the original problem. On the other hand (x̃, ỹ) has been
successfully extended by the subproblems to a feasible solution of (3.1) with the same
objective value z̃ as no additional costs have been caused by this extension. Therefore,
we also have z∗ ≤ z̃, which concludes the proof. �

3.3.4 Relation to Benders Decomposition

The aggregation procedure developed in this chapter possesses some obvious simila-
rities to Benders decomposition. Both algorithms solve a succession of increasingly
stronger relaxations of the original problem, which is achieved by introducing cutting
planes. In the case of the aggregation framework, these are part of the primal (aggre-
gated) flow conservation and capacity constraints. For Benders decomposition, these
are the Benders feasibility and optimality cuts. Both algorithms stop as soon as the
optimality of the relaxed solution is proven. Furthermore, the subproblem used in the
aggregation approach coincides with the subproblem in Benders decomposition if the
x-variables for the arcs in Aϕ are chosen to belong to the Benders master problem.

However, there are also substantial differences. The aggregation scheme introdu-
ces both new variables and constraints in each iteration to tighten the master pro-
blem formulation. Contrary to this, Benders decomposition is a pure row-generation
scheme. Equally important is the fact that the continuous disaggregation of the net-
work graph leads to a shift in the proportions between the master and the subproblem.
The master problem grows in size, while the subproblem tends to shrink as bottleneck

52

3.3. An Iterative Graph Aggregation Scheme

arcs are transferred from inside the components to the master graph. In comparison,
Benders decomposition leaves these proportions fixed.

The following theorem details the relation between the subproblem information
used in the two algorithms.

Theorem 3.3. Let ϕ be a clustering function according to a given network graph G. For
a disaggregation of G along a minimal cut, the primal constraints introduced to the master
problem (3.2) in the proposed aggregation scheme strictly imply the Benders feasibility cut
obtained from the corresponding subproblem.

Proof: We prove the claim for the special case where the whole graph is aggregated to
a single component, i.e. ϕ ≡ 1. The corresponding situation in Benders decomposition
is that all arc flow variables are projected out of the master problem. The extension of
the arguments to the general case is straightforward.

For both algorithms, the subproblem consists in finding a feasible flow in the net-
work and thus a solution to the following feasibility problem of type (3.3).

Let π denote the dual variables of the flow conservation constraints and ω those
of the capacity constraints. In case of infeasibility, Benders decomposition derives its
feasibility cut from an unbounded ray of the dual subproblem

max
∑
v∈V

dvπv −
∑
a∈A

(ca + Caỹa)ωa(3.4)

s.t. πu − πv − ωa ≤ 0 (∀a = (u, v) ∈ A)

ω ∈ R|A|+ .

where ỹ denotes the network design solution determined by the master problem. As
already mentioned in Subsection 2.1.2, variables ω can be eliminated from the problem
since any feasible solution (π̂, ω̂) is dominated by the solution (π̃, ω̃) with π̃ = π̂ and

ω̃a = max{π̂u − π̂v, 0}

for a = (u, v) ∈ A. In case of an infeasible (primal) subproblem, the Benders cut can
now be written as ∑

v∈V

π̃vdv ≤
∑
a∈A

max{π̃u − π̃v, 0}(ca + Caya),

for π̃ belonging to an unbounded dual ray (π̃, ω̃). For the same infeasible master so-
lution, the aggregation scheme adds the following system of inequalities to its master
problem: ∑

a∈δ+Vi

xa −
∑
a∈δ−Vi

xa = di (∀Vi ∈ Vϕ)

and
xa ≤ ca + Caya (∀a ∈ Aϕ \ Aϕ)

53

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

together with the new variables xa for a ∈ Aϕ\Aϕ, where ϕ is the aggregation induced
by the minimal cut. As stated above, the dual subproblem values π̃u and π̃v coincide
if nodes u and v belong to the same component Vi ∈ Vϕ. Thus we can define πi := π̃u
for some u ∈ Vi. The claim then follows by taking the sum of the aggregated flow
conservation constraints weighted with −π̃i and the aggregated capacity constraints
weighted with −max{π̃u − π̃v, 0}. For this weighting, the left hand side becomes

∑
Vi∈Vϕ

π̃i

∑
a∈δ+Vi

xa −
∑
a∈δ−Vi

xa

− ∑
a=(u,v)∈Aϕ

max{π̃u − π̃v, 0}xa,

which can be transformed to∑
a=(u,v)∈Aϕ

(π̃u − π̃v −max{π̃u − π̃v, 0})xa.

This yields ∑
a=(u,v)∈Aϕ:

π̃v≥π̃u

(π̃u − π̃v)xa,

which is nonpositive due to the nonnegativity of x. Thus, we find∑
v∈V

π̃vdv =
∑
Vi∈Vϕ

π̃idi ≤
∑

a=(u,v)∈Aϕ:

π̃v≥π̃u

(π̃u − π̃v)xa +
∑
a∈A

max{π̃u − π̃v, 0}(ca + Caya),

which implies the Benders cut. Finally, this inequality is strict for all solutions to the
problem, where flow is sent both along a certain arc as well as along its opposite arc.
This completes the proof. �

The theorem above shows that each iteration of the aggregation scheme introduces
more information to the master problem than a Benders iteration. Whereas Benders
decomposition is often used to solve network design problems, it is widely known
that the original Benders cuts are weak and numerically unstable already for small-
scale networks. And this becomes even more problematic in the case of large-scale
networks as they are considered here. Therefore, Benders decomposition is most com-
monly employed for smaller network problems with complicating constraints. Ho-
wever, numerical difficulties connected to Benders may remain manageable if not too
many of them are needed, e.g. when starting with a very good (heuristic) primal so-
lution. Benders cuts have been used together with aggregation in [Bä16] in order to
incorporate routing costs.

3.3.5 The Global Subproblem

It should be mentioned that the current network expansion in terms of the y-variables
might be optimal although the extendibility test described in Subsection 3.3.2 fails

54

3.3. An Iterative Graph Aggregation Scheme

for some component. This is because in the subproblems not only the expansions (y-
variables) are fixed but also the flow on all edges contained in the master problem.
To overcome this problem we can use a simple global test: we fix the expansion and
check feasibility of the resulting flow problem on the complete graph, given by

find x(3.5)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = dv (∀v ∈ V)

xa ≤ ca + Caỹa (∀a ∈ A)

x ∈ R|A|+ ,

where ỹ is fixed by the master problem. In case of the single-commodity network de-
sign problem, this global subproblem is even capable of completely replacing the local
subproblems. For that, it is required that in case of infeasibility of the global subpro-
blem, the minimum cut obtained does contain at least some edge that is not part of
the master problem yet (and therefore the cut runs through one or more components).
Indeed, we can show that the case in which this cut only consists of master problem
edges can be excluded (despite this having been considered possible in [BLM+15]).

Theorem 3.4. Let (x̃, ỹ) be a feasible solution of (3.1) and let (3.5) be infeasible. Then any
minimum cut restricting the flow in (3.5) contains edges that have not been part of (3.1).

Proof: Consider the dual problems of type (2.5) of the master problem (3.2) as well
as for the global subproblem (3.5). We have identified them as minimum cut pro-
blems for the single-source versions of the respective flow problems in Chapter 2,
Subsection 2.1.2. In the following, we will refer to the construction and notation of
the super nodes and super sinks as well as artificial arcs described in that subsection.

The minimum cut problem for the master problem reads

min
∑
a∈Ãϕ

(ca + Caỹa)ωa(3.6)

s.t. πu − πv + ωa ≥ 0 (∀a = (u, v) ∈ Ãϕ)

πt − πs ≥ 1

πv ∈ R (∀v ∈ Vϕ ∪ {s, t})

ωa ∈ R+ (∀a ∈ Ãϕ),

where—as a notational reminder—Ãϕ denotes the set of arcs Aϕ together with any
artificial arcs that have been introduced in order to obtain a single-source network
flow problem.

We know that both (2.4) and its dual (2.5) are feasible for all networks as they allow
for trivial feasible solutions. Hence, by strong duality, the optimal value of (3.6) is
equal to the total demand to be routed, given by

∑
v∈Vϕ:dv>0 dv. However, for forming

55

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

aggregate demands, some demand values have canceled out. We compensate for that
by adding extra auxiliary arc (s, Vi) from the super source s into the component nodes
with a capacity equal to the total demand of that aggregate node minus its net demand.
Similarly, arcs (Vi, t) from the components to the super sink t are added that have the
same demand as their aforementioned counterparts. This raises the objective value of
(3.6) to the total demand D :=

∑
v∈V :dv>0 dv of the original problem.

For the global subproblem, the dual of the corresponding single-source flow pro-
blem is given by

min
∑
a∈Ã

(ca + Caỹa)ωa(3.7)

s.t. πu − πv + ωa ≥ 0 (∀a = (u, v) ∈ Ã)

πt − πs ≥ 1

πv ∈ R (∀v ∈ V ∪ {s, t})

ωa ∈ R+ (∀a ∈ Ã).

The global subproblem (3.5) is infeasible by assumption, which implies that the opti-
mal value of (3.7) is strictly smaller than D. Now assume that a minimum cut limiting
the flow contains no arc in A\Aϕ. This implies that ωa = 0 for all a ∈ A\Aϕ by the
way the cut is computed (again cf. Subsection 2.1.2). Since G is bidirected, we have
πu = πv for all nodes u, v with (u, v) ∈ A. Furthermore, due to connectedness of all
components, the node potential is constant over each components. Thus, we may de-
fine πVi = πv for any v ∈ Vi, which transforms (3.7) equivalently into (3.6) together
with the slight adaptation with respect to its total demand described above. This is a
contradiction as by assumption the optimal value of the former problem is less than
D, whereas the latter has a value of exactly D. �

Still, it is not clear whether a disaggregation strategy based on the global subpro-
blem is superior. In fact, disaggregating in an overly conservative way may be detri-
mental to the algorithm as it tends to increase the number of iterations (see also the
discussion on ‘Disaggregation’ in Section 3.4 below). An experiment on that question
will be contained in Section 3.5.

3.4 Implementation

Three versions of the aggregation scheme have been implemented. The first one re-
presents what has been described so far. It has the obvious drawback that only very
limited information is used when moving from one iteration to the next. In order to
partly overcome this, we integrate the aggregation scheme into a branch-and-bound
framework. Finally, we study a hybrid of both.

56

3.4. Implementation

3.4.1 Sequential Aggregation (SAGG)

The Sequential Aggregation Algorithm (SAGG) works in a strictly sequential manner: in
each iteration, the network expansion master problem is solved to optimality. In case
of feasibility of all subproblems, the algorithm terminates. Otherwise, the graph is
disaggregated as described in the previous section (according to local or global sub-
problems), see Figure 3.4a for a schematic example.

For speeding up the first iterations, we employ the following variation: instead of
solving the network expansion master problems, we solve their linear programming
relaxations only and disaggregate according to the obtained optimal solutions. This
is done until the optimum solution of the LP relaxation of the original problem is
found. Only then, we solve the master problem as an MIP. Experiments suggest that
the savings in runtime compensate for the potentially misleading first disaggregation
decisions based on the LP relaxation. Note that the proof of Theorem 3.2 does not
require y to be integral.

3.4.2 Integrated Aggregation (IAGG)

In SAGG, most information, including bounds and cutting planes, is lost when procee-
ding from one iteration to the next. Only the disaggregation is processed to the next
iteration. The idea behind the Integrated Aggregation Algorithm (IAGG) is to use more
of this information by embedding the disaggregation steps into a branch-and-bound
tree.

We start with an initial aggregation and form the corresponding master problem.
However, all constraints of (3.2) are formulated using the original variables of For-
mulation (3.1). Note that aggregation of a network can be performed by removing
some capacity constraints and adding up some flow conservation constraints from the
formulation of the original instance. Each integral solution (x, y) found during the
branch-and-bound search is immediately tested for extendibility (realized by a call-
back). In case of feasibility, we keep (x, y) as an incumbent solution, otherwise we
disaggregate the graph and reject (x, y), see Figure 3.4b for a schematic example. All
constraints from an aggregated graph remain valid for the disaggregated network.
Disaggregating a network amounts to inserting the flow conservation constraints for
the new components and the arc capacity constraints for the arcs entering the master
problem to the problem formulation.

3.4.3 The Hybrid Aggregation Algorithm (HAGG)

A natural composition of SAGG and IAGG is the Hybrid Aggregation Algorithm (HAGG).
It starts with a number of sequential iterations such as in SAGG, and then switches to
the integrated scheme (see Figure 3.4c). The idea is to have more information about
the graph available at the root node of the branch-and-bound tree once we start to em-
ploy the integrated scheme. This is beneficial for the cutting planes generated at the
root node.

57

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

Thus, for the first iterations, HAGG and SAGG behave exactly the same. Namely,
we solve the LP relaxation of the master problem and proceed with the obtained fracti-
onal solution. As a heuristic rule, we switch from the sequential to the integrated
scheme when the value of the LP relaxation of the master problem is equal to the va-
lue of the LP relaxation of the original problem. Then, the optimal fractional expansion
is found and the LP relaxation does not give any further disaggregation information.

(a) The Sequen-
tial Algorithm
(SAGG)

(b) The Integrated Algorithm (IAGG) (c) The Hybrid Algorithm
(HAGG)

Figure 3.4: Schematic outline of the three aggregation schemes. Nodes labeled Int cor-
respond to feasible integral solutions of the current master problem, whereas Int / Inf
indicates that such a solution is infeasible for the original problem, leading to disag-
gregation. For the branch-and-bound trees, white nodes labeled Inf or Frac represent
infeasible and fractional branch-and-bound nodes (at which branching might occur),
respectively.

3.4.4 Details of the Implementation

The Initial Aggregation The easiest choice is to first aggregate the whole graph to a
single vertex such that the disaggregation is completely determined by the minimum-
cut strategy. As discussed above, this might not be the most suitable choice for the

58

3.5. Computational Results

integrated scheme, which is the motivation for a hybrid scheme. In fact, one can view
HAGG as being IAGG with a special heuristic for finding the initial aggregation.

Solving the Subproblems As already mentioned in Chapter 2, all maximum-flow
subproblems are solved by a standard LP solver, which is fast in practice. A poten-
tial speedup by using specialized maximum-flow implementations is negligible as the
implementation spends almost all of the time on solving the master problems.

Disaggregation We have seen how disaggregation works for a single component in
Section 3.3. However, in case of several infeasible components, it is not clear before-
hand whether all of them should be disaggregated, or, otherwise, which one(s) should
be used for disaggregation. In our implementation, we always disaggregate all infe-
asible components, which aims at minimizing the number of iterations. Experiments
with other disaggregation policies did not lead to significant improvement. In addi-
tion, we also split components that are not arc-connected into their connected com-
ponents. This is needed in order to guarantee that we obtain useful cuts in case the
subproblem is infeasible (cf. Subsection 3.3.2 above). Moreover, disconnected compo-
nents are likely to be split anyway in a later iteration.

Global Subproblems The case where testing for extendibility using the global sub-
problem saves at least one iteration happened regularly in preliminary experiments.
As an iteration is relatively expensive (especially for SAGG), using global subpro-
blems for testing should definitely be included in the default settings. After finding a
solution of the master problem, we first apply the global subproblem and in case of in-
feasibility we use the local subproblems to determine how to disaggregate. However,
note that due to Theorem 3.4 we could waive the local subproblems completely. This
policy in general would lead to more conservative disaggregation. An experiment on
this version is included in Subsection 3.5.3. Having a distribution of roles between
different types of subproblems adds more flexibility to the scheme. In this case, the
purpose of the global subproblem lies solely in the extendibility test, while a possible
diaggregation is decided on the basis of a local subproblem. Although this choice is ar-
bitrary for the case of single-commodity network design, we will see this distribution
of roles later in Section 3.7, where it is difficult to do without.

3.5 Computational Results

The computational experiments have been performed on a queuing cluster of Intel
Xeon E5410 2.33 GHz computers with 12 MB cache and 32 GB RAM, running Linux
in 64 bit mode. The framework has been implemented using the C++-API of Gu-
robi 5.5 [Gur17]. For IAGG and HAGG, it was necessary to adjust Gurobi’s parameter
settings, which involves a more aggressive cutting plane generation, a focus on impro-
ving the bound and downscaling the frequency of the heuristics. Additionally, since

59

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

those algorithms use lazy cuts, dual reductions had to be disabled in order to guarantee
correctness. Implementation SAGG uses Gurobi’s standard parameter settings. Each
job was run on 4 cores and with a time limit of 10 hours.

We compare our aggregation schemes to the solution of the original network ex-
pansion integer program (3.1) using Gurobi 5.5 with standard parameter settings.
These reference solution times are denoted by MIP. For MIP, experiments with dif-
ferent parameter settings did not lead to considerably better running times.

3.5.1 Benchmark Instances

The aggregation schemes are tested on different sets of benchmark instances. Net-
work topologies include random scale-free networks according to the preferential at-
tachment model [AB02], and instances created from the rome99 graph from the 9th
DIMACS challenge [DGJ06]. The vector d of demands as well as the vector c of ini-
tial arc capacities were drawn randomly. The initial capacities of each instance were
scaled by a constant factor in order to obtain different percentages of initial demand
satisfaction l, which was done by solving an auxiliary network flow problem. The pa-
rameter l indicates which portion of the demand can be routed given the initial state
of the network. For different instance sizes, varying the initial capacities has a signi-
ficant impact on the solution time and the solvability in general, and is therefore an
important parameter for the forthcoming analysis.

Whenever the generation of instances included random elements, we generated
5 instances of the same size and demand satisfaction. The solution times then are
(geometric) averages over those five instances. If only a subset of the 5 instances was
solvable within the time limit, the average is taken over this subset only. We also state
the number of instances that could be solved within the time limit.

3.5.2 Computational Results on Scale-Free Networks

The topology of the instances in this benchmark set has been generated according to a
preferential attachment model. It produces so-called scale-free graphs [AB02], which
are known to represent the evolutionary behavior of complex real networks well. Star-
ting with a small clique of initial nodes, the model iteratively adds new nodes. Each
new node is connected to m of the already existing nodes. This parameter m, the so-
called neighborhood parameter, influences the average node degree. We set m = 2 in
order to generate sparse graphs that resemble infrastructure networks. In preliminary
experimental computations, choosing higher values of m did not influence the results
significantly. Furthermore, we chose 80 % of the nodes as terminals, i.e. nodes with
non-zero demand, in order to represent a higher but not overly conservative load sce-
nario. The module capacities for these instances were chosen as 0.25 % of the total
demand in order to obtain reasonable module sizes with respect to the scale of the
demand. Varying these two parameters did not lead to significantly different results
either. Finally, the module costs were drawn randomly.

60

3.5. Computational Results

Computational Results for Small Instances

In this subsection, we analyze the aggregation method for small instances with dif-
ferent levels l of initial demand satisfaction on random scale-free networks with 100
nodes, where we consider l ∈ {0, 0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95}. First, we determine
which implementation of the aggregation scheme performs best. In a second step, we
compare the best implementation to MIP.

l IAGG SAGG HAGG
solved time[s] solved time[s] solved time[s]

0 3 196.10 3 502.30 3 230.85
0.05 5 22.44 5 186.98 5 63.04
0.1 5 111.15 4 676.27 4 106.75
0.2 5 34.57 5 110.92 5 55.57
0.3 5 8.02 5 25.69 5 10.16
0.4 5 8.01 5 35.03 5 8.47
0.5 5 4.18 5 5.65 5 2.71
0.6 5 5.63 4 4.23 5 6.07
0.7 5 1.17 5 0.81 5 0.82
0.8 5 0.57 5 0.49 5 0.51
0.9 5 0.23 5 0.30 5 0.25
0.95 5 0.12 5 0.21 5 0.18

Table 3.1: Number of instances solved and average solution times[s] for the three ag-
gregation algorithms for random scale-free networks with |V | = 100 nodes and va-
rying level of initial demand satisfaction.

In Table 3.1, solution times are reported in seconds, each averaged over five instan-
ces with the same value of l. If not all instances could be solved within the time limit,
the average is taken over the subset of solved instances. If a method could not solve
any of the five instances for a given l, we denote this by an average solution time of
‘∞’. The fastest method in each row is emphasized with bold letters. We rank the
methods first by the number of solved instances and second by the average solution
time.

The results for the instances from Table 3.1 are also presented as a performance
profile in Figure 3.5. For each aggregation method, the percentage of all solved scale-
free instances with |V | = 100 is shown as a function of the solution time that is given
in multiples of the time the fastest method needed in order to solve it. The information
deduced from this kind of plot is twofold. First, the intercept of each curve with the left
vertical axis shows the percentage of instances for which the corresponding method
achieves the shortest solution time. Thus, the method attaining the highest intercept
on the vertical axis is the one which ‘wins’ most instances. Second, for each valuem on
the horizontal axis, the plot shows the percentage of instances that a method was able
to solve withinm times the shortest solution time achieved by any of the methods. The

61

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

0

10

20

30

40

50

60

70

80

90

100

 1 10 100

%
 o

f i
ns

ta
nc

es
 s

ol
ve

d

Multiple of fastest solution time (log-scale)

IAGG
SAGG
HAGG

Figure 3.5: Performance profile for the three aggregation frameworks on random scale-
free networks with |V | = 100 nodes.

interpretation of this information is how good a method is in catching up on instances
for which it is not the fastest. A more detailed introduction to performance profiles
can be found in [DM02].

We see that IAGG performs best for the scale-free networks with 100 nodes when
compared to SAGG and HAGG. It solves the majority of instances within the shortest
solution time and solves 97 % of the instances, which is the largest value among the
three methods. Furthermore, there is no instance for which it requires more than 4
times the shortest solution time.

In Table 3.2, we thus compare IAGG with MIP. We see that the aggregation ap-
proach is beneficial whenever the instance cannot trivially be solved within a few se-
conds. For instances with small initial demand satisfaction, we observe significantly
faster solution times for IAGG, and we see that it is able to solve more instances
within the time limit. Even without any preinstalled capacities (l = 0), the aggre-
gation scheme attains an average solution time which is 6 times smaller than that of
MIP. From l = 0.7 upwards, the running times of both algorithms are negligible, and
the tiny advantage for MIP can be attributed to the overhead caused by performing the
aggregation scheme. The superior performance on instances with small initial demand
satisfaction seems surprising. It contrasts the fact that the number of components in
the final state of network aggregation in IAGG converges to the number of nodes in
the original instance. This is presented in Figure 3.6, where we show the average
number of components in the final iteration as a function of the percentage of initial
demand satisfaction. The aggregation framework performs better than the standard
approach MIP even in case of complete disaggregation. In order to determine what
causes this behavior, we tested whether the aggregation approach could determine

62

3.5. Computational Results

l MIP IAGG
solved time[s] solved time[s]

0 3 1373.11 3 196.10
0.05 5 266.07 5 22.44
0.1 4 904.29 5 111.15
0.2 5 136.43 5 34.57
0.3 5 29.30 5 8.02
0.4 5 28.16 5 8.01
0.5 5 2.40 5 4.18
0.6 5 19.81 5 5.63
0.7 5 0.21 5 1.17
0.8 5 0.08 5 0.57
0.9 5 0.05 5 0.23
0.95 5 0.04 5 0.12

Table 3.2: Number of instances solved and average solution times of MIP and IAGG
for random scale-free networks with |V | = 100 nodes and varying values of l.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5
R

e
m

a
in

in
g
 f

ra
ct

io
n
 o

f
n
o
d
e
s

Initial demand satisfaction (%)

IAGG

Figure 3.6: Average number of components in the last iteration of IAGG in relation to
the original |V | = 100 nodes for random scale-free networks for varying level of initial
demand satisfaction.

63

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

|V | \ l 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.92 0.94 0.96 0.98

1000 X X X X X X
2000 X X X X X
3000 X X X X X
4000 X X X X X
5000 X X X X X X
10000 X X X X X
15000 X X
20000 X
25000 X

Table 3.3: Instance sizes |V | and extension degrees l that comply with the selection rule
for medium-sized and large instances are marked by an X in the table.

more effective branching decisions within the branch-and-bound procedure. To this
end, in the standard solver MIP, we increased the branching priority on variables that
enter the master problems of the aggregation scheme in early iterations. We found that
these branching priorities did not lead to better running times for MIP. This suggests
that the cutting planes generated within the aggregation procedure are more powerful
than the ones generated within MIP.

Behavior for Medium-Sized and Large Instances

We now consider larger instances within a range of 1000 to 25000 nodes as well as
an initial demand satisfaction from 60 % to 98 %. We applied a selection rule to sort
out instances which are ‘too easy’ or ‘too hard’ to solve. We required that for at least
three out of five instances per class, any of the four methods has a solution time in the
time interval reaching from 10 seconds to the time limit of 10 hours. Table 3.3 lists the
instances which comply with this selection rule. Note that the relevant instances can
be located mainly on the diagonal as an increasing instance size requires an increasing
level of initial capacities in order to remain solvable within the time limit.

Figure 3.7a shows the performance profile for the medium-sized instances with up
to 5000 nodes. We observe that for these instances, the HAGG implementation per-
forms best and IAGG is almost as good. Accordingly, these results suggest the choice
of one of those two methods. However, the picture changes for the large instances
with at least 10000 nodes, which have a high level of preinstalled capacities, see Fi-
gure 3.7b. Here, HAGG performs poorly and instead, SAGG solves a majority of the
instances fastest (∼ 42%), while IAGG performs only slightly worse.

As a result of Figures 3.7a and 3.7b, we come to the conclusion that the overall
best choice is IAGG, as it is not much worse than HAGG on the medium-sized instan-
ces and much better on the large networks. Furthermore, it outperforms both other
implementations when considering small multiples of the shortest solution times.

64

3.5. Computational Results

0

10

20

30

40

50

60

70

80

90

100

 1 10 100

%
 o

f i
ns

ta
nc

es
 s

ol
ve

d

Multiple of fastest solution time (log-scale)

IAGG
SAGG
HAGG

(a) Instances with up to |V | = 5000 nodes

0

10

20

30

40

50

60

70

80

90

100

 1 10 100

%
 o

f i
ns

ta
nc

es
 s

ol
ve

d

Multiple of fastest solution time (log-scale)

IAGG
SAGG
HAGG

(b) Instances from |V | = 10000 nodes on

Figure 3.7: Performance profile for the large random scale-free networks from Ta-
ble 3.3.

The comparison between IAGG and MIP on the instances from Table 3.3 is shown
in Table 3.4. The instances are grouped by initial demand satisfaction. We see that
IAGG is better comparing the average solution times for almost all instances under
consideration. A special remark is to be made on the total number of solved instances,
which is the first number in each cell. Here, we see that within the time limit, IAGG
can always solve at least as many instances as MIP, often more. Furthermore, we note
that even though the number of solved instances is larger for IAGG, the geometric
mean of the solution times is still lower compared to the solution times of MIP. Thus,
IAGG solves the instances significantly faster than the standard MIP approach.

These statements are underlined by the performance profile over the same instan-
ces, which is shown in Figure 3.8. The aggregation scheme IAGG clearly outperforms
the standard approach MIP. It solves about 86 % of all instances fastest. In addition,
IAGG was able to solve a higher percentage of the overall number of instances within
the time limit when compared to MIP.

To investigate why the aggregation scheme solves the instances so much faster, we
examine the average number of network components in the final iteration for four se-
lected instance sizes, |V | ∈ {1000, 2000, 3000, 4000}, as this number strongly influences
the size of the aggregated network design problem, see Figure 3.9.

The results are comparable to those for random scale-free networks with |V | =
100 nodes as shown in Figure 3.6. Due to the larger size, these instances could only
be solved for higher levels of initial demand satisfaction, for example at least 60 % for
graphs with 1000 nodes. The plot shows that the aggregation algorithms can indeed
reduce the number of nodes significantly when compared to the number of nodes in
the original graph.

As an example, Table 3.5 presents the results for the instances with |V | = 3000
nodes. For different values of l, average solution times of the aggregation schemes are
compared with those of MIP.

In total, these results for medium and large instances confirm our findings for in-

65

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

|V | l MIP IAGG
solved time[s] solved time[s]

1000 0.75 4 142.31 5 92.40
2000 0.75 3 6715.29 4 1583.72

1000 0.8 4 52.75 5 34.25
2000 0.8 5 944.84 5 143.04
3000 0.8 2 6605.03 3 1806.96

1000 0.85 5 19.68 5 9.31
2000 0.85 5 140.75 5 43.15
3000 0.85 5 2783.47 5 397.87
4000 0.85 3 14164.16 5 884.52
5000 0.85 1 31214.39 3 5484.70

2000 0.9 5 24.39 5 12.78
3000 0.9 5 340.59 5 35.94
4000 0.9 5 1433.56 5 115.57
5000 0.9 5 3113.36 5 195.83

10000 0.9 0 ∞ 3 11951.60

2000 0.92 5 11.32 5 10.14
3000 0.92 5 63.97 5 24.38

|V | l MIP IAGG
solved time[s] solved time[s]

4000 0.92 5 979.59 5 51.89
5000 0.92 5 1499.94 5 61.39

10000 0.92 0 ∞ 3 6139.25

3000 0.94 5 21.08 5 13.17
4000 0.94 5 121.86 5 21.30
5000 0.94 5 450.84 5 36.23

10000 0.94 3 9004.99 5 338.51

3000 0.96 5 5.62 5 11.76
4000 0.96 5 30.08 5 8.76
5000 0.96 5 65.41 5 20.21

10000 0.96 4 4012.20 5 109.48
15000 0.96 2 25343.05 5 2395.53

5000 0.98 5 6.70 5 9.53
10000 0.98 5 421.14 5 33.07
15000 0.98 5 3690.52 5 90.50
20000 0.98 5 10982.81 5 470.47
25000 0.98 2 22687.73 4 4372.76
25000 0.98 2 22687.73 4 4372.76

Table 3.4: Number of instances solved and average solution times[s] of MIP and IAGG
for random scale-free instances with |V | nodes and initial demand satisfaction l.

0

10

20

30

40

50

60

70

80

90

100

 1 10 100

%
 o

f i
ns

ta
nc

es
 s

ol
ve

d

Multiple of fastest solution time (log-scale)

MIP
IAGG

Figure 3.8: Performance profile for all instances from Table 3.3, comparing MIP and
IAGG.

66

3.5. Computational Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

2

0
.9

4

0
.9

6

R
e
m

a
in

in
g

 f
ra

ct
io

n
 o

f
n
o
d

e
s

Initial demand satisfaction (%)

1000
2000
3000
4000

Figure 3.9: Average number of components in the last iteration of IAGG in relation to
the original number of nodes for |V | ∈ {1000, 2000, 3000, 4000} for random scale-free
networks with varying level of initial demand satisfaction.

l MIP IAGG SAGG HAGG
solved time[s] solved time[s] solved time[s] solved time[s]

0.8 2 6605.03 3 1806.96 2 5914.47 2 1299.07
0.85 5 2783.47 5 397.87 5 3761.89 5 623.59
0.9 5 340.59 5 35.94 5 58.96 5 28.68
0.92 5 63.97 5 24.38 5 16.23 5 18.00
0.94 5 21.08 5 13.17 5 9.84 5 10.44
0.96 5 5.62 5 11.76 5 7.99 5 7.81

Table 3.5: Number of instances solved and average solution times[s] for random scale-
free networks with |V | = 3000 nodes and initial demand satisfaction l.

67

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

stances with |V | = 100 nodes. Namely, MIP is vastly outperformed by the aggregation
schemes. IAGG generally performs best with respect to the number of solved instan-
ces and with respect to the solution times.

3.5.3 Disaggregation According to the Global Subproblem

Theorem 3.4 opened up a new version of the aggregation algorithms that relies on the
global subproblem only. In this subsection, we want to test this version with respect
to two questions: On the one hand, we ask whether more conservative disaggregation
leads to a more compressed master problem at termination (or just to more iterations).
On the other hand, we may compare the two policies with respect to runtime.

components

l MIP IAGG SAGG HAGG
global local global local global local

0.85 3000.0 708.6 1056.4 703.0 884.8 673.0 688.4
0.90 3000.0 466.8 580.2 459.2 528.4 447.2 454.0
0.92 3000.0 371.6 438.8 369.4 408.6 362.2 365.8
0.94 3000.0 271.0 307.2 270.6 291.4 268.6 269.8

time[s]

0.85 344.66 76.25 127.00 77.53 116.04 62.87 47.55
0.90 48.32 15.21 17.64 10.15 14.85 12.28 9.92
0.92 22.41 10.70 13.27 6.78 8.88 9.50 10.36
0.94 8.02 6.84 8.02 4.09 4.97 5.44 5.43

Table 3.6: Number of components (arithmetic averages) at termination as well as solu-
tion times[s] (geometric averages) comparing disaggregation according to the global
subproblem (column ‘global’) or local subproblems (column ‘local’) for random scale-
free instances with |V | = 3000 nodes and initial demand satisfaction l.

Table 3.6 exemplarily shows results on these two questions on instances with 3000
nodes. It includes all instance sets from Table 3.3, where every instance has been sol-
ved by all four methods within the time limit. This test has been run on superior ma-
chines (Intel Xeon E5-2690 3.00 GHz computers with 25 MB cache and 128 GB RAM)
as well as a later version of Gurobi (Version 6.00) which explains the faster solution
times compared to Table 3.5.

We see that the number of components in the final master problem of IAGG and
SAGG is indeed reduced by about 10% to 20% when using the ‘global’ setting. Mo-
reover, slight savings in runtime can be observed for those methods. Remarkably, in
contrast to IAGG, HAGG arrives at a final aggregation of pretty much the same size on
average with either setting. Consequently, disaggregation according to the global sub-

68

3.5. Computational Results

problem does not save any runtime, it is even slightly detrimental. Moreover, HAGG
consistently achieves the smallest aggregated master problems on average among the
three aggregation methods. This fact further supports the general idea behind HAGG
of using an integrated aggregation scheme together with a nontrivial initial aggrega-
tion. Furthermore, the development of good problem-specific heuristics for finding a
good initial aggregation seems promising—although this is outside the scope of this
work. Just imagine we could somehow guess the configuration of the master problem
in the last iteration of SAGG: this would obviously lead to a vastly improved version.

3.5.4 Performance on a Real-World Street Network

The graph rome99 from the 9th DIMACS Implementation Challenge on shortest path
problems [DGJ06] describes a large portion of the road network of the city of Rome
from 1999 (3353 vertices, 8870 directed edges). Its size is comparable to that of the
scale-free networks with 3000 nodes. The corresponding results can be found in Ta-
ble 3.5. It not only provides a realistic network topology but also comes with a dis-
tance measure on the edges. We use the latter values as module expansion costs, as a
distance-proportional cost seems a plausible choice. The module sizes are of the size
of 0.25 % of the total demand as for the previous test instances. The demands and
initial capacities were again generated randomly.

Table 3.7 shows the solution times for each aggregation method as well as for
plainly solving the network expansion problem via MIP for initial capacities ranging
from 90 % up to 98 % in steps of one percent.

l MIP IAGG SAGG HAGG
solved time[s] solved time[s] solved time[s] solved time[s]

0.90 0 ∞ 0 ∞ 0 ∞ 0 ∞
0.91 1 11041.70 1 1201.86 1 6297.84 1 1894.52
0.92 1 94.92 1 130.39 1 157.05 1 56.22
0.93 2 1109.27 2 478.40 2 747.56 2 169.59
0.94 4 826.98 5 311.36 4 421.08 5 269.42
0.95 5 133.37 5 76.08 5 122.41 5 58.84
0.96 5 11.9 5 27.63 5 36.57 5 20.13
0.97 5 2.57 5 9.78 5 8.89 5 8.56
0.98 5 1.53 5 4.65 5 4.95 5 4.61

Table 3.7: Number of instances solved and average solution time[s] for a real street
network with initial demand satisfaction l.

We see a very similar behavior as for the scale-free instances: MIP is fastest only
for very easy instances and our aggregation algorithms start to take the lead from a
certain level of difficulty onwards.

69

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

Remark 3.5. More computational results on the aggregation methods on real network
topologies have been compiled. Computations on single-commodity adaptations of
instances from the popular library of network design problems SNDlib [OPTW07] can
be found in [BLM+15]. Among other things, they show that IAGG can be successful
even if the network is almost completely disaggregated. Furthermore, computations
on the German railway network are included in [Bä16].

3.6 Extending the Aggregation Scheme to More Complex
Network Design Problems

An important issue is that many real-world applications include more complex featu-
res and cannot be modeled in the current single-commodity maximum-flow setting.
Those features include e.g. multi-commodity flows, robustness/survivability, multi-
ple scenarios, or nonlinearities. Respective models have been brought up already in
Chapter 2, Subsections 2.1.4 and 2.1.5. There are natural extensions of our algorithms
for those cases but also additional peculiarities that have to be considered in detail
in each case. In this section, we will address cases in which the problem can still be
modeled as an MILP. An example for a nonlinear network design problem will be
discussed in Section 3.7.

The ideas shared in the following will hopefully help the reader to decide whether
an aggregation approach as the one presented in this chapter is promising for his or
her own network design problem.

3.6.1 Multi-Commodity Flow

The aggregation schemes can directly be extended to the multi-commodity case (see
(2.9) for a formulation of a multi-commodity flow network expansion problem). Ho-
wever, since multi-commodity flow problems do not give a canonical minimum cut in
case of infeasibility in the same way as single-commodity problems do, we have to spe-
cify how disaggregation is supposed to work. First of all, note that any disaggregation
policy will lead to an exact algorithm as long as we do not erroneously terminate with
a suboptimal (or infeasible) solution. As no canonical disaggregation method is avai-
lable anymore, we use the following heuristic rule, which represents the most direct
extension of our implementation so far: in case of an infeasible subproblem, we max-
imize the total throughput over all commodities and disaggregate along all arcs that
limit this flow (defined by the dual variables of the respective capacity constraints).
After that, we run a breadth-first search to determine the new components.

To demonstrate the extendibility to the multi-commodity case, we include some
results for random scale-free networks with a few commodities. These instances are
random scale-free networks with |V | = 100 and l = 0.8 as well as medium-sized
networks with |V | = 3000 and l = 0.96. The short solution times for these network
sizes obtained in the single-commodity case allow for a multi-commodity study with

70

3.6. Extending the Aggregation Scheme to More Complex Network Design Problems

a varying number of commodities b, for which the demands were again randomly
drawn.

Table 3.8 compares the number of instances solved and the average solution times
obtained by MIP and the three implementations of our aggregation scheme for the
small instances with up to 25 commodities. We see that an increasing number of com-
modities increases the difficulty of the problem significantly. On the one hand, this is
due to the obvious fact that the subproblems are now multi-commodity network flow
problems. On the other hand, we also observe that the graphs tend to be disaggre-
gated much further at termination. Nevertheless, implementations IAGG and HAGG
both outperform MIP, and for a higher number of commodities, IAGG is preferable.

b MIP IAGG SAGG HAGG
solved time[s] solved time[s] solved time[s] solved time[s]

5 5 7.13 5 9.72 5 6.78 5 6.93
10 5 258.43 5 52.47 5 126.54 5 86.12
15 4 166.98 5 147.35 5 334.15 5 140.81
20 3 966.64 4 337.68 4 1779.86 4 363.40
25 3 2358.80 5 876.46 3 2678.55 4 2258.37

Table 3.8: Number of instances solved and average solution time[s] for small multi-
commodity instances with |V | = 100 nodes, an initial demand satisfaction of l = 0.8,
and an increasing number of commodities b.

b MIP IAGG SAGG HAGG
solved time[s] solved time[s] solved time[s] solved time[s]

2 5 120.01 5 54.13 5 59.98 5 50.08
3 5 337.98 5 152.21 5 156.87 5 132.78
5 5 4436.23 5 620.31 4 863.54 5 533.49
7 3 15302.56 4 2249.79 1 15708.12 5 5169.41
10 0 ∞ 2 5465.29 0 ∞ 0 ∞

Table 3.9: Number of instances solved and average solution time[s] for medium-sized
multi-commodity instances with |V | = 3000 nodes, an initial demand satisfaction of
l = 0.96, and an increasing number of commodities b.

The corresponding results for the medium-sized instances in Table 3.9 show a si-
milar picture. The dimension of the graph allows for fewer commodities to be consi-
dered, but the instances are still best solved by the aggregation schemes. In this case,
IAGG does not only solve more instances to optimality than MIP; there even is no
single instance which is solved faster by MIP than by IAGG.

71

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

However, please keep in mind that the instances examined in Tables 3.8 and 3.9 still
feature relatively few commodities compared to the size of the network. If this relation
shifts towards a high number of commodities (consider e.g. the instances from SNDlib
[OPTW07]), the algorithms will likely result in complete disaggregation of the net-
work. For a large number of commodities, further algorithmic enhancements should
be included, such as methods that aggregate commodities, in addition to aggregating
the network topology. Aggregation and disaggregation of commodities can be inte-
grated into a branch-and-bound tree in essentially the same way as it has been done
for topology disaggregation (see Section 3.4). In case of an infeasible subproblem, we
need a procedure to decide when to disaggregate the topology and when to disag-
gregate demands. A direct choice would consist of using two types of local multi-
commodity-flow subproblems, one using aggregated demands and one using disag-
gregated demands. In case the aggregated version is feasible, but the disaggregated
one is not, this signals demand disaggregation. If both are infeasible, disaggregating
the topology seems to be the natural choice. It would be interesting to test this idea in
a suitable environment in further research.

3.6.2 Routing Costs

Considering routing costs in addition to the costs related to installing network upgra-
des (see (2.9)) does allows for an extension as straightforward as it was possible in the
previous subsection. The reason is that in order to show correctness of the algorithm
in Theorem 3.2, we needed the fact that no additional costs are induced in the subpro-
blems. However, this seems to be completely unrealistic if routing costs exist for any
arc. Thus, the consequence will be complete disaggregation.

There are, however, ways we may deal with (nonnegative) routing costs:

• Though considering routing costs in a problem implies that they are not comple-
tely negligible, additional routing costs caused by subproblems will likely only
make up for a small fraction of the total cost. Hence, we may use the aggrega-
tion scheme as an approximation algorithm with predefined (total or relative)
approximation error: we terminate as soon as all subproblems are feasible and
the gap between the resulting primal solution (constructed by the subproblems)
and the dual bound (given by the master problem) is within a given range. If ha-
ving an approximate solution is acceptable in the application context, this seems
to be the most straightforward extension approach.

• Routing costs may be projected onto the master problem using Benders optima-
lity cuts. As mentioned in Subsection 3.3.4 those cuts are numerically challen-
ging and should only be used at a carefully dosed rate. However, the approach
has been used successfully on railway networks in [Bä16, Chapter 9].

Moreover, there are cases in which routing costs can be transformed into upgrades
by suitable reformulation. This was the case e.g. for discrete lot-sizing instances in
[Wen16, Chapter 6].

72

3.6. Extending the Aggregation Scheme to More Complex Network Design Problems

ut+1

ut

vt+1

vt

wt+1

wt

Figure 3.10: Illustration of a typical situation in a time-expanded graph: Nodes vt+1

and vt (encircled) form an aggregated component that spans over multiple time peri-
ods.

3.6.3 Time-Expanded Networks

In Subsection 2.1.4, time-expanded graphs have been introduces as a way of refor-
mulating instationary network flow problems. If such a formulation is used, our ag-
gregation algorithms can be employed to solve instationary linear problems. Time-
expanded graphs based on fine-grained time discretizations even represent a premier
target for our algorithms as the increase in difficulty when compared to the stationary
version mainly comes from an enormous graph size.

Aggregation of time steps is not new and has been used in many applications,
though applying our scheme to time-expanded graphs corresponds to an aggregation
in time and space simultaneously. In [Wen16, Chapter 7], our aggregation scheme
has been applied to discrete lot-sizing instances, whose underlying graphs are parti-
cular time-expanded networks. However, the specific structure of such a graph de-
serves special consideration. Note that it is not bidirected anymore, which can lead
to problems when identifying a suitable cut as has been mentioned before (see Sub-
section 3.3.2). We need to have a backup plan for performing disaggregation in case
the local subproblems are infeasible but do not provide cut edges in G.

Apart from that, having one-way edges inside an aggregated component may lead
to weak relaxations. For instance, consider the case depicted in Figure 3.10. The relax-
ation represented by the master problem may not resist the temptation to send flow
‘back in time’ from vt+1 to vt. This is quite possible as the aggregated problem by
design does not consider any restriction regarding flow between nodes of the same
component. This will likely result in eventual diaggregation of that component.

However, we can overcome this by only incorporating the flow direction into the
master problem, but not the capacity limitation of the arc from vt to vt+1. For the in-
tegrated algorithm, this can simply be done by leaving that part of the constraint in
the formulation right from the start (or adding it later). This admittedly adds more
constraints to the master problem, though in contrast to an eventual disaggregation it
does not introduce additional upgrade variables. This is due to the fact that the ima-
ginary arc from vt+1 back to vt cannot be upgraded by any means in a time-expanded
formulation.

73

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

Furthermore, note that using a path-based formulation—if reasonable in the over-
all context—has the advantage that it preserves possible routes inside aggregated com-
ponents. For instance, in Figure 3.10, no flow can be sent from ut+1 to wt in the master
problem as there is no path in the original network that achieves this.

3.6.4 Multi-Scenario Problems

A multi-scenario version of Problem (3.1) has been introduced in Subsection 2.1.4. It
requires to find a minimum cost upgrade decision y such that there is a feasible rou-
ting for all scenarios in some scenario set U (cf. Formulation (2.10)). As described in
Subsection 2.1.4, there are several ways to cope with the bilevel nature of this problem.

In the particular case of single-commodity network design, a cut formulation is
available that does not need explicit flow variables (see [CJL+16]). In this case, ap-
plying aggregation is directly possible; it effectively amounts to preventing the scena-
rio separation routine from proposing cutting planes that runs through components.
Only if all scenarios are feasible, the scenario separation routine is allowed to give
such a cut which constitutes a disaggregation step.

Let us now assume that U is finite and (2.10) has been reformulated by its determi-
nistic equivalent (see (2.11)). In this case, aggregation is directly applicable as well: the
master problem in that case is a multi-scenario network design problem on an aggre-
gated graph. The subproblems (global or local) decompose into many single-scenario
network flow problems that all have to be feasible. Due to this decomposition, the
positive effect of our aggregation can be expected to be even more pronounced as in
the single-scenario case: the relative decrease in runtime between the original problem
and and an aggregated problem can be expected to increase for a more complex type
of problem, which a multi-scenario problem clearly is. However, before employing an
aggregation scheme, we have to be confident that there exists some aggregated graph
that is sufficiently detailed such that it leads to the optimal solution of the original
multi-scenario problem. This likely requires relatively few scenarios compared to the
graph size—similar to the situation in the multi-commodity case in Subsection 3.6.1
above.

3.7 Aggregation for Topology Planning Problems on Gas
Transportation Networks

This section gives an outline about transferring the iterative aggregation scheme to a
network expansion problem with nonlinear dependencies, namely from gas network
optimization. This type of problem has been introduced in Subsection 2.1.5 and we
will use the notation and problem formulations introduced there in this section. In
particular, a formulation (together with a motivation of its details) for the network de-
sign problem on gas networks has been given for passive gas networks (see Formula-
tion (2.13)). Readers who are not familiar with gas network optimization are advised

74

3.7. Aggregation for Topology Planning Problems on Gas Transportation Networks

to consult Subsection 2.1.5 at this point. Note, however, that details of compressor
modeling or similar are not important for this section as we focus on the network
topology.

Let us briefly recall a problem formulation of the topology planning problem on
gas networks, which is a conceptual extension of (2.13) in the sense that it contains
constraints for active elements (modeled as arcs a ∈ Aactive):

min
∑

a∈Avalve

kaya(3.8a)

s.t.
∑

a∈δ+(v)

qa −
∑

a∈δ−(v)

qa = dv (∀v ∈ V ′)(3.8b)

p2u − p2v = λaqa|qa| (∀a = (u, v) ∈ A′)(3.8c)

qa ≤ qaya (∀a = (u, n) ∈ Avalve)(3.8d)

qa ≥ qaya (∀a = (u, n) ∈ Avalve)(3.8e)

pu − pn ≤ (pu − pn)(1− ya) (∀a = (u, n) ∈ Avalve)(3.8f)

pu − pn ≥ (pu − pn)(1− ya) (∀a = (u, n) ∈ Avalve)(3.8g)

ga(pu, pv, qa, za) ≥ 0 (∀a = (u, v) ∈ Aactive)(3.8h)

qa ∈ [qa, qa] (∀a ∈ A′)(3.8i)

pv ∈ [pv, pv] (∀v ∈ V ′)(3.8j)

ya ∈ {0, 1} (∀a ∈ Avalve)(3.8k)
z ∈ {0, 1}r .(3.8l)

For each arc a, we have a continuous flow variable qa, and for each network node v,
there is a continuous pressure variable pv. In contrast to Formulation (2.13), we as-
sume that the gas network to be upgraded contains active elements. We do not want
to go into detail here, but just take into account that the problem involves some bi-
nary decisions z associated to active elements. Those do not influence the objective
function, but may occur in master problems as well as inside of components. Finally,
as usual the variables ya correspond to possible extensions. They are discrete and
are the only ones that appear in the objective function. Besides bounding constraints
(3.8i) and (3.8j) for the continuous variables, we have flow conservation constraints
(3.8b) for each node and pressure loss equations (3.8c) for each arc that couple flow
and pressure. Those are the most important types of constraints for the aggregation
scheme. All constraints associated to an active element a = (u, v) ∈ Aactive are sub-
sumed under a constraint (3.8h) for that element, involving a vector-valued (possibly
nonlinear) constraint function ga that is defined in terms of binary z-variables as well
as pu, pv and qa, i.e. the arc flow and the pressure values at adjacent network nodes.
Constraints (3.8h) are treated in the master problem or a local subproblem, depending
on whether the corresponding arc has both endpoints in the same component. Hence
their detailed structure is not important for the aggregation scheme. This also applied
to Constraints (3.8d) to (3.8g) which model the behavior of ya operating a valve.

75

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

Remark 3.6. As a preliminary note, aggregation for gas networks has been studied
in [RMWSB02]. However, the motivation in that paper is very different from ours.
In [RMWSB02], aggregation is performed such that aggregated components have a
unique solution under suitable assumptions. In our scheme, we aggregate parts of the
network that we assume to be uncritical, i.e. which have some flexibility.

The general idea of the scheme again is to identify bottlenecks and assume that
within the aggregated components, the problem is treated sufficiently well by a very
coarse relaxation. This philosophy is not unproblematic here as the idea of a bottleneck
is somewhat controversial in the context of gas network optimization (see [KHPS15,
Chapter 11]). In contrast, for single-commodity network flow problems, bottlenecks
are well described by limiting cuts. As before, an aggregated master problem will
yield a solution that a (global) subproblem tries to extend to a solution of the origi-
nal problem. Otherwise we may refine the partition guided by the results from local
subproblems. There will be some interplay between global and local subproblems as
the global subproblem will rely on heuristic information from the local subproblems.
The algorithm terminates when extendibility of the optimal aggregated solution can
be confirmed. This also solves the original problem to optimality, if the following key
properties hold (cf. Theorem 3.2):

• The aggregated problem is a relaxation of the original problem.

• Extension and/or modification of the master problem’s solution by subproblems
does not change its objective function value.

As an overview, the general algorithm is outlined in Algorithm 3.1. In the following,
details on each part of the method are discussed with a focus on Problem (3.8).

Algorithm 3.1 Iterative aggregation for topology planning on gas networks

1: Start with initial aggregation
2: while optimum has not been found do
3: Solve the AGGREGATED MASTER PROBLEM
4: for each aggregated component do
5: Solve a LOCAL SUBPROBLEM for that component

. variables on master arcs fixed
6: Solve a GLOBAL SUBPROBLEM that checks extendibility

. all discrete variables fixed
7: if solution is extendible then
8: optimum found
9: else

10: disaggregate according to local subproblems

76

3.7. Aggregation for Topology Planning Problems on Gas Transportation Networks

The Master Problem The aggregated problem only considers constraints on arcs
whose endpoints belong to different components. Therefore it contains e.g. flow and
pressure bounds and extension decisions for master arcs. Flow conservation con-
straints are added up to obtain the net in- and outflow constraint for the aggregated
node—as in the case of single-commodity network design. The pressure variables re-
quire more careful treatment: We cannot assign a single pressure variable to a compo-
nent and impose adjacent pressure loss equations as this would destroy the relaxation
property. Therefore, we still represent all original nodes in the master problem, each
with its own pressure variable. Those can be coupled by known bounds on their dif-
ference, possibly depending on the current flow bounds. However, any coupling of
pressure values due to pressure loss equations (3.8c) for arcs inside a component are
not considered by the master problem, which of course weakens the relaxation.

In terms of complexity, the aggregated problem is an MINLP, equally hard and of
the same structure as the original problem, but typically much smaller.

The Local Subproblems For each component, we have a subproblem that checks
whether the throughput planned for this component by the solution of the master
problem can actually be realized. Hence, all variables associated to arcs connecting
different components are fixed, including the continuous quantities flow and pressure.
All constraints inside the component are considered with the exception of possible
extensions, i.e. the y-variables are fixed to 0. Therefore, the subproblems are MINLP
feasibility problems. In order to obtain some information in case of infeasibility, we
use slack variables such that a slack-0 solution corresponds to a feasible extension
of the master problem’s solution. This slack solution serves as guidance where to
disaggregate and can be used for fixing the discrete decisions inside a component to
the value that has been found to be relatively best. Some useful slack models can be
found in [KHPS15, Chapter 11]. It is important to choose a model that is guaranteed
to be feasible.

The Global Subproblem It might happen that an optimal extension (y-values) is
found, although not all local subproblems are feasible. This happens regularly in
single-commodity network design and can be expected to occur even more frequently
for the case of gas networks. Especially for passive subnetworks it is very unlikely that
the imposed boundary flow and pressure values fit together. Therefore, we solve a glo-
bal subproblem that allows adjusting the continuous variables. As this is a problem
on the whole graph, we fix all discrete variables. Expansion decision y and discrete
decisions z on the master arcs are taken from the optimal master solution; discrete de-
cisions z inside aggregated components are set to their value for the minimum slack
solution of the corresponding local subproblem.

The global subproblem therefore is an NLP—a nonlinear program without integer
variables. Also, it is acceptable to only solve it to local optimality, as a false-negative
answer would just lead to unnecessary disaggregation but does not harm the correct-
ness of the aggregation algorithm itself. It would make sense to first apply the global

77

Chapter 3. Solving Network Expansion Problems by Iterative Graph Aggregation

subproblem before solving the local subproblems if we had other heuristics for fixing
discrete decisions inside a component or could afford leaving them unfixed.

Disaggregation In case the optimal master can not be made feasible by local subpro-
blems or the global subproblem, we draw the conclusion that the current aggregation
is too coarse. We disaggregate all infeasible (i.e. positive-slack) components along
some cut (though arguments can be made to disaggregate only some of them). Unfor-
tunately, there is no canonical choice for the disaggregating cut. It is natural to use a
cut containing the element with largest slack in the local subproblem’s optimal solu-
tion. The cut could then be completed by some simple heuristic, e.g. by finding the
minimum completion cut with respect to some auxiliary arc capacities (e.g. the diffe-
rence of their slack value to the maximum slack value in the component), which could
be done via a max-flow computation.

The Initial Aggregation Starting with the trivial aggregation that collapses the entire
graph into a single vertex seems less promising than in the case of single-commodity
network design—in which case the subproblems are solvable in polynomial time.
Hence, the difference in difficulty to the original problem is a lot larger. In particular,
the first local subproblem would be very expensive in the current setting. We could
speed up the first master iterations by solving a relaxation of the respective master
problem (or an otherwise simplified master as long as we obtain a diaggregating cut).
Furthermore, the local subproblems do not have to be solved to optimality; theore-
tically, we could use any incumbent to disaggregate. Alternatively, we may want to
design some heuristic that constructs the initial aggregation bottom-up.

Integration in branch-and-bound As we have seen in Section 3.4, the aggregation
scheme can be embedded into a branch-and-bound framework if the solver supports
lazycuts. This is also possible for Algorithm 3.1, though most MINLP-solvers do not
support such a feature.

First Computational Tests

Based on the above considerations, a version of the aggregation schemes for network
design problems on gas networks has been implemented in the course of the master’s
thesis [Sch15]. We discuss some results very briefly without going into details of the
implementation:

The algorithms have been compared to solving (3.8) without using aggregation on
two test networks. SAGG has had some promising results on a very sparse network.
However, it was not competitive on a large-scale real-world gas network—which also
involved many complicated compressor stations—since the network was often com-
pletely disaggregated during the algorithm. Moreover, IAGG and HAGG also suffered
from way too many disaggregations such that they could not provide any advantage
whatsoever.

78

3.7. Aggregation for Topology Planning Problems on Gas Transportation Networks

As an immediate conclusion, we can say that the relaxation provided by the sim-
plest model for the master problem is too weak. This is mainly due to the complete
decoupling of pressure constraints inside the components. There is still plenty of room
for algorithmic improvements that were outside of scope of this thesis, such as streng-
thening the relaxation provided by the master problem by cutting planes on pres-
sure variables, designing specialized heuristics for an initial aggregation or designing
strong primal heuristics.

However, in real-world gas networks to a large extend the difficulty can be at-
tributed to the nonlinearities involved and the discrete configurations of compressor
stations rather than the size of the network (in particular for the second test network in
[Sch15]). This does not match the situations the aggregation algorithm has been desig-
ned for, showing the borders of applicability of our algorithmic scheme. The situation
may well be different for large-scale transportation networks involving relatively few
discrete decisions—possibly in connection with some of the enhancements mentioned
above.

In the next chapter, we will investigate a setting that is specifically tailored for
nonlinear network flow problems like the one from this section.

79

Chapter 4

Structural Investigations of Piecewise
Linearized Flow Problems

In the major part of the previous chapter we dealt with linear mixed-integer optimi-
zation problems in which a main difficulty is connected with the sheer size of the net-
work. However, in those network expansion problems we had reasons to believe that
we can aggregate details and that the ‘critical decisions’ can be made on a coarsened
version of the network reasonably well, in fact optimal. Consequently, the aggregation
algorithms were designed to locally relax the problem and identify a suitable aggrega-
tion. On the other hand, in many optimization problems on transportation networks,
especially those arising from power supply, the main challenge is connected to the
question of how to deal with the problem’s nonlinearities, arising, e.g. , from laws of
physics. In contrast, simplifying the network topology seems less natural as it is alre-
ady of moderate size. In Section 3.7, we have seen that aggregation techniques are still
applicable for gas network optimization problems, though empirical results are not
yet convincing in first empirical tests, for reasons discussed there. In this and the fol-
lowing chapters, we follow a different—yet classical—approach that involves locally
strengthening the model (instead of relaxing it) by suitable cutting planes.

In this chapter, we consider a setting where we assume that nonlinearities are dealt
with by constructing piecewise linearizations or relaxations of the involved nonlinear
functions, see Section 2.2, and in particular Subsection 2.2.6 in the preliminaries chap-
ter. This is a common approach that allows to transform the nonlinear problem into
an MIP (relaxation or approximation) and thus to make it accessible to any general-
purpose MIP solver. This method is especially promising for problems involving loo-
sely coupled constraints and sparse networks such that nonlinearities can be modeled
as a low-dimensional nonlinear function of the flow. This ensures that the number of
binary variables introduced by piecewise linear modeling stays in a manageable order
of magnitude.

For constructing a piecewise linear approximation, or respectively, for modeling a
piecewise linear function, several useful formulation methods are known. The most
important of them have been reviewed in Section 2.2, also see [VAN10] for a coverage
of formulation methods. Most of the formulations used in practice are locally ideal,

81

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

or—in case of the Convex Combination Method—can be adapted to have this pro-
perty. Hence, the formulations cannot be strengthened further for a single piecewise
linear function. However, the situation is different when we consider multiple nonli-
near functions that influence each other: in general, the formulation looses its desired
property of being ideal—most likely already in the case of just two functions. This
raises the question of how the formulation may be strengthened, a question that can
not be answered in general but depends on the constraint structure. For example,
[ZdF13, KdFN06] examine the case of the separable piecewise linear optimization knapsack
polytope. They derive various classes of valid inequalities and also arrive at promising
empirical results. Reference [SLL13] extends ideal formulations to the case in which
an additional indicator variable is present.

We consider a setting which focuses on the network structure of the problem. As
we want to avoid restricting ourselves to a specific application, we do not consider the
nonlinearities explicitly, but just assume they are modeled as functions of the flow on
a network arc. Therefore, we suppose that the flow variable range is subdivided into
several intervals, which is a prerequisite for piecewise linearization.

This chapter is based on joint work with Frauke Liers, published in [LM16].

4.1 The Piecewise-Linearized-Flow Polytope

In the following, we consider feasible sets of the form

{(q, z) ∈ Rm × {0, 1}n | ∀ arcs a, i ∈ Ia : li ≤ qa ≤ ui if zi = 1}.

Here, for an arbitrary network arc a, qa denote real-valued flow variables. Here we
use the notation qa (instead of xa) that has been introduced as our convention for gas
network optimization in Section 2.1.5 to suggest that we are dealing with a nonlinear
problem. The variables zi are binary indicator variables for using an interval on that
arc, and Ia denotes the set of indices belonging to arc a. The input parameters li and
ui are lower and upper bounds on the flow value, i.e. the interval boundaries.

We allow several flow intervals on the same network arc a, in order to aim for
maximum generality with respect to the results in this chapter. While one can think
of situations with overlapping flow intervals (e.g. if the flow itself nonlinearly de-
pended on some quantity, and the flow intervals resulted from mapping a standard
interval subdivision for this quantity to the flow-space), currently the main practical
application clearly consists of piecewise linearizing the flow. Hence, all instances in
the computational experiments in Section 4.3 have the typical structure resulting from
piecewise linearization, in particular featuring non-overlapping intervals.

In any case, only one interval can be active—and at least one has to. Therefore, the
corresponding z-variables are connected by the constraint

(4.1)
∑
i∈Ia

zi = 1.

82

4.1. The Piecewise-Linearized-Flow Polytope

In addition, we have flow conservation and demand satisfaction equations that can
be modeled via

(4.2)
∑

a∈δ+(v)

qa −
∑

a∈δ−(v)

qa = dv

for a given network node v, where dv denotes its demand.
The above modeling is compatible with any linearization method that uses the

logic

(4.3) zi = 1 ⇒ qa ∈ [li, ui],

as is true, for example, for the Multiple Choice Method (MCM) as well as for the Con-
vex Combination Method (CCM), see Sections 2.2.1 and 2.2.2, respectively. Both met-
hods are very flexible since they allow to consider a generalized setting with possibly
overlapping intervals without further modeling effort. We start from models based
on (4.3) and show how to transfer our results to another popular formulation later,
namely one that is based on the Incremental Method (see Section 2.2.3).

In our notation, the special case of a univariate function f of q modeled piecewise
linearly by MCM on a connected domain [l, u] with breakpoints B1 = l, B2, . . . , Bk,
Bk+1 = u is obtained for lai = Bi, uai = Bi+1, i = 1, . . . , k. In that case we have a ‘copy’
qi of the arc flow q for every interval together with

lizi ≤ qi ≤ uizi ∀ i = 1, . . . , k

and

(4.4) q =
k∑
i=1

qi, f(q) =
k∑
i=1

[
f(Bi)zi + (qi −Bizi)

f(Bi+1)− f(Bi)

Bi+1 −Bi

]
,

cf. Chapter 2, Subsection 2.2.1.

To eliminate the continuous q-variables, we consider the projection of the feasible
set to the z-variables. The convex hull of this projection will be the polyhedron we are
examining. It will be denoted by P throughout this chapter, so

(4.5) P = conv{z ∈ {0, 1}n | ∃q ∈ Rm : (4.1), (4.2), (4.3)}.

Note that few problems encountered in real-world applications are completely des-
cribed by the constraints mentioned above. However, the structure we analyze here
might very well be present as a substructure and understanding the structure of P—
even for special cases—can be helpful. As an example, in the context of water- and
gas network optimization, pressure variables are introduced for network nodes, and
additional constraints describe the pressure loss along pipes, see (2.14) in Section 2.1.5
for gas network optimization. In water network optimization, essentially the same al-
gebraic approximation of the underlying physics is commonly used [GMMS12]. Those

83

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

models fit well to our setting. However, it should be mentioned that in gas network
optimization there are also models describing the pressure loss that feature more com-
plex nonlinearities than Equation (2.14). For example, [PFG+15, Equation (7)] gives a
formula for the pressure loss, which is not separable in general but only for a constant
compressibility factor [PFG+15, Equation (20)]. In this case, again one separable com-
ponent is a univariate function of the arc flow. Moreover, [GMMS12] also discusses a
bivariate type of nonlinearity, where our modeling does not apply.

A complete description of P not necessarily leads to a complete description of the
polyhedron involving the q-variables, but valid inequalities for P can still be expected
to represent strong cuts. In [BCD+08] it is concluded that projected Chvátal-Gomory
cuts are effective for instances of the MIPLIB 3.0. As a guideline, the strength of those
cuts for an MILP depends on whether optimizing the integer variables is the essence
of the problem, as the authors of [BCD+08] phrase it. This applies to the network
transportation problems we have in mind. For example, in gas network optimization,
the problem that results from fixing all integer variables can be solved relatively fast by
a general-purpose NLP-solver. Indeed, it turns out in [PFG+15] that it is affordable to
solve this NLP to local optimality as a subproblem many times. Also, [Gei11b] reports
that after fixing all integer variables, the problem is solved very quickly by an exact
solver. As an extreme case, if the objective function only depends on the z-variables,
we are guaranteed that optimizing over P yields the overall optimum.

4.2 Polyhedral Studies and a New Class of Perfect Graphs

In this section we study the structure of P for specific network substructures. We start
with the case of two adjacent network arcs and then advance to larger substructures.

4.2.1 Paths of Length Two

The most simple nontrivial case is that of two consecutive network arcs together with
one flow conservation constraint. Each arc may have multiple, possibly overlapping,
distinguished flow intervals.

d = 0
a b

In this scenario, for every integral solution in P one variable per arc is set to 1.
The flow conservation constraint implies that those two nonzero variables correspond
to intervals with nonempty intersection. On the other hand, this condition is also
sufficient for a feasible integral solution. Hence, the problem of finding an optimal
point in P is equivalent to finding an optimal edge in the graph that models interval
compatibilities. We formally define it as follows:

Definition 4.1 (Compatibility Graph). Given a set P as defined in (4.5), the compatibility
graph GCOMP corresponding to that instance is an undirected graph that has a node for

84

4.2. Polyhedral Studies and a New Class of Perfect Graphs

each z-variable and an edge between two nodes if and only if requiring the arc flows
to lie in the corresponding interval admits a solution to the underlying flow problem
consisting of (4.2).

This graph will play an important role for deriving our results on path networks.
In the simple case above, GCOMP has an arc between two nodes if and only if the corre-
sponding intervals belong to different network arcs and have nonempty intersection.
It can be adapted easily for the case in which the middle node has nonzero demand.
Indeed, for general d ∈ R, interval I1 = [l1, u1] on the first network arc is compatible
with some interval I2 = [l2, u2] on the second network arc, if and only if there exist
q1 ∈ I1, q2 ∈ I2 such that q1 + d = q2. This is equivalent to the requirement that [l1, u1]
and [l2 − d, u2 − d] have a nonempty intersection. Therefore, we deal with nonzero
demands by an appropriate interval shifting.

By the above considerations, we have reformulated the problem of optimizing a
linear objective function over P as the problem of determining the maximum weight
edge in a graph, namely GCOMP. Here, the weight of an edge e = (ai, bj) is given by
the objective value associated to choosing interval ai on one network arc and interval
bj on the other. For the case of paths of arbitrary length as underlying networks, this
generalizes to finding a maximum weight k-clique, where k is the number of arcs, as
we will discuss in the next subsection. But also for a path of length 2, viewing the
problem as a clique problem is helpful: we notice that the compatibility graph in the
two-arc-setting is bipartite, and hence perfect. For the class of perfect graphs several
combinatorial problems which are NP-hard on general graphs, such as finding the
maximum clique, the maximum stable set, or the chromatic number, can be solved in
polynomial time [GLS88]. We also know explicitly that adding the stable set inequali-
ties, i.e. inequalities of the form

∑
e∈S xe ≤ 1 for some stable set S, suffices to describe

the convex hull of all clique vectors, where exactly the inclusion-wise maximal stable
sets constitute facets [Pad73]. We summarize some well-known properties of perfect
graphs in the following theorem:

Theorem 4.2 (Characterizations of Perfect Graphs from the Literature). LetG be a graph.
The following conditions are equivalent:

a) G is perfect, i.e. for every induced subgraph ofG the chromatic number is equal to the clique
number.

b) PQSTAB := {x ∈ RV (G) | 0 ≤ xi ≤ 1,
∑

vi∈C xi ≤ 1 ∀ cliques C}
= conv{x ∈ RV (G) | x is a stable set vector}
i.e. the clique inequalities are sufficient to describe the stable set polytope.

c) the complement of G is perfect.

d) G has neither odd holes nor odd antiholes (complements of odd holes) of size≥ 5 as induced
subgraphs.

85

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

The first condition in Theorem 4.2 is the standard definition for perfect graphs.
From this it can easily be seen that all bipartite graphs are perfect: the chromatic num-
ber and the clique number both are equal to 2 in bipartite graphs—except for the trivial
case of a graph without any edges, in which case those quantities are equal to 1. Part b)
shows why perfect graphs are interesting from an optimization point of view. Namely,
if one wants to decide whether some vector is in PQSTAB, it is sufficient to check the tri-
vial inequalities and all inequalities of the form

∑
vi∈C xi ≤ 1 where C is a clique in G.

Hence, a polynomial time clique separation subroutine, i.e. an algorithm that either
confirms

∑
vi∈C xi ≤ 1 for all cliques C, or finds a clique for which this inequality

is violated, directly yields a polynomial time stable set algorithm by the well-known
equivalence of optimization and separation (see e.g. [GLS88]). Such a polynomial time
separation is indeed possible for perfect graphs, whereas on general graphs the pro-
blem is NP-hard. Together with part c) of Theorem 4.2 we also know that for solving
the maximum clique problem the stable set inequalities are sufficient. Graphs with
property d) have been called Berge graphs. In 2006, the conjecture that all Berge graphs
are perfect was finally proven [CRST06]. Since that time this characterization is known
as the Strong Perfect Graph Theorem. It characterizes perfect graphs via forbidden in-
duced subgraphs. Later we will use it to show that GCOMP is also perfect for the more
complicated setting in which the network is a path of arbitrary length.

Example 4.3. Consider the following example given by its compatibility graph GCOMP:

a1 [1, 2]

a2 [1, 4]

a3 [3, 5]

b1 [1, 2]

b2 [3, 4]

b3 [3, 6]

One can show that in addition to equations (4.1) and the trivial inequalities 0 ≤
zi ≤ 1 for i = a1, a2, a3, b1, b2, b3, the following equations are needed to obtain P :

za3 + zb1 ≤ 1(4.6)
za1 + zb2 + zb3 ≤ 1(4.7)

We see that (4.6) and (4.7) are the stable set constraints for the stable sets {a3, b1},
{a1, b2, b3}, which in this case together with {a1, a2, a3} and {b1, b2, b3} are exactly the
maximal stable sets of GCOMP.

We now bring together all arguments to give a complete description of P .

86

4.2. Polyhedral Studies and a New Class of Perfect Graphs

Theorem 4.4. For a path of length two, the stable set constraints of GCOMP together with the
trivial inequalities 0 ≤ zi ≤ 1 for all i and equations (4.1) form a complete description of P .

Proof: Let P̃ = {z ∈ [0, 1]n | z satisfies (4.1) and z(S) ≤ 1 ∀ stable sets S ⊆ V (GCOMP)}
be the polytope of points satisfying the constraints mentioned in the theorem.

We have to show that P̃ = P , i.e. every vertex of P̃ is integral. We show that P̃ is a
face of the well-studied clique polytope

PCLIQUE := conv{x ∈ RV (G) | x is a clique vector}

and make use of the fact that a complete description for PCLIQUE is known for perfect
graphs, namely PCLIQUE = {x ∈ RV (G) | 0 ≤ xi ≤ 1 ∀i,

∑
vi∈S xi ≤ 1 ∀ stable sets S} (see

Theorem 4.2).

i) By the above considerations, P̃ is a subset of PCLIQUE, as P̃ satisfies all stable set
inequalities. Furthermore, it follows from equations (4.1) that z(V (GCOMP)) = 2 for
all z ∈ P̃ . Thus we conclude that P̃ is also a subset of the restriction of PCLIQUE to
inclusion-wise maximal cliques, PCLIQUE|z(V (G))=2.

ii) On the other hand, for z ∈ PCLIQUE the constraint z(V (GCOMP)) = 2 implies (4.1) by
construction of GCOMP. Hence PCLIQUE|z(V (G))=2 satisfies all constraints of P̃ . This
means we have P̃ ⊇ PCLIQUE|z(V (G))=2. Finally, equality holds because of i).

Now let z̃ ∈ P̃ . If z̃(V (G)) = 2 and z̃ is a vertex of P̃ , it is also a vertex of the
restriction PCLIQUE|z(V (G))=2. As z(V (G)) ≤ 2 is a valid inequality for PCLIQUE, the subset
PCLIQUE|z(V (G))=2 is a face of PCLIQUE. We conclude that z̃ is a vertex of PCLIQUE and hence
integral. �

The following remark yields another way of viewing the stable set inequalities and
it will be helpful later.

Remark 4.5. We may reformulate the stable set constraint for inclusion-wise maximal
stable sets by using (4.1), yielding inequalities of the following structure. It is familiar
from Hall’s Matching Theorem:
For each subset V of vertices of GCOMP that belong to the same network arc, the inequa-
lity

(4.8) z(V) ≤ z(N(V))

is valid for P , where N(V) = {u ∈ GCOMP | ∃v ∈ V : (u, v) ∈ E(GCOMP)} denotes the set
of neighbors of V . One can show that if we allow the additional option of zero flow
on both arcs by relaxing (4.1) to ‘≤’, inequalities (4.8) are stronger than the stable set
constraints and yield a complete description of P . A proof can be adapted from that
of the above theorem.

87

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

4.2.2 Paths of Arbitrary Length

We now move on to paths of arbitrary length k.

d = 0 d = 0 d = 0a1 a2 a3 ak
...

Finding an integral point in P is now equivalent to finding a maximizing set of k inter-
vals (where ‘maximum’ is defined by any given linear objective) such that each inter-
val belongs to a different network arc and their intersection is nonempty—or compa-
tible with the demands if they are 6= 0. In the latter case, a similar shifting of intervals
as explained in Subsection 4.2.1 is possible for constructing the compatibility graph.
Again as in the previous subsection, we rephrase this task by means of the compati-
bility graph. Having a k-clique in this graph is obviously necessary. However, it is
also sufficient for a point to lie in P , although GCOMP is only able to represent pairwise
conflicts. The reason is that due to convexity it cannot happen that a family of inter-
vals is incompatible although each pair is. This is basically Helly’s Theorem [Hel23] in
dimension 1. In other words, GCOMP still detects all possible variable conflicts, also for
the case of paths of length k > 2.

Example 4.6. The following graph shows how GCOMP may look like for a path consis-
ting of three network arcs.

a1 [1, 2]

a2 [1, 6]

b1 [3, 4]

b2 [1, 6]

c1 [5, 6]

c2 [1, 6]

We note that it contains edges for non-neighboring network arcs, e.g. a1− c2 or a2− c2.

A New Class of Perfect Graphs

Unfortunately, the compatibility graph for paths of arbitrary length doesn’t trivially
belong to any well-known class of perfect graphs. Therefore, we develop a new graph
class, designed forGCOMP. Before moving on to our definition of partition-chordal graphs,
we will motivate it based on two graph classes that are well known to be subclasses of
perfect graphs. Recall the following definitions:

Definition 4.7 (Interval Graphs). An undirected graph G is called interval graph if and
only if each vertex v of G can be identified with an interval Iv ⊆ R such that G has an
edge (u, v) if and only if Iu ∩ Iv 6= ∅, i.e. G can be realized as an intersection graph of a
family of intervals in R.

88

4.2. Polyhedral Studies and a New Class of Perfect Graphs

This definition has obvious similarities with the construction of our compatibility
graph GCOMP. In fact, GCOMP would be an interval graph if it wasn’t for the fact that
nodes of G belonging to the same partition are not allowed to have an edge between
them, even if their intervals intersect. We could directly generalize this class of graphs
to haveGCOMP covered (see Remark 4.11 below), though it will turn out to be possible—
and more convenient—to operate on a superclass of interval graphs, namely chordal
graphs.

Definition 4.8 (Chordal Graphs). An undirected graph G is called chordal (or triangu-
lated) if and only if every cycle of length≥ 4 has a chord, i.e. there are no induced cycles
of length ≥ 4 in G.

It is known that all interval graphs are chordal [Gol80]. However, GCOMP is not
chordal in general. The following is a counterexample.

Example 4.9. Consider a slight modification of the graph from Example 4.6.

a1 [1, 2]

a2 [1, 3]

b1 [3, 4]

b2 [1, 6]

c1 [5, 6]

c2 [4, 6]

Compared to Example 4.6, a2 has been changed from [1, 6] to [1, 3] and c2 from [1, 6]
to [4, 6]. As a consequence, the edge from a2 to c2 is missing (among others) and a
chordless 4-cycle a2 − b2 − c2 − b1 − a2 exists. This shows that GCOMP is not chordal in
general.

The following definition is designed to capture the essential extension of chordal
graphs needed to include GCOMP, while we will still be able to prove perfectness for the
resulting graph class.

Definition 4.10 (Partition-Chordal Graphs). An undirected graph G is called partition-
chordal (with partition order k) if and only if it has a k-partition and a set

Ẽ ⊆ {(u, v) | u 6= v belong to the same partition}

of edges such that adding all edges in Ẽ to the original edge set yields a chordal graph.
The elements of Ẽ will subsequently be called fill edges.

Remark 4.11. In the same vein, we may also define partition-interval graphs as graphs
that have a k-partition and a set Ẽ ⊆ {(u, v) | u 6= v belong to the same partition} of
edges such that adding all edges in Ẽ to the original edge set yields an interval graph.
Those definitions may inspire future graph-theoretic research (e.g. regarding recogni-
zability). Though for our purposes we focus on the more general class of partition-
chordal graphs.

89

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

The following two results, Lemma 4.12 and Theorem 4.13 are of course essential
for Definition 4.10 to fulfill its purpose:

Lemma 4.12. For paths of length k, the compatibility graph is partition-chordal with partition
order k.

Proof: Indeed, choose the partitions to consist of all vertices that belong to the same
network arc. Then the graph containing all edges in the set {(u, v) | u 6= v belong to
the same partition} has an interval graph as a spanning subgraph by construction of
GCOMP. Since interval graphs are chordal, the claim follows. �

In the following, partition will always refer to this canonical k-partition, unless spe-
cified otherwise.

Theorem 4.13. A graph that is partition-chordal is also perfect.

Proof: Let G be a partition-chordal graph with vertex set V , a fixed partition and a set
of fill edges Ẽ. Using the Strong Perfect Graph Theorem we have to show that G has
neither odd holes nor odd antiholes of size ≥ 5 as induced subgraphs.

AssumeG has an odd hole Cl, l ≥ 5 as an induced subgraph. Let G̃ = (V,E(G)∪ Ẽ)
be the graph that results from adding all edges in Ẽ to G. As G̃ is chordal by assump-
tion, Cl must have a chord that is an element of Ẽ. This fill edge subdivides Cl into
two shorter cycles in G̃. By iteratively applying chordality, we reach a triangulation of
Cl into l − 2 triangles. Since l is odd there has to be a triangle using an odd number
of arcs of Cl, namely 1, while the two remaining arcs are in Ẽ. But these two fill edges
imply that all three vertices of the triangle lie in the same partition, contradicting the
fact that there is an edge between two of them (see the figure below for an illustration).

Now assume G has an odd antihole C̄l as an induced subgraph. Since an antihole
of size 5 is isomorphic to a 5-cycle, we may assume l ≥ 7. Given an anticlockwise num-
bering of the vertices with labels 1 to l, consider the 4-cycle consisting of the vertices
1, 4, 2 and 5 (shown in red in the figure below).

90

4.2. Polyhedral Studies and a New Class of Perfect Graphs

1

2

3

4

5

6

...

!

Since G̃ is chordal, we conclude that there has to be a fill edge between two vertices
of C̄l that are neighbors with respect to the numbering, w.l.o.g. between 4 and 5. Using
this arc we can find another 4-cycle which uses a fill edge (see the figure below, in
which this cycle consists of the vertices 3, 5, 4 and 6).

1

2

3

4

5

6

...

Again, by chordality one of the chords must be a fill edge. However, this implies
that there exist three out of the four vertices of the 4-cycle (3, 5, 4 and 6) that belong to
the same partition, which is a contradiction to the fact that edges in C̄l can not connect
vertices belonging to the same partition. This contradiction implies that G also cannot
have an odd antihole as an induced subgraph.

We therefore conclude that G is perfect. �

Remark 4.14. We may rephrase Definition 4.10 in a way that puts emphasis on the
construction of partition-chordal graphs: Start with a chordal graph and color it in an
arbitrary way. If we then remove all edges from the graph whose endpoints have the
same color, the result will be a partition-chordal—and thus a perfect—graph. In fact,
by definition all partition-chordal graphs can be constructed that way.

To the best of the author’s knowledge, the class of partition-chordal graphs has
been first introduced in [LM16] and has not been studied before. A detailed graph-
theoretic classification lies outside the main focus of this work. Still, based on the

91

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

above deliberations we may contribute the following to the classification of partition-
chordal graphs as a subclass of perfect graphs:

Proposition 4.15 (Some Classification Statements on Partition-Chordal Graphs). The
class of partition-chordal graphs is

a) antihole-free (also for even antiholes), and therefore a strict subclass of perfect graphs.

b) odd-hole-free, but not hole-free.

c) a strict superclass of chordal graphs.

Proof:

a) This claim follows from the fact that for the part of the proof of Theorem 4.13 on
odd antiholes, we did not need to utilize that the antihole C̄l has an odd number of
nodes. Hence, we may give an even antihole of size ≥ 6 as an example of a perfect
graph that is not partition-chordal.

b) That partition-chordal graphs are odd-hole-free directly follows from Theorem 4.13,
and has been shown explicitly in the proof thereof. We show that this proof can-
not be extended to even holes by proving that cycles Cl of even length l are indeed
partition-chordal: Let Ṽ denote the set of vertices at even positions inCl. Now let Ṽ
be a partition and partition all remaining vertices (that form a stable set in Cl) in an
arbitrary way. Let the set of fill edges Ẽ consist of all connections between vertices
in Ṽ . For an illustration see the figure below, in which the partition Ṽ (shown in
red) consists of the vertices 2, 4, 6 and 8; edges in Ẽ are displayed as dotted lines.

1

2

3

4

5

6

7

8

Now Cl together with Ẽ forms a chordal graph. This can be seen from the fact that
every cycle of length ≥ 4 in this graph has to use at least three vertices from Ṽ , and
therefore must have a chord as the three vertices from Ṽ form a clique. Thus, Cl is
a partition-chordal graph.

92

4.2. Polyhedral Studies and a New Class of Perfect Graphs

c) This is already implied by the existence of a compatibility graph that is not chordal,
see Example 4.9.

�

Due to Theorem 4.13, we know that we can solve the maximum clique problem in
polynomial time on the compatibility graph, and therefore also the separation of stable
set constraints. We might ask how fast the stable set separation can actually be per-
formed. In their book [GLS88], Grötschel, Lovász and Schrijver derive the polynomial
time result via the so called theta body of a graph. It is motivated by Lovász’s theta-
bound on the Shannon-capacity of a graph. In this theta body, separation is possible
in polynomial time. Furthermore, it turns out to be a polytope if the graph is per-
fect, and its facets can be shown to be equivalent to clique inequalities. The runtime
of the separation lies in O(n4), which the algorithms spends mainly with calculating
determinants in order to check positive semidefiniteness of a matrix.

However, in practice one might prefer either heuristics (if missing a small number
of possible cutting planes seems affordable) or exact method that have exponential
worst-case time complexity, like an auxiliary MIP (if separation subproblems stay re-
asonably small). In the following part of this section, we will see that for more struc-
tured problems with non-overlapping intervals, we do not need to run a separation
routine based on finding minimum stable sets. Instead, we can restrict ourselves to
polynomially many stable set inequalities that can be explicitly listed and precompu-
ted.

Corollary 4.16 (Generalization of Theorem 4.4 to Paths of Arbitrary Length). For paths
of arbitrary length, the stable set constraints of GCOMP together with the trivial inequalities and
equations (4.1) form a complete description of P .

Proof: Since the compatibility graph is a perfect graph for all paths, the claim can be
proven analogously to that of Theorem 4.4. �

The question comes up, on how many partitions the stable set inequalities have
to be defined. In particular, it is interesting to study whether it is sufficient to include
only the stable set constraints defined on nodes from just two partitions per constraint.
Although it turns out that this is not true in general, it is possible to identify situations
in which those inequalities suffice. We first rewrite those inequalities as in Remark 4.5,
in the form

(4.9) z(V) ≤ z(NU(V)),

where U is some partition of GCOMP, V a set of vertices of the same partition diffe-
rent from U , and NU(V) denotes the set of neighbors of V that belong to partition U .
This notation will be helpful for the proof of the next theorem. It gives a criterion for
the inequalities involving only two partitions being already sufficient for a complete
description of P .

93

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

Theorem 4.17. If for each ordered pair (I1, I2) of intervals that belong to the same partition the
set I1\I2 is connected, then the inequalities of type (4.9) together with the trivial inequalities
and equations (4.1) form a complete description of P .

Remark 4.18. The criterion in the above theorem is satisfied if any two intervals associ-
ated to the same network arc must not ‘strictly’ contain each other in the sense that the
larger one has larger upper bound as well as a smaller lower bound. If instances result
from piecewise linearization, this assumption is usually fulfilled because the model is
redundant otherwise.

Proof (of Theorem 4.17): The proof follows from Corollary 4.16, if we can show that
all stable set inequalities for GCOMP are implied by inequalities (4.9). The following is
illustrated in Figure 4.1. Let S = {s1, ..., sl} ⊆ V (GCOMP) be a stable set in GCOMP and
φ : V (GCOMP) → {1, ..., k} a partition map onto the k partitions. By abuse of notation,
we will later in this proof identify the partitions with their corresponding number in
{1, ..., k}. Since each element of S is associated to an interval, the assumption of the
theorem together with S being a stable set allows us to define a total ordering of S,
where si = [li, ui] ≤ sj = [lj, uj] if and only if li ≤ lj and ui ≤ uj . We may assume that
S is ordered increasingly, i.e. for si, sj ∈ S with i < j we have si ≤ sj . If φ(si) 6= φ(si+1)
for some i, we say that S has a partition change. We show the claim by induction on
the number of partition changes. If this number is 0, there is nothing to show since
z(S) ≤ 1 is already implied by equation (4.1) for the partition that S belongs to.

Now let S = {s1, ..., sl} have d partition changes. Let t = maxi=1,...,l{φ(si−1) 6=
φ(si)}, and let T = {st, ..., sl}. So all elements of T belong to the same partition and st−1
belongs to a different one. Consider Nφ(st−1)(T). This set does not contain st−1, since S
is a stable set. But in addition, we can show that (S\T)∪Nφ(st−1)(T) is also a stable set
of GCOMP: Assume, on the contrary, there exists c ∈ Nφ(st−1)(sm) ∩ Nφ(st−1)(T) for some
sm ∈ S. We deduce that c and st−1 both belong to the same partition. However, they
contradict our assumption, because the difference of intervals c\st−1 has to contain
elements below as well as above st−1. Therefore, (S\T)∪Nφ(st−1)(T) is a stable set with
d− 1 partition changes. Finally, we have

z(S) = z(S\T) + z(T) ≤ z(S\T) + z(Nφ(st−1)(T)) = z((S\T) ∪Nφ(st−1)(T)) ≤ 1,

using the induction hypothesis for the last step. �

From this proof, we can also deduce a slightly more general theorem for the case
in which the assumption of Theorem 4.17 does not hold.

Theorem 4.19. Let Ĩ be the set of intervals I for which there exists another interval I ′ that
belongs to the same partition and strictly contains I , i.e. I ′\I is not connected. Then, all facets
of P besides the trivial inequalities and equations (4.1) are either of type (4.9) or contain at
least one element from Ĩ with nonzero coefficient.

Proof: The statement can be obtained from the proof of Theorem 4.17 above: We see
that the induction step on the number of color changes works as long as S does not

94

4.2. Polyhedral Studies and a New Class of Perfect Graphs

a1 [1, 3]

a2 [2, 4]

a3 [3, 4]

a4 [4, 6]

b1 [1, 2]

b2 [1, 2]

b3 [2, 4]

b4 [4, 6]

c1 [1, 4]

c2 [4, 5]

c3 [4, 6]

c4 [5, 6]

d1 [2, 3]

d2 [2, 4]

d3 [4, 5]

d4 [5, 6]

Figure 4.1: Illustration of the proof of Theorem 4.17. Consider the example instance
shown in this figure with the partitions A = {a1, a2, a3, a4}, B = {b1, b2, b3, b4}, . . . (ed-
ges of GCOMP between non-adjacent network arcs are not shown for the sake of cla-
rity). Let the stable set S = {b1, b2, a3, c4} consist of the red vertices. Being ordered,
S has two partition changes. In the notation of the proof we have T = {c4} and
Nφ(st−1)(T) = NA({c4}) = {a4}. Replacing {c4} by {a4} yields a set S ′ with only one
partition change. S ′ also has to be a stable set, since by the theorem’s assumption a4
is not allowed to intersect with b2 or b1 as it would then surround a3. In addition, the
stable set inequality of S ′ implies that of S.

contain an element of Ĩ. As this step finds another stable set whose stable set condi-
tion, together with (4.9), implies that of S, we know that S does not define a facet of P .
This means that stable sets involving more than two partitions can only define facets
if they contain an element from Ĩ. �

The next example shows that in general, inequalities (4.9) are not sufficient for a
complete description of P .

Example 4.20. Consider again the graph from Example 4.6 with three network arcs,
given by the following compatibility graph.

a1 [1, 2]

a2 [1, 6]

b1 [3, 4]

b2 [1, 6]

c1 [5, 6]

c2 [1, 6]

95

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

We can see that the point (za1 , za2 , zb1 , zb2 , zc1 , zc2) = (1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
) satisfies all inequa-

lities of type (4.9). However, it does not lie in P = conv{(0, 1, 0, 1, 0, 1) , (1, 0, 0, 1, 0, 1),
(0, 1, 1, 0, 0, 1), (0, 1, 0, 1, 1, 0)}, which in contrast satisfies the stable set inequality za1 +
zb1 + zc1 ≤ 1. This is well in accordance with Theorem 4.17, since the intervals b2
and b1 violate its assumption. Moreover, as predicted by Theorem 4.19, the inequality
za1 + zb1 + zc1 ≤ 1 does involve a variable that is associated to a ‘strictly contained’
interval, namely zb1 .

Under the assumption of Theorem 4.17, we can further classify the inequalities
that are necessary for determining a complete description. This then yields complete
description of P that is of polynomial size.

Definition 4.21. Let U be a partition of GCOMP and assume the condition of Theo-
rem 4.17 is fulfilled. This means that for each ordered pair (I1, I2) of intervals that
belong to the same partition, the set I1\I2 is connected. Similarly as in the proof of
Theorem 4.17, we define a total ordering of intervals within each partition, where
I1 = [l1, u1] ≤ I2 = [l2, u2] if and only if l1 ≤ l2 and u1 ≤ u2. We note that two incom-
parable intervals would violate the above assumption. We call a set V ⊆ U upwards
connected if

I1 ∈ V, I1 ≤ I2 ⇒ I2 ∈ V ∀ I1, I2 ∈ U.

This means that V is of the form V = {I ∈ U | I ≥ Imin} for some particular Imin.
Analogously, we call V ⊆ U connected if

I1, I3 ∈ V, I1 ≤ I2 ≤ I3 ⇒ I2 ∈ V ∀ I1, I2, I3 ∈ U.

This means that V is of the form V = {I ∈ U | Imin ≤ I ≤ Imax} for some particular
Imin, Imax ∈ U .

Theorem 4.22. If for each ordered pair (I1, I2) of intervals that belong to the same partition,
the set I1\I2 is connected, then a complete description of P is given by the trivial inequalities,
equations (4.1), together with the inequalities (4.9), where V is upwards connected.

Proof: We have to show that all inequalities (4.9) are implied by the ones where V is
upwards connected. So let V be a subset of intervals of some partition A = {a1, . . . al}
and B 6= A,B = {b1, . . . bm} be another partition (indexed according to the ordering
introduced in Definition 4.21). Depending on the structure of NB(V) we distinguish
the following cases, which build upon each other:

a) NB(V) is connected with NB(V) = {bi | k1 ≤ i ≤ k2}. Let j1, j2 be the indices of the
minimal and the maximal interval of V , respectively. Hence V ⊆ {ai | j1 ≤ i ≤ j2}
(see Figure 4.2a) and we have

z(V) ≤ z({aj1 , ..., aj2}) = z({aj1 , ..., al})− z({aj2+1, ..., al})

Now {aj1 , ..., al} is upwards connected, so we may use (4.9) to obtain

96

4.2. Polyhedral Studies and a New Class of Perfect Graphs

j1

j2

l

k1

k2

m

(a) Illustration of the notation used for the
proof of Theorem 4.22. A is on the left with V
shown in red, whereas B is on the right hand
side and NB(V) in shown in brown.

a ∈ Vi1 ∩ Vi2

∈ Bi1

∈ Bi2

(b) This situation cannot happen, as node a
would have to be connected to the middle
node in B as well, which contradicts the de-
finition of the Bi.

Figure 4.2: Example illustrations for the proof of Theorem 4.22.

· · · ≤ z({bk1 , ..., bm} − z({aj2+1, ..., al})

Also {bk2+1, ..., bm}, i.e. the set of intervals ‘above’ NB(V), is also upwards con-
nected and its neighborhood NA({bk2+1, ..., bm}) is a subset of {aj2+1, ..., al}, hence
z({aj2+1, ..., al}) ≥ z(NA({bk2+1, ..., bm})). Using this and applying (4.9) yields

· · · ≤ z({bk1 , ..., bm} − z({bk2+1, ..., bm}) = z({bk1 , ..., bk2}) = z(NB(V))

.

b) NB(V) is not connected and splits into the connected sets B1, ..., Br. Then we find
sets V1, . . . , Vr such that V =

⋃r
i=1 Vi and NB(Vi) = Bi ∀ i = 1, . . . , r. We claim that

V necessarily is the disjoint union V =
∑r

i=1 Vr: Assume on the contrary that there
is a ∈ Vi1 ∩ Vi2 . Then a has neighbors in Bi1 as well as Bi2 . But that means that by
construction every interval between those neighbors also has to be a neighbor of a,
which contradicts the fact that Bi1 ∪Bi2 is not connected (see Figure 4.2b).

So V =
∑r

i=1 Vr and it follows from a) that

z(V) =
r∑
i=1

z(Vi) ≤
r∑
i=1

NB(z(Vi)) = z(NB(V))

This shows that inequalities (4.9) are implied and hence the proof is completed. �

Remark 4.23. In particular, this yields a polynomial size complete description of P ,
as there are only linearly many sets V per network arc that have to be considered
for constructing inequalities (4.9). The same reasoning also applies for ‘downwards
connected’ sets, when defined analogously.

97

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

4.2.3 Transferability to a Formulation According to the Incremental
Method

In case of no overlaps between intervals belonging to the same partition, we are in the
standard situation of piecewise linear modeling. In particular, the costs associated to
sending a certain amount of flow is a piecewise linear function of the flow. As noted
in Section 4.1, the model for P used so far uses (4.3) and therefore relies on a modeling
according to the Multiple Choice Method or the Convex Combination Method (see
Subsections 2.2.1 and 2.2.2). We will now see that our results can also be applied if
the Incremental Method is used, and how the facets look like in that case. MCM and
CCM are more flexible when we think of overlapping intervals. However, as already
mentioned in Section 2.2, the δ-Method has been superior for certain applications, e.g.
for optimization problems on gas networks [Gei11b, CPSM14], and is very widely
used in practice.

Let an interval [l, u] for the flow value and breakpoints B1 = l, B2, . . . , Bn, Bn+1 =
u that divide the interval in n subintervals be given. For describing the polytope,
in addition to the binary z-variables the Incremental Method uses continuous [0, 1]-
variables δi, and the constraint

q = B1z1 +
n∑
i=1

(Bi+1 −Bi)δi

together with the filling condition constraints zi ≥ δi, i = 1, . . . , n and δi ≥ zi+1, i =
1, . . . , n− 1, δn ≥ 0. A piecewise linear function f of q can then be written as

f(q) = f(B1)z1 +
n∑
i=1

(f(Bi+1)− f(Bi))δi

(cf. Subsection 2.2.3). If we don’t want to allow the extra option of q being 0, we set
z1 = 1. As before with P , we consider the polytope after projection to the z-variables.
Let Pδ denote the convex hull of this projected set of feasible points, in formulas

Pδ = conv{zδ ∈ {0, 1}n | ∃q ∈ Rm, δ ∈ Rn : za1 = 1 ∀ arcs a, (4.2) ,filling condition}.

By construction, the z-variables are decreasing, where a ‘jump’ zi = 1, zi+1 = 0
means that the flow q lies in the i-th interval [Bi, Bi+1]. Given intervals Ia = [la, ua] and
Ib = [lb, ub] with la < lb associated to different arcs A and B of the path, we see that

(4.10) zIa ≥ zIb

is a valid inequality, since in the case of violation, i.e. zIa = 0, zIb = 1, we can conclude
qa ≤ la, qb ≥ lb and hence qa < qb, which contradicts flow conservation. This reasoning
can be extended easily for the case of nonzero demand of the middle nodes of the path.

98

4.2. Polyhedral Studies and a New Class of Perfect Graphs

We show next that these simple inequalities are the equivalent of inequalities (4.9)
for the modeling according to the δ-method. Furthermore, we show that they are
sufficient for a complete description of Pδ. Note that for this subsection, we assume
that we are in the standard setting for using the δ-Method—in particular, for each
ordered pair of intervals belonging to the same partition, their intersection is at most
a single point.

Theorem 4.24. For paths of arbitrary length, the inequalities of type (4.10) together with the
trivial inequalities and the filling inequalities z1 ≥ z2 ≥ · · · ≥ zn for each partition form a
complete description of Pδ.

Proof: The proof is based on the well-known linear bijection from Pδ to the correspon-
ding P (associated with the familiar modeling used so far), which has been introdu-
ced in Chapter 2, Subsection 2.2.3. We denote the transformation by T . It maps z to
zi− zi+1, i = 1, . . . , n− 1; zn := zn and has the inverse T−1 : zi 7→

∑n
j=i zi. The existence

of such a transformation implies a one-to-one correspondence between the extreme
points of P and Pδ. Following [Vie15], we obtain a complete description of Pδ by ta-
king a complete description of P and for each inequality, replacing every occurrence
of a z-variable by T (z).

So it only remains to confirm that the inequalities from Theorem 4.22 map to in-
equalities (4.10). Let A = {a1, . . . al} be some partition and B 6= A,B = {b1, . . . bm}
be another partition, again indexed according to the ordering introduced in Defini-
tion 4.21. Also, let V = {ai | i ≥ j1} for some j1 be upwards connected with k1 being
the minimal interval index of NB(V). We may assume without loss of generality that
NB(V) is also upwards connected (as elements in {bk1 , . . . , bm}\NB(V) have no neig-
hbors in A. They are therefore forced to 0 anyway and may be added to the right hand
side of (4.9) without weakening the inequality). Then z(V) ≤ NB(V) mapped by T
forms telescope sums on both sides and yields inequalities (4.10). �

We have seen that our complete description derived for linearization methods
using (4.3) can be transferred to the polytope of the δ-Method. It turned out that the
two polytopes are essentially the same up to a linear bijection, where inequalities (4.10)
are sparser than those of type (4.9).

4.2.4 Junctions

In this subsection we consider star graphs with k > 2 arcs, where k1 of them are inflow
arcs and k2 = k−k1 are directed outwards. Let the central node vc have demand d. We
again use the setting that follows (4.3).

Graph theoretic considerations about the compatibility graph are not applicable
here in the same way as for paths, as it is not enough to display all binary conflicts. In
general, GCOMP will be extremely dense if k is not too small as fixing a flow interval on
two network arcs is likely to still allow for several feasible solutions. If we project the
linear relaxation of the original feasible set (including the q-variables) directly onto the

99

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

d

z-variables, besides the trivial inequalities and inequalities (4.1), we get the following
two constraints: ∑

a∈δ−(vc)

∑
i∈Ia

lizi + d ≤
∑

a∈δ+(vc)

∑
i∈Ia

uizi(4.11)

∑
a∈δ−(vc)

∑
i∈Ia

uizi + d ≥
∑

a∈δ+(vc)

∑
i∈Ia

lizi(4.12)

They are easy to interpret: A point is feasible only if the minimal inflow, given
by
∑

a∈δ−(vc)
∑

i∈Ia lizi, plus the demand d of the central node is at most as large as
the maximal outflow

∑
a∈δ+(vc)

∑
i∈Ia uizi. The second inequality can be interpreted

analogously.
In this setting a complete description seems out of reach from our experience. In

contrast to paths of degree-2-nodes, the problem is NP-hard.

Theorem 4.25. On star graphs, deciding whether P is empty is NP-hard, even if there are at
most 2 intervals per arcs.

Proof: We show the theorem by a polynomial-time reduction from the (weakly) NP-
hard problem PARTITION: Given integers c1, ..., cn, determine whether there is a subset
I ⊆ {1, ..., n} of indices such that

∑
i∈I ci =

∑
i/∈I ci, or in other words

∑
i∈I ci = 1

2
C

where C :=
∑n

i=1 ci.
Let I1 be an instance of PARTITION, w.l.o.g. ci 6= 0 ∀i = 1, ..., n. We construct an

instance of P on a star graph as follows. We create n arcs leaving the central vertex of
the star. Each arc has two intervals consisting of one point each, namely {0} and {ci}.
The demand d at the central node is chosen as 1

2
C (see Figure 4.3).

We easily see that a feasible configuration of intervals corresponds to a subset I ⊆
{1, ..., n} such that

∑
i∈I ci = 1

2
C, and vice versa. �

Remark 4.26. The technique used above only works if intervals are not required to be
the result of subdividing a larger interval. Still, even in that case a similar construction
shows that optimizing over P is NP-hard. However, if we restrict ourselves to star
graphs with a constant number k of arcs, optimizing over P can be done in polyno-
mial time: we know that every integral solution has exactly k of the z-variables set

100

4.2. Polyhedral Studies and a New Class of Perfect Graphs

1
2
C {0}, {c1}

{0}, {c2}{0}, {c3}

{0}, {c4}

. . .

{0}, {cn}

Figure 4.3: Illustration of the reduction from PARTITION in the proof of Theorem 4.25

to 1. Therefore, we can check all combinations in polynomial time if k is considered
constant. Fixing all z-variables of course leaves a very easy flow problem.

In the following, we will present a simple class of valid inequalities that we will
separate heuristically in Section 4.3.

Consider an integer vector z satisfying equations (4.1) such that for each arc a, the
index ja specifies which component of z is set to 1 on this arc. In particular, for all arcs
a, we have zaja = 1. Furthermore, let z violate (4.11), i.e.∑

a∈δ−(vc)

laja + d >
∑

a∈δ+(vc)

uaja .

Infeasibility of z allows us to obtain the valid inequality

(4.13)
∑

a∈δ−(vc)

zaja +
∑

a∈δ+(vc)

zaja ≤ k − 1,

cutting off the infeasible point. Note that they can also be obtained as knapsack cover
inequalities. To see this, we substitute z̄i for 1 − zi in (4.11) and obtain the knapsack
inequality ∑

a∈δ−(vc)

∑
i∈Ia

lizi +
∑

a∈δ+(vc)

∑
i∈Ia

uiz̄i + d ≤
∑

a∈δ+(vc)

∑
i∈Ia

ui.

Now any knapsack cover consisting of one z-variable and na− 1 of the z̃-variables per
arc translates to (4.13), where na denotes the number of intervals on arc a.

Using the fact that at most one z-variable per arc can be set to 1, we can strengthen
(4.13) by summing over all intervals with larger lower bound than the interval corre-
sponding to zaja in the first sum as well as over all intervals with smaller upper bound
in the second. This leads to

(4.14)
∑

a∈δ−(vc)

na∑
i=ja

zai +
∑

a∈δ+(vc)

ja∑
i=1

zai ≤ k − 1,

101

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

where again na denotes the index of the topmost interval of arc a, assuming intervals
are numbered appropriately.

We separate these inequalities later in Section 4.3. Note that they are valid for
any structure of intervals, including overlapping intervals on the same network arc.
For the special case of instances resulting from piecewise linear modeling (as for Sub-
section 4.2.3), see [ZdF13] for further classes of valid inequalities derived from knap-
sack inequalities.

Remark 4.27. This class of inequalities is also transferable to a formulation according
to the δ-method. The equivalent cutting planes to inequality (4.14) then read∑

a∈δ+(vc)

zaja +
∑

a∈δ−(vc)

(1− zaja+1
) ≤ k − 1.

This is derived by using the same transformation as for Theorem 4.24.

4.3 Computational Results

4.3.1 Separation Algorithms

Three versions of IP solution methods have been implemented based on using call-
backs in Gurobi [Gur17]. The algorithms differ in terms of the class of inequalities
they separate. The new methods presented here are compared to using Gurobi wit-
hout separating callbacks. As in the previous chapter, this reference is denoted by
MIP in the following.

• The first method separates the inequalities from the complete description of P
when defined on paths of network arcs (see Corollary 4.16). It identifies all suita-
ble sub-paths of degree-two-nodes in the network and constructs the correspon-
ding compatibility graphs—which only has to be done once. Theorem 4.22 al-
lows to pre-compute a complete description for each of the detected sub-paths.
This description is quadratic in the path’s length and linear in the number of
intervals per arc. We don’t add all those constraints right from the start as in
practice many of them are redundant. Instead, we use a separation callback at
every 50th branch-and-bound node that finds all violated inequalities and adds
them to the model. The callback is called at most 100 times.

We call this method PATHCUT.

• We may also separate inequalities (4.14) from Subsection 4.2.4, which is appli-
cable at every network node. The separation is done heuristically. Inequali-
ties (4.14) are derived from an infeasible combination of intervals. Also, we want
any generated cutting plane to cut off the current fractional solution. First, we
construct a candidate for this combination of intervals from the current (branch-
and-bound) node relaxation. For every network arc incident to the network node

102

4.3. Computational Results

considered, we simply take the interval whose z-variable has maximal (fractio-
nal) value. We then use a local search procedure in order to improve this can-
didate in terms of the two criteria, infeasibility of the combination and violation
of the resulting constraint by the current node relaxation. This cutting plane
method is called FORKCUT and is used also at every 50th branch-and-bound
node.

• Finally, CUT calls the separation routines of both PATHCUT and FORKCUT.

4.3.2 Benchmark Instances and Test Environment

The different methods are evaluated on benchmark instances for P based on two dif-
ferent sets of underlying network topologies. These are random scale-free networks
according to an underlying preferential attachment model [AB02], and the original
network topology of a real-world gas network. For all test sets additional input data
is generated at random. This includes the vector d of demands as well as the initial
arc capacities c. Capacities were scaled in such a way that feasibility of all instances
is guaranteed. We then chose a random partition of the interval [−ca, ca] into a gi-
ven constant number of intervals for each network arc. This configuration resembles
a piecewise linearization. Note that the intervals have the special structure needed
for Theorem 4.17, which is exploited by PATHCUT. To implement (4.3), the Multi-
ple Choice Method is used. The objective function is constructed by drawing integer
coefficients for the z-variables. This is done uniformly at random from the interval
from 0 to twice the number of intervals per arc, with the restriction that there is an
upper bound on the resulting ‘slope’ of the objective function. Section 4.3.5 uses dif-
ferent objective functions as will be explained there. The instances do not contain any
additional constraints apart from those defining P .

As the generation of instances includes randomness, we always generated sets of
five instances of the same type in terms of number of nodes and number of intervals
per arc. The solution times given in the following are always (geometric) averages
over five instances each. If only a subset of the five instances was solvable within the
time and memory limitations, the average is taken over this subset only. In any case
we also state the number of instances that could be solved.

The computational experiments have been performed on a queuing cluster of Intel
Xeon E5-2690 3.00 GHz computers with 25 MB cache and 128 GB RAM, running Ver-
sion 7 of Debian GNU/Linux. We have implemented the methods introduced above
using the C++-API of Gurobi 6.00. We use Gurobi’s standard parameter settings, ex-
cept for turning on PreCrush for our cutting plane methods, which is mandatory if we
want to add user cuts. Each job was run on 4 cores and with a time limit of 40 hours
CPU-time.

103

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

4.3.3 Computational Results on Random Networks

The topology of the instances in this benchmark set is generated according to a pre-
ferential attachment model. It generates so-called scale-free graphs [AB02], which are
known to represent the evolutionary behavior of complex real networks well. Starting
with a small clique of initial nodes, the model iteratively adds new nodes. Each new
node is connected to m of the already existing nodes. This parameter m, the so-called
neighborhood parameter, influences the average node degree. We set m = 2 in order to
generate sparse graphs that resemble infrastructure networks. Unfortunately, nodes
of degree two are never adjacent in this setting, although longer paths of degree-two-
nodes are very common in practice. Therefore, we modified the graph construction as
follows: The second edge of each new node is present in the graph only with probabi-
lity 2

3
. This remedies the mentioned shortcoming and guarantees connectedness.

First, we analyze the performance of the methods for instances of different size (50-
150 nodes) with a fixed number of 10 intervals per arc. Subsequently, we will study
the impact of the number of intervals per arc on a test set with fixed networks.

network MIP PATHCUT FORKCUT CUT
nodes sol CPU[s] sol CPU[s] sol CPU[s] sol CPU[s]

50 5 2.67 5 2.34 5 2.57 5 2.59
60 5 8.32 5 7.02 5 7.53 5 8.59
70 5 14.48 5 13.65 5 13.59 5 12.43
80 5 29.31 5 33.40 5 25.77 5 27.59
90 5 53.34 5 43.30 5 42.37 5 36.74

100 5 99.36 5 90.16 5 79.96 5 77.27
110 5 149.14 5 120.15 5 123.77 5 109.50
120 5 387.85 5 421.00 5 385.91 5 305.87
130 5 325.46 5 186.55 5 219.04 5 187.44
140 5 1 361.14 5 913.09 5 813.26 5 966.19
150 5 604.95 5 378.96 5 589.11 5 407.58

Table 4.1: Number of instances solved (‘sol’) and average solution times (CPU-time
[s]) for instances on scale-free networks of varying size, 10 intervals per arc.

Table 4.1 reports the CPU-times required to solve the instance to optimality in se-
conds, each averaged over five instances of the same size. The first number in each
column states the number of solved instances, whereas the second gives the average
solution time. Note that we apply the geometric mean for the average values in or-
der to account for outliers. The fastest method in each row is emphasized with bold
letters. We rank the methods first by the number of solved instances and second by
the average solution time. If a method did not solve any of the 5 instances of a given
configuration, we denote this by an average solution time of ‘∞’.

104

4.3. Computational Results

We see that the solver benefits from using our cutting plane separators for most
of the instance sets. For all instance sets, one of the new methods introduced here is
fastest. Indeed, in most cases, both PATHCUT as well as FORKCUT lead to a consi-
derable benefit. Therefore, it is not surprising that overall CUT performs best on the
current test set. CUT achieves faster solution times than MIP for all instance sets ex-
cept for the one with 60 nodes. Only for few instance sets one of the methods is less
efficient than MIP. In those cases, the difference is not significant. The success of CUT
correlates with a reduction of the number of branch-and-bound nodes required by the
solver that is reduced by about the same factor as the runtime is. The gain in solution
time is moderate for medium size instances, but grows with the size of the instances.
For the set of largest instances, CUT needs about 2

3
of the time required by MIP on

average.

0

10

20

30

40

50

60

70

80

90

1

2 3 4 1

%
 o

f
in

s
ta

n
c
e
s
 s

o
lv

e
d

Multiple of fastest solution time (log-scale)

MIP
PATHCUT
FORKCUT

CUT

Figure 4.4: Performance profile for instances on scale-free networks of varying size (55
in total), 10 intervals per arc, compared by solution time (CPU-time [s]).

This is also emphasized in the performance profile in Figure 4.4. Though perfor-
mance profiles have been used already in Chapter 3, we quickly recall their meaning
for convenience: For each method, the percentage of all instances solved is shown as
a function of the available time. This time is given in multiples of the solution time
of the fastest method. In particular, the intercept of each curve with the vertical axis
shows the percentage of instances for which the corresponding method achieves the
shortest solution time. This kind of plot also provides additional information on how
good a method is in catching up on instances for which it is not fastest. We see that

105

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

CUT is the fastest method for more instances than any other method, whereas for MIP
this quantity is just about 10%, including mostly relatively easy instances. Also, given
twice the time of the fastest method, MIP still solves only about 2

3
of the instances. That

means it is far behind for quite a number of instances. The performance of PATHCUT
and FORKCUT also suggests that both types of cutting planes lead to improvement,
independently from each other.

intervals MIP PATHCUT FORKCUT CUT
per arc sol CPU[s] sol CPU[s] sol CPU[s] sol CPU[s]

5 5 3.85 5 3.78 5 2.86 5 3.91
7 5 25.74 5 26.05 5 28.05 5 22.85

10 5 102.07 5 92.25 5 81.89 5 78.78
15 5 576.22 5 387.40 5 269.23 5 277.01
20 4 2 088.74 4 1 583.41 5 2 967.00 5 2 047.47
25 5 4 644.31 5 2 332.10 5 2 338.88 5 1 695.06
30 3 7 946.24 4 4 846.78 5 7 897.16 5 3 406.70
50 0 ∞ 1 79 424.01 1 19 897.23 2 33 771.02
70 0 ∞ 1 55 651.25 2 73 108.05 2 33 779.41

100 0 ∞ 0 ∞ 0 ∞ 0 ∞

Table 4.2: Number of instances solved (‘sol’) and average solution times (CPU-time
[s]) for instances on scale-free networks with 100 nodes, varying number of intervals
per arc.

We expect instances to become more difficult when the number of intervals per
arc increases. However, there is the natural question whether this has any impact on
the relative performance of the methods. Therefore, we now consider instances of
fixed networks of 100 nodes, varying the number of flow intervals for each network
arc. The results are shown in Table 4.2. CUT outperforms all other implementations
with the exception of two instance sets. And it is clearly more efficient than MIP ex-
cept for the set of very easy instances that could be solved in less than 10 seconds of
CPU-time. Here, also programming overhead in our separating routines might be an
issue. We observe similar results when considering the number of branch-and-bound
nodes instead of the solution time. As before, the benefit from using CUT increases
with problem size. However, this effect is much more evident than in Table 4.1. Using
CUT, the solver is able to optimize significantly more instances. This is most notable
for the set of instances with 30 intervals per node. Here, the average solution time
is much smaller for CUT, although it includes the two instances MIP was not able to
solve. This is a drastic improvement. Our conclusion is that our methods are better
at dealing with the difficulties posed by lager number of intervals per arc. We might
observe this from a purely empirical point of view, but a possible explanation might
be the following. For the clique problem with classical edge-formulation, it is known

106

4.3. Computational Results

that the Gomory-rank of stable set inequalities increases with the size of the stable set
[Chv73]. This may lead to strong cutting planes that the solver is less likely to find by
itself. We experimented with the Gurobi- parameter MIPfocus, which allows to incre-
ase the solver’s aggressiveness in generating cuts, but we did not observe significantly
different results.

4.3.4 Performance on a Real-World Network Topology

This test set consists of instances based on a realistic topology of a gas network by
the German gas network operator Open Grid Europe (OGE). It consists of 592 nodes
and 623 arcs. 224 nodes have degree two and 128 paths of degree-two-nodes were
detected, which amounts to an average length of 2.75. The longest of those paths has
length 8.

For large numbers of intervals per arc we encountered numerical difficulties on this
test set. These numerical issues are already observed in the standard solution method
MIP. To overcome this we used Gurobi’s parameter NumericFocus to tell the solver
to be more careful regarding numerical issues. To be safe, we set it to the maximum
value of 3 for all tested solvers for the following computations. As a result, we did not
observe numerical difficulties for any of the instances any more. However, this choice
results in longer running times for all solvers. Due to this and the large number of
nodes, instances could only be solved up to 10 intervals per arc.

intervals MIP PATHCUT FORKCUT CUT
per arc sol CPU[s] sol CPU[s] sol CPU[s] sol CPU[s]

3 5 66.63 5 73.13 5 59.77 5 47.96
4 5 4 943.87 5 468.66 5 546.96 5 265.98
5 5 9 001.10 5 1 627.76 5 1 449.77 5 723.65
6 2 31 384.31 3 10 089.66 5 7 924.77 5 8 220.91
7 1 103 191.92 2 122 299.54 5 21902.84 5 16 490.54
8 0 ∞ 0 ∞ 3 16 541.76 4 27 133.11
9 0 ∞ 0 ∞ 1 13 253.19 3 40 070.03

10 0 ∞ 0 ∞ 0 ∞ 2 133 889.72

Table 4.3: Number of instances solved (‘sol’) and average solution times (CPU-time [s])
for instances on a gas network topology with 592 nodes, varying number of intervals
per arc.

Table 4.3 shows the results on this test set. We see similar behavior as in Table 4.2 for
the scale-free networks: MIP is competitive only for easy instances and our algorithms
are clearly ahead from a certain level of difficulty/number of intervals onwards. CUT
and FORKCUT both solve all instances of the test sets up to 7 intervals per arc, which
MIP is not able to do. CUT still manages to solve more than half of the 15 most difficult

107

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

instances, whereas MIP doesn’t solve any of them, which is mainly due to memory
limitations. From the log files it seems unlikely that MIP would have succeeded within
the time limit given enough memory. Nevertheless, reduced memory consumption is
an important advantage of our cutting plane methods. The benefit of using our cutting
planes is drastic from this test set with realistic topology. Apparently, both the cuts of
PATHCUT and FORKCUT contribute to the success of CUT. This confirms the results
obtained on the topology of thinned scale-free graphs from Subsection 4.3.3.

4.3.5 Continuous Piecewise Linear Objectives and the Incremental
Formulation

Until now, the results for the instances reported here had an objective function that
only considered the binary z-variables and hence corresponds to a piecewise constant
approximation. In many applications, a continuous piecewise linear function is pre-
sent, which means that the objective function is also bound to the q-variables. So we
may ask whether instances with such an objective function behave differently than
what has been reported so far. This is investigated in the following.

In order to obtain instances featuring a continuous piecewise linear objective func-
tion according to (4.4), we take the instances from Table 4.1, but with a different ob-
jective that is created as follows: the drawn values for the z-variables are instead inter-
preted as function values at the breakpoints (and one more value has to be drawn of
course). Objective coefficients for the z- and q-variables then follow from (4.4). Note
that all instances in the computational section feature the interval overlap structure
that is typical for piecewise linearization (i.e. intervals result from subdivision of a
larger interval). Both variants for the objective function are illustrated in Figure 4.5.

q

f (q)

Figure 4.5: Illustration of the objective as a function of the flow q - reduced to a par-
ticular arc. Drawing objective coefficients for z-variables corresponds to an objective
f that is piecewise constant in q. It is depicted by thick lines. Dotted lines show the
corresponding continuous piecewise linear interpolation as in (4.4).

In particular, the continuous piecewise linear objective is constructed in such a way
that it interpolates the coefficients for the piecewise constant objective. Also, corre-

108

4.3. Computational Results

sponding instances use the same random graph, so the instances are the same as those
from Table 4.1 up to the objective function. The instances with continuous piecewise
linear objective function turned out to be much more difficult than their piecewise
constant counterparts. Also for this test set, numerical difficulties for MIP were en-
countered. As before, we set Gurobi’s parameter NumericFocus to the value of 3 which
remedied any inconsistencies.

network MIP PATHCUT FORKCUT CUT
nodes sol CPU[s] sol CPU[s] sol CPU[s] sol CPU[s]

20 5 10.53 5 5.03 5 10.30 5 6.25
30 5 63.34 5 55.12 5 66.15 5 53.32
40 5 489.93 5 639.15 5 473.83 5 537.92
50 5 9361.08 5 7689.44 5 6598.01 5 7887.72
60 3 26299.43 4 29773.15 5 40159.14 5 38246.99
70 0 ∞ 0 ∞ 0 ∞ 0 ∞
80 0 ∞ 0 ∞ 0 ∞ 0 ∞

Table 4.4: Number of instances solved (‘sol’) and average solution times (CPU-time
[s]) for instances with continuous piecewise linear objective on scale-free networks of
varying size, 10 intervals per arc.

The results are shown in Table 4.4. The increased computational difficulty of this
instance set is obvious. From 70 nodes on, no instance was solved within the time
limit by any method. Therefore, we cut the table beyond instances with 80 nodes and
added sets with 20, 30 and 40 nodes, respectively. Despite the changes in difficulty, no
qualitatively different behavior of the methods can be observed. CUT is more efficient
than MIP on 4 out of 5 meaningful instance sets - and reduces the runtime by about
the same factor as measured from Table 4.1.

Finally, we consider a formulation according to the Incremental Method as des-
cribed in Subsection 4.2.3, as it is very popular and often the method of choice for
piecewise linearization in gas network optimization. Given that the presented cutting
planes simplify significantly for the δ-Method, one might expect an even larger benefit
from using them. On the other hand, this means that they are also more likely to be
found by the solver’s generic cut generation methods anyway. For the following ex-
periment we use the same instances and setting as for Table 4.4, apart from using the
incremental formulation.

As can be readily seen from Table 4.5, using the Incremental Method reduces the
runtime of all solution methods significantly. For example, instances from the set with
50 nodes are solved∼ 25 times faster for MIP and∼ 45 times faster for CUT on average.
Also, much more instances are now solvable within the time limit, allowing for test
sets with more network nodes. This is not surprising; in [CPSM14], a recent in-depth
computational study for piecewise linear functions in the context of gas network opti-

109

Chapter 4. Structural Investigations of Piecewise Linearized Flow Problems

network MIP PATHCUT FORKCUT CUT
nodes sol CPU[s] sol CPU[s] sol CPU[s] sol CPU[s]

20 5 1.21 5 1.13 5 1.22 5 1.15
30 5 3.83 5 3.16 5 3.91 5 3.29
40 5 29.92 5 19.00 5 27.51 5 19.08
50 5 352.05 5 168.48 5 320.29 5 171.03
60 5 1838.76 5 707.42 5 1081.13 5 759.05
70 5 27767.41 5 8216.85 5 14981.19 5 12331.28
80 3 71907.28 5 22771.34 4 31749.03 4 17519.88
90 0 ∞ 3 72546.29 1 141738.59 2 52504.78

100 0 ∞ 2 47902.72 1 89969.98 2 87192.53
110 0 ∞ 1 76720.97 0 ∞ 1 95796.02
120 0 ∞ 0 ∞ 0 ∞ 0 ∞

Table 4.5: Number of instances solved (‘sol’) and average solution times (CPU-time
[s]) for instances with continuous piecewise linear objective on scale-free networks of
varying size, 10 intervals per arc, using the Incremental Method.

mization sees the Incremental Method coming out on top, outperforming the Multiple
Choice Method even by several orders of magnitude for some test sets. A clear be-
nefit of using our cutting planes persists also for this formulation, where the relative
reduction in runtime overall has moderately increased compared to Table 4.4. Most
notably, our cutting planes allow solving a number of instances that would have hit
the time limit otherwise. In contrast to Table 4.1 and Table 4.2, now PATHCUT is the
most successful method for all instance sets, though also FORKCUT and CUT clearly
outperform MIP. A possible explanation would be that the cutting planes at paths
of length 2 are quite valuable here, as this is the common feature of PATHCUT and
FORKCUT, where the former is suited better to this task due to its separation being
exact.

4.4 Further Remarks on Extending Applicability

For the computations in the previous section, the results from Subsection 4.2.2 and
Subsection 4.2.4 were applied to induced paths in the network and single network
nodes, respectively. Though it turned out that this resulted in significant strengthening
of the model, I would like to remark that there are more situations in which the cutting
planes are applicable.

First of all, the results on paths of arbitrary length from Subsection 4.2.2 may also
be applied to substructures that form induced paths of degree-2-nodes if we only con-
sider edges for which the flow is not fixed. This includes structures in which middle
nodes might have junctions but the flow contribution from outside the substructure is

110

4.4. Further Remarks on Extending Applicability

fixed (or can be fixed during preprocessing). The reason is that for forming P , we can
effectively convert those fixed arc flows into demands for middle nodes—exactly as
we did in Chapter 3 for the construction of the maximum flow subproblems. Though
we might have to keep the arc in the network model due to other problem constraints
like pressure compatibility in gas networks. Note that we assumed nonzero demand at
the middle nodes of the path only for the sake of simplicity, and that dealing with the
more general case is described in Section 4.2. We can apply the results e.g. to isolated
circles in the network, i.e. circles that do not intersect with another circle. This opens
up more situations for application, especially if the network is relatively sparse and
does not contain a lot of intersecting cycles as it is not uncommon for gas networks.

Moreover, note that the results for stars in Subsection 4.2.4 apply to any cut in the
network, not only to cuts around a single node. This implies that we might use our
separation routine for inequalities from Subsection 4.2.4 at aggregate nodes. It is not
clear beforehand which aggregate nodes are suitable for generating strong cutting pla-
nes, and it might not be practical to apply separation at every subset of the nodes. Ho-
wever, this observation means that the techniques from this and the previous chapter
can in principle be combined: Cuts can be obtained from applying FORKCUT at nodes
of an aggregated master problem and stay valid after disaggregation. Moreover, we
can hope that aggregation techniques can help to identify interesting aggregate nodes
for applying FORKCUT even if the network eventually is completely disaggregated
during the algorithm.

Of course it would be useful to be able to also transfer our results to a logarithmic
formulation (see Subsection 2.2.4) like we did with the Incremental Formulation in
Subsection 4.2.3. Unfortunately, there does not seem to be a direct way do this. At
this point I want to highlight that a key concept of our reasoning is the compatibility
graph. In order to define it, we need the fact that it is sufficient to consider pairwise
conflicts for the binary variables. Also, the compatible choices for a given binary vari-
able (interval) on one arc have to be ‘connected’ in some sense, to allow us to make the
connection to chordality in graphs. Both properties are not present for a logarithmic
formulation. As mentioned in Chapter 2, the logarithmic model is often outperformed
by other formulations despite having fewer variables. So the reduction in variables
apparently comes at the cost of a somehow less ‘solver-friendly’ structure. Our inves-
tigations might give some additional hint at the reason for the strength of incremental
modeling for nonlinear network flow problems. Namely, the complete description of
P can be expressed by very sparse inequalities.

In the following chapter, we will create an abstract generalization based on the two
key ingredients mentioned above.

111

Chapter 5

Staircase Compatibility

Compatibility structures are prevalent in many combinatorial optimization problems.
In fact, they arise whenever the choice of one solution element immediately narrows
down the choice of other elements. Such compatibilities are the core of many combina-
torial optimization problems on graphs. Typical examples include the clique problem,
which consists of finding a maximum clique in a given undirected graph, or the k-
colorability problem, which asks for finding a k-partition of a given graph such that
vertices connected by an edge have to be in different partitions.

In this chapter, we consider a special type of compatibility problem, inspired by
problems from the previous chapter as well as an application from energy efficient ti-
metabling that is closely related to the classical project scheduling problem. Again, our
aim will be to derive strong integer programming formulations for the structures con-
sidered. Major parts of this chapter are based on joint work with Andreas Bärmann,
Thorsten Gellermann and Oskar Schneider, published in [BGMS16].

5.1 The Clique Problem with Multiple-Choice Constraints

We consider the combination of compatibility constraints together with another fre-
quently-occurring structure, namely so-called multiple-choice constraints∑

i∈I

xi = 1,

where xi are binary variables for i in some finite index set I. These constraints are
present whenever there is a partition of the set of eligible elements into subsets such
that it is required to choose exactly one element from each subset. In the literature—
especially in the context of set packing and set covering—they are also known as par-
titioning constraints, e.g. in [CCZ14]. Altogether, this leads to a problem that can be
classified as a clique problem with multiple-choice constraints (CPMC). It is formally
defined as follows:

113

Chapter 5. Staircase Compatibility

Definition 5.1 (The Clique Problem under Multiple-Choice Constraints). Let S be a fi-
nite basic set together with a partitioning of S intom disjoint subsets S = {S1, . . . , Sm},
i.e. S =

⋃m
i=1 Si and Si ∩ Sj = ∅ for i 6= j. Consider a symmetric relation

R ⊆ (S × S) \
m⋃
i=1

(Si × Si).

Two elements s ∈ Si, t ∈ Sj are said to be compatible if and only if (s, t) ∈ R holds. The
clique problem under multiple-choice constraints (CPMC) is then given by the task to

(SC1) choose exactly one element from each subset Si

such that the selected elements are pairwise compatible.

Hence, the clique problem under multiple-choice constraints amounts to finding
a clique in the undirected graph G = (S,R) whose nodes are the elements of S and
whose arcs connect exactly the pairwise compatible elements in S such that exactly
one element from each subset in the partition of S is chosen. We callG the compatibility
graph associated with relation R. Note that this definition of the compatibility graph is
consistent with Definition 4.1 in Chapter 4.

Remark 5.2. In this generality, (CPMC) is NP-hard as it e.g. covers the problem of
graph colorability for a given number of colors. This problem can be modeled as
(CPMC) in the following way: LetH be the graph to be colored and let k be the number
of available colors. Create a partition Sv for each vertex v ∈ V (H) with choices Sv =
{sc,v, c = 1, . . . , k}, meaning that v is colored with color c. The compatibility relation
R is then defined by

(sc,v, sc′,u) ∈ R ⇔ c 6= c′ or (u, v) is not an edge in H.

This fully describes the colorability problem in terms of (CPMC). Furthermore, it is
NP-complete to decide if a given graph admits a k-coloring for a given k ≥ 3 [GJS74].

While (CPMC) is NP-hard in general we want to investigate a special case where
it is solvable efficiently. This is possible for a restriction of the compatibility graphs to
graphs with a special compatibility structure. We have seen in Subsections 4.2.1 and
4.2.2 of the previous chapter that the combinatorial optimization problem of choosing
compatible flow intervals along a path of degree-2-nodes can be reformulated as such
a clique problem. We know already from Chapter 4 that (CPMC) is solvable in poly-
nomial time if the compatibility graph is partition-chordal (see Definition 4.10).

In this chapter, we go a different route and integrate this problem into another
general class of clique problems that admit a perfect description of the convex hull of
feasible points that even is of linear size, essentially the one from in Theorem 4.22. This
of course means that we have to restrict ourselves to a special interval structure that is
required for this theorem. However, this is the case for the interval structure origina-
ting from piecewise linearization, hence we will assume this case for the examination

114

5.2. Staircase Compatibility

of interval compatibility problems within this chapter. We will see that this problem
has significant similarities to the classical project scheduling problem, for which such
model reformulations are already known (see [MSSU01]). Our definition of staircase
compatibility will generalize the key properties of both special cases that allow us to
state efficient integer programming formulations for which we can show that the cor-
responding constraint matrix is totally unimodular. However, the notion of staircase
compatibility provides a common, more general framework to study the underlying
clique problem with multiple-choice constraints. In particular, it will be shown that
the derived integrality results hold for a wider class of compatibility graphs.

Note that Definition 5.1 requires that the whole problem can be defined in terms of
pairwise compatibilities. This is a severe restriction. Though compatibility structures
are extremely common in all kinds of optimization problems, often times a combina-
tion of choices might rule out an option for the solution, while every single choice does
not. This was e.g. the case for interval compatibilities in star graphs in Subsection 4.2.4,
where we could not take advantage of the compatibility graph. However, as remarked
for our setting in Chapter 4, the structure of (CPMC) investigated here might well be
present as a substructure and strengthening the formulation locally can have a huge
impact on solving times.

In order to demonstrate that there is great benefit from studying this structure, we
present computations on real-world applications which are special cases of (CPMC)
under staircase compatibility in Subsection 5.4. First, we consider a problem in railway
timetabling which is a special case of the project scheduling problem. After that we
revisit piecewise linearized network flow problems in the light of this chapter.

5.2 Staircase Compatibility

Let us now focus on a special case of (CPMC) with a certain ‘connectedness’ structure
in the underlying compatibility relation:

Definition 5.3 (Staircase Relations). Let each subset Si in the partition of S be an orde-
red set according to a total order <i, which allows us to denote the elements of Si by
si,1, . . . , si,ni

with ni = |Si|. In the following, we omit the index i and simply write <
whenever no confusion is possible. We then call a symmetric relation R on S a stair-
case relation if two conditions hold. The first condition states the connectedness of the
compatible choices for a given element:

(SC2a) (a, bk1) ∈ R ∧ (a, bk3) ∈ R ⇒ (a, bk2) ∈ R,

whenever a ∈ Si, bk1 , bk2 , bk3 ∈ Sj, bk1 < bk2 < bk3 . The second condition forces some
kind of monotonic behavior of R:

(SC2b) (al1 , bk2) ∈ R ∧ (al2 , bk1) ∈ R ⇒ (al1 , bk1) ∈ R ∧ (al2 , bk2) ∈ R

for al1 , al2 ∈ Si, bk1 , bk2 ∈ Sj, al1 < al2 , bk1 < bk2 .

115

Chapter 5. Staircase Compatibility

If the relation R in the setting of Definition 5.1 is a staircase relation, we call the
arising special case of (CPMC) the clique problem with multiple-choice constraints under
staircase compatibility (CPMCS).

The choice of the term ‘staircase relation’ becomes clear when considering the ad-
jacency matrix of the compatibility graph corresponding to such a relation: each sub-
matrix that describes the compatibility between the elements of two subsets of the
partition is a staircase matrix if its rows and columns are ordered according to the <i

(see [Fou84] for an extensive compilation of the properties of staircase matrices).

Before moving on to a further discussion of this problem, we consider an example
for illustration.

Example 5.4. Consider the following example:
a1

a2

a3

b1

b2

b3


b1 b2 b3

a1 1 1 0
a2 0 1 1
a3 0 1 1



It shows the compatibility graph for (CPMCS) as well as the corresponding ad-
jacency matrix for a certain staircase relation R on the set S = S1 ∪ S2 with S1 =
{a1, a2, a3} and S2 = {b1, b2, b3}. We see that removing edge {a2, b2} would violate
(SC2a) (and also (SC2b), see Lemma 5.5 above), while removing {a3, b3}would violate
(SC2b). Any selection {a, b}with (a, b) ∈ R would be feasible for (CPMCS). The axiom
(SC2b)—which might seem complicated at first—has the following illustrative mea-
ning: whenever there is a crossing of edges (al1 , bk2) and (al2 , bk1) in the compatibility
graph (if it is drawn as in this example) then also the ‘uncrossed’ edges (al1 , bk1) and
(al2 , bk2) must belong to the compatibility graph.

Lemma 5.5. Under the assumption that each element s of a subset Si in the partition of S has
at least one element in each of the remaining subsets with which it is compatible, i.e.

(5.1) {s′ ∈ Sj|(s, s′) ∈ R} 6= ∅ ∀s ∈ Si, ∀j = 1, . . . ,m, j 6= i,

(SC2a) is implied by (SC2b).

Proof: Let s ∈ S be an element of subset Si for some i ∈ {1, . . . ,m} and let Sj, j 6= i be
another partition. Now let a ∈ Si, bk1 , bk2 , bk3 ∈ Sj, bk1 < bk2 < bk3 and (a, bk1) ∈ R as
well as (a, bk3) ∈ R (see Figure 5.1 for an illustration). In order to prove the claim, we
have to show that (a, bk2) ∈ R, assuming (5.1) and (SC2b). Applying (5.1) to bk2 , there
is an element s′ ∈ Si such that (s, bk2) ∈ R. If s′ = s, the claim immediately follows;
otherwise, without loss of generality let s′ > s.

Due to (s′, bk2) ∈ R and (s, bk3) ∈ R, we can apply (SC2b): it follows (s, bk2) ∈ R
(and (s′, bk3) ∈ R) which completes the proof. �

116

5.2. Staircase Compatibility

s

s′

bk1

bk2

bk3

Figure 5.1: Illustration of the proof of Lemma 5.5.

The assumption in Lemma 5.5 is fairly mild since an element that does not have at
least one compatible choice in every component cannot belong to any feasible selection
and may be eliminated in a preprocessing step. Therefore, we will assume this case for
the remainder of the chapter. This will come in especially handy in Section 5.5, where
we will discuss issues regarding recognizability of staircase graphs, and only have to
check (SC2b).

5.2.1 Two Applications of (CPMCS)

In the following, we give two example applications (CPMCS) may arise from. In both
examples, the project scheduling problem and interval compatibilities in path flows, it
is a possible way to characterize the set of feasible solutions. The latter application is
already familiar from Chapter 4.

Project Scheduling Let m tasks j = j1, . . . , jm be given. Each task has to be carried
out at exactly one time slot, where we assume a discrete set Tj = {tj,1, . . . , tj,nj

} of
possible execution times to be given that may differ for different jobs. Additionally,
pairs of tasks may have precedence restrictions requiring one of them to start in a
predefined time window relative to the other (if no relation is given, they may be
done in any order, or possibly in parallel). This problem is called the project scheduling
problem with precedence constraints. For further information and examples, see [SZ15]
and the references therein.

The following is a possible formulation for the above scheduling problem:

find x(5.2)

s.t. xk − xl ≤ dk,l (1 ≤ k < l ≤ m)

xk − xl ≥ dk,l (1 ≤ k < l ≤ m)

xj ∈ Tj (j = 1, . . . ,m)

for some dk,l, dk,l with k = 1, . . . ,m and l = k + 1, . . . ,m.

117

Chapter 5. Staircase Compatibility

We can model this problem as (CPMCS) as follows: each subset Si represents a
job ji, where the elements in each subset are identified with the possible execution
times {tj,1, . . . , tj,nj

}. Consequently, the subsets come with an obvious chronological
ordering. For different jobs jk, jl with k 6= l, we have

(tk,ik , tl,il) ∈ R⇔ dk,l ≤ tk,ik − tl,il ≤ dk,l

It is easily seen that (SC2a) is satisfied due to the convexity of the relative time window
defined by dk,l and dk,l. Furthermore, violating (SC2b) would contradict the temporal
ordering. Therefore, R as defined here is a staircase relation.

Interval Compatibilities in Path Flows Let a path network consisting of m edges
e1, . . . , em be given. Each edge has an interval for the feasible flow on the edge which
furthermore is subdivided into ni subintervals, i = 1, . . . ,m. This scenario appears as
a substructure in network flow problems where the flow has been piecewise lineari-
zed as explained in detail in Chapter 4. Though note that in the current chapter we
only consider the special case in which intervals on an arc arise from subdivision of
a larger interval; in particular, the assumption of Theorem 4.17 holds and the case of
Example 4.6 is excluded. We will see in Section 5.5 that the relation represented in this
example does not have the staircase property.

The task is to describe the set of feasible combinations of flow intervals. It repre-
sents a special case of (CPMCS) as can be seen as follows: define S as the set of all
intervals, where subset Si includes all intervals belonging to edge i of the path. As
those intervals are obtained from subdividing a larger interval, a canonical ordering is
available. Intervals belonging to different not necessarily adjacent edges are compatible
if and only if it is possible for the path flow to satisfy the bounds of both intervals.
If the demand of all intermediate nodes of the path is zero, this is true if and only if
they have nonempty intersection. Nonzero demands on path nodes can be reduced to
this case by simple interval arithmetic which amounts to shifting intervals appropri-
ately. An important observation is that the resulting relation R completely describes
the problem, as a set of intervals is guaranteed to be compatible altogether if each pair
of intervals is compatible. Finally, R is a staircase relation, where (SC2a) follows from
the fact that intervals are convex, and (SC2b) can be seen to hold from the way inter-
vals can be sorted for each network edge. In particular, the precondition of (SC2b),
namely (al1 , bk2) ∈ R ∧ (al2 , bk1) ∈ R for some al1 , al2 ∈ Si, bk1 , bk2 ∈ Sj with al1 < al2
and bk1 < bk2 , is only fulfilled if the subdivisions on the network arcs corresponding to
Si and Sj use a common breakpoint. Consequently, this breakpoint is contained in all
intervals corresponding to al1 , al2 , bl1 , bl2 , and it follows (al1 , bk1) ∈ R and (al2 , bk2) ∈ R.

Relation to General (CPMCS) The set of staircase relations that may originate from
one of the two special cases of (CPMCS) forms a strict subclass of general staircase
relations as defined in Definition 5.3. Intuitively, this is explained by the fact that
most applications—including the two above—allow for some ‘transitivity reasoning’,

118

5.2. Staircase Compatibility

i.e. the compatibilities between subsets S1 and S2 together with those between S2 and
S3 restrict the possible compatibilities between S1 and S3. However, according to the
definition, both (SC2a) and (SC2b) only consider two subsets at a time. The following
gives an example for a compatibility graph that does not originate from either of the
two special cases mentioned above.

Example 5.6. Consider the following compatibility graph G belonging to an instance
of Problem (CPMCS) with three subsets A = {a1, a2, a3}, B = {b1, b2, b3} and C =
{c1, c2, c3}, each of which has three elements. Note that there is another copy of parti-
tion A in the figure below to represent the compatibilities with partition C in order to
highlight the symmetric structure of the example.

a1

a2

a3

b1

b2

b3

c1

c2

c3

a1

a2

a3

Suppose G was obtained from an instance of Model (5.2). Then we could identify
each partition with a job and each element of the partition with a possible execution
time. We denote by dA,B := dA,B − dA,B the length of the time window between jobs A
and B and similarly for the other relations. As (a2, b2) ∈ R, but (a2, b1) /∈ R, (a2, b3) /∈
R, we can conclude that dA,B is less than the time difference between b1 and b3, by
slight abuse of notation denoted by b3 − b1 > dA,B. Due to c2 being connected to all
nodes in B, the time window of length dB,C has to include b1 as well as b3 and hence
dB,C ≥ b3 − b1, implying dB,C > dA,B. As the instance is symmetric, we can repeat
this argument to obtain dA,C > dB,C and dA,B > dA,C , which leads to the contradiction
dA,B < dB,C < dA,C < dA,B.

Similar reasoning shows that G also cannot be obtained from an instance of inter-
val compatibilities on a path flow network (as it is described above): the argument
is completely analogous, but uses the diameter of the intervals belonging to a2, b2, c2
instead of dA,B, dB,C , dA,C .

Moreover, the situation is no different if we do not assume the ordering of the
elements within each partition to be given. This is because there is no other ordering
that makes R a staircase relation apart from reversing all partition orderings.

Remark 5.7. The k-coloring problem has been utilized in Remark 5.2 for showing
that the general version of (CPMC) is NP-hard. Modeling the k-coloring problem as
(CPMC) as described there in general does not lead to a staircase relation. The reason
is that the k colors do not offer a natural ordering that ensures (SC2b) or even (SC2a).
In fact, for k ≥ 3 it can be checked quickly that the k-coloring problem cannot lead to
staircase relations even for a graph consisting of a single edge, and irrespective of the

119

Chapter 5. Staircase Compatibility

ordering on both partitions. This is consistent with what we will show in the following
section, namely that (CPMCS) represents a special case of (CPMC) that is solvable in
polynomial time.

In this context I would like to emphasize that staircase compatibility is not suited
to model ‘all-different-constraints’. For modeling the project scheduling problem (5.2)
as (CPMC) it is therefore key that jobs can be run in parallel if no relative time window
constraint is given.

5.3 Efficient MIP-Formulations for (CPMCS)

The problem (CPMCS) introduced in the previous section can be modeled as a mixed-
integer program (MIP) in a straightforward fashion: for each element s ∈ S we in-
troduce a variable xs ∈ {0, 1} that takes a value of 1 if this element is chosen and 0
otherwise. A vector x is then a feasible selection if and only if it is a solution to the
following feasibility problem:

find x

s.t.
∑
s∈Si

xs = 1 (∀Si ∈ S)(5.3a)

xs ≤
∑
t∈Sj :
(s,t)∈R

xt (∀Si ∈ S, ∀s ∈ Si, ∀Sj ∈ S, j > i)(5.3b)

x ∈ {0, 1}|S|,(5.3c)

where S denotes the given partition consisting of subsets S1, . . . , Sm, m ∈ N. The
multiple-choice constraints (5.3a) ensure that exactly one element of each subset in
S is chosen, while compatibility constraints (5.3b) enforce the pairwise compatibility
of the chosen elements according to the relation R: choosing an element s from one
subset Si implies that we have to choose one of the elements compatible to s in each
of the remaining subsets Sj . Integrality constraints (5.3c) finally restrict variables x to
take binary values. Note that constraints (5.3b) for two subsets Si, Sj are redundant if
(s, t) ∈ R for all s ∈ Si and t ∈ Sj .

Remark 5.8. It is easy to find examples where Constraints (5.3c) are actually needed
as Constraints (5.3a) and (5.3b) are not sufficient to ensure integrality of the solution.
For the instance presented in Example 5.4, Model (5.3) reads:

find x

s.t. x1 + x2 + x3 = 1

x4 + x5 + x6 = 1

x1 ≤ x4 + x5

x2 ≤ x5 + x6

x3 ≤ x5 + x6

120

5.3. Efficient MIP-Formulations for (CPMCS)

x ∈ {0, 1}6.

It allows for the fractional solution (0, 1
2
, 1
2
, 1
2
, 0, 1

2
) if x ∈ {0, 1}6 is relaxed to x ≥ 0

(observe that x ≤ 1 is redundant). This solution is easily checked to be an extreme
point of the corresponding polytope.

As we have seen, the polytope underlying Model (5.3) is not integral in general.
However, we will see now that a small adaption leads to a totally unimodular descrip-
tion of the feasible set. Consider the following formulation:

find x

s.t.
∑
s∈Si

xs = 1 (∀Si ∈ S)(5.4a) ∑
s′∈Si:
s′≥s

xs′ ≤
∑
t∈Sj :

∃t′≤t:(s,t′)∈R

xt (∀Si ∈ S, ∀s ∈ Si, ∀Sj ∈ S, j 6= i)(5.4b)

x ∈ {0, 1}|S|.(5.4c)

It uses the same set of variables as Model (5.3) as well as the same multiple-choice
constraints to enforce (SC1). However, it features new compatibility constraints whose
left-hand side arises by summing all xs′ for s′ ∈ Si with s′ > s onto the left-hand side
of the old compatibility constraint (5.3b) corresponding to element s ∈ Si and some
Sj with j 6= i. Its right-hand side arises by taking the old right-hand side and adding
all variables xt for t ∈ Sj that are greater than some t′ ∈ Sj that is compatible to s.
Readers of Chapter 4 may have noticed that those constraints match Constraints (4.9)
for upwards connected subsets of Si (see Definition 4.21). Furthermore, note that this
new model also incorporates compatibility constraints for subsets Si and Sj with i < j.
In the following, we show that the two models are in fact equivalent.

Proposition 5.9. The respective feasible sets of Models (5.3) and (5.4) coincide.

Proof: We begin by showing that each feasible solution to Model (5.3) is also feasible
for Model (5.4). To see this, consider an element s of a subset Si and its corresponding
compatibility constraint (5.3b) with the elements of another subset Sj , which reads

xs ≤
∑
t∈Sj :
(s,t)∈R

xt.

By summing up these constraints for all elements s′ ≥ s, we obtain∑
s′∈Si:
s′≥s

xs′
(5.3b)
≤

∑
s′∈Si:
s′≥s

∑
t∈Sj :

(s′,t)∈R

xt =
∑
t∈Sj

|{s′ ∈ Si | s′ ≥ s, (s′, t) ∈ R}| · xt.

Due to (SC2a), all coefficients for variable xt with t > t′ for some t′ with (t′, s) ∈ R
on the right-hand side of this inequality are exactly those which are non-zero, i.e. 1

121

Chapter 5. Staircase Compatibility

or greater. As its left-hand side can at most take a value of 1 due to the multiple-
choice constraint for subset Si, all coefficients on the right-hand side greater than 1 can
be reduced to 1 without changing the set of integer solutions fulfilling the inequality.
Therefore, ∑

t∈Sj

|{s′ ∈ Si | s′ ≥ s, (s′, t) ∈ R}| · xt =
∑
t∈Sj :

∃s′∈Si:s
′≥s,(s′,t)∈R

xt

Using (SC2b), we see that

{t ∈ Sj | ∃s′ ∈ Si : s′ ≥ s, (s′, t) ∈ R} = {t ∈ Sj | ∃t′ ≤ t : (s, t′) ∈ R}

This exactly yields Compatibility Constraints (5.4b), which proves that the feasible set
of Model (5.3) is included in that of Model (5.4).

To prove the opposite inclusion, we show that every integral solution to (5.4) is
indeed feasible for (CPMCS), i.e. whenever xs = 1 = xt for s ∈ Si, t ∈ Sj, i 6= j we
can show that (s, t) ∈ R. Using (5.4b), xs = 1 implies that one element from the set
{t̃ ∈ Sj | ∃t′ ≤ t̃ : (s, t′) ∈ R} also must have a value of 1. As only one element from
Sj can have value 1 due to (5.4a), the element t has to be contained in that set. Hence,
there exists t′ ≤ t with (s, t′) ∈ R. On the other hand, we may swap the roles of s
and t and use (5.4b) in order to deduce the existence of s′ ≤ s with (s′, t) ∈ R with the
same arguments. This puts us in a situation to apply (SC2b) to s′, s, t′ and t, concluding
(s, t) ∈ R. �

Note that similar as in the above proof, it can be shown that Constraints (5.4b) for
subsets Si, Sj with j < i are redundant to the corresponding constraint for j > i if
{t ∈ Sj | ∃t′ ≤ t : (s, t′) ∈ R} = {t ∈ Sj | (s, t) ∈ R}, i.e. elements s ∈ Si are compatible
to all t ∈ Sj from a certain element of Sj onwards.

Remark 5.10. Continuing the discussion of Example 5.4, we consider Model (5.4) for
the associated problem instance:

find x

s.t. x1 + x2 + x3 = 1

x4 + x5 + x6 = 1

x1 + x2 + x3 ≤ x4 + x5 + x6

x2 + x3 ≤ x5 + x6

x3 ≤ x5 + x6

x4 + x5 + x6 ≤ x1 + x2 + x3

x5 + x6 ≤ x1 + x2 + x3

x6 ≤ x2 + x3

x ∈ {0, 1}6.

This feasibility problem no longer allows for the fractional solution (0, 1
2
, 1
2
, 1
2
, 0, 1

2
) if

relaxed to an LP. In fact, it can be checked that the corresponding polyhedron is inte-
gral.

122

5.3. Efficient MIP-Formulations for (CPMCS)

Generalizing the observation of Remark 5.10, we now show that the underlying
polyhedron of Model (5.4) is always integral.

Theorem 5.11. The constraint matrix of Model (5.4) is totally unimodular.

Proof: In our proof, we use the following equivalent characterization of total unimo-
dularity:

A matrix A is totally unimodular, i.e. each square submatrix of A has de-
terminant 0, +1 or −1, if and only if each collection of columns of A can be
split into two parts such that the sum of the columns in one part minus the
sum of the columns in the other part is a vector with entries in {0,+1,−1}
only (see [GH62] and [Sch86, Theorem 19.3 (iv), p. 269]).

We begin by showing the total unimodularity of the constraint matrix of Model (5.4)
for the case of Example 5.4. We will then see that the idea behind the proof directly
extends to the general case. Observe that the constraint matrix has a very special
structure: 

S1 S2

∑
alt,S1

+
∑

alt,S2

∑
1 1 1 0 0 0 1 + 0 1
0 0 0 1 1 1 0 + 1 1
1 1 1 −1 −1 −1 1 + −1 0
0 1 1 0 −1 −1 0 + 0 0
0 0 1 0 −1 −1 1 + 0 1
−1 −1 −1 1 1 1 −1 + 1 0
−1 −1 −1 0 1 1 −1 + 0 −1

0 −1 −1 0 0 1 0 + 1 1


,

where we have left out the submatrices I and −I for the variable bounds, as they
have no effect on total unimodularity. When computing the alternating sum of the
columns corresponding to the elements of subset S1, going backwards and starting
with a positive sign in the last column, we observe that this yields a column vector
that only consists of entries in {0,+1,−1}. The same holds for the columns correspon-
ding to the elements of subset S2. For the rows corresponding to the multiple-choice
constraints (5.4a), exactly one of the two column vectors contains an entry +1 and the
other one an entry 0. For the rows corresponding to compatibility constraint (5.4b)
for the elements of S1, the S1-column vector contains either a +1 or a 0 and the S2-
column vector either a −1 or a 0, and vice versa for the elements of S2. Thus, when
adding the two column vectors, the result is a new column vector whose entries are
in {0,−1,+1} only. This property still holds when forming a submatrix by deleting
individual columns of the constraint matrix due to the staircase structures in the com-
patibility constraint. Therefore, we have shown the total unimodularity of the matrix.

Now, when considering an arbitrary instance of Model (5.4), we can use the same
strategy as above. Given an arbitrary subset of the columns of the constraint matrix,

123

Chapter 5. Staircase Compatibility

we partition it according to the partition of S and compute the m column vectors ari-
sing when summing the columns in such a partition in a backwards fashion (exploiting
the ordering of the subsets Si), starting with a positive sign for the last element. For
the rows belonging to the multiple-choice constraints, exactly one resulting column
vector will have an entry of 1, the other an entry of 0. As each row belonging to the
compatibility constraint corresponds to the elements of exactly two subsets, at most
one column vector will have an entry +1, and at most one column vector will have an
entry −1. The other entries will be 0. As a result, when summing all the column vec-
tors, the result will be a column vector with entries in {0,−1,+1} only. This concludes
the proof. �

In many cases, totally unimodular constraint matrices correspond to problems de-
fined on a network. More precisely, the matroid formed by a totally unimodular con-
straint matrix can be decomposed into matroids that are graphic, cographic, or iso-
morphic to the special matroid R10 (on the decomposition of regular matroids, see
[Sey80]) – which is neither graphic nor cographic and rarely occurs in practical ap-
plications. Thus, it is natural to ask the question whether the constraint matrix of
Model (5.4) is graphic or cographic (i.e., the linear matroid obtained from the matrix
is a graphic or cographic matroid), in which case (CPMCS) is equivalent to a network
flow problem or a dual network flow problem (‘potential problem’) respectively. The
reader not familiar with those notions of matroid theory may consult [Oxl06].

Theorem 5.12. The constraint matrix of Model (5.4) is cographic.

Proof: We show this by transforming Model (5.4) into a dual network flow problem.
This type of problem has been introduced in Subsection 2.1.2 of Chapter 2. Given a
graph G = (V,A), such a problem has the general form

min cTπ

s.t. πj − πi ≤ dij (∀ a = (i, j) ∈ A)(5.5a)

π ∈ R|V |

To obtain this form, we use the following variable transformation: let

yi,j :=

ni∑
k=j

xi,k (∀i = 1, . . . ,m)(∀j = 1, . . . , ni).

We have seen this transformation already in a different context: it connects the bi-
nary variables of different modeling methods for piecewise linear functions (see Sub-
section 2.2.3); it was a key ingredient to transfer polyhedral results to a formulation
according to the Incremental Methods in Subsection 4.2.3. Recall that the transforma-
tion is bijective with xi,j = yi,j − yi,j+1 if j < ni, and xi,ni

= yi,ni
. Stating Model (5.4) in

terms of the y-variables, we see that both sides form telescope sums, leaving only one
variable on each side. Thus, Compatibility Constraint (5.4b) for two subsets Si and Sl
and some j ∈ Si now reads

yi,j − yl,min(j,Sl,R) ≤ 0,

124

5.3. Efficient MIP-Formulations for (CPMCS)

which has the form of (5.5a). Constraints (SC1) translate to

(5.6) yi,1 = 1 (∀ i = 1, . . . ,m).

This also implies upper bounds on the x-variables. Their lower bounds can be expres-
sed via

(5.7) yi,j+1 − yi,j ≤ 0 if j < ni, and − yi,ni
≤ 0 (∀i = 1, . . . ,m).

G is simply defined to have a vertex for every y-variable and an arc (i, j) if and
only if there is a constraint yj − yi ≤ 0. �

Remark 5.13. The y-variables have the following interpretation: yi,j = 1 means: ‘from
Si, pick an element with index j or greater’. This is very similar to the Incremental
Method for linearizing a univariate function (see Subsection 2.2.3). Furthermore, the
above transformation is well-known from this context, where it is used to connect the
Incremental Method to, for example, the Convex Combination Method, and vice versa.
We can also recognize (5.7) as the filling condition.

In this sense, our dual flow formulation corresponds to an incremental formula-
tion, whereas Model (5.4) is related to the Multiple Choice Method or the Convex
Combination Method.

The following example illustrates the transformation of (CPMCS) to a dual net-
work flow problem. It will also show that the constraint matrix is not graphic in gene-
ral.

Example 5.14. Let S be partitioned into three subsets A = {a1, a2, a3}, B = {b1, b2, b3}
and C = {c1, c2, c3}. Let R be given by the following compatibility graph. Each pair of
subsets behaves as in Example 5.4.

a1

a2

a3

b1

b2

b3

c1 c2 c3

125

Chapter 5. Staircase Compatibility

As described in the proof of Theorem 5.12, Compatibility constraints (5.4b) trans-
form into Inequalities (5.3), e.g. considering node a2 together with subset B, the corre-
sponding inequality

xa2 + xa3 ≤ xb2 + xb3

in terms of the y-variables now reads

ya2 ≤ yb2 .

More generally, for every element s ∈ Si and every subset Sj, j 6= i we have

ys ≤ yt(s),

where t(s) = min{t ∈ Sj | (s, t) ∈ R}. Due to (5.7), there are additional constraints
ordering the y-variables within each subset. Therefore, by the proof of Theorem 5.12
we can formulate the given instance of (CPMCS) as a dual network flow problem on
the following directed graph.

a1

a2

a3

b1

b2

b3

c1 c2 c3

In this graph, arcs (u, v) may be read as implications of the form (u = 1)⇒ (v = 1).
The example shows that the constraint matrix of Model (5.4) is not graphic in general,
as this would require the above graph to be planar. However, this is not the case, as,
for example, it has K3,3 as a subgraph using nodes {a2, b2, c2} and {a3, b3, c3}. This
implies that the graph has no planar embedding due to Kuratowski’s Theorem.

As the constraint matrix is totally unimodular, we are guaranteed that each fracti-
onal point is the convex combination of integral solutions. Next, we will show how to
find such a convex combination. In the case where (CPMCS) forms a substructure of a
more complex problem, this may be useful for constructing a heuristic, as the integer
points spanning a fractional solution are candidates for good feasible solutions.

The following is an easy way to obtain integral solutions from a fractional one. It
generalizes the well-known fact that for dual network flow problems, rounding all
components up or rounding all components down preserves feasibility.

126

5.3. Efficient MIP-Formulations for (CPMCS)

Definition 5.15. Let ŷ be a solution to (CPMCS), and let λ ∈ (0, 1] be some threshold
value. We define ŷλ to denote the integer point obtained from rounding all components
of ŷ according to the following rule:

ŷλ,i =

{
1 if ŷi ≥ λ
0 if ŷi < λ

,

and say that ŷλ is obtained from λ-rounding ŷ.

It is easy to see that ŷλ is also a solution to (CPMCS), for all λ ∈ (0, 1]. The key
observation is that every operation that does not change the relative ordering of the
yij (and also does not violate the 0−1-bounds), preserves feasibility, as dij = 0 in (5.5a)
whenever there are two variables present in the constraint.

Theorem 5.16. Let ŷ be a solution to (CPMCS). Then ŷ is a convex combination of the integral
solutions

{ŷλ | λ ∈ {ŷi, i = 1, . . . , |S|}}.

Proof: Let Λ := {ŷi, i = 1, . . . , |S|} denote the set of values occurring in ŷ. We denote
them by λ1, . . . , λ|S| and assume they are ordered increasingly, i.e. λi ≤ λj whenever
i ≤ j. We claim that

(5.8) ŷ =

|S|∑
k=1

(λk − λk−1)ŷλk ,

where λ0 is interpreted as 0. Indeed, the i-th component of
∑|S|

k=1(λk−λk−1)ŷλk is equal
to

|S|∑
k=1

(λk − λk−1)ŷλk,i
Def. 5.15
=

∑
k:λk≤ŷi

(λk − λk−1)1

telescope sum
= max

k:λk≤ŷi
λk − λ0︸︷︷︸

=0

= ŷi.

Furthermore, we have

λk − λk−1 ≥ 0 for all k = 1, . . . , |S|,

and also
|S|∑
k=1

(λk − λk−1) = λ|S| − λ0 = 1,

since (5.6) implies 1 ∈ Λ, and therefore λ|S| = 1. Thus, Equation (5.8) describes ŷ as a
convex combination of {ŷλ | λ ∈ Λ}. �

127

Chapter 5. Staircase Compatibility

5.4 Computational Results

In this section, we compare the efficiency of the three MIP formulations for (CPMCS)
we have discussed previously: the first, naive compatibility formulation (5.3), the to-
tally unimodular compatibility formulation (5.4) and the formulation as a dual net-
work flow problem. We do this by evaluating them on real-world benchmark instan-
ces. First, we consider an application on energy-efficiency of a railway timetabling.
After that we revisit instances from the context of piecewise linearization of the physi-
cal flow constraints on gas networks—though this latter application will be discussed
very briefly due to the detailed coverage in Chapter 4. We will see that passing from
the original to the unimodular formulation already brings a significant computational
advantage, but that the sparsity of the dual-flow formulation allows for the best results
by far. Our computational study thus immediately shows two more things: staircase
structures are present in real-world application problems and their exploitation is very
beneficial in terms of computation time.

5.4.1 Computational Results for Energy-Efficient Timetabling

The first example for a successful exploitation of staircase compatibility we present
here is a problem in railway timetabling. The aim is to take a preliminary timeta-
ble which is currently in the planning phase (typically towards the end) and to use
the remaining degrees of freedom to allow for a reduction of the energy costs of the
involved train operating companies (TOCs). This is possible by taking into account
that a big consumer of electricity—as a TOC undoubtedly is—typically has an electri-
city contract consisting of two price components: the overall energy consumption and
the maximum average power consumption over all 15-minute intervals in the billing
period. In the special case of a German TOC, the electricity provider charges the col-
lective consumption of all the trains operated by this TOC. This is done by summing
up their individual power consumption profiles as measured by the electricity meters
in the locomotives and computing both the area under the resulting curve, i.e. the to-
tal energy consumption, as well as the maximum 15-minute average. Both values are
multiplied with some cost factor and summed to obtain the final electricity bill. One
possibility for optimization via timetabling now lies in adjusting the departure times
of the trains in the stations. A train generally draws most power while accelerating.
Thus, high peaks in consumption can be avoided if too many simultaneous depar-
tures are desynchronized, which can be used to decrease the price component based
on peak consumption. In many cases, this effect can already be achieved via small
shifts in the departure times and is thus an interesting trade-off to be considered. The
power-based price component typically makes up for 20–25 % of the energy bill.

We illustrate the effect of this optimization in Figure 5.2. It shows the power con-
sumption profile before and after optimization for one of the benchmark instances
introduced later (Würzburg) on a sample day. The curves in red show the power con-
sumption in each second, while the blue curves show their consecutive 15-minute
averages. As stated, the TOC is charged proportionally to the highest such average

128

5.4. Computational Results

Figure 5.2: Power consumption profile of timetabling instance Würzburg before (left)
and after (right) optimization. The total power consumption per minute of all trains is
shown in red. 15-minute averages (relevant for billing) are displayed in blue.

over the billing period (typically one year). According to the official price sheet by
DB Energie GmbH for 2016, the cost factor is 120.83 e per kW and year such that the
demonstrated reduction from 87 to 80 MW in peak consumption equals an annual cost
saving of around 850, 000 e (and this is a rather small instance). Note that the energy
recuperated from braking trains is refunded separately and not offset against the po-
wer drawn from the power supply. Thus, we can assume that the consumption profile
is always non-negative.

In the following, we give a statement of the problem in terms of staircase compati-
bility and present a computational study on problem instances of different sizes.

The Problem as a Special Case of (CPMCS) We consider a given initial timetable in
which each departure time of a train from a station may be shifted within some interval
around the current departure time. We assume that the travel times of the trains on
the tracks as well as the corresponding power consumptions are fixed. Furthermore,
we assume that the temporal order of the trains passing a certain track may not be
changed by the optimization and that all connections between different trains in a
station must be preserved in order to maintain the structure of the original timetable
as far as possible. Assuming a fixed order of the trains on each track, we also know
the safety distances to respect between each consecutive pair of trains. The problem
is now to find an adjusted timetable that minimizes the maximum average power
consumption.

In order to state this problem in terms of (CPMCS), we need to define the basic set S
and the compatibility relation R. Let D be the set of all trains, V d the set of all stations
from which train d ∈ D departs and Ad the tracks it uses. Let furthermore Jdv ⊆ T

129

Chapter 5. Staircase Compatibility

denote the set of all feasible departure times for train d ∈ D from station v ∈ V d

within a given planning horizon T . We choose S to be the set of all triples (r, v, j)
of a train d ∈ D and its feasible departure times j ∈ Jdv from some of its stations
v ∈ V d. It is then natural to choose the partition S =

⋃
(d,v):d∈D,v∈V r Sdv, where Sdv are

all feasible triples (d, v, j) for some fixed d and v. A feasible timetable is then made up
of a selection of exactly one element from each subset Sdv:∑

j∈Sdv

xdvj = 1 (∀d ∈ D)(∀v ∈ V d).

To be feasible, this selection has to respect several further constraints which are stated
in the following. The travel time for a train d ∈ D to pass a track a = (v, w) ∈ Ad

on a journey between two stations v, w ∈ V d is Γda, and after arriving at station w it
has to stop for a minimum time of cdv. For each pair of consecutive trains (d1, d2) on a
track between two stations v and w, as given by a set Lvw, we have to keep a minimum
headway time of sd1d2vw. Finally, for each station v ∈

⋃
d∈D V

d where a pair of trains
(d1, d2) meets such that the time that passes between the arrival of d1 and the departure
of d2 is at least ρd1d2v and at most θd1d2v, as given by a set Uv, this property has to be
preserved in the new timetable to maintain the possibility to change between the two
trains.

The relation R stating the compatibility between two elements r1 = (d1, v1, j1), r2 =
(d2, v2, j2) ∈ S is now given by

R = R1 ∩R2 ∩R3.

Here, relation R1 models the compatibility according to the minimum stopping times:

R1 =
{

(r1, r2) ∈ S × S | d1 = d2 =: d, v1 = v2 =: v ∈ V d, (v, w) =: a ∈ Ad,
j2 ≥ j1 + Γda + cdw

}
,

relation R2 models the compatibility according to the minimum headway times:

R2 =
{

(r1, r2) ∈ S × S | v1 = v2 =: v ∈ V d, (v, w) := a ∈ Ad1 ∩ Ad2 , (d1, d2) ∈ Ld1d2a,
j2 ≥ j1 + sd1d2a + min(Γd1a − Γd2a, 0)

}
and relation R3 models the compatibility according to the connection times:

R3 =
{

(r1, r2) ∈ S × S | (v1, v2) ∈ Ad1 , (d1, d2) ∈ U v2 ,

j2 ≥ j1 + Γd1a + ρd1d2v ∧ j2 ≤ j1 + Γd1a + θd1d2v
}
.

It is easy to check that each of the three relations R1, R2 and R3 is a staircase relation
on S. Likewise, it is easy to check that the intersection of any number of staircase
relations is again staircase. Consequently, R is a staircase relation on S, which allows
us to formulate the set of feasible selections according to each of the three models
derived in Section 5.3.

130

5.4. Computational Results

What is left to define is the objective function. Let pdat ≥ 0 be the consumption
of train d when passing track a = (v, w) ∈ Ar at point 0 ≤ t ≤ Γda after departure.
Consequently, if train d departs from station v at time j, the consumption at point
t ∈ T is given by:

p̄datj =

{
max(pdat, 0), 0 ≤ t− j ≤ Γda

0, otherwise.

Let I = {1, 2, . . . ,m} be the set of them consecutive 15-minute (= 900-second) intervals
in T (where the last interval may actually be somewhat shorter). The total energy
consumption of a train d ∈ D on track a ∈ Ar within an averaging interval i ∈ I

when choosing departure time j ∈ Jdv is then given by edaij = 1
2
(p̄da,900ij + p̄

da,900(i+1)
j) +∑

900i+1≤t≤900(i+1)−1 p̄
dat
j (we consider the consumption p as a piecewise-linear function

over time). The average power consumption over an interval i ∈ I by all trains d ∈ D
depending on the chosen departure times is then given by

zi(x) =
1

900

∑
d∈D

∑
a=(v,w)∈Ad

∑
j∈Jd

v

edaij xdvj .

This leads to the following optimization problem to minimize the highest of these
averages:

min
x∈X

max
i∈I

zi(x),

whereX is the set of all feasible timetables. For this setX , we can now choose between
one of the three models for staircase compatibility derived in Section 5.3. Note that this
timetabling problem is NP-hard even if all trains only have one track andm = 2 as can
easily be shown by a reduction from the partition problem (see [GJ79, Problem SP12]).

Computational Comparison of the Models for (CPMCS) We now present a com-
putational study that compares the different formulations for staircase compatibility
considered before as a part of the timetabling problem introduced above. We do this
on real-world instances derived from the 2015 timetable for the German passenger
traffic operated by the industry partner Deutsche Bahn AG (DB). We complemented
this data by power consumption profiles based on height data of the stations as well
as simplified speed profiles taking into account train characteristics. An example is de-
picted in Figure 5.3 which shows an assumed speed profile for an ICE-3 on a journey
of 30 minutes in Figure 5.3a and the corresponding power profile on a track with an
upwards inclination in Figure 5.3b. The minimum headway times we chose are based
on [Pac16, Table 5.4] by rounding up the given values to full minutes.

Altogether, we have created 31 instances of different sizes, each for a planning ho-
rizon of 18 hours (4am to 10pm). These contain 18 local instances which contain all
trains passing a certain station in Germany, 1 Fernverkehr instance covering the Ger-
man long-distance traffic, 10 regional instances which contain all short-distance trains
circulating in a given region of Germany, 1 Regionalverkehr instance covering all of the
German short-distance traffic, as well 1 Germany instance covering all German DB pas-
senger trains. Each instance contains those parts of the journeys of the involved trains

131

Chapter 5. Staircase Compatibility

(a) Speed profile (b) Power consumption profile

Figure 5.3: Example profiles for an ICE-3 on a 30 minutes journey climbing an inclina-
tion

which fall within the planning horizon. The allowable shift in departure time was uni-
formly chosen to be ±3 minutes around the current departure time. The sizes of the
created instances, the computation times of the three different models as well as the
achieved savings in peak power consumption are shown in Table 5.1. Here, NA deno-
tes the naive formulation (5.3), TU stands for the totally unimodular formulation (5.4),
and DF represents the formulation as a dual network flow problem.

The computational experiments have been performed on a queuing cluster of AMD
Opteron 6134 2, 3-GHz computers with a total of 16 CPU cores on each cluster node,
and 128 GB of main memory. The implementation uses the python interface of Gu-
robi 7.0 [Gur17], where the solver is assigned 5 of the cores, and each of the instances
was run in exclusive mode on a cluster node (hence, all 16 nodes may be used for
building up the large model, which does not count towards the solution time).

The result is very clear: Formulation DF is by far the best way to formulate the
compatibilities as it leads to the fastest solution times on all but a few instances. In
many cases, the benefit is very significant. Most notably, the Germany-wide instance
can be solved within ∼ 23 minutes via the dual flow formulation, whereas Formu-
lation NA cannot solve this instance to optimality within the time limit of 10 hours.
The table also shows that the computation time of Formulation TU is usually between
the solution times required for Formulations NA and DF. This shows the general be-
nefit of passing to a totally unimodular description of the set of feasible timetables.
However, the sparsity of Formulation DF leads to much lower node solution times in
the branch-and-bound tree and is therefore vastly superior. We remark here that the
stated reduction of about 5 % in peak power consumption for the Germany-wide in-
stance would allow for cost savings of several million euros per year. More detailed
information on the problem can be found in [BMS17].

132

5.4. Computational Results

Computation time [s]
Instance #Trains #Trips NA TU DF Sav. [%]

Zeil 42 762 24.65 6.18 1.42 14.89
Bayreuth Hbf 68 327 1.49 0.79 0.34 22.18
Passau 75 1 040 1 835.38 355.94 28.49 14.48
Jena Paradies 78 1 102 301.73 76.97 13.82 12.46
Lichtenfels 113 1650 1359.2 472.94 43.79 15.25
Erlangen 142 2 969 9 511.88 1 127.05 108.92 15.28
Bamberg 209 3 644 - 273.71 46.86 13.07
Aschaffenburg 245 3 463 356.94 81.74 7.06 12.95
Kiel Hbf 297 2 130 251.70 58.80 8.35 11.19
Leipzig Hbf (tief) 369 6 810 27.24 29.45 4.39 6.40
Würzburg Hbf 371 4 456 - 29 817.58 2 047.97 8.32
Dresden 422 6 936 - 1 639.76 401.61 9.29
Ulm Hbf 468 5 729 13 790.59 156.63 17.08 11.23
Stuttgart Hbf (tief) 628 11 594 3 962.31 2 187.78 41.14 0.93
Berlin Hbf (S-Bahn) 639 16 114 57.53 203.62 316.23 2.97
Hamburg-Altona(S) 722 12 373 1 756.98 460.26 52.50 1.29
Frankfurt(Main) Hbf 728 8 626 - 2 515.70 111.80 10.28
Nürnberg 951 12 189 1 519.30 72.26 16.64 7.10

S-Bahn Hamburg 1 208 17 533 3 788.40 795.17 247.73 2.36
Regio Nord 1 476 13 379 309.98 99.33 23.01 12.79
Regio Nordost 1 494 16 496 8 659.40 265.17 30.26 15.50
Regio Hessen 1 547 25 092 93.57 198.95 181.63 5.64
Regio Suedwest 1 863 24 191 1 382.92 252.55 33.11 13.00
Regio Suedost 2 357 31 917 3 685.06 311.43 73.26 8.96
Regio BW 2 382 30 172 9 649.42 904.94 181.57 13.36
S-Bahn Berlin 2 578 53 353 234.73 1 653.37 4 676.73 1.73
Regio NRW 2 826 47 026 9 256.70 2 104.53 337.56 5.13
Regio Bayern 3 554 49 262 1 415.59 578.32 567.86 10.72

Fernverkehr 667 7 053 819.13 216.45 26.09 5.38
Regionalverkehr 21 288 308 472 - 22 728.63 19 997.96 9.52

Germany 21 955 315 525 - 22 204.67 1 369.89 5.05

Table 5.1: Computational results for the energy-efficient timetabling problem showing
the solving time[s] for the three problem formulations as well as the number of trains
and trips and total amount of energy saved (‘Sav. [%]’) for each instance.

133

Chapter 5. Staircase Compatibility

5.4.2 Computational Results for Piecewise Linearized Path Flows

Another example for a staircase compatibility structure originates from the setting that
has been investigated in Chapter 4 (please see Section 4.1 for an introduction to this
setting and a definition of the polytope considered in Chapter 4). Among others, we
were able to derive a complete description for the case of a network that is a path
of arbitrary length (see Subsection 4.2.2). In the current chapter, we assume that the
intervals on each network arc result from subdivision of a larger interval. This has
also been covered as a special case in Chapter 4, though using different reasoning. We
have already seen in Subsection 5.2.1 that this represents a special case of (CPMCS).

Computational Comparison of the Models for (CPMCS) We have already seen in
Chapter 4 that there is a significant impact of using complete descriptions for sub-
structures for instances arising from piecewise linearized network flow problems. We
will reconsider some of the computations with an emphasis on the results from this
chapter.

We use the same setting for our test instances as in Chapter 4 (see Subsections 4.3.1
on the separation routine PATHCUT and 4.3.2 for the generation of instances). In
particular, we first identify all suitable subpaths of degree-two nodes in the network,
construct the corresponding compatibility graphs and precompute the unimodular
formulation of Model (5.4) for each of the detected subpaths. This description is qua-
dratic in the length of the path and linear in the number of intervals per arc.

The underlying network is given by the topology of a real-world gas network by
the German gas network operator Open Grid Europe (OGE) consisting of 592 nodes
and 623 arcs. It has also been used for computational experiments in Subsection 4.3.4.
As the network is not a path, there is no complete description available. However,
(CPMCS) is present as a substructure, e.g. at each induced path of degree-two nodes in
the network. 224 nodes have degree two and there are 128 paths of degree-two-nodes,
which amounts to an average length of 2.75. The longest of those paths has length 8.
In the following, we want to test the effect of using our improved formulations of
(CPMCS) in those places.

Using results from this chapter we may reformulate subpaths of degree-two nodes
in the network using either the totally unimodular formulation (5.4) or the formula-
tion as a dual network flow problem. As in the previous subsection, those will be
denoted by TU and DF, respectively. Formulation TU naturally uses variables from
the Multiple Choice Method whereas the choice of variables in DF can be associated
with the Incremental Method as a linearization method. Note that the transformation
used to obtain the formulation DF and to prove Theorem 5.12 is exactly the same that
connects the Incremental Method to the Multiple Choice Method (see Remark 5.13).
Therefore, the Incremental Method will be used for computations on DF.

Table 5.2 (which is an excerpt from Table 4.3 in Chapter 4) shows the effect of sepa-
rating constraints from formulation TU compared to a standard formulation obtained
from applying the Multiple Choice Method. Adding constraints from the TU formula-

134

5.4. Computational Results

intervals MCM MCM + TU-paths
per arc solved CPU[s] solved CPU[s]

3 5 66.63 5 73.13
4 5 4 943.87 5 468.66
5 5 9 001.10 5 1 627.76
6 2 31 384.31 3 10 089.66
7 1 103 191.92 2 122 299.54
8 0 ∞ 0 ∞

Table 5.2: Number of instances solved and average solution times for instances on a
gas network topology with 592 nodes and a varying number of intervals per arc.

tion of the (CPMCS)-substructures (i.e. paths of degree-two nodes) improves the run-
time of the solver considerably for most test sets. This effect increases with a growing
number of intervals per arc, resulting in a total of 2 more instances that can be solved
within the time limit.

In the following, we compare the standard formulation with and without adding
constraints from the totally unimodular dual-flow formulation (which naturally uses
the binary y-variables of the Incremental Method).

intervals INC INC + TU-paths
per arc solved CPU[s] solved CPU[s]

4 5 5.61 5 6.10
5 5 13.73 5 10.50
6 5 141.02 5 41.96
7 5 197.94 5 68.49
8 5 1424.02 5 195.95
9 5 1144.44 5 857.59

10 5 25506.75 5 837.45
12 3 85712.83 5 3048.45
15 0 ∞ 5 44275.51
20 0 ∞ 1 824.18
25 0 ∞ 0 ∞

Table 5.3: Number of instances solved and average solution times for instances on a
gas network topology with 592 nodes and a varying number of intervals per arc, using
the Incremental Method.

The results can be found in Table 5.3 (which has not been shown in Section 4.3).
Using the Incremental Method reduces the overall runtime by a large factor such that
instances up to 12 intervals per arc (20 with the TU formulation on paths) can now

135

Chapter 5. Staircase Compatibility

be solved. This agrees with the results in Subsection 4.3.5 obtained on random scale-
free networks. It also gives an additional argument for the dual-flow formulation, as
its variables seem to suit solvers well in this context. Remember that even without
using our totally unimodular description, switching to the Incremental Method leads
to faster solution times. Providing the solver with the TU-formulation on paths again
increases the performance of the solver significantly. For more computational experi-
ments on piecewise linearized flow problems the reader may reconsider Section 4.3.

The results on the application of piecewise linearized flow problems show that the
TU-formulations can have a large benefit, not only if the feasible set—as in the last
subsection—can be described as (CPMCS) as a whole, but also if (CPMCS) is present
as a substructure.

5.5 Recognizability of Staircase Relations

The previous section has shown that for two example applications, where (CPMCS) is
present as a substructure, using totally unimodular formulations—in particular the
dual flow formulation—for (CPMCS) represents a significant improvement over a
naive formulation and can vastly reduce solution time. With these insights, one may
aim to identify (CPMCS) within more applications or even detect it automatically in
general MIPs in order to do a reformulation. In this section, we want to address ques-
tions related to recognizability of staircase compatibility.

5.5.1 Complexity of Recognition Problems

Staircase compatibility according to Definition 5.3 is not a property of a graph, but
rather a joint property of a graph together with a partition and together with a total
ordering on each partition. Therefore, the question of recognizability can be stated on
different levels, depending on which of those features are already fixed.

At the most restrictive level, we may assume that for a graph G = (V,E) the parti-
tioning S = {S1, . . . , Sk} for some k ∈ N as well as total ordering on each partition are
already fixed.

For those questions of recognizability Lemma 5.5 is very useful. It tells us that in
case of (5.1), i.e. if each element s of a subset Si in the partition of S has as least one
element in each of the remaining subsets with which it is compatible, (SC2b) implies
(SC2a). With the partitioning S given, it is easy to check (5.1). Moreover, confirming
that elements belonging to the same partition are incompatible according to R can
also be done efficiently. Therefore, we will consider it sufficient to check for (SC2b) to
decide whether a given relation is a staircase relation; moreover, we will denote (SC2b)
by (SC2).

The first observation is that the recognition problem on the lowest level is easy:

136

5.5. Recognizability of Staircase Relations

Proposition 5.17. Let a partitioning of S into S = {S1, . . . , Sk} for some k ∈ N total or-
derings on each partition Si, i = 1, . . . , k be given. The problem to decide whether a given
relation R is a staircase relation, can be solved in polynomial time.

Proof: As discussed above, we can reduce the problem to checking (SC2b). However,
by the structure of this condition, we can simply select any subset consisting of four
elements a1, a2 ∈ Si, b1, b2 ∈ Sj with a1 < a2, b1 < b2 from two partitions Si and Sj and
check the implication from (SC2b), i.e. if either (a1, b2) /∈ R, (a2, b1) /∈ R or (a1, b1) ∈
R ∧ (a2, b2) ∈ R. This clearly can be done in polynomial time, e.g. in O(|S|4), though
this bound is quite rough due to the special membership structure that is required
for a1, a2, b1, b2 in order to satisfy the assumption of (SC2b). We can improve it by
only considering 4-tuples of nodes that form 2 ‘crossing’ edges (see our colloquial
explanation of (SC2b) in Example 5.4). This leads to a (still rather pessimistic) bound
of O(|R|2). �

Remark 5.18. In case a relation is not a staircase relation, we could want to form a stai-
rcase relaxation by adding compatibilities to R. The Problem (CPMCS) for the resulting
staircase relation R′ then is a relaxation of (CPMC) for the original relation R. In par-
ticular, the cuts from the totally unimodular formulation (5.4) are still valid for the
original problem. They are merely insufficient for obtaining a complete description.

There is a unique optimal staircase relaxation in the sense that any other staircase
relaxation strictly contains the minimal one: It can be obtained by repeatedly applying
(SC2b), i.e. adding the edges that would be implied by (SC2b) but are not yet present,
to the compatibility graph. Every edge added that way has to be contained in any
staircase relaxation of R, hence the minimal staircase relaxation is found after (SC2b)
is finally satisfied. As the number of edges that can be added during this process is
finite, this relaxation is found after polynomially many steps.

We may also state the recognizability question for the case where the partitioning
S is given but the orderings on each partition are yet to be determined. This problem
is a lot more challenging. The following hardness result can be given:

Theorem 5.19. Let a partitioning of S into S = {S1, . . . , Sk} for some k ∈ N and a relation
R on S be given. The problem to decide whether there are total orderings on each partition
Si, i = 1, . . . , k such that R satisfies (SC2b), is NP-complete.

Proof: We show the theorem by a polynomial-time reduction from the Betweenness
Problem, referred to as BETWEENNESS in this proof. In this problem, a ground set U
is given together with a set U of ordered triples with elements from U . One has to
determine whether there is a linear ordering of U such that the middle item of each
given triple is placed somewhere between the other two items. This problem is NP-
hard [Opa79].

From an instance of BETWEENNESS, we construct an equivalent instance of the re-
cognition problem from Theorem 5.19 as follows: We have a special partition S0 = U ,
where each node is identified with an item from BETWEENNESS. For each triple t =
(u, v, w) ∈ U , we construct a partition consisting of 3 nodes each that are identified

137

Chapter 5. Staircase Compatibility

S ′t St S0

u

v

w

u

v

w

Figure 5.4: Construction of the compatibility graph for the proof of Theorem 5.19,
showing partitions S0 as well as St and S ′t for a single triple t = (u, v, w).

with the items from the respective triple (but of course different from the nodes in
S1). Each node in such a partition is solely compatible with their respective copy in
S0. Moreover, each partition St representing a triple t from U comes together with an
auxiliary partition S ′t consisting of two nodes. This partition S ′t has nontrivial compati-
bilities only with St and those are designed to force vt, the designated middle element
of the triple, to be sorted in between the other two elements in St (see Figure 5.4). Note
that there are exactly two possibilities for choosing orderings on St and S ′t. Those cor-
respond to the two possible orderings of t that put v in the middle. The compatibility
relation between partitions corresponding to different triples may be chosen as com-
plete bipartite graphs such that (SC2b) is trivially satisfied for those pairs of partitions.

If there is a solution to BETWEENNESS, this gives us a linear ordering on U that
we can use for S0. This ordering will ensure that the middle element of each St for
t ∈ S is between the other elements of t. Therefore, there will be no crossing of edges
between St and S0 if the ordering on St and S ′t is oriented correctly. On the other hand,
every choice of orderings on the partitions that lead to R being a staircase relation
immediately gives us a solution to BETWEENNESS. Moreover, the transformation of
instances is clearly polynomial in the encoding size of the input. �

Please note that the instances of (CPMCS) in the proof of Theorem 5.19 do not
satisfy (5.1) such that it does not prove that deciding whether R is a staircase relation
is hard. Still, it gives quite a strong hint that this question is also difficult.

Even if there are no orderings such that a given relation R is a staircase relation we
might still want to determine an ordering that gets R as close to being a staircase re-
lation as possible. On the one hand, this either provides a good basis for constructing
a staircase relaxation as described in Remark 5.18. On the other hand, a reformula-
tion using the variables from the dual flow formulation might already help a general-
purpose MIP solver—similar as using the Incremental Method might speed up the
solution process in case a sensible ordering is available as it has been observed in Sub-

138

5.5. Recognizability of Staircase Relations

Su Sv

u

u

v

v

Figure 5.5: Construction of the compatibility graph for the proof of Theorem 5.20,
showing partitions Su and Sv for u, v ∈ E(H).

section 5.4.2. A natural way to measure the quality of a choice for the total orderings
consists of minimizing the number of violations of (SC2). However, this turns out to
be NP-hard, even in a severely restricted case:

Theorem 5.20. Let a partitioning of S into S = {S1, . . . , Sk} for some k ∈ N and a relation
R on S be given. The optimization problem to determine total orderings on each partition
Si, i = 1, . . . , k such that the number of violations of (SC2) is minimized is NP-hard, even
when the problem is restricted to at most two elements per partition.

Proof: We show the theorem by a polynomial-time reduction from the famous pro-
blem MAXCUT. For a given graph H , it asks for partitioning the nodes into two sets
such that the number of arcs between both partitions is maximized. The weighted
version of the corresponding decision problem was one of Karp’s 21 NP-complete pro-
blems [Kar72], and also the unweighted case is well known to be NP-hard [GJ79].

From an instance of MAXCUT on a graph H , we construct an equivalent instance
of the optimization problem from Theorem 5.20 with only two elements per partition:
For each v ∈ V (H), construct a partition Sv = {v, v} consisting of the two elements v,
v. Define the compatibility relation R as follows: for u, v ∈ V (H), but (u, v) /∈ E(H),
compatibilities are chosen to be trivial, say Su, Sv form a complete bipartite graph. In
case (u, v) ∈ E(H), let (u, v) ∈ R, (u, v) ∈ R and (u, v) /∈ R, (u, v) /∈ R (see Figure 5.5).

Therefore, sorting u < u and v < v would contribute exactly one violation of (SC2)
to the objective, while flipping one of the orderings (but not both) satisfies (SC2) for the
two partitions Su and Sv. As a consequence, any cut inH containing l edges with node
partitions V1, V2 corresponds to a choice for total orderings on the partitions Sv, v ∈
V (H) with |E(H)| − l violations, namely v < v ∀v ∈ V1 and v > v ∀v ∈ V2, and vice
versa. �

5.5.2 An MIP formulation for the Recognition Problem with Fixed
Partitioning

Despite Theorems 5.19 and 5.20 we may still want to solve the problem of determi-
ning suitable total orderings one each partition reasonably well in practice. In this
subsection, we will develop an MIP-model to do so. We deploy a modeling that is
well known from the Linear ordering Problem (LOP) [MR11]. For each pair of elements

139

Chapter 5. Staircase Compatibility

s, s′ within the same partition Si, we have a binary variable zs,s′ that encodes the rela-
tive ordering of s and s′, i.e.

zs,s′ =

{
1 if s < s′

0 if s′ < s

according to the total order on Si. We have to make sure that z variables are consistent
within each partition, in particular

zs,s′ = 1⇔ zs′,s = 0

and exclude cycles in the relative ordering, i.e.

zu,v = 1 ∧ zv,w = 1⇒ zu,w = 1

for elements u, v, w from the same partition. From the theory of directed complete
graphs (so-called tournaments), this is known to be sufficient to characterize a valid
linear ordering on each partition.

In addition to the linear ordering constraints we have to model (SC2). However,
this can be done by constraints with a surprisingly simple structure. Given two edges
(a, b), (a, b) in the compatibility graph with a, a ∈ Si, b, b ∈ Sj for i 6= j, we can check
easily whether a given ordering, say a < a and b < bwould violate (SC2) as mentioned
in Proposition 5.17. In that case, we can derive the implications (a < a)⇒ (b > b) and
(b < b)⇒ (a > a). This translates to za,a = zb,b. One can check quickly that at most one
such constraint is needed for each pair of edges in the compatibility graph. This leads
to the following MIP formulation for the recognition problem from Theorem 5.19:

find z(5.9a)

s.t. zu,v + zv,u = 1 (∀ u 6= v in the same partition)(5.9b)

zu,v + zv,w + zw,u ≤ 2 (∀ u 6= v 6= w in the same partition)(5.9c)

zs,s′ − zt′,t = 0 (∀s < s′, t < t′ : (SC2) is violated)(5.9d)

zs,s′ ∈ {0, 1}. (∀ (s, s′) ∈
⋃m
i=1(Si × Si))(5.9e)

Constraints (5.9b) and (5.9c) model linear ordering problems on each partition. Con-
dition (SC2) is covered by Equations (5.9d). Note that (5.9d) and (5.9b) are ideal to be
used for substitution (cf. [FM05, paragraph on Aggregation]), which effectively redu-
ces the number of variables. The remainder is a restricted LOP. This type of problem
is well studied and there are a number of exact and heuristic methods to solve LOPs
effectively in practice, see e.g. [CML15, SS05] and the references therein.

Remark 5.21. Formulation (5.9) can be adapted to solve the optimization version of
the recognition problem from Theorem 5.19. A direct way would consist of replacing
the right-hand side of (5.9d) with slack variables y(s,s′,t,t′) and minimizing the 1-norm
of y. For this modified problem, even heuristic or approximate solutions might be very
helpful to obtain a good ordering in case an instance turns out to be too hard to solve
to optimality.

140

5.5. Recognizability of Staircase Relations

5.5.3 On Defining Staircase Graphs

Moving to the highest level of recognition problems related to staircase compatibility,
we may ask whether a general graph can be the compatibility graph of any staircase
relation. However, a definition of the form

‘An undirected graph G = (V,E) is a staircase graph if there exist a partition S of V
and total orderings on each partition such that E defines a staircase relation.’

is not useful. The reason is that it would result in any simple graph being a staircase
graph: Let S partition V into singletons, i.e. each partition has exactly one vertex. This
way, each pair of partitions would trivially satisfy the conditions from Definition 5.3.

We can come up with a more sensible definition by remembering that staircase
relations were defined on graphs on which we want to solve a special type of clique
problem. Namely, we ask for the optimal (with respect to some objective) clique of
size k, where k is the number of partitions. However, the above construction leads
to k = |V | and therefore leaves (CPMCS) without a feasible solution unless G is a
complete graph. Thus, we may want to restrict the size of the partitioning S in our
definition:

Definition 5.22 (Staircase Graphs). Let G = (V,E) be an undirected graph and let
ω(G) denote the clique number of G, i.e. the maximum size of a clique in G. The graph
G is called staircase graph if there exist a partition S of V with |S| ≤ ω(G) and total
orderings on each partition such that E defines a staircase relation.

Note that there can be no partition with |S| < ω(G), hence Definition 5.22 effecti-
vely asks for |S| = ω(G).

While technically Theorem 5.19 does not imply that recognizing staircase graphs
is NP-hard if the partitioning is not fixed, the alternative would be very surprising.
Even if the clique number ω(G) is known, the task of finding a partitioning into ω(G)
partitions (not considering (SC2)) is already NP-complete.

Although staircase graphs and partition-chordal graphs (see Definition 4.10) share
the type of application that gave rise to their definition and can be used for proving si-
milar results, there is no inclusion-relation in any direction. Whereas partition-chordal
graphs can be sorted into an established hierarchy of well-known subclasses of perfect
graphs (see Theorem 5.23), staircase graphs do not fit into this hierarchy: they are
neither a subclass of perfect graphs nor a superclass of chordal graphs.

Theorem 5.23.

a) Not every staircase graph is perfect.

b) Not every chordal graph is a staircase graph.

Proof:

141

Chapter 5. Staircase Compatibility

a1

a2

b1

b2

c1

c2

(a) Representation from Example 4.6, based
on grouping by partitions.

a1

a2

b1

b2

c1

c2

(b) Alternative representation that clearly
shows that the graph is chordal.

Figure 5.6: The graph from Example 4.6 is chordal but not a staircase graph.

a) Though we have shown that staircase graphs are a class of graphs that allow sol-
ving special clique problems in polynomial time, they are not perfect in general.
The abstract reason is that staircase graphs focus on cliques of size k, whereas the
definition of perfect graphs requires the clique number to be equal to the chroma-
tic number for every induced subgraph as well. This shows us how to construct
a staircase graph that is not perfect: Take the graph that consists of two isolated
components, where one of them is a circle of length 5, and the other one a com-
plete graph on 5 vertices. This graph is not perfect as it has an odd hole as an
induced subgraph (recall Theorem 4.2 regarding different characterization of per-
fect graphs). On this graph, we chose 5 partitions, each of which having one vertex
from the C5 component and the K5 component. All components are ordered such
that the vertex fromC5 is larger than the vertex fromK5. Then the resulting relation
is a staircase relation.

b) To show that there are chordal graphs that are not staircase graph, we use the graph
G from Example 4.6. First of all, this graph is chordal as can be clearly seen from the
representation shown in Figure 5.6b. We now show that it is not a staircase-graph.
The clique number of the graph is 3 so we look for a partitioning into 3 partitions.
Nodes a2, b2, c2 form a clique, and hence have to be in different partitions. Node a1
is connected to both b2 and c2. Thus, it can only be assigned to the partition of
Node a2. In the same way, b1 and b2 are in the same partition as well as c1 and c2.
Hence, the only possible partitioning is that from Example 4.6 (see Figure 5.6a). The
reader—by now well trained in spotting violations of (SC2)—will notice that the
total orders suggested by Figure 5.6a do not give a staircase relation (e.g. consider
(a1, b2) and (a2, b1)). Moreover, it can also be checked that flipping some of the
orderings does not fix this. Hence, G is not a staircase graph.

�

Remark 5.24. From a practical point of view it would be very helpful to identify stai-
rcase relations in general MIPs. However, recognizing (near) staircase graphs from

142

5.5. Recognizability of Staircase Relations

general (unpartitioned) compatibility graphs seems less promising than searching for
an ordering if a particular partitioning is meaningful from the application context (see
Subsection 5.5.2). In any case, many formulations contain equations of the form∑

i∈I

xi = 1

with binary variables xi, i ∈ I for some index set I. Those could be the basis for
finding partitions heuristically. Experiments on the quality of staircase relaxations
that are obtained heuristically might be an interesting directions for further research.

143

Chapter 6

Simultaneous Convexification

In Chapter 4, we faced a mixed-integer programming formulation that consists of
many components (corresponding to a network arc each) that are already locally ideal,
and hence no further improvement is possible when considering only a single network
arc. Our strategy was to strengthen the formulation by considering specific substruc-
tures consisting of several network arcs, which led to considerable improvements from
a theoretical as well as a computational point of view—as we have seen in Sections 4.2
and 4.3, respectively.

In this chapter, we give an outlook on a similar approach that follows the same
general idea, and can directly be applied to nonlinear programming formulations. A
classic approach of general MINLP solvers consists of decomposing a nonlinear for-
mulation into ‘atomic’ nonlinear functions and for each such function, constructing a
convex hull of its function graph—or a polyhedral approximation thereof. For a recent
survey on global optimization for MINLPs, consider [BMF16].

Although computing such a convex hull is very hard in general, the problem is
well-studied for typical functions that are considered atomic by solvers such as a pro-
duct of several variables or commonly-encountered univariate functions. For some
classes of functions, even closed-form expressions are known (see e.g. [KS12], [LS13,
Chapter 4]) such that the convex relaxation of a single function cannot be improved
any further. This is similar to the situation in Chapter 4 with respect to the formula-
tion’s linear relaxation.

However, we may strengthen the formulation by considering (partial) convex hulls
that involve several nonlinear functions simultaneously, which we call the simultane-
ous convex hull of multiple functions. This set is clearly more restrictive than putting
together the separately computed convex hulls of single functions. Hence, we may
obtain strong cutting planes. Simultaneous convexification, i.e. computing the con-
vex hull of the function graph of a vector-valued function (in contrast to a real-valued
function), has been well-studied for special cases, e.g. the set of quadratic monomials
[AB10]. Treatment of examples can also be found in [Bal13, Chapter 5], and more re-
sults are referenced in the introduction of [Taw10]. However, results for more general
functions are rare according to [Bal13], giving [Taw10] as an example.

In this chapter, we will discuss the potential of aiming for simultaneous convexi-

145

Chapter 6. Simultaneous Convexification

fication of several functions for optimization problems on passive gas networks. Si-
milar to our approach in Chapter 4, we will consider multiple functions that model
a particular substructure of the network, namely a junction (cf. Subsection 4.2.4 for
our coverage on junctions in the context of piecewise linearization). This chapter is
part of a joint project in progress together with Frauke Liers, Alexander Martin, Nick
Mertens, Dennis Michaels and Robert Weismantel.

6.1 The Simultaneous Convex Hull of Functions

We consider nonlinear programs of the following type:

min c(x)(6.1)

s.t. fi(x) ≤ 0 (i = 1, . . . , k)

x ∈ D = [x, x] ⊆ Rn
+.

In the above formulation, fi denote continuous nonlinear functions

fi : D → R,

over some box domain D = [x, x] for i = 1, . . . , k. Without loss of generality, the
objective function c can be assumed to be linear.

In global optimization, a standard approach for solving (mixed-integer) nonlinear
optimization problems is based on constructing convex relaxations in conjunction with
branch-and-cut. A convex relaxation of (6.1) can be constructed with the help of con-
vex underestimators and concave overestimators of the functions fi.

Definition 6.1 (Convex Underestimator, Concave Overestimator). A convex underesti-
mator of a function f is a convex function f : D → R that bounds the function from
below, i.e. f(x) ≤ f(x) ∀x ∈ D. Similarly, a concave overestimator of f is a concave
function f : D → R with f(x) ≥ f(x) ∀x ∈ D.

The task of computing the best possible (or at least good approximate) estimators
is difficult in general. However, for certain function classes they can be computed
efficiently, or are known from the literature. Given such estimator functions, we obtain
the relaxed formulation

min c(x)(6.2)

s.t. fi(x) ≤ yi ≤ fi(x) (i = 1, . . . , k)

yi ≤ 0 (i = 1, . . . , k)

x ∈ D

y ∈ Rk,

where fi and fi denote convex underestimators and concave overestimators for the
constraint functions fi, respectively, for all fi, i = 1, . . . , k. Formulation (6.2) is a
convex program and can therefore be solved efficiently.

146

6.1. The Simultaneous Convex Hull of Functions

If fi and fi are best possible (so-called lower convex envelopes and upper concave en-
velopes), i.e.

{(x, yi) | fi(x) ≤ yi ≤ fi(x), x ∈ D} = conv{(x, fi(x)) | x ∈ D}

for all fi, i = 1, . . . , k, we call (6.2) the convex relaxation of (6.1) obtained by separate
convexification.

We can improve this relaxation by considering multiple fi simultaneously in the
shape of a vector-valued function

f : D → Rk, x 7→ (f1(x), . . . , fk(x)).

Definition 6.2 (Simultaneous Convex Hull, cf. [Bal13, Definition 5.1]).
Let fi : D → R, i = 1, . . . , k be real-valued functions. Then the set

(6.3) convD[f1, . . . , fk] := conv{(x, f1(x), . . . , fk(x)) | x ∈ D}

is referred to as the simultaneous convex hull of the functions fi over D.

Instead of convexifying the constraint functions fi separately, we may apply simul-
taneous convexification, leading to the convex relaxation

min c(x)(6.4)
(x, y) ∈ convD[f1, . . . , fk]

x ∈ D

y ∈ Rk.

Note that simultaneous convexification of all constraint functions gives an exact refor-
mulation of (6.1). Alternatively, it may be applied to any subset fi, i ∈ I for some
I ⊆ {1, . . . , k} of the constraint functions, depending on the prospects to compute
or approximate convD[{fi | i ∈ I}]. This leads to local reformulations of (6.1) that
strengthen the corresponding convex relaxation according to (6.2).

Example 6.3. Formulation (6.4) can be significantly stronger than Formulation (6.2).
To illustrate this, consider the functions

f1, f2 : [0, 1]→ R, f1(x) = x2, f2(x) = (x+ 1)2.

Since f1 and f2 are both convex, the separate convexification is lower bounded by
the functions themselves, whereas the upper concave envelopes are given by secants.
Hence, separate convexification gives

(6.5) {(x, y1, y2) | x2 ≤ y1 ≤ x, (x+ 1)2 ≤ y2 ≤ 3x+ 1}

as the feasible set. However, all points on the function graph of f : x 7→ (x, f1(x), f2(x))
satisfy

2x+ f1(x)− f2(x) + 1 = 0,

and therefore 2x+ y1− y2 + 1 = 0 is a strong valid inequality than can be derived from
conv[0,1][f1, f2], but does not hold for (6.5).

147

Chapter 6. Simultaneous Convexification

Clever solvers may recognize this linear dependency and only introduce y1 in
the first place. As another (more practical) example, [Bal13, Example 5.5] considers
x 7→ (x, x2, x3), the moment curve in dimension 3, on the interval [1, 2], and gives a fac-
tor of 27 for the volume reduction of the feasible set when moving from separate to
simultaneous convexification.

The simultaneous convex hull of functions fi, i = 1, . . . , k for some k can be repre-
sented by lower-dimensional objects, namely the separate convex hulls for all linear
combinations of those functions.

Theorem 6.4 (cf. [Bal13, Corollary 5.25]). Let f : D → Rk, x 7→ (f1(x), . . . , fk(x)) be a
continuous vector-valued function, and D ⊆ Rn be a compact convex set. Then

(6.6) convD[f] =
⋂
α∈Rk

{(x, y) ∈ Rn+k | (x, αTy) ∈ convD[αTf]}.

A proof can be found in [Bal13, Section 5.2.2].

The reformulation in Theorem 6.4 is in between the so-called inner representation
in terms of extreme points as in (6.3) and a so-called outer representation in terms of
supporting hyperplanes.

Theorem 6.4 can be very helpful from an algorithmic point of view as it reduces
computations for simultaneous convex hulls to convex hulls for scalar-valued functi-
ons. Still, a priori, the latter has to be done for any linear combination. This raises the
question which weight vectors α are actually needed in (6.6). Some results on this can
be found in [Bal13].

Another option consists in using the outer representation

(6.7) convD[f] =
⋂
α∈Rk

{z ∈ Rn+k | αmin ≤ αT z ≤ αmax},

where

αmin = min{αT z | z ∈ (x, f(x)), x ∈ D}(6.8)

αmax = max{αT z | z ∈ (x, f(x)), x ∈ D}.

For any given α ∈ Rk, we can obtain valid inequalities for (6.4) in terms of the variables
x and y as stated in (6.7). However, this approach assumes that we can afford to solve
the corresponding optimization problem (6.8) or at least have a way to obtain a good
dual bound for it. Choosing suitable values for α is important for an approach based
on (6.7) or (6.6). For example, in Example 6.3 the choice α = (2, 1,−1) gives αmin =
αmax = −1 and therefore reveals the affine linear dependency.

Within the scope of proof-of-concept computations in Section 6.2, we will sample
values for α in order to test the potential of those cutting planes in terms of the impro-
vement of the optimal value of relaxation (6.2).

148

6.2. Application to Gas Network Optimization

6.2 Application to Gas Network Optimization

Optimization problems on gas networks have already served as an example for a non-
linear network flow problems in several chapters. Subsection 2.1.5 can be consulted
for an introductory overview. The nonlinearities given by the pressure loss equation
(2.14) are sufficiently nontrivial to provide room for improving solvers, but are still
controllable due to their smooth quadratic nature. This makes gas network optimi-
zation a promising field of application for simultaneous convexification. Moreover, as
already remarked in Chapter 4, network flow problems typically have loosely coupled
constraints, leading to well-suited target substructures for applying approaches based
on local reformulations.

Consider a single junction in a gas distribution network with a central vertex of
degree three together with the pipes adjacent to it. The vertices involved are denoted
by v1 to v4, where v3 is the central node with two incoming edges a1 = (v1, v3) and
a2 = (v2, v3), and one outgoing edge a3 = (v3, v4), though the formal orientation of
pipes does not imply a coinciding mass flow direction in the general case. In line with
our naming convention so far, the pressure at vertex vi is denoted by pi and the flow
value at pipe aj is denoted by qj (see Figure 6.1).

v1

v2

v3 v4
q1

q2

q3

Figure 6.1: Our notation for an example junction of degree three.

As before, we use the formula

(6.9) λaqa|qa| = p2i − p2j
to describe the pressure loss along a pipe a from vi to vj , where λa > 0 is some parame-
ter that depends on the roughness of the pipe. Since our setting represents a passive
gas network, pressure variables appear as squares only such that we may use variables
pSi := p2i for the squared pressure in the first place (cf. Subsection 2.1.5).

We aim to describe the convex hull of the feasible region for such a junction, which
is given by the simultaneous convex hull

conv{(q1, q2, q3, pS1 , pS2 , pS3 , pS4) |
q1|q1| = pS1 − pS3 , q2|q2| = pS2 − pS3 , q3|q3| = pS3 − pS4 , q3 = q1 + q2}

Note that all variables are uniquely determined by fixing two flow variables and a
single pressure variable, say q1, q2, pS3 . The other quantities can be computed by

pS1 = f1(q1, q2, p
S
3) := pS3 + q1|q1|

149

Chapter 6. Simultaneous Convexification

pS2 = f2(q1, q2, p
S
3) := pS3 + q2|q2|

pS4 = f3(q1, q2, p
S
3) := pS3 − (q1 + q2)|q1 + q2|

q3 = f4(q1, q2, p
S
3) := q1 + q2.

This leads to the set

conv{(q1, q2, pS3 , y1, y2, y3, y4) | yi = fi(q1, q2, p
S
3), i = 1, . . . , 4} = convD[f1, . . . , f4],

where D = [q1, q1]× [q2, q2]× [pS3 , p
S
3] denotes the box domain of the variables q1, q2, pS3 .

Furthermore, as sums can be convexified independently, we have

(q1, q2, p
S
3 , y1, y2, y3, y4) ∈ convD[f1, . . . , f4]

⇔ (q1, q2, p
S
3 , y1 − pS3 , y2 − pS3 , y3 − pS3) ∈ convD[g(q1), g(q2), g(q1 + q2)]

∧ y4 = q1 + q2,

where g(x) := x|x|. Therefore, the task of determining a simultaneous convexification
for a junction of three nodes reduces to studying the object

(6.10) convD[g(q1), g(q2), g(q1 + q2)].

Let us now assume fixed flow directions on all arcs according to their formal orien-
tation. In this case, g(x) := x|x| = x2, which leads us to the well-studied realm of
quadratic programming.

Well-known relaxations for this class of problems include the relaxation-linearization
technique (RLT) [SA13] and the positive semidefinite (PSD) relaxation (see e.g. [VB96], also
cf. [QBM12] concerning both techniques).

RLT Relaxation Let xi and xj be two variables from a quadratic program with dom-
ains xi ∈ [xi, xi] and xj ∈ [xj, xj], respectively. We introduce auxiliary variables Xij to
model the product xixj . Then, the following RLT constraints (introduced in [McC76],
and thus also known as McCormick inequalities) are valid inequalities:

Xij − xjxi − xixj ≥ −xixj(6.11)

Xij − xjxi − xixj ≥ −xixj
Xij − xjxi − xixj ≤ −xixj
Xij − xjxi − xixj ≤ −xixj.

Moreover, if xi and xj are independent variables, the convex hull of a single product
convD[xixj] is completely described by the RLT relaxation [AKF83]. [McC76]

PSD Relaxation Let x be a (column) vector of variables of a quadratic program.
Again, we use auxiliary variables Xij for the products xixj . We relax the nonconvex
matrix inequality X − xxT = 0 to

X − xxT < 0.

150

6.2. Application to Gas Network Optimization

By Schur’s complement, this is equivalent to

(6.12)
(

1 xT

x X

)
< 0

Note that (6.12) is a convex constraint, and an efficient separation of supporting hy-
perplanes can be done via eigenvector computations.

It should be remarked that the resulting PSD relaxation represents the first level
of the Lasserre hierarchy, where the matrix in (6.12) is referred to as the moment matrix
in this context. Relaxations from this hierarchy have been very successful in global
polynomial optimization as well as for constructing approximation algorithms, see
e.g. [Las01] and [CT12], respectively. More details on the relation to other relaxations
can be found in the survey [Lau03]. In our special case, the first level of the hierarchy
is sufficient, as we have the following result due to [AB10]:

Theorem 6.5 ([AB10, Theorem 2]). Let x = (x1, x2) ∈ D ⊆ R2 and D be a box domain.
Then

(6.13)
{(

1 xT

x X

)
| (6.11), (6.12)

}
= conv

{(
1
x

)(
1
x

)T
| x ∈ D

}
.

This implies that PSD constraints (6.12) together with the RLT constraints (6.11)
give a complete description of convD[g(q1), g(q2), g(q1 + q2)] if x = (q1, q2) and the dom-
ain D is a box, though the result does not hold for higher dimensions as shown in
[AB10], i.e. for junctions of degree four or higher in our context. However, using a se-
midefinite programming (SDP) solver within a branch-and-bound algorithm creates
practical difficulties. In [QBM12], the authors mention a lack of efficient warm star-
ting mechanisms as a major drawback of current SDP solvers, and therefore propose
LP relaxations of PSD constraints.

In the next section, we will also consider convexification of squares of single varia-
bles for comparison. For xi ∈ R, the set convD[x2i] is given by a secant line as a concave
overestimator and the function xi 7→ x2i itself as a convex underestimator. The former
is straightforward to compute, e.g. by using (6.11) for xj = xi. The latter constraint is
nonlinear and can be reformulated as the PSD constraint

(6.14)
(

1 xTi
xi Xii

)
< 0,

whereX is the auxiliary variable for x2. Indeed, the determinant of the matrix in (6.14)
is equal to Xii − x2i , implying Xii ≥ x2i . We will call (6.14) separate PSD contraints—in
contrast to the simultaneous PSD contraints (6.12). Note that (6.12) implies (6.14) for
all variables involved, as every principal submatrix of a positive semidefinite matrix
is also positive semidefinite.

If not all flow directions are fixed for a junction, computing the separate convex
hull conv[q|q|] is still an easy exercise but PSD relaxations are not valid anymore and
would require the introduction of binary variables to resolve the absolute value in
(6.9).

151

Chapter 6. Simultaneous Convexification

6.3 Computational Experiments on the Potential of Si-
multaneous Convexification

When moving from separate to simultaneous convex relaxation, significant volume
reductions of the feasible set have been demonstrated in [Bal13]. However, there is the
question whether this translates into an improvement of the quality of the aforemen-
tioned relaxations in terms of their optimal value in practice.

In this section, we will show some proof-of-concept computations on this issue as
a basis for the discussion. We will consider example instances on a small passive gas
network and compare different relaxations. Our test network consists of 7 nodes and
9 arcs. Its topology is shown in Figure 6.2. Nodes v1, v2, v3 will be sources whereas
v7 is the network’s solitary sink. Demands and pressure values at the sources and
sinks are not fixed (otherwise the feasible set is at most a single point, cf. [RMWSB02]),
but are restricted to lie in an interval range. For reasonably tight bounds we apply the
preprocessing implemented in the Lamatto++ software framework for gas network op-
timization, described in [Gei11b, Chapter 7]. Simultaneous convexification techniques
will be applied to the three middle junctions at nodes v4, v5 and v6.

v1

v2

v3

v4

v5

v6 v7

a1
a2

a3

a4

a5
a6

a7

a8

a9

Figure 6.2: Test network for the computations in this chapter consisting of 7 nodes and
9 arcs.

First, we consider all flow directions to be fixed according to the orientations shown
in Figure 6.2. This allows us to locally apply the exact convex hull via semidefinite
programming due to Theorem (6.13) as discussed in the previous section. We compare
it to standard approaches that use separate convexification, either by just applying the
RLT relaxation (see (6.11)), or the RLT relaxation together with the convex hull of all
squares of single flow variables qi 7→ q2i . The latter is enforced by the PSD constraint
(6.14). Computations are performed using YalMIP [Lö04] together with the SDP solver
SeDuMi [Stu99].

Moreover, we compute global optima using the MINLP solver BARON [TS05]. In
Table 6.1, the success of a relaxation is measured with respect to the amount of gap clo-

152

6.3. Computational Experiments on the Potential of Simultaneous Convexification

sed between the optimal solution and BARON’s dual bound at the root node. BARON
has access to a number of range reduction techniques, details and results of which are
not transparent. To ensure that all approaches start with the same quality of variable
bounds, we shut off all range reduction options, which includes the parameters TDo,
MDo, LBTTDo, OBTTDo, PDo (see [Sah14] for more details). After that, the root dual
bound of BARON (version 16.5.16) essentially agrees with the RLT relaxation for all
scenarios. Moreover, BARON is prevented from doing local searches during prepro-
cessing (controllable via the parameters NumLoc and DoLocal).

scenario gap closed [%]
sep. conv. sim. conv.

1 0.00 0.00
2 − −
3 13.90 26.78
4 87.51 99.79
5 39.58 49.49
6 0.00 0.00
7 − −
8 42.09 43.37
9 31.36 35.89

10 63.77 91.93

Table 6.1: Percentage of gap closed between optimal solution and root relaxation due
to separate and simultaneous convexification for scenarios on a small test network.

Table 6.1 shows results on the network from Figure 6.2 for 10 selected scenarios
using different types of objective function including minimizing or maximizing the
demand of a specific node (Scenarios 1,2,5,6), the pressure at a specific node (3,4), the
pressure difference between nodes (9,10) and linear combinations of flow variables
(7,8). This experiment gives an idea on the improvement of the root relaxation that
can be achieved by simultaneous convexifications applied to 3-junctions.

We see that for the majority of scenarios, a clear improvement can already be achie-
ved when using an exact separate convexification, i.e. ensuring Constraints (6.14). In
those cases, the simultaneous convexification further improves the relaxation, in two
cases even closing more than 90% of the gap. Hence, there is a lot to be gained from
convexifiying junctions, though it should be noted that for some examples the tighter
relaxation does not pay off for the specific objective function: Scenarios 2 and 7 were
trivial in the sense that the root relaxation already gave the optimal bound. In Scena-
rios 1 and 6 neither separate nor simultaneous convexification were able to close any
amount of the remaining gap.

For a second test, we do not assume fixed flow directions on all arcs anymore.
Demand intervals for sources and sinks are adjusted such that arcs a3 and a5 have a

153

Chapter 6. Simultaneous Convexification

wide range of possible flow values in both directions (roughly centered around 0) after
preprocessing. We test an approach based on the reformulation of the simultaneous
convex hull in (6.7). The target structures for application again are the central junctions
such that we have to (approximately) convexify 5-dimensional objects of type (6.10).
This is done via sampling uniformly distributed values for α on the sphere S4 ⊆ R5.
After that, a scaling is applied to compensate for the different orders of magnitude for
flow and pressure drop terms. For each alpha, we solve (6.8), obtaining cutting planes
that can be added to the formulation that is handed to BARON. Again, we measure
the percentage of gap reduction between the value of the root relaxation and a global
optimum.

scenario gap closed [%]
100 α samples 1000 α samples

1 − −
2 − −
3 19.90 39.33
4 19.75 49.36
5 0.00 0.00
6 − −
7 − −
8 19.31 48.49
9 14.53 33.12

10 33.65 59.76

Table 6.2: Percentage of gap closed between optimal solution and root relaxation due
to applying a sampling approach based on the outer description, using 100 and 1000
weight vectors, respectively, for scenarios on a small test network.

Table 6.2 shows the results in terms of relaxation quality for 100 and 1000 weight
vectors α. Note that the smaller amount of samples is a strict subset of the larger
one such that it leads to a relaxation of the formulation for the latter. Scenarios 1-
10 use the same objective functions as in Table 6.1, though note that the feasible sets
differ due to not fixing all flow directions and adjustments of the demand ranges. In
this case, 4 instances happen to be trivial, whereas the root relaxation for Scenario 5
could not be improved whatsoever. For the remaining 5 instances, using 1000 samples
led to a significant improvement of 30-60%. This level could not be reached by the
formulation based on just 100 samples, though the observed reduction (about half the
amount compared to 1000 samples) is still notable.

However, it should not be withheld that the large amount of cutting planes severely
slows down the solver such that the optimum is computed fastest by far in the version
without any cutting planes. Still, a clear reduction in branch-and-bound nodes needed
by the solver has been observed, especially for the version with 1000 samples for α.

154

6.4. Further Remarks and Outlook

6.4 Further Remarks and Outlook

The experiments in the previous section have shown that simultaneous convexifica-
tion has the potential for significant improvement of the standard relaxation employed
by a leading MINLP solver. However, further algorithmic progress is needed to unlock
this potential.

One possibility consists of incorporating SDP-constraints. However, as mentioned
in Section 6.2, SDP solvers are not ready to be used together with efficient branch-
and-cut algorithms without further ado. It seems more promising to construct linear
relaxations of PSD constraints as proposed in [QBM12], though this still only provides
the simultaneous convex hull for fixed flow directions.

A major drawback of computations based on the outer description (6.7) is that we
have to solve (or bound) many instances of the nonlinear optimization problem (6.8).
Though each problem is low-dimensional, in total they take a huge amount of time,
while many values for α will lead to redundant information. In order to make this
approach competitive, one needs to save a lot of time with respect to those compu-
tation, for instance by using prior knowledge on the most relevant weight vectors,
by computing good bounds for several subproblems (6.8) at once, or by developing
separation routines. The latter seems especially promising for further research in con-
junction with the object (6.10), possibly assuming that some of the flow directions are
known, which is not uncommon in practice after preprocessing. As the simultaneous
convex hull heavily depends on the variable domains, updating possible cutting pla-
nes may be important as bounds are tightened during the solution process. Such an
implementation is far from trivial apart from the fact that many MINLP solvers—like
BARON—do not allow this kind of intrusion at all.

Finally, note that the approaches presented and discussed in Sections 6.2 and Secti-
ons 6.3 are in principle applicable to junctions of arbitrary degree. Moreover, similar
to the piecewise linear setting, they can be applied to aggregate nodes (cf. Section 4.4).

155

Chapter 7

Conclusions and Outlook

In this thesis, we have seen several methods for solving different network optimization
problems based on local adaptations of the formulation. At best, the presentation
made the reader want to apply the findings of this thesis to his or her own network
optimization problem that might not have been covered explicitly. Therefore, besides
giving a summary, I want to highlight some observations that might be valuable in
that case.

In Chapter 3, we examined a new algorithmic framework for the solution of net-
work design problems which is based on iterative graph aggregation. An aggregated
version of the network graph is iteratively refined until it represents the whole graph
sufficiently well in the sense that an optimal solution to the aggregated problem can
easily be extended to an optimal solution to the original problem. Computational ex-
periments clearly show that for the single-commodity network expansion problem,
especially for instances with relatively high preinstalled capacities, we could indeed
achieve a significant reduction in graph size as well as solution time when compared
to directly solving the problem with an MIP-solver.

When considering to employ an aggregation scheme as presented in this work, one
should bear in mind the following:

• This approach is designed for network optimization problems where the main
challenge can be attributed to the relatively large size of the network. As prere-
quisites for applying aggregation, it should be feasible to solve the problem on
a reduced graph several times (the aggregated master problem). Also, it is very
beneficial if a less complex problem can still be solved on the whole graph in
order to allow for a global subproblem.

• An implicit assumption of the scheme is that the high detail of the topology is
somewhat unnecessary in some areas of the graph. Therefore, one should have
observed optimal solutions that are reasonably sparse prior to using aggregation
(as is the case in the motivating example from railway networks, cf. Section 3.1).

• The possibility to integrate aggregation into the solver’s branch-and-bound-tree
allowed to design significantly more successful algorithms.

157

Chapter 7. Conclusions and Outlook

• The algorithm in principle is highly extendible to other network design pro-
blems. However, if the relaxation given by the master problem is too weak,
aggregation is not competitive in its basic version and a combination with ad-
ditional algorithmic ideas should be explored (see Sections 3.6 and 3.7).

In Chapter 4, we studied a setting of linearized network flows that covers the situa-
tion, in which nonlinearities of a problem defined on a transportation network are mo-
deled as a piecewise linear function of the flow. We derived several structural results,
most importantly for the case of paths of arbitrary length. For those substructures we
gave a complete description of the polyhedron defined by the feasible binary decisi-
ons. The proof uses results on perfect graphs, and we introduced a class of perfect
graphs that is new to our knowledge. Our computational experiments showed that
Gurobi, a state-of-the-art commercial MIP-solver, drastically benefits from using our
implementations of cutting plane separation.

Please note the following observations and directions for further research:

• Piecewise linearization of network flows leads to a rich and interesting structure
that can successfully be exploited by cutting-plane methods. Further research in
this direction seems very relevant as piecewise linear approximation and relaxa-
tion are frequently-used approaches.

• The cutting planes developed in Section 4.2 are useful for a number of methods
for piecewise linearization, including the Multiple Choice Method, the Convex
Combination Method and the Incremental Method.

• As remarked in Section 4.4, the cutting planes can be applied to aggregate struc-
tures. It would be interesting to find a good selection rule for target structures,
possibly in combination with approaches from Chapter 3.

• Applying results from graph theory to compatibility graphs did allow for new
insights. In particular, the theory of perfect graphs seems especially interesting,
as it characterizes graphs on which a certain complete description is available.

In Chapter 5, we became acquainted with the notion of staircase compatibility,
which generalizes compatibility structures known from different areas of application,
such as project scheduling and piecewise linearization. We showed that the convex
hull of feasible solutions of the clique problem with multiple-choice constraints can
be described by a totally unimodular constraint matrix of polynomial size if the com-
patibility graph is given by a staircase relation. Furthermore, the constraint matrix is
cographic, which yields a dual-flow formulation for the problem. For two example ap-
plications, we observed that using our reformulations represents a huge improvement
over a naive standard formulation.

The following are some key points to be highlighted:

• The definition of staircase compatibility gives a unified view on multiple ap-
plications that essentially share the same underlying polytope. Furthermore, it
represents a strict generalization.

158

• Clique problems with multiple-choice constraints have the property that it is suf-
ficient to consider pairwise conflicts for the binary variables to fully describe the
problem. However, the results from Chapter 5 will still give valid cutting planes
otherwise (via a staircase relaxation), though they will likely be less impactful.

• For clique problems with multiple-choice constraints under staircase compatibi-
lity, there is a huge performance difference between the tested formulations, even
between formulations that are both totally unimodular. There is an interesting
link to linearization methods, where indeed similar results can be observed.

• Although recognition of staircase compatibility might theoretically be hard in
general as soon as the order on each partition is not given, solving the recogni-
tion problem via the MIP-formulation given in Subsection 5.5.2 is realistic. This
allows us to compute staircase relaxations that may yield strong reformulations
if a sensible partitioning is available from the application context.

In Chapter 6, we considered the approach of strengthening the convex relaxation
of a nonlinear problem by investigation of the convex hull of a part of the formulation
associated with a specific network substructure. This can be seen as a continuous
counterpart to our strategy in Chapter 4. We may record the following outlook:

• Computing the simultaneous convex hull can give a very strong convex relaxa-
tion when compared to a solver’s root relaxation and also the standard approach
of separately convexifiying all constraint functions, even for substructures as
small as 3-junctions.

• Further research is needed to make an approach based on simultaneous con-
vexification for gas networks competitive with respect to runtime. In particular,
having (heuristic) separation routines might give a large boost to the approach.

• Gas network optimization problems seem to be well suited for aiming at local si-
multaneous convexifications, as nonlinearities are sufficiently nontrivial to give
enough room for improving solvers but also accessible for theoretical analysis
(e.g. due to the connection to semidefinite programming, see Section 6.2). Mo-
reover, the loosely coupled constraints due to the network structure allow for
natural target substructures.

Altogether, this thesis aimed at devising methods that help to cope with the raising
challenges posed by modern network optimization applications. Hopefully, by now
the reader is convinced of the potential of our methods even beyond the specific pro-
blems where computations have been provided. In any case, the investigations have
opened up a lot of interesting topics for further research.

159

Bibliography

[AB02] Réka Albert and Albert-László Barabási, Statistical mechanics of complex
networks, Reviews of Modern Physics 74 (2002), 47–97.

[AB10] Kurt M. Anstreicher and Samuel Burer, Computable representations for con-
vex hulls of low-dimensional quadratic forms, Mathematical Programming
124 (2010), no. 1, 33–43.

[AKF83] Faiz A Al-Khayyal and James E Falk, Jointly constrained biconvex program-
ming, Mathematics of Operations Research 8 (1983), no. 2, 273–286.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, Net-
work flows: Theory, algorithms, and applications, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1993.

[Bä16] Andreas Bärmann, Solving network design problems via decomposi-
tion, aggregation and approximation, Ph.D. thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg, 2016.

[Bal65] Egon Balas, Solution of large-scale transportation problems through aggrega-
tion, Operations Research 13 (1965), no. 1, 82–93.

[Bal13] Martin Ballerstein, Convex relaxations for mixed-integer nonlinear programs,
Ph.D. thesis, Eidgenössische Technische Hochschule ETH Zürich, 2013.

[Bar96] Francisco Barahona, Network design using cut inequalities, SIAM Journal
on Optimization 6 (1996), no. 3, 823–837.

[BCD+08] Pierre Bonami, Gérard Cornuéjols, Sanjeeb Dash, Matteo Fischetti, and
Andrea Lodi, Projected Chvátal–Gomory cuts for mixed integer linear pro-
grams, Mathematical Programming 113 (2008), no. 2, 241–257.

[Ben62] Jacques F. Benders, Partitioning procedures for solving mixed-variables pro-
gramming problems, Numerische Mathematik 4 (1962), no. 1, 238–252.

[BGMS16] Andreas Bärmann, Thorsten Gellermann, Maximilian Merkert, and Os-
kar Schneider, Staircase compatibility and its applications in scheduling and
piecewise linearization, Tech. report, FAU Erlangen-Nürnberg, 2016.

161

Bibliography

[BHJS94] Cynthia Barnhart, Christopher A. Hane, Ellis L. Johnson, and Ga-
briele Sigismondi, A column generation and partitioning approach for multi-
commodity flow problems, Telecommunication Systems 3 (1994), no. 3, 239–
258.

[BLM+15] Andreas Bärmann, Frauke Liers, Alexander Martin, Maximilian Mer-
kert, Christoph Thurner, and Dieter Weninger, Solving network design pro-
blems via iterative aggregation, Mathematical Programming Computations
7 (2015), no. 2, 189–217.

[BMF16] Fani Boukouvala, Ruth Misener, and Christodoulos A. Floudas, Global
optimization advances in mixed-integer nonlinear programming, minlp, and
constrained derivative-free optimization, cdfo, European Journal of Operati-
onal Research 252 (2016), no. 3, 701 – 727.

[BMMN95] Michael O. Ball, Thomas L. Magnanti, Clyde L. Monma, and George L.
Nemhauser (eds.), Network models, Elsevier Science, 1995.

[BMS17] Andreas Bärmann, Alexander Martin, and Oskar Schneider, A comparison
of performance metrics for balancing the power consumption of trains in a rail-
way network by slight timetable adaptation, Public Transport (2017), 95–113.

[BT70] Evelyn Martin Lansdowne Beale and John A Tomlin, Special facilities in
a general mathematical programming system for non-convex problems using
ordered sets of variables, OR 69 (1970), no. 447-454, 99.

[CCZ14] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli, Integer pro-
gramming, vol. 271, Springer, 2014.

[CH77] Václav Chvátal and Peter L. Hammer, Aggregation of inequalities in in-
teger programming, Studies in Integer Programming (P.L. Hammer, E.L.
Johnson, B.H. Korte, and G.L. Nemhauser, eds.), Annals of Discrete Mat-
hematics, vol. 1, Elsevier, 1977, pp. 145–162.

[Chv73] Václav Chvátal, Edmonds polytopes and a hierarchy of combinatorial pro-
blems, Discrete Mathematics 4 (1973), no. 4, 305 – 337.

[CJL+16] Valentina Cacchiani, Michael Jünger, Frauke Liers, Andrea Lodi, and Da-
niel R. Schmidt, Single-commodity robust network design with finite and hose
demand sets, Mathematical Programming 157 (2016), no. 1, 297–342.

[CML15] Josu Ceberio, Alexander Mendiburu, and Jose A. Lozano, The linear or-
dering problem revisited, European Journal of Operational Research 241
(2015), no. 3, 686 – 696.

[Cos05] Alysson M. Costa, A survey on benders decomposition applied to fixed-charge
network design problems, Computers and Operations Research 32 (2005),
no. 6, 1429–1450.

162

Bibliography

[CPSM14] Carlos M. Correa-Posada and Pedro Sánchez-Martín, Gas network optimi-
zation: A comparison of piecewise linear models, Optimization Online, 2014.

[CRST06] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas,
The strong perfect graph theorem, Annals of Mathematics 164 (2006), no. 1,
51–229.

[CT12] Eden Chlamtac and Madhur Tulsiani, Convex relaxations and integrality
gaps, pp. 139–169, Springer US, Boston, MA, 2012.

[Dan60] George B. Dantzig, On the significance of solving linear programming pro-
blems with some integer variables, Econometrica 28 (1960), no. 1, 30–44.

[DGJ06] Camil Demetrescu, Andrew Goldberg, and David Johnson, 9th dimacs
implementation challenge – shortest paths, http://www.dis.uniroma1.
it/~challenge9/, 2006.

[DM02] Elizabeth Dolan and Jorge J. Moré, Benchmarking optimization software
with performance profiles, Mathematical Programming A 91 (2002), no. 2,
201 – 213.

[DRV87] Lev Michailovich Dudkin, Ilya Rabinovich, and Ilya Vakhutinsky, Itera-
tive aggregation theory, Pure and applied mathematics, no. 111, Dekker,
New York [u.a.], 1987.

[Fei93] Miloslav Feistauer, Mathematical methods in fluid dynamics, Pitman Mono-
graphs and Surveys in Pure and Applied Mathematics Series 67, Long-
man Scientific & Technical, 1993.

[FM05] Armin Fügenschuh and Alexander Martin, Computational integer pro-
gramming and cutting planes, Handbooks in Operations Research and Ma-
nagement Science 12 (2005), 69–121.

[Fou84] Robert Fourer, Staircase matrices and systems, SIAM Review 26 (1984),
no. 1, 1–70.

[Fra85] Vernon Edward Francis, Aggregation of network flow problems, Ph.D. thesis,
University of California, 1985.

[FSZ10] Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette, A note on the
selection of Benders’ cuts, Mathematical Programming, Series B 124 (2010),
175–182.

[Gei11a] Robert Geisberger, Advanced route planning in transportation networks,
Ph.D. thesis, Karlsruhe Institute of Technology, 2011.

[Gei11b] Björn Geißler, Towards globally optimal solutions for minlps by discretiza-
tion techniques with applications in gas network optimization, Ph.D. thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 2011.

163

http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/

Bibliography

[Geo74] Arthur M. Geoffrion, Lagrangean relaxation for integer programming, Ap-
proaches to Integer Programming (Michel L. Balinski, ed.), Mathematical
Programming Studies, vol. 2, Springer Berlin Heidelberg, 1974, pp. 82–
114 (English).

[GH62] Alain Ghouila-Houri, Caracterisation des matrices totalement unimodulaires,
Comptes Rendus Hebdomadaires des Séances de 1’Académie des Scien-
ces (Paris) 254 (1962), no. 1, 1192–1194.

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W.H. Freeman and Company, New
York, 1979.

[GJS74] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer, Some sim-
plified np-complete problems, Proceedings of the Sixth Annual ACM Sym-
posium on Theory of Computing (New York, NY, USA), STOC ’74, ACM,
1974, pp. 47–63.

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver, Geometric al-
gorithms and combinatorial optimization, Springer, 1988.

[GMMS12] Björn Geißler, Alexander Martin, Antonio Morsi, and Lars Schewe, Using
piecewise linear functions for solving MINLPs, Mixed Integer Nonlinear
Programming (Jon Lee and Sven Leyffer, eds.), The IMA Volumes in
Mathematics and its Applications, vol. 154, Springer New York, 2012,
pp. 287–314.

[Gol80] Martin C. Golumbic, Algorithmic graph theory and perfect graphs, Academic
Press, 1980.

[GT88] Andrew V. Goldberg and Robert E. Tarjan, A new approach to the
maximum-flow problem, J. ACM 35 (1988), no. 4, 921–940.

[GT89] , Finding minimum-cost circulations by canceling negative cycles, J.
ACM 36 (1989), no. 4, 873–886.

[Gur17] Gurobi Optimization, Inc., Gurobi optimizer reference manual, http://
www.gurobi.com, 2017.

[Hel23] Eduard Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punk-
ten, Jahresbericht der Deutschen Mathematiker-Vereinigung 32 (1923),
175–176.

[HO03] John N. Hooker and Greger Ottosson, Logic-based Benders decomposition,
Mathematical Programming 96 (2003), no. 1, 33–60.

[HS90] Asa Hallefjord and Sverre Storoy, Aggregation and disaggregation in integer
programming problems, Operations Research 38 (1990), no. 4, 619–623.

164

http://www.gurobi.com
http://www.gurobi.com

Bibliography

[Iji71] Yuji Ijiri, Fundamental queries in aggregation theory, Journal of the Ameri-
can Statistical Association 66 (1971), no. 336, 766–782.

[JL84] Robert G. Jeroslow and J.K. Lowe, Modelling with integer variables, Mat-
hematical Programming at Oberwolfach II (Bernhard Korte and Klaus
Ritter, eds.), Mathematical Programming Studies, vol. 22, Springer Ber-
lin Heidelberg, 1984, pp. 167–184.

[JLK78] David S. Johnson, Jan Karel Lenstra, and A. H. G. Rinnooy Kan, The com-
plexity of the network design problem., Networks 8 (1978), no. 4, 279–285.

[Kar72] Richard M. Karp, Reducibility among combinatorial problems, Complexity
of Computer Computations: Proceedings of a symposium on the Com-
plexity of Computer Computations, held March 20–22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York (Ray-
mond E. Miller, James W. Thatcher, and Jean D. Bohlinger, eds.), Springer
US, Boston, MA, 1972, pp. 85–103.

[KdFN06] Ahmet B. Keha, Ismael R. de Farias, and George L. Nemhauser, A branch-
and-cut algorithm without binary variables for nonconvex piecewise linear op-
timization, Operations Research 54 (2006), no. 5, 847–858.

[KHPS15] Thorsten Koch, Benjamin Hiller, Marc Pfetsch, and Lars Schewe (eds.),
Evaluating gas network capacities, MOS-SIAM Series on Optimization,
2015.

[KR79] Mark H. Karwan and Ronald L. Rardin, Some relationships between lagran-
gian and surrogate duality in integer programming, Mathematical Program-
ming 17 (1979), no. 1, 320–334 (English).

[KS12] Aida Khajavirad and Nikolaos V Sahinidis, Convex envelopes of products
of convex and component-wise concave functions, Journal of global optimiza-
tion 52 (2012), no. 3, 391–409.

[KV07] Bernhard Korte and Jens Vygen, Combinatorial optimization: Theory and
algorithms, 4th ed., Springer Publishing Company, Incorporated, 2007.

[KW84] R. John Kaye and Felix F. Wu, Analysis of linearized decoupled power flow ap-
proximations for steady-state security assessment, IEEE Transactions on Cir-
cuits and Systems 31 (1984), no. 7, 623–636.

[Lö04] Johan Löfberg, Yalmip : a toolbox for modeling and optimization in matlab,
2004 IEEE International Conference on Robotics and Automation (IEEE
Cat. No.04CH37508), Sept 2004, pp. 284–289.

[Las01] Jean B. Lasserre, Global optimization with polynomials and the problem of
moments, SIAM Journal on Optimization 11 (2001), no. 3, 796–817.

165

Bibliography

[Lau03] Monique Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre relaxations for 0–1 programming, Mathematics of Operations Rese-
arch 28 (2003), no. 3, 470–496.

[Lei95] Rainer Leisten, Iterative Aggregation und mehrstufige Entscheidungsmodelle:
Einordnung in den planerischen Kontext, Analyse anhand der Modelle der line-
aren Programmierung und Darstellung am Anwendungsbeispiel der hierarchis-
chen Produktionsplanung, Produktion und Logistik, Physica-Verlag, 1995.

[Lei98] , An LP-aggregation view on aggregation in multi-level production
planning, Annals of Operations Research Bd. 82 (1998), S. 413–434.

[Lem01] Claude Lemaréchal, Lagrangian relaxation, Computational Combinatorial
Optimization (Michael Jünger and Denis Naddef, eds.), Lecture Notes in
Computer Science, vol. 2241, Springer Berlin Heidelberg, 2001, pp. 112–
156 (English).

[LM16] Frauke Liers and Maximilian Merkert, Structural investigation of piecewise
linearized network flow problems, SIAM Journal on Optimization 26 (2016),
no. 4, 2863–2886.

[LMT09] Jeff Linderoth, François Margot, and Greg Thain, Improving bounds on the
football pool problem by integer programming and high-throughput computing,
INFORMS Journal on Computing 21 (2009), no. 3, 445–457.

[LS13] Marco Locatelli and Fabio Schoen, Global optimization: theory, algorithms,
and applications, SIAM, 2013.

[LT03] Igor Litvinchev and Vladimir Tsurkov, Aggregation in large-scale optimiza-
tion, Applied Optimization, Springer, 2003.

[MAdC+11] Rita Macedo, Cláudio Alves, José M. Valério de Carvalho, François Clau-
tiaux, and Saïd Hanafi, Solving the vehicle routing problem with time win-
dows and multiple routes exactly using a pseudo-polynomial model, European
Journal of Operational Research 214 (2011), no. 3, 536 – 545.

[McC76] Garth P. McCormick, Computability of global solutions to factorable noncon-
vex programs: Part i — convex underestimating problems, Mathematical Pro-
gramming 10 (1976), no. 1, 147–175.

[MD77] Dale McDaniel and Mike Devine, A modified Benders’ partitioning algo-
rithm for mixed integer programming, Management Science 24 (1977), no. 3,
312–319.

[MM57] Harry M. Markowitz and Alan S. Manne, On the solution of discrete pro-
gramming problems, Econometrica 25 (1957), no. 1, pp. 84–110.

166

Bibliography

[MR11] Rafael Martí and Gerhard Reinelt, The linear ordering problem: exact and
heuristic methods in combinatorial optimization, vol. 175, Springer Science &
Business Media, 2011.

[MSSU01] Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz, On
project scheduling with irregular starting time costs, Operations Research
Letters 28 (2001), no. 4, 149–154.

[NK07] Alexandra M. Newman and Mark Kuchta, Using aggregation to optimize
long-term production planning at an underground mine, European Journal of
Operational Research 176 (2007), no. 2, 1205 – 1218.

[Opa79] Jaroslav Opatrny, Total ordering problem, SIAM Journal on Computing 8
(1979), no. 1, 111–114.

[OPTW07] Sebastian Orlowski, Michal Pióro, Artur Tomaszewski, and Roland
Wessäly, SNDlib 1.0–Survivable Network Design Library, Proceedings of the
3rd International Network Optimization Conference (INOC 2007), Spa,
Belgium, 2007.

[Oxf] Oxford dictionaries, https://en.oxforddictionaries.com, Accessed: 2017-
06-10.

[Oxl06] James G. Oxley, Matroid theory (oxford graduate texts in mathematics), Ox-
ford University Press, Inc., New York, NY, USA, 2006.

[Pac16] Jörn Pachl, Systemtechnik des Schienenverkehrs: Bahnbetrieb planen, steuern
und sichern, Springer Vieweg, 2016.

[Pad73] Manfred W. Padberg, On the facial structure of set packing polyhedra, Mat-
hematical Programming 5 (1973), 199–215.

[Pad00] , Approximating separable nonlinear functions via mixed zero-one pro-
grams, Oper. Res. Lett. 27 (2000), no. 1, 1–5.

[PFG+15] Marc E. Pfetsch, Armin Fügenschuh, Björn Geißler, Nina Geißler,
Ralf Gollmer, Benjamin Hiller, Jesco Humpola, Thorsten Koch, Tho-
mas Lehmann, Alexander Martin, Antonio Morsi, Jessica Rövekamp,
Lars Schewe, Martin Schmidt, Rüdiger Schultz, Robert Schwarz, Jo-
nas Schweiger, Claudia Stangl, Marc C. Steinbach, Stefan Vigerske, and
Bernhard M. Willert, Validation of nominations in gas network optimization:
Models, methods, and solutions, Optimization Methods and Software 30
(2015), no. 1, 15–53.

[QBM12] Andrea Qualizza, Pietro Belotti, and François Margot, Linear program-
ming relaxations of quadratically constrained quadratic programs, Mixed Inte-
ger Nonlinear Programming, Springer, 2012, pp. 407–426.

167

Bibliography

[RMWSB02] Roger Z. Rios-Mercado, Suming Wu, L. Ridgway Scott, and E. Andrew
Boyd, A reduction technique for natural gas transmission network optimization
problems, Annals of Operations Research 117 (2002), no. 1-4, 217–234.

[Ros74] Ivo G. Rosenberg, Aggregation of equations in integer programming, Discrete
Mathematics 10 (1974), no. 2, 325 – 341.

[RPWE91] David F. Rogers, Robert D. Plante, Richard T. Wong, and James R. Evans,
Aggregation and disaggregation techniques and methodology in optimization.,
Operations Research 39 (1991), no. 4, 553.

[SA13] Hanif D Sherali and Warren P Adams, A reformulation-linearization techni-
que for solving discrete and continuous nonconvex problems, vol. 31, Springer
Science & Business Media, 2013.

[Sah14] Nikolaos V. Sahinidis, BARON 16.5.16: Global Optimization of Mixed-
Integer Nonlinear Programs, User’s Manual, 2014.

[Sch86] Alexander Schrijver, Theory of linear and integer programming, John Wiley
& Sons, Inc., New York, NY, USA, 1986.

[Sch15] Jonas Scholz, Aggregation zur Lösung von Topologieplanungsproblemen
auf Gasnetzwerken, Master’s thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 2015.

[Sey80] Paul D. Seymour, Decomposition of regular matroids, Journal of Combina-
torial Theory, Series B 28 (1980), no. 3, 305 – 359.

[SLL13] Srikrishna Sridhar, Jeff Linderoth, and James Luedtke, Locally ideal formu-
lations for piecewise linear functions with indicator variables., Oper. Res. Lett.
41 (2013), no. 6, 627–632.

[SS05] Tommaso Schiavinotto and Thomas Stützle, The linear ordering problem:
Instances, search space analysis and algorithms, Journal of Mathematical Mo-
delling and Algorithms 3 (2005), no. 4, 367–402.

[Stu99] Jos F Sturm, Using sedumi 1.02, a matlab toolbox for optimization over symme-
tric cones, Optimization methods and software 11 (1999), no. 1-4, 625–653.

[SW12] Domenico Salvagnin and Toby Walsh, A hybrid MIP/CP approach for multi-
activity shift scheduling, Principles and Practice of Constraint Program-
ming (Michela Milano, ed.), Lecture Notes in Computer Science, Sprin-
ger Berlin Heidelberg, 2012, pp. 633–646 (English).

[SZ15] Christoph Schwindt and Jürgen Zimmermann (eds.), Handbook on project
scheduling (vol. 1 + vol. 2), Springer, 2015.

168

Bibliography

[Taw10] Mohit Tawarmalani, Inclusion certificates and simultaneous convexification
of functions, Optimization Online, 2010.

[TS05] Mohit Tawarmalani and Nikolaos V. Sahinidis, A polyhedral branch-and-
cut approach to global optimization, Mathematical Programming 103 (2005),
225–249.

[VAN10] Juan Pablo Vielma, Shabbir Ahmed, and George Nemhauser, Mixed-
integer models for nonseparable piecewise-linear optimization: Unifying fra-
mework and extensions, Operations Research 58 (2010), no. 2, 303–315.

[VB96] Lieven Vandenberghe and Stephen Boyd, Semidefinite programming,
SIAM review 38 (1996), no. 1, 49–95.

[Vie15] Juan Pablo Vielma, Mixed integer linear programming formulation techni-
ques, SIAM Review 57 (2015), no. 1, 3–57.

[VN11] Juan Pablo Vielma and George L. Nemhauser, Modeling disjunctive con-
straints with a logarithmic number of binary variables and constraints, Mathe-
matical Programming 128 (2011), no. 1, 49–72.

[Wen16] Dieter Weninger, Solving mixed-integer programs arising in production plan-
ning, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg,
2016.

[ZdF13] Ming Zhao and Ismael R. de Farias, The piecewise linear optimization poly-
tope: new inequalities and intersection with semi-continuous constraints, Mat-
hematical Programming 141 (2013), no. 1-2, 217–255.

[Zip77] Paul H. Zipkin, Aggregation in linear programming, Ph.D. thesis, Yale Uni-
versity, 1977.

169

	1 Introduction
	2 Preliminaries
	2.1 A Selection of Problems on Transportation Networks
	2.1.1 The Basic Linear Network Flow problem—Notations
	2.1.2 Analyzing Infeasibility of the Linear Network Flow Problem
	2.1.3 The Network Design Problem
	2.1.4 Further Extensions of Linear Network Design Problems
	2.1.5 Gas Network Optimization

	2.2 Modeling Piecewise Linear Functions
	2.2.1 The Multiple Choice Method
	2.2.2 The Convex Combination Method
	2.2.3 The Incremental Method
	2.2.4 Logarithmic Models
	2.2.5 Nonseparable Multivariate Functions
	2.2.6 Piecewise Linear Approximations and Relaxations

	3 Solving Network Expansion Problems by Iterative Graph Aggregation
	3.1 What is Aggregation?
	3.2 The Single-Commodity Network Expansion Problem
	3.3 An Iterative Graph Aggregation Scheme
	3.3.1 Graph Aggregation and the Aggregated Master Problem
	3.3.2 The Local Subproblems and Graph Disaggregation
	3.3.3 Correctness of the Algorithm
	3.3.4 Relation to Benders Decomposition
	3.3.5 The Global Subproblem

	3.4 Implementation
	3.4.1 Sequential Aggregation (SAGG)
	3.4.2 Integrated Aggregation (IAGG)
	3.4.3 The Hybrid Aggregation Algorithm (HAGG)
	3.4.4 Details of the Implementation

	3.5 Computational Results
	3.5.1 Benchmark Instances
	3.5.2 Computational Results on Scale-Free Networks
	3.5.3 Disaggregation According to the Global Subproblem
	3.5.4 Performance on a Real-World Street Network

	3.6 Extending the Aggregation Scheme to More Complex Network Design Problems
	3.6.1 Multi-Commodity Flow
	3.6.2 Routing Costs
	3.6.3 Time-Expanded Networks
	3.6.4 Multi-Scenario Problems

	3.7 Aggregation for Topology Planning Problems on Gas Transportation Networks

	4 Structural Investigations of Piecewise Linearized Flow Problems
	4.1 The Piecewise-Linearized-Flow Polytope
	4.2 Polyhedral Studies and a New Class of Perfect Graphs
	4.2.1 Paths of Length Two
	4.2.2 Paths of Arbitrary Length
	4.2.3 Transferability to a Formulation According to the Incremental Method
	4.2.4 Junctions

	4.3 Computational Results
	4.3.1 Separation Algorithms
	4.3.2 Benchmark Instances and Test Environment
	4.3.3 Computational Results on Random Networks
	4.3.4 Performance on a Real-World Network Topology
	4.3.5 Continuous Piecewise Linear Objectives and the Incremental Formulation

	4.4 Further Remarks on Extending Applicability

	5 Staircase Compatibility
	5.1 The Clique Problem with Multiple-Choice Constraints
	5.2 Staircase Compatibility
	5.2.1 Two Applications of (CPMCS)

	5.3 Efficient MIP-Formulations for (CPMCS)
	5.4 Computational Results
	5.4.1 Computational Results for Energy-Efficient Timetabling
	5.4.2 Computational Results for Piecewise Linearized Path Flows

	5.5 Recognizability of Staircase Relations
	5.5.1 Complexity of Recognition Problems
	5.5.2 An MIP formulation for the Recognition Problem with Fixed Partitioning
	5.5.3 On Defining Staircase Graphs

	6 Simultaneous Convexification
	6.1 The Simultaneous Convex Hull of Functions
	6.2 Application to Gas Network Optimization
	6.3 Computational Experiments on the Potential of Simultaneous Convexification
	6.4 Further Remarks and Outlook

	7 Conclusions and Outlook

