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Abstract. In this paper, we study the transient optimization of gas networks, fo-
cusing in particular on maximizing the storage capacity of the network. We include
nonlinear gas physics and active elements such as valves and compressors, which due to
their switching lead to discrete decisions. The former is described by a model derived
from the Euler equations that is given by a coupled system of nonlinear parabolic par-
tial differential equations (PDEs). We tackle the resulting mathematical optimization
problem by a first-discretize-then-optimize approach. To this end, we introduce a new
discretization of the underlying system of parabolic PDEs and prove well-posedness
for the resulting nonlinear discretized system. Endowed with this discretization, we
model the problem of maximizing the storage capacity as a non-convex mixed-integer
nonlinear problem (MINLP). For the numerical solution of the MINLP, we algo-
rithmically extend a well-known relaxation approach that has already been used very
successfully in the field of stationary gas network optimization. This method allows us
to solve the problem to global optimality by iteratively solving a series of mixed-integer
problems (MIPs). Finally, we present two case studies that illustrate the applicability
of our approach.

1. Introduction

Optimal control of gas transport networks has become increasingly important in recent
years. From a mathematical point of view, this problem results in hard optimization
problems that are challenging because they combine nonlinear and discrete aspects. First,
we use a model derived from the Euler equations, given by a coupled system of nonlinear
parabolic partial differential equations (PDEs). On the other hand, switching active
elements such as valves and compressors involves discrete decisions.

In this paper, we consider the particular problem of maximizing the storage capacity
of the gas network, which is very important for transmission system operators (TSO).
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Especially with regard to Power-to-Gas this problem becomes essential. In this context,
the gas network is used to store energy by converting electrical power into gas, e.g.,
by generating hydrogen or methane, and feeding it into the gas network. In a typical
Power-to-Gas scenario, the generated gas is only fed into the network during a certain
period of time, for example when solar or wind energy is available, and later discharged
when demand is high. To handle such scenarios, a transient model of the gas physics is
needed, which makes the problem much more complex compared to the stationary case.

In our setting, the problem of maximizing the storage capacity of a gas network is as
follows: Maximize the amount of gas that can be fed into the network such that there is
an admissible time-dependent control of the active elements satisfying all physical and
technical constraints. Furthermore, a concrete control has to be computed. The novel as-
pect of our contribution is the focus on global optimal solutions while discrete decision are
involved. We tackle this global optimization problem by a first-discretize-then-optimize
approach. We start with a new discretization of a system of nonlinear parabolic PDEs
that describe the gas physics. We prove well-posedness for the resulting discretized
system. Incorporating active elements such as valves and compressors, we subsequently
obtain a non-convex mixed-integer nonlinear problem (MINLP). In order to to solve this
MINLP to global optimality, we algorithmically extend the method proposed by Burlacu
et al., 2017; Geißler et al., 2012; Geißler, 2011, which is based on mixed-integer program-
ming (MIP) relaxations of the MINLP and which has already been used successfully
in the context of gas network optimization. Finally, two case studies illustrate the ap-
plicability of our approach to storage capacity maximization problems. The focus of
this paper is to globally maximize the storage capacity of a gas network that includes
active elements. To the best of our knowledge, no global optimal approaches have been
investigated so far.

Literature review. Several general approaches for optimal control with discrete deci-
sions have been studied in the literature. In the works of H. Lee et al., 1999; Gerdts,
2006, variable time transformation methods that result in a continuous formulation are
proposed. However, these are limited to ordinary differential equations (ODEs). Other
approaches switch at discrete time points between different systems of ODEs. Recently,
a generalization to PDEs was analyzed (Rüffler and F. M. Hante, 2016), whereby only
local optimality can be guaranteed. In addition, methods have been developed that use
complementarity-based reformulations, see for example the paper by Baumrucker and
Biegler, 2009, while they depend on special nonlinear solvers or supplementary relax-
ation techniques. Recently, Buchheim et al., 2015 presented a global solution method
for certain semi-linear elliptic mixed-integer PDE problems using outer approximation.
A first-discretize-then-optimize approach has been used in the following articles. Sager,
Bock, et al., 2009 developed the so-called convexification method, in which discrete de-
cisions are used to derive a convex relaxation of mixed-integer optimal control problems.
This method is limited to ODEs only and is extended to PDEs by F. M. Hante and
Sager, 2013. Moreover, Sager, M. Jung, et al., 2011; M. N. Jung et al., 2015 applied this
convexification method to handle discrete decisions over time and propose an efficient way
to compute feasible solutions. Bock et al., 2018 studied cases in which discrete decisions
depend on the state variables and studied a reformulation as well as solution method for
such problems. Another direction that has been intensively investigated, especially in the
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chemical engineering community, is mixed-integer dynamic optimization. The dynamic
system is typically described by a series of differential-algebraic equations (DAEs). All-
gor and Barton, 1999 propose a general decomposition-based approach for the problems
that arise in this regard. For further surveys in this field of research, we refer to the
references contained therein.

In recent years, a lot of literature has been published on optimal control in the context
of gas network optimization. The book by Koch et al., 2015 provides a comprehensive
survey in case of a stationary gas physics. Recently, alternating direction methods have
been used (Geißler et al., 2015b; Geißler et al., 2018) to combine MIP and nonlinear
programming (NLP) techniques in order to solve stationary gas optimization problems
for large-scale real-world instances. Moreover, Ríos-Mercado and Borraz-Sánchez, 2015
as well as F. Hante et al., 2017 present general information on modeling and solution
methods for gas transport.

The global optimization of transient mixed-integer gas transport has been tackled with
related methods by Mahlke et al., 2010 and Domschke, Geißler, et al., 2011. Therein,
the authors focus on minimizing the fuel gas consumption of the compressors while gas
injection and discharge are given a priori and fixed at each entry and exit. In contrast,
we maximize the amount of gas that can be fed into the network, where some entries and
exits have a variable gas injection and discharge. Recently, Gugat et al., 2017 presented
an instantaneous control approach for solving transient gas transport problems, where
an MIP needs to be solved for each time step. Global optimality, however, is only
guaranteed for each time step and not for the entire time horizon. Moreover, Hahn et al.,
2017 proposed several heuristics for a transient optimal control model for gas transport
networks.

2. Mathematical model of gas transport

In this section, we present the basic equations describing the gas transport in a network
of pipes and active elements. We start with a description of the topology and geometry of
the network and then introduce the partial differential and algebraic equations modeling
the conservation of mass and momentum in pipes, active elements, and across junctions.

2.1. Topology and geometry. The topology of the gas network is described by a finite
directed graph G = (V,A). Every arc a ∈ A models a specific segment of the network,
i. e. , a pipe or an active element like a compressor or a valve. Correspondingly, we split
A = Api ∪ Aae into subsets of pipes and active elements. The vertices v ∈ V, on the
other hand, describe the end points of segments and correspond to junctions of several
segments or to terminal vertices of the network, where gas can be injected or discharged.

For any vertex v ∈ V, we denote by δin(v) := {a = (v1, v2) ∈ A : v2 = v} the set of
ingoing arcs and by δout(v) := {a = (v1, v2) ∈ A : v1 = v} the set of outgoing arcs, and
we denote by A(v) := δin(v)∪δout(v) the set of arcs that are incident on v. We then split
the set of vertices V = V0∪V∂ into a set of interior vertices V0 := {v ∈ V : |A(v)| > 1} and
a set of boundary vertices V∂ = {v ∈ V : |A(v)| = 1}. We further partition V∂ = Vq ∪ Vp
into boundary vertices where either the mass flow or the pressure is prescribed.

To every pipe a, we associate parameters `a, Da, and Aa describing the length, di-
ameter, and cross-sectional area of the pipe, and we denote by va the midpoint of the
pipe corresponding to the arc. We will tacitly identify the pipe a with the interval [0, `a],
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which allows us to define differentiation for functions defined on a. In addition, we as-
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4

Figure 1. Graph G = (V,A) with vertices V = {v1, v2, v3, v4} and arcs A = {a1, a2, a3, a4} defined by
a1 = (v1, v2), a2 = (v2, v3), a3 = (v3, v4), and a4 = (v3, v5). Here, V0 = {v2, v3} and V∂ = {v1, v4, v5}.
Furthermore, we have A(v1) = {a1}, A(v2) = {a1, a2}, A(v3) = {a2, a3, a4}, A(v4) = {a3}, and
A(v5) = {a4}. Additionally, δinv1 = ∅, δinv2 = {a1}, δinv3 = {a2},δinv4 = {a3}, δinv5 = {a4}, and δout

v1 = {a1},
δout
v2 = {a2}, δout

v3 = {a3, a4}, δout
v4 = ∅, δout

v5 = ∅. The control volumes volv are shown in gray.

sociate to each vertex v ∈ V a control volume volv made up of the pipes a ∈ A(v) cut
to half length, see Figure 1 for an illustration. We refer to the physical volume of these
control volumes as |volv| =

∑
a∈A(v)Aa`a/2. We will set `a > 0 for pipes and `a = 0 for

active elements a ∈ Aae. Moreover, we require that volv > 0 for all v ∈ V, i. e. , every
vertex is end point of at least one pipe a ∈ Api. These topological conditions will be
utilized in Section 3. As a next step, we describe the mathematical models for describing
the gas flow through pipes and active elements.

2.2. Gas flow through pipes. On the length and time scales that are relevant for
the operation of a gas network, the gas transport in a one-dimensional pipe a ∈ Api is
described by the Euler equations, which are given as a system of nonlinear hyperbolic
PDEs. They are formed by the Continuity, the Moment, and the Energy Equation; see
for example the works of J. Brouwer et al., 2011; A. J. Osiadacz, 1996:

∂tρ+ ∂x(ρv) = 0, (1a)

∂t(ρv) + ∂x(p+ ρv2) = − λ

2D
ρv |v| − gρh′, (1b)

∂t

(
ρ
(
1
2v

2 + e
))

+ ∂x

(
ρv
(
1
2v

2 + e
)

+ pv
)

= −kw
D

(T − Tw) . (1c)

The three equations (1a)–(1c) describe the conservation of mass, momentum, and energy,
respectively. Here, ρ, v, p, and T are the unknown density, velocity, pressure, and
temperature, respectively. The constants λ, g, and kw are the friction coefficient, the
gravitational constant, and the heat coefficient. Furthermore, we denote the slope of the
pipe by h′, the diameter by D, and the temperature at the pipe wall surface by Tw. The
internal energy is given by the variable e = cvT + gh with the specific heat constant cv
and height h of the pipe. System (1) consists of three equations with four unknowns. In
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order to complete the system, an additional fourth equation is needed. To this end, we
use the Equation of State for real gases

p = RsρTz(p,T ), (2)

where z(p,T ) is the compressibility factor and Rs the specific gas constant.
As already mentioned, we put particular emphasis on global optimal solutions of the

underlying mathematical optimization problems. As a trade-off, we have to simplify
system (1), as is often done in practice. First, we assume that the temperature T is
constant, which allows us to neglect the energy equation (1c). The resulting system
is often referred to as the isothermal Euler equations. We further assume that the
compressibility factor z is constant as well. As a consequence, the speed of sound c can
be computed by c2 = RsTz, which transforms the Equation of State (2) to

p = c2ρ. (3)

Using this, we can rewrite p+ ρv2 as p
(
1 + v2/c2

)
. In practice, the velocity of the gas is

usually significantly lower than the speed of sound in the gas. Typically this is explicitly
enforced to prevent noise and vibrations in the pipe. This entails that v2/c2 is very
small and can therefore be neglected in our model. In addition, we assume that ∂t(ρv)
is very small as well, see Koch et al., 2015, Chapter 2. This assumption leads to a model
comparable to the friction-dominated models discussed by J. Brouwer et al., 2011, which
are widely used in the engineering literature for references, see the work of J. Brouwer
et al., 2011. For ease of notation, we finally assume that the pipes are horizontal and that
the diameter D is constant along pipes. Moreover, we define q := Aρv as the mass flow,
where A = D2π/4 is the cross-sectional area of the pipe. Consequently, the Continuity
Equation (1a) and the Balance of Moments (1b) simplify to:

A∂tρ+ ∂xq = 0, (4)

∂xp = − λ

2D

|q|q
A2ρ

. (5)

In summary, the system (3)–(5) of nonlinear parabolic PDEs is a friction-dominated ap-
proximation of the isothermal Euler equations and the Equation of State (2); see (Dom-
schke, Hiller, et al., 2017) for additional details. In the following, we use system (3)–(5)
to represent gas physics.

2.3. Active elements. All active elements in our case are either valves or compressors
and can be switched on or off. They denote pipe segments a = (v1, v2) ∈ Aae of length
`a = 0, in which the pressures pa(v1), pa(v2) and mass flows qa(v1), qa(v2) at the pipe
ends v1 and v2 are related in a particular algebraic manner that can be switched between
different states. A closed valve or compressor on an arc a = (v1, v2) blocks gas from
passing, which can be expressed as qa(v2) = qa(v1) = 0. For open valves or compressors in
bypass mode, one has qa(v2) = qa(v1) and pa(v2) = pa(v1). For an operating compressor,
one may assume qa(v2) = qa(v1) and pa(v2) = pa(v1) +4p̂a, where 4p̂a is the pressure
increase produced by the compressor.
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The individual cases mentioned above can be formulated in a unified manner. For an
active element a = (v1, v2) ∈ Aae, the mass and momentum balance is described by

qa(v1)− qa(v2) = 0, (6)
ŝa (pa(v1)− pa(v2)) + (1− ŝa) qa(v1) = ŝa4p̂a, (7)

where ŝa ∈ {0, 1} and the pressure increment 4p̂a have to be prescribed. From now
on, we use hat symbols to indicate that the corresponding variable is considered as a
control or an input data for the gas transport model. Setting ŝa = 1 and choosing 4p̂a
appropriately amounts to an open valve or a compressor that is in operating or bypass
mode. Choosing ŝa = 0, on the other hand, describes a closed valve or compressor.

After having defined the models for gas transport in pipes and active elements, we
now turn to the mathematical models for pipe junctions and terminal vertices.

2.4. Coupling conditions. In order to satisfy the basic conservation principles for
mass and momentum also at the interior vertices v ∈ V0 of the network, we require that∑

a∈δout(v)

qa(v)−
∑

a∈δin(v)
qa(v) = q̂v, (8)

pa(v) = pv for all a ∈ A(v). (9)

Here, qa denotes the mass flow in the segment a and q̂v is a prescribed mass flow entering
or leaving the system at the vertex v. The variable pv denotes the value of the pressure
at the vertex v which will be automatically determined when solving the system.

At the boundary vertices v ∈ V∂ = Vp ∪ Vq, we describe either the pressure or mass
flow. This can be stated as∑

a∈δout(v)

qa(v)−
∑

a∈δin(v)
qa(v) = q̂v for all v ∈ Vq, (10)

p(v) = p̂v for all v ∈ Vp. (11)

Note that by definition of the boundary vertices, the two sums in (10) only involve one
summand. Moreover, the corresponding equations amount to exactly one of the coupling
conditions (8) or (9), while the other one is dropped. Again, the hat symbol denotes
prescribed data for the gas transport model.

2.5. Initial data. The differential-algebraic system (4)–(11) can formally be reduced to
a nonlinear degenerate parabolic system (J. Brouwer et al., 2011). In order to completely
describe the evolution of the gas network, one therefore has to additionally prescribe the
initial density distribution on all elements a ∈ A by

ρa|t=0 = ρ̂a,0. (12)

The model (4)–(12) is our complete mathematical model for gas transport on the network
and will be the starting point for all further considerations.
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3. Discretization

In this section, we will derive a discretization method for the gas transport model dis-
cussed in the previous section. We will start with introducing a new variable and a
reformulation of the governing equations, which is better suited for a systematic dis-
cretization. We then discuss the discretization in space by a finite volume approach on
staggered grids and an implicit Euler method. The resulting nonlinear algebraic problem
to be solved in each time step can be formulated as a convex minimization problem. This
allows to prove the existence and uniqueness of the discretized gas transport problem for
a rather general choice of the discrete and continuous controls that serve as input data.

3.1. Change of variables. The equations (3)–(5), which model the gas transport for
a single pipe a ∈ Api can be reformulated equivalently as

Aa∂tρa + ∂xqa = 0, (13)

∂xπa = − λa
Da

c2

A2
a

|qa|qa, (14)

πa = c4ρ2a. (15)

Note that, up to scaling, the new variable πa amounts to the square of the pressure pa.
Since we only have to consider the cases ŝa = 0 and ŝa = 1, the algebraic equa-

tions (6)–(7) modeling the gas transport through active elements a ∈ Aae, can be rewrit-
ten equivalently as

qa(v1) = qa(v2), (16)
ŝa (πa(v1)− πa(v2)) + (1− ŝa)qa(v1) = ŝa4π̂a, (17)

where 4π̂a is directly related to 4p̂a via (7).
In a similar manner, we rewrite the coupling conditions (8)–(9) at the interior vertices

v ∈ V0 as ∑
a∈δout(v)

qa(v)−
∑

a∈δin(v)
qa(v) = q̂v, (18)

πa(v) = πv for all a ∈ A(v). (19)

Again, the value πv of the squared pressure at the junction v is a variable of the system
that has to be determined during the solution process.

Using (3), the boundary conditions (10)–(11) may also be reformulated as∑
a∈δout(v)

qa(v)−
∑

a∈δin(v)
qa(v) = q̂v for all v ∈ Vq, (20)

ρv = ρ̂v for all v ∈ Vp, (21)

where ρ̂v can again be obtained from the prescribed pressure p̂v via (3). For ease of
notation, let us also recall the initial condition

ρa|t=0 = ρ̂a,0. (22)

The system (13)–(22) in the three variables ρ, q, and π will be the starting point for the
discretization approach outlined in the following.
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3.2. Local integral balances. Let us recall that `a, va, and Aa denote the length,
midpoint, and cross-sectional area of the arc a = (v1, v2), and that volv represents the
control volume around a vertex v with |volv| =

∑
a∈A(v)Aa `a/2 denoting the physical

volume; see again Figure 1 for an illustration.
By integration of Equation (13) over the control volume volv and use of the coupling

condition (18) at the vertex v, we obtain∫
volv

∂tρ dx+
∑

a∈δout(v)

qa(va)−
∑

a∈δin(v)
qa(va) = q̂v. (23)

Note that the cross-sectional area Aa from (13) appears implicitly in the definition of the
control volume volv. Equation (23) expresses the conservation of mass on the control vol-
ume volv and incorporates the differential equation (13) and the coupling condition (18).

Integration of the momentum equation (14) over a pipe a = (v1, v2) leads to

πa(v2)− πa(v1) = − λa
Da

c2

A2
a

∫
a
|qa|qa dx, (24)

which expresses the integral balance of pressure forces and friction over a pipe segment.
For an active element a = (v1, v2), we can directly use equation (17), which results in

ŝa (πa(v1)− πa(v2)) + (1− ŝa)qa(v1) = ŝa4π̂a. (25)

This equations resembles the balance of momentum for an active element a ∈ Aae.

3.3. Space discretization. We now replace ρ and q by their respective averages over
the control volume spaces volv and arcs a, which we again denote, by some abuse of
notation, by ρv and qa.

As approximation for for integral balance (23) for the conservation of mass over the
control volumes volv, we then obtain

|volv| ∂tρv +
∑

a∈δout(v)

qa −
∑

a∈δin(v)
qa = q̂v for all v ∈ V0 ∪ Vq. (26)

For the boundary vertices v ∈ Vp, where the pressure is prescribed, we instead require
that

ρv = p̂v/c
2. (27)

On every pipe a = (v1, v2) ∈ Api, the balance of momentum is approximately described
by

πv1 − πv2 = `a
λa
Da

c2

A2
a

|qa|qa, (28)

where the integral in (24) is replaced by `a|qa|qa, since qa was approximated by a constant
value. In case of active elements a = (v1, v2) ∈ Aae, we set `a = 0 for the calculation of
the volume |volv| assigned to the vertex v and replace (28) by

ŝa(πv1 − πv2) + (1− ŝa)qa = ŝa4π̂a.
To complete the system, we finally require that

πv = c4ρ2v for all v ∈ V. (29)
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Further, we prescribe the initial density distribution on every control volume volv by

ρv|t=0 = ρ̂v,0, (30)

where ρ̂v,0 may be defined as the average of the initial density distribution ρ̂a,0 in (22)
over the control volume volv. The system (26)–(30) is the numerical model for the gas
transport after semi-discretization in space. To obtain a computational model, we still
need to discretize in time.

3.4. Time discretization. For the discretization in time, we utilize the implicit Euler
method. Let τ > 0 be the time step and let tn = nτ with n = 0, . . . ,N denote the discrete
time points. For a function u of time, we denote by un the approximation for u(tn) and
we use the backward difference quotient ∂̄τun = (un − un−1)/τ to approximate the time
derivative term ∂tu(tn) appearing in equation (26). For ease of notation, let us further
define for all v ∈ V and all a ∈ A the parameters

αv :=
|volv|
τ

and βa :=
`aλac

2

DaA2
a

. (31)

We further assume that ŝa,n, ρ̂v,0, p̂v,n, q̂v,n, and 4π̂a,n are prescribed. The fully discrete
approximation for the gas transport problem (4)–(12) on the network is then given as
follows.

Problem 3.1 (Fully discrete problem). Set ρv,0 = ρ̂v,0 for v ∈ V. Then, for n = 1, . . . ,N ,
find solution vectors ρn = (ρv,n)v∈V , qn = (qa,n)a∈A, and πn = (πv,n)v∈V such that

αvρv,n +
∑

a∈δout(v)

qa,n −
∑

a∈δin(v)
qa,n = αvρv,n−1 + q̂v,n for all v ∈ V0 ∪ Vq, (32)

αvρv,n = αvp̂v,n/c
2 for all v ∈ Vp, (33)

πv1,n − πv2,n = βa|qa,n|qa,n for all a = (v1, v2) ∈ Api, (34)

ŝa,n(πv1,n − πv2,n) + (1− ŝa,n)qa,n = ŝa,n4π̂a,n for all a = (v1, v2) ∈ Aae, (35)

πv,n = c2ρ2v,n for all v ∈ V. (36)

Let us note that this problem is a simulation problem that does not involve integer
variables, since the controls ŝa,n and 4π̂a are assumed to be prescribed here. In the
further course of our first-discretize-then-optimize approach, we will deal with optimal
control problems where ŝa,n and 4π̂a are included as free variables in Section 4. It is not
difficult to see that the number of unknowns and equations match, so we can hope for a
unique solution once the input and control variables are set appropriately.

3.5. Well-posedness of the fully discrete scheme. Before we proceed to the optimal
control problems, let us briefly discuss the well-posedness of Problem 3.1. To do so, it
suffices to show that for any 1 ≤ n ≤ N and given density vector ρn−1 = (ρv,n−1)v∈V ,
the system (32)–(36) admits a unique solution (ρn, qn,πn). Recall that the three solution
components ρn = (ρv,n)v∈V , qn = (qa,n)a∈A, and πn = (πv,n)v∈V are vectors containing
the respective function values.



MAXIMIZING THE STORAGE CAPACITY OF GAS NETWORKS: A GLOBAL MINLP APPROACH 10

3.5.1. A related minimization problem. For investigation of the solvability of (32)–(36),
we consider the minimization problem

min
ρn,qn,πn

∑
v∈V

c4αv
3 |ρv,n|3 +

∑
a∈Api

(
βa
3 |qa,n|3 −4π̂a,nqa,n

)
+
∑
a∈Aae

(
1−ŝa,n

2 |qa,n|2 − ŝa,nqa,n4π̂a,n
) (37a)

s.t. αvρv,n +
∑

a∈δout(v)

qa,n −
∑

a∈δin(v)
qa,n = αvρv,n−1 + q̂v,n for all v ∈ V0 ∪ Vq,

(37b)

αvρv,n = αvp̂v,n/c
2 for all v ∈ Vp. (37c)

The Lagrangian for this constrained optimization problem reads

L(ρn, qn,πn) =
∑
v∈V

c4αv
3 |ρv,n|3 +

∑
a∈Api

(
βa
3 |qa,n|3 −4π̂a,nqa,n

)
+
∑
a∈Aae

(
1−ŝa,n

2 |qa,n|2 − ŝa,nqa,n4π̂a,n
)

−
∑

v∈V0∪Vq
πv,n

[
αvρv,n +

∑
a∈δout(v)

qa,n −
∑

a∈δin(v)
qa,n − αvρv,n−1 − q̂v,n

]
−
∑
v∈Vp

πv,nαv[ρv,n − p̂v,n/c2].

The optimality conditions for the constrained optimization problem are thus given by

0
!

= ∂ρv,nL(ρn, qn,πn) = c4αv|ρv,n|ρv,n − αvπv,n for all v ∈ V,

0
!

= ∂qa,nL(ρn, qn,πn) = βa|qa,n|qa,n + πv2,n − πv1,n for all a = (v1, v2) ∈ Api,

0
!

= ∂qa,nL(ρn, qn,πn) = (1− ŝa,n)qa,n − ŝa,n4π̂a,n + πv2,n − πv1,n for all a = (v1, v2) ∈ Aae,

0
!

= ∂πv,nL(ρn, qn,πn) = αvρv,n +
∑

a∈δout(v)

qa,n −
∑

a∈δin(v)
qa,n

− αvρv,n−1 − q̂v,n for all v ∈ V0 ∪ Vq,
(38)

0
!

= ∂πv,nL(ρn, qn,πn) = −av[ρv,n − p̂v,n/c2] for all v ∈ Vp.
It is easy to see that these equations are equivalent to the system (32)–(36), provided
that ρv ≥ 0 for all v ∈ V. Also note that the role of the square pressure πv,n is simply
that of the Lagrange multiplier of the corresponding constraints (37b) and (37c).

Under some reasonable conditions on the properties of the network, we can now guar-
antee the existence of a unique solution of the minimization problem (37) for time step
n ∈ [N ] := {1, . . . ,N}.
Theorem 3.2. Let c > 0, αv > 0 for all v ∈ V, βa > 0 for all a ∈ Api. Furthermore,
let ρv,n−1 and ŝa,n ∈ [0, 1] be given for all v ∈ V and a ∈ Aae. Then, the problem (37)
admits a unique solution.
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Proof. Let us first assume that ŝa,n ∈ [0, 1) for all a ∈ Aae. Then the first term
of the objective function of the above optimization problem (37) is strictly convex in
ρ = (ρv)v∈V . The sum of the second and third term is strictly convex in (qa)a∈A. The
constraints (37b)–(37c), on the other hand, are linear and feasible, since ρv ≥ 0 for all
v ∈ V. This already implies the existence of a unique minimizer in the case ŝa,n ∈ [0, 1)
for all a ∈ Aae.

Now assume that ŝa,n = 1 for one arc a ∈ Aae. Then from the assumption that
|volv| > 0, we deduce that one of the vertices v of the active element is connected to
a pipe a′ ∈ Api. This allows us to formally eliminate the corresponding flow qa via
the linear equation (37b) for v in a pre-processing step, which also makes the Lagrange
multiplier πv superfluous; compare with Equation (38). We are then back in the situation
that ŝa,n < 1 for all (remaining) a ∈ Aae \ {a}. The case that ŝa,n = 1 for several arcs
a ∈ Aae can be treated by recursion of the argument. �

3.5.2. Well-posedness of Problem 3.1. As mentioned above, as long as ρv,n ≥ 0 for all
v ∈ V, the unique solution of the minimization problem (37), which always exists, cor-
responds to the unique solution of problem (32)–(36). If this is not the case, then
problem (32)–(36) does not have a solution. By recursion over n, one can obtain a
corresponding statement for the unique solvability of Problem 3.1.

4. The MINLP model

Endowed with the discretization from Section 3, we continue in this section with our
first-discretize-then-optimize approach and show how to model the problem of maximiz-
ing the storage capacity of gas networks as an MINLP. To obtain a more intuitional
modeling, we use a time-expanded graph that can be used equivalently to the fully dis-
cretized problem 3.1. Moreover, we incorporate active elements a ∈ Aae = Avl ∪ Acm,
where Avl corresponds to the set of all valves and Acm to the set of all compressors,
into our model. As mentioned in Subsection 3.4, the control variables ŝa,n and 4π̂a are
now free and to optimize. We will then consider the solution of this MINLP to global
optimality in the succeeding section.

4.1. Pipes. The discretization from Section 3 is a time-expansion technique in which
time-dependent properties change only at discrete times. It can therefore be modeled by
a time-expanded graph. For this purpose, we copy the gas network for each time point
and introduce for each vertex v ∈ V an arc (vn, vn+1) connecting the copy vn of the
vertex v in time step n with the one in time step n+ 1. See Figure 2 for an illustration.

For each vertex v ∈ V and time step n we assume lower and upper bounds p−v,n and p+v,n
for the pressure variable pv,n and lower and upper bounds q−a,n and q+a,n for the flow
variable qa,n for each arc a ∈ A and time step n. With the variable q(vn,vn+1) := αvρv,n
and using (32), we now obtain

q(vn,vn+1) +
∑

a∈δout(v)

qa,n −
∑

a∈δin(v)
qa,n = q(vn−1,vn) + q̂v,n for all v ∈ V,n ∈ [N ], (39)
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N11 N21 N31 N41

N12 N22 N32 N42

N1N N2N N3N N4N

q(N11,N12) q(N21,N22) q(N31,N32) q(N41,N42)

q(N1N ,N1N+1) q(N2N ,N2N+1) q(N3N ,N3N+1) q(N4N ,N4N+1)

n = 1:

n = 2:

n = N :

Figure 2. A time-expanded graph of a gas network consisting of 4 vertices N1–N4 and 3 pipes. Each
copy of a vertex is linked to the previous and subsequent copies by corresponding arcs (dark gray).

for the flow conservation, where again [N ] = {1, . . . ,N}. Since πv,n = p2v,n, we can
incorporate the pressure loss equation (34) for each pipe a ∈ Api as

p2v1(a),n − p
2
v2(a),n

= βa |qa,n| qa,n for all n ∈ [N ] (40)

into our model. Additionally, we have the following equations coupling (39) and (40):

q(vn,vn+1) = αv pv,n/c
2 for all v ∈ V,n ∈ [N ]. (41)

We point out that the bounds for q(vn,vn+1) are determined by the bounds for pv,n due
to (41). It is also worth noting that this time-expanded graph can be considered as an
extension of a stationary pipe model, e. g. , as specified by Fügenschuh et al., 2015, to a
transient pipe model.

4.2. Valves. A valve corresponding to arc a = (v1, v2) ∈ Avl is modeled using binary
variables sa,n ∈ {0, 1} for each time step n, whereby sa,n is equal to one, if and only
if the valve is open in time step n and equal to zero for a closed valve. A closed valve
blocks gas from passing, which leads to decoupled pressures at vertices v1 and v2. For
open valves, we have pv1,n = pv2,n and thus no pressure loss. This is described by

q−a,nsa,n ≤ qa,n ≤ q+a,nsa,n, (42a)

(p+v2,n − p−v1,n)sa,n + pv2,n − pv1,n ≤ p+v2,n − p−v1,n, (42b)

(p+v1,n − p−v2,n)sa,n + pv1,n − pv2,n ≤ p+v1,n − p−v2,n. (42c)
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4.3. Compressors. Like a valve, a compressor corresponding to arc a = (v1, v2) ∈ Acm
is modeled via binary variables sa,n ∈ {0, 1} for each time step n, whereby sa,n is equal
to one, if and only if the compressor is operating, i. e. , increasing the pressure pv1,n, in
time step n. In the following, we restrict ourselves to a simplified compressor model,
where an operating compressor may increase the pressure pv1,n such that

1 < r−a ≤
pv2,n
pv1,n

≤ r+a (43)

holds for given lower and upper bounds r−a and r+a of the compression ratio. Note that
the flow is only allowed in arc direction (from v1 to v2) for an operating compressor
with 0 ≤ (qop

a,n)− ≤ (qop
a,n)+ as the corresponding bounds. Otherwise, if sa,n is equal to

zero, the compressor is in bypass mode, i. e. , we have pv1,n = pv2,n while flow in both
directions is allowed with the bounds (qby

a,n)− ≤ (qby
a,n)+. Similar to the paper by Geißler

et al., 2015a, we can model this by

(qby
a,n)−(1− sa,n) + (qop

a,n)− sa,n ≤ qa,n, (44a)

(qby
a,n)+(1− sa,n) + (qop

a,n)+ sa,n ≥ qa,n, (44b)

4−a sa,n + (p−v2,n − p+v1,n)(1− sa,n) ≤ pv2,n − pv1,n, (44c)

4+
a sa,n + (p+v2,n − p−v1,n)(1− sa,n) ≥ pv2,n − pv1,n, (44d)

r−a pv1,n − (r−a p
+
v1,n − p−v2,n)(1− sa,n) ≤ pv2,n, (44e)

r+a pv1,n − (r+a p
−
v1,n − p+v2,n)(1− sa,n) ≥ pv2,n, (44f)

where4−a and4+
a are the bounds for the pressure increase. We point out that, unlike the

modeling in Section 2, we limit ourselves to compressors that are only in either operating
or bypass mode. The possibility to close a compressor can be modeled with an inlet or
outlet valve.

4.4. Switching restrictions. Finally, we add constraints to limit switching operations
of active elements to predetermined time intervals. These constraints imply that if the
status of an active element is changed, then it must stay in this status for a specific time.
This is motivated by the practice where the time between changing the settings of the
active elements is usually long. In case of a valve, we require that a valve stays closed
for Svl seconds if the status is changed from open to closed, and vice versa. We model
this for all a ∈ Avl by

n+Mn−1∑
i=n

sa,i ≥Mn(sa,n − sa,n−1) for all n ∈ [N ], (45a)

n+Mn−1∑
i=n

sa,i ≤Mn +Mn(sa,n − sa,n−1) for all n ∈ [N ], (45b)

where Mn = min{dSvl/τe, N − n + 1} considering that the size of a time step τ is
given in seconds. In case of a compressor, we require that a compressor stays in bypass
mode for Scm seconds if the status changes from operating to bypass, and vice versa.
Analogously to a valve, we add (45a) and (45b) with Mn = min{dScm/τe, N − n + 1}
for all a ∈ Acm to the model.



MAXIMIZING THE STORAGE CAPACITY OF GAS NETWORKS: A GLOBAL MINLP APPROACH 14

4.5. Objective function. We now describe the objective of maximizing the storage
capacity of a gas network more formally. To this end, we consider the following situation:
Let a nomination q̂nom ∈ RN |V∂ | be given, i. e. , supply and demand for each time step n
and each terminal vertex v ∈ V∂ . We assume that this base load scenario is feasible for
the stationary case, i. e. , there exists an admissible configuration of the active elements
satisfying all physical and technical constraints in the stationary case; see again (Koch et
al., 2015) for more details on this topic. We further assume that such a feasible solution
is available.

Moreover, there are time windows 1 ≤ k− ≤ k ≤ k+ ≤ N and 1 ≤ l− ≤ l ≤ l+ ≤ N
in which, additionally to the nomination, a positive amount of gas qextra ∈ RN |Vst| can
be injected at selected entries Vs and withdrawn at selected exits Vt, respectively. Lower
and upper bounds (qextrav,n )− and (qextrav,n )+ for each vertex v ∈ Vst and time step n are
also given. We balance qextra by∑

v∈Vs,n∈[N ]

qextrav,n −
∑

v∈Vt,n∈[N ]

qextrav,n = 0. (46)

Our goal is to maximize this additional amount of gas that can be stored in the network.
This optimization problem can have different globally optimal solutions. We therefore

take a simplified version of the minimization of the compressor energy into account,
however, with such low costs that it is almost negligible. This gives us optimal solutions
that tend to switch on compressors only when necessary. A possible simple formulation
of the compressor energy minimization is

min
∑
a∈Acm

γ1

∫
pv2(a)(t)− pv1(a)(t) dt+ γ2 |∂t(pv2(a)(t)− pv1(a)(t))|, (47)

where γ1, γ2 > 0 can be considered as costs and are small in our case. With the pressure
increase 4pa,n := pv2(a),n−pv1(a),n for all compressors a = (v1, v2) ∈ Acm and the change
of the pressure increase over time |4pa,n−4pa,n−1|, the formulation (47) corresponds to

min
∑

a∈Acm,
n∈[N ]

γ14pa,n + γ2 |4pa,n −4pa,n−1| (48)

in our MINLP setting. We note that the absolute values in (48) can be eliminated by
applying common LP techniques.
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Incorporating (48) into the objective function, we are now able to provide the complete
problem of maximizing the storage capacity of a gas network as:

max
∑
v∈Vs,
n∈[N ]

qextrav,n −
∑

a∈Acm,
n∈[N ]

γ14pa,n + γ2 |4pa,n −4pa,n−1| (49a)

s.t. pipe model constraints (39)–(41), (49b)
active elements constraints (42) and (44), (49c)
switching conditions (45), (49d)
flow balance constraint (46), (49e)

p−v,n ≤ pv,n ≤ p+v,n for all v ∈ V , n ∈ [N ], (49f)

q−a,n ≤ qa,n ≤ q+a,n for all a ∈ A, n ∈ [N ], (49g)

(qextrav,n )− ≤ qextrav,n ≤ (qextrav,n )+ for all v ∈ Vst, n ∈ [N ], (49h)
sa,n ∈ {0, 1} for all a ∈ Aae, n ∈ [N ]. (49i)

The nonlinear parts of the MINLP model (49) are given by the pressure loss equa-
tions (40) for all n ∈ [N ]. Due to these equations this MINLP problem is non-convex.
For each n ∈ [N ], the control variables are the binary variables sa,n for all a ∈ Acm ∪Avl
and the pressure increase 4pa,n := pv2(a),n − pv1(a),n for all a ∈ Acm.

5. Computational results

We now illustrate the applicability of our approach to storage capacity maximization
problems by presenting two case studies based on the GasLib-11 (see Figure 3) network;
see (Schmidt et al., 2017).

S1

S3

S2

T1

T3

T2

N1

N3

N4 N5

N2

Cm1 Vl1
Cm2

Figure 3. The GasLib-11 network.

The GasLib-11 network depicted in Figure 3 consists of three entries S1–S3, five interior
vertices N1–N5, and three exits T1–T3. Two compressors Cm1 and Cm2 are installed
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between S3 and N1, and N4 and N5, respectively. We have lower and upper bounds
r−a = 1.0895 and r+a = 1.6009 for the compression ratio of both compressors. All eight
pipes have a length `a of 55 km, a diameter Da of 0.5 m, and a roughness of 0.1 mm
resulting in a friction factor λa = 0.0137. The two vertices T1 and T2 have a lower
pressure bound of 40 bar and an upper pressure bound of 60 bar. All other vertices have
lower and upper pressure bounds of 40 bar and 70 bar. In addition, a valve Vl1 between N1
and N3 is included.

5.1. Solving MINLPs by MIP relaxations. As previously shown, we can model
the problem of maximizing the storage capacity of gas networks as an MINLP using (49).
There is a wide variety of algorithms to solve MINLPs, for an overview see, e. g. , the
works of J. Lee and Leyffer, 2012; Belotti et al., 2013.

In this paper, we consider the method proposed by Burlacu et al., 2017; Geißler et
al., 2012; Geißler, 2011, where MINLPs are solved to global optimality by solving a
series of mixed-integer linear programs (MIPs). The main idea is to use piecewise linear
functions to construct MIP relaxations of the underlying MINLP. In order to find a
global optimum, an iterative algorithm is developed that solves MIP relaxations, which
are refined adaptively. Additionally, whenever a feasible solution of an MIP relaxation
is found, all discrete variables of the MINLP are fixed according to the corresponding
solution of the MIP relaxation. Solving the resulting NLP to local optimality often
delivers feasible solutions for the MINLP.

The motivation for using this method is as follows. As mentioned in Section 4, we
can treat the instationary pipe model derived in the first sections as an extension of a
stationary pipe model by a time-expanded graph. Burlacu et al., 2017 present promising
numerical results for stationary gas transport optimization, where the MIP relaxation
approach outperforms state-of-the-art black box MINLP solvers like Baron (Tawarmalani
and Sahinidis, 2005) and SCIP (Gamrath et al., 2016).

We give some insight into the chosen parameters and refer to the references already
mentioned for further details on the algorithm. We use 50 bar as error bound for the
pressure loss equation (41) in the initial MIP relaxation. Moreover, only those relaxations
of the pressure loss equations (41) are chosen for refinement that have a relaxation error
larger than 0.85η, where η is the maximum of all relaxation errors.

We highlight two algorithmic extensions to the MIP-based solution method. First,
whenever a feasible solution of the MINLP is obtained, we can obviously transform it
into a feasible starting solution of the MIP relaxation. This can sometimes reduce the
runtime needed to solve the MIP. Furthermore, any objective value of a solution of
an MIP relaxation provides a dual bound for the MINLP problem. At the same time,
the dual bounds that we obtain while solving an MIP relaxation are also dual bounds
for the MINLP. We exploit this by solving a very fine MIP relaxation. Although the
MIP solver is unlikely to solve the fine MIP relaxation within reasonable time limits, if
a tighter dual bound is found, we can use it as dual bound for the MINLP.

All computations are carried out utilizing this MIP-based approach within the C++
software framework LaMaTTO++, 2015, on a cluster using 12 cores of a machine with
two Xeon 5650 Westmere chips running at 2.66 GHz with 24 GB of RAM. Furthermore, we
use Gurobi (version 6.0.4 (Gu et al., 2015)) as MIP solver and CONOPT3, provided by
GAMS (version 24.8.3 (GAMS, 2017)), as the local NLP solver both within LaMaTTO++.
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Figure 4. Pressure values (y-axis) for a fine (above) and coarse (below) discretization in three consecutive
pipes of the GasLib-11 network over their accumulated length (x-axis) for different time points.

5.2. Pressure and flow waves within pipes. As as first case study, we investigate the
propagation of pressure and flow waves within pipes. For this purpose, we consider three
consecutive pipes from the GasLib-11 network, e. g. , S2–N3–N4–N2, resulting in a total
length of 165 km. Initially, we assume a stationary state, where 150 m3 h−1 are injected
in S2 and discharged at N2. We immediately increase the supply at S2 to 450 m3 h−1 and
inject this amount up to minute 60. From minute 60 on, 150 m3 h−1 are injected again.
We choose a time discretization of 5 s and a spatial discretization of 500 m.

The figures 4a and 5a show that our time-expanded graph model is capable of detecting
parabolic pressure and flow waves and their propagation within pipes. Furthermore, we
notice that although our model is not designed to accurately represent rapid flow changes
in time, they are quickly smoothed. This behavior is typical for parabolic equations.

We now give some insight into the discretization of Section 5.3. Therein, we consider a
time discretization of 10 min and a two point space discretization of 55 km for the pipes.
This coarse discretization is due to the fact that non-convex MINLPs as in (49) are hard
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Figure 5. Flow values (y-axis) for a fine (above) and coarse (below) discretization in three consecutive
pipes of the GasLib-11 network over their accumulated length (x-axis) for different time points.

to solve in general. Hence, we are forced to use a coarse discretization in order to keep
the MINLP computationally tractable.

We run the same simulation as before, albeit with the coarse discretization. Analo-
gously, we depict the result for the coarse discretization at different time points in the
figures 4b and 5b. Comparing both discretizations, we can observe that the characteris-
tic behavior of the fine discretization is maintained by the coarser one. In addition, the
difference between the two discretizations vanishes with large time horizons. With the
goal of global optimization, we are therefore confident to use the coarse discretization on
time horizons of several hours.

5.3. Storage capacity maximization. As a second case study, we solve the storage
capacity maximization problem (49) using the GasLib-11 network shown in Figure 3. We
choose the parameters γ1 = 0.0015, γ2 = 0.02, Scm = 7200, and Svl = 3600, which are
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introduced in Section 4. For the prescribed nomination q̂nom ∈ RN |V∂ |, we use the values
that are given in Table 1 for all time steps.

Table 1. The prescribed nomination q̂nom (given in m3 h−1) for one time step and all entries and exits
of the GasLib-11 network.

S1 S2 S3 T1 T2 T3

140.00 160.00 0.00 90.00 150.00 60.00

Both compressors Cm1 and Cm2 run in bypass mode at the beginning while the valve Vl1
is closed, which results in a tree structured network. Thus, we can compute an initial
stationary solution by fixing the pressure for S1 to 58 bar and propagation of the flow
throughout the network. The resulting initial pressure values for all eleven vertices are
given in Table 2.

Table 2. Initial pressure values (given in bar) for all eleven vertices of the GasLib-11 network as in Figure 3.

S1 S2 S3 N1 N2 N3 N4 N5 T1 T2 T3

58.00 59.94 53.77 53.77 49.18 54.55 48.56 48.56 47.15 42.60 47.66
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Figure 6. Given volumetric flow rate profiles for the additional amount of gas that can be injected at S3
(left) and must be discharged accordingly at T3 (right). Based on qextra in (49), the dashed lines indicate
the additional amount of gas that can be injected at S3 (green lines) and must be discharged accordingly
at T3 (red lines) with corresponding upper and lower bounds.

We now consider a time horizon of 8 h, with a time discretization of 10 min leading
to a total amount of 48 time steps and a two point space discretization for the pipes.
From minute 20 on, a positive amount of gas can be injected for two hours, in addition
to the nomination, at S3. We allow a maximal additional amount that corresponds
to 500 m3 h−1. Moreover, we stipulate a linear increase (and decrease) in the additionally
injectable gas amount up to (and from) the maximum within 20 min. From the fourth
hour, the same additional amount of gas must be discharged at T3 within two hours,
whereby the same conditions apply as in the case of the additional supply. See Figure 6
for an illustration.
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Figure 7. Profile for the pressure increase of compressor Cm1 (left) and compressor Cm2 (right) corre-
sponding to the best solution for the storage capacity maximization problem (49) found after a total
runtime of 4 h.
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Figure 8. Profiles for the pressures of all eleven vertices of the GasLib-11 network in Figure 3. The values
correspond to the best solution for the storage capacity maximization problem (49) found after a total
runtime of 4 h.
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Figure 9. Volumetric flow rate profile for the valve Vl1 showing the amount of gas passing through
the valve in case that it is open. The values correspond to the best solution for the storage capacity
maximization problem (49) found after a total runtime of 4 h.
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Figure 10. Volumetric flow rate profiles for the entry S1 (left) and the exit T2 (right) showing the
additional amount of gas qextra (orange) that is injected (S1) and discharged (T3). The values correspond
to the best solution for the storage capacity maximization problem (49) found after a total runtime of 4 h.

After a total runtime limit of 4 h, the MIP-based approach delivers a feasible solution
for the storage capacity maximization problem (49) that is globally optimal within a
relative gap of almost 5 %. The corresponding profiles of the solution are shown in
Figure 7 for the compressors Cm1 and Cm2, in Figure 8 for the pressures of all eleven
vertices, in Figure 9 for the valve Vl1, and in Figure 10 for the additional amount of
gas qextra.

The compressor Cm1 is immediately switched on and operates throughout the whole
time horizon. From minute 50 onwards, almost as much additional Gas qextra is injected
at S3 as possible. As a consequence, all pressure values rise with a higher amount of gas
until no additional gas is injected in S3 anymore. Moreover, the valve Vl1 is opened, with
approximately half of qextra passing through it. About an hour before the additionally
injected amount of gas is discharged at T3, the Compressor Cm2 is also switched on. At
the same time, a small amount of gas passes through the valve again before it is closed.
Due to the coincident compression of both compressors, the pressure at T3 remains within
the pressure bounds while discharging the additional amount of gas.

Returning to the objective of maximizing the storage capacity, around 74.17 % of the
possible additional amount of gas in qextra is attainable according to our solution; see
Figure 10. Due to the chosen parameters γ1 and γ2, the cost of compression is almost
negligible in our MINLP problem. Furthermore, our solution is globally optimal within a
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gap of less than 6 %. Hence, we conclude that taking into account the model from above,
no more than approximately 78.62 % of the possible additional amount of gas in qextra
can be injected at S3.

Table 3. Iteration log of LaMaTTO++ for the storage capacity maximization problem (49) using the gas
network in Figure 3 with a total runtime limit of 4 h.

iteration dual primal gap elapsed time

1 498.342 449.080 10.97 % 9.64
6 498.342 460.562 8.20 % 38.36

201 497.297 460.562 7.98 % 1726.50
218 494.919 460.562 7.46 % 1949.03
236 491.733 460.562 6.77 % 2216.00
237 490.160 460.562 6.43 % 5517.05
238 490.160 464.529 5.52 % 10 656.86
239 490.160 464.529 5.52 % 14 103.06

Finally, we show an iteration log of LaMaTTO++ for the storage capacity maximization
problem (49) in Table 3. After a total runtime of less than 3 h, LaMaTTO++ is able to
find a solution that is feasible for the storage capacity maximization problem (49) and
globally optimal within a relative gap of almost 5 %.

As mentioned before, the MIP relaxation approach we utilize to solve our MINLP,
adaptively refines MIP relaxations of the MINLP. The first column in Table 3 indicates
the corresponding MIP relaxation. The best dual bound d of the MINLP and the
objective value z of the incumbent (feasible) solution are given in column two and three,
respectively. The next column contains the relative gap |(z − d)/z|, which is given in
percent. The last column presents the runtime in seconds that LaMaTTO++ spent until
the current iteration. We see that even with shorter runtime, LaMaTTO++ is able to find
solutions with small relative gaps.

For the sake of comparison, the state-of-the-art MINLP solvers Baron and SCIP have
the same MINLP solved on the same cluster using 12 cores and a runtime limit of 4 h.
After the time limit has been reached, the best feasible solution Baron finds has an
objective value of 332.991, while the best dual bound is 630.965. This translates into a
relative gap of about 89 %. The best feasible solution SCIP finds has an objective value
of 296.724, where the best dual bound is 622.838. This corresponds to a relative gap of
about 109 %. The extended MIP-based approach of Burlacu et al., 2017; Geißler et al.,
2012; Geißler, 2011 thus delivers significantly better results in this case.

In conclusion, we see that our time-expanded graph method can be successfully applied
in the context of the storage capacity maximization of gas networks. In addition, the
approach delivers solutions within reasonable runtime that are both physically plausible
and near-global optimal.

6. Conclusion

In this paper, we presented a first-discretize-then-optimize approach for the maximization
of the storage capacity of gas networks that are described by a coupled system of parabolic
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PDEs and include active elements like valves and compressors. The main focus of our
work is on global optimal solutions, including discrete decisions that result from switching
active elements. To this end, we proposed a new discretization of the system of parabolic
PDEs and proved well-posedness for the resulting nonlinear discretized system. Endowed
with this discretization, we used a time-expanded graph method to model the problem
of maximizing the storage capacity as a non-convex MINLP.

Moreover, we algorithmically extended the MINLP solver proposed by Burlacu et
al., 2017; Geißler et al., 2012; Geißler, 2011, which has so far been used successfully
for stationary gas transport optimization. We utilized this augmented MINLP solver
to illustrate the applicability of our approach in a case study yielding both physically
plausible and near-global optimal solutions. In addition, our method was able to find
high-quality solutions even at short runtime. We therefore believe that our time-expanded
graph approach is also suitable for the global optimization of other difficult problems
in the field of transient gas transport optimization, which involve discrete decisions.
Examples include problems with more realistic compressor models or large-scale time
horizons of several days, which is part of our future work.
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