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We develop amodel and a genetic algorithm for determining an optimal replacement policy for power equipment subject to Poisson
shocks. If the time interval of two consecutive shocks is less than a threshold value, the failed equipment can be repaired.We assume
that the operating time after repair is stochastically nonincreasing and the repair time is exponentially distributed with a geometric
increasing mean. Our objective is to minimize the expected average cost under an availability requirement. Based on this average
cost function, we propose the genetic algorithm to locate the optimal replacement policy N to minimize the average cost rate. The
results show that the GA is effective and efficient in finding the optimal solutions. The availability of equipment has significance
effect on the optimal replacement policy. Many practical systems fit the model developed in this paper.

1. Introduction

Power equipment such as a wind power generation system
is operating in a dynamic and uncertain environment. Such
equipment may fail due to random events such as sand/rain
storms, ice rain, heavy snow, and extreme temperatures.
The service interruptions caused by the equipment failure
will affect the company’s performance in terms of revenue
and customer satisfaction. For example, during January
10 to February 5, 2008, an unexpected strong East Asian
winter monsoon occurred with extremely low temperatures,
blizzard conditions, and freezing rain in southern China.
Due to its unusual persistence and intensity, this extreme
event caused extensive damage and general disruption over
southern China. Most of the infrastructure damages were
attributed to freezing rain, which led to a huge amount
of broken power equipment, electric power transmission
lines, and chaotic traffic conditions for southern China. The
disastrous heavy snow caused direct economic losses of 53.8
billion RMB [1, 2].

In practice, the power equipment may be interrupted by
random shocks, which represent severe weather conditions
such as thunder storm and freezing rain or operational

contingencies such as short circuit. When a shock arrives,
it will cause a random amount of damage to the system.
When the accumulated amount of shock damage exceeds a
specified threshold, the system will fail. Therefore, it is nec-
essary to consider the maintenance problem under random
shocks. Chen et al. [3] investigated the impact of the voltage
imbalance on the reliability of power distribution systems.
Kiureghian [4] considered the problem of distribution of
electric substation equipment suffering from earthquake.

Recently, shock models were utilized to model the oper-
ating time. Conceptually, a system fails due to the shock
effect on the system. While most of existing shock models
were based on the accumulated or extreme damage causing
a system failure. Li [5] first introduced the 𝛿-shock model
to avoid measuring amount of damage which may not be
easy inmany situations.Although the shock’s damage amount
is difficult to measure, its arrival time can be accurately
recorded.Therefore, the 𝛿-shockmodel focusesmainly on the
frequency of shocks rather than their accumulated damage
amount of shocks. In a 𝛿-shock model, a shock causes
a system failure which also called a deadly shock if the
time interval between two successive shocks is smaller than
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a critical value 𝛿. The threshold 𝛿 is usually a constant. In
this paper, we adopt a general 𝛿-shock model by letting 𝛿 be
an exponentially distributed random variable with parameter
varying with number of repairs [6]. The power equipment
after repair can be more fragile and more prone to fail again.
As a result, the threshold of a deadly shock is increasing with
n, which is the number of repairs.

There are extensive studies on the maintenance problems
for the system with operating and repair stages. This is
mainly because some classical assumptions are not realistic
in modeling the real systems. These assumptions include
repaired system becoming “as good as new” and a dialed
system being replaced by a new one immediately. Barlow and
Proschan [7] introduced an imperfect repair model, where
the repair is prefect with probability 𝑝 and minimal with
probability 1 − 𝑝. We also consider the nonzero repair and
replacement times in contrast to a classical assumption that
repairs are instantaneous. In most practical situations, to
reflect the aging process of the system, the consecutive repair
times are assumed to become longer and longer till the system
is replaced with a new one according to some replacement
rule.The geometric processes (GP) method, with its practical
advantages in characterizing the whole operation process of
the components in a system [8], gains worldwide scholar’s
attention in recent years, and many researches have been
carried out based on GP in different application domains.
Lam [9] first introduced GP to study the maintenance prob-
lem for the deteriorating system. Finkelstein [10] generalized
Lam’s work by scale transformation.Most of the studies based
on GP denote a good applicability in the related fields, but
their assumption that the property of the component after
premaintenance is as good as new is not fully compatible with
the electrical power equipment power [11].

Ensuring system function and life are two very important
maintenance goals [12]. Li et al. [13] designed an age-related
dynamical model to create a timely maintenance schedule
that extends the life of the equipment and improves its
efficiency. Preventive maintenance also needs to consider
how to reduce costs [14]. Castanier et al. [15] proposed a
parametric maintenance decision framework to coordinate
inspection and replacement of the two components and to
minimize the long-run maintenance cost of the system. Lin
and Huang [16] used a nonhomogeneous Poisson process
with a power law failure intensity to describe the deterioration
of a repairable system and to minimize the expected total
cost per unit time to determine the optimal nonperiodic
maintenance schedule. As we all know, the goal of the
maintenance decision is not only tominimize costs.We adopt
the replacement policy by satisfying certain requirements of
equipment availability. Farag and Al-Baiyat [17] consider two
major problems of power system design optimization. One is
to maximize the reliability under the cost constraint and the
other is to minimize the cost under the reliability constraint.
Levitin and Lisnianski [18] studied the optimization problem
of the power system containing a bridge substructure in
which redundant elements are included in order to provide
a desired level of reliability. There are more research works
on power system structure optimization under reliability

constraints, for example, Lisnianski et al. [19] and Bevrani et
al. [20].

Existing research goal is to minimize the total cost or the
long-run maintenance cost of the system, and the objective
functionmainly is linear. In this paper, the objective function
is an integer nonlinear programming, and constraints are an
integer nonlinear inequality. In order to try to solve this kind
of problem in an appropriate way, a method based on genetic
algorithms (GA) is proposed to explore the optimality of this
problem. GA is heuristic search techniques, which are full
of promise to deal with complex optimization problems [21].
GA can also solve optimization problems possessing arbitrary
degrees of nonlinearity, discontinuity, and stochasticity. Lev-
itin and Lisnianski [22] usedGA tominimize the sumof costs
of system modernization actions over the study period while
satisfying reliability constraints at each stage. Abdulwhab et
al. [23] used GA optimization technique to maximize the
overall system reliability for a specified future time period in
which a number of generating units are to be removed from
service for preventive maintenance.

In this paper, we propose a 𝛿-shock model, which will
be helpful for practitioners to find the appropriate machine
maintenance and replacement policies, for electrical power
equipment. We assume that the shocks will arrive according
to a renewal process with an exponential distributed interval
time of shocks and that the threshold of a deadly shock
forms a geometrical increase. Furthermore, the distribution
function of the threshold follows exponential distribution.
The assumptions and analysis of the model are introduced in
Section 2. Section 3 presents an optimization model which is
to minimize the long-run average cost per unit time subject
to some availability constraints. The GA is introduced in
Section 4. Finally, Section 5 provides a case study using our
approach.

2. Model and Analysis

2.1. Model Assumptions. To construct the 𝛿-shock model, we
first introduce the definition of GP as follows.

Definition 1. A stochastic process {𝜉𝑛, 𝑛 = 1, 2, . . .} is called a
geometric increasing (or decreasing) process, if there is a real
number 0 < 𝑎 ≤ 1 (or 𝑎 ≥ 1), such that {𝑎𝑛−1𝜉𝑛, 𝑛 = 1, 2, . . .}
forms a renewal process. 𝑎 is called the ratio of the GP.

Moreover, let 𝐸(𝜉1) = 𝜏 and Var(𝜉1) = 𝜎2. Then, we have

𝐸 (𝜉𝑛) = 𝜏𝑎𝑛−1 ,
Var (𝜉𝑛) = 𝜎2𝑎2(𝑛−1) .

(1)

Therefore, 𝑎, 𝜏, and 𝜎2 are three parameters for a GP.

We then propose a repair model for electrical power
equipment under availability constraints based on the follow-
ing assumptions.

(I) At the beginning, a new system is installed. Whenever
the system fails, it will be immediately either repaired or
replaced by an identical system.
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(II) The system in operation is subject to environment
shocks which arrive according to a Poisson process with rate𝜆1 or 𝐸𝑋𝑛 = 1/𝜆1. Let 𝑋𝑛 (𝑛 = 1, 2, . . .) be the time interval
between the (𝑛−1)th and the 𝑛th shocks.Then𝑋𝑛 is assumed
to be exponentially distributed with the distribution function
denoted by 𝐹(𝑥). Let 𝛿𝑛 be another exponentially distributed
random variable associated with 𝑋𝑛. We assume that the
sequence {𝛿𝑛, 𝑛 = 1, 2, . . .} forms an increasing geometric
process with 0 < 𝑎 ≤ 1. Then, 𝛿𝑛 has cumulative distribution
function𝑄(𝑎𝑛−1𝑥), where𝑄(𝑥) is the cumulative distribution
function of 𝛿1 which is a brand new system’s threshold of the
shock model. Assume that 𝐸𝛿1 = 1/𝜆2. {𝑋𝑛, 𝛿𝑛} follows a 𝛿-
shock model if the system fails at 𝑛th shock which satisfies𝑋𝑛 ≤ 𝛿𝑛, and then the life time or equivalently the operating
time is the sum of all 𝑋𝑛 until the one satisfying the above
condition. Further, we assume that 𝑋𝑛 is independent of 𝛿𝑛.

(III) Let𝑇𝑛 be the operating time between the (𝑛−1)th and𝑛th repairs. {𝑇𝑛, 𝑛 = 1, 2, . . .} is a sequence of stochastically
decreasing random variables.

(IV) Let 𝑌𝑛 denote the repair time after the 𝑛th failure.
Then the distribution function of 𝑌𝑛 is 𝐺(𝑏𝑛−1𝑦), where 0 <𝑏 ≤ 1 is a constant. Let 𝐸(𝑌𝑛) denote the expected repair time
after the 𝑛th failure. Assume that 𝐸(𝑌) = 𝜇 > 0.

(V) 𝑇𝑛 and 𝑌𝑛, 𝑛 = 1, 2, . . ., are independent.
(VI)The reward and cost structure is assumed as follows:

the reward rate when the system is operating is 𝑟. The repair
cost rate of the system is 𝑐. The replacement cost consists of a
fixed replacement cost 𝑅 and variable cost V = 𝑟𝑝𝑍, where 𝑟𝑝
is the variable cost rate and 𝑍 is the replacement time with a
mean of 𝐸(𝑍) = 𝑡.

(VII) The 𝑁-replacement policy is adopted. Under such
a policy, the system will be replaced with a new and identical
one at the 𝑁th failure.

(VIII)The equipment must meet the minimum availabil-
ity requirements. Let 𝑝 represent the availability of the equip-
ment. In other words, the proportion of the nonproductive
time, for example, repair or replacement, should not be too
high.

2.2. Maintenance Cost. Since 𝑌𝑛, 𝑛 = 1, 2, . . ., forms an in-
creasing GP with ratio 0 < 𝑏 ≤ 1, we have

𝐸 (𝑌𝑛) = 𝜇𝑏𝑛−1 . (2)

Thus, the maintenance cost function is shown as

MC = 𝑥−1∑
𝑛=1

𝐸 (𝑐𝑌𝑛) = 𝑥−1∑
𝑛=1

𝑐𝜇𝑏𝑛−1 . (3)

2.3. Operating Revenue. Let 𝐸(𝑇𝑛) be the expected operating
time of the system between the (𝑛 − 1)th and 𝑛th repairs, and
let 𝑙𝑛𝑖 be the interval time between the (𝑖 − 1)th and 𝑖th shock
following the (𝑛 − 1)th repair. Then the number of shocks
experienced until the next failure can be written as

𝑀𝑛 = min {𝑚 | 𝑙𝑛1 > 𝑎𝑛−1𝛿1, . . . , 𝑙𝑛(𝑚−1) > 𝑎𝑛−1𝛿1, 𝑙𝑛𝑚
< 𝑎𝑛−1𝛿1} . (4)

We have

𝑇𝑛 = 𝑀𝑛∑
𝑖=1

𝑙𝑛𝑖. (5)

Here 𝑀𝑛 follows a geometric distribution. That is

𝑃 (𝑀𝑛 = 𝑘) = 𝑞𝑘−1𝑛 𝑝𝑛, 𝑘 = 1, 2, . . . , (6)

where𝑝𝑛 = 𝑃 (a shock following the (𝑛−1)th repair is a deadly
shock) and 𝑞𝑛 = 1 − 𝑝𝑛.

Therefore, we have 𝐸𝑀𝑛 = 1/𝑝𝑛. As𝑀𝑛 is a stopping time
with respect to the random sequence {𝑙𝑛𝑖, 𝑖 = 1, 2, . . .}, which
are independent identically distributed random variables.
According to Wald’s equation [24], we have

𝐸 (𝑇𝑛) = 𝐸 (𝑀𝑛∑
𝑖=1

𝑙𝑛𝑖) = 𝐸𝑙𝑛1𝐸𝑀𝑛 = 𝐸𝑙𝑛1𝑝𝑛 . (7)

Based onAssumption (II), and the fact that𝐹(𝑥) and𝑄(𝑥)
are exponential distributions, we have

𝐹 (𝑥) = 1 − 𝑒−𝜆1𝑥, 𝑥 ≥ 0, (8)

𝑄 (𝑎𝑛−1𝑥) = 1 − 𝑒−𝑎𝑛−1𝜆2𝑥, 𝑥 ≥ 0. (9)

Furthermore, as 𝑙𝑛𝑖 and 𝛿𝑛 are independent and have the
marginal exponential distributions with means of 1/𝜆1 and1/𝑎𝑛−1𝜆2, therefore, we obtain

𝑝𝑛 = 𝑃 (𝑙𝑛𝑖 < 𝛿𝑛) = ∫∞
0

𝐹 (𝑥) 𝑑𝑄 (𝑥)
= ∫∞
0

(1 − 𝑒−𝜆1𝑥) 𝑑 (1 − 𝑒−𝑎𝑛−1𝜆2𝑥)
= 𝜆1𝜆1 + 𝑎𝑛−1𝜆2 ,

(10)

𝐸𝑙𝑛1 = 𝑝𝑛 = ∫∞
0

𝑥 𝑑𝐹 (𝑥) = ∫∞
0

𝑥𝑑 (1 − 𝑒−𝜆1𝑥) = 1𝜆1 . (11)

Then

𝜁𝑛 = 𝐸 (𝑇𝑛) = 𝐸𝑙𝑛1𝑝𝑛 = 𝜆1 + 𝑎𝑛−1𝜆2𝜆21 . (12)

Consequently,

𝐸 ( 𝑥∑
𝑛=1

𝑇𝑛) = 𝑥∑
𝑛=1

𝐸 (𝑇𝑛) = 𝑥∑
𝑛=1

𝜆1 + 𝑎𝑛−1𝜆2𝜆21 . (13)

Then, the operating revenue of the system, denoted by
OR, is given by

OR = 𝑥∑
𝑛=1

𝑟𝐸 (𝑇𝑛) = 𝑟 𝑥∑
𝑛=1

𝜆1 + 𝑎𝑛−1𝜆2𝜆21 . (14)

2.4. Replacement Cost. Based on Assumption (VI), the
replacement cost function, denoted by RC, can be written as

RC = 𝐸 (𝑅 + V) = 𝑅 + 𝑟𝑝𝑡. (15)
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2.5. Long-Run Average Cost. Let 𝐶(𝑥) denote the long-run
average cost per unit time of the system.According to renewal
reward theorem [24]

𝐶 (𝑥) = Expected cost incurred in a cycle
Expected length in a cycle

. (16)

Let 𝑊 be the expected length of a renewal cycle of the
system under replacement policy 𝑁. Thus, we have

𝑊 = 𝐸 ( 𝑥∑
𝑛=1

𝑇𝑛 + 𝑥−1∑
𝑛=1

𝑌𝑛 + 𝑍) . (17)

Let TC be the total expected cost of the renewal cycle of
the system under replacement policy 𝑁. Then,

TC = MC − OR + RC. (18)

Consequently,

𝐶 (𝑥) = TC𝑊
= 𝑐 ∑𝑥−1𝑛=1 (𝜇/𝑏𝑛−1) − 𝑟 ∑𝑥𝑛=1 ((𝜆1 + 𝑎𝑛−1𝜆2) /𝜆21) + 𝑅 + 𝑟𝑝𝑡

∑𝑥𝑛=1 ((𝜆1 + 𝑎𝑛−1𝜆2) /𝜆21) + ∑𝑥−1𝑛=1 (𝜇/𝑏𝑛−1) + 𝑡 .
(19)

3. Optimization

3.1. System Availability. Using (13) and (17), the availability
function of the system can be written as

𝑝 (𝑥)
= ∑𝑥𝑛=1 ((𝜆1 + 𝑎𝑛−1𝜆2) /𝜆21)

∑𝑥𝑛=1 ((𝜆1 + 𝑎𝑛−1𝜆2) /𝜆21) + ∑𝑥−1𝑛=1 (𝜇/𝑏𝑛−1) + 𝑡 ,
𝑥 ∈ 𝑁.

(20)

3.2. Minimizing the Average Cost. The optimal policy can
be found by minimizing the cost of each unit time subject
to a minimum level of system availability. The optimization
problem is

min 𝐶 (𝑥) = 𝑐 ∑𝑥−1𝑛=1 (𝜇/𝑏𝑛−1) − 𝑟 ∑𝑥𝑛=1 ((𝜆1 + 𝑎𝑛−1𝜆2) /𝜆21) + 𝑅 + 𝑟𝑝𝑡
∑𝑥𝑛=1 ((𝜆1 + 𝑎𝑛−1𝜆2) /𝜆21) + ∑𝑥−1𝑛=1 (𝜇/𝑏𝑛−1) + 𝑡

subject to
∑𝑥𝑛=1 ((𝜆1 + 𝑎𝑛−1𝜆2) /𝜆21)

∑𝑥𝑛=1 ((𝜆1 + 𝑎𝑛−1𝜆2) /𝜆21) + ∑𝑥−1𝑛=1 (𝜇/𝑏𝑛−1) + 𝑡 ≥ 𝑝.
𝑥 ∈ 𝑁
0 ≤ 𝑎 ≤ 1, 0 ≤ 𝑏 ≤ 1.

(21)

Thus, we can see that the optimization problem is an inte-
ger nonlinear programming problem.The analytical solution
is not effective to solve this optimization problem, because the
objective function 𝐶(𝑥) is a nonconvex and extremely com-
plex function. Several classical computational techniques, for
example, branch and bound technique, cutting planes tech-
nique, implicit enumeration, and out approximation, which
are reasonably efficient, have been proposed in literature
for solving integer nonlinear programming problems [25–
27]. These techniques are applicable to a particular class of
problem. In the case of nonconvex problems these techniques
may cut-off the global optimal.

4. Genetic Algorithms

In the last two decades, a number of stochastic algorithms
have been proposed for solving the integer nonlinear pro-
gramming problems. Genetic algorithms have been proved to
be a useful tool in solving global optimization problems [28].
GA is general purpose population based stochastic search

techniques which mimic the principles of natural selection
and genetics. It can be implemented easily with the computer
programming. In particular, GA is more effective to solve
the large scale, real life, discrete, and continuous optimiza-
tion problems without making unrealistic assumptions and
approximations. Recently, GA has been proposed to solve
integer programming problems by Soltani and Shafiei [29]
and Wong et al. [30]. Applying GA to solve nonlinear mixed
integer optimization problems was reported by Pal et al. [31]
and Deep et al. [32].

Our objective function is an integer nonlinear program-
ming and constraints are an integer nonlinear inequality. For
solving such a problem, we have developed a real coded GA
for integer variables.

It is generally accepted that any GA consists of the fol-
lowing basic components.

Step 1 (set the parameters). The parameters of the GA in
our problem include population size, probability of crossover
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(pc), probability of mutation (pm), and stopping conditions.
The population size should be neither too large nor too small.
We set the parameters as follows:

Population size = 10, pc = 0.90, pm = 0.10, stall genera-
tions as the stopping conditions.

Step 2 (generate initial populations). An initial population of
size 𝑛 is randomly generated. Any general procedure to get
them can be applied. Nevertheless, in the implementation,
we prefer to build the initial population with feasible chro-
mosomes.This device guarantees that, upon termination, the
method will provide a bilevel feasible solution. A positive
integer is randomly generated according to the nature of the
problem. It follows the next law 𝑙 = ceil (min 𝑥 (1) + (max 𝑥
(1) − min 𝑥 (1)) ∗ rand (Size, 1)).

Step 3 (calculate the fitness values). Each chromosome in the
population is evaluated by creating the estimated value for
each coefficient in (19).The fitness value of each chromosome
is then obtained from (20). Let, 𝑓(𝑖) be the fitness value
for each chromosome and the total fitness value of the
populations is 𝑇, where 𝑇 = sum𝑓(𝑖).
Step 4 (perform selection). The roulette wheel selection
mechanism is the selection strategy chosen in our paper.
Each time, a single chromosome is selected from the current
generation to create a new generation.The selection process is
as follows. Each time, a random number ℎ is generated from
the range [0, 1]. Let 𝑝𝑟(𝑖) be the weight of the 𝑖th chromosome
in the whole populations, where 𝑝𝑟(𝑖) = 𝑓(𝑖)/sum𝑓(𝑖). Ifℎ < 𝑝𝑟(𝑖), then this chromosome is selected. Otherwise, the𝑗th chromosome is selected if 𝑝𝑟(𝑗−1) < ℎ < 𝑝𝑟(𝑗) (𝑖 < 𝑗). This
selection process is continued until the new population has
been created. The chromosome which has the higher fitness
value tends to be picked out to the next generation.

Step 5 (perform crossover). Crossover is the key to the power
of genetic algorithms. The purpose of the crossover is to
generate offspring which endorses them with the common
character of their parents. Calvete et al. [33] proposed two
types of crossover methods. One is called “variable-to-
variable” crossover and the other is called “basis-to-basis”
crossover. Lin [34] used the one-point crossover method,
which randomly selects one cut-point and exchanges the
right parts of two randomly selected parents in the population
to generate offspring.The crossovermethod of this paper uses
also the one-point method.

Step 6 (perform mutation). Mutation is an operator that acts
on various chromosomes by randomly exchanging one of its
indices. Mutation resets a selected position in a chromosome
to a randomly generated real number in [0, 1]. The mutation
rate is usually a very small value; on average, 0.3% of the total
populations undergo mutation [34]. The mutation method
used here is the midvalue method, where the mutation of
chromosome took place in the middle of the population.The
new chromosome contains the indices of the new basis.

Table 1: Value of the parameters.

Parameters 𝑎 𝑏 𝑐 𝜇 R 𝑟𝑝 t 𝜆1 𝜆2 p
Value 0.95 0.94 2 4 8000 3 20 0.005 0.02 0.98
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Figure 1: The plot of 𝐶(𝑥) against 𝑥.

Step 7 (return to Step 3 until the stopping condition is
met). There are many stopping conditions for GA, including
generations, time limit, fitness limit, stall generations, and
stall time. The programs will stop until one of the stopping
conditions is met. The stopping condition used here is stall
generations.

5. Empirical Results

In this section we analyze an example using the proposed
GA. All experiments were performed in MATLAB on a
PC with an Intel Core i7 2.80GHz and 4GRAM. The data
is simulation data which are used to further evaluate the
proposed approaches. The simulation data are generated
from the analytical curves. Table 1 shows the value of the
parameters.

Figure 1 shows the relations between 𝐶(𝑥) and 𝑥. Note
that the black dot meets constraints and the red dots do not.
It is obvious that the best results can be obtained at 𝑥 = 32.

In order to simplify the calculations, we set the lower
bound to be 0 and the upper bound to be 1000, which is a
positive infinity in our problem. The appropriate parameters
of GA here are set as follows.

Population size = 10
Probability of crossover = 0.90
Probability of mutation = 0.10
Stall generations = 200

The stopping condition for the GA is to reach the
maximum stall generations.The simulation result is shown in
Figure 2. It is interesting to observe that, in initial generations,
the GA finds the configuration to minimize the cost. The
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Figure 2: Best fitness terms evolution during the GA generations
(𝑡 = 1.6719 s).
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Figure 3: Best fitness terms evolution with differences 𝑝 during the
GA generations.

fitness is suddenly reduced from −0.2 to −2.2 on the 10th
generations. After 10 generations, the fitness has decreased.
The global fitness is obtained at about the 45th generation.
Best fitness is −2.4950 and the corresponding variable is 32.

In addition, the GA is repeatedly executed 10 times to
ensure that the global fitness can be achieved so that the
local optimization can be avoided. As is shown in Table 2, it
is observed that we can find the running times of different
executions are different, and the 5th stop and the 7th stop do
not reach the global optimal results.

Furthermore, we simulate the fitness with different con-
straints. Figure 3 shows that the three lines have the same
trend of converging to the optimal fitness in the 10th gener-
ation. Table 3 shows that the number of repairs is decreasing
and the long-run average cost per unit time is increasing in 𝑝.
As is shown in Table 3, when the availability of the equipment
is 0.97, the best fitness is −2.5026 and the corresponding
variable is 37. Meanwhile, if the availability of the equipment

Table 2: Result of 10 times (𝑝 = 0.98).
Value Individual Time (seconds) Y/N

1st stop −2.4950 32 1.6250 Y
2nd stop −2.4950 32 1.6406 Y
3rd stop −2.4950 32 1.6406 Y
4th stop −2.4950 32 1.6406 Y
5th stop −2.4872 30 1.6563 N
6th stop −2.4950 32 1.6719 Y
7th stop −2.4872 30 1.6875 N
8th stop −2.4950 32 1.6719 Y
9th stop −2.4950 32 1.6875 Y
10th stop −2.4950 32 1.7031 Y

is increasing to 0.99, the best fitness will become −2.3261 and
the corresponding variable will become 17. In practice, the
availability of the equipment is decreasing with the repair
times. Thus, you have to maintain more times until the
equipment reached its availability, and you will obtain more
benefits due to the equipment operating longer times.

6. Conclusions

In practice, the power equipment may be interrupted by
random shocks, which represent severe weather conditions
such as thunder storm and freezing rain or operational
contingencies such as short circuit. When the accumulated
amount of shock damage exceeds a specified threshold, the
system will fail. Therefore, it is necessary to consider the
maintenance problem under random shocks. In this paper,
we present a nonlinear integer optimization model for power
equipment to minimize the expected long-run average cost
rate under availability constraints. Such a model is useful for
system managers to find the optimal maintenance policies.
We proposed to use the GA to solve the optimization
problem. GA appears to be a strong method for solving
complex global optimization problems in which gradient
related methods usually give local optima. GA has global
scope over the search space so they get global optima. Such
an approach can be very effective in solving this type of
optimization problems with respect to cost and availability.
As we all know, GA is an approximate algorithm.The optimal
solution may be different due to it is approximate optimal
solution each time. And it may take more times until we
obtain the optimal replacement policy when the scale is
larger.Meanwhile, the results show that the number of repairs
is decreasing and the long-run average cost per unit time
is increasing with availability. In other words, you have to
maintain more times before reaching the availability of the
equipment, and you will obtain more benefits due to the
equipment operating longer times. There is not only the
availability but also the maintenance cost and effects on the
optimal replacement policy. In a word, our model provides a
useful quantitative tool for managers to evaluate the system
performance and design an optimal maintenance policy.

In this paper, the shock model process is assumed to
follow a Poisson process. Extending such a shock process into
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Table 3: Comparison of solutions with different 𝑝 values.

𝑝 = 0.97 𝑝 = 0.98 𝑝 = 0.99
Individual Fitness Individual Fitness Individual Fitness

Value 37 −2.5026 32 −2.4950 17 −2.3261
5 −0.3% 0 0% −15 6.8%

a more general nonhomogeneous Poisson process or renewal
process can be a good topic for future research. Meanwhile,
we only considered the average costminimization problem.A
possible future work also can be to maximize the availability
under the cost constraints. In addition, our approach can
be extended to study multiequipment of the parallel or
unparallel systems.

Notations

𝑎: Ratio of the GP of {𝜉𝑛, 𝑛 = 1, 2, . . .}𝑏: Ratio of the GP of {𝑌𝑛, 𝑛 = 1, 2, . . .}𝑐: The repair cost rate of the system𝐶(𝑥): Long-run average cost per unit time of the
system𝑓(𝑖): The fitness value for each chromosome𝐹(𝑥): The distribution function of 𝑋𝑛𝑄(𝑥): The cumulative distribution function of 𝛿1ℎ: A random number is generated from the
range [0, 1]𝑘: Same as 𝑀𝑛𝑙𝑛𝑖: The interval time between the (𝑖 − 1)th and𝑖th shock following the (𝑛 − 1)th repair𝑀𝑛: The number of shocks experienced until
the next failure𝑁: Replacement policy

OR: Operating revenue of the system𝑝: Availability of the equipment𝑝𝑟(𝑖): The weight of the 𝑖th chromosome in the
whole populations𝑝𝑛: The probability of a shock following the
(𝑛 − 1)th repair is a deadly shock𝑞𝑛: The probability of a shock following the
(𝑛 − 1)th repair is not a deadly shock𝑟: The reward rate when the system
operating𝑟𝑝: Variable cost rate𝑅: Fixed replacement cost

RC: Replacement cost𝑇: The total fitness value of the populations𝑇𝑛: The operating time between the (𝑛 − 1)th
and 𝑛th repairs

TC: Total expected cost of the renewal cycle of
the system under replacement policy 𝑁𝑊: Expected length of a renewal cycle of the
system under replacement policy 𝑁𝑥: Replacement times𝑋𝑛: The time interval between the (𝑛 − 1)th
and the 𝑛th shocks𝑌𝑛: The repair time after the 𝑛th failure𝑍: Replacement time

𝜆1: The rate of environment shocks which
arrive𝜆2: The reciprocal of expected value of 𝛿1𝜎2: Variance of 𝜉1𝜇: The expected value of 𝑌𝑛𝛿𝑛: Another exponentially distributed random
variable associated with 𝑋𝑛𝜉𝑛: Stochastic process𝜏: Expected value of 𝜉1.
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[33] H. I. Calvete, C. Galé, and P. M. Mateo, “A new approach
for solving linear bilevel problems using genetic algorithms,”
European Journal of Operational Research, vol. 188, no. 1, pp. 14–
28, 2008.

[34] F.-T. Lin, “Solving the knapsack problem with imprecise weight
coefficients using genetic algorithms,” European Journal of
Operational Research, vol. 185, no. 1, pp. 133–145, 2008.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


