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Summary of Thesis 

Recent events of natural gas supply disruption in Europe have led to severe 

consequences of supply shortages to some European Member States. As the United 

Kingdom increasingly depend on imported gas supply from different sources including 

Continental Europe, the effect of gas supply disruption in Europe on UK’s gas 

consumers is in question.   This thesis investigated the effect of gas supply disruptions 

in Europe on the operation of the Great Britain’s gas and electricity network using a 

set of modelling tools.  

 

 An optimisation model of the European gas network was developed to assess the 

resilience of the European gas network to the loss of gas supply through the Ukraine 

transit pipelines to Europe.  The results showed that unserved gas demand occurred in 

South East Europe. It was shown that additional interconnector capacities of selected 

pipelines and higher storage withdrawal rate in South East Europe minimised unserved 

gas demand in South East Europe. 

 

A soft-link coupling of the European Gas Network model (EGN) and the Combined 

Gas and Electricity Network model (CGEN) was developed and used to examine the 

effect of a 90-day loss of Ukraine transit capacity in Europe on the operation of GB 

gas and electricity network at a period of limited LNG supply to Europe. The result 

showed that in a high gas demand situation, industrial customers would experience 

some amount of unserved gas demand. 

 

The effectiveness of the mitigation options to prevent or mitigate unserved gas in GB 

was analysed using the EGN-CGEN model. Then a cost-benefit assessment tool was 

used to rank the mitigation options according to the net benefit of reducing the cost of 

unserved gas demand in GB. It was shown that diversification of gas supply sources 

and routes in Europe would deliver significant security of supply benefit to GB gas 

and electricity network. 
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Chapter 1  

1.Introduction 

1.1 Global Natural Gas Outlook 

According to the world energy outlook, natural gas demand is projected to increase 

from 3.3 tcm in 2010 to 4.9 tcm in 2035 [1]. The strongest demand growth is expected 

to come from Asia where it is mainly driven by gas consumption in the industrial and 

electricity sectors [2].   Global gas supply is projected to increase at an average yearly 

rate of 1.75 % between 2012 and 2035 [3]. Significant contributors to the growth in 

gas production will be the North America, Eurasia and Middle East. Collectively, they 

will account for 61% of global gas production by 2035 [1]. In the European Union, 

natural gas production is projected to decline significantly by 43% in 2035 from 

current levels [4].  

Substantial growth in unconventional gas (shale gas and coal bed methane) production 

is expected to contribute significantly to future gas supply. Unconventional gas is 

natural gas sourced from different geological formations by means of horizontal 

drilling and fracturing. The United States is the largest producer of shale gas which 

accounted for 43% of total natural production in 2013[5]. Gas production in the United 

States (US) is projected to increase from 689 bcm in 2013 to 800 bcm in 2035 driven 

by significant development in shale gas production [1].   

 

Global gas demand and supply balance is achieved by means of inter–regional gas 

trade through pipeline supplies and Liquefied Natural Gas (LNG) shipment. Pipeline 

transport accounts for 68% of global natural gas supplies [1]. Significant developments 

in the LNG supply chain is expected to take place in the period towards 2030 and LNG 

supplies are projected to increase by 62% in 2035 from 304 bcm in 2013[1]. 
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1.2 Natural Gas Development in Europe  

Natural gas is an important component of the European energy mix and accounted for 

about 22% of primary energy consumption in 2015 [6]. Natural gas is expected to play 

a significant role in achieving the climate and energy targets of the European Union 

(EU).  In comparison to oil and coal, natural gas emits less carbon dioxide during 

combustion and offers significant potential to reduce CO2 emissions in the power 

generation  

 

Access to secure, adequate and affordable gas supplies within Europe is an important 

goal of the EU [7]. At present, the level of access to secure gas supplies varies 

significantly across member states. Gas systems predominately in North-West Europe 

can receive natural gas from multiple supply sources, while gas systems in the Baltic 

region rely on a single source of supply [8]. Planned investment in cross-border gas 

infrastructure between member states is expected to increase the number of alternative 

gas supply routes across Europe in order to improve security of gas supply. 

 

In order to facilitate the operation and delivery of this interconnected European gas 

system, a Ten Year Network Development Plan (TYNDP) is published every two 

years by the European Network Transmission System Operators for Gas (ENSTOG) 

[9]. The TYNP provides an assessment of the European gas transmission network 

development and future scenarios of gas demand and supply to Europe. 

 

1.2.1 Evolution of European Natural Gas Demand  

Several scenarios have been developed to estimate the future projections of natural gas 

demand in Europe [10], [11]. Figure 1.1 depicts two different demand scenarios across   

EU gas consumption sectors: power generation, residential and commercial, industry, 

transport and others.  

 

 In the EU Energy Trends Scenario, the overall demand decreases by 24% in 2030 

relative to 2010.  This scenario assumes that long-term energy targets on energy 

efficiency, deployment of renewable energy technologies and other low carbon 

technologies are achieved in a timely manner. The Eurogas Scenario shows a demand 
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increase of 8.7% by 2030 over the same period. This scenario assumes that current 

national energy policies are maintained with limited future investment in the gas 

sectors. 

 

Figure 1.1. Comparison of European Union gas demand projections 

In both scenarios, gas demand for power generation steadily increases towards 2030. 

Gas-fired generators are expected to displace coal and oil generators from the EU 

electricity generation mix. In contrast, gas demand in the residential and commercial 

sector decreases considerably by 2030 in both scenarios. Natural gas is used for space 

heating and hot water in the domestic & commercial sector. The demand profile has a 

seasonal pattern of peak demand in winter months and low demand in summer months 

[12]. The demand reduction in this sector is driven by energy efficiency improvement 

in buildings and the deployment of renewable heat technologies such as heat pumps 

[10], [13]. 

 

The future outlook of gas demand in Europe will be influenced by other factors 

including benchmark carbon-price, cost of competing fuels, the deployment of carbon 

capture and storage at commercial scale (CCS), economic growth, environmental 

legislation and national energy policies of member states [14],[15]. 
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1.2.2 European Gas Supply Outlook 

European Union gas supply comes from indigenous production, LNG and pipeline 

imports from Russia, Norway, Algeria and Libya. Historically, indigenous production, 

especially from the Netherlands and the United Kingdom, was the main source of gas 

supply in the EU [16]. As indigenous gas production declines, increasing reliance on 

imported gas supply is anticipated to meet future gas demand [17]. EU gas imports are 

projected to reach 85% of total supply by 2035 [1]. 

 

Table 1.1 Maximum gas supply scenarios to the European Union (bcm) [18] 
 

 2015 2020 2025 2030 2035 

Russia 174 194 198 201 212 

Norway 124 127 106 82 82 

Algeria 42 45 51 55 59 

Libya 11 11 11 11 11 

Azerbaijan 0 4 11 16 16 

Turkmenistan 0 33 26 28 37 

LNG 134 165 191 217 242 

 

Table 1.1 present the maximum gas supplies available to the EU from several sources.   

Russian gas supply to Europe increases by 22% (38 bcm) between 2015 and 2035. On 

the other hand, natural gas supply from Norway to Europe peaks at 127 bcm by 2020 

and then declines to 82 bcm by 2035. Potential gas supplies from Turkmenistan (in the 

Caspian region) to the EU is estimated to increase substantially to 36.6 bcm in 2035 

from current levels (Table 1.1). Presently, there is no gas pipeline connecting Europe 

to gas reserves in Turkmenistan. However, some pipeline projects are under 

consideration to address this limitation [9].   

 

LNG supplies to EU member states is sourced from several producing countries 

including Qatar, Algeria and Nigeria. Qatar is the highest LNG exporter to Europe 

with 47% share of LNG import in 2014[19]. The EU closely follows Asia as the second 

largest LNG supply destination in the global LNG market. Table 1.1 shows that LNG 
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import is projected to increase rapidly from 133.9 bcm in 2015 to 242.4 bcm in 2035 

exceeding Russian gas supply by 2030. 

1.3 Natural Gas Supply System  

Natural gas supply system involves the transportation of natural gas from production 

wells to the different end users. In Europe, the natural gas supply system consists of a 

complex pipeline network, liquefied natural gas terminal gas (LNG) terminals and gas 

storage facilities. 

 

1.3.1 Transmission Network 

Natural gas is transported from production fields through a network of transmission 

pipelines directly to distribution networks, large power stations and large industrial 

consumers. Domestic and commercial consumers are supplied through the low 

pressure distribution network. The gas transmission networks are characterised by high 

pressure (in excess of 40 bar) and long distance pipelines.  

 

In Europe, the Transmission System Operators (TSO) own and operate the 

transmission network. The TSO is responsible for balancing demand and supply, 

ensuring the reliable and safe operation of the network within the specified pressure 

limits [20].  The European gas transmission network comprises the natural gas 

transmission infrastructure of individual countries integrated as a single entity for 

delivery and transport of natural gas supplies across Europe. 

 

Compressor stations are installed along the long distance high pressure pipelines to 

maintain gas pressure in the network within acceptable limits. Compressor stations 

consist of a single or multiple compressor units driven by a gas turbine or an electric 

motor.  

 

In recent times, electricity driven compressor are preferred over gas turbine drivers as 

they offer lower maintenance, lower noise levels and no greenhouse gas emissions 

[21]. In Europe, 7000 MW compression capacity has been planned alongside pipeline 

projects to improve network capacity and security of supply [22].  
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1.3.2 Gas Storage  

Natural gas storage provides an important source of supply flexibility. Storage 

facilities function as a buffer capacity during periods of peak demand, seasonal 

demand variation or in the event of gas supply disruptions [23]. 

 

Underground storage facilities are classified according to four technical 

characteristics. These are cushion gas capacity, working gas capacity, withdrawal rate 

and injection rate [24]. The cushion gas capacity is the volume of gas retained in the 

reservoir to maintain adequate pressure in the facility. The working gas capacity is the 

volume of gas that can be withdrawn from or injected into a storage facility. The 

summation of the cushion case capacity and working gas capacity constitute the total 

gas storage capacity. The withdrawal rate refers to the rate at which natural gas can be 

extracted from a storage facility on a daily basis while injection rate is the rate at which 

gas molecules can be pumped into storage for future use.  

 

The three major types of underground storage facilities used in Europe are depleted 

oil/gas fields, aquifers and salt cavern. Table 1.2 presents the types of storage facilities 

classified by their key characteristics. Total gas storage capacity of existing storage 

facilities is 108.3 bcm [25].  Several development projects have been planned across 

the EU and if completed, will increase storage capacity by 20% in 2020 from current 

levels [22]. 

 

Table 1.2  Key characteristics of underground storage facilities [24] 
 

Storage Features Depleted Fields Aquifer Salt Cavern 

Main function Seasonal facility Seasonal facility Fast cycle facility 

Storage capacity Usually large 

capacity 

Large capacity Low capacity 

Cushion gas High cushion gas 

requirement 

High cushion 

gas requirement 

Low cushion gas 

requirement 

Withdrawal and 

Injection rates 

Low rates High rates High rates 
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Cost Low operating cost High operating 

cost 

High operating cost 

 

1.3.3  Liquefied Natural Gas Facilities  

Liquefied natural gas is natural gas cooled to its liquid state at a temperature of about 

-612oC and kept at high pressure [16]. The volume of LNG is greatly reduced to about 

600 times less than the volume of its gaseous form. Natural gas is converted to LNG 

at liquefaction terminals. After production, LNG is transported by specially designed 

ships (LNG tankers) to regasification terminals located at LNG importing countries. 

For long distance gas transport beyond 3000-5000km, large LNG shipment shows 

favourable economic justification compared to pipeline capacity [26]. At the 

regasification terminal, LNG is transformed into its gaseous state (regasified) and 

discharged into pipelines connected to the transmission network. LNG regasification 

terminals are spread across the coastlines of South and Northwest European countries.  

In 2015, the total existing LNG regasification capacity among EU member states was 

198 bcm/y [16].  

 

1.4 Interaction between European Gas Supply and GB Gas and 

Electricity Networks  

The European gas transmission network comprises the natural gas transmission 

infrastructure of individual countries integrated as a single entity for delivery and 

transport of natural gas supplies across Europe. Great Britain’s (GB) natural gas 

network is connected to the European gas network via six undersea pipelines linked to 

Norway, Belgium and the Netherlands.  Norwegian gas is delivered via Langled 

pipeline to Easington terminal while Vesterled, Tampen & Gjoa gas pipelines link with 

St. Fergus terminal in Scotland. Also, the BBL pipelines (Balgzand Bacton Line) from 

Netherland and Interconnector pipeline (IUK) from Belgium come ashore at the 

Bacton gas terminal. Total import capacity from Norway and continental Europe is 

presently about 46.6bcm/y which is 1/3 of UK’s import capacity [27]. 

 

Historically, GB was a major producer and exporter of natural gas. Since 2004, the 

decline in domestic gas production led to increasing reliance on gas import to meet its 
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domestic gas demand. Thus, GB’s import infrastructure has increased in relation to 

peak demand and they are more diversified to receive supply from various sources 

including LNG. Total capacity of existing LNG regasification terminals is 53.1 bcm/y 

[27]. 

 

Whilst the current level of GB’s import capacity is understood to be relatively robust, 

there is increasing uncertainty about how future supply patterns will develop.  Gas 

supply to GB is influenced by a number of external factors including the evolution of 

the global LNG market and developments in the European gas network. There is 

increasing competition in the global LNG market as more countries in Europe and in 

other parts of the world expand their regasification capacities [28]. In a tight LNG 

market (i.e. when demand exceeds supply), GB may not attract sufficient LNG 

supplies at prices acceptable to its gas consumers.  

 

At the same time, continental gas supplies to the GB network is determined by the 

demand and supply situation in mainland Europe. In 2009, the disruption of Russian 

gas supplies through Ukraine to Europe led to higher gas spot prices. During this 

period, increased gas export from GB to the continent on the cross-border 

interconnector between GB and Belgium  occurred due to higher gas prices on the 

continent [29]. During the crisis, Norwegian gas supplies to continental Europe 

increased, this resulted in less gas export from Norway to GB [30].   

    

GB is committed to increasing the share of renewable generation in electricity 

generation mix.  48 GW of wind generation capacity would be connected to the 

electricity network by 2030 [31].  Wind power is variable and requires other flexible 

generators to ramp up and down to balance electricity demand. Gas-fired plants have 

the capability to rapidly adjust their output power and complement the variable 

generation from renewable energy sources such as wind.  

 

The GB natural gas network is coupled to the GB electricity network through gas-fired 

plants. Currently, installed capacity of gas-fired plants accounts for 34% of GB 

generation mix [32]. In the period between 2013- 2025, gas generation capacity is 
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expected to increase by 32% [32]. In contrast, coal generation capacity will decline to 

comply with the Large Combustion Plant Directive (LCPD).  

 

The increasing interdependency of both network have implications for security of 

supply. The electricity network will increasing depend on imported gas supplies to 

meet gas demand in power generation. An interruption in the gas supplies could lead 

to additional stress on the power system and loss of power supply.  

 

Given the growing interdependency between the gas and electricity network and the 

increasing reliance on gas import, it is essential that the security of GB gas and 

electricity networks is assessed in relation to European gas supply situations. 

 

1.5 Thesis Objectives 

The objectives of the research described in this thesis were to: 

 Develop an optimisation model of the European gas network to determine gas 

flows on cross border interconnectors and utilisation of storage facilities and 

LNG terminals across Europe.  

 Investigate the impact of the loss of Ukraine transit capacity on operation of 

the European gas network for two demand scenarios in 2015.   

 Assess the resilience of the GB gas and electricity networks to a potential loss 

of the Ukraine transit capacity during a period limited LNG availability to 

Europe in 2030. 

 Assess the role of mitigation options to improve the security of gas supply to 

GB. 

 

1.6 Contributions of this thesis 

 Developed a linear optimisation algorithm of the European gas supply system 

to examine gas flows in Europe.  
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 Investigated the impact of the loss of Ukraine transit capacity on the European 

gas supply system. Locations and volume of unserved gas demand were 

identified and mitigation measures were modelled. 

 A soft-link approach was used to integrate a detailed technical model of the 

GB gas and electricity networks to a simplified model of the European gas 

network.  

  The soft-linked model was used to examine the impact of the loss of Ukraine 

transit capacity on the operation of GB gas and electricity networks during a 

period of limited LNG supply to Europe in 2030. 

  A set of six mitigation options were identified and analysed to improve 

security of gas supply to GB using the soft-linked model. A cost-benefit 

assessment of the mitigation options was conducted. 

 

1.7 Thesis outline 

This thesis has six chapters. 

Chapter 2 presents a review of natural gas systems models and security of gas supply. 

The key features of security of supply with relevance to natural gas are described. 

Security of supply challenges in Europe are highlighted and security of supply 

measures are outlined. The types of gas network models used in studies to address 

security of supply issues are presented. The chapter ends with a review of gas and 

electricity system modelling techniques and their applications.    

    

Chapter 3 outlines the simplification of the European gas network and the development 

of a simplified European gas model in Fico Xpress optimisation suite software.  A 

detailed description of the optimisation model is provided including the mathematical 

formulation (Figure 1.2). In this chapter, the European Gas Network (EGN) model was 

used to conduct a study of the impact of the loss of Ukraine transit capacity on Russian 

gas supply to Europe for a high gas demand case and a low gas demand case in 2015. 

The capability of the European gas network to cope with the supply shortage was 

analysed and locations of unserved gas demand were identified.   
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In chapter 4, a soft-link methodology is used to couple the European Gas Network 

(EGN) model with the Combined Gas and Electricity Network (CGEN) model. Firstly, 

the features of the CGEN model are described including its network components. The 

stages involved in soft-linking the European gas network model and CGEN are 

presented. The integrated EGN-CGEN model is used to examine the effect of the loss 

of Ukraine transit capacity in Europe on the operation of GB gas and electricity 

networks during a period of limited LNG availability to Europe over 90 days of winter 

(Figure 1.2).  

 

Chapter 5 presents the modelling of six mitigation options to improve physical security 

of gas supply in GB. The effectiveness of the mitigation options in reducing or 

eliminating unserved gas demand in GB was investigated using the EGN-CGEN 

model. Then a cost-benefit assessment of the six mitigation options was conducted as 

shown in Figure 1.2.  

 

Chapter 6 presents the conclusions of the main findings and recommendations for 

future work. 

 

 

 

Figure 1.2. Structure of the Integrated EGN-CGEN model and the thesis outline    
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Chapter 2  

2.Literature Review  

2.1 Introduction 

Security of gas supply is a primary concern of the European Union. These concerns 

relate to gas import dependence and the risk of gas supply disruptions. The EU have 

identified key gas infrastructure investments required to upgrade the existing European 

gas network and improve security of gas supply.   

 

Gas networks and electricity networks are interconnected by gas-fired generators. By 

2030, gas-fired generation is expected to complement a large penetration of variable 

renewable generation in Europe due to its flexible operational characteristics.  Gas-

fired generators possess short start-up time and high ramp rate best suited to respond 

to fast changes in renewable generation output. The growing use of gas-fired 

generators in electricity generation leads to greater interdependence between the gas 

and electricity networks. The availability of reliable and secure gas supply becomes 

increasingly important to the operation of both networks. 

 

A holistic approach to these issues requires the development of a suitable modelling 

tool to assess the security of gas supply risks on the gas network and its impact on the 

electricity network. This chapter presents a literature review of the security of gas 

supply in Europe, the development of models used to analyse natural gas systems and 

the interdependence between gas and electricity systems.  

 

2.2 Security of Gas Supply in Europe 

According to the IEA, security of gas supply is defined as the uninterrupted availability 

of natural gas at an affordable price [33]. Historical events of gas supply disruption to 

Europe have highlighted challenges in the regional approach to security of gas supply 

across the 28 different member states. In order to address these problems, the EU has 

adopted appropriate directive and regulations to improve security of gas supply. It is 
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expected that these policy actions will drive investment in gas infrastructure projects 

that would enhance the resilience of the European transmission network against gas 

supply risks [34]. 

 

2.2.1 Gas Supply and Import Dependency in Europe  

The domestic gas production in Europe has decreased from 258 bcm in 2000 to 163 

bcm in 2013 [35],[36]. As Europe’s domestic gas production continue to decline, EU 

member states would increasingly rely on imported gas supply from various LNG 

sources, Russia, Norway, Algeria and Libya.  Figure 2.1 illustrates the levels of import 

dependence across EU countries in 2014.  

 

Figure 2.1. Import dependence among EU countries in 2014 [37] Error! Reference s

ource not found. 

In Figure 2.1, only two countries (Denmark and Netherlands) use domestic gas 

production to meet gas demand [38]. About 13 countries have 100% import 

dependency, some of which are solely reliant on Russian gas supply through a few 

transit routes. In 2014, the aggregated level of gas import in the EU was 66%. 

 

2.2.2 Security of Gas Supply Challenges in Europe  

The impact of gas supply disruption on EU member states depends on the level of 

reliance on gas imports, duration of the supply crisis, the volume of lost gas supplies 

and availability of alternative supply options. The risks of security of gas supply in 
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Europe arise from political and technical challenges. Three cases of gas supply 

disruption in Europe and the mitigating actions taken at the EU level to address these 

challenges are discussed in this subsection. 

 

 Political 

The most prominent threat of supply disruption in Europe has been the geopolitical/ 

gas price dispute between Russia and Ukraine. In January 2009, Russia shut off gas 

supplies through Ukraine, which resulted in a supply shortage of about 300mcm/d to 

12 EU member states for two weeks [39]. A wide range of gas emergency measures 

were utilised in the affected countries to mitigate the impact of the supply shortage 

[40].  Most countries relied on gas withdrawn from storage facilities,  imported gas 

from alternative suppliers and LNG import to replace the lost gas volumes.  In other 

cases, the supply shortage was compensated by  switching to fuel oil and coal for 

heating and electricity generation especially in countries with limited access to other   

gas supply sources [39]. This gas supply crisis highlighted the need for a robust 

European gas transmission system that can adequately cope with various gas supply 

and demand patterns.  

 

In 2011, political instability in Libya resulted in a loss of Libyan gas export to Europe 

for a duration of 8 months between February and October [41]. The supply disruption 

resulted in a supply shortfall of 25 mcm/d in Italy on the single pipeline, which 

connects Libya to Europe. This loss, representing about 10% of Italian gas 

consumption was replaced by higher LNG import and pipeline import from Austria. 

This availability of LNG supply limited the impact of gas supply disruption on gas 

consumers Italy and Europe. 

 

 Technical 

In January 2010, a technical problem in Norwegian Kroll  gas field led to significant 

decline of 250 mcm of Norwegian pipeline supply to the UK over a four-day period 

[42]. The supply shortage occurred during a period of very high gas demand due to a 

severely cold winter. The lost gas volume was replaced by higher LNG import and 

European pipeline import and lower gas consumption in industry and power generation 

(demand-side response).   
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The cases of gas supply disruption in Europe highlight the limited capability of the 

European transmission system to cope with a major gas supply crisis. Some of the 

inherent system challenges include insufficient interconnector capacities between 

member state gas networks and limited diversification of imported supply sources and 

routes.   

 

2.2.3 Strategies for Diversification of Gas Import Routes  

Figure 2.2 shows the level of import route diversification among EU member states. 

Import Route Diversification (IRD) index is used to evaluate the ability of a country 

to diversify its gas supply entry points based on the  gas import capacity of the given 

country [9]. 

Figure 2.2 Level of import route diversification among EU member states [9] 

The countries denoted by the blue colour have well-diversified gas import capacity. 

All countries in North West Europe are shown to have a well-diversified import 

capacity except the Republic of Ireland.  On the other hand, countries denoted by the 

yellow colour have the least diversified gas import capacity and they are mainly 

located in the Balkan and Baltic regions. The three main strategies for improving 

import route diversification are: bi-directional flow capability on interconnectors, 

additional gas interconnection and improved LNG infrastructure. 
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 Bi-directional flow capability on gas interconnectors 

Since 2009, a number of pipeline projects have implemented bi-directional flow 

capacity on cross-border interconnectors in Central and Eastern Europe to eliminate 

flow restrictions and improve the integration of gas networks in these regions. Bi-

directional flow capability enables the transportation of gas through pipelines in both 

directions. Completed pipeline projects with bi-directional flow capabilities include 

the interconnector between Poland and Czech Republic and the interconnector  

between Germany and Poland [34]. These pipeline projects enable countries in South 

East Europe to have unrestricted access to gas supplies in North West Europe.   

 

 Additional gas interconnections 

Several pipeline projects have been proposed and even completed to bypass transit 

countries along import routes and bring new gas volumes to Europe. Examples of 

import pipeline projects include the Nord Stream 2 pipeline and the Trans Adriatic 

Pipeline (TAP). The Nord Stream pipeline 2 has a planned capacity of 55 bcm per 

annum [43]. The proposed project is expected to bring Russian gas supply through 

Germany to Europe in order to avoid gas transport through transit countries such as 

Ukraine and Belarus.  The TAP pipeline would deliver Caspian gas supplies through 

Turkey to South East Europe. The pipeline has an initial capacity of 10 bcm annually 

and it is routed through Albania to cross the Adriatic Sea into Southern Italy. If 

completed, the project will contribute to reducing the reliance on Russian gas supply 

in South East Europe [44].  

 

 Improved LNG infrastructure 

LNG supplies provide a key alternative to pipeline import as a means to diversify gas 

supply and improve security of gas supplies in the EU [45]. The newly constructed 

Klaipeda LNG regasification terminal in Lithuania has a maximum import capacity of 

4 bcm annually [46].  This LNG import terminal provides another supply source for 

countries in Baltic region to reduce their dependence on Russian gas supply. In 2015, 

LNG supplies of 50 mcm accounted for 21% of total gas consumption in Lithuania 

[11].  Additional LNG regasification projects have been planned in France, Croatia, 

Italy and Netherlands. Currently planned EU LNG projects will increase current 

annual LNG import capacity of 198 bcm to 234 bcm by 2020 [47]. 
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2.2.4 Security of Gas Supply Regulation 

In 2010, the European Union established the regulation on security of supply (EU 

994/2010) in response to the January 2009 Russia-Ukraine gas crisis [48].  This 

regulation introduced a set of common standards to help prevent and mitigate the 

impact of a supply disruption if it occurs. These common standards include security of 

supply standards, national risk assessment and emergency plans as well as regional 

coordination of security of supply measures.  

 

 Security of supply standard 

The security of supply standard requires that on a day of exceptionally high demand, 

all EU countries have adequate capacity to meet their total gas demand in the event of 

an outage of the single largest gas infrastructure. This requirement can be fulfilled 

through both regional and national infrastructure capacity. In addition, gas suppliers 

must ensure that protected (domestic) customers are supplied in severe conditions 

including seven consecutive days of peak demand and 30 days of high demand 

situations. These supply criteria must be fulfilled in the event of the loss of a gas 

infrastructure on a normal winter day.  

 

 Risk assessments and emergency plans 

The security of supply regulation requires that EU countries conduct a risk assessment 

to identify potential risks to securing gas supply and examine the adequacy of the 

existing gas infrastructure to cope in the event of various scenarios of supply 

disruptions under different demand conditions. The risk assessment must include EU 

supply standards and interaction with gas networks of other EU countries. In addition, 

national regulation authorities are obliged to prepare preventive actions and emergency 

actions that remove or mitigate the identified risks.  These plans should be updated 

every 2 years. 

 

 Regional coordination  

Regional coordination in the implementation of security of supply measures is a key 

priority of the European Union. EU member states are segmented into regions for 

detailed assessment of location specific challenges and proposed solutions toward gas 

supply security. This regional approach is expected to improve cooperation between 
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member states in effective prevention and mitigation of potential gas supply risks. It 

also aims to reduce the cost of improving security of supply to EU consumers and 

increases solidarity among member states in the case of a gas supply disruption 

 

2.3 Gas Network Models  

Gas network models are mathematical representations used to describe gas flow in gas 

networks [49]. Major parameters considered in the development of gas network 

models include flow rate, pressure, pipe length, pipe diameter, suction pressure and 

discharge pressure of compressor stations. These parameters are used for the design, 

operation and planning of gas networks.  

 

A simple gas network is presented in Figure 2.3. The network is comprised of nodes 

and arcs. The capacities and pressures of the supply point, demand points and 

compressor station are represented by nodes while the arcs represent the pipeline flow 

rates determined from pipe lengths and diameters. The relationship between pressure 

and flow in pipelines and compressor stations are described by non-linear equations. 

Figure 2.3 A simple gas network structure 
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2.3.1 Fundamental Gas Flow Equation  

The flow rate of gas moving along pipelines is determined by  physical dimensions of 

the pipeline, properties of gas and  the pressure drop across the pipeline [21]. The 

general flow equation for steady state gas flow in horizontal pipelines is given by [50]: 

 

𝑄𝑛 = ∁
𝑇𝑛
𝑃𝑛
√
(𝑃1

2 − 𝑃2
2)𝐷5

𝑓𝑆𝐿𝑇𝑍
 

 

2.1 

 

where 𝑄𝑛 is gas flow at standard condition (m3/d), ∁ is constant, 𝑇𝑛 is temperature at 

standard condition (288 K), 𝑃𝑛 is pressure at standard condition (0.01 MPa), 𝑃1 is gas 

pressure at inlet of the pipe, 𝑃2 is pressure at outlet of the pipe, 𝐷 is internal diameter 

of the pipe, 𝑓 is friction factor, 𝑆 is gas specific gravity, 𝐿 is pipe length, 𝑇 is gas 

temperature, 𝑍 is compressibility factor. 

 

The derivation of Equation 2.1 is based on the following assumptions: 

 Gas flow in steady state condition 

 Kinetic energy changes along the pipeline is negligible  

 Gas flow through pipeline is constant temperature due to heat exchange with 

the surrounding through the pipe wall 

 Constant compressibility and friction factor along the pipeline. 

The friction factor is used to determine pressure loss in gas flow due to friction with 

the wall of the pipeline. The calculation of pressure loss in transmission networks is 

required to determine the capacity of compressors and the location of compressors 

stations along the long distance pipelines. 

 

For high pressure gas flow, friction factor is a function of the Reynold number and 

pipe roughness as given by Equations 2.2 and 2.3 [50]. 

 

 

√
1

𝑓
= 4𝑙𝑜𝑔𝑅𝑒√𝑓 − 0.6 

2.2 

where Re is the Reynold number.  
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The Reynold number is a dimensionless value used to classify gas flow as laminar 

flow and turbulent flow. Laminar flow occurs when the Reynold number is less than 

2000 while turbulent flow is observed as the Reynold number exceeding 2000 [50].   

 

 

√
1

𝑓
= 4𝑙𝑜𝑔 (3.7 

𝐷

𝑘
) 

2.3 

 where D is the internal diameter of the pipe and k is the roughness of the pipe wall. 

Gas flow through high pressure transmission pipelines are classified as turbulent flow. 

 

2.3.2 Types of Gas Networks Models  

There are two methods used in the modelling of gas networks. These are numerical or 

simulation methods and optimisation methods [50].  

 

Simulation models are used to study the behaviour of the gas network under a given 

condition. The simulation approach involves the calculation of nodal pressures and the 

flow rates on individual pipelines by solution methods that require several complex 

iterations [50],[51].  Many studies have developed numerical models to examine the 

operation of gas network. In [52] a discretization method based on the finite element 

scheme was used to handle the partial differential equations in transient analysis of gas 

networks. A comparison of isothermal and non-isothermal transient gas network 

model was presented in [53].   

 

Optimisation models are used to determine the best solution to a gas network problem 

among a set of feasible solutions subject to a given set of constraints [54].  

Optimisation models consist of decision variables, constraints and an objective 

function.  Decision variables are elements of the gas network model whose values are 

to be determined from the optimal solution e.g. gas flow rate through pipelines and 

compressor stations [54].  

 

Constraints are equality or inequality equations used to restrict the values assigned to 

the decision variable. For example, gas flow through pipeline is constrained by the 
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maximum technical capacity of the pipeline [54]. The objective function is the 

quantitative component of the gas network model expressed as a function of the 

decision variables which is maximised or minimised e.g. minimisation of operational 

cost or maximisation of gas flows [55].  

 

Optimisation models are used in the literature to address various natural gas 

transmission network challenges such as; how to design a new network, expansion of 

existing networks and the minimisation of gas supply cost and the cost of fuel 

consumed in compressor stations.  

 

A major difference between the optimisation models and numerical simulations is that 

an optimal solution is always achieved in a single optimisation run.  

 

2.3.3 Types of Optimisation Methods used in Gas Network 

Modelling 

Optimisation methods have been used extensively in the literature to develop gas 

network models. These methods are broadly classified as Linear Programming (LP), 

Non-Linear Programming (NLP), Mixed Integer Programing (MILP) and Mixed 

Integer Non-linear Programing (MINLP) optimisation.  

 

 Linear optimisation model  

Linear programming (also known as linear optimisation) (LP) is used to formulate and 

solve mathematical models represented by linear equality or inequality constraints and 

linear objective functions [55].   

The standard form of the problem is presented below:  

 𝑀𝑖𝑛 𝐶𝑇𝑥 2.4 

 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐴𝑥 ≤ 𝑏 2.5 

 

  𝑥 ≥ 0 2.6 
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where 𝐶𝑇 is transpose matrix of a known coefficient,  𝑥 is a non-negative vector, A is 

a known matrix of coefficients and 𝑏 is a known coefficient. The goal of this LP 

problem is to minimize the objective function.   

 

Linear optimisation models have been implemented for wide range of gas network 

studies.  In [56], a gas network model was developed using the linear optimisation. 

The model considered demands, supply capacities at different entry nodes, mass 

balance at each node and the flow capacities of the pipelines. However, the pipeline 

pressures were not considered. The model was used to optimise natural gas dispatch 

within the network.  The study in  [57] presented  an LP  model to minimise the gas 

supply cost including production cost, pipeline transportation cost, LNG regasification 

cost and storage operation cost in the gas network. Similarly, in [58]  a linear 

optimisation model was used  to project future gas supply to Europe by 2030, in order 

to minimise the total investment and operating cost of gas production and supply of 

the network.  

 

 Non-linear optimisation in gas networks  

The non-linear programming optimisation problem is formulated as a set of non- linear 

constraints and/or a non-linear objective function. Examples of the application of non-

linear optimisation to gas network gas problems include fuel cost minimisation, 

minimum operational cost in gas networks and optimal dimension of gas pipelines.  

An example of a non-linear optimisation problem is given by: 

 𝑀𝑖𝑛 𝐶𝑇𝑥 2.7 

 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐴𝑥2  ≤ 𝑏 2.8 

 

 𝑥 ≥ 0 2.9 

where 𝐶𝑇, 𝐴 , 𝑏 are parameters and 𝑥 is the decision variable. The objective function 

is presented in Equation 2.7. The non-linear constraint is given by Equation 2.8 and 

the Equation 2.9 shows the non-negative constraint on the decision variable. 
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 Several algorithms have been developed to solve different types of non-linear 

optimisation problems in gas networks. Some examples include linearization approach 

[59],  dynamic programming[60], and heuristic methods [61].  

 

The work done in [62] involved the formulation of  a gas transmission network model 

to minimise total supply cost subject to linear and non-linear constraints.  A piece-wise 

linear approximation approach was used to handle the non-linearity of gas flow 

equation and a simplex algorithm extension was applied to solve the relaxed model. In 

[63] a non-linear gas network model was presented  to minimise the total fuel cost of 

the compressor stations in the network. The non-linearity of gas flow through pipes, 

pressure limits at each node and compressor stations were modelled as a set of non-

linear constraints.  A lower bound scheme was used to relax the non-linear cost 

function and obtain an optimal solution.  

 

A dynamic programming algorithm was proposed by [64] for minimising the cost of 

fuel consumption in compressors stations within the gas network subject to non-linear 

flow-pressure constraints. The model included a representation of bi-directional gas 

flows in pipelines, operation of compressor stations and gas stored in pipelines 

(linepack). The solution method was shown to achieve global optimality when applied 

to cyclic gas network configuration. The study in [61] presented a heuristic method to 

minimise fuel costs in a gas transmission network. A two-stage iterative solution 

approach was applied to a non-linear optimisation model.  In the first stage, the flow 

variable was fixed while the pressure variable was optimised by dynamic 

programming. In the second stage, the pressure variable is fixed while the optimal flow 

variable is calculated. 

  

 Other optimisation models 

Mixed integer linear programming and mixed integer non-linear programming models 

are also regarded as variants of linear and non-linear programming models. The key 

feature that differentiates the MILP and MINLP models from other models is that 

discrete variables (0,1) are included in the model formulation.  
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 In relevant literature,  a mixed integer non-linear gas network model was formulated  

to minimise the cost of fuel consumed by compressors [65]. A piece-wise linear 

algorithm was used to linearize the non-linear constraints and solve the model. In  [66] 

a MILP model was presented to optimise the scheduling of a set of compressors and 

minimise the total operating cost of the gas network. The components of the total 

operating cost include the fuel cost, maintenance cost, start-up and shut-down costs of 

the compressors.  

 

Majority of the models discussed in this section have focussed on the operation and 

planning of specific components of gas transmission systems such as the pipeline 

network and compressor stations. However, an extensive analysis of the operation of 

gas transmission system is essential when addressing security of supply challenges in 

gas networks.  In addition to the pipeline system, the production sources, storage 

facilities and different types of demand requirement should be taken into 

consideration. 

  

2.3.4 Modelling Security of Gas Supply  

Several studies have applied optimisation models to analyse the security of gas supply 

in national and regional gas networks. This is due to the fact that  optimisation models 

take account of the interaction between different components of the gas network [67]. 

Hence such  models have the capability to provide further understanding of the impact 

of supply risks on various components of the gas network over multiple time scales 

(long-term or short term) [68]. Finally, these optimisation models can be used to assess 

the security of supply benefits derived from additional investments in gas 

infrastructure projects in any given national or regional gas network [69]. 

 

A couple of optimisation models have been developed to examine the impact of 

different scenarios of gas supply disruptions on security of supply at regional or 

national levels [70],[71], [72], [73]. All these models are privately owned and not 

available as open-source modelling tools. Thus, the European Gas Network model was 

developed to conduct studies related to security of gas supply in Europe. 
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The Gas Emergency Flow (GEMFLOW) model designed in [72] is based on a Monte 

Carlo probabilistic approach. The model depicts European countries as nodes 

interlinked by the aggregated capacities of cross-border pipelines between adjacent 

countries. The model has the capability to simulate several scenarios of a given supply 

disruption within Europe and also quantify the risk of the supply disruption to all 

European countries. The Monte-Carlo approach prevents unserved gas demand in EU 

countries by allowing the system to randomly match gas demand and supply based on 

a set of predefined rules.  However, the optimal strategy for gas dispatch within Europe 

is not based on the cost of system parameters. Hence the system operation cost is not 

considered.  

 

In  [73],  a decentralised  model of  congestion control  was proposed for the European 

gas system in the event of an emergency crisis. The model includes a fair distribution 

strategy that allows maximum gas flow through the available network capacity during 

a gas supply crisis in order to minimise unserved gas demand. However, the operation 

of gas storage facilities was not modelled or considered in this model. 

 

A linear optimisation model of the European gas market was developed in  [71]. The 

objective function of the model maximises the social welfare to gas consumers across 

Europe, subject to the capacity of the transport infrastructure. The model comprised a 

simplified representation of gas infrastructure facilities in Western and Central Europe 

as well as pipeline and LNG supply from imported sources. The model was used to 

identify gas transport constraints and analyse the impact of investment in gas transport 

facilities on the future development of the European gas market. However, gas 

dispatch within South East Europe was not considered in the model. 

 

The TIGER gas model was developed as a linear optimization model of gas supply 

across the European gas market [70]. The model presented a detailed representation of 

the European gas supply system including individual characteristics of storage 

facilities, LNG terminals, domestic production fields and demand locations.  The 

objective function of the model minimises the total cost of gas supply required to meet 

demand constrained by the capacities of pipelines, storage facilities, LNG terminals 

and production volume. However, the non-linear relationship between gas flow and 
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pressures were not taken into account.  The model was applied to assess the impact of 

gas supply interruptions on the operation of the European gas market [41],[70].  

 

The European gas network ( EGN) model presented in Chapter 3 of the thesis was also 

formulated using  the linear optimisation modelling  approach similar to the  TIGER 

model [70] but the main differences are: 

 The network linear optimisation was applied to the EGN due to its 

computational advantages. Network linear optimisation models is a special 

type of linear optimisation model that solves very large network problems very 

quickly.  

 In the EGN model, the non-linear relationship between gas storage and gas 

withdrawal rate was formulated using piece-wise linearization approximation 

(see Appendix C). This formulation provides a more realistic profile of gas 

storage operation.  

 

Other models investigated the adequacy of future gas network investments required to 

ensure security of supply, based on a range of future demand scenarios. However, these 

models include a simple representation of European gas network components and 

demand centres. Large gas consumer countries in Europe are represented individually, 

while smaller European countries are aggregated into regional gas demand centres. 

Gas flow on interconnectors due to gas disruption or demand fluctuation over short-

time scales (daily) is not fully captured in these studies because of their yearly time 

granularity. Examples of European gas network planning models developed in literature 

include The Gas market System for Trade Analysis in a Liberalising Europe (GASTALE) 

[74] and GASMOD [75]. 

 

 GASTALE is a game theory equilibrium model developed in [76].  The model depicts a 

simple representation of the European natural gas system including individual LNG and 

pipeline exporters to Europe. The GASTALE model has a temporal investment period of 

5 years and includes gas market agents such as consumers, producers, transmission system 

operators, storage operators and traders. The model has been applied to evaluate security 

of gas supply and the value of future gas infrastructure investment in Europe [77].  
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A similar modelling approach is used in GASMOD formulation but in this case it 

includes a two-stage game of natural gas export to Europe (upstream suppliers)  and 

wholesale gas trade within Europe (downstream traders) [75]. The model was applied 

to examine the impact of different scenarios of gas demand and supply on security of 

gas supply in Europe.  

 

2.4 Interdependence of Gas and Electricity Systems  

Traditionally natural gas systems and electrical power systems are operated separately 

by the respective system operators.  The use of gas-fired generators in the power 

generation, links the natural gas and electricity systems. The share of gas used in global 

power generation increased from 1752 TWh (14%) in 1990 to 4827 TWh (23%) in 

2010 [78],[79].  

 

The rapid growth of gas-fired generators in the power sector is driven by economic 

and environmental reasons [80]. Gas-fired generators (e.g. combined cycle gas 

turbine) are cost effective to build, and can be operated at high efficiency [81].  During 

operation, gas-fired generators produce less carbon dioxide per unit of energy than 

coal and oil generators [81].  

 

The integration of significant capacity of renewable electricity generation such as wind 

and solar to the power system is expected to contribute to the delivery of environmental 

and climate change targets in several countries in Europe towards 2030 [82]. Gas-fired 

generators have the capability to ramp up and down to balance the variable power 

generated from renewable generation.   

 

The increasing interaction between gas and electricity systems have attracted the 

attention of energy regulators and system operators to assess the impact of 

interdependence of both systems on the reliability of power supply and security of gas 

supply.  
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2.4.1 Similarities and Differences between Natural Gas Supply 

Systems and Electricity Power Systems  

Natural gas supply systems and electric power systems are important energy 

infrastructure. Both systems have transmission and distribution networks which are 

used to transport energy (gas or electricity) from production sources to the different 

categories of final consumers [83]. Natural gas is obtained from gas production wells 

while electricity is produced by different types of generation technologies such as wind 

generators, coal-fired power plants, gas-fired plants and hydro power plants [83]. In 

the gas system, the transmission and distribution networks are characterised by 

different pressure levels while the electricity transmission and distribution networks 

operate at different voltage levels [84].  

 

Although the gas and electricity systems include similar transport networks, both 

systems are operated differently based on their unique technical and physical 

characteristics. Electricity travels at the speed of light while gas flows through 

pipelines at 40- 60 km/h [85]. In electric power system operation power demand and 

supply is balanced on a second by second basis. On the other hand, the gas system can 

be balanced over a range of time scales (hourly / daily) due to the availability of gas 

stored in pipelines (linepack) or underground facilities.  

 

2.4.2 Technical Challenges of Integrated Gas and Electricity 

Systems  

The growing interdependence between natural gas and electricity systems presents 

new challenges with regards to the operation and planning of the integrated system.  

 

In a power system with a high penetration of gas-fired generators, the disruption of gas 

supply or the loss of a major gas network component (e.g. pipeline) may curtail the 

delivery of gas to gas-fired generators and consequently constrained power supply. 

Also, the regulatory arrangement for gas supply to priority consumers during a major 
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supply disruption may lead to a forced interruption of gas supply to gas-fired 

generators and additional power supply outages.  

 

At periods of severe weather conditions and limited gas supply, a coinciding peak in 

gas and electricity demand may lead to a sudden spike in gas and electricity prices.  As 

Europe’s reliance on imported gas supply increase,  the closer integration of gas and 

electricity systems in Europe could expose the power system to gas supply shocks and 

volatile gas prices [84].  

 

The increase in the variability of gas demand for power generation poses a major 

challenge of managing the gas network within acceptable pressure limits [86]. 

Consequently, gas compressors are frequently used to manage linepack and system 

pressure leading to an increase in operational cost in the gas network.  

 

Limited harmonisation in the long-term planning of gas and electricity networks is 

another challenge related to interdependence of both networks. For example, planned 

investment in cross-border electricity transmission capacity, electricity storage and 

demand response mechanism is expected to optimally manage variability and 

uncertainty of geographically dispersed renewable power generation across Europe 

[87]. The uncertainty surrounding the future gas use for power generation presents a 

barrier to investment in strategic projects identified to improve security of gas supply 

in the short-term. This is because some of the strategic projects investments may 

become stranded assets in the long-term [9].  

  

 However, a coordinated approach to infrastructure investment in both networks will 

ensure optimal utilisation of gas and electricity systems to provide the flexibility 

requirement of variable renewable power generation. 
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2.4.3 Model-Based Analysis of Integrated Gas and Electricity 

Systems  

Recent research studies have focused on the development new integrated gas and 

electricity models to analyse the interactions between gas and electricity networks. 

Most studies have focused on short-term analysis of integrated gas and electricity 

system.   

 

In [88], an optimal power flow model was combined with gas network constraints to 

create an integrated gas and electricity network model.  The model was used to analyse 

the impact of gas pipeline outage on the operation of the power system. The result 

showed the gas pipeline outage led to the loss of gas-fired generation and electric load 

shedding in the power system.  In [89],  gas network constraints were coupled with a 

security constrained unit commitment (SCUC) power system model. The integrated 

model was to assess the effect of dual fuel generators on power system security during 

a gas infrastructure outage. The results showed that the fuel switching capacity of dual 

fuel generators could increase power system security. An integrated gas and electricity 

model was developed  to examine the impact of wind forecast errors on the gas network 

[90]. The results of the study showed that increasing uncertainty of flexible gas 

demand raised the cost of gas system balancing. All the studies reviewed above have 

applied integrated gas and electricity network models to test or fictitious systems.  

 

Only a few integrated gas and electricity optimisation models have been developed to 

analyse real gas and electricity systems. A detailed representation of the GB gas and 

electricity transmission system is presented in [67]. The combined gas and electricity 

network model (CGEN) is a multi-period non-linear optimisation model. The model 

was used to investigate the effect of multiple gas infrastructure outages on the 

operation of an integrated GB gas and electricity network. It was shown that gas 

infrastructure failures resulted in unserved gas demand to the gas network and a 

significant reduction in gas-fired generation output generation.   
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In another study [86], the CGEN model was used to examine the effect of wind power 

generation on GB gas network. It was shown that when low wind generation coincides 

with high gas demand a rapid depletion of line pack could result in gas system pressure 

constraint. The rapid variation in gas demand for power generation increases gas 

compressor usage and leads to high operational cost.  In Chapter 4 of this thesis, the 

CGEN model was enhanced by including of cross-border gas interconnectors between 

GB and neighbouring European Countries. 

 

Some studies have examined the long-term planning of integrated gas and electricity 

network. In [91], the CGEN model was used to examine the impact of strategic 

investment in the gas network on enhancing security of energy supply in the integrated 

gas and electricity network. The model presented a combined optimisation of 

investment and operational decisions for the gas and electricity networks.   In another 

study, the CGEN model was used to investigate the additional gas and electricity 

infrastructure required to deliver a low carbon energy system by 2030 [92]. It was 

shown that coordinated planning of gas and electricity network enabled timely and 

efficient allocation of infrastructure capacity expansion in the development of optimal 

energy networks.  

 

A complementarity model was developed to investigate the potential substitution 

effect of long-term investment in a coupled European gas and electricity market [93]. 

The results showed that  a coordinated planning approach would  deliver optimal 

infrastructure investments  in an integrated gas and electricity system  [94]. In [95],  a 

combined gas market model (GASTALE) and an electricity market model (MTSIM) 

was used to assess cross-border infrastructure requirement (2030-2050) in Europe’s 

gas and electricity markets. The results showed that large scale deployment of 

renewable power generation combined with high energy efficiency measures resulted 

in significant reduction in the use of natural gas transmission capacity by 2050.  
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2.4.4 Synergies between Gas and Electricity Systems  

The integration of gas and electricity systems has significant opportunity to deliver 

security of supply, environmental benefits and optimal infrastructure investments in 

both systems. Some measures identified to enhance efficient coordination between gas 

and electricity systems include harmonisation of system balancing in both system 

across different time scales, development of flexible gas supply products and a 

combined approach to renewable energy development [80],[84].  

 

Power system operation requires real time (moment-by-moment) balancing of demand 

and generation. In the gas network, balancing is usually performed on a daily basis. 

The availability of within-day linepack flexibility services can contribute to the 

harmonisation of system balancing in the gas and electricity networks. Such 

arrangements will increase the efficient utilisation of the network capacity, improve 

reliability of the power system, reduce high cost of cumulative gas imbalance penalties 

incurred by shipper and lower gas prices to gas-fired generators [96].  

 

Access to gas storage can increase flexible gas supply to gas-fired generators and 

improve security of gas supply [81]. Gas storage facilities is used extensively for 

various applications including balancing short–term   and seasonal demand variations 

depending on the storage characteristics [24]. The efficient management fast cycle 

storage facilities can improve reliability of within-day balancing in both gas and 

electricity systems.  

 

Coordinated network planning of both markets promotes the exploitation of not just 

renewable power generation but renewable gas production and transport using the 

existing gas network. Renewable gas refers to gas produced from renewable energy 

sources such as biomethane derived from biogas obtained from organic waste and 

hydrogen. Power-to-gas systems convert electricity to hydrogen through the process 

of electrolysis. Regional and national gas transmission pipeline networks could 

provide storage capacity for biomethane and hydrogen produced from renewable 

power generation. In Europe, renewable gas development and supply could contribute 

to less reliance on imported gas supply, additional flexibility for variable renewable 

power generation and lower carbon dioxide emissions [97].   
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2.5 Summary 

A review of literature related to security of gas supply in Europe, gas network models 

and the integrated gas and electricity system was presented. 

 

Security of gas supply was defined and issues surrounding security of gas supply in 

Europe were highlighted. A number of alternative measures planned to enhance 

security of European gas supply were presented. 

 

Gas network models were presented with a specific focus on optimisation models. 

Different types of optimisation models used in modelling gas network were discussed 

and relevant literature on the analysis of security of gas supply using gas network 

optimisation models was reviewed. 

 

Interdependence of gas and electricity systems were presented. Challenges and 

opportunities for exploiting integrated gas and electricity system were discussed and 

existing models of integrated gas and electricity system in literature were reviewed. 

 

In closely coupled gas and electricity networks, security of gas supply has serious 

implications for a secure and reliable power system. Integrated models of gas and 

electricity systems are best suited to provide a better understanding of security of gas 

and electricity supply under various operating conditions. 
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Chapter 3  

3.Vulnerability Assessment of the European Natural 

Gas Supply  

3.1 Introduction 

The primary function of the European gas network is to ensure efficient dispatch of 

gas supply across Europe. The disruption of gas supplies along major transit routes has 

highlighted the limited capability of the gas network to adequately respond to such a 

gas supply crisis.  

 

In January 2009, the disruption of Russian gas supply to Europe through Ukraine 

resulted in the loss of between 10% – 100% of imported gas supply to 12 European 

countries [98]. Some of the limitations that this event highlighted include dependency 

of some member states on a single source of supply/route, the lack of bi-directional 

flow in some interconnectors between countries and limited gas storage capacities in 

some of the affected member states.  

 

A simplified model of the European gas network was developed to model gas flows in 

Europe using linear optimisation. The European gas network model was formulated 

and solved using the FICO Xpress optimisation suite. 

 

The European gas network model was used to analyse the impact of a loss of the 

Ukraine transit capacity on gas supply from Russia to Europe in the winter of 

2014/2015.  Two demand scenarios were modelled; A Reference Demand Case and a 

High Demand Case. To mitigate the impact of the supply shortage, the impact of 

increasing the capacities of selected interconnectors within Europe was compared 

against increasing the maximum storage withdrawal rates in South East Europe. 
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3.2 Simplification of the European Gas Network  

The European gas network consists of 128 underground storage facilities, 68 LNG 

regasification terminals connected by a complex and an extensive pipeline structure. 

The implementation of a detailed model of such large networks has a significant 

computational cost. Furthermore, the transmission pipeline data (such as pipe lengths 

and diameters) for all European countries represented in the model required to conduct 

a detailed study was inaccessible. Since the focus of this model is to analyse cross-

border flows on gas interconnectors between adjacent European countries and the 

utilisation of available gas infrastructure, the capacities of transmission pipelines was 

deemed adequate to represent gas dispatch within Europe.  The European gas network 

(EGN) was simplified to reduce network complexities and simulation time in order to 

provide a suitable representation of the network for modelling purposes.  

 

The following assumptions were applied to simply the European gas network: 

 Only gas flow capacities on cross-border interconnectors between European 

countries were considered. The capacity of the pipeline network within 

individual countries was neglected.  

 Units of gas capacity are presented as million cubic metres at standard 

conditions of temperature 15oC and pressure 101.325 kPa  [22]. 

 

3.2.1 Network Parameters  

The simplified European gas network consists of 40 nodes and 63 interconnectors that 

comprise the Ukraine transit capacity shown in Figure 3.1. A list of the country codes 

is presented in Appendix A. 

 

The model assigns a node to each country and each node has a set of nodal parameters. 

For each European country, the nodal parameters include the total production capacity, 

the total storage capacity and the total LNG capacity if applicable. The nodal 

parameters for non-European gas exporting countries are limited to their total export 

capacities to Europe.   
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Figure 3.1 Simplified European gas network  

 

Cross-border gas pipelines are characterised by different pipe lengths and flow 

capacities. A single pipeline or several pipelines can connect two neighbouring 

countries based on their domestic network configuration. Multiple cross border 

pipelines capacities between countries are totalled to represent a single pipeline 

capacity using Equation 3.1. 

 𝑄𝑒𝑞 = ∑𝑄𝑖

𝑛

𝑖=1

   3.1 

 

where 𝑄𝑒𝑞 is the equivalent flow capacity in the single equivalent pipeline and 𝑄𝑖  are 

original individual pipeline capacities.  
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3.3 Formulation of the European Gas Network Model  

The European gas network (EGN) model is formulated using the commercial 

optimisation tool FICO Xpress optimisation suite [99]. Fico Xpress is a mathematical 

modelling tool for large-scale modelling and optimisation applications. The tool 

provides a variety of robust optimisation solvers for linear programming, mixed linear 

and non-linear problems.  

 

The EGN model is developed as a linear programming optimisation model to examine 

optimal operation of the gas network. The linear optimisation approach assumes 

efficient dispatch of natural gas along all supply routes across Europe, neglecting the 

inefficiencies due to market operation or contractual arrangements. A single Europe 

wide transmission system operator was assumed to manage the efficient gas demand 

and supply balance within the European gas network model.  

 

Figure 3.2 shows a graphical representation of the simplified European gas network 

model. The key inputs to the model are the demand, supply capacities (domestic 

production and imported gas), the capacities of gas infrastructure (interconnectors, 

LNG regasification terminal and storage facilities) and the cost parameters 

(supply/production, transportation and, where relevant, LNG import cost and storage 

costs). The model is suitable for calculating the quantity of demand-supply shortfalls 

at different nodes in the network over a given modelling horizon with a daily to weekly 

time step. 
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Figure 3.2 Flow diagram of the European gas network model 

 

3.3.1 Objective Function  

The objective function of the model minimises the total cost of the supply of natural 

gas supply to meet demand over the time horizon as expressed in Equation 3.2. The 

total supply cost includes costs of gas supplies (from domestic production and pipeline 

imports), gas transport, storage operation, LNG import and unserved gas demand. 

Minimise total supply cost = 

 

∑

{
 
 

 
 

 ∑𝑃𝑅𝐶𝑖,𝑡 𝑃𝑅𝑖,𝑡 

𝑖⏟          
𝑝𝑟𝑜𝑑 /𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑖𝑚𝑝𝑜𝑟𝑡

+∑(𝐼𝐶𝑖,𝑡 𝑆𝑖,𝑡
𝑖𝑛 +𝑊𝐶𝑖,𝑡𝑆𝑖,𝑡

𝑤𝑑)

𝑖⏟                
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 
𝑡

+∑𝑇𝐶𝑖,𝑗  𝑇𝑄𝑖,𝑗,𝑡
𝑗⏟          
𝐺𝑎𝑠 𝑓𝑙𝑜𝑤𝑠  

+∑𝐿𝐶𝑖,𝑡 𝐿𝑖,𝑡
𝑖⏟      
𝐿𝑁𝐺 𝑖𝑚𝑝𝑜𝑟𝑡 

  + ∑𝐷𝑍𝐶𝑖  𝐷𝑍𝑖,𝑡
𝑖⏟        

𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑔𝑎𝑠 𝑑𝑒𝑚𝑎𝑛𝑑}
 
 

 
 

 

where: 

3.2 

𝑃𝑅𝐶𝑖,𝑡 Cost of gas production/cost of gas imported at node i at time t (€/mcm) 

MODEL

Demand Scenarios

Supply  Scenario

Domestic  production

Gas imports 

Gas Infrastructure 

National production fields

Storage facilities   

LNG receiving terminals  

 Interconnector capacities    

Constraints

 

 Max production capacities 

 Max regasification 

capacities 

 Max working gas volume 

 Max injection rate 

 Max withdrawal rate 

 Max interconnector flow 

capacities

Gas flows on 

interconnectors 

Gas storage injection and 

withdrawal volumes, Gas 

import  and domestic 

production volumes, 

LNG import volumes 

OUTPUTINPUT Objective Function

Minimise total supply cost of 

gas delivery to meet demand 

constrained by available 

infrastructure capacities 

 

Optimal supply  cost 

Granularity
 

 Daily  time scale
  Network area covers 40 

countries 

Locations of  unserved 

gas demand 

Volume of unserved gas 

demand 

Costs

Production cost, Storage 

cost, Regasification cost

Pipeline transport cost
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𝑃𝑅𝑖,𝑡 Production/ supply volume at node i at and time t (mcm/d) 

𝐼𝐶𝑖,𝑡 Cost of gas injected into storage at node i and time t (€/mcm) 

𝑆𝑖,𝑡
𝑖𝑛 Gas volumes injected into a storage at node i at time t (mcm/d) 

𝑊𝐶𝑖,𝑡 Cost of storage withdrawals at node i (€/mcm) 

𝑆𝑖,𝑡
𝑤𝑑 Storage withdrawals at node i and time t (mcm/d) 

𝑇𝐶𝑖,𝑗,𝑡 Cost of gas transportation in a cross-border interconnector between node 

i and j at time t (€/mcm) 

𝑇𝑄𝑖,𝑗,𝑡 Gas flows on interconnector between nodes i and node j at time t 

(mcm/d) 

𝐿𝐶𝑖,𝑡 Cost of LNG delivered (cost of gas and transport) to node i at time t 

(€/mcm) 

𝐿𝑖,𝑡 LNG volumes delivered at node i and time t (mcm/d) 

𝐷𝑍𝐶𝑖 Cost of unserved demand at node i (€/mcm) 

𝐷𝑍𝑖,𝑡 Unserved gas demand at node i at time t (mcm/d) 

 

3.3.2 Optimisation Constraints  

The constraints of the optimisation are the technical limitations and characteristics of 

production, transport storage and LNG facilities. 

 

 Production 

For nodes that possess production capacity, the production volume is restricted by the 

maximum daily supply capacity: 

 𝑃𝑅𝑖,𝑡 ≤ 𝑃𝑅𝑖
𝑚𝑎𝑥   ∀𝑖, 𝑡 3.3 

where  𝑃𝑅𝑖
𝑚𝑎𝑥 is the maximum supply capacity at node i (mcm/d)  

    

 LNG Import  

Similar to the production constraints, at every node and for each time step, the LNG 

regasification volume is restricted by the maximum daily regasification. 
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 𝐿𝑖,𝑡 ≤ 𝐿𝑖
𝑚𝑎𝑥    ∀𝑖, 𝑡 3.4 

where 𝐿𝑖
𝑚𝑎𝑥  is the maximum regasification capacity at node i (mcm/d). 

 

 Transport pipeline flow  

Gas flow through interconnectors is restricted by the maximum capacities 𝑇𝑄𝑖,𝑗
𝑚𝑎𝑥 of 

the interconnectors given by: 

 𝑇𝑄𝑖,𝑗,𝑡 ≤ 𝑇𝑄𝑖,𝑗
𝑚𝑎𝑥   ∀𝑖, 𝑗, 𝑡 3.5 

Each interconnector is linked by a pair of nodes (i,j). Gas flow in either direction is 

permitted if flow capacity exists between i and j and between j and i.  

 

 Storage  

Storage operation is determined by the characteristics of the storage facility which 

include working gas volume (WGV), gas withdrawal rates and gas injection rates. 

Working gas volume is the volume of gas that can be withdrawn from storage. For 

every time step the storage level is constrained by the maximum storage capacity 

(WGV): 

𝑆𝑖,𝑡 ≤ 𝑆𝑖
𝑚𝑎𝑥 ∀𝑖, 𝑡 3.6 

where 𝑆𝑖
𝑚𝑎𝑥  is the maximum working gas capacity at node i (mcm), 𝑆𝑖,𝑡 is current 

storage level at node s and time t (mcm/d). 

 Also, the gas volume in storage for each time step must be balanced by the difference 

in gas injection in a day and withdrawal in a day:  

 𝑆𝑖,𝑡 = 𝑆𝑖,𝑡−1 + 𝑆𝑖,𝑡
𝑖𝑛𝑗
− 𝑆𝑖,𝑡

𝑤𝑑    ∀𝑖, 𝑡 3.7 

Gas withdrawal rate is also restricted by the maximum withdrawal rate: 

 𝑆𝑖,𝑡
𝑤𝑑 ≤ 𝑆𝑖,𝑡

𝑤𝑑_𝑚𝑎𝑥    ∀𝑖, 𝑡 3.8 

where 𝑆𝑖,𝑡
𝑤𝑑_𝑚𝑎𝑥 is the maximum withdrawal rate at node i (mcm/d).  

Gas injection rate is limited by the maximum injection rate: 
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 𝑆𝑖,𝑡
𝑖𝑛 ≤ 𝑆𝑖,𝑡

𝑖𝑛_𝑚𝑎𝑥    ∀𝑖, 𝑡 3.9 

where 𝑆𝑖,𝑡
𝑖𝑛_𝑚𝑎𝑥is the maximum injection rate at facility s at time t (mcm/d).  

 

The volume of gas withdrawn from or injected into a storage facility varies with the 

current storage level. Withdrawal rates are highest when the storage is full while 

injection rate is highest when the storage facility is empty because of the pressure level 

in the storage. This non-linear relationship is expressed as [100]: 

 𝑆𝑖,𝑡
𝑤𝑑_𝑚𝑥 = 𝐾1

𝑤𝑑 ∗ √𝑆𝑖,𝑡    ∀𝑠, 𝑡       
3.10 

 

 𝑆𝑖,𝑡
𝑖𝑛_𝑚𝑥 = 𝐾1

𝑖𝑛 ∗  √
1

𝑆𝑖,𝑡
𝑖𝑛𝑗
+ 𝑆𝑖

𝑏𝑎𝑠𝑒
+ 𝐾2

𝑖𝑛   3.11 

where 𝐾1
𝑤𝑑, 𝐾1

𝑖𝑛and  𝐾2
𝑖𝑛are factors that describe the features of the storage 

facility, 𝑆𝑖
𝑏𝑎𝑠𝑒 is the volume of cushion gas at node i (mcm). However linear 

approximations were derived for the non-linear storage constraints and presented in 

Appendix B. 

 

3.4.3 Nodal Balance  

At each node in the network, gas demand must be balanced by gas supply (Equation 

3.12). For each time step gas inflows at each node (gas supply, storage withdrawal) 

are balanced by gas outflows (gas demand, storage injection). 

𝐷𝑖,𝑡 − 𝐷𝑍𝑖,𝑡 = ∑𝑇𝑄𝑖,𝑗,𝑡
𝑖,𝑗

+ 𝑃𝑅𝑖,𝑡 + 𝐿𝑖,𝑡 + 𝑆𝑖,𝑡
𝑤𝑖𝑡 − 𝑆𝑖,𝑡

𝑖𝑛 3.12 
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3.4 Model Demonstration  

The European gas network model was validated by comparing the cross-border flows 

calculated by the model for 2010 with data of the aggregated gas flow across Europe 

for the 2010 gas year. The results of the comparison between simulations and actual 

data are presented in Table 3.1. 

 

Table 3.1 Comparison of gas flows and LNG import simulation result to actual data 

for 2010. 
 

From Country  To Country Actual (bcm) Simulated (bcm)  

LNG Import Belgium  6.4 4.5 

Netherland  Belgium  19.7 21.3 

Norway  Belgium  7.0 14.6 

United Kingdom Belgium  8.8 3.5 

Czech Republic Germany 17 21.8 

Norway  Germany 32.2 27.0 

Poland  Germany 33 22 

Belgium France 13.5 16.0 

LNG Import France 14 10 

Norway  France 19.1 18.5 

Austria Italy 18.5 20.0 

LNG Import Italy 12.6 11.0 

Norway  Netherland  12.9 9.2 

Algeria Spain 9.1 9.0 

LNG Import Spain 27.8 28.7 

Netherland  United Kingdom 8.2 4.5 

Norway  United Kingdom 25.0 30.0 

LNG  United Kingdom 18.6 14.1 

 

The results of the simulation matched the real data except for a few cases. The reason 

for the lack of agreement is believed to be that the long-term contracts between gas 

producers and destination countries are not taken into account in the simulation as the 

supply terms and prices of long-term contracts are in most cases not publicly available. 
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3.5 Description of the Case Studies  

The case studies were based on the gas demand for winter 2014 and two demand cases 

were defined as Reference Demand Case and High Demand Case as shown in Figure 

3.3 [13]. The simulation has a daily time step and was run over 182 days from October 

2014 to March 2015. 

 

Figure 3.3 Structure of the case studies  

 

3.5.1 Demand Assumptions  

 Reference Demand Case 

The Reference Demand Case represents a low winter gas demand situation in 2014. 

Daily demand was derived as average daily consumption calculated from historical 

monthly demand consumption for all European countries [101]. The daily demand was 

calculated by dividing the number of days in each month by the monthly gas 

consumption.  For example, the daily demand data of Netherlands and Spain is shown 

in Figure 3.4. The demand data for all European countries are presented in Appendix 

C. 

 

 

Case Studies 

Reference Demand Case High Demand Case 

Loss of UkraineNo Loss No Loss Loss of Ukraine
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 High Demand Case  

The High Demand Case assumed a 20% increase in the gas demand of the Reference 

Case to reflect a cold winter condition across all European countries. 

 

 Peak Day Demand  

A peak day demand was applied to the Reference Demand Case and High Demand 

Case. The 1 in 20 peak day demand is the highest demand for gas in a day which occurs 

once out of 20 winters [102]. This gas standard is used to test the resilience of the 

system to an extreme stress condition. It was assumed that peak demand occurred on 

the same day in all the European countries. 

 

 

 

 

 

 

 

Figure 3.4 Average daily demand profile of Netherlands and Spain for 2014 winter 

 

3.5.2 Gas Supply Assumptions 

Supply data was obtained from the ten-year network development plan [13] (see 

Appendix B). The delivery of imported pipeline supplies was determined from 

historical supply volume to Europe and the suppliers’ production capacity. Based on 

historical winter supply, average gas supply from pipeline import sources and LNG 

import was increased by 10% to obtain the maximum available supply [38].  
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Table 3.2 European winter gas supply for 2014 – Major gas supply sources 

 

Supply source Maximum supply (mcm/d) 

Russia 500 

Norway 330 

Algeria 111 

Libya 30 

Aggregated national production in the EU  725 

Total LNG import to Europe   355 

 

3.5.3 Cost Assumption 

The costs of domestic production in the Europe, LNG supplies and imported pipeline 

gas to Europe are presented in Appendix B.  

 

3.5.4 Supply Disruption Assumption  

The loss of all transmission capacities to Europe routed through Ukraine was examined 

in the Reference Demand Case and High Demand Case for 30 days from mid-

January to mid-February (see Figure 3.3). The 30-day period included the peak day 

demand. The duration of the supply disruption was selected to determine whether the 

EU security of supply standard for domestic gas consumers is attained over the coldest 

30 days of winter across Europe (see 2.2.4).  

 

3.5.5 Mitigation Measures  

Two different mitigation measures were applied to each of the demand cases. 

 Additional interconnector capacities in Europe. 

Transmission capacities of selected interconnectors were increased to allow greater 

gas flow from west to east Europe. This increase in capacity could be achieved by 

investment in additional compression stations or upgrading existing stations with 
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additional compressor units. The flow capacity of the following interconnectors was 

adjusted [103] :  

1. Flow capacity on the Hungary-Romania interconnector was increased from 

4.09 mcm/d to 8.18 mcm/d. 

2. Flow capacity on the Hungary-Serbia interconnector was increased from 

11.2 mcm/d to 22.4 mcm/d.  

3. Reverse flow capacity of 9.6 mcm/d was also allowed on the Greece-

Bulgaria interconnector.  

4. Flow capacity of the Russia-Germany interconnector was extended from 

85 mcm/d to 150 mcm/d.  

 

 Higher storage withdrawal rates in South East Europe  

A 50% increase in maximum withdrawal rate was applied to Serbia, Romania and 

Bulgaria. These countries primarily rely on imported gas from Russia through the 

Ukraine transit capacity (see Figure 3.1).  The increase in maximum withdrawal rate 

could be achieved by increasing the number of withdrawal wells in an existing storage 

facility. The cost of the well construction range between 15% - 33% of the total capital 

cost of a new storage facility [23].     

 

3.6 Simulation Results of Case Studies without the Loss of 

Ukraine Transit Capacity  

The results are presented as average day gas volumes over the 182 days of winter 

2014/2015 (including the peak day). 

 

3.6.1 Domestic Production and Import Gas Volumes to Europe  

Figure 3.5 shows the comparison of gas supply volumes from domestic production and 

import sources without the loss of the Ukraine transit capacity. Domestic gas 

production accounted for 30% of total supplies in the Reference Demand Case and 

28% of total supplies in the High Demand Case.  The average gas supplied from Russia 

was 500 mcm/d, accounting for 30% of total supplies in the Reference Demand Case 
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and 27% of total supplies in High Demand Case. LNG volumes increased from 185 

mcm/d in the Reference Demand Case to 335 mcm/d in the High Demand Case. 

Figure 3.5 Average domestic production and gas import supplies to Europe - No Loss 

Case 

 

3.6.2 Gas withdrawn from European Storage Facilities  

Gas volumes withdrawn from storage facilities are presented in Figure 3.6. Gas storage 

facilities in Other Europe showed the largest gas withdrawals of 132 mcm/d in the 

Reference Demand Case and 224 mcm/d in the High Demand Case. Storage 

withdrawals in German increased from 95 mcm/d in the Reference Demand Case to 

185 mcm/d in the High Demand Case. Central Europe storage withdrawals increased 

by 217% in the High Demand Case compared to the Reference Demand Case while 

gas withdrawals in South East Europe increased by 28% in the High Demand Case as 

against the Reference Demand Case. 
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Figure 3.6 Average gas withdrawn from European storage facilities - No Loss Case 

(South East includes Bulgaria, Croatia, Romania, Serbia and Turkey  

Central Europe includes Austria, Czech Republic, Poland, Hungary and Slovakia 
Other Europe comprises storage facilities in European countries excluding South East Europe, Germany and Italy) 

 

3.7 Impact of the Loss of Ukraine Transit Capacity  

The loss of the Ukraine transit capacity was then applied for a 30-day period. The 

results of the simulation with the supply disruption for the High Demand Case are 

presented as average gas volume over the 30-day period including the peak day. 

 

3.7.1 Domestic Production and Imported Gas Volume to Europe  

Figure 3.7 presents the domestic production and imported gas volume to Europe in the 

High Demand Case. The loss of Ukraine transit capacity resulted in a 52% decline in 

Russian gas volumes supplied to Europe in compared to the No Loss Case. To 

compensate for the lost gas volumes, Domestic production volume increased by 12 

mcm/d relative to No Loss Case. In addition, LNG supplies increased by 7.7% in the 

in the Loss Case to replace some of the supply shortfall. 
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Figure 3.7 Domestic production and gas import to Europe - High Demand Case  

 

3.7.2 Gas Withdrawn from European Storage Facilities  

The storage withdrawn from European storage facilities in the High Demand Case is 

shown in Figure 3.8. 

 

Figure 3.8 Gas withdrawn from storage - High Demand Case   

 

Additional withdrawals from gas storage of 8 mcm/d in Other Europe, 51 mcm/d in 

Italy, and 48 mcm/d in Germany was used to replace some of the missing gas volumes 
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in the Loss Case. Central Europe showed the largest increase in storage withdrawals 

of 92 mcm/d in the Loss Case compared to the No Loss Case. The reason for this is 

that many countries in Central Europe and South East Europe rely on the Russian gas 

supply through the Ukraine transit capacity. Storage withdrawals increased by only 18 

mcm/d in South East Europe in the Loss Case due to the limited storage capacity in 

that region.  

 

3.7.3 Unserved Gas Demand  

Average daily unserved gas demand is calculated over the 30-day duration of the 

supply disruption.  The average daily unserved gas demand in countries affected by 

the supply disruption in the High Demand Case is presented in Table 3.3.  

 

Table 3.3 Average daily unserved gas demand - High Demand Case 

 

Loss Case 

Country  Macedonia Bosnia  Bulgaria  Romania  Greece 

Unserved gas 

demand (mcm/d) 

1.3 2.0 9.6 4.1 0.8 

% of average daily 

demand curtailed  

97.4 78.7 60.7 7.2 4.2 

 

Unserved gas demand did not occur in any country in the No Loss Case. However, in 

the Loss Case unserved gas demand was noted in south eastern European countries 

that primarily depend on the Russian gas supply through the Ukraine transit route and 

have limited access to alternative supply sources or transport routes. In Bulgaria, 

Bosnia and Macedonia between 61% - 97% of average day gas demand was unmet in 

the High Demand Case. The supply disruption resulted in curtailment of heating 

demand (domestic & commercial sectors) in only Bosnia. However, a third of the  

gas-fired district heating plants have the capability to switch to fuel oil to supply 

domestic heating [104].  In 2013, heating demand accounted for less than 2% of total 
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gas consumption in Bulgaria, 24% of total gas consumption in Bosnia and 2% of total 

gas consumption in Macedonia [105], [106], [107]. 

 

On the other hand, gas supply to industrial and power generation sector was completed 

curtailed in Bulgaria, Macedonia and Romania. In 2013, the industrial sector 

accounted for 70% of total gas consumption in Bulgaria, 70% of total gas consumption 

in Bosnia and   90% in total gas consumption in Macedonia [106],[107], [108]. In these 

countries, the industrial sector is dominated by steel and metal industries reliant on 

natural gas as fuel for their production process [109]. Hence, the missing gas supply 

have consequences of severe economic costs and losses.  In 2013, the use of gas in 

power generation ranged between   0% - 2%  in Bosnia, Macedonia and Bulgaria [110]. 

 

In Greece and Romania, less than 10% of average day gas demand was curtailed in the 

High Demand Case respectively. The availability of LNG supply to Greece provides 

an alternative to diversify gas supply from Russia through Ukraine. However, the 

existing LNG import capacity was not sufficient to avert the disruption of gas supply 

to some industrial consumers. In Romania, only gas use in power generation was 

affected by the supply shortfall.   

 

3.8 Simulation Results of the Mitigation Strategies  

Figure 3.9 presents gas flow on selected interconnectors and storage utilisation in the 

High Demand Case (Loss of Ukraine), Higher storage withdrawal rates and Additional 

interconnector capacities.  

Russian gas supply through Germany increased by 44% with Additional 

interconnector capacities strategy compared to the High Demand Case (Loss of 

Ukraine). The expansion of the Russian - Germany interconnector allowed the 

diversion of Russian gas supply from Ukraine transit capacity. In addition, higher gas 

flow on cross-border interconnectors from Western Europe to South East Europe was 

noted as a result of additional capacities on selected interconnectors within South East 

Europe.  
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Figure 3.9 Gas flows on selected interconnectors and storage utilisation in the High 

Demand Case (Loss of Ukraine) and the different mitigating measures 

Gas withdrawn from German storages deceased by 38% in the Additional 

interconnector capacities strategy and by 16% in the Higher storage withdrawal rates 

strategy compared to the High Demand Case (Loss of Ukraine). This showed that 

German gas storage withdrawals was also used to compensate for the supply shortage 

to South West Europe when the loss of Ukraine transit capacity occurred. However, 

with the implementation of the mitigation strategies, Germany storage volumes 

initially sent to South East Europe was substituted by higher gas flows on cross-border 

interconnectors and increased gas withdrawals from storage facilities within South 

East Europe. 
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Figure  3.10 Unserved gas demand in the High Demand Case (Loss of Ukraine) and 

the different mitigating measures  

 

In Figure 3.10, implementation of additional interconnector capacities resulted in the 

decreasing unserved gas demand decreased by 3mcm/d (50%) in Bulgaria, 3.4 mcm/d 

(82%) in Romania and 1.7 mcm/d (84%) in Bosnia compared to High Demand Case 

(Loss of Ukraine). On the other hand, higher storage withdrawal rates resulted in a 

95% decline in unserved gas demand in Romania and a 78% decline in unserved gas 

demand in Greece compared to the High Demand Case (Loss of Ukraine).  

 

3.9 Summary  

A European gas network model was described. The model represented all gas 

interconnectors including routes to major import sources, LNG terminals and storage 

facilities in Europe. The model was used to investigate the impact of the loss of gas 

transit capacity through Ukraine on European gas supply for winter 2014/2015.  

 

In the event of a 30-day loss of Ukraine transit capacity, the simulation results showed 

that a combination of LNG supplies and available stored gas will be used to 

compensate for the supply shortfall.  
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 However, considerable unserved gas demand was evident in Macedonia, Bosnia, and 

Bulgaria in South East Europe. The results of the study showed that domestic gas 

supply in Bosnia was adversely affected in Bosnia due to the supply disruption. It was 

shown that showing that this region was reliant on the Ukraine transit route and had 

limited alternative supply routes. 

 

The results of the study showed that additional capacities on selected gas 

interconnectors including reverse flow capacity on some gas interconnectors enabled 

Russian gas supply through Germany and Central Europe reach South East Europe in 

order to reduce the missing gas volumes. It was also shown that higher storage 

withdrawal rate in some countries in South East Europe reduced instances of unserved 

gas in the region. 
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Chapter 4  

4.Integrating Models of the European Gas Network 

and Great Britain’s Energy Networks  

4.1 Introduction  

In 2014, the UK imported 43 bcm of natural gas of which 58% came from Norway, 

26% from LNG and 16% from continental Europe [31]. As domestic production 

declines, the UK will increasingly rely on imported gas to meet its future demand 

[111].  According to the 2015 National Grid Future Energy Scenarios (FES),  future 

gas supplies to GB will depend on the demand and supply balance in Europe and 

developments in the global LNG market [31]. 

 

The European gas network model (EGN), which was presented in Chapter 3, was 

coupled to the GB combined gas and electricity network model (CGEN) and used to 

investigate the interdependencies between the European gas network and GB’s gas and 

electricity networks. A soft-linking approach was employed to couple the EGN and 

CGEN models. The integrated (EGN – CGEN) model was applied to a set of scenarios 

to assess the impact of supply shocks in the European gas network on the operation of 

the GB gas and electricity networks. 

 

The combined gas and electricity network model (CGEN), originally developed by 

Chaudry et al [3] is a multi-time period optimisation modelling tool. It is used to 

examine the interaction of gas and electricity networks as an integrated system. The 

key features of the CGEN model are presented in this chapter. However, a detailed 

description of the model formulation is provided in Appendix D. 
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4.2 The Soft-Link Approach: Coupling EGN model and the 

CGEN model  

A soft link methodology was used to integrate the European gas network model (EGN) 

and the combined gas and electricity network model (CGEN). The structure of the 

integrated model is shown in Figure 4.1. The EGN is depicted in the upper section of 

Figure 4.1.  The model was developed to analyse natural gas supply across 37 countries 

in Europe. The key model inputs include each European country’s gas demand, 

domestic production as well as aggregated capacities of storage and LNG facilities. 

The non-linear relationship between pressure and gas flow through pipelines is not 

represented in this model. 

 

Figure 4.1 Structure of the integrated EGN- CGEN model  

 

The CGEN model is shown in the lower section of the Figure 4.1.                                

The CGEN model is depicted in the lower section of Figure 4.1. The model includes a  

detailed representation of the GB gas and electricity networks. The key inputs of the 

model include gas terminal capacities, gas transmission pipelines parameters 
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(comprising diameters, lengths and pressures), operational characteristics of 

compressor stations and storage facilities, electricity generation technologies and 

electricity transmission lines. Model outputs include volume of gas supplied at 

terminals, storage utilisation, change in linepack and power generation output.  

 

The soft link methodology involved an exchange of a set of variables between the 

models in an iterative process. The variables taken from the EGN are gas flow on 

cross-border interconnectors between GB and continental Europe and their 

corresponding gas supply prices. Three cross-border interconnectors link GB to the 

rest of Europe namely; Norway to GB interconnector (NO-GB), Netherland to GB 

interconnector (NL-GB) and the bi-directional interconnector between GB and 

Belgium (GB-BE).  

 

The total GB gas demand is a variable obtained from the CGEN model. The total GB 

gas demand was calculated as the sum of the non-electric gas demand and the amount 

gas used by gas-fired generators for power generation.  The non-electric demand is an 

exogenous input while the amount of gas used by gas-fired generation for power 

generation is endogenously determined in the CGEN model. The CGEN model 

calculates the gas used for electricity generation based on the price of natural gas 

relative to the cost of generating electricity using alternative generation technologies 

such as coal. Hence, gas used for power generation decreases when gas prices are high 

and vice versa.  

  

4.2.1 Description of the CGEN model  

The CGEN model was modified to include the individual cross-border pipelines 

between GB gas network and neighbouring European countries.  Figure 4.2 shows a 

schematic diagram of the GB gas network coupled by cross-border pipelines at 

Norway, Netherland and Belgium to the rest of the European gas network. GB gas 

terminals receive gas from offshore production fields, LNG import and cross-border 

pipelines with Continental Europe. 
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Figure 4.2 Linkages between GB gas network and the European gas network 

 

In this study, Continental Europe refers to all EU countries, Bosnia, Macedonia and 

Serbia. It excludes GB and Republic of Ireland.  

 

 The Objective Function  

The objective function of the CGEN model is to minimise the combined operational 

cost of gas and electricity networks whilst meeting gas and electricity demand. The 

operational cost includes costs of gas supplies, gas storage operation, change in 

linepack, electricity generation, unserved gas demand and electrical energy as 

expressed in Equation 4.1. The general formulation and description of the CGEN 

model is presented in Appendix D. 
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Minimise total operational cost (£) = 

 

∑𝑡𝑠

𝑡

× 

{
 
 

 
 

∑𝐶𝑎,𝑡
𝑔𝑎𝑠
𝑄𝑎,𝑡
𝑠𝑢𝑝𝑝

𝑎⏟        
𝑔𝑎𝑠 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑠

+∑(𝐶𝑠,𝑡
𝑤𝑑  𝑄𝑠,𝑡

𝑤𝑑 − 𝐶𝑠,𝑡
𝑖𝑛𝑗
𝑄𝑠,𝑡
𝑖𝑛𝑗
)

𝑠⏟                
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+ ∑𝐶𝑡
𝑠𝑝
𝜕𝐿𝑃ℎ,𝑡

ℎ⏟        
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑖𝑛𝑒𝑝𝑎𝑐𝑘

+ ∑𝐶𝑔
𝑔𝑒𝑛

𝑔

 𝑃𝑔,𝑡 

⏟        

 

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+ ∑𝐶𝑔𝑎𝑠𝑠ℎ𝑒𝑑

𝑖

𝑄𝑖,𝑡
𝑔𝑎𝑠𝑠ℎ𝑒𝑑

 
⏟              
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑔𝑎𝑠 𝑑𝑒𝑚𝑎𝑛𝑑

+  ∑𝐶𝑒𝑙𝑒𝑐𝑠ℎ𝑒𝑑

𝑏

 𝑄𝑏,𝑡
𝑒𝑙𝑒𝑐𝑠ℎ𝑒𝑑

⏟              
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 }

 
 

 
 

 

 

4.1

  

where :  

𝐶𝑎,𝑡 gas cost from terminal 𝑎  at time 𝑡 (£/m3) 

𝑄𝑎,𝑡
𝑠𝑢𝑝𝑝

 gas supplied from terminal 𝑎 at time 𝑡  (m3/d) 

𝐶𝑠,𝑡
𝑤𝑑 cost of gas withdrawn from storage facility 𝑠 at time 𝑡 (£/m3) 

𝑄𝑠,𝑡
𝑤𝑑 volume of gas withdrawn from storage facility 𝑠  at time 𝑡  (m3/d) 

𝐶𝑠,𝑡
𝑖𝑛𝑗

 cost of storage injection into storage facility 𝑠  and time 𝑡 (£/m3) 

𝑄𝑠,𝑡
𝑖𝑛𝑗

 volume of gas injected in storage facility 𝑠  at time 𝑡 (m3/d) 

𝐶𝑡
𝑠𝑝

 spot gas price at time 𝑡 (£/m3) 

𝜕𝐿𝑃ℎ,𝑡 changes in linepack of pipe ℎ at time 𝑡 (m3/d) 

𝐶𝑔
𝑔𝑒𝑛

 generation cost of generator 𝑔 (£/MWh) 

𝑃𝑔,𝑡 power output from generator 𝑔 at time 𝑡 (MW) 

𝐶𝑔𝑎𝑠𝑠ℎ𝑒𝑑 cost of unserved gas demand (£/m3) 

𝑄𝑖,𝑡
𝑔𝑎𝑠𝑠ℎ𝑒𝑑

 volume of unserved gas energy at node 𝑖  and time  𝑡 (m3/d) 

𝐶𝑒𝑙𝑒𝑐𝑠ℎ𝑒𝑑 cost of unserved electrical energy (£/MWh) 

𝑄𝑏,𝑡
𝑒𝑙𝑒𝑐𝑠ℎ𝑒𝑑 unserved electric power at bus 𝑏 and time 𝑡 (MW) 

 

4.2.2 Stages Involved in the Soft-Link Approach  

The coupling of the CGEN and EGN models is described in the following steps below: 

Step 1: The EGN model received gas demand, domestic production and storage 

capacities for each European country as input data (Section 3.4).  
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Step 2: The EGN model was run to obtain gas flow on the European interconnectors 

linked to the GB gas network and their corresponding gas supply prices. 

Step 3: The gas supply prices and cross-border gas flow profiles calculated in the EGN 

were used as input in the CGEN model. 

Step 4: The CGEN model was run to obtain the amount of gas consumed in electricity 

generation. 

Step 5:  The gas demand in electricity generation was used to calculate the total GB 

gas demand profile which was updated in the next run of the EGN model.  

Step 6: Steps 3, 4 and 5 were iterated (repeated sequentially) until the gas flow on the 

interconnectors linked to the GB network and total GB gas demand profile reaches the 

convergence criterion or after four iterative cycles. The convergence criterion was 

given by Eq.3.2. 

 
𝑁𝑘 − 𝑁𝑘−1 

𝑁𝑘
≤  0.05 4.2 

 

where 𝑁 is the GB gas demand data exchanged between the EGN and CGEN 

models, 𝑘 is the iteration number.  

Once the models converged and a solution was reached, the loss of Ukraine transit 

capacity was applied in the EGN. The resulting cross border gas flows on the 

interconnectors connecting GB to Europe were imported into CGEN model to examine 

the impact of the supply disruption on gas dispatch in GB gas and electricity networks.  

 

4.3 Description of Scenarios  

Two scenarios of GB wind generation capacity and non-electric gas demand shown in 

Figure 4.3 were modelled using a daily time step for 90 days of cold winter (January-

March) in 2030. The modelling period was selected to cover the days of coldest winter 

demand and low gas storage levels across Europe. Historical gas demand data obtained 

from [112] showed that January and February were the two consecutive months of the 

highest gas demand in the winter season in GB and Continental Europe. By the end of 

the winter season in March, gas storage stocks often reach their lowest levels [113].  
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The minimum storage levels at the end of winter (March) depends on a number of 

factors including a prolonged cold winter condition in March or the loss of a key supply 

source. For instance, GB storage level reached 3% of maximum storage capacity in 

March 2013 due to a prolonged cold weather condition [113].  

  

The scenarios were defined as the Reference Scenario and the Slow Transition 

Scenario. The key features of the scenarios are presented in Table 4.1.  

Figure  4.3 Structure of the scenarios  

 

Table 4.1 Key features of the scenarios 

  

Parameters Assumptions 

Reference Slow Transition 

No Loss 

Case 

Loss 

Case 

No Loss 

Case 

Loss 

Case 

GB non-electric gas demand (bcm) 23 27 

Installed GB wind generation 

capacity (GW) 
51 41 

European Union gas demand (bcm) 136 

Total capacity of European gas 

interconnectors (mcm/d) 
2981 2595 2981 2595 

 

4.3.1 Reference Scenario  

Scenarios 

                     Reference
 Low non-electric gas demand 
 High wind generation capacity in 

GB 

Slow Transition
 High non-electric gas demand 
 Low wind generation capacity in 

GB 

Loss of UkraineNo Loss No Loss Loss of Ukraine
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This scenario assumed that GB’s non-electric gas demand was 23 bcm for 90 days of 

winter and 51 GW of installed wind generation was connected to the GB electricity 

network.  The generation capacities and non-electric gas demand for the GB system 

were taken from the 2015 Future Energy Scenarios (FES) published by the National 

Grid [31]. These assumptions reflect a situation when GB’s environmental and low 

carbon energy targets are met by 2030 [114]. 

 

Gas demand  for individual countries in Continental Europe was taken from the 

ENSTOG Ten Year Network Development Plan (TYNDP) [18]. The gas demand 

obtained from individual countries in Continental Europe was aggregated. This value 

is 136 tcm over 90 days. Using 2009/2010 daily demand data obtained from several 

TSO websites and other available sources, a daily demand profile was generated for 

each country to reflect similar weather conditions across Europe in both scenarios 

[115],[116]. 

 

4.3.2 Slow Transition Scenario  

The Slow Transition Scenario assumed a higher non-electric gas demand of 27 bcm 

and lower wind generation capacity of 41GW in GB than in the Reference Scenario 

(see Table 4.1). Gas demand in continental Europe remained unchanged in this 

scenario. 

 

4.3.3 Cases 

For each scenario, two cases were defined based on the loss of Ukraine transit capacity 

for 90 days of winter. The results of the case study conducted in chapter 3 showed that 

the 30-day loss of the Ukraine transit capacity has no adverse impact on gas supply in 

GB.  Therefore, the duration of the impact of the supply disruption was analysed for 

90 days to assess the resilience of the GB gas and electricity networks to a prolonged 

loss of a major gas supply source in Europe. 

 

 No Loss Case: The loss of Ukraine transit capacity is not applied in this case and the 

total capacity of Russian import pipelines to Europe is 687 mcm/d (see Table 4.1).  
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Loss Case: This is the case when the loss of the Ukraine transit capacity (386 mcm/d 

interconnector capacity between Ukraine to Europe) occurred.  

 

4.3.4 Modelling Assumptions  

The following assumptions were applied in modelling the scenarios:  

1. In both scenarios, LNG supply to Europe was assumed to be limited due to 

severe winter conditions in other major LNG importing countries.  

 

2. Modelling of the scenarios did not consider all contractual constraints, like take 

or pay obligations and other typical contractual arrangements of gas trade. This 

is because, contractual prices are not generally known but are usually 

confidential therefore the optimisation was based on estimations of border 

prices. 

 

3. All storage facilities except Germany and Netherlands were assumed to be 

available at 80% of maximum working gas capacity at the beginning of the 

winter. 

 

4. German and Dutch storage were assumed to be available at 70% of their 

maximum working capacities due to the limited access to these storage supplies 

as a result of their existing long-term contractual arrangements.  

 

4.3.5 Input Data for GB Gas and Electricity Networks in the 

CGEN Model  

The GB daily electricity demand profile for the Reference and Slow Transition 

scenarios was derived from historical winter electricity consumption data for 

2009/2010 and scaled to 2030 values obtained from 2015 FES [117]. Wind generation 

data of January-March 2010 was scaled up to 2030 values of wind power capacity 

obtained from 2015 FES in the Reference Scenario and in the Slow Transition 

Scenario.  

The electricity demand and wind generation profiles are shown in Figures 4.4 and 4.5. 

The Reference Scenario has a total generation capacity of 130.5 GW and the Slow 

Transition Scenario has a generation capacity of 120.5 GW. The capacities of the 

different generation technologies at each bus and the transmission line capacities are 
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provided in Appendix E. The electricity generation cost for the different technologies 

are provided in Appendix E. 

 

Figure 4.4 GB daily electricity demand  

 

Figure 4.5 GB daily wind generation 

 

GB gas demand was split into non-electric demand and gas demand for power 

generation.  In both scenarios, the non-electric demand profiles were derived from 

historical winter demand data for 2009/2010 including a peak winter day. The wind 
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demand data for March was increased by 20% to reflect a period of prolonged high 

gas demand towards the end of winter. The demand profiles of GB non-electric gas 

demand are shown in Figure 4.6 [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.6 GB non-electric gas demand profiles  

 

The maximum daily gas supply capacity at individual gas terminals and maximum 

daily capacity at each GB storage facility were obtained from National Grid Gas Ten 

Year statement are presented in Appendix E.  The cost data for GB network parameters 

are provided in Appendix E. 

 

4.3.6 Input Data for the EGN Model  

European supply data includes indigenous production, LNG and pipeline import 

sources - Russia, Norway, Libya, Algeria and Azerbaijan (see Fig 4.2). Based on 

historical winter supply, the gas supply from pipeline import sources and LNG import 

was increased by 10% to obtain the maximum  daily available supply [101]. The 

maximum daily supply potential and costs of gas supply for the various supply sources 

is given in Appendix C.  

Maximum daily capacities of existing interconnectors, LNG and storage facilities were 

taken from databases compiled by the Gas Infrastructure Europe [118], [47], [25]. In 

addition, capacities of planned projects identified as key infrastructure required to 
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improve supply diversification and the full integration of the European gas network 

were implemented in this study [119].  The cost data for gas transport via 

interconnectors and storage facilities are provided in Appendix C. 

 

4.4 Result of the Reference Scenario  

4.4.1 Impact of the Supply Disruption on Gas Supply in 

Continental Europe  

Figure 4.7 presents average daily gas supply volumes to Continental Europe from 

domestic and import sources in the Reference Scenario over 90 winter days from Jan 

- Mar 

Figure 4.7 EU domestic gas supplies and imported gas supply over 90 days – 

Reference Scenario  

Domestic supplies are composed of domestic production and gas withdrawn from 

storage facilities in Continental Europe. In the No Loss Case, average domestic 

production was 127 mcm/d while storage withdrawals contributed 533 mcm/d. Russia 

supplied the largest volume of imported gas of 500 mcm/d to Europe while the volume 

of LNG supplied was 241 mcm/d. 

 

The loss of Ukraine transit capacity led to a 43% decrease in Russian gas export to 

Europe compared to the No Loss Case. The supply shortfall was primarily 

compensated by higher storage withdrawals.  Storage withdrawals increased by 120 

 

0

100

200

300

400

500

600

700

800

900

*EU Domestic
supplies

Russia LNG Norway Others

G
as

 s
u

p
p

ly
 v

o
lu

m
e 

(m
cm

/d
) 

No Loss Case Loss Case



Chapter 4      Integrating Models of the European Gas Network and Great Britain’s Energy Networks  

 

 

 
67 

 

  

mcm/d in the Loss Case relative to the No Loss Case. LNG import increased from 241 

mcm/d in the No Loss Case to peak at 251 mcm/d in the Loss Case due to limited 

available supply. Norwegian gas import only made an additional supply of 12.7 mcm/d 

in the Loss Case to reach its maximum supply capacity due to a cold winter condition 

in Continental Europe.   

 

4.4.2 Impact of the Supply Disruption on the Operation of GB Gas 

Network  

Figure 4.8 presents the total volume of gas supplied from different supply sources to 

the GB gas network over 90 days in the Reference Scenario.  
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Figure 4.8 GB domestic gas supply and import volumes – Reference Scenario  

(BBL is the pipeline interconnector between GB and the Netherlands and IUK is the gas pipeline interconnector between GB and 

Belgium) 

 

GB domestic gas production contributed just 18% of total GB gas supplies in the No 

Loss Case due to dwindling gas production capacity in the UK continental shelf.  On 

the other hand, imported gas supply from LNG and Norway provided 56% of total GB 
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gas supply.  Norwegian import to GB decreased by 643 mcm (10%) in the Loss Case 

over the 90-day period when compared to the No Loss Case. The gas supply shortfall 

led to high gas prices in Continental Europe which attracted more Norwegian gas 

import to the Continent instead of GB. In order to replace some of the missing gas 

supply volume in Continental Europe, gas imported to GB on the BBL and IUK 

pipelines (Continental supplies) decreased by 531 mcm (9%) in the Loss Case 

compared to the No Loss Case. 

 

However, gas withdrawn from GB storage facilities increased by 300 mcm (9%) in the 

Loss Case to offset some of the supply shortfall. The supply disruption did not result 

in unserved gas demand in GB because there was a corresponding reduction of natural 

gas consumption in power generation to counterbalance the supply shortage. (This is 

discussed in section 4.4.3). 

 

 

Figure 4.9 Linepack utilisation – Reference Scenario 

 

The system linepack for the Reference Scenario is shown in Figure 4.9.  The system 

linepack maintained a nearly smooth profile with slight variations in the No Loss Case. 

In the Loss Case, steep drops in the level of linepack occurred on days 17, 41, and 77 

while the largest change in linepack of 32 mcm was noted on day 77.  Large depletion 

of system linepack occurred when peak demand in the gas network coincided with low 

wind generation in the electricity network. Gas-fired generation was frequently used 
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to compensate for the variation in wind power output leading to an increase in total 

gas consumption in the gas network.  

 

Table 4.2 Total compressor power consumption – Reference Scenario  
 

Slow Transition Scenario  Average Compressor Power (MW) 

No Loss Case  96 

Loss Case 66 

 

Average compressor power consumption over 90 days for the Reference Scenario is 

shown in Table 4.2. In the No Loss Case, extensive compressor power was used to 

transport imported gas supply at GB terminals to long distance demand locations 

across the network.  In addition, compressor power was also used to manage line pack 

fluctuation in a system supporting significant capacity of wind power generation.  

In the Loss Case, compressor power consumption decreased by 30% in comparison to 

the No Loss Case due to less imported gas supply at terminals (i.e. Bacton and 

Easington). Consequently, rapid depletion of the linepack contributed to balancing the 

gas network during periods of low wind generation. 

 

4.4.3 Impact of the Supply Disruption in GB Electricity Network  

GB power generation from different generation technologies is presented in Figure 

4.10. In the No Loss Case, nuclear plants supplied 11TWh of base load generation 

over the 90 day-period. Power generation from gas-fired generators was 39 TWh while 

38 TWh of electricity came from wind power generators. The substantial gas-fired 

generation was attributed to two factors. CCGT generators could attract surplus gas 

supplies due to low non-electric gas demand in the gas network. Furthermore, the 

variation in wind power generation was largely compensated by CCGT power 

generation.  
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Figure 4.10 GB power generation – Reference Scenario  

 

However, gas-fired generation declined by 7 TWh (18%) in the Loss Case. Higher 

power output from Other generators (waste, dual fuel and oil) was used to compensate 

for the reduction in gas-fired generation. Imported electricity through interconnectors 

had negligible contribution toward total power generation due to the availability of 

other lower cost electricity generators in the electricity generation mix. 
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4.5 Results of the Slow Transition Scenario  

In this section, the simulation results focus mainly on the impact of the loss of Ukraine 

transit capacity on the operation of GB gas and electricity networks.  

 

4.5.1 Impact of the Supply Disruption on the Operation of GB Gas 

Network  

The impact of the loss of Ukraine transit capacity on GB gas supplies in the Slow 

Transition Scenario is shown in Figure 4.11.  

 

Figure 4.11 GB domestic gas supply and import volumes – Slow Transition Scenario  
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The supply shortfall resulted in a sudden decline in LNG and Norwegian gas supplies 

between days 61-70. LNG supply decrease by 20% while Norwegian gas decreased by 

30% compared to the condition when no supply disruption occurred (Fig 4.12). The 

supply disruption combined with limited LNG supply to Europe led to the rapid 

depletion of gas storage stocks in continental Europe. Consequently, LNG and 

Norwegian supplies were diverted away from GB to Continental Europe.  

 

Additional storage withdrawals of 253 mcm from GB storage facilities was used to 

compensate for the supply shortfall during this period (days 61-70). However, storage 

supplies were not sufficient to prevent unserved gas demand from day 39 to day 90. 

The results of the study showed that only the large industrial customers were adversely 

affected by unserved gas demand. A study conducted by London Economics on the 

estimating the value of lost load among gas consumers in GB suggested that the 

economic cost of unserved gas demand to the industrial sector could be substantial due 

to loss of production output or even damage to plant and equipment. For instance, the 

study estimated that the cost of unserved gas demand to Iron and Steel industry could 

range between 4.9 £m/mcm – 6.3 £m/mcm [120].  

 

4.5.2 Impact of the Supply Disruption in GB Electricity Network  

Figure 4.12 presents power generation from different generation technologies in the 

Slow Transition Scenario. GB power generation was dominated by power supply from 

gas-fired plants (34 TWh) and Wind (31 TWh) over 90 days. Electricity 

interconnectors provided additional power supply on days (13,31,41,61) of high 

electricity demand and low wind generation. 

 

In the Loss Case, the gas supply shortage restricted gas delivery to gas-fired 

generators. As a result, gas-fired power output decreased by 30% (10 TWh) relative to 

No Loss Case. The reduction in gas-fired generation output was mostly replaced by 

higher electricity import via electricity interconnectors. This is due to the availability 

of a significant capacity of electricity interconnectors expected to come online in GB 

electricity network by 2030. Electricity interconnection between GB and multiple 

European countries is expected to play a key role in the diversification of GB power 
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generation mix, improve security of energy supply and support a large capacity of 

renewable generation.     

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 GB power generation – Slow Transition Scenario 
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4.6 Summary 

An integrated optimisation model was developed from the European gas network 

(EGN) model and Combined Gas and Electricity Network model (CGEN) using the 

soft-link approach. This was used to determine the impact of the gas supply shocks in 

the European gas network on the operation of Great Britain’s gas and electricity 

networks. 

 

The model was applied to two different scenarios which depict the future evolution of 

GB energy system in 2030.  The Reference Scenario and the Slow Transition Scenario 

were defined for 90 days of cold winter condition combined with limited availability 

of LNG caused by a tight global LNG market in 2030. The loss of Ukraine transit 

capacity was implemented as a supply shock situation over 90 days in both scenarios. 

 

Due to the low gas demand assumed in the Reference Scenario, the loss of the Ukraine 

transit capacity had no significant effect on the operation of GB gas and electricity 

networks. The supply shortfall was compensated by GB storage withdrawals in the gas 

network and lower gas consumption in the electricity network. 

 

In the Slow Transition Scenario, the loss of Ukraine transit capacity resulted in gas 

supply shortfall in the GB gas network. Some of the missing gas volumes was replaced 

by higher withdrawal of gas storage volumes in GB and substitution of natural gas 

generation by electricity imports in the electricity network. However, the industrial 

sector experienced 20% of average daily demand curtailed (unserved gas demand). 

This was due to high gas demand assumed in this scenario. 
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Chapter 5  

5.Mitigation Options to Improve Security of Gas 

Supply to GB  

5.1 Introduction  

Since 2001, there has been significant expansion in the import capacity of the GB gas 

network to compensate for the continuing decline in domestic gas production. 

However, the analysis presented in Chapter 4 showed that the GB gas network will 

experience unserved gas demand when a high impact and low probability import 

supply disruption occurs over a prolonged period of time. The example investigated in 

this thesis is the loss of gas transit capacity through the Ukraine. 

 

For the study described in this Chapter, a Base Case was established with the following 

assumptions: 

1.  GB gas demand was derived from the Slow Progression Scenario of National 

Grid  2015 Future Energy Scenario [114]. 

2. LNG supply to Europe was assumed to be constrained to 300 mcm/d under a 

situation where global LNG demand exceeds available supply.   

The loss of the Ukraine transit capacity was applied to the Base Case for a period of 

90 days.  

 

Six mitigation Options were identified to improve the security of GB gas supply [30]. 

The mitigation Options are presented in Figure 5.1. The mitigation options are broadly 

grouped into three Measures. 
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Figure 5.1 Classification of mitigation options  

 

A cost-benefit assessment of the mitigation options was conducted in two stages. 

Firstly, the integrated EGN-CGEN model (presented in Chapter 4) was used to 

calculate the level of unserved gas demand in the GB gas network, electricity 

generation and the total operational costs for the different mitigation options. Then, 

the Net Present Value (NPV) of the cost of avoiding unserved gas demand for each 

mitigation option was calculated using an Excel spreadsheet. 

  

5.2 Description of Mitigation Options  

5.2.1 Additional Gas Import Volume from the Caspian Region  

The 2015 BP Statistical Review of Energy estimated that Caspian region has 18.4 tcm 

of natural gas reserves (mainly in Azerbaijan and Turkmenistan) [121]. These gas 

reserves can be assessed by the European Union through pipeline imports. The large 

amount of gas reserves suggests the potential for future increase in gas export capacity 

from the Caspian region to the EU.  

 

The Trans Anatolian Natural Gas Pipeline (TANAP) Project which is currently under 

construction, will deliver up to 16bcm/y of Caspian gas supplies through Turkey to 

South East Europe by 2018 [122]. The pipeline capacity is expected to increase to 31 

bcm/y by 2026 [122]. The proposed expansion of the pipeline capacity would 

contribute to increasing security of EU gas supply. 
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5.2.2 Nord Stream II Pipeline Project  

The Nord Stream pipeline project comprised two off-shore pipelines that runs from 

Vybord in Russia to Greifswald in Germany through the Baltic Sea. The pipelines were 

commissioned in 2012 and have a total annual capacity of 55 bcm [123]. The pipelines 

transport Russian gas directly to Germany in North-West Europe. This project made a 

significant contribution to security of gas supply in Europe by the reduction of Russian 

gas flow via Ukraine from 80% to 50% [124].  

 

In 2015, a joint venture was launched between Gazprom Russia and five European 

companies to extend the capacity of the existing Nord Stream pipelines from 55 

bcm/year to 110 bcm/year by the addition of two parallel pipelines [43]. The proposed 

project would increase security of GB gas supply by enabling gas consumers in North 

West Europe and Central Europe to completely avoid gas transportation through non-

EU transit countries (Ukraine and Belarus).  

 

5.2.3 Shale Gas Development in GB  

The recent discovery of significant shale gas resources in England has attracted 

interests from policy makers and investors. Estimates of the gas in place ranges 

between 23.3 tcm and 64.6 tcm [125]. Gas in place is an estimate of the total volume 

of shale gas that exists in any shale formation before any development takes place 

[126]. The development of GB’s shale gas resources will depend on a supportive 

government policy and regulatory framework, access to low risk financing and good 

public acceptance [127].    

 

Several studies have investigated the prospects for shale gas development in GB [128], 

with a focus on the process of shale gas extraction [129], the economic impact of shale 

gas development on GB [130] and the environmental impact of shale gas exploitation 

[131]. According to 2014 National Grid Future Energy Scenario, shale gas production 

is expected to contribute up to 31 bcm per year by 2030 [114]. This shale gas 

production capacity would reduce import dependency from 75% to 35% by 2030 and 

represents about 40% of the projected gas demand in 2030 [114].  
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5.2.4 Additional Storage Capacity in GB  

Gas storage facilities provide additional supply on the GB gas network during supply 

disruptions and the supply flexibility required to meet short term gas demand 

variations.  [27]. 

 

GB gas storage facilities are grouped into long range, medium range and short range 

storage facilities as shown in Table 5.1. The aggregated capacity of gas storage 

facilities in GB is 4.6 bcm. In 2014, gas storage facilities provided about 6% of total 

GB gas demand (75.5 bcm/year) [27]. 

  

The only long range storage facility connected to the GB gas network is the Rough 

storage facility located off the cost of East Yorkshire. The Rough storage represents 

70% of GB’s total gas storage capacity [132]. The facility is an off-shore depleted gas 

field used mainly for seasonal storage as natural gas is injected in the summer and 

withdrawn in winter. Medium range storage comprises fast cycle facilities that have 

the capability to provide several cycles of gas injection into storage and withdrawal 

from storage within a year.  The short-range storage is used to meet sudden increase 

in demand over a short period of time. The Avonmouth LNG peak shaving facility is 

the only short-range storage facility in GB [133].   

 

Table 5.1 Characteristics of existing GB gas storage facilities [27] 
 

Storage facilities  Working gas volume 

(bcm) 

Maximum withdrawal 

rate (mcm/d) 

Long range  3.3 41 

Medium range  1.22 100 

Short range  0.08 13 

Total   4.6 154 

 

 

5.2.5 Industrial & Commercial Interruptible Demand  

Demand side measures are tools used by network operators to reduce or curtail the gas 

demand of large Industrial and Commercial (I&C) consumers during a situation of gas 



Chapter 5                                                  Mitigation Options to Improve Security of Gas Supply to GB   

 

 

 
80 

 

  

supply shortage. Industrial and commercial customers can enter into contract with 

system operators or gas shippers to interrupt their gas supply for a number of days 

every year in exchange for a discount or fee. Alternatively, a payment is offered to 

eligible industrial and commercial consumers to bid to reduce their gas consumption 

at periods of gas supply emergencies. 

 

The current level of demand side response provided by large industrial and commercial 

consumers in the UK is estimated as 3 mcm/day [134]. This is because previous 

regulatory arrangement offered limited incentive for the voluntary participation of 

industrial and commercial to provide demand side response. The compensation offered 

to I&C customers to reduce or curtail their gas demand during a gas supply emergency 

did not reflect the true cost of interruption of their gas supplies [134]. 

 

In 2014, Ofgem proposed a demand response auction to incentivise industrial and 

commercial consumers to offer demand side response during periods of gas supply 

shortage [135].  This would ensure that the responding customers receive appropriate 

payment when their gas supplies are interrupted to support investment in back-up 

capacity. 

 

5.2.6 Fuel Switching in Power Generation  

Gas-fired generators equipped with dual fuel capacity can switch to distillate fuel to 

generate power during periods of high gas prices or when there is a need to curtail their 

demand in the event of a gas supply emergency. CCGTs with distillate back-up 

capacity have lower efficiency, high maintenance cost and occupy more space than 

CCGTs without distillate back-up capacity [136]. 

 

In the UK, the installed capacity of CCGT equipped with distillate back-up capacity 

reduced from 8103 MW in 2010 to 2165 MW in 2014 [134]. This is due to the shutting 

down of ageing CCGT generators equipped with distillate back-up capacity and 

limited investment in new CCGT equipped with dual fuel capability. The development 

of additional CCGT with distillate back-up capacity will depend on the UK capacity 

market.  
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The UK capacity market is a mechanism designed to make payments to generation 

stations based on their generation capacity.  The capacity market would ensure 

adequate levels of power generation capacity as increasing generation from renewable 

energy sources result in the reduction of CCGT operating hour (i.e. lower capacity 

factor) coupled with the decline of coal generation capacity on the network.  

The payment made to capacity providers is to encourage new build power plants 

especially CCGT generators. The participation of dual fuel CCGT generators in the 

capacity market will increase reliability of power supply during periods of limited gas 

supply in the GB gas network. 

 

5.3 Data Assumptions of the Mitigation Options  

The modelling assumptions of the different mitigation options are summarised in 

Table 5.2.  

 

Table 5.2 Capacities of the mitigation options  

 

Mitigation 

Options 

Type of 

Measure 

Implementation  Location 

 

Caspian 

Supply 

 

EU Gas 

Supply 

Measure 

Interconnection capacity between 

Azerbaijan and Greece via Turkey 

increased from 43.8 mcm/d to 85 

mcm/d.   

European  

Gas Network 

model  

Nord 

Stream 

Interconnection capacity between   

Russia and Germany increased from 

150 mcm/d to 225 mcm/d. 

European  

Gas Network 

model 

Shale gas 

production 

GB Gas 

Supply 

Measure 

 

Shale gas production capacity of 20 

mcm/d is applied at a supply node in 

the GB gas network.  

Combined 

Gas and 

Electricity 

Network 

Model  



Chapter 5                                                  Mitigation Options to Improve Security of Gas Supply to GB   

 

 

 
82 

 

  

Additional 

storage 

capacity 

Two salt cavity storage nodes were 

defined individually in the GB gas 

network. Each node was modelled with 

the following data set:  

Working gas volume: 500 mcm 

Max. injection rate: 20 mcm/d  

Max. withdrawal rate: 20 mcm/ d   

Combined 

Gas and 

Electricity 

Network 

Model 

Interruptible 

demand 

GB 

Demand 

Measure 

 Interruptible demand was applied in 

the GB gas network by allowing (I&C) 

gas demand to be curtailed. The 

maximum interruptible demand 

capacity is 20 mcm/d.   

Combined 

Gas and 

Electricity 

Network 

Model 

Fuel 

Switching 

GB 

Demand 

Measure 

4 GW of existing CCGT generators 

were modelled to have dual fuel 

capacity. The variable cost of distillate 

generation was assumed to be 65 

£/MWh.   

Combined 

Gas and 

Electricity 

Network 

Model 

 

5.4 Modelling of the Mitigation Options 

5.4.1 EU Gas Supply Measures 

The mitigation options in Europe (EU Gas Supply Measures) are the Caspian Supply 

Case and the Nord Stream Case. These mitigation options are implemented using:  

 Step 1 Input the capacity of the mitigation option in the EU gas network (see 

Table 5.2) 

  Step 2 Run the EU gas network model for 90 days. 

 Step 3 Obtain the gas flows on interconnectors between GB and continental 

Europe. 

 Step 4  Input the gas flows on interconnectors obtained from the EGN model 

into the CGEN model. 
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 Step 5  Run the CGEN model for 90 days to calculate the level of unserved gas 

demand, cost of unserved gas demand and the operational cost of the GB gas 

and electricity networks.   

The cost of unserved gas is calculated by multiplying the volume of unserved gas 

demand by the value of lost load (VOLL). The assumed VOLL for the various 

categories of natural gas consumers is presented in Appendix E.  

 

5.4.2 GB Gas Supply Measures 

The mitigation options in UK (grouped under the GB Gas Supply Measures) are the 

Shale Gas Case and the Additional Storage Case. These mitigation options are 

implemented in the CGEN model (see Table 5.2). The modelling steps are: 

 Step 1  Input the capacity of the mitigation option in the CGEN model.  

 Step 2  Run the CGEN model for 90 days to calculate the level of unserved gas 

demand, cost of unserved gas demand and the operational cost of the GB gas 

and electricity networks.  

 

5.4.3 GB Gas Demand Measures  

The mitigation options grouped under GB Gas Demand Measures are the Interruptible 

Demand case and Fuel Switching case. These mitigation options are implemented in 

the CGEN model. The mitigation options are modelled using the same modelling steps 

described for the GB gas supply measures in subsection 5.4.2. 

 

5.5 Cost-Benefit Analysis of the Mitigation Options  

A cost-benefit analysis is used to determine the economic value of the mitigation 

options proposed to improve security of gas supply to GB.  The cost of reducing 

unserved gas demand (i.e. benefit) is compared against the implementation cost of 

each mitigation option. The structure of the cost benefit analysis is presented in Figure 

5.2. 
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The reduced cost of unserved gas demand is calculated as the difference between the 

cost of unserved gas demand with and without the mitigation option. As the mitigation 

options decreases the cost of unserved gas demand to GB, the security of supply 

benefits to GB increases. 

 

 

 

 

 

 

 

 

Figure 5.2 Structure of the cost-benefit analysis study 

 

5.5.1 Data Assumptions for the Cost Benefit Analysis  

The cost-benefit analysis is calculated using a Microsoft Office Excel spreadsheet. A 

summary of the inputs to the spreadsheet tool is presented in Table 5.3. 

 

Table 5.3 Inputs to the cost-benefit analysis spreadsheet 

 

Mitigation Options Asset life 

(Years) 

Discount rate (%) Implementation 

Cost (£m)   

Caspian Supply Case 35 10% 0 

Nord Stream Case 35 10% 0 

Shale Gas Case 30 10% 548[137] 

Additional Storage Case 30 10% 550 [30] 

Reduced cost of unserved 
gas demand for each 

mitigation option calculated 
by the EU-CGEN model

Capital cost of the mitigation 
options

Cost-Benefit Analysis 
Spreadsheet
 (MS-EXCEL)

Net- benefit of the reduced 
cost of unserved gas demand 

of the mitigation options 
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Interruptible Demand Case 15 3.5% 18[138] 

Fuel Switching Case 25 10% 210 [136] 

 

The asset life here refers to the duration of time the mitigation option was put into use 

(operational). The time taken to complete the construction of the mitigation option is 

not considered in this study. 

 

A commercial discount rate of 10% is assumed for all mitigation options except the 

Interruptible Demand Case (see Table 5.3). A social discount rate of 3.5% is assumed 

for Interruptible Demand Case in line with the social discount rate used in the UK for    

public sector projects implemented by the government or the transmission system 

operator [134]. 

 

Gas supply disruptions are considered as high impact and low probability events. The 

probability of a supply disruption gives an indication of how often the supply 

disruption would occur over a time period. According to a study conducted by the 

Centre on Regulation in Europe, the probability of a supply disruption and the impact 

on gas consumers when its occurs, provides a useful measure of security of supply 

[139].  

 

The annual probability of an outage of Ukraine transit capacity occurring during a 

period of limited LNG supply to Europe over 90 days was assumed as 2% (i.e. 2- in -

100-year chance) [140].  

 

5.5.2 Implementation Cost 

The cost of implementing each mitigation option as presented in Table 5.3. The 

implementation cost of mitigation options that involve the construction of physical 

infrastructure is limited to the capital cost of the project. The capital cost values were 

taken from various sources reported in literature.  The potential development of the 

Nord Stream and Caspian gas supply projects would be at no cost to the GB gas 

consumers since they have not direct interconnection with the GB gas network. Hence 
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these mitigation options have zero capital cost.  The interruptible demand option has 

no capital cost because it is assumed to operate as a commercial arrangement between 

the industrial gas consumers and the system transmission operator. Instead, the 

implementation cost covers the start-up cost and cost of participation for customers. 

 

5.5.3 Benefit 

The reduced cost of unserved gas demand for a given mitigation option with respect 

to the Base Case is shown in Equation 5.1: 

 
𝑃𝑉_𝑅𝐶𝑀𝑂 =∑𝑃𝑟𝑡 

𝐶𝑈𝐷𝐵𝐶 − 𝐶𝑈𝐷𝑀𝑂

(1 + 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒)𝑡
 

𝑛

𝑡=1

 5.1 

 

where 𝑃𝑉_𝑅𝐶𝑀𝑂 is the present value of the reduced cost of unserved gas demand for 

a given mitigation option, 𝑃𝑟𝑡 is the probability of the loss of Ukraine transit capacity 

in any given year,  𝑛 is the asset life, 𝑡 is time in years, 𝐶𝑈𝐷𝐵𝐶 is the cost of unserved 

gas in the Base Case, 𝐶𝑈𝐷𝑀𝑂 is cost of unserved gas due to the implementation of the 

mitigation option.  

5.5.4 Net Benefit  

The net benefit is the present value of the benefit less the implementation cost of the 

mitigation option as shown in Equation 5.2.  

 𝑁𝑃𝑉𝑀𝑂 = 𝑃𝑉_𝑅𝐶𝑀𝑂 − 𝐶𝐶𝑀𝑂 5.2 

 

where 𝑁𝑃𝑉𝑀𝑂 is the net present value of the benefit derived from a given mitigation 

option and  𝐶𝐶𝑀𝑂 is the implementation cost of the given mitigation option. 

 

5.6 Simulation Results  

The six (6) mitigation options were modelled to demonstrate their effectiveness on the 

security of gas supply to GB, during a loss of the Ukraine transit capacity over 90 days 
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in winter. The simulation results of the mitigation options were compared to the Base 

Case.  

5.6.1 Results of EU Gas Supply Measures  

Table 5.4 presents the level of unserved gas demand, cost of unserved gas demand and 

the operational cost of the GB gas and electricity networks in the Base Case, Caspian 

Supply Case and Nord Stream Case.  

 

The operational cost of the gas network includes the cost of gas import and gas 

production, storage operation and change in linepack. Operational cost of the 

electricity network comprises the cost of power generated from the different 

generation technologies.  

 

Table 5.4 Unserved gas demand and operational costs for EU gas supply measures 

   

Results  Base Case Caspian Supply 

Case 

Nord Stream 

Case 

Unserved gas demand 

over 90 days (mcm) 

1159 124.3 0 

Cost of unserved gas 

demand (£m) 

5096 307 0 

Operational cost of 

gas network (£m) 

2337 3469 3396 

Operational cost of 

electricity network 

(£m) 

2082 2003 1532 

Total operational cost 

(£m) 

9515 5779 4928 
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Over the 90-day period, the level of unserved gas decreased from 1159 mcm in the 

Base Case to 123.3 mcm in the Caspian Supply Case and with the Nord Stream Case, 

unserved gas demand was totally eliminated. The cost of unserved gas demand 

decreased from £5096 million during the Base Case to £307 million in the Caspian 

Supply Case, and further reduced to zero in the Nord Stream Case. 

 

In the Caspian supply case, the reduction in unserved gas demand and cost of unserved 

gas demand was due to higher gas import from the Caspian region to Southern Europe 

which minimised the demand for LNG supplies in Continental Europe during the 

supply disruption.  

 

For the Nord Stream Case, the additional Nord stream pipeline capacity was used to 

reroute Russian gas supply via Germany to the EU in order to bypass the Ukraine 

transit pipeline. This resulted in greater gas import to the GB gas network via the two 

gas interconnectors between GB and continental Europe (IUK & BBL) and prevented 

unserved gas demand in GB.   

 

The operational cost of the gas network increased by 48% in the Caspian Supply Case 

and 45% in the Nord Stream Case compared to the Base Case. This was due to the 

availability of higher volumes of imported gas from the Continent to GB during the 

supply disruption.  
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Figure 5.3 GB Power generation from different technologies for EU gas supply 

measures over 90 days  

 

Figure 5.3 shows GB power generation from different technologies for the Base Case, 

the Caspian Supply Case and the Nord Stream Case. In the Caspian Supply Case, 

CCGT generation increased by only 3% (0.9 TWh) with respect to the Base Case, due 

to the limited gas supply in the gas network. 

 

 In the Nord Stream Case, CCGT increased by 28% (7 TWh) with respect to the Base 

Case due to the additional supply of low cost gas to CCGT generators in the electricity 

network. As a result, electricity imports from electricity interconnectors decreased by 

48% (4.5 TWh) compared to the Base Case.  

 

The slight increase in gas delivery to the electricity network in the Caspian Supply 

Case resulted in a 3% (£79 million) reduction in the operational cost of GB electricity 

network compared to the Base Case. In the Nord Stream Case, CCGT power 

generation displaced expensive electricity import via interconnectors resulting in a 

26% (£550 million) reduction in the operational cost of the electricity network 

compared to the Base Case. 
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The total operational cost decreased from £9515 million in the Base Case to £5779 

million in the Caspian Supply Case and further reduced to £4928 million in the Nord 

Stream Case. 

 

5.6.2 Results of GB supply measures  

Table 5.5 presents the volume of unserved gas demand and the operational cost of the 

GB gas and electricity network in the Base Case, the Shale Gas Case and Additional 

Storage Case. 

 

Table 5.5 Unserved gas demand and operational costs for EU gas supply measures 

over 90 days    

 

Results  Base Case Shale Gas 

Case 

Additional 

Storage Case 

Unserved gas demand 

(mcm) 

1159 13 119 

Cost of unserved gas 

demand (£m) 

5096 32 294 

Operational cost of gas 

network 

(£m) 

2337 3550 3434 

Operational cost of 

electricity network (£m) 

2082 1702 1934 

Total operational cost of 

the integrated network 

(£m) 

9515 5284 5662 

 

The level of unserved gas demand decreased from 1159 mcm in the Base Case to 13 

mcm in the Shale Gas Case and 119 mcm in the Additional Storage Case. Similarly, 
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the cost of unserved gas demand decreased from £5096 million to £32 million in the 

Shale Gas Case and £294 million in the Additional Storage Case. 

 

 In the Shale Gas Case, the reduction in the volume of unserved gas demand was due 

to higher output from GB domestic gas production. In the Additional Storage Case, 

the reduction in the volume of unserved gas was due to the availability of higher 

volume of stored gas in GB storage facilities compared with the Base Case. 

 

Figure 5.4. GB power generation from different technologies for GB gas supply 

measures over 90 days 

 

Figure 5.4 shows GB power generation from different technologies for the Base Case, 

Shale gas Case and Additional Storage Case. In the Shale Gas Case, CCGT generation 

increased by 21% relative to the Base Case due to the availability of higher gas supply 

to CCGT generators. As a result, power imported via electricity interconnectors to GB 

decreased by 35% compared to the Base Case. On the other hand, CCGT generation 

increased by 8% in the Additional Storage Case relative to the Base due to a slight 

increase in the volume of gas supplied to CCGT generators. Consequently, operational 

cost of the electricity network reduced by 19% in the Shale Gas Case and by only 9% 

in the Additional Storage Case compared to the Base Case.  
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The total operational cost of the integrated gas and electricity network decreased from 

£9515 million in the Base Case to £5824 million in the Shale Gas Case and to £5662 

in the Additional Storage Case. 

 

5.6.3 GB Gas Demand Measures  

The level of unserved gas demand, cost of unserved gas demand and the operational 

costs of GB gas and electricity networks for the Base Case, Interruptible Demand Case 

and Fuel Switching Case are shown in Table 5.6.   

 

Table 5.6 Unserved gas demand and operational costs for GB gas demand measures 

over 90 days 

 

Results  Base Case Interruptible 

Demand Case 

Fuel 

Switching 

Case 

Unserved gas demand 

(mcm) 

1159 473 492 

Cost of unserved gas 

demand (£m) 

5096 1168 1391 

Operational cost of gas 

network (£m) 

2337 4370 3627 

Operational cost of 

electricity network (£m) 

2082 1989 2352 

Total operational cost of 

the integrated network 

(£m) 

9515 7527 7370 

 

The level of unserved gas demand in GB decreased from 1159 mcm in the Base Case 

to 473 mcm in the Interruptible Demand Case and 492 mcm in the Fuel Switching 
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Case over the 90-day period. The cost of unserved gas reduced from £5096 million in 

the Base Case to £1168 million in the Interruptible Demand Case and £1391 million 

in the Fuel Switching Case. 

 

The operational cost of the GB gas network increased by 80% in the Interruptible 

Demand Case compared to the Base Case due to the high cost of interruptible demand 

(i.e. the payment made to I & C customers to curtail their gas consumption was 

assumed as 1.27 £/mcm) [133]. In the Fuel Switching Case, the operation cost of the 

gas network increased by 55% compared to the Base Case as lower gas demand in 

power generation made more gas volumes available to other gas consumers in the gas 

network.   

 

Figure 5.5 GB Power generation from different technologies due to the GB gas demand 

measures 

 

Figure 5.5 shows the Power generation from different technologies in the GB 

electricity network for the Base Case, Interruptible Demand Case and Fuel switching 

Case. 

 

CCGT generation increased by only 4% in the Interruptible Demand Case compared 

to the Base Case due to restricted gas supply to CCGT generators. The gas demand 

gas 
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response provided by Industrial & Commercial (I&C) customers was mainly used to 

minimise unserved gas demand in the gas network.  

 

In the Fuel Switching Case, gas-fired generation decreased by 21% compared to the 

Base Case due to the utilisation of distillate fuel (instead of natural gas) in CCGTs 

generators equipped with dual fuel capabilities. The reduction of gas utilisation in 

electricity generation, provided more gas volumes within the gas network to minimise 

the level of unserved gas demand. 

 

In the Interruptible Demand Case, the operational cost of the electricity network 

decreased by £93 million compared to the Base Case. However, the operational cost 

of the electricity network increased by £269 million in the Fuel Switching Case 

compared to the Base Case, due to higher power generation from expensive dual fuel 

CCGT generators. 

 

The total operational cost for the integrated gas and electricity network decreased by 

20.8% in the Interruptible Demand Case compared to the Base Case and 22.5% in the 

Fuel Switching Case compared to the Base Case. 
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5.7 Results of Cost Benefit Analysis 

Figure 5.6 shows the net present value (NPV) of the reduced cost of unserved gas 

demand for the six different mitigation options. The NPV gives an indication of the 

relative cost-effectiveness of the mitigation measures. 

 

Figure. 5.6 Net benefit of the mitigation options 

 

The Nord Stream Case had a highest positive NPV of £1.03 billion. The economic 

benefit derived from the Nord Stream Case is as a result of two factors. Firstly, the 

Nord Stream pipeline project provides an alternative route for Russian gas supply to 

the European Union. Hence the project allowed a complete by-pass of Russian gas 

transit through Ukraine and eliminated the source of the supply disruption.  

 

 Secondly GB bears no investment cost in this project, as GB pipeline interconnectors 

are not directly linked to the Nord Stream project. Gas imported through European 

interconnectors to GB can be received from multiple source including domestic gas 

production in Netherland and imports from Russia, Norway and North Africa and the 

Caspian. Therefore, it is difficult to determine precisely how much of Russian gas 

supply transported through the Nord Stream II project will reach GB. Nevertheless, 

the price of continental gas imported to GB will reflect gas transport tariff on the 

supply routes.  
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The Caspian Supply Case showed a positive NPV of £970 million as the net benefit 

of improving security of gas supply in GB. Here, the implementation of this mitigation 

option enabled higher import of Caspian gas supply to replace some of the missing 

Russian gas volumes in South East Europe. The implementation of this project 

enhanced the diversification of gas supply sources in South East Europe resulting in  

less reliance on Russia gas supply. In addition, cheap pipeline supplies displaced 

expensive stored gas and LNG supplies in Central and South Europe. Consequently, 

GB could access higher gas import from the continent Europe and Norway. In addition, 

the GB gas consumers do not incur any investment cost with regards to this project for 

the same reason presented in the Nord Stream Case.  

 

 The result showed that EU gas supply measure (Nord Stream Case and Caspian 

Supply Case) were the most cost-effective solutions for improving security of gas 

supply to GB in the event of the loss of Ukraine transit capacity in Continental Europe. 

 

The economic benefit derived from the Shale Gas Case decreased by 47% when 

compared to the Nord Stream Case.  This is due to the considerable capital cost 

involved in the exploitation and production of shale gas resources. This option 

significantly reduced unserved gas demand in GB as expensive domestic gas volumes 

replaced the missing imported gas supply from the Continent and other sources. Hence 

the benefits with regards to improving security of supply include a substantial cost.  

 

The Additional Storage Case showed the least economic benefit (NPV of £430 

million) to improve security of gas supply in GB. This was due to the high capital cost 

of gas storage facilities. In addition, the short-run marginal cost of storage utilisation 

(i.e withdrawal and injection) is very low compared to the capital cost. Hence the 

frequency of storage utilisation to mitigate gas supply disruptions influences its 

derived economic benefit. For example, if the annual probability of an outage of 

Ukraine transit capacity increased from 2% to 10% (see section 5.5.1) then the 

economic benefit of the Additional Storage Case increased from £430 million to £4.2 

billion (980%).  
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Investment in new gas production and storage facilities have other benefits besides 

mitigating unserved gas demand. Some benefits include peak gas demand reductions 

and supply flexibility to support renewable power generation in the electricity network. 

However, these benefits were not quantified within the scope of this study.  

 

For GB gas demand measures, the Interruptible Demand Case showed a positive NPV 

of £900 million while the Fuel Switching Case showed a positive NPV of £460 

million.  It was shown in the result that the Interruptible Demand Case would provide 

significant benefit to improving security of gas supply in GB. Although, the 

implementation of this option led to a 44% reduction in the volume of unserved gas 

demand, the corresponding cost of unserved gas demand decreased by 77%.  The large 

economic benefit of the option is mainly driven by the low cost of implementing this 

mechanism. 

 

5.8 Summary 

Six mitigation options to improve security of gas supply in GB were investigated. The 

mitigation options were modelled using the EGN-CGEN model to determine their 

impact on the level of unserved gas demand, cost of unserved gas demand, power 

generation and the cost of operating the combined GB gas and electricity network. A 

cost benefit analysis was conducted to determine the economic benefits of the 

mitigation options.  

 

The results showed that all the mitigation options brought about a considerable 

reduction in the level of unserved gas demand in GB. However, in the Nord Stream 

Case, unserved gas demand in GB was fully avoided leading to a significant decrease 

in operational cost of the gas and electricity network. Furthermore, the Nord Stream 

Case was showed to be the most cost-effective option to improve security of gas supply 

to GB when Russian gas supply through the Ukraine transit capacity was disrupted.  

 

It is important to note that investment decisions related to pipeline projects in 

Continental Europe are beyond the control of UK policy makers.  Hence, closer 
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regional cooperation among EU member states is essential to drive investment in 

pipeline projects that deliver indirect security of supply benefits to GB.  

 

It was shown that shale gas development and additional gas storage capacity 

significantly reduced the level of unserved gas demand in the GB gas network. 

Consequently, total operational cost of the GB gas and electricity network reduce by 

55% in the Shale Gas Case and 40% in the Additional Storage Case compared to the 

Base Case.  

 

However, the cost-benefit assessment showed that Interruptible Demand Case 

delivered greater economic benefit when compared with Shale Gas Development Case 

and Additional Gas Storage Capacity. This was due to the high capital costs associated 

with shale gas development and the construction of gas storage facilities. 
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Chapter 6  

6.Conclusion  

6.1 Introduction  

Security of gas supply risks in the European gas network were identified and their 

impact on the operation of the GB gas and electricity network investigated. A 

simplified model of the European gas network was developed to assess the effect of 

the loss of Russian gas supply through the Ukraine to Europe on gas demand and 

supply balance across EU member states.  In order to investigate the effect of disrupted 

gas supplies in Europe on the operation of the GB gas and electricity networks, a soft-

link approach was used to couple the European gas network model to the GB 

Combined Gas and Electricity Network (CGEN) model. Six measures to improve 

security of gas supply to GB were examined and their economic benefits were 

quantified. 

 

6.1.1 Impact of gas supply disruption on security of gas supply in 

Europe 

Recent events of gas supply disruptions in Europe have highlighted the limited 

capability of the European gas network to mitigate the impact of gas supply 

disruptions. A simplified European gas network was developed to investigate the effect 

of gas supply disruption on security of gas in Europe.   

 

A linear optimisation model of a simplified European gas network was developed to 

investigate natural gas flows within Europe. The objective function of the model was 

to minimise the total cost of gas supplied within Europe. The model represented all 

gas interconnectors including routes to major import sources, LNG terminals and 

storage facilities in Europe. Each country was represented by a node and country nodes 

were linked by the gas flows on cross-border interconnectors.  
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The simplified European gas network model was used to examine the effect of the loss 

of Ukraine transit capacity on Russian gas supply to Europe in the winter of 2014/15. 

A Reference Scenario and a High Demand Scenario were investigated. Also, the role 

of additional interconnector capacities and higher storage withdrawal rate as measures 

to mitigate the impact of the supply disruption were investigated.  

 

It was shown that the lost gas due the loss of Ukraine transit capacity was replaced 

mostly by LNG imports and gas stored in European storage facilities.  The loss of 

Ukraine transit capacity during a high gas demand period resulted in unserved gas 

demand to different gas consumers including the domestic sector in South East Europe.  

 

It was shown that this region was reliant on the Ukraine transit route and had limited 

alternative supply routes. The simulation result showed that additional capacities on 

selected interconnectors allowed the rerouting of Russian gas volume through 

Germany to South East Europe.  Higher storage withdrawal rate in selected countries 

was shown to reduce unserved gas in the South East Europe. 

 

6.1.2 Soft-linking models of the European gas network to the GB 

gas and electricity networks 

Natural gas account for approximately 25% of all energy supplies in the United 

Kingdom (UK). The rapid decline of UK’s domestic gas production has led to an 

increased dependence on gas import. The GB network receives imported gas in the 

form of LNG; and pipelines supplies from the Norwegian continental shelf and 

continental Europe via Belgium and Netherlands.  

 

A soft-link approach was used to couple the European Gas Network model (EGN) to 

the Combined Gas and Electricity Network model (CGEN). The soft-link method is 

summarised in the following steps:  

 The EGN was run to obtain gas flows on cross-border interconnectors between 

GB and Continental Europe and their corresponding gas supply prices.  

 The CGEN model was run with the gas flows on cross-border interconnectors 

between GB and Continental Europe and their corresponding gas supply 
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prices. The output of the CGEN model was the volume of gas consumed in 

power generation. 

  The total GB gas demand calculated from the summation of GB non-electric 

demand and the volume of gas consumed in power generation was transferred 

to the EGN model.  

 The EGN model is then re-run and the process is repeated until the exchanged 

variables reach convergence. 

The integrated EGN-CGEN model was used to analyse the impact of the loss of 

Ukraine transit capacity on the operation of GB gas and electricity network over 90 

winter days in 2030 for a Reference Scenario and a Slow Transition Scenario.  

 

 The Reference Scenario assumed a low non-electric gas demand and high wind 

generation capacity in GB while the Slow Transition Scenario assumed a high non-

electric demand for gas and low wind generation capacity in GB. It was shown that in 

the Reference Scenario, the supply shortfall to the GB as a result of the loss of Ukraine 

transit capacity was replaced by gas withdrawn from GB gas storage and a reduction 

in the amount of gas use by CCGTs in power generation.  

 

In the case of the Slow Transition Scenario, the results showed that industrial 

consumers would experience an involuntary interruption of 33% (13 mcm/d) of their 

average daily demand in the event of the loss of the Ukraine transit capacity. The gas 

supply shortage in GB limited the operation of gas-fired generation. As a result, 

imported electricity via cross-border interconnectors compensates for the reduction in 

gas-fired generation in the electricity network. 

 

6.1.3 Investments options to increase security of gas supply in GB  

A case study conducted to examine the impact of the loss of Ukraine transit capacity 

on the GB gas and electricity networks showed that large industrial and commercial 

customers in GB would experience some unserved gas demand when the supply 

disruption occurred over prolonged duration of cold winter condition. As a result, six 

mitigation options were examined to improve security of gas supply to GB.  
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 A Base Case was defined as the Loss of Ukraine transit capacity in the Slow Transition 

Scenario. The six mitigation options were modelled using the EGN-CGEN model to 

determine the volume of unserved gas demand, cost of unserved gas demand and the 

operational cost of the GB gas and electricity network. 

 

 A cost-benefit analysis was used to rank the mitigation options in order of increasing 

net benefit. The net benefit was calculated as the net present value (NPV) of the cost 

of reducing unserved gas demand in GB gas network. The results showed that Nord 

Stream Case eliminated unserved gas demand in GB and provided the highest net 

benefit (NPV of £1.03 billion) at no investment cost to GB consumers. Consequently, 

the EU projects aimed at the diversifying supply source and supply routes will provide 

indirect benefit to improving security of gas supply in GB.  

 

It was shown that Additional Storage Case significantly reduced the level of unserved 

gas demand in GB gas network by 95% at a positive NPV of £430 million. 

Nevertheless, this mitigation option provided the least net benefit to justify its cost.  

The result showed that interruptible demand contracts with large industrial and 

commercial customers would improve security of gas supply in GB and provide 

significant economic benefit to the GB gas consumers. 

 

The impact of the mitigation options on the operation of the electricity network was 

examined through the operation of the gas-fired generators. It was shown that when 

large volumes of low cost gas were supplied to CCGTs, gas-fired generation displaced   

electricity generated by other expensive generators leading to a reduction in the 

operational cost of the electricity network.  

 

6.2 Future Work  

Recommendations for further work are grouped into the following areas:  

The European gas network model presented in this study comprises all the relevant 

components of the gas network. However, it lacks a detailed representation of the 

pressure-flow relationship in pipeline operation. Therefore, a detailed technical model 
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of the European gas network can be investigated to provide accurate analysis of gas 

flow and linepack management along cross-border interconnectors in Europe.  

 

In conventional gas network operation, future gas demand is uncertain as it is affected 

by several factors that have stochastic profiles such weather conditions and consumer 

behaviour. In this study, a perfect foresight assumption was applied to the EGN-CGEN 

optimisation model. The perfect foresight model assumes that the system operator has 

perfect information of the daily gas demand and gas supplies available over the time 

horizon.  A stochastic modelling approach would result in a more accurate analysis of 

the effect of security of supply risks on integrated gas and electricity networks. 

 

In this study, the scope of energy storage was limited to pumped storage in GB 

electricity network as the 2015 FES showed a limited contribution of other. However, 

other energy storage technologies such as grid-scale battery energy storage systems 

(BESS) are expected to play a key role in meeting peak demand as it becomes cost-

competitive with other competing flexible generation technologies. In addition, active 

management of customers’ electricity demand is anticipated to minimise peak demand 

and improve system balancing. The impact of BESS and demand side response on the 

utilisation of electricity interconnectors and gas-fired generation in the GB gas and 

electricity network should be investigated.  

 

A large penetration of variable renewable generation on the European electricity 

network is expected to increase flexible gas demand in the European gas network. 

Therefore, a detailed model of an integrated European gas and electricity model that 

considers variability of renewable generation is required to analyse the impact of gas 

supply disruption on the security of the gas and electricity supply across Europe.  
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8. Appendix A 

Table A.1 List of countries and their abbreviations  

 

Country Code 

Algeria  DZ 

Austria AT 

Azerbaijan AZ 

Belarus BY 

Belgium BE 

Bosnia and Herzegovina BA 

Bulgaria BG 

Croatia HR 

Czech Republic CZ 

Denmark DK 

Estonia EE 

Finland FI 

France FR 

Germany DE 

Greece GR 

Hungary HU 

Ireland IE 

Italy IT 

Latvia LV 

Libya LY 
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Lithuania LT 

Iran IR 

Luxembourg  LU 

Macedonia MK 

Netherlands NL 

Norway NO 

Poland PL 

Portugal PT 

Romania RO 

Russia-Kaliningrad RK 

Russian Federation RU 

Serbia RS 

Slovakia  SK 

Slovenia SI 

Spain ES 

Sweden SE 

Switzerland CH 

Turkey TR 

Ukraine UA 

United Kingdom UK 
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9.Appendix B 

Input data for the European Gas Network Model  

Table B.1. Reference Demand Case – Winter 2015 Demand for European Countries 

[13] 

Country 

 

Average monthly demand (mcm/d) Peak day 

Demand 

(mcm/d) Oct Nov Dec Jan Feb Mar 

Austria  29 33 41 43 41 33 76 

Belgium  45 61 87 76 70 67 141 

Bosnia  1 2 2 2 2 2 3 

Bulgaria 8 10 13 14 13 12 17 

Croatia 10 11 13 12 13 11 12 

Czech 

Republic 

25 31 44 46 44 34 73 

Denmark 9 11 15 16 16 13 25 

Estonia  1 2 3 4 5 5 5 

Finland  12 13 16 16 17 14 23 

France  105 169 226 251 225 181 419 

Germany 214 247 327 331 320 256 469 

Greece 14 14 15 16 16 15 22 

Hungary  30 37 50 53 51 39 89 

Ireland 13 16 18 18 16 16 25 
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Italy 212 268 340 356 339 286 486 

Latvia 4 5 7 8 8 6 11 

Lithuania 8 9 11 12 12 10 17 

 

Country Average monthly demand (mcm/d) Peak day 

demand   

(mcm/d) Oct Nov Dec Jan Feb Mar 

Luxembourg 4 4 5 5 5 4 7 

Macedonia 1 1 1 1 1 1 1 

Netherlands 108 127 172 185 160 112 416 

Poland  51 55 71 74 72 61 85 

Portugal 14 14 14 14 16 15 28 

Romania  35 40 50 47 52 45 70 

Serbia  7 9 11 12 12 10 13 

Slovakia  16 18 19 27 28 18 37 

Slovenia 3 3 4 4 4 3 6 

Spain 103 118 126 128 128 113 205 

Sweden 5 5 7 7 7 6 9 

Switzerland 6 10 13 15 13 11 20 

Turkey  118 128 162 172 166 152 200 

United 

Kingdom 

201 262 330 313 292 262 487 
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Table B.2. High Demand Case – Winter 2015 Demand for European Countries [13] 

Country Average monthly demand (mcm/d) 

Oct Nov Dec Jan Feb Mar 

Austria  35 40 49 52 49 40 

Belgium  54 73 104 91 84 80 

Bosnia  1 2 2 2 2 2 

Bulgaria 10 12 16 17 16 14 

Croatia 12 13 16 14 16 13 

Czech 

Republic 

30 37 53 55 53 41 

Denmark 11 13 18 19 19 16 

Estonia  1 2 4 5 6 6 

Finland  14 16 19 19 20 17 

France  126 203 271 301 270 217 

Germany 257 296 392 397 384 307 

Greece 17 17 18 19 19 18 

Hungary  36 44 60 64 61 47 

Ireland 16 19 22 22 19 19 

Italy 254 322 408 427 407 343 

Latvia 5 6 8 10 10 7 

Lithuania 10 11 13 14 14 12 

Luxembourg 5 5 6 6 6 5 

Macedonia 1 1 1 1 1 1 

Netherlands 130 152 206 222 192 134 

Poland  61 66 85 89 86 73 

Portugal 17 17 17 17 19 18 

Romania  42 48 60 56 62 54 

Serbia  8 11 13 14 14 12 

Luxembourg 5 5 6 6 6 5 
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Country Average monthly demand (mcm/d) 

Oct Nov Dec Jan Feb Mar 

Netherlands 108 127 172 185 160 112 

Poland  51 55 71 74 72 61 

Portugal 14 14 14 14 16 15 

Romania  35 40 50 47 52 45 

Serbia  7 9 11 12 12 10 

Slovakia  16 18 19 27 28 18 

Slovenia 3 3 4 4 4 3 

Spain 103 118 126 128 128 113 

Sweden 5 5 7 7 7 6 

Switzerland 6 10 13 15 13 11 

Turkey  118 128 162 172 166 152 

United 

Kingdom 

201 262 330 313 292 262 

 

 

Table B.3. European Natural Gas Production Capacities and Cost  [65] 

 

Country Maximum supply 

(mcm/d) 

Production Cost 

(€/tcm) 

Austria  5 164 

Bulgaria  2 141 

Croatia  5 124 

Denmark  16 88 

Germany  29 164 

Hungary  7 130 

Italy  22 164 

Netherlands  450 152 
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Poland  10 160 

Romania  29 160 

United Kingdom 142 160 

 

Table B.4. European Gas Supply Capacities from Imported Sources and Cost [13],[1] 

 

Country Maximum supply 

(mcm/d) 

Production Cost 

(€/cm) 

Russia  500 0.1 

Norway  330 0.15 

Algeria 111.4 0.02 

Libya  30 0.09 

LNG  355 0.18 

 

Table B.5. LNG regasification capacities[141] 

 

Country LNG regasification capacity (mcm/d) 

Belgium 40.8 

France 65 

Greece 18 

Italy 35.4 

Netherlands 32.4 

Portugal 32.4 

Spain 164.7 

Sweden 1.78 

Turkey 38 

United Kingdom 134 
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Table B.6.  European Gas Storage Capacities   

 

Country  Working gas 

volume (mcm) 

Max withdrawal 

rate (mcm/d) 

Max injection 

rate (mcm/d) 

Austria  7451 86 70 

Belgium  700 15 8 

Bulgaria  550 4 4 

Croatia  550 4 4 

Czech Republic  3497 57 41 

Denmark  1025 18 8 

France  12920 341 163 

Germany  21822 535 294 

Hungary 6330 82 47 

Ireland  230 6 5 

Italy  16673 290 137 

Latvia  2820 31 12 

Netherlands  5278 216 59 

Poland  177 33 20 

Portugal  177 7 3 

Romania  3100 24 30 

Serbia  450 5 4 

Slovakia  3020 38 23 

Spain  4103 32 23 

Sweden  8.5 1 0 

Turkey  2655 20 18 

United Kingdom 4504 121 82 
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Table B.7. Maximum cross-border capacities of European gas interconnectors 

 

Linking Countries  Maximum cross border capacity (mcm/d) 

From (A) To (B) Forward flow (A-B) Reverse flow (B-A) 

Austria  Germany 35.27 30.52 

Austria Hungary  11.64  

Austria Italy 103.27 17.06 

Austria Slovakia 3.27 147.45 

Austria Slovenia  10.28  

Belarus  Lithuania 25.55  

Belarus  Poland  100.39  

Belgium France 74.55  

Belgium Germany 27.25 35.82 

Belgium  Luxembourg 4.36  

Belgium  Netherlands 35.45 109.10 

Belgium  United 

Kingdom 

73.18 56.69 

Bulgaria Greece 12.00  

Bulgaria  Macedonia 2.98  

Bulgaria Turkey 42.47 3.50 

Czech Republic Germany 128.12 119.76 

Czech Republic Poland 1.36  

Czech Republic  Slovakia 19.00 42.68 

Denmark Germany 2.87 1.55 
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Denmark Sweden 6.55  

France Spain 15.00 15.00 

France Switzerland  20.27  

Germany France 55.60  

Germany  Luxembourg 2.34  

Germany Netherland 37.92 164.79 

Germany Poland 3.09 84.64 

Hungary Croatia 6.91  

Hungary Romania 4.55  

Hungary  Serbia 12.45  

Ireland  United 

Kingdom 

0.00 32.09 

Italy  Slovenia 2.55  

Italy Switzerland   57.82 

Latvia Estonia 7.09  

Latvia Lithuania 5.62 5.62 

Libya  Italy 31.73  

Lithuania  Russia 

Kaliningrad 

10.30  

Algeria Spain 56.45  

Netherland  United 

Kingdom 

42.57  

Norway Belgium 53.28  

Norway France 51.82  

Norway Germany 101.38  

Norway Netherland  107.06  

Norway United 

Kingdom 

115.00  
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Portugal Spain 10.27 17.36 

 

Linking Countries  Maximum cross border capacity (mcm/d) 

From  

(A) 

To  

(B) 

Forward flow (A-

B) 

Reverse flow (B-A) 

Romania Bulgaria  67.00  

Russia  Estonia 4.02  

Russia Finland 20.45  

Russia Germany 85.70  

Russia Latvia 15.00  

Slovenia Croatia 4.82  

Algeria Italy 94.00  

Turkey Greece 5.24  

Ukraine  Hungary 68.18  

Ukraine Poland 15.75  

Ukraine Romania 80.72  

Ukraine Slovakia 219.24  

Russia Ukraine 389.04  

Russia  Estonia 4.02  

Russia Finland 20.46  

Russia Germany 85.70  

Russia Latvia 15.00  

Russia Ukraine 389.04  

Russia Belarus 90.41  

Germany  Switzerland 49.15  

Iran Turkey 54.65  

Azerbaijan Turkey 54.79  

Russia Turkey 43.89  

Serbia Bosnia 2.00  

Iran Turkey 54.65  

Azerbaijan Turkey 54.79  

Russia Turkey 43.89  
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10.Appendix C 

Linear approximation of storage constraints   

The volume of gas withdrawn from or injected into a storage facility varies with the 

current storage level. Withdrawal rates are highest when the storage is full while 

injection rate is highest when the storage facility is empty because of the pressure level 

in the storage. This non-linear relationship is expressed as (Thompson et al, 2009): 

 𝑆𝑠,𝑡
𝑜𝑢𝑡_𝑚𝑥 = 𝐾1

𝑜𝑢𝑡 ∗ √𝑆𝑠,𝑡     ∀𝑠, 𝑡       C.1 

 

 𝑆𝑠,𝑡
𝑖𝑛_𝑚𝑥 = 𝐾1

𝑖𝑛 ∗ √𝑆𝑠,𝑡    ∀𝑠, 𝑡       C.2 

 

  𝑆𝑠,𝑡
𝑖𝑛_𝑚𝑥 = 𝐾1

𝑖𝑛 ∗  √
1

𝑆𝑠,𝑡
𝑖𝑛+𝑆𝑠

𝑏𝑎𝑠𝑒 + 𝐾2
𝑖𝑛       ∀𝑠, 𝑡       C.3 

 

where 𝐾1
𝑜𝑢𝑡, 𝐾1

𝑖𝑛and  𝐾2
𝑖𝑛are factors that describe the features of the storage 

facility, 𝑆𝑠
𝑏𝑎𝑠𝑒 is the volume of cushion gas at facility s (mcm). However linear 

approximations were derived the non-linear storage constraints. 

 

The convex gas withdrawal function in equation C.1 is represented by the piecewise 

linear curve as shown in Figure C.1. 
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Figure C.1 Piecewise linearization of the withdrawal rate of a storage facility 

 

 Here different withdrawal rates ( 𝑊1…,𝑊𝑛) correspond to different storage levels 

(𝑋1…, 𝑋𝑛). The linear approximation of the withdrawal rate is given by Equation C.4.  

 𝑆𝑠,𝑡
𝑤𝑑 ≤ 

𝑊𝑠,𝑛+1 −𝑊𝑠,𝑛
𝑋𝑠,𝑛+1 − 𝑋𝑠,𝑛

 𝑆𝑖,𝑡 −
𝑊𝑠,𝑛+1 −𝑊𝑠,𝑛
𝑋𝑠,𝑛+1 − 𝑋𝑠,𝑛

𝑋𝑠,𝑛     ∀𝑠, 𝑡 C.4 
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Figure C1.2 Piecewise linearization of the injection rate of a storage facility 
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On the other hand, Figure C1.2 shows the injection rate is a non-convex function of 

storage level.  The special ordered sets of type 2 (SOS2) variables are used for the 

piecewise linear approximation of the non-convex function in equation (3.11).  

Let ( 𝐼1…, 𝐼𝑛) represent set of injection rate corresponding to a set of breakpoints  

 ( 𝑋1…, 𝑋𝑛).  The   SOS2 variables (Hn) are used to form a convex combination of two 

of the points such that only two adjacent variables 𝐻𝑛−1 and 𝐻𝑛+1 can be non-zero if 

𝐻𝑛 is zero. The linear approximation of the storage injection rate and storage level is 

given by Equations C1.3 and C1.4 [142]. 

 

 𝑆𝑠,𝑡
𝑖𝑛 ≤ ∑ 𝐻𝑛,𝑠,𝑡𝑛 ∗  𝐼𝑛,𝑠 ∀𝑠, 𝑡       C1.3 

 

 𝑆𝑠,𝑡 ≤ ∑ 𝐻𝑛,𝑠,𝑡𝑛 ∗  𝑋𝑛,𝑠           ∀𝑠, 𝑡       C1.4 

 

 ∑ 𝐻𝑠,𝑡,𝑦𝑦 =  1          ∀𝑠, 𝑡       C1.5 
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11.Appendix D 

The Combined Gas and Electricity Network Model (CGEN) 

The combined gas and electricity network model (CGEN) is a multi-time period 

optimisation modelling tool used to examine the interaction of gas and electricity 

networks as an integrated system. The CGEN model is formulated as a non-linear 

programming problem and solved using Fico Xpress optimization suite.  

 D1. CGEN Objective Function  

The objective function minimises the total operational cost of the integrated gas and 

electricity network Equation (D.1) while meeting the gas and electricity demand. The 

operational cost including costs of gas supplies, storage operation, electricity 

generation and costs of unserved gas and electricity demand.   

Minimise total operational cost (£):  

 

∑𝑡𝑠

𝑡

× 

{
 
 

 
 

∑𝐶𝑎,𝑡
𝑔𝑎𝑠
𝑄𝑎,𝑡
𝑠𝑢𝑝𝑝

𝑎⏟        
𝑔𝑎𝑠 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑠

+∑(𝐶𝑠,𝑡
𝑤𝑑  𝑄𝑠,𝑡

𝑤𝑑 − 𝐶𝑠,𝑡
𝑖𝑛𝑗
𝑄𝑠,𝑡
𝑖𝑛𝑗
)

𝑠⏟                
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+ ∑𝐶𝑡
𝑠𝑝
𝜕𝐿𝑃𝑏,𝑡

𝑏⏟        
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑖𝑛𝑒𝑝𝑎𝑐𝑘

+ ∑𝐶𝑔
𝑔𝑒𝑛

𝑔

 𝑃𝑔,𝑡 

⏟        

 

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+ ∑𝐶𝑔𝑎𝑠𝑠ℎ𝑒𝑑

𝑖

𝑄𝑖,𝑡
𝑔𝑎𝑠𝑠ℎ𝑒𝑑

 
⏟              
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑔𝑎𝑠 𝑑𝑒𝑚𝑎𝑛𝑑

+  ∑𝐶𝑒𝑙𝑒𝑐𝑠ℎ𝑒𝑑

𝑗

 𝑄𝑗,𝑡
𝑒𝑙𝑒𝑐𝑠ℎ𝑒𝑑

⏟              
𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 }

 
 

 
 

 

 

D.1
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D2. Gas Network  

The key components of a gas transmission network were modelling including 

pipelines, compressors, supply terminals and storage facilities.  

D2.1 Gas pipelines 

The gas flow rate is in a pipe is determined by the pressure difference between 

upstream and downstream nodes. The gas flow is assumed to be one-dimensional as 

the variation of gas properties along the radius of a pipe is negligible compared with 

the changes along the streamline direction.  

The assumptions for this one-dimensional flow are [50] and [13]: 

 the cross-sectional area changes slowly along the path of the stream of gas; 

 the radius of curvature of the pipe is large compared with its diameter; 

 temperature and velocity profiles are approximately constant along the pipe; 

 the pipe is horizontal. 

 

The gas flow along a pipe can be described by the continuity equation in Eq. (D.2) and 

the momentum equation Eq. (D.3) [50]. 

 𝜕𝑄

𝜕𝑥
= −

𝐴

𝜌𝑍𝑅𝑇

𝜕𝑝

𝜕𝑡
    D.2 

          

where 
x

Q




 is change in flow due to changes in distance, A  is pipe cross sectional 

area,  is gas density, Z  is Gas compressibility, R  is Gas constant, T  is 

temperature, and 
t

p




 is change of pressure over time. 

 𝜕𝑝

𝜕𝑥
= −

𝜕 (𝑝𝑣)

𝜕𝑡
−
𝜕(𝑝𝑣)2

𝜕𝑥
 −
2𝑓𝜌𝑣2

𝐷
  

D.3 

 

where 
𝜕𝑝

𝜕𝑥
 is change of pressure due to changes in distance, 𝑣 is gas velocity through a 

pipe, is 𝑓 friction factor,  𝐷 is pipe diameter. 
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A finite difference scheme is used to convert the original partial differential Equations. 

(D.2) and (D.3) into ordinary differential equations in Equations (D.4) and (D.5)[143] 

 𝑄𝑋,𝑇
𝑛 − 𝑄𝑇

𝑛

∆𝑥
= −

𝐴

𝜌𝑛𝑍𝑅𝑇

(𝑝𝑇
𝑎𝑣 − 𝑝𝑎𝑣)

∆𝑡
   D.4 

 

 𝑝𝑋𝑇 − 𝑝𝑇
∆𝑥

= −
2𝑍𝑅𝑇𝑓( 𝜌𝑛)2(𝑄𝑇

𝑛,𝑎𝑣) |𝑄𝑇
𝑛,𝑎𝑣|

𝐴2𝐷𝑝𝑇
𝑎𝑣    D.5 

 

 Linepack modelling 

The linepack of a pipe is the volume of gas stored in a pipe and an important factor 

that determines the ability to supply gas to demand nodes i.e. packing more gas in the 

pipe allows fluctuations in demand to be met as gas supply from a distant source will 

take time (typically hours) to reach the intended destination[67].  

A combination of the gas equation of state (Eq. D.6) and Boyle’s law (Eq. D.7) is used 

to calculate the linepack of a pipe [50]: 

 𝑍𝑅 = −
𝑝𝑛
𝜌𝑛𝑇𝑛

= 
𝑝

𝜌𝑇
 D.6 

 

 𝑝𝑎𝑣𝑉 = 𝑝𝑛𝑉𝑛  
D.7 

 

 𝐿𝑃 = 𝑉𝑛 =
𝑝𝐴𝑉𝑉

𝜌𝑛𝑍𝑅 𝑇𝑛
 D.8 

 

Equation D.8 is suitable for calculating the volume of gas in a pipe when the gas flow 

is in steady state. This illustrates that the pipe linepack is proportional to the average 

pressure in the pipe section, therefore, increasing the average pressure of the pipe will 

increase the linepack and vice versa. 
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Under dynamic situations, the gas flow into and out of a pipe fluctuates with changing 

supply and demand. According to the Law of conservation of mass, the change of total 

gas volume is equal to the difference between the flow into and out of the pipe. Thus, 

we have: 

 𝐿𝑃(𝑡) = 𝐿𝑃0 + ∫ (𝑄𝑛 − 𝑄𝑛,𝑋)𝑑𝑡
𝑡

0
  D.9 

 

where, 𝐿𝑃0 is the initial gas stored in the pipe and is calculated by Eq. (D.9) in the 

steady state condition. 

 Gas compressors 

Compressors are used to boost the pressure lost through friction as gas flow along 

pipes in the transmission network.  The power required from the compressor prime-

mover is calculated by Eq. (D.10). 

 
𝑃𝑐 = 

𝑄𝑐
𝑛 𝛼

𝜂𝑐 (𝛼−1)
[(
𝑝𝑜𝑢𝑡

𝑝𝑖𝑛
)

𝛼−1

𝛼
− 1]  

D.10 

 

where 𝑃𝑐 is power consumption by compressor 𝑐 , 𝑄𝑐
𝑛 is gas flow through compressor 

𝑐, in standard condition, 𝑐 is polytropic exponent, 𝜂𝑐  is efficiency of compressor 𝑐, 

𝑝𝑜𝑢𝑡 is pressure of gas from a compressor, and 𝑝𝑖𝑛 is pressure of gas into a compressor. 

In practice, the performance of a compressor is constrained by the following equations: 

 1 ≤
𝑝𝑜𝑢𝑡

𝑝𝑖𝑛
≤ 𝑐𝑝𝑟𝑚𝑎𝑥  D.11 

 

where cpr  is the compressor pressure ratio. 

 𝑄𝑐
𝑛 ≤ 𝑄𝑐

𝑛,𝑚𝑎𝑥
  D.12 
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 𝑝𝑐 ≤ 𝑝𝑐
𝑚𝑎𝑥  D.13 

 

The amount of gas tapped by the compressor is given by [144]: 

 𝜏𝑐,𝑡 ≤ 𝛽𝑃𝑐,𝑡  
D.14 

 

where 𝜏𝑐,𝑡is amount of gas tapped by a compressor, and 𝛽 is gas turbine fuel rate 

coefficient of a compressor. 

 

Gas Storage 

Gas storage facilities are modelled based on their operational characteristics such as 

working gas volume, withdrawal rate, and injection rate and cushion gas. The 

operational characteristics of storage facilities have been introduced in section 3.4.2. 

The gas storage constraints is expressed by equations (3.6) – (3.11). 

However, non-linear storage constraints are solved using sequential linear 

programming  

 Gas network constraints  

At each node in the gas network pressure and gas flow balance constrains are applied. 

For each time step, total gas flow into each node (gas supply and storage withdrawal) 

is equal to total gas outflow from the node (gas demand, gas storage injection, 

compressor fuel consumption): 

 
𝑀𝑢,𝑎𝑄𝑎 +𝑀𝑢,𝑝𝑄𝑝 +𝑀𝑢,𝑐𝑄𝑐 − 𝑀𝑢,𝑐𝜏

𝑐 + 𝑀𝑢,𝑠𝑄𝑠
𝑠

= 𝑀𝑢,𝑑(𝑄
𝑑𝑒𝑚 − 𝑄𝑔𝑎𝑠𝑠ℎ𝑒𝑑) 

D.15 
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where 𝑀𝑢,𝑎𝑄𝑎 is node-terminal incidence matrix, 𝑀𝑢,𝑝 is node-pipe flow incidence 

matrix, 𝑀𝑢,𝑐 is node –compressor incidence matrix, 𝑀𝑢,𝑠 is node–storage incidence 

matrix, 𝑀𝑢,𝑑 is node-load incidence matrix. 

 𝑝𝑚𝑖𝑛 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥  
D.16 

 

 

where 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 are the lower and upper pressure bounds for each pipe in the gas 

network. 

D3. Electricity Network  

The electricity network is simplified as a Direct Current (DC) power model. The 

network consists of mainly generators and transmission lines. The DC power flow 

formulation reduces computational complexities to obtain MW power flows in each 

individual line. The DC power flow model is based on the following assumptions: 

i. the line resistance in a high voltage transmission system is very much smaller 

when compared to line reactance, such that resistance and system losses can be 

neglected 

ii. the phase voltage angle difference of a high voltage line is very small 

iii. the bus voltage per unit is close to nominal value (~1.0 p.u). 

 Power balance constraint  

For each time step the power balance equations ensures that total generation is equal 

to total demand less load shedding:  

 ∑ 𝑃𝑔,𝑡𝑔 = ∑ 𝑃𝑗,𝑡
𝑑𝑒𝑚

𝑗 − ∑ 𝑃𝑗,𝑡
𝑒𝑙𝑒𝑐𝑠ℎ𝑒𝑑

𝑗   D.17 

    

where P tg ,
 is power output of generation unit g at time t, P

dem

tj ,
is electricity demand 

at bus j and time t, and P
elecshed

tj ,
 is unserved electricity at bus j and time t.  
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 Electricity Network Constraints 

The power schedule is kept within the physical limits of the generating units as shown 

in Equation (4.18): 

 𝑃𝑔
𝑔𝑒𝑛(min)

 ≤ 𝑃𝑔,𝑡
𝑔𝑒𝑛

≤ 𝑃𝑔
𝑔𝑒𝑛(𝑚𝑎𝑥)

  D.18 

             

 Power transmission 

Power transmission along a line is constrained by maximum transmission capacity of 

the line. 

 

where 𝑃𝑙,𝑡 is electrical power transmitted through line l. 

 

D4. Linkage between gas and electricity network 

 Gas turbine generators provide the linkage between gas and electricity networks. They 

are regarded as energy converters between these two networks. For the gas network, 

the gas turbine was considered as a gas load. Its value depends on the power flow in 

the electricity network. In the electricity network, the gas turbine generator is a source. 

The relationship between the gas fuel flow and the real electrical power generated is 

expressed as: 

 

 𝑃𝑔,𝑡 = 𝜂𝑔𝑄𝑔,𝑡𝐻  D.20 

 

where 𝜂𝑔is thermal efficiency of generator, 𝑄𝑔,𝑡 is gas consumption by generator g

at time t, and is 𝐻  heat value of natural gas. 

 

 

𝑃𝑙,𝑡  ≤ 𝑃𝑙
𝑚𝑎𝑥  D.19 
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12.Appendix E 

GB Gas and Electricity Networks Data 

Table E.1.  GB Gas Terminals 

 

Gas terminal  Maximum capacities 

St.Fergus 84 

Teeside  30 

Easington 78 

Barrow 4 

Burton 3 

Theddletrope 4.9 

Bacton 150 

Isle of Grain 65 

Milford Haven  95 

 

Table E.2. Maximum Gas Supply Available to GB and Supply Costs  

 

Supply source Maximum supply 

available to GB (mcm/d) 

Supply cost (£/tcm) 

Domestic production   55.37 51 

Norway  80 115 

*LNG 123 145 

*Continental Supplies 75 Dependent on the gas 

price in the European 

gas network  

*Maximum LNG and Continental Supplies available to GB depends on gas demand and supply balance 

in the European gas network.  
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Table E.3 Cost of unserved gas demand for different gas consumer categories[30][120] 

[134] 

 

Disconnection 

merit order 

Consumer Categories Capacity 

Cost of 

unserved gas 

demand 

1 Large Industrial &Commercial 

gas consumers  

49.42 

mcm/d 

£4.1 6 /cm 

2 Electricity Generation (CCGT)  240 GWh/d £4/kWh 

3 Domestic gas 113.3 

mcm/d 

*£50/cm 

*The cost of unserved gas demand for domestic gas is significantly large to ensure that the disconnection of domestic gas 

supply is considered as the last option. 

 

 

Table E.4. Installed GB Power Generation Data - Reference Scenario (GW) 

 

Busbar Nuclear 
Gas-

fired 

Biomass/ 

Coal CCS 
Wind Interconnector 

Hydro/ 

Pumped Hydro 
Others 

1 - 1.2 0.3 5.2 1 1.6 1 

2 - - 0.6 6.7 1.4 - - 

3 - - - - - 0.5 - 

4 - - - - - 0.4 - 

5 - 0.7 0.8 1 - 0.4 - 

6 0.9 0.1 0.6 7.3 - 0.3 0.9 

7 1.2 2.6 0.3 4.4 - - - 

8 - - - 0 - - - 

9 2.4 3.8 0.5 7.3 0.9 2 - 

10 - 6.6 1.8 3.6 - - - 

11 - - - - - - - 

12 - 3 0.8 1.7 - - 0.5 
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13 - 2 - 7.5 - - - 

14 - 3.2 3.1 1.7 2 - 1.4 

15 0.9 5.9 - 2.3 - - 1.4 

16 5.2 9.8 - 2.3 2 - 2.1 

Total 10.6 38.9 8.8 51 7.3 2 5.15 

 

Table E.5. Installed GB Power Generation Data - Slow Transition Scenario (GW) 

 

Busbar 
Nuclear Gas-

fired 

Biomass/ 

Coal 

CCS 

Wind Interconnector Hydro/ 

Pumped 

Hydro 

Others 

1 - 1.2 0.3 4.1 1 1.6 1 

2 - - 0.6 5.33 1.4 - - 

3 - - - - - 0.5 - 

4 - - - - - 0.4 - 

5 - 0.7 0.8 0.82 - 0.4 - 

6 0.9 0.1 0.6 5.74 - 0.3 0.9 

7 1.2 2.6 0.3 3.28 - - - 

8 - - - - - - - 

9 2.4 3.8 0.5 5.74 0.9 2 - 

10 - 6.6 1.8 2.87 - - - 

11 - - - - - - - 

12 - 3 0.8 1.23 - - 0.5 

13 - 2 - 6.15 - - - 

14 - 3.2 3.1 1.23 2 - 1.4 

15 0.9 5.9 - 2.05 - - 1.4 

16 5.2 9.8 - 2.05 2 - 2.1 

Total 10.6 38.9 8.8 40.6 7.3 2 5.15 
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E.6. GB Transmission line capacities  

 

GB transmission 

boundaries  

Maximum transmission 

capacities (MW) 

TB1 1600 

TB2 2800 

TB3 3000 

TB4 3300 

TB5 5150 

TB6 7800 

TB7 7500 

TB8 1661 

TB9 3842 

TB10 10603 

TB11 3908 

TB12 5215 

TB13 11551 

TB14 6174 

TB15 8423 

 

E.7. GB Power Generation Cost  

Generator Generation cost (£/MWh) 

Nuclear  

 

11.63 

CCGT/OGCT/GAS 

 

Dependent on gas price 

Coal 

 

20.87 

Biomass 50.87 

Dual fuel 70 

Pumped storage 60 

Interconnector  

 

83.75 

Hydro  

 

0 (must run) 

Wind  

 

0 (must run) 

 

 


