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Abstract

In this paper we propose a new approach for finding global solutions of mixed-integer
nonlinear optimization problems with ordinary differential equation constraints on net-
works. Instead of using a first discretize then optimize approach, we combine spatial and
variable branching with appropriate discretizations of the differential equations to derive
relaxations of the original problem. To construct the relaxations we derive convex under-
and concave over-estimators for the ODE solution operators using numerical discretiza-
tion schemes. Thereby, we make use of the underlying network structure, where the
solutions of the ODEs only need to be known at a finite number of points. This property
enables us to adaptively refine the discretization and relaxation without introducing new
variables. The incorporation into a spatial branch-and-bound process allows to compute
global ε-optimal solutions or decide infeasibility. We prove that this algorithm termi-
nates finitely under some natural assumptions. We then show how this approach works
for the example of stationary gas transport and provide some illustrative computational
examples.

1 Introduction

In this paper we develop algorithms to globally solve nonlinear optimization problems with
ordinary differential equation (ODE) constraints and an underlying network structure. More
precisely, we consider problems of the following form:

min C(x, y0, yS , z)

s.t. G(x, y0, yS , z) ≤ 0,

∂sy(s) = f
(
s, x, y(s)

)
, s ∈ [0, S]

y0 = y(0), yS = y(S),

x ∈ X, y0 ∈ Y 0, yS ∈ Y S , z ∈ Z,

(Pode)

where X ⊂ Rk and Y 0, Y S ⊂ Rn are polytopes and Z ⊂ Zm is bounded. Furthermore, the
objective function is C : X×Y 0×Y S×Z → R and (possibly nonlinear) constraints are given
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by G : X × Y 0 × Y S × Z → Rl. Thus, the variables y(s) are functions that have to solve an
ODEs specified by the function f : R × Rk × Rn → Rn. Moreover, continuous variables x
and integer variables z are present.

The distinguishing feature of (Pode) is that y only needs to be known at a finite number of
positions, namely 0 and S. Only the corresponding values y0 and yS enter the remaining parts
of (Pode) (namely C, G, Y 0, and Y S). Note that for notational simplicity, we assume that
the ODEs are defined on the same interval [0, S]; this can be assured by reparametrization.
Moreover, we assume that C, G, and f are continuously differentiable.

The particular structure of (Pode) is motivated by stationary gas or water networks. In
this case, the differential equations are composed by n one-dimensional ODEs ∂syi(s) =
fi
(
s, x, yi(s)

)
for i = 1, . . . , n, one for each of the n connections (pipelines) in the correspond-

ing network. The relevant values are the (constant) flows for each connection and the values
at the nodes (pressures). These values are coupled by G(x, y0, yS , z) ≤ 0, which represents
flow conservation and further network components (compressors/pumps, resistors, valves,
. . . ). The integer variables are used to open or close valves or to turn compressors/pumps
on or off. The objective often minimizes the energy for operating compressors/pumps.

We will present a solution method to globally solve (Pode) and we will use the example of
stationary gas networks to illustrate the approach, but it can also be applied to stationary
water networks.

The contribution of this paper is the development of a method to globally solve optimization
problems of the form (Pode). The general approach is to use branch-and-bound to handle the
integer variables z and spatial branching for handling nonlinearities. Both approaches are
standard in mixed-integer nonlinear programming (MINLP), see, for example the books [22,
16, 19] or overview articles [7, 13]. Spatial branching refers to the technique in which the
domain of a (continuous) variable is split into two (nonempty) parts, creating two new child
nodes in the branch-and-bound tree. Since the bounds on the variable are tighter in each
child node, the hope is that this can be used by other components to further tighten bounds.
This process tends to produce better relaxations in the child nodes and hopefully results in
a small/finite search tree.

The new contribution of this paper concerns the handling of the ODE constraints. We con-
sider convex underestimators and concave overestimators for the (nonlinear) functions that
map one boundary value y(0) or y(S) to the other. In Section 2, we show finite convergence of
the corresponding method under natural assumptions. Moreover, a key point of our approach
is that these estimators can be easily constructed by using basic discretization schemes. In
Section 3, we show that this holds if some conditions are satisfied, for instance, the local
truncation error is nonpositive. To demonstrate the approach, we apply the algorithm and
estimation techniques to stationary gas transport in Section 4. We have also implemented
our approach and provide computational experiments in Section 5.

1.1 Literature Review

The topic of this paper has clear connections to optimization with ODE or partial differential
equation (PDE) constraints, see, e.g., [15] for a starting point into this area. Due to its
analytical and computational complexity, the focus in this area often lies on the computation
of local optima without the consideration of discrete decisions. However, in recent years
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there has been some effort to approach global and discrete decisions. We review some of the
literature in this direction.

A very natural approach is to use the first discretize then optimize approach, i.e., to discretize
the state space (usually time and spatial directions) in order to obtain a MINLP, which one
typically tries to solve to global optimality; discrete decisions are then often handled by
branch-and-bound. A number of articles use this approach – a partial list is as follows.
Papamichail and Adjiman [29] consider parametric ODEs and construct approximations via
the α-BB approach; the α-BB method for NLPs was introduced by Adjiman et al. [2, 1]. Sager
et al. [34, 18] apply the convexification method of [33] to handle discrete decisions over time
and show how to efficiently compute feasible solutions. An open source implementation of a
general first discretize then optimize approach is available at [44] that uses relaxations based
on piecewise-linearization, see Fügenschuh and Vierhaus [8] for a description. Bock et al. [3]
consider problems in which discrete decisions depend on the state variables and present a
reformulation/solution method for such problems. Diedam and Sager [6] compare single- and
multiple-shooting discretizations for the global solution of optimal control problems without
integer decisions.

Since the above mentioned approaches use a fixed discretization, the solutions only provide
an approximation of the ODEs/PDEs with respect to an a priori fixed accuracy. Moreover,
the corresponding MINLPs become very large for high precision. Thus, several approaches to
adaptively refine the discretization have been developed. For instance, Sager et al. [33] present
a convexification approach for the discrete decisions and use this to set up a solution method
that can in principle determine a globally optimal solution. Buchheim et al. [4] present a
global approach for solving elliptic mixed-integer PDE problems using outer approximation.

Global approaches are based on tight (convex) relaxations of the solution space. In [12], Hante
and Sager extend the convexification approach from [33] to mixed-integer PDE problems and
derive a relaxation. A series of publications consider methods to derive relaxations based
on interval arithmetic. For instance, Nedialkov et al. [25] review methods for enclosing
solutions of initial value problems. Singer and Barton [42, 43] consider relaxations for ODEs
and apply Branch-and-Bound. Chachuat et al. [5] use an outer-approximation algorithm for
mixed-integer dynamic optimization (MIDO). Scott and Barton [40] (improving [42] and [41])
consider ODEs and Scott, and Barton [39] deal with differential algebraic equations. Further
envelopes for (parametric) ODEs are constructed by Neher et al. [26], Lin et al. [20, 21],
Sahlodin et al. [35, 36], and Villanueva et al. [45].

As mentioned earlier, we will use stationary gas transport as a running example in this article.
We refer to [30], [31], Ríos-Mercado and Conrado Borraz-Sánchez [32], Hante et al. [11] for
general information on modelling of and solution methods for gas transport.

A related approach for solving mathematical optimization problems with ODEs in the context
of gas transport is described in Gugat et al. [9]. Here, a global decomposition approach
is described if the underlying network is a tree. Since in every iteration a mixed-integer
linear master optimization problem is solved, this amounts to a “multi-tree” approach, while
the method described in this paper works as a “single-tree”. Related is the approach of
Schmidt et al. [37], who consider the solution of MINLPs with equality constraints using
univariate Lipschitz continuous functions for which the constants are known or approximated
and the function evaluations may be approximate; this is applied to a stationary gas transport
problem in which the underlying network is a tree. Moreover, Gugat et al. [10] present an
instantaneous control approach for solving instationary gas transport problems, where a
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mixed-integer linear problem needs to be solved for each time step.

The technique that we present in this paper is distinct from the approaches mentioned above
in the following way: We adaptively refine the discretization, which is not done in the ap-
proaches based on first discretize then optimize approaches. Moreover, our method to derive
lower and upper bounds exploits the particular network structure and is different from the
general-purpose approximations for ODEs and the convexifications mentioned above.

2 Solution Method

In this section we introduce our solution method. We begin with a natural basic assumption
on the differential equations, which we assume to hold throughout the paper.

Assumption 1. The initial value problem

y(0) = y0, ∂sy(s) = f
(
s, x, y(s)

)
, s ∈ [0, S] (1)

is uniquely solvable for all x ∈ X, y0 ∈ Y 0.

This assumption can be guaranteed, for example, if f is Lipschitz continuous w.r.t. y. We
denote the solution operator by

F : X × Y 0 → Rn,
(
x, y0

)
7→ y(S),

the unique solution of the initial value problem (1) for every x ∈ X and y0 ∈ Y 0. With this
function we can replace the ODE constraints by

yS − F
(
x, y0

)
= 0.

This yields the equivalent problem

min C(x, y0, yS , z)

s.t. G(x, y0, yS , z) ≤ 0,

yS − F
(
x, y0

)
= 0,

x ∈ X, y0 ∈ Y 0, yS ∈ Y S , z ∈ Z.

(P)

Since X, Y 0, Y S are polytopes, Z is bounded and C is continuous, the problem has an
optimal solution if the feasible set is nonempty. If there is an analytical formula for F , then
we could use spatial branch-and-bound to solve (P). In the following, we assume that this is
not the case or that the formula is hard to evaluate.

Our idea is to construct under- and overestimators F (x, y0) by the right choice of suitable
numerical methods. That is, we choose one-step methods which provably yield lower and
upper bounds for y(s), respectively. We will later see an example for this approach. For now,
we assume the existence of under- and overestimators.

Assumption 2. There exist functions F ` : X×Y 0×Nn → Rn and F u : X×Y 0×Nn → Rn,
which fulfill the inequality

F `
(
x, y0, N

)
≤ F

(
x, y0

)
≤ F u

(
x, y0, N

)
for all x ∈ X and y0 ∈ Y 0. Furthermore, we assume that on the polytopes X, Y 0 the
functions F `i and F ui converge uniformly to Fi for Ni →∞, i = 1, . . . , n.
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Figure 1: Example from stationary gas transport, see Section 4. Here, for one pipe, the
inflow pressure is a convex function of the outflow pressure pout and mass flow q (solid line,
F (pout, q)) and we can define F ` and F u (dashed lines) by suitable discretization methods.

For an example of this assumption see Figure 1, which is from our application, the stationary
gas transport. There we consider the stationary isothermal Euler equation, which defines a
relation between the pressure at the ends of a pipe and the flow. We can show, that given
the pressure at the end and the mass flow, one can compute lower and upper bounds on the
pressure at start. Thereby, N corresponds to the number of grid points in the discretization.

Next we relax the constraint
yS = F

(
x, y0

)
of the problem (P) by means of the functions F ` and F u. In this way we derive the relaxation

min C(x, y0, yS , z)

s.t. G(x, y0, yS , z) ≤ 0,

F `
(
x, y0, N

)
≤ yS ≤ F u

(
x, y0, N

)
,

x ∈ X, y0 ∈ Y 0, yS ∈ Y S , z ∈ Z.

(Pr(N))

This is a relaxation of (P), since every feasible point of (P) is feasible for the new constraint

F `
(
x, y0, N

)
≤ yS ≤ F u

(
x, y0, N

)
,

and the objective function is the same. Note that the problem depends on N ∈ Nn, as this
constraint can vary for different N . Again, the optimal value of this problem is bounded
from below, because X, Y 0, Y S are polytopes, Z is bounded, and C is continuous.

In order to solve (Pr(N)) with spatial branch-and-bound, we need a convex relaxation of the
feasible set. Thus, we suppose that we can construct a convex underestimator F̌ ` of F ` and
a concave overestimator F̂ u of F u for every N ∈ Nn. In addition, let Ǧ and Č be convex
underestimators of G and C, respectively, for example, obtained by the αBB approach [2] or
McCormick relaxations [24]. Then we obtain the following a convex relaxation of (Pr(N)):

min α

s.t. Č(x, y0, yS , z)− α ≤ 0,

Ǧ(x, y0, yS , z) ≤ 0,

F̌ `
(
x, y0, N

)
≤ yS ≤ F̂ u

(
x, y0, N

)
,

x ∈ X, y0 ∈ Y 0, yS ∈ Y S , z ∈ conv(Z).

(Pcv(N))
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Spatial branch-and-bound will enable us to compute so called (ε, δ)-optimal solutions of the
relaxation (Pr(N)). For a vector y ∈ Rn we denote with (y)+ the vector of the componentwise
maxima of yi and 0.

Definition 1. We say that a vector (x, y0, yS , z) ∈ X × Y 0× Y S ×Z is a δ-feasible solution
of (P) if the condition

max
{∥∥(G(x, y0, yS , z))

+

∥∥
∞,
∥∥ yS − F (x, y0)∥∥∞} ≤ δ

holds. Analogously, we call (x, y0, yS , z) ∈ X×Y 0×Y S×Z a δ-feasible solution of (Pr(N))
if

max
{∥∥(G (x, y0, yS , z))

+

∥∥
∞,
∥∥(F `(x, y0, N)− yS)

+

∥∥
∞,
∥∥(yS − F u (x, y0, N))

+

∥∥
∞

}
≤ δ

holds. Furthermore, we call (x, y0, yS , z) ∈ X×Y 0×Y S×Z an (ε, δ)-optimal solution of (P)
or (Pr(N)) if it is δ-feasible and the objective function satisfies

C(x, y0, yS , z) ≤ C∗ + ε,

where C∗ > −∞ is the optimal value of (P) or (Pr(N)), or C∗ = ∞ if their respective
feasible set is empty.

Note that this definition is consistent with the definition in the literature, e.g., Locatelli
and Schoen [22]. Since our goal is to find (ε, δ)-optimal solutions of (P) by approximatively
solving (Pr(N)), we now show how their respective (ε, δ)-optimal solutions are related.

Lemma 2. Let (x, y0, yS , z) ∈ X × Y 0 × Y S × Z be an (ε, δ1)-optimal solution of (Pr(N))
for some N ∈ Nn. Additionally, let the condition∥∥F u(x, y0, N)− F `(x, y0, N)∥∥∞ ≤ δ2 (2)

be satisfied for δ2 ≥ 0. Then (x, y0, yS , z) is an (ε, δ)-optimal solution of (P) for all δ ≥
δ1 + δ2.

Proof. First, we prove that (x, y0, yS , z) is δ-feasible for (P). Because of the δ1-feasibility
for (Pr(N)), we know that ∥∥(G(x, y0, yS , z)

)
+

∥∥
∞ ≤ δ1 ≤ δ,

as well as (
yS − F u

(
x, y0, N

))
+

+
(
F `
(
x, y0, N

)
− yS

)
+
≤ δ1

holds. Here, we used that F u ≥ F ` holds and for all i = 1, . . . , n only one of ySi −F ui
(
x, y0, N

)
and F `i

(
x, y0, N

)
− ySi can be positive. Thus,∣∣ySi − Fi(x, y0)∣∣ =

(
ySi − Fi

(
x, y0

))
+

+
(
Fi
(
x, y0

)
− ySi

)
+

≤
(
ySi − F ui

(
x, y0, N

))
+

+
(
F ui
(
x, y0, N

)
− Fi

(
x, y0

))
+

+
(
Fi
(
x, y0

)
− F `i

(
x, y0, N

))
+

+
(
F `i
(
x, y0, N

)
− ySi

)
+

=
(
ySi − F ui

(
x, y0, N

))
+

+ F ui
(
x, y0, N

)
− F `i

(
x, y0, N

)
+
(
F `i
(
x, y0, N

)
− ySi

)
+

≤ δ1 + δ2 ≤ δ.
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That is, (x, y0, yS , z) is δ-feasible for (P).

Next, let (x̄, ȳ0, ȳS , z̄) be an optimal solution of (P). As (Pr(N)) is a relaxation of (P),
the solution is feasible for (Pr(N)). Hence, there exists an optimal solution (x̃, ỹ0, ỹT , z̃)
of (Pr(N)) with C(x̃, ỹ0, ỹT , z̃) ≤ C(x̄, ȳ0, ȳS , z̄). Since (x, y0, yS , z) is an (ε, δ1)-optimal
solution of the relaxation (Pr(N)), we can derive

C(x, y0, yS , z) ≤ C(x̃, ỹ0, ỹS , z̃) + ε ≤ C(x̄, ȳ0, ȳS , z̄) + ε,

that is, (x, y0, yS , z) is an (ε, δ)-optimal solution of (P).

Otherwise, if (P) is infeasible, the condition C(x, y0, yS , z) ≤ C∗ + ε = ∞ is obviously
satisfied.

Algorithm 1: Spatial branch-and-bound for (Pr(N))
Input: Problem (Pr(N)), δ > 0 and ε > 0
Output: (ε, δ)-optimal solution

(
x̄, ȳ0, ȳS , z̄

)
of (Pr(N)) or “infeasible”

1 Upper bound U ← ∞;
2 List of active nodes L ←

{
X × Y 0 × Y S × Z

}
;

3 while L 6= ∅ do
4 Choose a node X̃ × Ỹ 0 × Ỹ S × Z̃ ∈ L and set L ← L \ {X̃ × Ỹ 0 × Ỹ S × Z̃};
5 Build the convex relaxation (Pcv(N)) w.r.t. X̃ × Ỹ 0 × Ỹ S × Z̃;
6 if (Pcv(N)) is feasible then
7 Let

(
α̃, x̃, ỹ0, ỹS , z̃

)
be an optimal solution of (Pcv(N));

8 if z̃ ∈ Zm then
9 if

(
x̃, ỹ0, ỹS , z̃

)
is δ-feasible for (Pr(N)) and C

(
x̃, ỹ0, ỹS , z̃

)
< U then

10 Set U ← C
(
x̃, ỹ0, ỹS , z̃

)
and

(
x̄, ȳ0, ȳS , z̄

)
←
(
x̃, ỹ0, ỹS , z̃

)
;

11 if α̃ < U − ε then
12 Choose z̃i 6∈ Z or x̃i, ỹ0i , ỹ

S
i appearing in a δ-violated constraint or in the

ε-violated constraint C
(
x̃, ỹ0, ỹS , z̃

)
− α̃ > ε;

13 Perform branching w.r.t. the chosen variable x̃i, ỹ0i , ỹ
S
i or z̃i and add nodes

to L;

Lemma 2 shows how to generate an (ε, δ)-optimal solution of (P). Since the functions F `

and F u are uniformly convergent to F , we can choose N such that condition (2) is satisfied for
all (x, y0) ∈ X × Y 0. Then if the under- and overestimators fulfill some technical conditions,
we can compute an (ε, δ1)-optimal solution of (Pr(N)) with spatial branch-and-bound and
therefore an (ε, δ)-optimal solution of (P). This idea yields Algorithm 1.

For proving that Algorithm 1 terminates, we require the following conditions. Suppose the
algorithm produces (through branching) an infinite nested sequence of nodes Fk = Xk ×
Y 0
k × Y T

k × Zk with Fk+1 ⊆ Fk for all k ∈ N0. Then the branching rules have to satisfy the
condition

lim
k→∞

diam(Fk) = 0, (3)

where diam is the diameter of a set U :

diam(U) := max
u,u′∈U

‖u− u′‖2.

Next, for every Fk we need to be able to construct the convex underestimators Č, Ǧ, F̌ `

and the concave overestimator F̂ u over the set Fk. We denote the dependency on Fk by the
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index k, e.g., Čk. Furthermore, the estimators have to satisfy the condition

max
(x,y0,yS ,z)∈Fk

{
‖G(x, y0, yS , z)− Ǧk(x, y0, yS , z)‖∞, ‖F `(x, y0, N)− F̌ `k(x, y0, N)‖∞,

‖F̂ uk (x, y0, N)− F u(x, y0, N)‖∞, |C(x, y0, yS , z)− Čk(x, y0, yS , z)|
}
→ 0

(4)
for k →∞.

Under these conditions, the next theorem proves that Algorithm 1 terminates finitely, see
Locatelli and Schoen [22, Theorem 5.26]. Here, we assume for simplicity that Step 5 of
Algorithm 1 can be executed exactly, i.e., without rounding errors, otherwise a further ap-
proximation error would have to be handled.

Theorem 3. Let ε > 0, δ > 0 hold. Suppose that the Conditions (3) and (4) are satisfied.
Then Algorithm 1 terminates after a finite number of iterations and either returns an (ε, δ)-
optimal solution of (Pr(N)) or that (Pr(N)) is infeasible.

Note that there can exist (ε, δ)-optimal solutions even if (Pr(N)) is infeasible. In this case,
both results of the algorithm are possible. It can happen that Algorithm 1 finds an (ε, δ)-
optimal solution or that δ-feasible solutions of (Pr(N)) are infeasible for (Pcv(N)) and the
algorithm returns “infeasible”. This is due to the fact that under- and overestimators are
usually tight at some points and cut off δ-feasible solutions. For example, the McCormick
estimators for the product of two variables over a square are exact in the corners.

Choosing N big enough, we can now compute (ε, δ)-optimal solutions of (P).

Corollary 4. Let ε > 0, δ > 0 and suppose that Conditions (3) and (4) hold. Then we can
compute an (ε, δ)-optimal solution of (P) in finite time, or establish the infeasibility of (1).

Proof. By Assumption 2 we know that F ` and F u converge uniformly to F for Ni →∞, i =
1, . . . , N . Therefore, we can choose N such that∥∥∥F u(x, y0, N)− F `(x, y0, N)∥∥∥

∞
≤ δ

2

holds for all x ∈ X, Y 0 ∈ Y 0.

By Theorem 3 the spatial branch-and-bound algorithm with parameters δ
2 > 0 and ε > 0

returns an (ε, δ2)-optimal solution of (Pr(N)) or that it is infeasible.

Since (Pr(N)) is a relaxation of (P), if the algorithm returns “infeasible”, there is no feasible
solution of (P). Otherwise, the algorithm returns an (ε, δ2)-optimal solution of (Pr(N)) and
Lemma 2 states that this solution is an (ε, δ)-optimal solution of (P).

2.1 Adaptive spatial branch-and-bound

A disadvantage of Algorithm 1 is that we have to chooseN in advance, such that Condition (2)
holds on the whole feasible set. Hence, we might have to select N bigger than it has to be in
some parts of the feasible set. This leads to more computational effort, for example, when N
corresponds to the number of grid points of a discretization. To circumvent this problem, we
replace Step 5 of Algorithm 1 by the following adaptive procedure.
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We start with constructing Č and Ǧ by standard methods on the current node. Next, we pick
some initial convex relaxation of F ` and F u, e.g., the relaxation of the parent node during
the branch-and-bound process or X × Y 0 × Y S × conv(Z) in the root node. Then we solve
the convex relaxation. If the relaxation is infeasible, so is the corresponding original problem
and we are done. Now, let

(
α̃, x̃, ỹ0, ỹS , z̃

)
be the solution of the relaxation. We check if

Condition (2) is satisfied in
(
x̃, ỹ0

)
and possibly increase N until (2) holds. If

(
x̃, ỹ0, ỹS , z̃

)
is a δ1-feasible solution of

F `
(
x̃, ỹ0, N

)
≤ ỹS ≤ F u

(
x̃, ỹ0, N

)
, (5)

we stop with the current solution, otherwise we pick the most violated constraint, see Line 11.
Then either ỹSi > F ui (x̃, ỹ0, N)+δ1, or ỹSi < F `i (x̃, ỹ0, N)−δ1 holds. Subsequently, we improve
the under- or overestimator by cutting off the current solution. If this is not possible, we
stop with the current solution and have to perform branching to resolve the infeasibility.

Algorithm 2: Adaptive convex relaxation

Input: Node of Branch-and-Bound tree X̃ × Ỹ 0 × Ỹ S × Z̃, δ1, δ2 > 0, N ∈ Nn, and
convex underestimators Č, Ǧ.

Output: A δ1-feasible solution of (5), which satisfies (2), “infeasible” or instruction to
branch.

1 Choose initial relaxation of (5) (e.g., X̃ × Ỹ 0 × Ỹ S × Z̃ or relaxation of the parent
node);

2 for k = 1, 2, . . . do
3 if (Pcv(N)) is feasible then
4 Let

(
α̃, x̃, ỹ0, ỹS , z̃

)
be a solution of the relaxation;

5 while
∥∥F u(x̃, ỹ0, N)− F `(x̃, ỹ0, N)∥∥∞ > δ2 do

6 Increase Ni for all i with
∣∣F ui (x̃, ỹ0, Ni

)
− F `i

(
x̃, ỹ0, Ni

)∣∣ > δ2;
7 if

(
x̃, ỹ0, ỹS , z̃

)
is δ1-feasible for (5) then

8 Stop with solution
(
α̃, x̃, ỹ0, ỹS , z̃

)
;

9 else
10 Choose “most violated” constraint i, i.e.,

11 i ∈ arg maxj=1,...,n max
{
F `j
(
x̃, ỹ0, Nj

)
− ỹSj , ỹSj − F uj

(
x̃, ỹ0, Nj

)}
;

12 if ỹSi > F ui
(
x̃, ỹ0, Ni

)
then

13 “Improve the overestimator” or stop with the current solution and perform
branching;

14 else if ỹSi < F `i
(
x̃, ỹ0, Ni

)
then

15 “Improve the underestimator” or stop with the current solution and perform
branching;

16 else
17 Stop with “infeasible”;

What do we mean by Steps 13 and 15 of Algorithm 2? We can improve an estimator by adding
a linear inequality, which cuts off the current LP-solution and is feasible for (Pr(N)). For
example in outer-approximation, current solutions can be cut off by gradient cuts. Another
possibility is to add an estimator dynamically, instead of adding all inequalities at once. I.e.,
if an over- or underestimator consists of multiple inequalities, we only add an inequality if it
cuts off the current solution.

Incorporating Algorithm 2 into the spatial branch-and-bound algorithm results in Algo-
rithm 3. The main change is of course that N need not be constant any more. Note that a
δ1-feasible solution of (Pr(N)) might not be a δ1-feasible solution of (Pr(N ′)) for N ≤ N ′,

9



Algorithm 3: Adaptive spatial branch-and-bound for (P)
Input: Problem (P), N = N0 ∈ Nn, δ1, δ2 > 0 and ε > 0
Output: (ε, δ1 + δ2)-optimal solution

(
x̄, ȳ0, ȳS , z̄

)
or “infeasible”

1 Upper bound U ← ∞;
2 List of active nodes L ←

{
X × Y 0 × Y S × Z

}
;

3 while L 6= ∅ do
4 Choose a node X̃ × Ỹ 0 × Ỹ S × Z̃ ∈ L and set L ← L \ {X̃ × Ỹ 0 × Ỹ S × Z̃};
5 Construct underestimators Č, Ǧ;
6 Run Algorithm 2;
7 if Algorithm 2 stops with a solution of the relaxation then
8 Let

(
α̃, x̃, ỹ0, ỹS , z̃

)
be the solution;

9 if the solution is δ1-feasible for (5) then
10 if

(
x̃, ỹ0, ỹS , z̃

)
is a δ1-feasible solution of (Pr(N)) and C

(
x̃, ỹ0, ỹS , z̃

)
< U

then
11 Set U ← C

(
x̃, ỹ0, ỹS , z̃

)
and

(
x̄, ȳ0, ȳS , z̄

)
←
(
x̃, ỹ0, ỹS , z̃

)
;

12 if α̃ < U − ε then
13 Choose z̃i 6∈ Z or x̃i, ỹ0i , ỹ

S
i appearing in a δ1-violated constraint G ≤ 0 or in

the possibly ε-violated constraint C
(
x̃, ỹ0, ỹS , z̃

)
− α̃ > ε or in the “most

violated” constraint chosen in the last iteration of Algorithm 2;
14 Perform branching w.r.t. the chosen variable x̃i, ỹ0i , ỹ

S
i or z̃i and add nodes

to L;

but still is a δ1 + δ2-feasible solution of (P) if it fulfills Condition (2) for N. Therefore, this
is an algorithm for solving (P) and not (Pr(N)).

Another big difference is that we do not have to reconstruct F̌ ` and F̂ u in every node, but
instead refine them only if needed. Besides this, the algorithm is almost the same as before.

The crucial point in proving that Algorithm 3 terminates, certainly is that Algorithm 2
terminates after a finite number of iterations. As we can not prove this in general, but only
for a given construction method of F̌ ` and F̂ u, we need the following assumption.

Assumption 3. If N is fixed, then Algorithm 2 terminates after finitely many iterations.

Note that we do not suppose that the algorithm stops with a δ1-feasible solution, it only has
to stop with either a solution, “infeasible”, or that branching has to be performed. The next
Lemma shows that it is enough to demand that this assumption holds such that Algorithm 2
terminates after finitely many iterations.

Lemma 5. Suppose that Assumption 3 holds. Then Algorithm 2 terminates finitely.

Proof. Assume that the algorithm does not terminate. Then it produces a sequence of points
which are feasible solutions of the convex relaxation but not δ1-feasible for (5). We denote
with K ⊂ N the iterations where N has to be increased.

Since F ` and F u converge uniformly to F w.r.t. N and X̃ × Ỹ 0 is bounded, there exists a
N0 ∈ Nn such that ∥∥F u(x, y0, N ′)− F `(x, y0, N ′)∥∥∞ ≤ δ2
is satisfied for all (x, y0) ∈ X̃× Ỹ 0 and all N ′ ≥ N0. That is, each Ni can only be increased a
finite number of times until Ni ≥ N0

i holds. Hence, K is either empty or a finite set. Then N
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is fixed either from the beginning or after the last iteration k ∈ K. Due to Assumption 3 the
algorithm stops after another finite number of iterations.

Now, we can prove that Algorithm 3 terminates finitely. Again, we consider an infinite
nested sequence of nodes Fk = Xk × Y 0

k × Y T
k × Zk with Fk+1 ⊆ Fk for all k ≥ 0 produced

by Algorithm 3. The branching rules still have to satisfy the condition

lim
k→∞

diam(Fk) = 0. (3)

Since Algorithm 2 only improves the estimators if (5) is δ1-violated in the current solution
of the relaxation, it might happen that an estimator F̂ u or F̌ ` does not change although

max
(x,y0,yS ,z)∈Fk

{
‖F `(x, y0, N)− F̌ `k(x, y0, N)‖∞, ‖F̂ uk (x, y0, N)− F u(x, y0, N)‖∞,

}
> δ1

holds. Thus, (4) cannot hold either. Instead, the convex underestimators of C and G have
to satisfy

max
(x,y0,yS ,z)∈Fk

{
‖G(x, y0, yS , z)− Ǧk(x, y0, yS , z)‖∞, |C(x, y0, yS , z)− Čk(x, y0, yS , z)|

}
→ 0

(6)
for k → ∞ and we assume that an iteration k0 ∈ N exists such that the optimal solutions(
α̃k, x̃k, ỹ0,k, ỹS,k, z̃k

)
k∈N of the relaxation

(
Pcv(Nk)

)
over Fk satisfy

max
{∥∥(F `(x̃k, ỹ0,k, Nk)− ỹS,k

)
+

∥∥
∞,
∥∥(ỹS,k − F u(x̃k, ỹ0,k, Nk)

)
+

∥∥
∞

}
≤ δ1 (7)

for k ≥ k0. With that we have all the conditions and assumptions we need.

Theorem 6. Suppose that Conditions (3), (6) and (7), and the Assumptions 1,2 and 3 hold.
Then Algorithm 3 terminates with an (ε, δ1 + δ2)-optimal solution of (P) or “infeasible” after
a finite number of nodes.

Proof. Suppose that Algorithm 3 does not terminate. Then it produces at least one infinite
nested sequence of nodes Fk = Xk×Y 0

k ×Y T
k ×Zk and a sequence

(
α̃k, x̃k, ỹ0,k, ỹS,k, z̃k

)
k∈N,

where each element is the solution of
(
Pcv(Nk)

)
over Fk during the last iteration of Algo-

rithm 2. Note that the relaxation has to be feasible for every node, otherwise, the node would
be pruned and the sequence Fk ends finitely.

We show that there is a K ∈ N such that
(
α̃K , x̃K , ỹ0,K , ỹS,K , z̃K

)
is a (δ1 + δ2)-feasible

solution of (P). By the Conditions (3) and (6) there exists an iteration k0 ∈ N such that
|C(x, y0, yS , z) − ČFk

(x, y0, yS , z)| < ε and ‖G(x, y0, yS , z) − ǦFk
(x, y0, yS , z)‖∞ < δ1 holds

for all
(
x, y0, yS , z

)
∈ Fk and all nodes k ≥ k0.

For the ODE-relaxation we again notice that there is a N0 ∈ Nn such that Condition (2) is
satisfied on the whole domain X × Y 0 × Y S ×Z and all N ≥ N0, because of the assumption
that F ` and F u converge uniformly to F with respect to N . Therefore, at some iteration
k1 ∈ N, N is increased for the last time. Then after max{k0, k1+1} nodes the only constraint
which can be violated is

F `
(
x, y0, N

)
− δ1 ≤ yS ≤ F u

(
x, y0, N

)
+ δ1.

But by Condition (7), there is an iteration k2 ∈ N such that this condition holds for
all solutions

{(
α̃k, x̃k, ỹ0,k, ỹS,k, z̃k

)}
k≥k2 of

(
Pcv(Nk)

)
produced by Algorithm 2. Hence,

11



(
x̃K , ỹ0,K , ỹS,K , z̃K

)
with K = max{k0, k1, k2} is a (δ1 + δ2)-feasible solution of (P). Thus,

the upper bound U will be updated if C
(
x̃K , ỹ0,K , ỹS,K , z̃K

)
< U holds and the node FK will

get fathomed, because

α̃K > C
(
x̃K , ỹ0,K , ỹS,K , z̃K

)
− ε ≥ U − ε

is satisfied for K ≥ k0. That is, the algorithm does not produce an infinite sequence of nodes
and, therefore, terminates finitely.

It remains to show that the output of the algorithm is correct. Suppose Algorithm 3 termi-
nates with upper bound U =∞. This only happens if every node was fathomed because the
relaxations are infeasible. Since the leaf nodes define a partition of the feasible set and the
relaxations are infeasible, so has to be the original problem.

Suppose the algorithm terminates with a solution
(
x̄, ȳ0, ȳS , z̄

)
. By construction of the algo-

rithm and Lemma 2, it is clear that the solution is (δ1 + δ2)-feasible for (P). We distinguish
two cases:

1. There is an optimal solution of (P) with optimal value C∗ <∞.
2. The feasible set of (P) is empty, i.e., C∗ =∞.

In the second case, clearly
C
(
x̄, ȳ0, ȳS , z̄

)
− ε ≤ C∗

holds and
(
x̄, ȳ0, ȳS , z̄

)
is ε-optimal. In the first case, let Fk = Xk × Y 0

k × Y T
k × Zk denote

all nodes of the branch-and-bound tree which are fathomed due to αk ≥ Uk− ε with optimal
solution value αk of the relaxation and current upper bound Uk. Then

⋃
k Fk defines a

partition of the feasible set and mink αk is a lower bound for C∗. With C
(
x̄, ȳ0, ȳS , z̄

)
≤ Uk

we can derive C
(
x̄, ȳ0, ȳS , z̄

)
− ε ≤ Uk − ε ≤ αk and therefore the inequality

C
(
x̄, ȳ0, ȳS , z̄

)
− ε ≤ min

k
αk ≤ C∗,

is true, i.e.,
(
x̄, ȳ0, ȳS , z̄

)
is ε-optimal.

3 Existence of bounding schemes

In the previous section, it remained an open question when there exist functions F ` and F u,
which satisfy Assumption 2. In this section, we will investigate how to define such functions
based on suitable numerical methods for differential equations. Therefore, we consider an
one-dimensional ODE

y(0) = y0, ∂sy(s) = f(s, y(s)), s ∈ [0, S]

and possibly implicit one-step methods which can be written in the form

y0 = y0, yi+1 = yi + hi fh(si, hi, yi, yi+1), ∀i = 0, . . . , N − 1, (8)

subject to a discretization 0 = s0 < s1 < · · · < sN = S. Define hi := si+1 − si for all
i = 0, . . . , N − 1. The idea is to define F ` and F u via the execution of a method of the
form (8), i.e.,

F ` : y0 7→ yN or F u : y0 7→ yN .
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The goal is to derive lower and upper bounds on the exact solution y(L) in this way. The
global truncation error eN = y(S)− yN might be a good indicator, but usual techniques only
yield estimates on the absolute value of eN . Therefore, we use the local truncation error

τ(s, h) = y(s+ h)− y(s)− h fh
(
s, h, y(s), y(s+ h)

)
.

We consider an explicit method with nonnegative local truncation error, i.e.,

y(si+1)− y(si)− hi fh
(
si, hi, y(si)

)
≥ 0 (9)

for all i = 0, . . . , N − 1.

Example. From (9), we can immediately derive

y(s1)− y1 = y(s1)− y(s0)− h0 fh
(
s0, h0, y(s0)

)
≥ 0.

Nevertheless, this does not guarantee y(s2) − y2 ≥ 0. For example, let ∂sy(s) = −y(s) and
y(0) = 1. For this ODE the explicit Euler method (i.e., fh(si, hi, yi, yi+1) = f(si, yi)) with
equidistant step size has nonnegative truncation error and produces the solution yi = (1−h)i

for all i. Thus, with h = 2 we have y2i ≤ y(s2i) and y(s2i+1) ≤ y2i+1 for all i. Whereas,
yi ≤ y(si) with 0 < h ≤ 1 holds for all i.

This example suggests that a signed local truncation error and small step sizes are sufficient
for producing lower and upper bounds. In fact, by (9) we have

y(si+1) ≥ y(si) +h fh
(
si, h, y(si)

)
and the inequality

≥ yi +h fh
(
si, h, yi

)
= yi+1.

holds if y + h fh(s, h, y) is nondecreasing w.r.t. y. Therefore, we can derive y(si+1) ≥ yi+1.

Lemma 7. Consider a method of the form (8) for a scalar ODE, i.e., y(s) ∈ R, and let the
local truncation error of the method be nonnegative, i.e., the inequality

y(s+ h)− y(s)− h fh
(
s, h, y(s), y(s+ h)

)
≥ 0

holds for all s ∈ [0, S] and h ≥ 0 with s+ h ≤ S. Suppose the derivatives satisfy

b ≤ ∂yfh(s, h, y, ỹ) and ∂ỹfh(s, h, y, ỹ) ≤ B

for constants b, B ∈ R. Then if

0 < hi ≤ hmax =

{
∞ if b ≥ 0 and B ≤ 0,

1
max{−b,B} otherwise,

for all i = 1, . . . , N , the one-step method produces a lower bound on the solution y(s), i.e.,

yi ≤ y(si), i = 1, . . . , N.

If on the other hand the local truncation error of the method is nonpositive, i.e., the inequality

y(s+ h)− y(s)− h fh
(
s, h, y(s), y(s+ h)

)
≤ 0

holds for all s ∈ [0, S] and h ≥ 0 with s+h ≤ S, then we obtain under the same assumptions

yi ≥ y(si), i = 1, . . . , N.
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Proof. We prove the lemma by induction on the number of grid points. Consider the function

R(s, h, y, ỹ) = ỹ − y − h fh(s, h, y, ỹ).

Then one step of (8) is given by R(si, hi, yi, yi+1) = 0. By the assumption on the derivatives
of fh, we get

∂ỹR(s, h, y, ỹ) = 1− h ∂ỹfh(s, h, y, ỹ) ≥ 1− hB.
Obviously, R is nondecreasing w.r.t. ỹ if B ≤ 0 holds, or if all step sizes satisfy h ≤ 1

B . Since
the local truncation error is nonnegative and y0 = y(0), we can derive the inequality

R
(
0, h1, y(0), y(s1)

)
≥ 0 = R

(
0, h1, y0, y1

)
.

Therefore, we gain the inequality
y(s1) ≥ y1

if either B ≤ 0 or h1 ≤ 1
B holds. We assume that y(si) ≥ yi is satisfied. Since ∂yfh is

bounded by b, we know

∂yR(s, h, y, ỹ) = −1− h ∂yfh(s, h, y, ỹ) ≤ −1− h b

holds. Thus, R is nonincreasing w.r.t. y if either b ≥ 0 or h ≤ −1
b holds. Again, using that

the local truncation error is nonnegative we derive

R
(
si, hi, y(si), y(si+1)

)
≥ 0 = R

(
si, hi, yi, yi+1

)
.

Furthermore, the monotonicity w.r.t. the third argument and y(si) ≥ yi results in

R
(
si, hi, yi, y(si+1)

)
≥ R

(
si, hi, y(si), y(si+1)

)
≥ R

(
si, hi, yi, yi+1

)
and consequently

y(si+1) ≥ yi+1

holds. Then induction yields that the one-step method produces a lower bound on y(S).

The case of nonpositive truncation error can be treated in the same way.

Note that for most one-step methods like the Runge-Kutta methods, the assumption on the
right-hand side f of the ODE to be Lipschitz-continuous already ensures that the partial
derivatives ∂yfh and ∂ỹfh are bounded.

Remark. If we consider an explicit one-step method, i.e., fh(s, h, y, ỹ) is independent of ỹ,
that is yi+1 = yi − hi fh(si, hi, yi), then the previous lemma yields that we can choose

hmax =

{
∞ if b ≥ 0,

−1
b else.

Remark. If we consider an “end value problem” instead of an initial value problem, that is
∂sy(s) = f(s, y(s)) holds for s ∈ [0, S] and y(S) = yS , then Lemma 7 still holds true with
the modification, that the bounds are now reversed, i.e., positive truncation error now yields
upper bounds and negative truncation error now yields lower bounds.

Remark. In the autonomous case (fh is independent of s), the sign condition of Lemma 7
for the local truncation error is also necessary in the following sense. If there exist s, y(s) and
h̄ > 0 such that (9) does not hold for all 0 < h ≤ h̄, then the scheme (8) does not produce
lower bounds for all initial data y0. In fact, in the autonomous case, without restriction,
there exists y(0) = y0 such that (9) does not hold at s = 0 for all 0 < h ≤ h̄. Now for
0 < h1 < h̄ small enough, a strict version of the second assertion of Lemma 7 is applicable,
yielding y1 > y(h1).
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For the case of a system of ODEs, we have the following analogue of Lemma 7 that can be
proven in a similar way.

Lemma 8. Consider a method of the form (8) for a system of ODEs with f : R×Rn → Rn.
Let the local truncation error of the method be nonnegative, i.e., the inequality

y(s+ h)− y(s)− h fh
(
s, h, y(s), y(s+ h)

)
≥ 0

holds for all s ∈ [0, S] and h ≥ 0 with s+h ≤ S. Define with ∂yfh(s, h, y, ỹ) and ∂ỹfh(s, h, y, ỹ)
the mean value derivatives

D̂y/ỹfh(s, h, y, ỹ, z, z̃) =

∫ 1

0
∂y/ỹfh(s, h, y + τ(z − y), ỹ + τ(z̃ − ỹ)) dτ.

Suppose there are hmax > 0 and dmax > 0 such that(
I − hD̂ỹfh(s, h, y(s), y(s+ h), z, z̃)

)−1 (
I + hD̂yfh(s, h, y(s), y(s+ h), z, z̃)

)
has nonnegative entries for all 0 < h ≤ hmax, s ∈ [0, S − h], ‖z − y(s)‖ ≤ dmax, and
‖z̃ − y(s+ h)‖ ≤ dmax. Then for all 0 < h ≤ hmax such that the solution of the scheme (8)
satisfies ‖yi − y(si)‖ ≤ dmax, i = 0, . . . , N , one has

yi ≤ y(si), i = 1, . . . , N.

If on the other hand the local truncation error is nonpositive then we obtain under the same
assumptions

yi ≥ y(si), i = 1, . . . , N.

It still remains to formulate sufficient conditions for the existence of one-step methods, which
have nonpositive or nonnegative local truncation error.

Example. Suppose that ∂sy(s) is concave. In the autonomous case, i.e., f
(
s, y(s)

)
=

f
(
y(s)

)
, this holds if f

(
y(s)

)
≤ 0, ∂yyf

(
y(s)

)
≤ 0 for all s ∈ [0, S], and if f is Lipschitz-

continuous with respect to y. Then the inequality

y(s̃+ h)− y(s̃) =

∫ s̃+h

s̃
f
(
s, y(s)

)
ds

≥
∫ s̃+h

s̃
f
(
s̃, y(s̃)

)
+
f
(
s̃+ h, y(s̃+ h)

)
− f

(
s̃, y(s̃)

)
h

(s− s̃) ds

=
h

2

[
f
(
s̃+ h, y(s̃+ h)

)
+ f

(
s̃, y(s̃)

)]
holds for all h > 0. Hence, the trapezoidal rule with fh(si, hi, yi, yi+1) = 1

2

[
f(si, yi) +

f(si+1, yi+1)
]
has nonnegative truncation error. Since f is Lipschitz-continuous, we derive

that the conditions of Lemma 7 are satisfied. Thus, the trapezoidal rule produces a lower
bound on the solution y(S).

4 Application – Stationary Gas Transport

Within this section we show that our solution method can be applied to the example of
stationary gas transport.
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4.1 The Model

Let a gas network be given by a directed graph G =
(
V,A

)
, where the nodes in V are entries,

exits and junctions of the network, and A are the network elements like valves, resistors,
compressors and pipes. As a basis for the gas flow we consider the stationary isothermal
Euler-equations, which is a one-dimensional ordinary differential equation in space. In the
following we concentrate on the differential equation, whereas we refer to [31, Chapter 6] for
the models of the other network elements.

In terms of pressure p and mass flow rate q the differential equation reads

∂xp(x)

(
1− c2q2

A2p(x)2

)
= − λc2

2DA2
q|q| 1

p(x)
− g

c2
slope p(x), 0 < x < L. (10)

The ODE describes the pressure of gas flowing along a single cylindrical pipe of length L.
Note that in stationary gas transport, the mass flow rate is constant along each pipe, but is
a variable in our consideration. The constants are the speed of sound c, the cross sectional
area of the pipe A, the friction coefficient λ, the diameter of the pipe D, the gravitational
acceleration g, and the slope slope of the pipe.

For simplicity, we assume the pipe to be horizontal, i.e., slope = 0. Furthermore, we assume
that the gas travels with subsonic velocity v, for instance, we can require v

c ≤ 0.8. In practice
this is no limitation, since the gas velocity is typically much less than the speed of sound.
Thus, using the relation q = Aρv of mass flow rate and velocity with density ρ and the
relation ρ c2 = p, we derive v

c = c|q|
Ap ≤ 0.8. With these assumptions, we can rewrite (10) to

∂xp(x) = − λ c2 q|q| p(x)

2D
(
A2p(x)2 − c2q2

) .
Here, we only used c q < Ap, which is implied by v

c ≤ 0.8, see also Note 13.

We now define the right-hand side as a function of pressure and mass flow:

ϕ(p, q) := − λ c2 q|q| p
2D(A2p2 − c2q2)

. (11)

With this, we can now formulate our optimization model:

min C(p, q, z)

s.t. G(p, q, z) ≤ 0,

∂xpa(x) = ϕa
(
pa(x), qa

)
∀ a ∈ Apipe ⊆ A,

pu = pa(0), pv = pa(La) ∀ a = (u, v) ∈ Apipe,
p ∈ P, q ∈ Q, z ∈ Z.

(12)

Here, we have pressure variables pv for all nodes v ∈ V, functions pa(x) for each pipe a ∈
Apipe ⊆ A, flow variables qa for all edges a ∈ A, and binary variables z ∈ {0, 1}m for the
discrete decisions like to open or close a valve, or turn a compressor on or off. The sets
P ⊂ RV and Q ⊂ RA are given by variable bounds 0 < p

v
≤ pv ≤ pv for all v ∈ V and

q
a
≤ qa ≤ qa for all a ∈ A, respectively. Just like before, the ODEs only define a coupling

between the pressure and flow variables for a single pipe, whereas C, G only depend on the
pressure at the nodes. Furthermore, note that ϕ depends on a ∈ Apipe since the pipes might
differ in length, diameter or friction coefficient.
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The constraint G(p, q, z) ≤ 0 represents the models for the different network elements, as
well as the flow conservation given by∑

a∈δ+(v)

qa −
∑

a∈δ−(v)

qa = q±v (13)

for all nodes v ∈ V, where δ+(v) denotes the outgoing arcs of v, δ−(v) denotes the ingoing arcs
and q±v is the in- or outflow at node v. Furthermore, G(p, q, z) ≤ 0 contains the inequalities

5 c qa − 4Apv ≤ 0,

−5 c qa − 4Apu ≤ 0

for all pipes a = (u, v) such that the subsonic flow condition is satisfied. Note that it is
sufficient to demand 5 c |q| ≤ 4Ap at the end of the pipe where the gas flows out, since the
pressure drops in the direction of the flow.

Like in the abstract problem setting, we suppose that in the branch-and-bound framework
C(p, q, z) and G(p, q, z) can be treated by standard techniques, such that we can focus on
the differential equations.

4.2 Lower and Upper Bounds for the Inflow Pressure

Within this subsection we interpret the differential equation as an initial value problem with
the pressure at the end of the pipe as “initial” value. We will derive lower and upper bounds
on the inflow pressure. Therefore, we assume from now on that the flow is nonnegative, i.e.,
q ≥ 0. During the branch-and-bound process we can ensure this by branching on the flow
w.r.t. q = 0.

Let D := {(p, q) ∈ R2 | 0 < p ≤ p ≤ p, 0 ≤ q ≤ q ≤ q, 5c q ≤ 4Ap} be the domain of ϕ given
by variable bounds and the subsonic flow condition. Simple differentiating and computing
the eigenvalues of the Hessian yields the following properties of ϕ.

Lemma 9. The function ϕ : D → R is nondecreasing in p, nonincreasing in q, and concave in
(p, q) ∈ D. The second derivatives satisfy ∂ppϕ(p, q) ≤ 0, ∂pqϕ(p, q) ≥ 0 and ∂qqϕ(p, q) < 0.
Furthermore,

ϕ(p, q) = ∂pϕ(p, q) = ∂qϕ(p, q) = ∂ppϕ(p, q) = ∂pqϕ(p, q) = 0

holds, if and only if q = 0.

This leads to the following properties of the differential equation.

Corollary 10. The ordinary differential equation

p(L) = p0, ∂xp(x) = ϕ
(
p(x), q

)
, 0 ≤ x ≤ L (14)

has a unique solution p(x) for all (p0, q) ∈ D. Furthermore, p(x), as well as ∂xp(x), is
nonincreasing and concave.

Proof. For q = 0 the ODE has the only solution p(x) = p0, because ϕ(p, 0) = 0 holds.
For fixed q > 0, the right-hand side ϕ

(
p(x), q

)
is negative, i.e., p(x) is nonincreasing and
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the pressure is bounded from below by p0. Thus, ∂pϕ(p, q) is bounded by ∂pϕ
(5cq
4A , q

)
≥

∂pϕ(p, q) > 0, i.e., ϕ is Lipschitz-continuous w.r.t. p. Hence, there is a unique solution of the
ODE.

The remaining statements follow by differentiating ∂xp(x) = ϕ
(
p(x), q

)
and using the prop-

erties of ϕ.

Next, we show that the explicit midpoint method and the implicit trapezoidal rule define
lower and upper bounds on p(0), as illustrated in Figure 1. Therefore, let a discretization
0 = xN < . . . < x1 < x0 = L be given. For simplicity, we assume that discretization is
equidistant with step size h = L

N . Then the explicit midpoint method is defined by

p`0 = p0, p`i+1 = p`i − hϕ
(
p`i − h

2ϕ(p`i , q), q
)
, ∀i = 0, . . . , N − 1, (15a)

and the implicit trapezoidal rule is

pu0 = p0, pui+1 = pui − 1
2h
[
ϕ(pui , q) + ϕ(pui+1, q)

]
, ∀i = 0, . . . , N − 1. (15b)

Note that we apply the methods in opposite direction of the flow such that we can guarantee
the existence of solutions p`N and puN with 5c q ≤ 4Ap`N and 5c q ≤ 4ApuN .

In order to make use of Lemma 7, we write the schemes in the form of (8). Therefore, we
define

ϕ`h
(
xi, h, p

`
i , p

`
i+1

)
:= −ϕ

(
p`i − h

2ϕ(p`i , q), q
)

and
ϕuh
(
xi, h, p

u
i , p

u
i+1

)
:= −1

2ϕ(pui , q)− 1
2ϕ(pui+1, q).

To keep the notation simple, we leave out the unnecessary variables, i.e., we write ϕ`h(h, p`i)
and ϕuh(pui , p

u
i+1). With that, we can prove that the methods yield lower and upper bounds

on p(0).

Corollary 11. The explicit midpoint method (15a) with step size 0 < h ≤ 81
328

D
λ defines a

lower bound on the solution p(0) of (14).

Proof. We have to show that ∂piϕ`h is bounded from below and that the local truncation error
of (15a) is nonnegative. Then Lemma 7 and its Remark for “end value problems” show that
the inequality

p(0) ≥ p`N
holds.

First we show that the derivative is bounded. Differentiating ϕ`h yields

∂piϕ
`
h

(
h, pi

)
= −∂piϕ

(
pi − h

2ϕ(pi, q), q
)(

1− h
2∂piϕ(pi, q)

)
.

For q = 0 we have ∂piϕ`h = 0, since ∂pϕ(p, 0) = 0 holds. Otherwise, we can choose h such
that 1 > 1− h

2∂pϕ(p, q) > 0 holds. For (p, q) ∈ D we know

1− h
2∂pϕ

(
p, q
)
≥ 1− h

2∂pϕ
(
5
4
cq
A , q

)
= 1− h 164

81
λ
D ,

i.e., we have to choose h < 81
164

D
λ . Hence, with −∂piϕ ≤ 0 we can derive

0 > ∂piϕ
`
h

(
h, pi

)
= −∂piϕ

(
pi − h

2ϕ(pi, q), q
)(

1− h
2∂piϕ(pi, q)

)
> −∂piϕ

(
pi − h

2ϕ(pi, q), q
)
.
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Furthermore, p− h
2ϕ(p, q) > p ≥ 5

4
cq
A and −∂ppϕ(p, q) ≥ 0 holds and, thus,

−∂piϕ
(
pi − h

2ϕ(pi, q), q
)
> −∂piϕ

(
pi, q

)
≥ −∂piϕ

(
5
4
cq
A , q

)
= −328

81
λ
D ,

i.e., all in all we obtain that ∂piϕ`h is bounded by

0 ≥ ∂piϕ`h
(
h, pi

)
≥ −328

81
λ
D .

Next, we show that the local truncation error is nonnegative. Using concavity of ∂xp(x), we
obtain the inequality

p(xi)− p(xi+1) =

∫ xi

xi+1

∂xp(x) dx

≤
∫ xi

xi+1

∂xp
(xi+xi+1

2

)
+ ∂xxp

(xi+xi+1

2

) (
x− xi+xi+1

2

)
dx

= h ∂xp
(xi+xi+1

2

)
+ ∂xxp

(xi+xi+1

2

) ∫ xi

xi+1

(
x− xi+xi+1

2

)
dx︸ ︷︷ ︸

=0

= hϕ
(
p
(xi+xi+1

2

)
, q
)
.

Then using concavity of p(x), we get p
(xi+xi+1

2

)
≤ p(xi) − h

2ϕ
(
p(xi), q

)
, and with ∂pϕ ≥ 0

we can derive

p(xi+1)− p(xi) ≥ −hϕ
(
p
(xi+xi+1

2

)
, q
)
≥ −hϕ

(
p(xi)− h

2ϕ
(
p(xi), q

)
, q
)

= hϕ`h
(
h, p(xi)

)
.

Therefore, the local truncation error is nonnegative and we can apply Lemma 7, which proves
that the explicit midpoint method produces a lower bound on p(0).

Corollary 12. The trapezoidal rule (15b) with step size 0 < h ≤ 81
164

D
λ defines an upper

bound on the solution p(0) of (14).

Proof. As in the previous proof, we have to show that the derivatives of ϕuh are bounded and
that the local truncation error of the trapezoidal rule is nonpositive.

We have already seen in Example 3 that the inequality

p(x+ h)− p(x)− h

2

(
ϕ
(
p(x), q

)
+ ϕ

(
p(x+ h), q

))
≥ 0

holds, since ∂xp(x) is concave. Thus, we get p(xi)− p(xi+1) + hϕuh
(
p(xi), p(xi+1)

)
≥ 0, i.e.,

the local truncation error is nonpositive.

Next, we show that the derivatives are bounded. Differentiating ϕuh yields ∂piϕuh(pi, pi+1) =
−1

2∂piϕ(pi, q) and ∂pi+1ϕ
u
h(pi, pi+1) = −1

2∂pi+1ϕ(pi, q). Therefore, it suffices to show that
∂pϕ(p, q) is bounded.

For q = 0 we have ∂pϕ(p, q) = 0. Otherwise, if q > 0, we know that ∂pϕ is positive and
decreasing w.r.t. p. Thus, for (p, q) ∈ D we obtain

0 < ∂pϕ
(
p, q
)
≤ ∂pϕ

(
5
4
cq
A

)
= 328

81
λ
D ,

i.e., we get −164
81

λ
D ≤ ∂piϕ

u
h(pi, pi+1) ≤ 0 and −164

81
λ
D ≤ ∂pi+1ϕ

u
h(pi, pi+1) ≤ 0. Hence, by

choosing h ≤ 81
164

D
λ and applying Lemma 7 we see that the trapezoidal rule produces an

upper bound on p(0).

19



Note 13. Note that for Corollaries 11 and 12 to hold, it is essential that c q
A p has an upper

bound that is strictly lower than 1. Otherwise, the derivatives ∂piϕ`h and ∂piϕuh would not be
bounded from below, and we could not apply Lemma 7.

With these two schemes in mind, we define two functions p`, pu : D × N → R through the
computation of (15a) and (15b). That is

p`(p, q,N) := p`N and pu(p, q,N) := puN ,

where p`0 = pu0 = p.

We can derive the following properties for p` and pu.

Lemma 14. Let N be big enough such that the condition h = L
N ≤ 0.16Dλ holds. Then

the functions p` and pu are nondecreasing, continuously differentiable w.r.t. pressure and
mass flow, and convex in (p, q). Furthermore, every solution p̄(x) of the differential equation
∂xp(x) = ϕ

(
p(x), q

)
with q ≥ 0 satisfies the inequality

p`
(
p̄(L), q,N

)
≤ p̄(0) ≤ pu

(
p̄(L), q,N

)
. (16)

Proof. The inequalities in (16) follow from Corollaries 11 and 12.

To show the differentiability, monotonicity and convexity of p`, pu : D → R, we only discuss
the more involved case of the midpoint rule (15a). With p`0 = p`0(p, q) = p, we can write
(15a) as

p`i+1(p, q) = F `
(
p`i(p, q), q, h

)
:= p`i(p, q)−hϕ

(
p`i(p, q)− h

2ϕ(p`i(p, q), q), q
)
, i = 0, . . . , N−1.

Differentiating yields ∂p p`0(p, q) = 1, ∂q p`0(p, q) = 0 and

∂p p
`
i+1(p, q) = ∂pF

`
(
p`i(p, q), q, h

)
∂p p

`
i(p, q),

∂q p
`
i+1(p, q) = ∂pF

`
(
p`i(p, q), q, h

)
∂q p

`
i(p, q) + ∂qF

`
(
p`i(p, q), q, h

)
,

where ∂pF ` and ∂qF ` denotes the partial derivative of F ` with respect to the first and second
argument, respectively. Moreover, we have D2p`0(p, q) = 0 and

D2p`i+1(p, q) = D

(
p`i(p, q)

q

)>
D2F `

(
p`i(p, q), q, h

)
D

(
p`i(p, q)

q

)
+ ∂pF

`
(
p`i(p, q), q, h

)
D2p`i(p, q).

Hence, we obtain by induction that ∂p p`i+1(p, q) ≥ 0 and D2p`i+1(p, q) is positive semidefinite,
if ∂pF `

(
p`i(p, q), q, h

)
≥ 0 and D2F `

(
p`i(p, q), q, h

)
is positive semidefinite. Moreover, if in

addition ∂qF `
(
p`i(p, q), q, h

)
≥ 0 holds then also ∂q p`i+1(p, q) ≥ 0 follows.

Since ϕ(p, q) ≤ 0 on D, we obtain by (15a) that p`i+1(p, q) ≥ p`i(p, q) and thus (p`i(p, q), q) ∈ D
for i = 0, . . . , N . Moreover, (15a) yields

∂pF
`(p`i , q, h) = 1− h ∂p ϕ

(
p`i − h

2ϕ(p`i , q), q
)(

1− h
2∂p ϕ(p`i , q)

)
.

By Lemma 9 and its proof we have ∂pϕ ≥ 0, ∂ppϕ ≤ 0 on D and 1 − h
2∂p ϕ(p`i , q) ≥ 0 for

0 < h ≤ 81D
164λ . This shows that

∂pF
`(p`i , q, h) ≥ 1− h ∂p ϕ

(
p`i − h

2ϕ(p`i , q), q
)
≥ 1− h ∂p ϕ(p`i , q) ≥ 0 ∀ 0 < h ≤ 81D

328λ .

20



I II III IV V

q

p

Figure 2: Five possible shapes of the domain D of the functions p` and pu.

Moreover, one can verify that D2F `(p`i , q) is singular and is thus positive semidefinite on D
if ∂ppF `(p`i , q) ≥ 0 on D.

To show the latter, we observe that ∂ppF `(p`i , q, h) is a rational function in p`i and h with
positive denominator on D. The numerator is a polynomial in p`i whose value and all its
derivatives are nonnegative at p`i = 5cq

4A for all 0 < h ≤ 0.16Dλ . Hence, the numerator – and
thus ∂ppF `(p`i , q, h) – is nonnegative for all (p`i , q) ∈ D. As already observed, this implies by
induction that ∂pp`i+1(p, q) ≥ 0 and thatD2p`i+1(p, q) is positive semidefinite for all (p, q) ∈ D.

Finally, ∂pF `(p, 0, h) = 0 and ∂qqF `(p, q, h) ≥ 0 on D, since D2F `(p, q, h) is positive semidef-
inite on D. Thus also ∂qF `(p`i(p, q), q, h) ≥ 0 and we deduce ∂qp`i+1(p, q) ≥ 0.

The proof for the trapezoidal rule (15b) is similar, but easier.

The functions p` and pu can be used to relax the ODE constraints, compare (Pr(N)). For
deriving a convex relaxation we only have to construct a concave overestimator of pu since
p` is already convex. The domain D of p` and pu is given by the intersection of the box
[p, p]× [q, q] with nonnegative lower bounds and the inequality 5c q ≤ 4A ≤ p. The resulting
possible shapes are shown in Figure 2. As the concave envelope of a convex function over a
polytope is defined by the vertices of the polytope (see, e.g., [16, Theorem IV.6]), it consists
of up to two linear inequalities in the cases I-III, up to three inequalities in the case IV, and
only one inequality in case V.

Consequently, choosing the number of grid points Na for each pipe a ∈ A sufficiently big
such that the condition ∣∣∣pua(p, q,Na)− p`a(p, q,Na)

∣∣∣ ≤ δ1
is fulfilled (compare with Lemma 2), we can apply Algorithm 1 and produce (ε, δ)-optimal
solutions for the problem (12).

4.3 Adaptive LP-Relaxation

For our implementation we had to circumvent the problem, that the definition of p` is not
given by an explicit formula. Furthermore, we use an LP-based branch-and-bound method.
Therefore, we designed an adaptive approach, which has the advantage that the evaluation
of p` and pu is only needed “on demand”. Furthermore, the number of grid points need not
satisfy the condition (2) up front for the whole domain, but only in specific points.

Within the branch-and-bound process, we approximate p` with an outer-approximation ap-
proach. Moreover, we do not add the complete concave overestimator of pu at once. Instead,
inequalities are added dynamically if they cut off the current solution of the relaxation.
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Figure 3: Three different cases of infeasibility of a pair (pin, pout) for fixed mass flow rate.

We proceed as in Algorithm 2, but adjusted to the gas model, see Algorithm 4. In the root
node of the branch-and-bound tree we start with the minimal number of grid points Na,
such that the condition La

Na
≤ 0.16Da

λa
is satisfied for all pipes a ∈ Apipe, and P × Q as the

initial relaxation of the differential equation. In every other node, we use the relaxation of
the parent node. Next, we solve the LP-relaxation. Thus, we obtain a triple (p̃in, p̃out, q̃) for
every pipe a ∈ Apipe. We then compute p`a(p̃out, q̃, Na) and pua(p̃out, q̃, Na). If the difference
does not satisfy (2), we increase Na and recompute p`a, pua until they do (Lines 7 and 8). We
then check whether the triples (p̃in, p̃out, q̃) are feasible for

p`a(p̃out, q̃, Na) ≤ p̃in ≤ pua(p̃out, q̃, Na). (17)

If all triples are feasible, Algorithm 4 returns the current solution to the branch-and-bound
process. In the case that at least one triple is not feasible, we pick the pipe a with the
greatest deviation of p̃in from the next bound p`a, pua, see Line 12. Next, we check whether
the direction of the flow is fixed on this pipe. If not, we perform branching with respect to qa
to fix the flow direction (Line 14); this step is not performed in the general Algorithm 2, but
particular to our context here. If the flow direction is already fixed, we try to cut off the
solution. Thereby, we distinguish three different cases, as shown in Figure 3.

In the first case (Line 16), p̃in is greater than the concave envelope of pua. Here, we add a
linear inequality, which separates p̃in from the feasible region. In the second case, we have
pua(p̃out, q̃, Na) ≤ p̃in ≤ p̂ua(p̃out, q̃, Na), i.e., we cannot cut off the current solution with the
concave envelope. Instead, we have to resolve the infeasibility by branching. In the last case,
(Line 18), when p̃in is less than p`a(p̃out, q̃, Na), we make use of the convexity of p`a and cut
off the solution with a gradient cut

pin ≥ p`a(p̃out, q̃, Na) +∇p`a(p̃out, q̃, Na)
>
(
pout − p̃out
q − q̃

)
.

In the first and last case, we then iterate and again solve the relaxation. In the third
case, Algorithm 4 stops and instructs the branch-and-bound process to perform branch-
ing. After the convex relaxation algorithm terminates with a solution, we carry on like in the
spatial branch-and-bound Algorithm 3.

We now show that Assumption 3 holds for this example.

Lemma 15. Suppose that the vector of grid points N ∈ NApipe stays constant during the
execution of Algorithm 4, i.e., the condition

‖pu
(
pkout, q

k, N
)
− p`

(
pkout, q

k, N
)
‖∞ < δ2
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Algorithm 4: Adaptive convex relaxation of gas flow
Input: Node of branch-and-bound tree, δ1, δ2 > 0 and N = N0 ∈ NApipe .
Output: δ1-feasible solution of the Euler-equation, “infeasible” or instruction to

branch.
1 choose initial convex relaxation: In the root node take the box P ×Q, else take the
relaxation of the parent node;

2 for k = 1, 2, . . . do
3 solve the convex relaxation;
4 if the relaxation is feasible then
5 for each pipe a ∈ Apipe let

(
pkin, p

k
out, q

k
)
a
be the solution of the relaxation;

6 foreach a ∈ Apipe do
7 while

∣∣pua(pkout, qk)− p`a(pkout, qk, Na

)∣∣ > δ2 do
8 increase Na;
9 if all

(
pkin, p

k
out, q

k
)
a
are δ1-feasible for (17) then

10 stop with solution
(
pkin, p

k
out, q

k
)
a
;

11 choose “most infeasible” pipe a ∈ Apipe, i.e.,
12 a ∈ arg maxa∈Apipe

max
{
pkin − pua

(
pkout, q

k, Na

)
, p`a

(
pkout, q

k, Na

)
− pkin

}
;

13 if q
a
< 0 < qa then

14 fix orientation of flow on pipe a via branching;
15 if pkin > pua

(
pkout, q

k, Na

)
then

16 try to cut off the solution with one inequality of the concave envelope; if
this fails, then stop and perform branching w.r.t. pin, pout or q;

17 else if pkin < p`a
(
pkout, q

k, Na

)
then

18 add a gradient cut;
19 else
20 stop with “infeasible”;

is satisfied for all produced pairs
(
pkout, q

k
)
. Then Algorithm 4 terminates after a finite number

of iterations.

Proof. In order to keep the notation simple, we assume that there is only one pipe. One can
straightforwardly extend this proof to an arbitrary number of pipes.

Suppose that the algorithm does not terminate, that is, it produces an infinite sequence of
points which are feasible for the convex relaxation but not δ2-feasible for (17). Since the
algorithm does not terminate, the orientation of flow already has to be fixed. Hence, we can
distinguish between input pressure pin and output pressure pout.

Let
(
pkin, p

k
out, q

k
)
k∈N denote the sequence of solutions produced by the algorithm. We divide

the iterations into two sets. With O ⊆ N we denote the set of iterations with

pkin > pu
(
pkout, q

k, N
)
,

and with L = N \ O we denote the set of iterations with

pkin < p`
(
pkout, q

k, N
)
.

We will show that both sets have to be finite and, therefore, the algorithm terminates after
a finite number of iterations.
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We first consider the subsequence O. Since the function pu
(
pout, q

)
is convex, the concave

envelope over the feasible set

F :=
[
pout, pout

]
×
[
q, q
]
∩
{

(pout, q)
∣∣ 5c q ≤ 4Apout

}
consists of up to three linear inequalities. Thus, after at most three iterations k ∈ O the
concave envelope is fully added to the convex relaxation. Any further point

(
pkin, p

k
out, q

k
)

with k ∈ O cannot be separated from pu with a linear inequality. Thus, the algorithm would
terminate with the instruction to do branching. Therefore, O can have at most three elements
(in general, three times the number of pipes).

Next, we show that the sequence L is finite, too. In every iteration k ∈ L an inequality of
the form

pin ≥ pu
(
pkout, q

k, N
)

+∇pu
(
pkout, q

k, N
)>(pout − pkout

q − qk
)

gets added to the relaxation. Since pu is convex and continuously differentiable, it is Lipschitz
continuous on the compact set F . Hence, there is a radius r such that for all k ∈ L and all
points

(
pout, q

)
∈ Br

(
pkout, q

k
)
, where Br

(
pkout, q

k
)
is the ball around

(
pkout, q

k
)
with radius r,

the inequality

0 ≤ pu
(
pout, q,N

)
− pu

(
pkout, q

k, N
)
−∇pu

(
pkout, q

k, N
)>(pout − pkout

q − qk
)
< δ1

is satisfied. That is, any point
(
pk̃in, p

k̃
out, q

k̃
)
with k < k̃ ∈ L and

(
pk̃out, q

k̃
)
∈ Br

(
pkout, q

k
)

would be δ1-feasible for (17) and the algorithm would terminate. So
(
pk̃out, q

k̃
)
∈ Br

(
pkout, q

k
)

cannot be true. But as the feasible set F is compact, there exists a K ∈ L with⋃
k∈L,
k≤K

Br
(
pkout, q

k
)

= F .

After iteration K, every feasible point of the convex relaxation is δ1-feasible for the inequality
pin ≥ pu

(
pout, q,N

)
. Consequently, L does not contain any k > K and is finite.

This Lemma proves that Assumption 3 holds here and by Lemma 5, we derive the following
Corollary.

Corollary 16. Algorithm 4 terminates after a finite number of iterations.

In order to make use of Algorithm 3 and Theorem 6, it remains to show that Condition (7)
holds.

Proposition 17. Suppose that Algorithm 3 applied to problem (12) produces an infinite
nested sequence of nodes. Then the solutions of the convex relaxation produced by Algorithm 4
satisfy Condition (7).

Proof. Again, we only consider a single pipe a = (u, v). Suppose that Algorithm 3 produces
an infinite nested sequence of bounding boxes

Fk =
[
pk
u
, pku
]
×
[
pk
v
, pkv
]
×
[
qk
a
, qka
]

and let (pku, p
k
v , q

k
a) be the last solution of the relaxation produced by Algorithm 4 for node k.

Since our first priority is to fix the direction of the flow, we can assume that qa is restricted
to nonnegative values. Then pu is the inflow-pressure and pv is the outflow-pressure.
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We have to prove that there is a k̃ ∈ N such that the condition

max
{(
pku − pua(pkv , q

k
a , N)

)
+
,
(
p`a(p

k
v , q

k
a , N)− pku

)
+

}
≤ δ1

holds for all k ≥ k̃.

Note that the algorithm only returns a point (pku, p
k
v , q

k
a) with p`a(p

k
v , q

k
a , N) − pku > δ1 if

there is another pipe, where infeasibility cannot be resolved by adding a cut. Otherwise, by
construction of Algorithm 4 a gradient cut, which cuts off the current solution, would be
added. Hence, it suffices to show that k̃ ∈ N with pku− pua(pkv , q

k
a , N) ≤ δ1 for all k ≥ k̃ exists.

For simplicity, we assume that 5c qk
a
< 4Apk

v
and 5c qka < 4Apkv is true for all nodes Fk.

Otherwise, we could adjust the variable bounds such that they do or, in the following, replace

pk
v
by max{pk

v
,
5c qk

a
4A } and q

k
a by min{qka,

4Apkv
5c }. Then due to monotonicity the inequality

pua
(
pk
v
, qk
a
, N
)
≤ pua

(
pv, qa, N

)
≤ pua

(
pkv , q

k
a, N

)
is fulfilled for all nodes k and all feasible points (pv, qa) ∈

[
pk
v
, pkv
]
×
[
qk
a
, qka
]
. With the

condition limk→∞ diamFk = 0, the continuity of pua(pv, qa), and the fact that N is increased
only finitely often, we can derive that k̃ ∈ N exists with pua

(
pkv , q

k
a, N

)
− pua

(
pk
v
, qk
a
, N
)
< δ1

for k ≥ k̃, i.e., for every solution (pku, p
k
v , q

k
a) with pku − pua(pkv , q

k
a , N) > δ1 the inequality

pku > pua(pkv , q
k
a, N) holds. Since the constant function pua(pkv , q

k
a, N) is a concave overestimator,

these points can be cut off with a linear inequality. Hence, the algorithm only produces δ1-
feasible solutions for all nodes k ≥ k̃.

With Lemma 15 and Proposition 17 we see that our construction of under- and overestimators
for the Euler-equation satisfies the necessary requirements of Theorem 6.

Corollary 18. Suppose that Conditions (3) and (6) hold. Then for ε > 0 and δ1, δ2 > 0,
Algorithm 3 applied to problem (12) terminates after a finite number of iterations with an
(ε, δ1 + δ2)-optimal solution of (12) or the conclusion that the problem is infeasible.

This Corollary shows that our approach and Algorithm 3 works for the example of stationary
gas transport.

5 Numerical Results

In this section, we demonstrate the behavior of the methods discussed in this paper on three
examples of stationary gas networks. To this end, we implemented our approach using the
LP-based branch-and-cut framework SCIP version 4.0, see [23, 38]. We keep the description of
the implementation extremely short and refer to [30, 31] for a detailed discussion of modeling
issues in stationary gas transport.

Recall from Section 4 that a gas network is given by the graph G =
(
V,A

)
. The mass flows qa,

a ∈ A, have to satisfy flow conservation (13). Moreover, flow and pressures have to satisfy
given lower and upper bounds (q

a
≤ qa ≤ qa, pv ≤ pv ≤ pv). We consider several different

network elements, which are handled as follows:

25



• Pipes are handled in the way described in Section 4. We determine the friction coeffi-
cient λ with the formula of Nikuradse [27, 28], i.e.,

λ =
(

2 log10

(D
k

)
+ 1.138

)−2
,

where k is the roughness of the pipe.

• Valves are modeled using binary variables. If the valve is open, the pressures on both
sides are equal. If the valve is closed, the flow is set to 0 and the pressures are decoupled.

• Compressors allow to increase gas pressure. Compressor stations consist of several
compressors that are connected by piping and valves. We use a rather simple model
in which we approximate the operation states by a polyhedron, see Hiller et al. [14].
Two binary variables are used to decide whether the compressor is turned on/off or if
its bypass is open/closed.

• A network may also contain control valves and resitors, which are modeled as described
in [30, 31].

As objective function, we consider the following options:

• Minimize the number of compressors running. This can be seen as a proxy for the
energy used. Note that we cannot express the consumed energy to run the compressors
with the currently used compressor model.

• Maximize the sum of all pressures.

• Minimize the power loss. We minimize the function∑
a=(u,v)∈A

(pu − pv) qa =
∑
v∈V

( ∑
a=(v,w)∈A

qa −
∑

a=(u,v)∈A

qa

)
pv =

∑
v∈V

q±v pv.

This can be seen as a measure for the power loss in the network, since the change in
pressure times the flow is proportional to the change in energy.

We implemented bound propagation based on the numerical methods (15a) and (15b). Since
the input pressure is nondecreasing in output pressure and mass flow, we can derive an upper
bound on the input pressure by computing puin(pout, qa). Similarly, p`in(pout, qa) defines a lower
bound on the input pressure, if q

a
≥ 0 holds. Note that we can also apply the methods in

the direction of the flow and try to compute lower and upper bounds on the output pressure.
Thereby, the bounds produced by the methods are reversed, i.e., the explicit midpoint method
now produces upper bounds and the trapezoidal rule produces lower bounds. During this
propagation step, we also check whether pi = p`i or pi = pui violate the inequality 5c qa ≤
4Api. In the worst case, when propagating the lower input pressure, c qa > Ap`i holds and p

u
N

is a feasible output pressure. Thus, p`i+1 > p`i follows, although the pressure is nonincreasing!
In this case, we cannot strengthen bounds and neither decide whether (pin, qa) is at all
feasible. This may happen in the beginning of the algorithm, since the bounds are large and
the inequality 5c q ≤ 4Ap may have a nonempty intersection with the current feasible region;
in the final solution, however, the slack of this inequality will be large.

All computations are performed with a precision of δ1 = ε = 10−6 (SCIP default values) and
δ2 = 10−4, see Corollary 18.
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Figure 4: A small tree network with one entry on the left and three exits on the right side.
The pressures shown are the solution to maximize the pressure with inflow of 150 kg s−1 and
outflow of 50 kg s−1 at each exit.

5.1 A Tree Network

The first example is a simple tree which consists of five nodes and four pipes, see Figure 4.
The pipes only differ in their length; their diameter is 1 m and the roughness is k = 0.01 mm.
The pipe from the source to the innode is 15 km long and the pipes to the exits are, from top
to bottom as seen in Figure 4, 10 km, 20 km and 40 km long. In this network, the flows on the
pipes are already determined by the in- and outflow at the entry and the exits. Therefore,
no branching on the flow occurs and the under- and overestimators can already be added in
the root node of the branch-and-bound tree. As the network does not contain a compressor,
we only tested maximizing all pressures and minimizing the power loss.

During presolving, some pressure bounds are improved, based on bound propagation. Then in
both tests, one gradient cut and one overestimating linear inequality for each pipe get added
to the LP relaxation. After that, the branch-and-bound process finishes with an optimal
solution in the root node.

As indicated by the small amount of under- and overestimators added by the algorithm, we
observe that for small mass flow rates the relation between the input pressure and the output
pressure is almost linear. See also Table 1, which shows the pressure at the innode of the
network for some pressures at the entry with fixed inflow of 150 kg s−1.

Table 1: Pressures at the entry and the innode of the tree network.
pressure at entry (bar) 50.00 55.00 60.00 65.00 70.00 75.00 80.00
pressure at innode (bar) 49.20 54.27 59.33 64.39 69.43 74.47 79.50

5.2 Diamond Graph

In the next example, the graph has a diamond shape, see Figure 5. It consists of one entry s,
one exit e, four innodes n1, . . . , n4 and seven pipes. Here, the pipes vary in diameter and
length. The diameter is either 1 m or 1.30 m and the length varies between 14 km and 40 km.
The roughness is again k = 0.01 mm.

During presolving, the flows q2 and q5 are replaced by q1 − q3 and q7 − q6, which can be
done due to the flow conservation in the nodes n1 and n3 and because the flows q1 and q7
are already determined by the in- and outflow at s and e. Furthermore, the pressure bounds
for s, e, n1 and n3 are improved during presolving. In contrast, the pressure bounds on
n2 and n4 are not improved, because the bounds of q2, . . . , q6 are too large, and positive as
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Figure 5: A small network with one entry (s) on the left, one exit (e) on the right and two
overlapping circles.

Figure 6: Picture of the GasLib-40, rotated counter clockwise by 90 degrees.

well as negative flow is possible in the beginning. Nevertheless, bound propagation is more
important for this instance. When maximizing pressures, a pressure bound was improved
307 times, and pressure bounds were improved 467 times when minimizing power loss.

The branch-and-bound tree contains 16 nodes with 7 leaves when maximizing the pressure
and 21 nodes with 8 leaves while minimizing the power loss. In the first case, branching
on the flow variables only occurred for fixing the flow direction on the pipes from 2 to 6.
Additionally, it took one branching step on a pressure variable. The ODEs on the pipes are
approximated by 55 gradient cuts, varying from 0 on pipe 1 to 18 on pipe 2, and only 14
overestimators, varying from 0 to 4 on each pipe. In the second case, except of fixing the
flow direction, there was one branching step on a flow variable and one branching step on
two pressure variables each. Here, 65 gradient cuts were applied, varying from 5 to 16 per
pipe, and 25 overestimating cuts with 0 to 10 per pipe.
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Table 2: Statistics on the GasLib-40 instance for the three different objective functions.
objective max

∑
v∈V pv min

∑
v∈V q

±
v pv min

∑
a∈Acs

za

solving time (seconds) 877.74 542.48 65.08
processed Nodes 12 444 2790 263
branchings on flow (%) 46.2 81.0 84.2
branchings on pressure (%) 52.9 0.0 8.8
branchings on binary variables (%) 0.9 19.0 7.0
leaves 5900 1412 73
cut offs by propagation 5297 1149 38
bound changes by propagation 32 444 63 317 6051
added overestimators 7362 2385 985
added underestimators 6360 4281 488

5.3 GasLib-40

The final example is the GasLib-40 instance [17], see Figure 6. This instance consists of 40
nodes, 39 pipes and 6 compressors. Thus, it contains 12 binary variables that determine
whether a compressor is turned on or is in bypass. For this instance the roughness varies
from 0.012 mm to 0.05 mm, the length varies from 3 km to 86 km and the diameter varies
between 40 cm and 1 m.

Table 2 shows some statistics on the work of Algorithm 3 for the three different objective
functions. As one can see, the branch-and-bound trees are of very different size. When
maximizing pressures, more than half of the branching steps were on the pressure variables,
while otherwise branching on pressure variables only played a minor role. For both other
objectives, the algorithm mainly branches on flow variables. Overall, branching on binary
variables amounts only to a small part of the branching steps, because branching on them
is preferred over continuous variables. Therefore, branching on the binary variables happens
early in the tree and will not be repeated in the deeper regions.

For this instance, bound propagation plays a much more important role, because in some
cases a node can be cut off due to bound propagation, e.g., when propagating an upper
pressure bound yields a value lower than the lower bound. Up to almost 90% of the leaves
are cut off by bound propagation. Furthermore, there were up to 63 317 bound changes due
to bound propagation, when minimizing the power loss.

The diamond graph and the GasLib-40 with minimization of the power loss suggest that
adding underestimators is more important than adding overestimators. This is contradicted
by the GasLib-40 with the other objectives. So it is not clear, yet, what has more impact on
the performance.

Table 3 shows statistics on the final discretizations, used to compute (15a) and (15b). The
discretizations are initialized with a minimum number of 179 grid points and maximal 7961
grid points on a single pipe such that the requirements of Lemma 14 are satisfied. The
number of grid points corresponds to step sizes between 5.12 m and 19.2 m. Furthermore,
when minimizing the power loss, 363 507 additional variables would have been needed in a
first discretize then optimize approach with the same precision.
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Table 3: Statistics on the final discretizations of the pipes.
objective max

∑
v∈V pv min

∑
v∈V q

±
v pv min

∑
a∈Acs

za

minimal number of grid points 179 371 179
maximal number of grid points 43 889 63 681 43 889
smallest step size 0.32 m 0.32 m 0.32 m
largest step size 19.2 m 15.18 m 19.2 m
overall number of grid points 190 350 363 547 264 929

6 Outlook

In this paper, we have investigated an adaptive method to construct relaxations for mixed-
integer optimization problems with ODE constraints and its integration in a branch-and-
bound framework. The method relies on the fact that the values of the ODE solution are
only required at a priori fixed positions. If the ODE has favorable properties – like in water
or gas transport – we have derived an effective way to produce lower and upper bounds based
on discretization methods, leading to finite convergence.

For gas transport, the interplay of branching on integer variables and spatial branching
needs further investigation. Moreover, the question is whether non-horizontal pipes can
also be treated. Finally, the implementation can be extended by considering more elaborate
compressor models and additional presolving techniques. The performance could be improved
by considering additional branching rules and primal heuristics.

It would be interesting to extend the approach to instationary network problems, which leads
to mixed-integer PDE-constrained optimal control problems.
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