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Abstract. We consider nonlinear and nonsmooth mixing aspects in gas trans-
port optimization problems and show that mixed-integer reformulations of
pooling-type mixing models already render small-size instances intractable.
Therefore we investigate the applicability of smooth nonlinear programming
techniques for equivalent complementarity-based reformulations. Based on
recent results for remodeling piecewise affine constraints using an inverse para-
metric quadratic programming approach, we show that classical stationarity
concepts are meaningful for the resulting complementarity-based reformulation
of the mixing equations. We test this approach numerically by comparing such
a reformulation with a more compact complementarity-based one that does not
feature such beneficial regularity properties. All computations are performed
on publicly available data of real-world size problem instances from steady-state
gas transport. Our numerical results show that both complementarity-based
models outperform the mixed-integer reformulation significantly and that the
complementarity-based model with beneficial regularity properties can be solved
more reliable.

1. Introduction

Pooling problems form a very important class of nonconvex optimization problems.
They often appear in practice, e.g., in chemical engineering, and are NP hard to
solve in general [1, 30]. We consider a special case of this general problem class from
gas transport optimization. Typically, mathematical models from this field combine
two aspects: First, they are highly nonlinear due to gas physics and engineering
models for machines like compressors. Second, they are discrete in nature due to
the control action allowed for certain network elements like compressors or valves.
These aspects result in nonconvex mixed-integer nonlinear optimization or feasibility
problems (MINLPs) that are hard to solve for instances of real-world size. This
field of applied optimization has been highly active in the last years; see, e.g., the
recent book [23], the recent survey [32], and the references therein.

Natural gas in transport networks is always a mixture of different gas species. The
reason is that different customers inject natural gas to the network that is obtained
from different natural resources. These mixtures flow through the network and meet
at the network’s junctions where they again mix and thus yield new compositions.
If one wants to additionally address the physical and chemical effects of different
compositions of natural gas one thus has to integrate pooling-type models on top
of the already hard MINLPs. In view of the large number of publications on gas
transport network optimization in general, mixing effects have been considered less
frequently. An early discussion can be found in [44] and more recent modeling
approaches with tailored solution methods are presented in [12, 13], which base
on the models presented in [40, 41]. The integration of mixing effects is especially
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important for the practical relevance of gas transport models. Usually these models
are formulated in terms of mass flow because it is the most meaningful quantity
in terms of the underlying gas physics. However, accounting in the gas economy
is based on heat power and not on mass flows. The relationship between these
quantities is given by the calorific value of the gas, which is a composition-specific
value that thus has to be tracked through the network by an appropriate mixing
model. Similar problems also appear more generally in the context of fluid flow in
networks of pipes and canals, if, e.g., water hardness or chemical pollution is to be
tracked in fresh or sewage water distribution systems; see [16] for a discussion of
these models.

As we will review later in detail, the considered mixing models for gas transport
networks are genuinely nonsmooth. To the best of our knowledge, a combination of
nonsmooth and integer programming techniques is not yet available and not even
in view. Standard smoothing approaches lead to inexact solutions, which may—in
particular for the mixing problem under consideration—lead to wrong conclusions
concerning feasibility. Since standard models of gas transport networks already
involve both nonlinearities and discrete aspects, a rather natural way to reformulate
this nonsmoothness exactly is using mixed-integer nonlinear but smooth constraints.
However, we show below that the MINLPs, even with integer variables only stemming
from the reformulated mixing constraints, are already fully intractable in practice
for standard general-purpose solvers. Therefore, alternative reformulations of the
mixing equations are of interest. The resulting models should be accessible by
smooth nonlinear programming (NLP) techniques whenever integer control variables
are fixed or relaxed in order to allow in principle their use within existing MINLP
techniques.

In this paper we investigate the use of NLP techniques for complementarity-
based reformulations of the mixing constraints. The reformulations lead to so-
called mathematical problems with complementarity constraints (MPCCs); see
the monograph [27] and the references therein for an in-depth discussion. In
general, for the NLP-equivalent of MPCCs, standard constraint qualifications like the
linear independence constraint qualification (LICQ) or the Mangasarian–Fromowitz
constraint qualification (MFCQ) are typically violated at every feasible point of the
problem. However, promising numerical results for applying local NLP solvers to
MPCCs have been reported in the literature [7]. A subtle but important drawback
of solving MPCCs as NLPs is that it leads to points satisfying MPCC strong
stationarity conditions but that these conditions are in general not necessarily
satisfied in local optimal points [21].

The main contribution of this paper is to show that the latter issue can be
resolved for complementarity-based reformulations of the mixing problem. The
result relies on inverse parametric quadratic programming (IPQP), where the
evaluation of a continuous and nonsmooth but piecewise affine constraint is replaced
by solving a parametric quadratic problem, which can again be replaced by its
optimality conditions. The latter step yields an MPCC-type model due to KKT
complementarity conditions. This idea has been introduced and analyzed in [18,
19] for problems from the field of optimal control of hybrid systems. We adapt the
approach to the mixing problem and compare the numerical performance of such
a reformulation with a more compact one lacking a guarantee to provide points
satisfying necessary optimality conditions. The computational study is carried out
for a significant number of instances from publicly available data of real-world gas
transport networks.

While the focus in this study is on the mixing constraints rather than on discrete
control aspects, let us also mention that the idea of continuous reformulations of
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discrete-continuous problems is also frequently used in practice. For instance, con-
tinuous reformulations of MINLPs from process synthesis and chemical engineering
are discussed in [24, 25, 42]. The use of MPCC-like reformulations for mixed-integer
aspects of gas transport optimization models have been developed by the second
author in [33, 38, 39]. Moreover, solving MPCCs for computing feasible points of
general MINLPs has been recently analyzed in [37]. Finally, the continuous refor-
mulations of the mixing equations obtained here can also be used for non-stationary
gas transport problems, where integer controls for valves and compressors may then
also be treated using continuous reformulations [14, 15, 17, 34].

The rest of the paper is structured as follows. In Section 2 we discuss the problem
in detail and present all relevant physical and mathematical modeling. Afterward,
we present a common mixed-integer reformulation for this problem in Section 3 for
which we then present numerical results in Section 4. We then derive two different
MPCC models of the same problem in Section 5 and discuss the corresponding
numerical results in Section 6. The paper closes with some concluding remarks in
Section 7.

2. Problem Description

Natural gas plays an increasingly important role as a source of primary energy,
especially in many European countries like Germany that use natural gas as some
type of bridging energy towards a fully renewable energy sector. Thus, it is an
important task to produce, transport, and use natural gas as efficient as possible.
We consider the problem of stationary gas transport through gas networks. These
networks are highly complex technical entities and their description requires many
sophisticated models from engineering, physics, thermodynamics, and mathematics;
see, e.g., the book [23] and the survey [32]. Typically, stationary optimization models
for gas transport consider gas pressures and mass flows as main physical quantities
and formulate the relations between pressures and flows in order to model pressure
drop in pipelines, which is the main physical effect in stationary gas transport
models. To overcome these pressure losses, compressor stations are incorporated
that can increase gas pressure. The energy required for this process is the main cost
factor involved in the description of these models and is thus the main aspect to be
minimized in the objective function.

However, this physical and technical description does not fully bridge between
gas physics and gas economy, in which billing and contracting is based on heating
power instead of mass flows. In comparison, this aspect has been addressed in only
a few number of publications; see, e.g., [12, 13, 41, 44]. To close the described gap
between gas physics and accounting it is required to integrate calorific values and
heat power variables into the model. The complicating fact is that different gas sorts
with different chemical properties like calorific values then have to be mixed such
that the quality parameter of interest can be tracked through the network. This
aspect typically leads to pooling-type problems [30] that are known to be extremely
challenging NP-hard optimization problems [1].

2.1. General Network Model. We now describe the problem under consideration
and introduce the notation required in the following sections. We consider a gas
transport network modeled by a directed and connected graph G = (V,A). The
node set consists of entries V+, where gas is supplied, of exits V−, where gas is
discharged, and of inner nodes V0, i.e., V = V+ ∪ V− ∪ V0. The arc set consists of
elements representing pipes Api, compressors Acm, and control valves Acm, i.e., we
have A = Api ∪Acm ∪Acm. We are aware of the fact that more holistic models of
gas transport networks also incorporate additional devices like valves, resistors, or
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gas heaters and coolers. However, we refrain from also incorporating these entities
in order to focus on the main aspects discussed in this paper.

2.2. Arcs. Every arc a ∈ A is modeled using a gas mass flow variable qa that is
bounded below and above:

qa ∈ [
¯
qa, q̄a] for all a ∈ A. (1)

Moreover, we need calorific value variables Hc,a for the gas composition flowing
through the arc. These variables are bounded below and above by the minimum
and maximum calorific values supplied to the network:

Hc,a ∈ [
¯
Hc,a, H̄c,a] for all a ∈ A. (2)

All additional modeling depends on the specific arc type and will be discussed in
the following sections.

2.2.1. Pipes. Pipes a = (u, v) ∈ A outnumber all other elements in gas transport
networks. Gas physics in cylindrically shaped pipes is described by the Euler
equations for compressible fluids. This set of partial differential equations consists
of the continuity equation

∂ρ

∂t
+

1

A

∂q

∂x
= 0 (3)

and the momentum equation
1

A

∂q

∂t
+
∂p

∂x
+

1

A

∂(qv)

∂x
+ gρh′ + λ(q)

|v|v
2D

ρ = 0. (4)

Here, ρ is the gas density, A,D, and h′ ∈ [−1, 1] are the cross-sectional area, the
diameter, and the slope of the pipe, p is the gas pressure, and v is the velocity of
the gas. Moreover, g describes the gravitational acceleration and λ = λ(q) models
friction at the rough inner pipe walls. Note that we omitted the index a here for
better reading. In addition, one has an equation of state for real gas that couples
the gas state quantities pressure p, density ρ, and temperature T :

p = ρRsTz.

Here, Rs is the specific gas constant and z is the compressibility factor that describes
the deviation between ideal and real gas; see, e.g., [9, 40] for more details. We finally
remark that we only consider stationary and isothermal regimes, i.e., we neglect all
time derivatives in (3) and (4) and further neglect all temperature effects.

A model consisting of the differential equations (3) and (4) would be too compli-
cated to be included into a model that also incorporates mixing effects. This is why
we choose to use the well-known finite-dimensional description

p2
v =

(
p2
u − φa(qa)

eSa − 1

Sa

)
e−Sa for all a = (u, v) ∈ Api (5)

with

Λa = λ(qa)
Rsza,mTa,mLa

A2
aDa

=

(
4

π

)2

λ(qa)
Rsza,mTa,mLa

D5
a

, Sa =
2gh′La

Rsza,mTa,m
.

Here, L stands for the length of the pipe and all quantities indexed with “m”
represent suitably chosen mean values. The quantity φa(qa) models a global smooth
approximation of the nonsmooth friction term Λa|qa|qa. For a derivation of (5) see,
e.g., [9]. The derivation of the global smooth friction term approximation is given
in [40].
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2.2.2. Compressor and Control Valves. Compressors a = (u, v) ∈ Acm and control
valves a = (u, v) ∈ Acv are complex technical devices. Compressors are used to
increase the gas pressure in order to transport gas over long distances. In contrast,
control valves decrease the gas pressure, which is often required at the transition
between large transport pipelines and regional distribution networks. Since our
focus is on mixing effects, we refrain from describing and incorporating complex
compressor and control valve models. The reader is referred to [40] for continuous
NLP-type models and to [11], where the authors focus on the discrete aspects of
these elements. Instead, we use linear relations between in- and outgoing pressures:

pv = pu + ∆a, ∆a ∈ [
¯
∆a, ∆̄a] for all a = (u, v) ∈ Acm, (6a)

pv = pu −∆a, ∆a ∈ [
¯
∆a, ∆̄a] for all a = (u, v) ∈ Acv. (6b)

2.3. Nodes. Finally, we describe a general model of nodes. They are modeled by
bounded pressure variables

pu ∈ [
¯
pu, p̄u] for all u ∈ V (7)

and additional constraints. First of all, mass balance is modeled by classical
Kirchhoff-type constraints∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = qu for all u ∈ V, (8)

where qu is the gas mass flow supplied (qu > 0 for all u ∈ V+) or discharged (qu < 0
for all u ∈ V−) at node u. If u is an inner node, u ∈ V0, we set qu = 0. In
Constraint (8), we used the standard δ-notation:

δin(u) := {a ∈ A : ∃v ∈ V with a = (v, u)},
δout(u) := {a ∈ A : ∃v ∈ V with a = (u, v)}.

Now, we formulate our mixing model, for which we need some more notation.
For a node u ∈ V let

Iu := {a ∈ δin(u) : qa ≥ 0} ∪ {a ∈ δout(u) : qa ≤ 0},
Ou := {a ∈ δin(u) : qa < 0} ∪ {a ∈ δout(u) : qa > 0}

be the sets of flow-specific ingoing and outgoing arcs, respectively. With this, perfect
mixing of calorific values Hc at a node u is described by

Hc,u =

∑
a∈Iu Hc,aq̂a∑
a∈Iu q̂a

, q̂a :=
qa
ma

for all u ∈ V \ V+, (9)

where Hc,u models the mixed calorific values at node u. The latter is bounded
similarly to the calorific value variables on arcs:

Hc,u ∈ [
¯
Hc,u, H̄c,u] for all u ∈ V. (10)

In the following we assume that all molar masses ma are equal, which allows to
write qa instead of q̂a in the mixing equations. At entry nodes, we also have to take
into account the calorific value of the supplied gas. Thus, (9) has to be modified to

Hc,u =
Hsup

c,u qu +
∑
a∈Iu Hc,aqa

qu +
∑
a∈Iu qa

for all u ∈ V+, (11)

where the calorific value of the supplied gas at entry node u ∈ V+ is denoted
by Hsup

c,u . Having these node equations at hand, we finally have to propagate the
mixed quantity onto all flow-specific outgoing arcs by

Hc,a = Hc,u for all u ∈ V, a ∈ Ou. (12)
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Finally, we have contractual constraints at all exit nodes that bound the delivered
heat power. Since the latter is simply the product of calorific value and mass flow
we obtain the constraints

Hc,uqu ∈ [
¯
Pu, P̄u] for all u ∈ V−. (13)

2.3.1. A Nonsmooth Mixing Model. We now close this section by stating the overall
model. Taking all considerations of the previous sections together, we obtain the
model

min ϕ :=
∑
a∈Acm

∆a (14a)

s.t. variable bounds (1), (2), (7), (10), (14b)
mass balance (8), (14c)
pressure loss in pipes (5), (14d)
compressor and control valve models (6), (14e)
exit heat power bounds (13), (14f)
node mixing equations (9), (11), (14g)
propagation equations (12). (14h)

The objective function of Model (14) minimizes the overall pressure increase. Of
course, more complicated objectives might be possible but we again choose a simple
model in order to focus on the mixing aspect of the model.

Model (14) is a nonsmooth and nonconvex optimization problem. Nonconvexity
appears in the pressure loss constraints (5) on pipes, in the mixing equations (9) and
(11) at nodes, and in the heat power constraints (13) at exits. The nonsmoothness
stems from the node mixing equations because the flow-specific sets Iu and Ou
depend on the problem’s solution and, thus, are not known a priori.

3. An MINLP Mixing Model

A straight forward approach to tackle the nonsmoothness of Model (14) is to
use an MINLP model for the mixing effects. Remember that the nonsmoothness in
Model (14) appears because the sets Iu and Ou are not known a priori. However, if
we know the flow direction on all arcs of the network, we can formulate the model a
priorily. Thus, the main idea of the MINLP model is to introduce a binary variable
for every arc of the network that encodes the flow direction on that arc. That is, we
introduce

da ∈ {0, 1} with da =

{
1, qa ≥ 0,

0, qa ≤ 0.

This can be modeled using the linear constraints

(1− da)
¯
qa ≤ qa ≤ daq̄a for all a ∈ A. (15)

With this at hand, we can model the splitting of the positive and negative part of
every flow via

βa = daqa, γa = (da − 1)qa for all a ∈ A. (16)
That is, we have qa = βa − γa with βa, γa ≥ 0. With these variables at hand, we
can reformulate the node mixing constraints (9) and (11) as

Hc,u =

∑
a∈δin(u) βaHc,a +

∑
a∈δout(u) γaHc,a∑

a∈δin(u) βa +
∑
a∈δout(u) γa

for all u ∈ V \ V+, (17a)

Hc,u =
Hsup

c,u qu +
∑
a∈δin(u) βaHc,a +

∑
a∈δout(u) γaHc,a

qu +
∑
a∈δin(u) βa +

∑
a∈δout(u) γa

for all u ∈ V+. (17b)
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Multiplication with the denominator reveals that (17) are quadratic constraints.
Finally, the propagation constraints (12) can be reformulated using linear big-M

indicator constraints:

M(1− da)− (Hc,a −Hc,u) ≥ 0 for all u ∈ V, a ∈ δout(u), (18a)

M(1− da) + (Hc,a −Hc,u) ≥ 0 for all u ∈ V, a ∈ δout(u), (18b)

Mda − (Hc,a −Hc,u) ≥ 0 for all u ∈ V, a ∈ δin(u), (18c)

Mda + (Hc,a −Hc,u) ≥ 0 for all u ∈ V, a ∈ δin(u). (18d)

Instead of these big-M constraints it is also possible to use multiplicative indicator
constraints; see [33] for a comparison of different types of indicator constraints in
gas transport optimization. However note that M := H̄c,a −

¯
Hc,u is a valid big-M

for (18a) and (18c) and M := H̄c,u −
¯
Hc,a is valid for (18b) and (18d). Since these

big-M ’s are quite small in practice, we believe that (18) is the favorable type of
indicator constraint in this context.

Thus, we have shown the following result.

Theorem 1. The solutions of the nonsmooth NLP (14) are in 1:1-correspondence
with the solutions of the MINLP

min ϕ :=
∑
a∈Acm

∆a (19a)

s.t. variable bounds (1), (2), (7), (10), (19b)
mass balance (8), (19c)
pressure loss in pipes (5), (19d)
compressor and control valve models (6), (19e)
exit heat power bounds (13), (19f)
flow direction constraints (15), (19g)
flow splittings (16), (19h)
node mixing equations (17), (19i)
propagation equations (18). (19j)

Note that the MINLP (19) has smooth nonlinearities but, of course, this comes
at the price of newly introduced binary variables and new linear and nonlinear
constraints, where the new nonlinear constraints (16) can be linearized by standard
techniques.

4. Numerical Results for the MINLP Model

In this section we present the numerical results for the MINLP model (19). The
section is split up into two parts. First, in Section 4.1 we describe the instances of
our test set and discuss our software and hardware setup. Afterward, in Section 4.2
we then present and discuss the numerical results obtained for the MINLP model.

4.1. Instances and Implementation Details. For testing and comparing our
modeling approaches we use the GasLib, which contains publicly available gas
transport network instances; see [22]. We include the following GasLib instances
into our test set: the 24-node network GasLib-24, the 40-node network GasLib-40,
the 135-node network GasLib-135, and the large 582-node network GasLib-582. For
all but the GasLib-582 instance only a single nomination exists. For the GasLib-582
network we randomly choose 50 instances to be included in our test set. The full set
of instances is listed in Appendix A. Since our main focus is on mixing models, we
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Table 1. Run times (in s) for the tested MINLP solvers on small
networks. For the marked instance, ANTIGONE wrongly reports
that the instance is infeasible.

Run time BARON KNITRO ANTIGONE SCIP

GasLib-24 0.59 0.91 0.41 14.1
GasLib-40 7.26 15.76 1912.67∗ —

GasLib-135 — — — —

perturbed all supplied calorific values in the GasLib-24, GasLib-40, and GasLib-135
instance because the original data contains equal values for all entry nodes.1

The GasLib instances do not contain any heat power information. Thus, we
extend the GasLib instances by choosing the bounds

¯
Pu and P̄u (see Constraint (13))

as
P̄u := (1 + α)Hm

c
¯
qu,

¯
Pu := (1− α)Hm

c q̄u for all u ∈ V−
with α ∈ (0, 1) and

Hm
c :=

∑
u∈V+

quH
sup
c,u∑

u∈V+
qu

.

Note that Hm
c is the flow-weighted mean value of the calorific value supplied at

all entries. Moreover, among the chosen test sets, the existence of feasible or even
optimal solutions is not guaranteed. For computations we choose α = 0.1.

All of our models are implemented in GAMS [28] using the C++ framework
LaMaTTO++ for modeling and solving mixed-integer nonlinear programming prob-
lems on networks [26]. All computations presented below have been carried out on a
computer with a 6 core AMD Opteron Processor 2435 processor running at 2.6 GHz
and with 64 GB of main memory.

4.2. Results. We now present the numerical results for the mixed-integer nonlinear
model (19). We first report the numerical results of the global MINLP solvers
BARON [35, 43], ANTIGONE [29], and SCIP [10] as well as of the local MINLP
solver KNITRO [3] on the small instances GasLib-24, GasLib-40, and GasLib-135.
The run times are listed in Table 1. It turns out that these instances are already
very hard to solve for the tested solvers. The smallest instance GasLib-24 can be
solved by all solvers but the solution times already differ quite drastically: BARON,
KNITRO, and ANTIGONE need less than 1 s (e.g., BARON solves the problem in
its presolve stage) whereas SCIP requires 14.1 s. The GasLib-40 instance cannot be
solved by SCIP anymore within a time limit of 1 h, whereas BARON and KNITRO
solve the problem in a few seconds. ANTIGONE needs more than 30 min to “solve”
the problem. However, it wrongly reports that the instance is infeasible. Finally,
the GasLib-135 instance cannot be solved by any of the tested solvers within a time
limit of 1 h.

Summarizing, it is obvious that the considered class of nonconvex MINLPs is
very challenging—also for relatively small networks. This is in line with the recent
computational literature on gas network MINLPs [20, 31] and pooling problems in
general [30].

We also tested the MINLP formulation for the larger GasLib-582 network. Due
to the results on the small networks, we choose to use BARON as a global and
KNITRO as a local MINLP solver. As expected on the basis of the results on the
smaller networks, the global solver BARON was not able to solve any of the 50

1The perturbation has been realized by the random module of Python via the command
random.uniform(0.9, 1.1).
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tested instances within the time limit of 1 h. The local solver KNITRO was a little
bit more successful. It can solve 3 instances to (local) optimality and 12 more to
feasibility. This corresponds to 30 % of the instances that can be solved at least
to feasibility. The remaining 35 instances were wrongly detected to be (locally)
infeasible (32 instances) or the solver hit the time limit (for 3 instances). Note
finally that all 12 instances that are solved to feasibility also reached the time limit,
i.e., KNITRO is able to find a feasible solution within 1 h but is not able to prove
(local) optimality. The three instances solved to optimality required 100, 191, and
135 s.

Altogether the results for the MINLP formulation of the mixing model are not
convincing. It is almost impossible to solve reasonably sized instances to global
optimality and also local optimality could only be computed for 6 % of the GasLib-582
instances. This legitimates the study of local approaches for alternative continuous
formulations of the problem.

5. Complementarity-Based Reformulations

The nonsmooth constraints of Model (14) can also be tackled using complemen-
tarity constraints. This can be done in several ways and our focus will be on whether
one of these ways is advantageously. In view of regularity conditions, we say that a
set of constraints is mild if any local minimum of a given and sufficiently smooth
cost function subject to these constraints satisfies the classical KKT conditions. It
is well-known that complementarity constraints are in general not mild because
they typically violate standard constraint qualifications. The main result in this
section is that the mixing model admits a reformulation with mild complementarity
constraints.

Recalling that the problem with Model (14) are the sets Iu and Ou for each
node u ∈ V (because these sets are not known a priori), we replace the sets Iu and
Ou for each node as in the MINLP formulation with the a priorily given sets δin(u)
and δout(u) for every u. For this, we use nonsmooth max-constraints that depend
on the flow directions instead of introducing binary variables.

To this end consider the constraint

f(za) = max{0, qa} − βa = 0, za = (qa, βa)>, (20)

i.e., βa models the positive part of the mass flow qa as it was also the case for the
mixed-integer model (16); see also Figure 1. Note that

max{0,−qa} = βa − qa
holds. That is, βa − qa takes to role of γa in the MINLP model (16). This allows us
to rewrite the mixing models (9) and (11) as

Hc,u =

∑
a∈δin(u) βaHc,a +

∑
a∈δout(u)(βa − qa)Hc,a∑

a∈δin(u) βa +
∑
a∈δout(u)(βa − qa)

(21a)

for all u ∈ V \ V+ and

Hc,u =
Hsup

c,u qu +
∑
a∈δin(u) βaHc,a +

∑
a∈δout(u)(βa − qa)Hc,a

qu +
∑
a∈δin(u) βa +

∑
a∈δout(u)(βa − qa)

(21b)

for all u ∈ V+ and the propagation of the mixed node quantities as

βa(Hc,a −Hc,u) = 0 for all u ∈ V, a ∈ δout(u), (22a)

(βa − qa)(Hc,a −Hc,u) = 0 for all u ∈ V, a ∈ δin(u). (22b)

We now derive complementarity-based reformulations of the nonsmooth con-
straint (20). For reasons of better reading we drop the arc index a in the following
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Figure 1. The nonsmooth function f(z) = max{0, q} − β

before returning to the full model again at the end of the section. Observe that the
function f : R2 → R used in (20) is continuous, convex, and piecewise affine (PWA).
Partitioning

R2 = Ω1 ∪ Ω2

with
Ω1 = (−∞, 0]×R, Ω2 = [0,+∞)×R

yields
f�Ω1

= −β, f�Ω2
= q − β.

The constraint f(z) = 0 can directly be reformulated as a complementarity
constraint.

Lemma 1. For all β, q ∈ R we have

f(z) = 0 ⇐⇒ β = max{0, q} (23)

if and only if

β ≥ 0, β − q ≥ 0, (24a)
β(β − q) = 0. (24b)

Proof. (23) =⇒ (24): If q < 0, then β = 0 and it is easy to see that (q, β) solves
(24). If q ≥ 0, then β = q and again it is easy to see that (q, β) solves (24).

(24) =⇒ (23): If q ≤ 0 and β > 0, then (24b) implies β − q = 0, a contradiction.
If q ≤ 0 and β = 0, then (q, β) solves (24) and it holds β = 0 = max{0, q}. If q ≥ 0
and β > 0, then (24b) implies q − β = 0, hence q = β = max{0, q}. If q ≥ 0 and
β = 0, then (24a) implies q ≤ 0, hence q = 0 and it holds β = 0 = max{0, q}. �

The set of constraints (24) are rather simple but not mild; see, e.g., [27]. Typically,
alternative constraint qualifications and stationarity concepts are used (see, e.g.,
[36]) or tailored regularization techniques are applied (see, e.g., [21]). The focus
of this paper, however, is on exact complementarity-based reformulations without
any further regularization such that results like Theorem 1 can also be shown
for the obtained MPCC-type models. Fortunately, alternative complementarity
reformulations are possible. A systematic way to obtain such reformulations is inverse
parametric quadratic optimization. The general idea is to write a piecewise affine
constraint itself as a solution of an appropriate parametric optimization problem
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and to make use of its optimality conditions instead of the original constraint.
Interestingly, this can be done exactly and leads to mild constraints similarly as in
the case of hybrid dynamical systems [18, 19].

Lemma 2 ([19, Lemma 9]). Let f : Rm → Rn be a continuous PWA function such
that every component fi : Rm → R is convex for all i ∈ {1, . . . , n}. Then

f(z) = argmin
ξ∈Rn

{
1

2
‖ξ − f̄(z)‖2Q : ξ ≥ f(z)

}
(25)

for any positive definite n×n diagonal matrix Q and any affine function f̄ : Rm → Rn

with
f̄(z) ≤ f(z) for all z ∈ Rm. (26)

We can apply Lemma 2 to the convex PWA function f(z) of Constraint (20) with
m = 2 and n = 1 choosing Q = 1 and f̄(z) = −z2 − η for arbitrary η > 0. Then we
have

f̄(z) = −z2 − η = −β − η < max{0, q} − β = f(z). (27)
In particular, (26) holds strictly. Hence, using the variables z = (q, β) and ignoring
constant terms in the cost function in (25), we obtain

f(q, β) = argmin
ξ∈R

{
1

2
ξ2 + (β + η)ξ : ξ ≥ −β, ξ ≥ q − β

}
. (28)

Using that Slater’s constraint qualification is satisfied for each fixed q and β,
the unique solution of the quadratic program in (28) is characterized by its KKT
conditions

ξ + β + η − λ1 − λ2 = 0,

β + ξ ≥ 0, β + ξ − q ≥ 0,

λ1, λ2 ≥ 0,

λ1(β + ξ) = 0, λ2(β + ξ − q) = 0.

(29)

Using that f(z) = 0 yields ξ = 0, we obtain another complementarity reformula-
tion.

Lemma 3. For all β, q ∈ R we have

f(z) = 0 ⇐⇒ β = max{0, q} (30)

if and only if
β + η − λ1 − λ2 = 0,

β ≥ 0, β − q ≥ 0,

λ1, λ2 ≥ 0,

λ1β = 0, λ2(β − q) = 0.

(31)

One can easily verify that MPCC-LICQ holds for both constraint sets (24) and
(31); see, e.g., [8]. Moreover, for the latter it is possible to show the following
additional regularity property.

Proposition 1. For any sufficiently smooth cost function, the set of constraints
given by (31) is mild.

Proof. Noting (27), the proposition follows from Theorem 1 and Theorem 5 in [19]
because f is a particular instance of a continuous PWA function. �

As we already pointed out, KKT conditions typically cannot be used directly as
a proper stationarity concept for MPCCs. Since almost all NLP solvers rely on this
concept, they may (despite convergence issues) fail to provide local minima; see,
e.g., [2, 4, 6]. The main implication of Proposition 1 is that this failure of the KKT
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stationarity concept does not apply in the case of the constraint set (31), which
legitimates the application of standard NLP solvers.

Note further that the above results extend more generally to continuous PWA
functions using DC decompositions [18, 19].

Returning to the full gas network model again, applying Lemma 3 to the con-
straints f(za) = 0 for all a ∈ A, we obtain the complementarity conditions

βa ≥ 0, βa − qa ≥ 0,

βa(βa − qa) = 0
(32)

from Lemma 1 or the complementarity conditions
βa + η − λa1 − λa2 = 0,

βa ≥ 0, βa − qa ≥ 0,

λa1 , λa2 ≥ 0,

λa1βa = 0, λa2(βa − qa) = 0

(33)

from Lemma 3.
With this we have shown the following result.

Theorem 2. The solutions of the nonsmooth NLP (14) are in 1:1-correspondence
with the solutions of the MPCCs

min ϕ :=
∑
a∈Acm

∆a (34a)

s.t. variable bounds (1), (2), (7), (10), (34b)
mass balance (8), (34c)
pressure loss in pipes (5), (34d)
compressor and control valve models (6), (34e)
exit heat power bounds (13), (34f)
node mixing equations (21), (34g)
propagation equations (22), (34h)
complementarity constraints (32) or (33). (34i)

Note that instances of both MPCCs with (32) or (33) in (34) will typically violate
constraint qualifications such as LICQ or MFCQ. However, Proposition 1 shows
that using (33) in (34) may be beneficial for an NLP solver in terms of constraint
regularity.

6. Numerical Results for the Complementarity-Based Models

In this section we present the numerical results for the two different versions of the
MPCC-type model (34) that differ depending on whether the complementarity-based
constraints of Lemma 1 (called MPCC-Direct in the following) or Lemma 3 (called
MPCC-IPQP in the following) are used. The theoretical advantages and drawbacks
of both variants are easy to see: The variant MPCC-Direct is smaller in terms of
the number of variables as well as in the number of linear and complementarity
constraints. On the other hand, the variant MPCC-IPQP uses mild complementarity
constraints and thus has favorable regularity properties.

In order to test these formulations we use 250 randomly chosen nominations
for the GasLib-582 network (see Section 4.1 for general information on GasLib and
Appendix A for the full list of all 250 nominations) and the local NLP solvers
CONOPT4 and SNOPT. We also tested KNITRO and Ipopt but both have severe
problems solving the instances from the test set. This is why we focus on CONOPT4
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Figure 2. Log-scaled performance profile of SNOPT applied to
the MPCC-Direct and MPCC-IPQP models on 250 randomly chosen
instances of the GasLib-582 network

and SNOPT in what follows. All complementarity constraints are used as stated in
(32) and (33), respectively, without any further regularization or relaxation. Note
that this yields a violation of classical constraint qualifications like LICQ or MFCQ
and that, thus, the convergence theory of typical NLP solvers like CONOPT4 and
SNOPT does not formally hold. The software and hardware setup is the same
as described in Section 4 except for the significantly decreased time limit of 10 s.
Moreover, we choose η = 10−6; see (27).

For the comparison we fix the local NLP solver and compare both model variants
by using performance profiles as proposed in [5] with run times as the performance
measure.

We start by discussing the results for SNOPT. The corresponding performance
profile is given in Figure 2. SNOPT seems to cope well with the complementarity-
constrained models at hand. In particular, it does not benefit from the gain of
regularity of the MPCC-IPQP model, for which only 93 instances (37.2 %) are solved.
In contrast, the more compact MPCC-Direct is solved 169 times (67.6 %). Moreover,
the latter model variant is solved faster than the IPQP-based model for almost 50 %
of the instances. Thus, SNOPT seems to benefit from the more compact model with
less complementarity constraints more than from constraint regularity. This is in
line with the observations reported in [8]. The solver SNOPT implements an “elastic
mode” that uses an automatically chosen relaxation of inconsistent QP subproblems.
As our results indicate, this strategy of SNOPT seems to work better for the more
compact MPCC model. However, in this comparison, one has to keep in mind
that solutions of MPCC-Direct are not guaranteed to satisfy necessary optimality
conditions while solutions of MPCC-IPQP do; see Proposition 1.

The situation changes significantly when we turn to the numerical results obtained
by CONOPT4; see Figure 3. We again see that the more compact model formulation
is solved faster almost always if it is solved at all (see the almost horizontal line in
Figure 3). However, the gain of mildness of variant MPCC-IPQP yields a significantly
more reliable solution approach: 68.4 % of the instances (171 of 250) are solved—in
contrast to only 46.4 % (116 of 250) for the MPCC-Direct model.

In summary, we see that the relevance of mildness strongly depends on the chosen
solver technology and thus the choice of the specific solver and the model should
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Figure 3. Log-scaled performance profile of CONOPT4 applied to
the MPCC-Direct and MPCC-IPQP models on 250 randomly chosen
instances of the GasLib-582 network

Table 2. Number of solved instances (out of 250) and statistics
for the solution times (always taken only for all instances solved to
optimality)

SNOPT CONOPT4
Direct IPQP Direct IPQP

# solved 169 93 116 171

Minimum 2.561 5.825 3.576 4.992
1st Quantile 3.729 8.247 4.120 6.024

Median 4.263 9.478 4.451 6.571
Mean 4.646 17.647 4.663 7.308

3rd Quantile 4.786 11.226 4.884 7.548
Maximum 29.160 219.576 10.216 15.603

be done carefully and in combination of each other. However, the largest number
of solved instances is obtained for the mild formulation (solved with CONOPT4).
Model size and mildness seem to be competing measures. This can also be seen
in Table 2: For both solvers the MPCC-Direct model is solved faster than the
MPCC-IPQP variant. Thus, it is an open question whether there exist formulations
that are both mild and compact.

Finally, let us compare the MPCC-based numerical results with those of the
MINLP model. For the latter, it is not possible to solve the much smaller GasLib-135
instance within the time limit of 1 h and almost no instances can be solved for the
GasLib-582 network. In contrast, using CONOPT4 and the MPCC-IPQP model variant
we can solve up to almost 70 % of all instances within less than 10 s. Obviously,
this comes at the price of local solutions but the enormous difference in success
rates between the MINLP and MPCC models indicates that complementarity-based
models are clearly favorable.
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7. Conclusion

In this paper we investigated mixing models for different gas compositions in
gas transport networks. The focus is on exact reformulations of nonsmooth aspects
of the mixing equations. This especially means that we neither apply smoothings
of nonsmooth aspects nor regularizations of the considered MPCCs. It turned
out that classical MINLP formulations become intractable already on quite small
networks. Purely continuous reformulations of MPCC-type significantly outperform
the discrete-continuous model variants. The comparison between the different
MPCC models shows that performance and reliability strongly depends on the
chosen solver but that improved constraint regularity of the MPCC model may lead
to much more reliable solution processes.

Since it turned out that MPCC model size and constraint regularity are competing
aspects, the main question for future research is to determine if both compact and
mild complementarity-based models exist.
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Appendix A. GasLib-582 Test Set

Table 3. 50 randomly chosen GasLib-582 instances

nomination_cold_95_

1202 1317 1361 1432 1689 1948 1974 2049 2161 2205
2329 2628 3146 3285 421 596 634 740

nomination_cool_95_

1036 1398 1776 2301 2394 2535 2794 3121 3594 524
710 720

nomination_freezing_95_

2302 2587 2877 3105 3320 3408 3850 4199 495

nomination_mild_95_

1070 175 1934 1964 2594 3499 3669 3766 805 92

nomination_warm_95_

3536
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Table 4. 250 randomly chosen GasLib-582 instances

nomination_cold_95_

1277 1278 1300 1315 1426 1527 1572 162 1662 1722
176 1828 1834 1835 1878 1904 2071 2102 2123 2149
2340 2423 2436 2446 2519 2543 2681 2720 2722 2799
2820 2855 2856 2998 301 3082 3136 3162 3246 3335
3338 3495 3514 3598 3739 3807 3813 3824 3894 395
4000 4054 4155 480 503 542 573 680 722 868
873 905 906 914

nomination_cool_95_

1010 1012 1036 109 1166 1294 1337 1365 1394 1530
1622 1641 1654 1744 1779 1852 1886 1987 2040 2064
2078 2084 2150 2217 2320 233 2426 2597 2608 2656
2680 2797 285 2867 287 2954 2992 2999 3013 3079
3154 3181 3209 3269 3283 3322 3324 3492 3518 3667
3753 3788 3808 3854 3869 3 4004 4067 411 4179
456 498 514 685 699 813 847 951 988

nomination_freezing_95_

1205 1268 129 1320 1583 1712 1821 1844 2183 2236
2242 2420 2457 2491 2536 2545 2664 2710 2719 2800
2853 2890 3122 3189 3311 3320 3345 3392 3398 3410
3414 3465 354 3648 3657 3732 402 4035 4040 4061
4113 440 458 647 836 867 870

nomination_mild_95_

1142 1159 1198 1218 140 1454 1455 1817 1866 1867
1945 1961 1969 2030 2081 2134 2235 2265 2282 241
246 2661 2727 2732 2930 3230 3432 3436 3480 3553
369 3701 3838 3844 3999 405 4110 4169 4170 605
648 70 837 931 949 956

nomination_warm_95_

1062 1112 1146 124 1353 1594 1716 1747 181 2246
2610 2666 2899 3021 324 3331 3366 338 357 3725
4160 597 638 848
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