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Abstract

This paper proposes an optimal operation management methodology based on the
multi-agent reinforcement learning (MARL) in energy internet (EI). An integrated
approach to minimize the total cost of operation of such an electrical, natural gas and
district heating network simultaneously is studied. A novel multi-agent Q( ) learning
method is presented to form a coordinated optimal management strategy of energy
internet with multiple We-Energy(WE), and an equal interval sampling method is
proposed to find the optimal discrete action sets so as to enhance the performance of the
control areas. Furthermore, a global Q operator is designed to produce a global Q
function considering the local reward from each agent which optimizes simultaneously.
The proposed method verified by case studies applied to the modified energy network.
Compared with the centralized approach, the test results show that the proposed method
can provide a fast solution for the optimal operation management which can be applied
to multiple We-Energy internet with sufficient accuracy.
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1 Introduction

The optimal operation management of energy has become an important socioeconomic
problem in which exploring renewable energy and improving the supply efficiency are
among important issues for realizing the EI of economic and security operation to reduce
the network loss [1]. Under the development of renewable energy systems, the energy
source will no longer be provided only in the form of the traditional energy supplier, and
there will be several types of energy producers which means that users can choose the
energy suppliers according to their own needs. In this supply mode, a novel energy
accessing mode for energy Internet called We-Energy is proposed that it will be not only
energy producer but also energy consumer [2]. In this regard, the cooperation among
multiple energy forms and economic opportunities for enhancing the supply efficiency in
EI was overlooked.

In [3, 4, 5, 6], the optimal power flow of electricity and natural gas combined system is
discussed. Paper [7] proposed the generalized heuristic algorithm to study the optimal
power flow of multiple energy system. While with the increasing utilization of
co-generation plants, there is a challenge to find the optimal strategy in such a way for
this class of complex nonlinear multi objective optimization problems. The domestic and
foreign scholars made in-depth study in this question for more efficient algorithm. In
addition to improve the basic heuristic algorithm for optimal energy flow [8], distributed
algorithm has become a research focus [9].

Recently, reinforcement learning (RL) algorithm as a kind of machine learning
algorithms attracts people’s attention. Some learning strategies on the basis of RL to
solve deterministic optimal control problems in continuous state spaces can be found in
some studies such as [10, 11, 12, 13, 14, 15]. The MARL which is a new branch of
reinforcement learning algorithm has been developed rapidly in various areas including
distributed control, robotic teams, collaborative decision support systems, and
economics [16]. MARL is defined to be composed of multiple agents, the whole system
will achieve the learning goals through each agent executing part of reinforcement
mission independently. All performance of MARL exhibits its advantage on the
collaborative multi-task problems, and the features that aim at strategic decision make
MARL widely used [17].

In this paper, the optimal operation management in EI is investigated at the
transmission level. We propose an optimal model to improve the performance of
environment for EI. The proposed formulation for multi-agent systems can be solved by
machine learning algorithms which could find the optimization strategy intelligently. We
present a MARL for distributed multicarrier energy network, which computes a global
optimal policy in cooperative subsystems on the basis of the implementation of
independent optimization for subsystems. A policy is defined as a set of actions deriving
from the reward function connecting the environment. With the preprocessing method of
action sets, the performance of the system will be improved.
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This paper is organized as follows. In Sect. 2, the mathematical model of optimal
management problem in EI is represented to improve the energy economy while Sect. 3
discussed about the multi-agent reinforcement learning methodology to solve this
problem. Section 4 presents the case studies with a typical EI consists of several types of
WEs. Finally, Sect. 5 concludes the discussion.

2 Optimal Operation Management Model of EI

In EI, different structure of prosumers will lead to a variety of supply and demand
situations. WE, as a novel energy sub-region in EI, can exchange electricity, gas and heat
from modern communications, power electronic conversion and automation technology
with other WEs. As shown in Fig. 1, the main body of WE will be the individual, company
or community that consists of energy production, user load or storage devices such as
distributed generation, energy storage, CCHP and so on. WEs coordinate with each other
to guarantee multi energy to reliable transport. Each WE is connected to be considered as
the generalized node of EI.

Fig. 1.

Energy flow model of WEs in energy internet.

In order to achieve the optimal energy flow of EI with multiple WEs, an operation
management model is to find the optimal solution in a sense that required objective
function is minimized while several equality and inequality constraints are satisfied.
Through the coordinated optimization of WEs, the network will achieve the overall
optimization.

The objective function in this paper is to optimize the operation cost which can be
expressed by:
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(1)

Where ,  is the number of WEs.  is the state variables of .  is the
energy flow of multi-energy network including electric power network, natural gas
network and centralized heating network. The first constraint stands for the input and
output balance of an energy hub in WE which can be identified as a unit to achieve
conversion and storage of multi-energy carriers. The second constraint and the third
constrain respectively express the power balance equation of energy flow in EI and the
variable limits to obtain a feasible operating point. And the last constrain is the limits of
the network input. All the equality and inequality constraints which can refer to [18] will
not be described in detail here.

For each WE, the total cost of operation in 24 h will be defined as the sum of the fuel
consumed by WE which can be formulated as follows:

(2)

Where  is the operation time. Generally, the cost of operation is formulated in a
quadratic function on the basis of energy input power with several kinds of fuel such as
natural gas, coal and so on. In addition, ,  are the unique coefficients for each fuel.

3 Proposed Methodology

Considering the energy network structure as well as the operation management model,
the multi-agent reinforcement learning algorithm was applied to solve the problem
innovatively.

3.1 Multi-Agent Q( ) Learning Algorithm

MARL is a method which expands the single-agent RL. Each agent can obtain the
rewards from adjacent agent with a few information. The global system use iteration to
influence non-adjacent agent so as to optimize the performance of the whole system
based on reinforcement learning.
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According to the distributed structure of EI, each WE coordinates and interacts with each
other to solve the complex problems. A optimal operation management of EI is a tuple

 where  is the number of WEs,  is the state
space of ,  is the action set of  and  are the sets of actions available
to the WEs, yielding the joint action set  that every WEs parallel
compute for reinforcement learning.  means the state transition
probability.  is the direct reward functions of each WE.

Given the MARL iteration rule for WE, the eligibility traces for the state-action will be
updated as follows which can realize the delay control of signal during the optimization:

(3)

Where  is the discount factor and  is the recession coefficient. By adding the eligibility
traces in the iteration, the problem of time reliability assignment in the optimization
process will be solved.

The Q( ) learning operation is defined as:

(4)

(5)

Where  is the learning factor with ,  indicates the proportion of update part
in Q value.

3.2 Equal Interval Sampling for Action Sets

As a matter of fact, by considering the character of Markov Decision Processes for RL, the
operational state of EI should be transformed into a discrete form. To do so, an equal
interval sampling approach is given to each action set in such way that individuals with
better fitness value improve the accuracy and generalization of computing.

In the MARL optimal operation management model, the energy hub is the key link of
multiple energy coupling in each WE. Thus, for each control area, control variables
studied in this paper is the power exchanged between the WEs and the hybrid energy
network which contains electrical power , natural gas power  and so on. Equal
interval sampling approach for action sets is expressed as follows.

For  and , the continuous attribute  and the range of  is , ,
the interval value can be designed as:
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(6)

Where the integer parameter  is the number of pre-set split points. And the split point
set can be described as:

(7)

If the integer parameter  is the maximum split points, split point set space can be
expresses as:

(8)

Therefore, the discrete action sets will be obtained by adjusting the parameters to find
the optimal set of points. By preprocessing the action set, the learning speed will be
accelerated and the accuracy of optimization could be improved.

3.3 Design of Reward Function for MARL

For MARL, in order to achieve the goal of optimal operation management, rewards in
reinforcement learning should be combined with the objective function and constraint
conditions.

The local immediate reward value  of each WE need satisfy the constraint conditions of
power flow calculation to ensure the validity of the calculation results for each
subsystem. Each WE will obtain the optimal strategy by maximizing reward function
values. The local reward for WE is defined as formula (9).

Every WE will check control variables through connected transmission lines to see
whether they meet the corresponding boundary conditions. If all of constraints are
satisfied, the local reward signal will be set to the negative objective function. Otherwise,
it will be zero. The local rewards are applied to each WE to guide action strategy.

(9)

The aim of optimal operation management is to seek a best strategy from the action
space, so that the global reward is presented as an average value of summation of local
rewards from each WE. According to the global information discovery algorithm, the
global reward signal can be discovered by using signals of node agents.
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(10)

3.4 Implementation of the Algorithm for the Optimization of
EI

The structure of MARL is shown below as Fig. 2. Through the multi-energy flow
calculation for EI, the running status of each WE will be acquired. The following steps
should be accomplished to solve the optimal energy flow problem in an EI using MARL
algorithm.

Fig. 2.

MARL optimization structure.

Each WE uses multi-energy flow calculation module to obtain the operation state. The
local reward of WE will be obtained from the information interaction with environment
according to the formula (9). Then, the global reward will be updated with the local
reward if all the information is available in information fusion unit. The Q-learning unit
will operate based on RL iteration rule to find the optimal strategy. Meanwhile,
combined with the prior knowledge for initial action set, the learning state and learning
efficiency could be improved. Each optimization iteration process contains four
operation phases which includes detection of local signals, calculation of local reward
function, exploration of the global signals, update the local Q matrix.

4 Simulations and Results

4.1 Test System

In this section, we apply the proposed multi-agent Q( ) learning algorithm to the optimal
energy flow problem for EI with the structure of 9-node internet with three WEs which is

=RK 1
n ∑
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n

RK
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shown in Fig. 3. Percentages of the electric and heat demand in a 24 period compared to
their basic values are illustrated in Fig. 4.

Fig. 3.

9-Node energy internet with three WEs.

Fig. 4.

Electric and heat demand of EI during 24 h.

The interconnection between WEs includes information communication and energy
transmission according to the demand. The energy coupling part is also achieved through
the energy hub and its energy equipment from WEs includes energy storage device,
energy production device and user load. The number of actions for MARL optimal power
flow algorithm in this modified network is  which is the sum of
the action number from each WE according to the limits of input.

4.2 Simulation Results

As seen in Fig. 5, in order to achieve the overall energy costs and satisfy the needs of
users, the optimal strategy is to obtain more energy from the power system, while
reducing the natural gas from the natural gas system. And Fig. 6 shows the MARL
convergence results at 1358.

120 + 136 + 114 = 370
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1.

Fig. 5.

Input power of WE2 during 24 h.

Fig. 6.

MARL process at 

Through the reinforcement learning of each WE, it can be concluded that the energy
consumption of the EI is reduced by 27% under the constraints of the system.

5 Conclusion

This paper proposes an optimal operation management model and presents the
multi-agent Q( ) learning algorithm that can drive these agents to parallel learn
behaviors. Compared with the centralized approach, they tend to reduce the calculation
difficulty and require consideration of multiple aspects. Multi-Agent Reinforcement
Learning is an effective way to improve the learning efficiency and solve the problem of
“dimension disaster”. The method of utilizing each WE to undertake the task
independently to reach the coordinated system is suitable for hierarchical control mode
of energy internet. Above all, experimental results revealed that distributed algorithm
has a faster convergence speed for the optimal energy flow model.
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