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ABSTRACT 

 

When pipelines are used to transport gas through long distances, compression 

stations are coupled to the system in order to regain energy that is lost during fluid flow. 

In order for the compression stations to work, they consume part of the fluid being 

transported, making of it a source of fuel. An elegant optimization problem arises from the 

determination of network characteristics that will minimize fuel consumption at the 

compression stations. This minimization problem is given by highly non-linear objective 

function and constraints. Furthermore, an important part of the determination of 

compression performance is based on the calculation of efficiency in compressors. While 

some authors have assumed this efficiency to be constant, others have expanded the 

efficiency calculations by using polynomial curves. This study introduces three methods 

that allow for the simulation and optimization of natural gas transportation networks: first, 

it is demonstrated how fuel consumption can be accounted for in a system; second, it is 

introduced a method for the calculation of compressor efficiency; third, a domain-

constrained search procedure is implemented in order to determine how compression 

stations should be adjusted in order to achieve minimum fuel consumption in a given 

transportation network. In order to account for possible convergence difficulties, all the 

procedures implemented in the three methods rely on the use of the Linear-Pressure Analog 

model, a technique that allows for the linearization of the gas flow equations. This is 

concluded to be one of the main reasons why system efficiency and minimum fuel 

consumption can be estimated, given the fact that the Linear Analog procedure facilitates 
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convergence and effectiveness of the methods implemented in a reliable and effective 

manner. 
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𝜔:  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑢𝑒𝑠𝑠 𝑜𝑓 𝐿𝑖𝑗  𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐶𝑖𝑗   

 

 

 

 



xii 
 

 

ACKNOWLEDGEMENTS 

 

To my advisor, Dr. Luis Ayala, who I have learned to see not only as an academic 

supervisor, but as a dear friend whose counseling goes being the laws of physics. Thanks 

for being a source of guidance in the hours of most need. 

To Dr. Ertekin and Dr. Emami, for the honor of having them in my thesis committee 

and for the great insights provided to this study. 

To my parents, Maria Rita and Antônio Carlos, for all their support and love that 

have pushed me forward in all aspects of life. 

To my siblings Thales, Sheila, Fabiana and Samir, for all actions and words of 

encouragement.  

To my uncles and aunts, who have taught me that family values are concepts way 

more profound than mere social norms. In special, thanks to Gláucia, Gustavo, Itamar, 

Dalva, Cirene and Marly. 

To my great friends at the Pennsylvania State University, Renzo and Giancarlo. 

Thanks for the help and companionship, always present and available. 

To Dr. Molina, who first introduced me to the world of science: always a master 

and advisor. 

To my friends whose presence are of great support, no matter the distance: 

Maristela, Maíra, Vinícius Mourão and Elaine. 



xiii 
 

Especially, thanks to Dona Zita (in memorian). Dear grandmother, poet, story teller, 

counselor and inspirer of minds and souls. 

Finally, to all people who made my experience at Penn State unforgettable: 

I will be eternally thankful! 



1 
 

       

CHAPTER 1 

 INTRODUCTION 

 

Gas transportation is one of the most studied topics of natural gas engineering. It 

concerns the network of elements that move gas from wells to the final consumers as it 

flows through the different components of the system such as pipelines, valves, pipe legs, 

and compressors. The points where these different components connect are called nodes. 

The connection elements are called branches. Most of the work developed in natural gas 

transportation focuses on simulation of how pressures are to be found in each node of the 

system, given its supplies, demands, and physical characteristics (Menon, 2005). 

In general, transportation systems can be very large and account for a variety of 

components that extend through miles of pipelines. As an example, Figure 1 displays how 

the natural gas transportation system was distributed in the US during 2008. 

Since gas networks are usually very large and pressure is reduced during fluid flow 

due to energy losses, compression stations are necessary at some points of the system in 

order to compress the gas and regain pressure. 

Compression stations, in which one or more compressors might be present, have 

their performance constrained by compressor efficiency. While some authors have used 

the approximation of efficiency to constant values (Leong and Ayala, 2012), others have 

proposed the use of polynomial approximations of efficiency curves in order to estimate 

efficiency for a given compressor (S. Wu, 1998; Wu et al., 2000). These efficiency curves, 



2 
 

also referred to as compressor performance curves, have the characteristic of being highly 

non-linear.   

Furthermore, when compressors are present in a network, they usually consume 

part of the gas flowing through the network in order to produce enough power for the 

compressor itself to work. This can result in great expenses with gas consumption (Rios-

Mercato and Borraz-Sanchez, 2015).  

S. Wu (1998) estimated that about 3-4% of the gas transported in a network is 

consumed in the compression stations. S. Wu (1998) also indicated that 25% to 50% of the 

operational cost of the companies that manage natural gas transportation networks is 

related to gas consumption in compression stations. This cost is related to all recurrent 

administration expenses that are verified on a day-to-day basis, such as costs on employees, 

water, and, in this case, gas consumption. This implies that the effective minimization of 

fuel consumption could result in savings of great magnitude for the midstream industry. 

 

Figure 1: U.S. natural gas pipeline networks. Source: Energy Information Administration (2016). 
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However, the minimization of natural gas transportation presents the challenge of 

an optimization formulation that relies largely on a highly non-linear system of equations. 

Moreover, most of the methods found in literature that target the solution of such equations 

are dependent on reliable initial guesses of nodal pressures or flowrates moving through 

the branches of the network. This is the case of the Newton-Raphson method, which could 

lead to an undesired, non-converging scenario. 

In order to provide a proper solution for the challenges aforementioned, this study 

focuses on: 

 Simulating the pressures of different nodes of a system; 

 The estimation of fuel consumption for a given transportation system;  

 The estimation of compressor efficiency by the use of polynomial 

compressor performance curves and; 

 The minimization of fuel consumption in a natural gas transportation 

system.  

All procedures are implemented by the use of a linearization method named the 

Linear Analog, developed by Leong and Ayala (2012), which simplifies the simulation of 

pressure distribution in a given network by not requiring initial guesses of nodal pressures 

for its iterative process. 

In order to present methods and results in a practical manner, this paper is structured 

as follows: 

In Chapter 2, a literature review on natural gas networks is presented, covering 

topics such as gas flow equations, gas network nodal analysis, friction factors, Reynolds 
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number, and temperature changes during gas compression. The Linear Analog method 

developed by Leong and Ayala (2012) is also introduced and discussed. 

In Chapter 3, the topic of gas compression is discussed, and the compressor 

equation is presented. The equations for compressor performance according to Wu et al. 

(2000) are also introduced. 

In Chapter 4, the optimization problem for planning of natural gas transportation is 

discussed as presented by S. Wu (1998), with especial attention for the gas consumption 

function and the compressor equation domain. 

In Chapter 5, the methodology used to solve the calculations of fuel consumption 

and to develop the optimization problem is explained, with description of the domain-

constrained search procedure. 

In Chapter 6, the methods introduced are applied to three different case studies 

along with the presentation of results and discussion. 

In Chapter 7, some concluding remarks are provided and future work is proposed. 
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CHAPTER 2   

 LITERATURE REVIEW 

 

One of the most basic problems in natural gas transportation concerns the 

calculation of pressures at upstream and downstream nodes of a single pipe, as well as the 

flow going through it (Ayala, 2013; Kumar, 1987; Larock et al., 2000; Leong and Ayala, 

2013; Osiadacz, 1987). This problem corresponds to the development of a mathematical 

model that will describe fluid flow in pipelines (Ayala, 2013; Kumar, 1987; Larock et al., 

2000; Leong and Ayala, 2013; Osiadacz, 1987) and captures how physical properties of 

the pipe and of the flowing fluid will affect the capability that the pipe has to transport gas 

and how conductible this pipe will be according to these properties.  

 

 

 

 

In Figure 2, a basic scheme of fluid transportation is presented. In this scheme, gas 

flows through a horizontal pipe according to pipe and fluid characteristics and pressure 

conditions at the pipe inlet, conventionally called node i, or upstream node; and pressure 

conditions at the pipe outlet, conventionally called node j, or downstream node. 

Pup, node i Pdown, node j 

 

Figure 2: Scheme of flow going through the two nodes of a pipeline.  

 



6 
 

 A variation of the case shown in Figure 2 is the non-horizontal, inclined pipe. While 

in the horizontal case, pressure is mainly affected by energy losses due to the friction of 

the fluid against the pipe wall, in the inclined case, depicted in Figure 3, pressure is also 

affected by gravitational forces related to the differences of height (∆H = elevation) 

between node i, upstream; and node j, downstream (Ayala, 2013; Ikoku, 1984).  

 

 

 

 

 

 

If the schemes in Figures 2 and 3 represent pipes with the same physical properties, 

flowing fluid characteristics, and initial pressure at node i, it can be concluded that node j 

in Figure 3 will have a pressure value that is smaller than the one found in node j of Figure 

2. In Figure 3, pressure will be lost along the flowline not only due to energy losses related 

to friction, but also due to energy losses related to gravitational forces. 

 In order to develop an equation that is capable of describing the gas flow through 

both horizontal and inclined pipes, different attempts have been presented (Ayala, 2013; 

Ikoku, 1984). As a result, different equations have been proposed with slight differences 

between each, mostly related to the calculation of the parameter that determines friction 

Pup, node i 

Pdown, node j 

∆H 

 

Figure 3: Scheme of flow going through the two nodes of an inclined pipeline. 
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losses, also known as friction factor. These equations can be summarized in a generalized 

form that is derived from the First and Second Laws of Thermodynamics (Ayala, 2013). 

 

2.1 The Gas Generalized Pipe Flow Equation Derivation 

The generalized equation for gas flow in pipes can assume two basic different 

forms: the Q-explicit form; or the ∆P-explicit form. This study is based on the Q-explicit 

form of the generalized equation for gas flow. However, ∆P-explicit form will be briefly 

discussed in this chapter. 

From the combination of the First and Second Laws of Thermodynamics, it can be 

stated that the pressure loss of fluid flow in pipes can be described by equation 1 (Brill and 

Mukherjee, 1999): 

(
𝑑𝑝

𝑑𝑥
)

𝑇
= (

𝑑𝑝

𝑑𝑥
)

𝑒
+ (

𝑑𝑝

𝑑𝑥
)
𝑎

+ (
𝑑𝑝

𝑑𝑥
)
𝑙𝑤

 

 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1  

 where: 

(
𝑑𝑝

𝑑𝑥
)

𝑇
 accounts for the total pressure loss taking place during fluid flow. 

(
𝑑𝑝

𝑑𝑥
)
𝑒
 accounts for pressure losses due to changes in elevation. 

(
𝑑𝑝

𝑑𝑥
)
𝑎
 accounts for pressure losses due to changes in acceleration. 

(
𝑑𝑝

𝑑𝑥
)
𝑙𝑤

 accounts for pressure losses due to friction of the fluid against the pipe wall. 
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 Ayala (2013) demonstrates that equation 1 can be rewritten in terms of other 

variables and manipulated in order to give: 

  
𝑑𝑝

𝜌
 = −

𝑣

𝑔𝑐
𝑑𝑣      −

𝑔

𝑔𝑐
𝑑𝑧   −    𝑑𝑙𝑤 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

 where: 

 𝑝  represents pressure; 

 𝜌  represents the fluid density; 

 𝑣  represents fluid velocity; 

𝑔  represents gravity acceleration; 

 𝑔𝑐 represents a conversion factor; 

𝑙𝑤  represents lost work to the environment, also known as irreversible loss. 

 By manipulating density, and differentiating it with respect to space 𝑑𝑥, equation 

2 will collapse to: 

 
𝑑𝑝

𝑑𝑥
 = −

𝜌𝑣

𝑔𝑐

𝑑𝑣

𝑑𝑥
     −

𝜌𝑔

𝑔𝑐

𝑑𝑧

𝑑𝑥
   −   𝜌

𝑑𝑙𝑤

𝑑𝑥
  

                                      𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

Then, equation 3 can be related to equation 1 by the observation that: 
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(
𝑑𝑝

𝑑𝑥
)

𝑒
= −

𝜌𝑔

𝑔𝑐

𝑑𝑧

𝑑𝑥
 

                                            𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 

(
𝑑𝑝

𝑑𝑥
)
𝑎
 = −

𝜌𝑣

𝑔𝑐

𝑑𝑣

𝑑𝑥
 

                                           𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 

(
𝑑𝑝

𝑑𝑥
)

𝑙𝑤
= −  𝜌

𝑑𝑙𝑤

𝑑𝑥
 

                                          𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 

 

This is consistent with the derivations found in the work of Ayala (2013). Ayala 

(2013) also indicated that, for pipes, 𝑑𝑙𝑤 is equivalent to the pressure loss due to the shear 

stress between the pipe wall and the fluid, elucidating that: 

(
𝑑𝑝

𝑑𝑥
)

𝑙𝑤
= −  𝜌

𝑑𝑙𝑤

𝑑𝑥
  =   −  𝜏𝑤

𝜋𝑑

𝐴
 

                𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7 

where: 

𝜏𝑤 is the shear stress of the fluid against the pipe wall; 

𝑑 is the pipe diameter; 

𝐴 is the pipe cross-sectional area. 
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where: 

𝐴 =  
𝜋𝑑2

4
 

                          𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8 

Also, according to Ayala (2013), shear stress can be calculated by the following 

equation: 

 𝜏𝑤 = 
𝑓𝐹𝜌𝑣2

2𝑔𝑐
 

              𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9 

where 𝑓𝐹 is the Fanning friction factor. 

If equations 9 and 8 are combined into equation 7, equation 10 is true with regards 

to losses due to friction: 

(
𝑑𝑝

𝑑𝑥
)
𝑙𝑤

= (
𝑑𝑝

𝑑𝑥
)
𝑓

= − 
2𝑓𝐹𝜌𝑣2

𝑔𝑐𝑑
  

               𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 10 

 However, it is noteworthy that velocity can be written in terms of mass flow, as 

follows: 

𝑣𝐴 =  
𝑚

𝜌
 

                          𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 11 
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 where  𝑚 is the mass flow. 

  Equation 11 can be modified to give: 

 𝑣 =  
𝑚

𝜌𝐴
 

                          𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 12 

 Finally,  equation 12 can be plugged into equation 10 and manipulated in order to 

result in:  

(
𝑑𝑝

𝑑𝑥
)
𝑙𝑤

= (
𝑑𝑝

𝑑𝑥
)
𝑓

= − 
2𝑓𝐹𝑚2

𝑔𝑐𝑑𝐴2𝜌
 

                𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 13 

  Taking equation 3 in consideration again, the contribution of acceleration forces to 

pressure (energy) losses in pipe fluid flow is so small that it can be neglected. This will 

lead to the following: 

(
𝑑𝑝

𝑑𝑥
)

𝑇
= (

𝑑𝑝

𝑑𝑥
)
𝑒
+  (

𝑑𝑝

𝑑𝑥
)

𝑙𝑤
= (

𝑑𝑝

𝑑𝑥
)

𝑒
+  (

𝑑𝑝

𝑑𝑥
)
𝑓
 

                   𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 14 

 By substituting equations 4 and 13 into equation 14, it can be found that: 

(
𝑑𝑝

𝑑𝑥
)

𝑇
= −

𝜌𝑔

𝑔𝑐

𝑑𝑧

𝑑𝑥
      −  

2𝑓𝐹𝑚2

𝑔𝑐𝑑𝐴2𝜌
 

                                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 15 
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For inclined pipes, it is relevant to highlight that the variation in inclination is a 

function of height differences between height at downstream node and upstream node, as 

demonstrated in Figure 4: 

 

 

 

 

where L is the pipe length. 

 Furthermore, it can be stated that: 

sin 𝜃 =  
𝑑𝑧

𝑑𝑥
=  

Δ𝐻

𝐿
 

                            𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 16 

 where 𝑑𝑧 represents variation in height. 

Adding equation 16 into equation 15, it can be observed that: 

∆H 

 

Figure 4: Trigonometric behavior of inclined pipes 
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(
𝑑𝑝

𝑑𝑥
)

𝑇
= −

𝜌𝑔

𝑔𝑐

Δ𝐻

𝐿
      −  

2𝑓𝐹𝑚2

𝑔𝑐𝑑𝐴2𝜌
 

                                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 17 

With a little bit of manipulation and the observation that: 

𝐴2 = 
𝜋2𝑑4

16
 

                  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 18 

equation 17 can be rewritten as: 

𝜌𝑑𝑝 =  −
32𝑓𝐹𝑚2

𝑔𝑐𝑑5𝜋2
 𝑑𝑥     −  

𝜌2𝑔Δ𝐻

𝑔𝑐𝐿
𝑑𝑥 

                                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 19 

All terms but density are constant in equation 19. This means that if equation 19 is 

integrated on both sides, it will give: 

∫ 𝜌𝑑𝑝
𝜌2

𝜌1

= −
32𝑓𝐹𝑚2

𝑔𝑐𝑑5𝜋2
 ∫ 𝑑𝑥 

𝐿

0

    −  
𝑔Δ𝐻

𝑔𝑐𝐿
∫ 𝜌2𝑑𝑥

𝐿

0

 

                     𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 20 

Ayala (2013) suggests the following manipulation for integration of equation 20: 

𝛼 =  
32𝑓𝐹𝑚2

𝑔𝑐𝑑5𝜋2
 

                                    𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 21 
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and:  

𝛽 =  
𝑔Δ𝐻

𝑔𝑐𝐿
 

                             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 22 

If equations 21 and 22 are coupled into equation 19, then:  

𝜌𝑑𝑝 =  −𝛼 𝑑𝑥    −  𝛽𝜌2𝑑𝑥 

                                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 23 

and consequently: 

𝑑𝑝 =  −
𝛼 𝑑𝑥

𝜌
    −  𝛽𝜌𝑑𝑥 

                                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 24 

Equation 24, by preserving pressure-density dependence upon integration, is 

consistent with the work of Fergurson (1936). It can also be manipulated in order to 

provide: 

−𝑑𝑥 = 
𝑑𝑝

(
𝛼 
𝜌    +  𝛽𝜌)

 

                                              𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 25 
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From real gas law, it can be observed that: 

𝜑 =  
𝑀𝑊𝑔𝑎𝑠

𝑧𝑎𝑣𝑅𝑇𝑎𝑣
 

              𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 26 

where: 

𝑀𝑊𝑔𝑎𝑠 is the molecular weight of the gas (lbm/lbmol) 

𝑅 is the universal gas constant (psi-ft / lbmol-◦R) 

𝑇𝑎𝑣 is the temperature (◦R) 

𝑧𝑎𝑣 is the average compressibility factor of gas. 

Coupling equations 25 and 26, it can be arrived at: 

−∫ 𝑑𝑥
𝐿

0

= ∫
𝑃𝑑𝑝

(
𝛼 
𝜑    +  𝜑𝛽𝑃2)

  
𝑃2

𝑃1

 

                                            𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 27 

Upon integration, equation 27 will result in the generalized gas flow equation: 

𝑞𝐺𝑠𝑐𝑖𝑗 = 𝐶𝑖𝑗(𝑃𝑖
2 − 𝑒𝑠𝑃𝑗

2)
𝑛
  

                𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 28 

where: 
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𝐶𝑖𝑗 = 
𝜎

√𝑆𝐺𝑔𝑇𝑎𝑣𝑍𝑎𝑣

 (
𝑇𝑠𝑐

𝑃𝑠𝑐
) (√

1

𝑓
) 

𝑑2.5

𝐿𝑒0.5
 

       𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 29 

𝜎 =  √
𝜋2𝑅𝑔𝑐

64𝑀𝑊𝑎𝑖𝑟
 

                                 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 30 

𝑠 =  
2 𝑔Δ𝐻𝛾𝑔𝑎𝑠𝑀𝑊𝑎𝑖𝑟 

𝑔𝑐𝑧𝑎𝑣𝑅𝑇𝑎𝑣
 

                 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 31 

𝐿𝑒 = 
(𝑒𝑠 − 1)

𝑠
𝐿  

                             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 32 

 Equation 28 is the generalized gas flow equation in Q-explicit form, which accounts 

for energy losses due to both friction and elevation changes. This equation can also be 

written in terms of ∆P-explicit. 

 

2.2 The Generalized Gas Flow Equation in ∆P-explicit form 

∆P-explicit formulation will not be used in the developments herein presented. 

However, it is noteworthy that equation 28 can be manipulated in order to give the 

generalized gas flow equation in ∆P-explicit form: 
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𝑃𝑖
2 − 𝑃𝑗

2 = 𝑅𝑔𝑞𝐺𝑠𝑐𝑖𝑗

1
𝑛 

                 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 33 

where: 

𝑅𝑔 = 𝑟𝐺
𝐿𝑒

𝑑𝑚
   

                      𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 34 

And: 

𝑟𝐺 = 
𝛾𝑔𝑎𝑠𝑇𝑎𝑣𝑍𝑎𝑣

𝜎2
 𝑓𝐹 (

𝑃𝑠𝑐

𝑇𝑠𝑐
) 2 

                 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 35  

Where 𝑚 and 𝑛 will vary according to the friction factors being used. 

 

2.3 Friction Factors 

Different forms of calculating the friction factor ( f ) have been proposed. For the 

effects of this work, Weymouth, Panhandle-A, Panhandle-B, AGA Fully-Turbulent, and 

Colebrook’s Equation with rigorous friction factor calculations will be presented. Each of 

these formulas are displayed in Table 1. 
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Gas-flow Equation Friction-Factor Expression 

Colebrook (1939) 
1

√𝑓
= −4𝑙𝑜𝑔10 (

𝑒/𝑑

3.7
+ 

5.02

𝑅𝑒√𝑓
) 

Weymouth (1912) 𝑓𝐹 = 
𝑘𝑤

𝑑1/3
 

Panhandle-A (original Panhandle) 

(Boyd, 1983; GPSA, 2004) 

𝑓𝐹 =
𝑘𝑃𝐴

(
𝑞𝐺𝑠𝑐𝑆𝐺𝑔

𝑑
)
0.1461 

Panhandle-B (modified Panhandle) 

(Boyd, 1983; GPSA, 2004) 

𝑓𝐹 =
𝑘𝑃𝐵

(
𝑞𝐺𝑠𝑐𝑆𝐺𝑔

𝑑
)
0.03922 

AGA (fully turbulent) 

(AGA, 1965) 

1

√𝑓
= 4 𝑙𝑜𝑔10 (

3.7𝑑

𝑒
) 

 

Table 1: Friction factor formulas for different types of equations. 

 

It is also important to notice that the generalized gas flow equation can admit 

different units according to the 𝜎 parameter used. For the effects of this work, field units 

will be used as stated in the nomenclature (list of symbols) section, and the following values 

are to be implemented in the formulas presented in this section: 

𝑘𝑤 = 0.002352  [𝑖𝑛1/3]  

 𝑘𝑃𝐴 = 0.01923  [(
𝑆𝐶𝐹𝐷

𝑖𝑛
)
0.1461

] 

 𝑘𝑃𝐵 = 0.00359 [(
𝑆𝐶𝐹𝐷

𝑖𝑛
)
0.03922

] 
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𝜎 = 2,818  [√
𝑝𝑠𝑖−𝑓𝑡3 (lbm−ft/lbf−s2)

𝑙𝑏𝑚𝑜𝑙−°𝑅 (
𝑙𝑏𝑚

𝑙𝑏𝑚𝑜𝑙
)

]  

 

2.3.1 Colebrook Formula 

In Colebrook’s (1939) equation, Reynolds number needs to be calculated. The 

formula of Reynolds number is given by: 

𝑅𝑒 = 
𝜌𝑣𝑑

𝜇𝑔
              

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 36 

where 𝜇𝑔 , gas viscosity, can be calculated by the formula provided by Lee, 

Gonzalez and Eakin (1966). 

𝜇𝑔 = 1 ∗ 10−4𝑘𝑣𝐸𝑋𝑃 (𝑥𝑣 (
𝜌𝑔

62.4
)

𝑦𝑣

)               

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 37 

where: 

𝑘𝑣 = 
(9.4 + 0.02𝑀𝑊𝑔)𝑇1.5

209 + 19𝑀𝑊𝑔 + 𝑇
                         

 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 38 
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𝑥𝑣 =  3.5 + 
986

𝑇
+ 0.01𝑀𝑊𝑔 

                𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 39 

 

For the calculation of density, real gas law will be used and   the system’s average 

pressure will be needed. The pressure to be used is branch average pressure, also known as  

𝑃𝑎𝑣 (Ayala, 2013), calculated by equation 40: 

𝑃𝑎𝑣 = 
2

3
(𝑃1 + 𝑃2  −  

𝑃1 𝑃2

𝑃1 + 𝑃2
) 

           𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 40 

 

2.4 Gas Network Analysis 

As mentioned previously, gas network analysis concerns the series of procedures 

for which the flows in a network of pipes can be calculated. It also concerns the estimation 

of pressures in each one of the nodes in the network (Ayala, 2013; Kumar, 1987; Larock 

et al., 2000; Leong and Ayala, 2013; Osiadacz, 1987). 

In gas network analysis, material balance equations are computed at each node in 

order to obtain a system of equations that can be solved for pressures or flowrates. For the 

cases of systems with compressors, the equation that describes the flow through the 

compressors is added to the material balance equations. 

In general, a nodal network is composed of three basic elements: 
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 Nodes, commonly referred to as N; 

 Branches or pipes, which in this work are referred to as B and; 

 Loops, commonly referred to as L. 

The number of nodes (N), the number of branches (B), and the number of loops (L) 

can be related by equation 41: 

𝐵 = (𝑁 − 1) + 𝐿 

             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 41 

For example, the pipe segment shown in Figure 1 has two nodes and zero loops. 

Thus, it has one branch. Two main approaches exist in order to develop the system of flow 

equations for a nodal network. The nodal-loop formulation, also known as the Q-

formulation, and the nodal formulation, also known as the P-formulation. They are based, 

respectively, on the general equations demonstrated in sections 2.4.1 and 2.4.2 of this 

chapter. 

 

2.4.1 The Nodal-loop Formulation or Q-formulation 

The nodal-loop formulation is focused on calculating the flowrate going through 

each pipe before knowing the pressure values at each node. It consists on a series of 

material balance equations at each node and energy conservation equations at each loop of 

a network. (N – 1) equations linearly independent can be obtained from nodal mass 

conservation: 
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∑𝑞𝑖𝑛,𝑖

𝑁

𝑖=1

− ∑𝑞𝑜𝑢𝑡,𝑖

𝑁

𝑖=1

 + 𝑆 − 𝐷 = 0 

                           𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 42 

L loop equations are obtained from energy conservation at each loop of a network: 

∑(𝑃𝑖
2 − 𝑃𝑗

2)

𝑁

𝑖=1

  =  ∑(𝑅𝑔𝑞𝐺𝑠𝑐𝑖𝑗

1
𝑛)

𝑁

𝑖𝑗

 = 0 

           𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 43 

As it can be observed from equation 41, the final system will be comprised of B 

equations. Once solved, this system will be able to determine flowrates going through each 

one of the pipe segments. 

2.4.2 The Nodal Formulation or P-formulation 

While the Q-formulation concerns the solution of a system that will have as output 

answers the flowrates going through each segment of a pipe, the P-formulation will impose 

nodal material balance equations in terms of pressures, and then solve the system for 

pressures. 

Basically, it will solve the following system: 

∑𝑞𝑖𝑛,𝑖

𝑁

𝑖=1

− ∑ 𝑞𝑜𝑢𝑡,𝑖

𝑁

𝑖=1

 + 𝑆 − 𝐷 = ∑ 𝐶𝑖𝑗(𝑃𝑖
2 − 𝑒𝑠𝑃𝑗

2)
𝑛

𝑁

𝑖=1

− ∑ 𝐶𝑖𝑗(𝑃𝑖
2 − 𝑒𝑠𝑃𝑗

2)
𝑛

𝑁

𝑖=1

 + 𝑆 − 𝐷  

   𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 44 
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This system will have (N - 1) linearly independent nodal equations, but N (pressure) 

unknowns. In order to provide linear balance for the system, one more equation is 

necessary, or one unknown needs to be removed. In this case, one of the pressures is usually 

specified. 

 

2.5 Solution Procedures 

A series of solution procedures have been proposed for solving these systems of 

nodal equations. The most common are the Linear Theory Method (Wood and Carl, 1972), 

the Newton-Raphson Method (Press et al., 2007), the Hardy Cross Method (Cross, 1932) 

and the Linear-Pressure Analog Method (Leong and Ayala, 2012), commonly referred to 

as the Linear Analog method. Of these methods, Newton-Raphson is largely used since it 

possesses fast convergence and can also be numerically determined. However, Newton-

Raphson implies the need for a “good initial guess”, close to the actual value of the 

variables being analyzed. Poor initial guesses might actually lead to a non-convergence 

scenario. 

 

2.5.1 The Newton-Raphson Method 

The Newton-Raphson Method for multivariable equations is given as follows: 

For a certain vector of n equations 𝑓. 

𝑓 = [ 𝑓1 , 𝑓2 , 𝑓3 , 𝑓4 , … , 𝑓𝑛] 

                        𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 45 
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a vector of n variables: 

𝑥 = [ 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , … , 𝑥𝑛   ] 

                       𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 46 

and a Jacobian vector: 

𝐽𝐹 = ∇𝑓(𝑥) =  𝐽𝑖𝑗 = 
𝜕𝑓𝑖
𝜕𝑥𝑗

 

                            𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 47 

the system solution is given by the operation: 

𝑥𝑛𝑒𝑤   =   𝑥𝑜𝑙𝑑          −     𝐽𝐹
−1

(𝑥𝑜𝑙𝑑)𝑓( 𝑥𝑜𝑙𝑑)  

          𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 48 

 

2.5.2 The Linear Analog Method 

The Linear Analog method is an elegant algorithm developed to solve systems of 

nodal equations derived from the material balance of natural gas transportation systems. 

The Linear Analog advantage relies on the fact that it does not require an initial guess of 

pressures or flowrates in order to assure convergence. This is the method for the solution 

of the system of equations for gas flow that is implemented in this study. 

The algorithm procedure of the Linear Analog method was presented by Leong and 

Ayala (2012). Its basis relies on the linearization of the gas flow equation in Q-explicit 
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form, where the gas flow is treated as analogous to laminar flow, allowing for the flow 

equation to become much simplified, as shown in equation 49. 

𝑞𝐺𝑠𝑐𝑖𝑗 = 𝐶𝑖𝑗(𝑃𝑖
2 − 𝑒𝑠𝑃𝑗

2)
𝑛

= 𝐿𝑖𝑗(𝑃𝑖 − 𝑃𝑗) 

         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 49 

where 𝐿𝑖𝑗  is the Linear Analog pipe conductivity and: 

𝐿𝑖𝑗 = 𝑇𝑖𝑗 ∗ 𝐶𝑖𝑗 

                                 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 50 

𝑇𝑖𝑗 = √1 + 
2

𝑟𝑖𝑗  −   1
  

                  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 51 

𝑟𝑖𝑗 = 
𝑃𝑖

𝑒
𝑠
2𝑃𝑗

  

                                     𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 52 

The derivation of 𝑇𝑖𝑗 is given in Figure 5, extracted from the work of Leong and 

Ayala (2012). 

This method relies on the fact that 𝐿𝑖𝑗 can assume an initial value equal or greater 

than 𝐶𝑖𝑗 and approaches its correct value each time that the system of equations is solved 

during the Linear Analog iterations. At each new iteration, the value of 𝑇𝑖𝑗 is updated and 
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consequently the value of 𝐿𝑖𝑗 is also updated, until convergence is achieved. Figure 6 shows 

the algorithm of the Linear Analog as it was presented by Leong and Ayala (2012). 

 

 

                   Figure 5: Derivation of the Linear-Analog conductivity. Source: Leong and Ayala (2012). 

 

Besides not requiring initial guesses for nodal pressures or flowrates, the Linear 

Analog also is a linearly converging method. This implies that the method does not face 

the problems of non-convergence such as does Newton-Raphson. Therefore, once applied 

to gas networks analysis, this method, though requiring more iterations to converge than 



27 
 

does Newton-Raphson, has an application that does not rely on initial guesses, or “good” 

initial guesses (for nodal pressures) in order to guarantee convergence. 

 

Figure 6: The Linear-Pressure Analog algorithm. Source: Leong and Ayala (2012). 

 

The Linear Analog method is especially useful for large networks with many 

components such as wells and compression stations, for which equations are very non-

linear and good initial guesses are needed for a variety of pressure nodes, possibly leading 

the computer code used to automate the procedure to a non-convergence state. 
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The Linear Analog method, thus, is a powerful tool for testing different scenarios 

of network performance. It makes it possible, for example, to test a system with one 

compressor for different values of compression ratios, without the concern of providing the 

code with initial guesses for nodal pressures. 
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CHAPTER 3   

THE COMPRESSOR 

 

The compressor is one of the most important pieces of equipment in a network of 

natural gas transportation, especially in networks where pipes are very long.  This impor-

tance relies on the principle of pressure loss (energy loss) discussed in Chapter 2.  As gas 

travels through a pipeline, it starts to lose pressure along the way, mainly due to the friction 

of the fluid against the pipe wall. Nevertheless, it is important that, in a network, pressure 

is not allowed to go beyond a certain lower limit. If pressure becomes too low, the energy, 

and therefore the expense necessary to increase pressure in later sections of the network, 

becomes excessively high.  One way to remedy this situation is through the use of 

compressors. 

 A compressor is a device that is used to increase the pressure of a compressible 

fluid (Brown, 2005). There are different types of compressors, but mainly two types are 

more commonly used in the natural gas transportation industry: centrifugal compressors 

and reciprocating compressors. The type being analyzed in this study is the centrifugal 

compressor, which rotates the gas entering though it in order to increase its velocity and 

thus its pressure. It is one of the most used types of compressors for compression of oil-

free gas (Block, 1933). 

A centrifugal compressor is also called a radial-flow compressor, and it is widely 

used and typically found in a multi-stage system in which compressors are placed in series 

(Brown, 2005).  The gas enters the compressor through a suction node, located right at the 
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compressor entrance, and leaves the compressor through a discharge node, found right at 

the exit of the compressor. According to Brown (2005), during this process, an impeller 

consisting of radial or backward-leaning blades rotates, moving gas from between the 

rotating blades radially and outward to discharge. Energy is transferred to the gas while it 

is traveling through the impeller, converting part of the energy to pressure. 

 

 

         Figure 7: Radial-flow horizontally split multistage centrifugal compressor. Source: Brown (2005). 

 

Gresh (2001) discusses that centrifugal compressors have advantages and 

disadvantages. The advantages are the possibility of a wide operating range, low 

maintenance needs, and high reliability. Disadvantages include instability at low flow and 

moderate efficiency values. 

A scheme of a compressor in a network is depicted in Figure 8. 
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Where the compression ratio is given by Equation 53 

𝑟𝑐𝑖𝑗 = 
𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛
                    

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 53 

In Figure 9, the image of a centrifugal compressor is presented: 

 

Figure 9: Centrifugal gas compressor. Source: Caterpillar Company (2016) 

It is important to note, however, that it is very unlikely that a certain branch of a 

network would be designed to flow gas through only one compressor, but rather this 

Figure 4: Scheme of flow going through the two nodes of a pipeline.  

Pup, node i Pdown, node j 

 Psuction Pdischarge 

Figure 8: Scheme of a compressor coupled to a Natural Gas Transportation Network 
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process is performed in stages, through a series of compressors. This operation is necessary 

because, usually, increasing the pressure of gas will increase the collision of molecules, 

adding energy to the system. Part of the energy added is then transformed into heat, with 

an observed rise in temperature, making the temperature increase as pressure is increased.  

With compression performed in stages, gas can go through intercoolers between 

different compressors at a station in order to mitigate the changes in temperature. This will 

prevent temperature from reaching a certain maximum and mitigate risks, avoiding 

accidents that could take place if the temperature in the compressor becomes too high, such 

as the degradation of the lubrication fluid. 

Figure 10 shows a compression station. 

 

         Figure 10: A compression station in Tapinhoa, Brazil. Source: Valerus Company (2016) 

For the calculation of discharge temperatures at compressors, the formula provided 

by Menon (2005) is used. The formula is given by equation 54: 
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𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑇𝑠𝑢𝑐𝑡𝑖𝑜𝑛 (
𝑧𝑠𝑢𝑐𝑡𝑖𝑜𝑛

𝑧𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
)(

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑠𝑢𝑐𝑡𝑖𝑜𝑛
)

n−1
n

        

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 54 

where n is the compressor coefficient. 

3.1 Coupling of Compressor to the System 

When compressors are present in a certain piping system, the strategy of Leong and 

Ayala (2012) is used: nodal material balance will take the compressor equation into 

consideration. The compressor equation is given by: 

𝑞𝐺𝑖𝑗 = 𝐶𝑐𝑖𝑗𝐻𝑃 

                                     𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 55 

where: 

𝑞𝐺𝑖𝑗 is the volumetric flowrate going through the compressor. 

𝐶𝑐𝑖𝑗 is the compressor constant. 

𝐻𝑃 is the horsepower used by the compressor in order to perform work. 

and: 

 

𝐶𝑐𝑖𝑗 = 
1

𝑘𝑐 [(𝑟𝑐𝑖𝑗)
n−1
𝑛𝑠𝑡 n − 1 ]

∗ 106  
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                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 56 

𝑘𝑐 = 0.0857 (
𝑛𝑠𝑡n

n − 1
)𝑇𝑖(𝑍𝑎𝑣) (

1

𝜂
) 

             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 57 

where: 

𝑟𝑐𝑖𝑗 is the compression ratio. 

𝑛𝑠𝑡 is the number of compression stages in a compression station. 

n is the compressor coefficient, which can assume the values of the polytrophic 

coefficient (𝑛𝑝). 

𝑇𝑖 is the compressor inlet temperature. 

𝑧𝑎𝑣 is the average compressibility factor of the fluid. 

𝜂 is the compressor efficiency. 

 One of the variables of extreme importance in the compressor equation is the 

compression ratio 𝑟𝑐𝑖𝑗 , since this ratio will be determinant of the amount of horsepower 

required in order for the compressor to work. 

 

3.2 The Compressor Efficiency 

As mentioned in Chapter 1, compressor efficiency (𝜂) has been addressed in the 

literature by basically two different approaches: while some authors have used constant 
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efficiencies, others have performed efficiency calculations by the use of compressor 

performance curves. 

Wu et al. (2000) provided the following polynomials for the calculation of both 

efficiency and rotation velocity in a centrifugal compressor:  

𝜂 =  𝐴𝐸  +    𝐵𝐸 (
𝑄

S
) +  𝐶𝐸 (

𝑄

S
)
2

 +  𝐷𝐸 (
𝑄

S
)
3

 

                 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 58 

where in order to calculate 𝑆, it is necessary to use the following polynomial: 

𝐻

S2
= 𝐴𝐻  +    𝐵𝐻 (

𝑄

S
) +  𝐶𝐻 (

𝑄

S
)
2

 +  𝐷𝐻 (
𝑄

S
)
3

 

             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 59 

where: 

𝐻 is the compressor head.  

S is the rotation velocity in compressor. 

𝑄 is the actual volumetric flowrate entering the compressor. 

Whenever volumetric flow at standard conditions needs to be changed to 

volumetric flow at actual conditions, real gas law will be used with the calculation of 

properties such as density and compressibility factor by the use of the methods provided 

by Dranchuk and Abou-Kassem (1975), which are widely known and used in the Oil & 

Gas Industry. 
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Wu et al. (2000) provided the following values for the empirical constants in 

equation 58. 

     𝐴𝐸 =  134.8055 [−] 

           𝐵𝐸 = −148.5468 [
𝑟𝑝𝑚

𝑓𝑡3
]   

𝐶𝐸  =  125.1013 [
𝑟𝑝𝑚2

𝑓𝑡6
] 

𝐷𝐸  =  −32.0965 [
𝑟𝑝𝑚3

𝑓𝑡9
] 

Wu et al. (2000) also provided the following values for the empirical constants in 

equation 59.  

𝐴𝐻  =  0.6824 ∗ 10−3  [
(𝑙𝑏𝑓 − 𝑓𝑡/𝑙𝑏𝑚)

𝑟𝑝𝑚2
]  

 𝐵𝐻 = −0.9002 ∗ 10−3  [
(𝑙𝑏𝑓 − 𝑓𝑡/𝑙𝑏𝑚)

(
𝑓𝑡3

𝑚𝑖𝑛) 𝑟𝑝𝑚
]  

𝐶𝐻  =  0.5689 ∗ 10−3  

[
 
 
 
(𝑙𝑏𝑓 − 𝑓𝑡/𝑙𝑏𝑚)

(
𝑓𝑡3

𝑚𝑖𝑛)
2

]
 
 
 

 

𝐷𝐻 = −0.1247 ∗ 10−3  

[
 
 
 
(𝑙𝑏𝑓 − 𝑓𝑡/𝑙𝑏𝑚) 𝑟𝑝𝑚

(
𝑓𝑡3

𝑚𝑖𝑛)
3

]
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3.3 The Compressor Domain 

A compressor is a mechanical piece of equipment. Thus, like all mechanical 

equipment, it is restricted by a series of mechanical constraints that allow for the equipment 

to work properly. 

In a centrifugal compressor, the main restrictions are related to the rotation velocity 

and the volumetric flow moving through the equipment. As it can be rationalized, the 

rotation velocity has upper limit and lower limit restrictions. Also, there are upper and 

lower limits related to volumetric flow going through the compressor. The upper limits of 

rotation velocity and volumetric flow will define a constraint called “Stonewall”. The lower 

limits of rotation velocity and volumetric flow will define a condition called “Surge”. 

Smin ≥ S ≥ Smax  

                                             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 60 

𝑄𝑚𝑖𝑛 ≥ 𝑄 ≥ 𝑄𝑚𝑎𝑥  

                                           𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 61 

𝑆urge ≥
𝑄

S
≥  𝑆𝑡𝑜𝑛𝑒𝑤𝑎𝑙𝑙  

                             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 62 

“Surge” and “Stonewall” restrictions are extremely important in order to guarantee 

proper calculations of compressor operating conditions. 
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Wu et al. (2000) analyzed “Surge” and “Stonewall” conditions for a centrifugal 

compressor and arrived at the analysis shown in Figure 11, which gives the domain of the 

compressor equation restricted by “Surge” and “Stonewall” conditions. 

 

             Figure 11: Compressor domain restricted to “surge” and “stonewall” conditions. Source: Wu et al. (2000) 
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CHAPTER 4  

 THE COST MINIMIZATION MODEL 

   

One of the most comprehensive works on natural gas transportation was published 

by S. Wu (1998). The findings of the author were later aggregated to the discoveries of 

different authors and published by Wu et al. (2000).  The works aforementioned presented 

a scientific problem of growing interest, which has been addressed in different ways by 

different authors. The problem is known as the fuel cost minimization problem. 

4.1 The Fuel Cost Minimization Problem 

As discussed in the literature review, natural gas transportation networks are 

described mathematically by a system of equations that is, by nature, very non-linear. This 

non-linearity is intrinsically related to the fact that gas is a highly compressible fluid. The 

solution of this system of non-linear equations, as discussed in Chapter 2, relies on methods 

such as Newton-Raphson, which requires a good initial guess for nodal pressures or 

flowrates and thus does not provide guaranteed convergence. Yet, natural gas 

transportation in large networks demands compression stations that are expensive both in 

investment and in operation. The more compression required at compression stations, the 

more power needs to be used by the compressor and more gas needs to be burned in order 

to produce the work demanded. As mentioned in Chapter 1, Wu et al. (2000) estimated that 

about 2% to 5% of the gas transported in a large system is burned in the compression 

stations. Wu et al. (2000) also states that from 25% to 50% of the operational costs of 
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companies that manage gas transportation networks is spent on fuel for the compressor 

usage. Thus, a problem of great importance arises:  

How to set compressor operational parameters in a given network of gas 

transportation in such a way that the system will consume the minimum possible gas (fuel) 

in order to generate power for the compressors, under a given set of constraints. 

The difficulties of solving this problem rely on the following facts: 

 The system of equations for a natural gas transportation network is highly 

non-linear; 

 The objective function of this system, given by horsepower usage, is based 

on the compressor equation which is also very non-linear; 

 Centrifugal compressors have “Surge” and “Stonewall” restrictions, which 

are related to rotation velocity and volumetric flow limits; 

 Usually, pipes in a network system have upper limit and lower limit pressure 

restrictions. The upper limit is used to prevent accidents that could be a 

result of excessive pressure conditions. There are also lower limits for 

pressure in a given system, in order to prevent pressure to decrease to levels 

that are not economically feasible.  

Due to the high level of non-linearity that it involves, this problem needs a large 

number of calculations and is tackled with search algorithms, also known as metaheuristics. 

These algorithms use different procedures that basically rely on the same principle: the 

search for different points within a certain domain of the function in order to find the best 

outcome as an optimal solution.  However, since the function is highly non-linear, the 



41 
 

definition of a global optimum is not guaranteed. Some procedures, such as genetic 

algorithm, might, at times, converge to a local optimum instead of a global one. 

 Nevertheless, all these search algorithms still may rely on Newton-Raphson iterations, 

which sometimes may not converge to a solution.  

 The problem of the fuel cost minimization, as proposed by Wu et al. (2000), also 

referred to as the classical formulation, is described mathematically in equations 63, 64, 

65, and 66, which were slightly modified from the original formulation in order to provide 

consistency with the methods implemented in this work without deviations from the core 

ideas behind the original formulation. 

Using P-formulation and the nomenclature stated in this work, the problem can be 

described as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ 𝑔𝑘(𝑞𝑔𝑠𝑐𝑘 ,  𝑝𝑠𝑘,  𝑝𝑑𝑘)

𝑁𝑠

𝑘=1

 

                       𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 63 

where 𝑁𝑠 is the number of compression stations in the system and 𝑔𝑘 is the fuel 

consumption function at station 𝑘. 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑𝑞𝑖𝑛,𝑖

𝑁

𝑖=1

− ∑𝑞𝑜𝑢𝑡,𝑖

𝑁

𝑖=1

 + 𝑆 − 𝐷 = 0  

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 64 
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which enforces nodal material balance. Wu et al. (2001) writes these equations from 

a different perspective, in ∆P-explicit form. In the present work, material balance equations 

will be treated in Q-explicit form, using the P-formulation of natural gas network analysis,  

in order to allow for the use of the Linear-Analog method. 

Moreover, two other constraints are applied to the system: 

𝑃𝑖 ∈ [ 𝑃𝑈  ,  𝑃𝐿] 

                                                        𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 65 

which accounts for pressure restriction at each node (  𝑃𝑈 = upper pressure limit,  

𝑃𝐿 = lower pressure limit). And: 

𝑃𝑘 ∈ 𝐷𝑘     𝑘 = 1,2,3, … , 𝑛𝑠𝑡   

                              𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 66 

which accounts for pressure restriction due to “Surge” and “Stonewall” conditions 

of the compressors according to the compressor domain 𝐷𝑘, as mentioned in Chapter 3. 
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CHAPTER 5 

METHODOLOGY 

 

This study attempts to address the following problems: 

 The estimation of fuel consumption for a given natural gas transportation 

system; 

 The estimation of compressor efficiency;  

 The minimization of fuel consumption in a natural gas transportation 

system.  

In order to address these problems, three measures were implemented, respectively: 

 By adding fuel consumption to the nodal material balances, it was possible 

to account for fuel consumption in the system; 

 By the use of the compressor efficiency curves presented by Wu et al. 

(2000), it was possible to estimate efficiencies for a given compressor; 

 By the implementation of a domain-constrained search procedure, it was 

possible to estimate compression station characteristics that will allow 

minimum gas consumption in a transportation network. 

All three approaches were implemented based on a generalized function that used 

the Linear-Analog method to calculate nodal pressures for a given system. 
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5.1 Fuel Cost Function 

It was possible to develop a generalized function that would be able to simulate 

nodal pressures for a given gas network containing compressors. This generalized function 

was implemented in Matlab language and named the “fuel cost function”. The fuel cost 

function was developed with a target of being able to solve different system configurations, 

including those that comprise compression stations. The function solves the problem in P-

formulation and uses the Linear Analog method to solve the system of non-linear 

equations. 

Within the function script, a series of inputs must be specified, such as pipe 

characteristics, heights, and supplies and demands at each node. Fluid characteristics are 

also inputs that must be provided. The information on the compressor characteristics must 

also be provided within the script. Finally, the type of friction factor calculation to be 

performed is specified: Weymouth, Panhandle-A, Panhandle-B, AGA Fully Turbulent, or 

Colebrook Formula. 

The function collects a vector of compression ratios and outputs the total fuel 

consumption and the horsepower usage per compressor. If no compression is taking place, 

then the fuel consumption calculated will be zero. The function also outputs the pressures 

calculated for each node of the system, flowrate through the compression station, 

compressor rotation velocity, compressor head and compressor output temperature. 
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                           Figure 12: Fuel function algorithm. 
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5.2 The Estimation of Fuel Consumption 

Fuel consumption was estimated by the addition of one more element to the 

material balance performed at the suction node of a compressor. This element corresponds 

to the amount of horsepower used in the compression station multiplied by the estimated 

amount of natural gas needed to be burned in order to produce that amount power, which 

would be: 

𝑔𝑘 =  𝐶𝑓 [
𝑆𝐶𝐹𝐷

𝐻𝑃
] ∗ 𝐻𝑃𝑘[𝐻𝑃] 

          𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 67 

where: 

𝑔𝑘 stands for the fuel consumption in compression station 𝑘. 

𝐶𝑓 stands for the consumption factor; 

𝐻𝑃𝑘 corresponds to the horsepower usage in compression station 𝑘. 

The basis for the consumption factor calculation is on the heat content of the gas, 

usually given in BTU/SCF according to industry data, and which can be converted to units 

of HP/SCFD as an estimation of power produced by a certain flow of consumed gas. This 

term will be present in the characteristic matrix K of the Linear Analog method. Figure 15 

of Chapter 6 will demonstrate how this term will appear in the system. 
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5.3 The Calculation of Compressor Efficiency 

Compressor efficiency was calculated by using the efficiency curve provided by 

Wu et al. (2000). This estimation for compressor efficiency was applied by updating the 

efficiency at each new Linear Analog iteration until convergence was achieved for both 

nodal pressures and efficiency calculations. 

 

5.4 The Domain-Constrained Search Procedure 

The optimization procedure was based on the development of a code that is capable 

of testing the fuel cost function, with accountability of gas consumption, for a series of 

compression ratio combinations. For each set of compression ratios, fuel consumption was 

analyzed and results stored once verified that a certain set of ratios provided smaller fuel 

consumption than previous ones analyzed and that the system falls into the constrained 

domain specified according to equations 65 and 66. Following this process, the 

combination of compression rations that provided the best outcome is always selected. 

The procedure will keep looking for another optimum that is found within 

constrained limits until all the desired combinations of compression ratios are analyzed. 

The procedure also analyzed the output temperature at each compressor, and restricted this 

output to a certain limit. Figure 13 displays the algorithm used in this optimization 

procedure. 
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                        Figure 13: The domain-constrained search procedure 

 

It is important to highlight here that, although this algorithm searches for the 

optimal solution within a certain constrained domain of the fuel cost function, given a series 

of system restrictions, the search method implies some limitations, since some factors 

regarding the minimization problem are not considered in depth: 

NO 
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 First, the fuel cost here estimated is not calculated in the basis of actual 

currency, but rather in terms of cubic feet of gas per day. Once it is 

noticeable that the fuel cost is a strong and direct function of gas 

consumption, perhaps the same could also be said with regards of the 

feasibility of the application of the domain-constrained search method. In 

other words, the optimization procedure effectiveness will also depend on 

fuel price, and not only on fuel consumption, according to the understanding 

that there might be scenarios in which natural gas price becomes so low, 

that optimization procedures might become methods whose solution, 

although sensible from a mathematical perspective, is ineffective in terms 

of real applications. This is due to the fact that, if gas price is too low; the 

savings achieved by minimization process might not be enough to justify 

the implementation of optimization procedure itself; 

 Another important topic that is related to the applicability of the model 

regards the moment of its application in a real case. There are different 

moments in which optimization could be implemented in a real scenario. It 

could be performed either during the planning of the network, during the 

expansion of the network and also during the adjustment of the conditions 

of a certain system that is already in place. At each one of these stages, the 

optimization procedure could be implemented in order to plan a new 

transportation network, to plan the expansion of a network that already 

exists, or to optimize a network that is not operating under optimal 

conditions; 
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 One of the aspects of the cost minimization in natural gas transportation 

networks also pertains the investment required in order to install the 

compression station. This investment required is not considered for the 

effects of this work. 
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CHAPTER 6  

RESULTS AND DISCUSSION 

 

The methodologies proposed in this work were applied to three different cases, each 

of which focused on a specific aspect of the research conducted. 

In Case Study 1, the estimation of fuel consumption was performed in a system 

composed of 11 nodes and 1 compressor in which compressor efficiency is assumed to be 

constant. 

In Case Study 2, the fuel consumption calculations performed in the system of Case 

Study 1 were expanded and applied to an analogous system in order to account for the 

estimation of actual compressor efficiency. 

In Case Study 3, a domain-constrained search was implemented in a system 

composed of 10 nodes and 2 compression stations in order to estimate the combination of 

compression ratios that would allow minimum fuel consumption in the system. 

 

6.1 Case Study 1 

 Case Study 1 was based on the system studied by Leong and Ayala (2013). The 

system is composed of 11 nodes and 1 compression station where a single compressor is 

present. This system is depicted in Figure 14.  
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Figure 14: Case Study 1, based on Leong and Ayala (2013). 

 

The fluid properties of the gas in the system are as follows: an average 

compressibility factor (𝑧𝑎𝑣) of 0.9 and a gas specific gravity of 0.69. The system is expected 

to operate at an average temperature of 75 DEG F. Pipe roughness (e) is 0.0018 in. Pressure 

at node 11 is fixed at 130 psi. Compressor efficiency is assumed to be constant at a value 

of 0.9, and the polytrophic coefficient is known to be 1.4. Compression ratio (𝑟𝑐56
) is 2.5. 

In this system, the gas consumption factor (𝐶𝑓) is assumed to be 64 SCFD/HP. This 

value is based on a gas heat content of 1030 BTU/SCF (US Energy Information 

Administration, 2016) and a combustion efficiency of 0.9263 (𝐶𝑓 =  
61,066.4

𝐵𝑇𝑈

𝐷

𝐻𝑃
∗

1

1030
𝐵𝑇𝑈

𝑆𝐶𝐹

∗

Compressor 

𝑟𝑐56
= 2.5 
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1

0.9263
 ). The system is also characterized by inclinations between its different nodes. Table 

2 displays the information on the nodal heights. All heights are given by using node 11 as 

the reference node. Table 3 informs the dimensions of the pipes in the network. 

Node Height (ft) 

1 2000 

2 800 

3 2000 

4 1200 

5 800 

6 800 

7 400 

8 1600 

9 400 

10 1000 

11 0 
 

Table 2: Height of different nodes of the system. 

 

Branch Length (miles) Diameter (in) 

(1,2) 30 6.065 

(2,3) 30 6.065 

(1,4) 30 6.065 

(2,7) 30 4.026 

(3,8) 30 4.026 

(4,5) 15 4.026 

(5,6) Compressor 

(6,7) 15 4.026 

(7,8) 30 6.025 

(4,9) 30 4.026 

(7,10) 30 4.026 

(8,11) 30 4.026 

(9,10) 30 4.026 

(10,11) 30 4.026 
 

Table 3: Dimensions of network pipes. 
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For this case, the main challenge relies on coupling the expression for fuel 

consumption to the Linear Analog solution scheme. This is done by accounting for the fuel 

consumption when performing material balance at node 5, which will cause a slight 

modification in the Linear Analog characteristic matrix K. The Linear-Analog iterations 

started with an initial guess of 𝐿𝑖𝑗 =  𝜔 ∗ 𝐶𝑖𝑗, where 𝜔 = 1 in order to follow the same 

approach implemented by Leong and Ayala (2013). 

This matrix will be constructed as follows: 

[
 
 
 
 
 
 
 
 
 
 
 
 
−𝑂1 𝑒𝑠12/2𝐿12 0 𝑒𝑠14/2𝐿14 0 0 0 0 0 0 0

𝐿12 −𝑂2 𝑒𝑠23/2𝐿23 0 0 0 𝑒𝑠27/2𝐿27 0 0 0 0

0 𝐿23 −𝑂3 0 0 0 0 𝑒𝑠38/2𝐿38 0 0 0

𝐿14 0 0 −𝑂4 𝑒𝑠45/2𝐿45 0 0 0 𝑒𝑠49/2𝐿49 0 0
0 0 0 𝐿45 −𝑂5 (−𝐶𝑐56

−   𝐶𝑓) 0 0 0 0 0

0 0 0 0 −𝑟56𝐿67 𝐶𝑐56
𝑒𝑠67/2𝐿67 0 0 0 0

0 𝐿27 0 0 𝑟56𝐿67 0 −𝑂7 𝑒𝑠78/2𝐿78 0 𝑒𝑠7,10/2𝐿7,10 0

0 0 𝐿38 0 0 0 𝐿78 −𝑂8 0 0 𝑒𝑠8,11/2𝐿8,11

0 0 0 𝐿49 0 0 0 0 −𝑂9 𝑒𝑠9,10/2𝐿9,10 0

0 0 0 0 0 0 𝐿7,10 0 𝐿9,10 −𝑂10 𝑒𝑠10,11/2𝐿10,11

0 0 0 0 0 0 0 0 0 0 1 ]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝐻𝑃
𝑃7

𝑃8

𝑃9

𝑃10

𝑃11]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
−16
2
2
3
0
0
1
2
2
2

130]
 
 
 
 
 
 
 
 
 
 

  

Figure 15: Linear analog characteristic matrix with fuel consumption calculation for Case Study 1. 

 

When confronted against Leong and Ayala (2013)’s matrix, the difference is found 

in the presence of the additional term (𝐶𝑓)  in row 5, column 6. The matrix can also be 

rewritten in simplified notation by: 

K P = S 

For the calculations performed in this case, the method applied used AGA fully 

turbulent friction factors. The results from the application of the Linear Analog procedure 

with estimations of fuel consumption are shown in in Figures 16, 17, and 18. In Figure 16, 

it is demonstrated how nodal pressures converged during Linear Analog iterations.  In  
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Figure 16: Pressure convergence for Case Study 1. 

 

 

Figure 17: Fuel consumption convergence for Case Study 1. 
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Figure 17, it is demonstrated how fuel consumption converged during Linear-

Analog iterations. 

Stop criteria for the iteration scheme was assumed to be 10−12 psia. This stop 

criteria will be adopted in all further developments. In Figure 18, the results for the 

simulated nodal pressure distribution in the system are displayed. 

 

Figure 18: Nodal pressures simulated for Case Study 1. 

 

Final results demonstrated to have a slight variation with respect to those values 

estimated by Leong and Ayala (2013). The total fuel consumption was estimated to be 9.54 

MSCFD. It is important to highlight that, since the system now operates under conditions 

Compressor 

𝑟𝑐56
= 2.5 
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in which fuel consumption is taken into consideration, node 11 will not be supplied by 2 

MMSCFD, but rather by 1.99 MMSCFD. 

 

6.2 Case Study 2 

 Case Study 2 was based on a natural gas transportation network that is analogous 

to the system studied by Leong and Ayala (2013). It was performed as an expansion to the 

procedure presented in Case Study 1, by implementing estimations of actual compressor 

efficiency, assuming a centrifugal compressor comparable to that studied by Wu et al. 

(2000). 

The system in Case Study 2 is said to be analogous because it is characterized by 

pipes with larger diameters than those of the pipes studied in Case Study 1. The diameters 

are modified in order to allow for fluid compression in compression station to be performed 

between reasonable limits of actual volumetric flow. If pipe diameter is too small, there is 

a restriction on the actual volumetric flowrate going through the compressor, and lower 

bounds of volumetric flow will be reached, making it impossible to apply the compressor 

performance curves as predicted by Wu et al. (2000). 

The fluid properties of the gas in the system are also similar to that of Case Study 

1: an average compressibility factor (𝑧𝑎𝑣) of 0.9 and a specific gravity of 0.69. The system 

is expected to operate at an average temperature of 75 DEG F. Pipe roughness (e) is 0.0018 

in. 
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The compression station in the system is also composed of a single compression 

stage. Compressor coefficient is assumed to have the same value as the polytrophic 

coefficient used by Leong and Ayala (2012) (n = na = np = 1.4) and is the one 

implemented in the compressor equation presented in chapter 3. 

The system in Case Study 2 is also composed of 11 nodes and 1 compression 

station. This system is depicted in Figure 19.  

 

Figure 19: Case Study 2, analogous to Leong and Ayala (2013). 

 

In this system, the gas consumption factor (𝐶𝑓) is also assumed to be 64 SCFD/HP, 

which is calculated the same way that it is calculated in Case Study 1. The system is 

characterized by inclinations between its different nodes. Table 4 gives information of 

Compressor 

𝑟𝑐56
= 2.5 
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system heights. All heights are given by using node 11 as the reference node. Table 5 

informs the dimensions of the network pipes. Note that the dimensions of diameters of the 

pipes in this case are almost four times higher than those of the pipes used in Case Study 

1. Pressure at node 11 is fixed at 500 psia. 

Node Height (ft) 

1 2000 

2 800 

3 2000 

4 1200 

5 800 

6 800 

7 400 

8 1600 

9 400 

10 1000 

11 0 
 

Table 4: Height of different nodes in the system. 

 

Branch Length (miles) Diameter (in) 

(1,2) 30 23.6535 

(2,3) 30 23.6535 

(1,4) 30 23.6535 

(2,7) 30 15.7014 

(3,8) 30 15.7014 

(4,5) 15 15.7014 

(5,6) Compressor 

(6,7) 15 15.7014 

(7,8) 30 23.4975 

(4,9) 30 15.7014 

(7,10) 30 15.7014 

(8,11) 30 15.7014 

(9,10) 30 15.7014 

(10,11) 30 15.7014 
 

Table 5: Dimensions of network pipes. 
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For this case, the main challenge relies on performing the calculations for 

efficiency. This is done by updating efficiency at each new Linear Analog iteration, starting 

from an initial guess of 0.7. Fuel consumption is also accounted for in the Linear Analog 

solution procedure in the same way it is performed in Case Study 1. This is implemented 

by performing material balance on node 5, including the fuel that is being consumed, which 

will also cause a slight modification in the Linear Analog characteristic matrix K. This 

matrix will be constructed according to a system of linear equations formed from nodal 

material balance: 

[
 
 
 
 
 
 
 
 
 
 
 
 
−𝑂1 𝑒𝑠12/2𝐿12 0 𝑒𝑠14/2𝐿14 0 0 0 0 0 0 0

𝐿12 −𝑂2 𝑒𝑠23/2𝐿23 0 0 0 𝑒𝑠27/2𝐿27 0 0 0 0

0 𝐿23 −𝑂3 0 0 0 0 𝑒𝑠38/2𝐿38 0 0 0

𝐿14 0 0 −𝑂4 𝑒𝑠45/2𝐿45 0 0 0 𝑒𝑠49/2𝐿49 0 0
0 0 0 𝐿45 −𝑂5 (−𝐶𝑐56

−   𝐶𝑓) 0 0 0 0 0

0 0 0 0 −𝑟56𝐿67 𝐶𝑐56
𝑒𝑠67/2𝐿67 0 0 0 0

0 𝐿27 0 0 𝑟56𝐿67 0 −𝑂7 𝑒𝑠78/2𝐿78 0 𝑒𝑠7,10/2𝐿7,10 0

0 0 𝐿38 0 0 0 𝐿78 −𝑂8 0 0 𝑒𝑠8,11/2𝐿8,11

0 0 0 𝐿49 0 0 0 0 −𝑂9 𝑒𝑠9,10/2𝐿9,10 0

0 0 0 0 0 0 𝐿7,10 0 𝐿9,10 −𝑂10 𝑒𝑠10,11/2𝐿10,11

0 0 0 0 0 0 0 0 0 0 1 ]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝐻𝑃
𝑃7

𝑃8

𝑃9

𝑃10

𝑃11]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
−16
2
2
3
0
0
1
2
2
2

500]
 
 
 
 
 
 
 
 
 
 

  

Figure 20: Linear-Analog characteristic matrix with fuel consumption calculation for Case Study 2. 

 

The system can also be rewritten in simplified notation by: 

K P = S 

The method applied used AGA fully turbulent friction factor calculations. The 

results from the application of the Linear Analog procedure to this case are shown in 

Figures 21-27. In Figure 21, it is demonstrated how pressures converged during Linear-

Analog iterations. 
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Figure 21: Pressure convergence for Case Study 2. 

 

It can be observed that, despite the inclusion of the calculation of compressor 

efficiency by the implementation of a very non-linear polynomial equation, the Linear 

Analog method demonstrates to converge steadily. 

It might be inquired the reason why node 5 operates at a pressure condition much 

lower than that of the other nodes in the system. The explanation for that occurrence relies 

precisely on the fact that node 5 is the inlet node of the compressor. 

In Figure 22, it is shown the convergence of the estimation for efficiency at each 

Linear Analog iteration after the initial guess. Efficiency value is demonstrated to converge 

steadily to 0.911, a high efficiency value. 
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              Figure 22: Efficiency convergence for Case Study 2. 

 

In Figure 23, rotation velocity in compressor is also demonstrated to converge 

accordingly during Linear Analog iterations. This value is given in units of rpm (rotations 

per minute). In Figure 24, the estimated value of the volumetric flow at standard conditions 

moving through the compressor is also demonstrated to converge steadily. Figures 25 and 

26 also display a convergence scenario during Linear Analog iterations for the estimations 

of fuel consumption and horsepower usage. 

An important observation relies on the fact that, since there is more volumetric flow 

being compressed in this case, once larger pipes allow for such occurrence, horsepower 

usage and fuel consumption become much higher than they are in Case Study 1. 



63 
 

Finally, Figure 27 displays nodal pressure distribution within the system, 

demonstrating how flow is supplied to or demanded by the different nodes of the network. 

It is noticeable that, for this case, pressure distribution displays a different pattern 

than that of pressure distribution simulation achieved in Case Study 1, which is a direct 

result of the greater impacts of gravitational forces due to inclinations operating in the 

system and larger flows moving through the pipelines. 

As mentioned, since horsepower usage in Case Study 2 was higher, fuel 

consumption was also estimated to be higher than that of Case Study 1, at a rate of 0.37 

MMSCFD. 

 

Figure 23: Compressor rotation velocity convergence for Case Study 2. 
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Figure 24: Flow moving through compression station for Case Study 2. 

 

Figure 25: Fuel consumption convergence for Case Study 2. 
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Figure 26: Horsepower usage convergence for Case Study 2. 

 

 
Figure 27: Nodal pressures simulated for Case Study 2. 

 

Compressor 

𝑟𝑐56
= 2.5 
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6.3 Case Study 3 

Case Study 3 was based on the system studied by Wu et al. (2000), but modified in 

order to include a loop within the network. In this case, the domain-constrained search 

method was implemented in order to perform the minimization of fuel consumption in the 

natural gas transportation network. Yet, the estimations of compressor efficiency and fuel 

cost were performed in the same way as observed in Case Study 2. The system in Case 

Study 3 is composed of 10 nodes and 2 compression stations where compression is 

implemented in two stages. This system is depicted on Figure 28.  

 

 

Figure 28: Case Study 3, analogous to Wu et al. (2000), but with the inclusion of a loop. 

 

The fluid properties of the gas in the system are as follows: an average 

compressibility factor (𝑧𝑎𝑣) of 0.95 and a specific gravity of 0.6248. The system is expected 

to operate at an average temperature of 60 DEG F. Pipe roughness (e) is 0.0018 in. 

Compressor efficiency is initialized at a value of 0.85, and the compressor 

coefficient is known to be 1.287 (n = na = np = 1.287). Compression ratios (𝑟𝑐34
, 𝑟𝑐78

) are 
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variable and will be evaluated for a range of values for each compression station according 

to the domain-constrained search protocol. The range of the compression ration values for 

such evaluation will vary from 1 to 5. 

As mentioned previously, in Case Study 3, the domain-constrained search method 

will look for the best combination of compression ratios that will make it possible to 

minimize fuel consumption in the system. 

Consumption factor (𝐶𝑓) is also assumed to be 64 SCFD/HP, given the same 

assumptions on heat content and gas combustion discussed in Case Study 1. The network 

is not characterized by inclinations between its different nodes. 

Table 6 informs the dimensions of the network pipes, and Table 7 informs the 

characteristics of the compression stations. 

It should be noted that the pipes for this case are large since they will handle a high 

amount of volumetric flow and are designed to be similar to the pipes used in the case 

studied by Wu et al. (2000). 

There is one supply node in the network: node 1. There are also two demand nodes: 

nodes 6 and 10. It is assumed that only node 10 has a fixed demand of 350 MMSCFD. 

Node 1 and node 6, however, have specified pressures of 4500 psi and 800 psi, respectively. 

Since they have specified pressures, the flow entering though node 1 and the flow leaving 

through node 6 will have values that depend on system conditions, compression ratios used 

in the compression stations, and fuel consumption in the system. 
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Branch 
Length 

(miles) 
Diameter (in) 

(1,2) 450 36 

(2,3) 50 36 

(4,5) 50 36 

(5,6) 50 36 

(2,7) 50 36 

(8,9) 50 36 

(9,10) 50 36 

(10,6) 50 36 
 

Table 6: Dimensions of network pipes. 

 

Compressor Characteristics 
Compression 

Station 1 

Compression 

Station 2 

Branch (3,4) (7,8) 

Number of stages 2 2 

Compressor coefficient 1.287 1.287 

Inlet temperature (DEG F) 80 80 

zav 0.89 0.89 
 

Table 7: Characteristics of the compression stations. 

 

In order to explain the practical use of the domain-constrained search method, Case 

Study 3 will be solved for a series of constraints slightly different from each other. At each 

new step, a different constraint will be applied to the system, or a new constraint will be 

added to the constraints already in place. A surface of the constrained domain will be 

displayed for each one of the steps in order to illustrate how the search surface is reduced 

as more constrains are added to the system. 
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6.3.1 Case Study 3.a: only fixed pressures at nodes 1 and 6 

In the first approach, the system is analyzed for pressure determinations only at 

nodes 1 and 6, in which pressures are fixed and present the same behavior in all variations 

of Case Study 3. No other restrictions due to pipe mechanical resistance or compressor 

conditions are considered. 

The surface that is created by analyzing the system fuel consumption for a series of 

compression ratios is displayed in Figures 29 and 30, which show the same surface from 

different perspectives. It can be observed that the imposed constraints on nodes 1 and 6 

allow for a trivial solution for the optimization problem, where the compression ratios 

could be assumed to be 1, which informs that no compression would be taking place at all. 

Once more constraints are added to the system though, it will be observed that the trivial 

solution will not satisfy the desired restrictions. 

 

Figure 29: Case Study 3.a: analogous to Wu et al. (2000). 
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Figure 30: Case Study 3.a: analogous to Wu et al. (2000). 

 

6.3.2 Case Study 3.b: pressure in node 10 is constrained to be higher than 850 psi. 

Case Study 3.b applies a new restriction to the system in which it is determined that 

delivery pressure at node 10 is required to be higher than 850 psi.  

This hypothetical scenario is consistent with restrictions observed in the industry 

since one of the main reasons to have a compression station in a gas transportation pipeline 

network is the need to guarantee a certain delivery pressure for the further stages in other 

networks to which the system being studied is connected or delivers gas. 
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It is noticeable that for such conditions, there is a series of combinations of 

compression ratios that will not satisfy the imposed constraint and not allow system to 

deliver gas at node 10 as per the 850 psi. 

 
 

Figure 31: Case Study 3.b: analogous to Wu et al. (2000). 

 

 

 

6.3.3 Case Study 3.c, pressure in node 10 is constrained to be higher than 880 

psia. 

Case Study 3.c applies a new restriction to the system in which it is determined that 

delivery pressure at node 10 is required to be higher than 880 psi. It is noticeable that for 

such conditions, there is a larger series of combinations of compression ratios that will not 

satisfy the imposed constraint and not allow the system to deliver gas at node 10 as per the 

880 psi. 
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Figure 32: Case Study 3.c: analogous to Wu et al. (2000). 

 

6.3.4 Case Study 3.d, pressure in node 10 is constrained to be higher than 900 psi. 

Case Study 3.d applies a new restriction to the system, in which it is determined 

that delivery pressure at node 10 is required to be higher than 900 psi. It is noticeable that 

for such conditions, there is an even larger series of combinations of compression ratios 

that will not satisfy the imposed constraint and not allow the system to deliver gas at node 

10 as per the 900 psi. 
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Figure 33: Case Study 3.d: analogous to Wu et al. (2000). 

 

6.3.5 Case Study 3.e: constraints in pressure delivery, Surge and Stonewall 

conditions 

Case Study 3.e applies the same restriction according to which it is determined that 

delivery pressure at node 10 is required to be higher than 900 psi. It is noticeable that for 

such conditions, the combinations of compression ratios that will not satisfy the imposed 

constraint and not allow the system to deliver gas at node 10 as per the 900 psi is the same 

as in variation d of Case Study 3. However, “Surge” and “Stonewall” restriction are now 

implemented. 

It is also assumed that the compression stations are, hypothetically, characterized 

by: 



74 
 

 Rotation velocities in compressors expected to be greater than 5000 rpm 

and smaller than 12000 rpm; 

 Actual volumetric flow is constrained to be smaller than 27000 ft3 and 

higher than 5000 ft3. 

 

Figure 34: Case Study 3.e: analogous to Wu et al. (2000). 

 

6.3.6 Case Study 3.f: constraints in pressure delivery, Surge conditions, Stonewall 

conditions, mechanical restrictions, output temperature and pressure at inlet node of 

compression station 2. 

Case Study 3.f applies a new restriction to the system, in which it is determined that 

delivery pressure at node 10 is required to be higher than 900 psi. Hypothetically, pressure 

in node 7 is constrained to be lower than 400 psi. It is also assumed that the compression 

stations are, hypothetically, characterized by: 
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 Rotation velocities in compressors expected to be greater than 5000 rpm 

and smaller than 12000 rpm; 

 Actual volumetric flow is constrained to be smaller than 27000 ft3 and 

higher than 5000 ft3; 

 All compressor output temperatures are lower than 540 DEG F. 

It is also assumed that all nodal pressures are higher than 250 psi and lower than 

5000 psi. 

Figures 35 and 36 demonstrated how the search domain is restricted. Within this 

surface, after all constraints are applied, the combination of compression ratios that will 

allow for minimum fuel consumption will be selected. 

 

Figure 35: Case Study 3.f: analogous to Wu et al. (2000). 
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Figure 36: Case Study 3.f: analogous to Wu et al. (2000). 

 

Node Pressure (psi) 

1 4500.00 

2 965.44 

3 767.31 

4 1150.97 

5 991.14 

6 800.00 

7 398.97 

8 1556.00 

9 1286.56 

10 943.06 
 

Table 8: Optimal pressure distribution for Case Study 3. 
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Fuel consumption in system is estimated to be 4.47 MMSCFD, while optimal 

compression ratios are found to be 1.5 for compression station 1, and 3.9 for compression 

station 2. Table 8 informs final pressure distribution within the optimized system. 
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CHAPTER 7  

CONCLUDING REMARKS 

  

The objective of the work here presented was to expand the simulation of natural 

gas transportation networks in order to account for: 

 Fuel consumption in a natural gas transportation network; 

 The estimation of compressor efficiency from compressor performance 

curves and; 

 The implementation of the minimization of fuel consumption in a gas 

network by the manipulation of compression ratios of the compressors in 

the system, given the system’s restrictions. This protocol was named the 

domain-constrained search method. 

All these objectives were achieved successfully with the use of the Linear-Pressure 

Analog method.  

The fuel consumption was estimated within the Linear Analog protocol, as well as 

the actual compressor efficiency. Finally, it was also possible to demonstrate that the 

Linear-Pressure Analog is a powerful tool to be implemented in the optimization problems 

that concern the minimization of fuel consumption in natural gas transportation systems. 

The relatively good assurance of convergence of the Linear Analog procedure allowed for 

the test of different scenarios of compression ratios, with selection of the scenario that 

yielded the best outcome as the optimal case. Thus, the domain-constrained search method 
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demonstrated to work properly, searching for an optimal value within desired domain. 

However, it is predicted to demand great computational effort as the number of 

compression stations and the size of a given system increase. 

 

7.1 Future Work 

One of the possibilities for future work in the use of the Linear Analog scheme in 

the optimization of natural gas transportation is that the method allows for a partially 

linearized system of linear equations. This partial linearization is due to the use of the 

Linear Analog method as a technique to linearize the gas flow equations in network 

analysis, which is achieved from the nodal material balance equations written in terms of 

𝐿𝑖𝑗 . This is performed while keeping the objective function as the original highly non-

linear function that is given by compressor horsepower usage multiplied by the 

consumption factor. 

 

Figure 37: Large natural gas transportation system. Source: Wu et al. (2000). 
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In order to achieve full linearization, perhaps the objective function can be 

linearized by a polynomial approximation as performed by Wu et al. (2000). This could 

allow for the use of Linear Programming in order to solve for the minimization of fuel 

consumption in natural gas networks. 

Furthermore, the domain-constrained search method could be tested for a larger 

system containing more compression stations, nodes and pipes. A suggestion for this 

further attempt is found on the case study 3 of Wu et al. (2000), depicted on Figure 37, 

which performs optimization on a gas transportation network containing 43 pipe branches 

and 8 compression stations. 
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