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Abstract This study deals with a hybrid flowshop system

with sequence-dependent setup times. Two objectives

have been considered. Minimizing makespan for produc-

tion purpose along with minimizing unavailability of the

system for maintenance purpose are the objectives of this

problem. Two meta-heuristics have been developed for

the research problem. First one is a non-dominated sorting

genetic algorithm-II (NSGA-II), while the second one is a

hybridized NSGA-II (HNSGA-II), which is accompanied

by a local search procedure to create better results. These

two algorithms allow the decision maker to find com-

promise solutions between production objectives and

preventive maintenance ones. Two decisions should be

taken at the same time: finding the best assignment and

sequence of jobs on machines in order to minimize the

makespan, and deciding how often to perform preventive

maintenance actions in order to minimize the system

unavailability. Three approaches have been suggested for

evaluation and comparison the efficiency of algorithms.

The results indicate that the HNSGA-II presents better

solutions compared to the ordinal NSGA-II in terms of

objective functions viewpoint, while the results are

obviously reversed in balance degree of achieving both

objectives simultaneously.

Keywords Hybrid flowshop scheduling � Preventive
maintenance � Sequence-dependent setup times �
Unavailability of production system

1 Introduction

Machines are the main sources of production scheduling in

manufacturing industries. Two services are directly in

contact with machines, i.e., production and preventive

maintenance. Scheduling comprises of allocating determi-

nate sources to a set of jobs to optimize a definite objective

function such as minimizing the tardiness/earliness of jobs,

minimizing the job completion times, and minimizing the

job processing times. Regarding to scheduling, many

studies have been done with respect to different shop

environments (i.e., single machine, parallel machines,

flowshop, job shop, open shop, and hybrid systems),

objective functions, and also the problem requirements and

restrictions (i.e., setup times, postponed orders, etc.)

(Berrichi et al. 2009). Most of Scheduling problems are

NP-Hard (Garey and Johnson 1979).

In the literature, it has been mostly assumed that

machines are accessible. However, in actual production

systems, machines may be unavailable at certain times due

to preventive maintenance activities, failure, etc. The most

important activities of repair scheduling service and espe-

cially preventive maintenance is to prepare an appropriate

preventive maintenance program to optimize a definite

objective function such as maintenance costs or keeping

machines at a stable situation permanently. At last decades,
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although widespread researches have been done to solve

such problems, most of them do not consider producing

necessities (Berrichi et al. 2009).

Despite the dependency between scheduling and

preventive maintenance programming, these activities

are programmed and operated separately in real pro-

duction systems. For years, the relation between pro-

duction and preventive maintenance has been

considered as a complex management decision prob-

lems. This complexity, if predetermined maintenance

periods are not observed in production process, may

result in interruptions like unexpected repairing or

machine failures. This being the case, production dis-

order and unsatisfied demand in production might be

followed. Thus, it is an important necessity to have a

novel pattern and method for a model in which

scheduling and preventive maintenance programming

are considered simultaneously, in order to make a

conjunction between them. Therefore, predeterminant

solutions lead to the best results of production and

maintenance activities by together. This is the main

motivation of the research problem covered the gap

between this research and previous studies.

Specifications of hybrid flowshop used in this research

are defined as below:

• n independent jobs must be scheduled as a flow through

s stages. Each job must be operated through stage

1; 2; . . .; s (no job skipping).

• Stage g has mg g ¼ 1; 2; . . .; sð Þ parallel machines

ðmg � 1Þ. At every stage, jobs can be processed by at

least one machine, but the processing time of a job can

vary in terms of different machines. Machines of a

bottleneck stage are identical and/or unrelated.

• The processing time of job i i ¼ 1; 2; . . .; nð Þ on

machine k k ¼ 1; 2; . . .;mð Þ at stage g is represented

by p
g
ik. Job processing time is constant and independent

to the job sequence. When machines are identical,

processing time is depended on the job and the stage,

i.e., p
g
i :

• All jobs and machines are available at the beginning of

the planning horizon.

• Job splitting is not allowed. In other words, when a job

is being operated on a machine, the job cannot be taken

from the machine till it is finished.

• Jobs are permitted to wait between two stages. Also, the

capacity of storage between two stages is assumed to be

unlimited.

• The failure rate of machine k at stage g is equal to kgk
and repair rate of machine k at stage g is assumed as lgk .
Hence the preventive maintenance time and unavail-

ability of the system are computable.

The paper is organized as follows: Sect. 2 presents a

literature review of scheduling problems taking into

account sequence-dependent setup times and preventive

maintenance. Section 3 presents the problem description,

proposed integrated model of joint production and pre-

ventive maintenance in hybrid flowshop, and how to cal-

culate system unavailability. In Sect. 4, the proposed

algorithms used to solve the problem have been introduced.

Section 5 presents the computational results which con-

tains data generation, parameter tuning, comparison met-

rics, experimental results, and the results analysis.

Section 6 states conclusions and some future research

opportunities in the research problem.

2 Literature review

In order to simplify the scheduling problems, the setup

times are seldom considered, however in real industries,

the processing and setup times are mostly independent.

Gupta and Tunc (1991) have suggested four heuristic

algorithms to minimize makespan (Cmax) for hybrid flow-

shops, assuming that the setup and transportation times are

apart. Another characteristic of this research is that the

setup times a sequence-dependent. Considering the defects

resulted by this assumption, researches over this context

were rare. Over this, we can nominate Kurz and Askin’s

(2004) study. In this paper, an integer programming and

random keys genetic algorithm (RKGA) system are used.

Hadidi et al. (2012a) considered the integration of pro-

duction scheduling and preventive maintenance scheduling

on a single machine including random failures. The

objective function was to minimize the total weighed

expected job completion times. They developed a mixed-

integer programing model to jointly consider production

scheduling and maintenance decisions. Berrichi et al.

(2009) discussed two meta-heuristics to optimize joint

production and preventive maintenance scheduling prob-

lem in parallel machines system. They aimed to minimize

the makespan for the production part and to minimize the

system unavailability for the maintenance part. To solve

this problem, they developed two meta-heuristics, weigh-

ted sum genetic algorithm (WSGA) and non-dominated

sorting genetic algorithm-II (NSGA-II). Lastly they com-

pared the results of these algorithms and found out that

NSGA-II has better performance. Yulan et al. (2008)

expanded a multi-objective integrated optimization

research to solve preventive maintenance planning and

production scheduling problems for a single machine

environment. They considered five objectives simultane-

ously. Multi-objective genetic algorithm (MOGA) was

used to solve this model. For different aspects of
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integration in production planning and scheduling, main-

tenance and quality, readers are referred to Hadidi et al.

(2012b).

Naderi et al. (2009a) have investigated a single objective

hybrid flowshop problem with sequence-dependent setup

times and multiple preventive maintenance strategies. The

optimization criterion was to minimize the makespan.

Their work divides into two parts: (1) because the inte-

grated methods proposed in the literature are often com-

plicated and problem-specific; they offered a simply

implementable technique. (2) To solve the problem, they

have proposed a novel variable neighborhood search

(VNS) and the adaptations of some accessible high per-

forming meta-heuristics in the literature. The proposed

VNS uses advanced neighborhood search structures. A

sample problem has been established to carefully evaluate

the algorithms. All the results illustrated that the VNS

presents better performance in comparison with the other

algorithms. In another study, Naderi et al. (2009b) have

proposed two techniques for a single objective job shop

scheduling with sequence-dependent setup times and pre-

ventive maintenance policies which is simplistically

adaptable to any other machine scheduling problem. The

optimization criterion was to minimize the makespan. To

solve the problem, four meta-heuristics has been imple-

mented. Performance evaluation of proposed algorithms

has been done by comparing their results through two sets

of benchmarks.

Kaabi et al. (2002) have studied the single machine and

permutation flowshop situations in two researches. In these

researches, the maintenance periods must be performed in

pre-identified intervals and production scheduling is join-

ted to maintenance planning. Allaoui et al. (2008) have

considered joint production scheduling and preventive

maintenance planning for two machine flowshops with

n jobs, with the objective of minimizing makespan. They

assume that the maintenance activities must be performed

on jobs at the first T periods of scheduling and the jobs

cannot be split. After offering some characterizations of

optimum solutions of this problem, they indicated that this

is a NP-hard problem. At last, they focused on optimized

solutions in some situations. As seen, the system was not

hybrid flowshop here, it is two machine flowshop; fur-

thermore, despite it is a NP-hard problem, they seek the

solution by simplifying assumptions and considering the

small-size problem.

Marett and Wright (1996) compared Simulated

Annealing and Tabu-Search and utilized the comparison to

solve large and complicated multi-objective problems in

flowshop environment. Naderi et al. (2011) studied incor-

porating periodic preventive maintenance into a flexible

flowshop scheduling problem with the aim of minimizing

the makespan. They proposed two meta-heuristics

including genetic algorithm and artificial immune system

to deal with the research problem along with some con-

structive heuristics to tackle the problem.

Loukil et al. (2005) developed a multi-objective simu-

lating algorithm for multi-objective production scheduling

problem in three different environments of single machine,

parallel machines, and flowshop considering seven objec-

tives. Zandieh and Karimi (2011) developed a multi-pop-

ulation genetic algorithm (MPGA) for multi-objective

group scheduling problems in a hybrid flow shop envi-

ronment where setup times are dependent on sequence. The

objective function was to minimize the total weighted

tardiness and the maximum completion time of jobs

simultaneously.

Angelo-Bello et al. (2011) considered the problem of

scheduling jobs on a single machine with programmed

periodic preventive maintenance actions and sequence-

dependent setup times. They claimed that such problem has

been considered in operations research literature. There-

fore, they presented a solution based on metaheuristic

procedures to convey high quality solution in appropriate

computational times. Kapalanoglu (2014) considered job

scheduling on a single machine with sequence-dependent

setup times and maintenance activities in dynamic manu-

facturing environment (which order or job release time is

dynamic to the system). The problem has been solved using

multi-agent systems under the condition of regular and

irregular maintenance on the machine. The experiments

results showed that the method presents acceptable solu-

tions. Hadidi et al. (2015) studied the practical implications

of managerial decisions to integrate the scheduling of

production and maintenance operations with the purpose of

minimizing product holding costs and maintenance costs.

In addition, Hadidi and Rahim (2015) studied a sequential

imperfect preventive maintenance model and extended it to

consider multiple units. The purpose of the model was to

optimize the maintenance management process for multi-

ple-unit systems.

3 Problem description

We consider hybrid flowshop with sequence-dependent

setup times and unrelated-parallel machines in some stages

for production aspect. The makespan should be minimized.

We assume that all jobs are available at the beginning of

the planning horizon. Two activities are performed in every

stage of hybrid flowshop. First, the job assignment to

machines; second, the job sequence on each machine.

Numerous studies have been devoted in this field.

We focus on systematic preventive maintenance (PM) to

consider preventive maintenance necessities. PM activities

keep machines in the good working condition (i.e., it
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increases the system availability), and decrease the system

costs by preventing unexpected failures. The problem is to

determine PM dates to decrease the unavailability of each

machine. Availability of a system is defined as ‘‘the

probability that a system or a component is performing a

required function at a given point in time or over a stated

period of time when operated and maintained in a pre-

scribed manner’’ (Ebeling 1997). So, the availability of

machine g in stage k, M
g
k , is the probability of the proper

operating of machine M
g
k at time t A

g
k tð Þ ¼ P M

g
k

��

is working at time tÞÞ . The opposite of availability is

known as unavailability (�Ag
k tð Þ ¼ 1� A

g
k tð Þ).

The availability of a machine M
g
k is defined by its repair

rate lgk and failure rate kgk , which are considered to be

constant in this paper. We assume that two exponential

probability distributions with parameters kgk and lgk ,
respectively, define the failure and repair of a machine M

g
k .

We also assume that PM activities bring machines back to

‘‘as good as new’’ condition. Considering these assump-

tions, system availability at time t = 0 is defined as follows

(Ebeling 1997; Villemeur 1991):

A
g
k tð Þ ¼ lgk

kgk þ lgk
þ kgk
kgk þ lgk

exp � kgk þ lgk
� �

t
� �

:

Increasing the time causes reduction in system avail-

ability and, consequently, the unavailability will increase.

If we consider PT as the completion time of a PM activity

on machine M
g
k , system availability at time t is defined as

follows (Ebeling 1997; Villemeur 1991):

A
g
k tð Þ ¼ lgk

kgk þ lgk
þ kgk
kgk þ lgk

E tð Þ;

where E tð Þ ¼ exp � kgk þ lgk
� �

t � PTð Þ
� �

:

Availability of a system depends on the system type and

its components characteristics. Here, unavailability of each

stage g, �Ag tð Þ, with mg parallel machines at time t is defined

by the following expression:

�Ag tð Þ ¼
Yk¼mg

k¼1

1� A
g
k tð Þ

� �
:

Consequently, we use the following equation to calcu-

late the unavailability of entire hybrid flowshop system

with k stages:

�Asystem ¼ 1�
Yg¼s

g¼1

1�max
t

�Ag tð Þf g
h i

:

The integrated model considers two objectives simul-

taneously: Minimization of makespan for production

aspect, and minimization of system unavailability for pre-

ventive maintenance aspect. Therefore, two different

decisions should be taken at the same time. First, finding

best assignment and sequence of n jobs on mg machines in

stage g through s successive stages, in order to minimize

makespan; second, deciding when is the best time to per-

form PM activities, in order to minimize system unavail-

ability. Although both objectives deal with total efficiency

of the system, they are in conflict so that optimizing one of

them will make the other one worse. In other words, per-

forming PM actions will decrease system unavailability

while they increase the makespan at the same time. Con-

versely, not performing PM actions will deliver reverse

results. Let C
g
i be the makespan of job i in stage g, and Cg

max

is the completion time of the last operated job in stage g

(makespan): Cg
max ¼ max

g
i¼1;...;n C

g
if g; g ¼ 1; . . .; s.

Let T ¼ 0; stg1; st
g
2; . . .; st

g
m;C

g
max

� �
; g ¼ 1; . . .; s where

st
g
1; st

g
2; . . .; st

g
m are starting times of PM activities on all

machines in stage g. Since unavailability is an increasing

function in st
g
k ; st

g
kþ1

� �
, k ¼ 1; . . .;m, assuming that st

g
0 ¼ 0

and st
g
mþ1 ¼ Cg

max, and according to this assumption that

after performing PM activities the machine will be in ‘‘as

good as new’’ condition, then the unavailability of the

system will be only calculated at st
g
1; st

g
2; . . .; st

g
mþ1. Pro-

cessing time of a PM activity on machineM
g
k is the average

of preventive maintenance activity, which equals to 1=lgk
(Adzapka et al. 2004). The two objectives of the problem

that should be considered under the defined constraints are:

F1 ¼ Cmax; the makespan:

F2 ¼ �Asystem

� �
; the unavailability of the system:

4 Proposed algorithms

A meta-heuristic procedure is required for solving the

research problem, particularly for industry-size problems.

The meta-heuristic algorithm might be based on a local

search structure such as tabu search (Shahvari et al.

2009, 2012; Shahvari and Logendran 2015, 2017), a pop-

ulation-based structure such as genetic algorithm (Zandieh

et al. 2010) and particle swarm optimization (Hajinejad

et al. 2011), and a hybrid of both structures such as tabu

search/path-relinking (Shahvari and Logendran 2016a, b).

Since two objectives are minimized simultaneously in the

research problem, there is a set of solutions instead of a

single optimal solution. In addition, the feasible solution

area of the proposed research problem is larger than regular

hybrid flow shop scheduling problems. Based on afore-

mentioned reasons, our preliminary results indicate the

better performance of meta-heuristic algorithms accompa-

nied by population-based structures compared to the ones

accompanied by local search structures. The reason lies in

the fact that a population-based structure providing a set of
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solutions at each iteration is capable to present good quality

solutions in less computational time, compared to a local

search structure. Two genetic algorithms have been

developed and their results have been compared. The first

algorithm is the known non-dominated sorting genetic

algorithm-II (NSGA-II) which is based on domination

concept. The second one is 2-OPT NSGA-II that have been

developed for the first time in this study, and is a kind of

hybridized NSGA-II. It tries to improve the first algorithm

by considering a local search structure in NSGA-II.

In multi-objective optimization with two minimization

objective functions (f1, f2), for both decision vectors x and

y, we express that x dominates y (x � y) if f1 xð Þ\f1 yð Þ and
f2 xð Þ� f2 yð Þ or f1 xð Þ� f1 yð Þ and f2 xð Þ\f2 yð Þ. Derived non-

dominated solution set by an evolutionary algorithm is

called Pareto front.

4.1 NSGA-II

NSGA-II is defined as an elitist multi-objective evolu-

tionary algorithm which calculates an approximation of

non-dominated solution set in terms of the domination

concept. To identify the non-dominated fronts, a ranking

procedure has been applied in every generation of the

algorithm. NSGA-II has been organized in comparison

with most comparable optimization algorithms by numer-

ous studies in the research literature. (Basseur 2006;

Coellom and Cortes 2002; Deb et al. 2000; Gaspar-Cunta

and Covas 2003; Ishibuchi et al. 2003). The following

fields are some applications of this algorithm: polymer

extrusion optimization in chemistry (Gaspar-Cunta and

Covas 2003), vehicle routing optimization (Velasco et al.

2006), scheduling optimization (Landa-Silva et al. 2003;

Vilcot et al. 2006), and supply chain optimization (Amodeo

et al. 2007). The general procedure of NSGA-II is pre-

sented by a pseudo-code in Fig. 1.

First, a random initial population (SeqSet0) that

includes N random sequences of job 1 to n is created of

size N. This population is sorted in several fronts based

on the domination concept. In other words, the objective

functions of each produced sequence is calculated after

passing through hybrid flowshop based on SPTCH

(Sect. 4.1.6) and is sorted in the related Pareto front. Each

solution is evaluated by its non-dominated level (first

level is the best). Then two point crossover and binary

tournament selection operators is used to create offspring

set (OffSeqSet0) of size N. For generations l� 1, the

procedure is different. The first phase is to create a

population TotSeqSetl ¼ SeqSetl [ OffSeqSetl of size 2N

and implement non-dominated sorting procedure (ranking)

for producing a list of non-dominated fronts. In the sec-

ond phase, a new population of sequences SeqSetlþ1

including N best solutions of TotSeqSetl is created until

the number of solutions in SeqSetlþ1 is less than N. To

complete SeqSetlþ1 with N � SeqSetlþ1j j solutions, the

crowding distance procedure is applied to the first front.

Then, the population SeqSetlþ1 is used to create offspring

set of new sequence OffSeqSetlþ1 of size N by the

selection and crossover operators.

4.1.1 Non-dominated sorting

Applied on a population SeqSet, non-dominated sorting

procedure presents a list of non-dominated fronts. Two

parts are calculated for each solution: ndu which is the

number of solutions that dominate solution u and Du which

is a set of solutions that solution u dominates them. If

ndu ¼ 0, then solution u belongs to the first Pareto front, so

the solutions of this front will be eliminated from the

solutions set, and the same procedure will be applied on the

remaining solutions until all solutions will be categorized

in their related front (Deb et al. 2000).

4.1.2 Crowding distance

The average distance of two points close to a specific point

is calculated based on each objective viewpoint in order to

estimate the density of solutions close to a solution (se-

quence). This procedure is known as ‘‘crowding distance’’.

If a solution belongs to a better (less) front, it will be

selected according to non-dominated sorting procedure,

while if two solutions belong to the same front, the solution

with a larger crowding distance is preferable for the next

generation. In other words, the solutions in less crowded

area are preferable (Deb et al. 2000).

4.1.3 Representation scheme

Every solution or chromosome contains two parts: pro-

duction part and preventive maintenance part. The num-

ber of genes in production part equals to the number of

jobs. A random number is generated in every gene con-

taining two parts itself. The first part is a natural number

that represents the number of processing machines so that

the job in this gene will be assigned to the machine with

Algorithm (1): NSGA-II
1: Create initial populations  and  of size N
2: While stopping criteria are not verified do 
3:      Create population 
4:      Construct the different fronts  of   by the non-dominated sorting procedure
5:      Put = ∅ and j = 0, 
6:      While | | + do
7:                 
8:                 j = j + 1 
9:      End While 
10:   Include in  the ( | |  according to the crowding distance
procedure
11:    Create  from  by selection and crossover 
12: End While

Fig. 1 NSGA-II pseudo code
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this number. The second part appeared after the natural

number is a decimal amount that determines the sequence

of assigned jobs to each machine. If the decimal part of a

gene is smaller than another one, it has priority in pro-

cessing on the machine. Therefore, the generated random

numbers will be placed in interval 1;mþ 1½ Þ. The number

of genes in the preventive maintenance part equals to the

number of machines. Each gene contains a natural num-

ber that is representative of preventive maintenance

activities periods. Periods of PM is generated randomly

from interval p
g
Short;k;C

g
Late;k

h i
. p

g
Short;k is the processing

time of the earliest job assigned to machine k in stage g,

while C
g
Late;k is the completion time of the latest job

assigned to machine k in stage g (Berrichi et al. 2009).

For example, (16, 20) with two machines indicates that

PM activity should be performed every 16 time units on

the first machine, while it should be performed every 20

time units on the second machine. These chromosomes

will be generated in each stage and main chromosome of

a problem in this study contains as much explained

chromosomes as the number of stages.

As it can be seen in Fig. 2, we assume that we have a

hybrid flowshop system with two machines in a stage and

there are totally 6 jobs in the system. In the production part

of the chromosome, there is 6 genes that each one repre-

sents the job of its number. As an example, the first gene is

the representative of the first job of the system. Hence

regarding Fig. 6 and given definitions, jobs 1–6 are

assigned to machines 1, 2, 1, 2, 2, and 1, respectively.

Considering the decimal part of numbers in the genes, the

sequence of jobs is determined on each machine. In other

words, jobs on machine 1 is processed in sequence 1, 3, and

6 (0.23\ 0.45\ 0.96), while jobs on machine 2 is pro-

cessed in sequence 2, 5, and 4 correspondingly

(0.03\ 0.37\ 0.89).

Preventive maintenance activities are performed based

on the rational strategy. Let St
g
ik and C

g
ik are start time and

completion time of job I, respectively, on machine k in

stage g. Let PTe be the expected time to satisfy the pre-

ventive maintenance activity. If C
g
ik � PTe �PTe � St

g
ik,

then PM activity is performed on St
g
ik; otherwise it is per-

formed on C
g
ik.

4.1.4 Two-point crossover

Initial population is generated randomly. Several crossover

operators related to genetic algorithm have been examined

and finally two-point crossover has been chosen since it

presents good quality results (Ishibuchi et al. 2003).

Stopping criteria is a fixed number of iterations.

For both production and preventive maintenance parts,

two-point crossover operators have been applied. The first

offspring is generated by keeping the first and last part of

the chromosome related to the first parent along with

substituting emitted jobs based on their priority in the

second parent. The same method is applied to generate the

second offspring. Two-point crossover method have been

depicted in Fig. 3.

4.1.5 Binary tournament selection

According to former descriptions, an initial population is

generated randomly. In other words, the numbers of each

gene are generated randomly in the first generation.

Though the procedure of generating and placing these

numbers in the next generation is different and performed

by binary tournament selection and crossover operators.

Although binary tournament selection is like the

tournament selection, the size of tournament solutions

group is two. Thus, two solutions are selected randomly

from the population and the objective functions of both

solutions are calculated. If one of the solutions domi-

nates the other one, it will be transferred to the next

generation; otherwise if the solutions are non-dominated

ones, they will be ignored and another tournament

selection will take place.

1.23 2.03 1.45 2.89 2.37 1.96 16 20

Jobs (n) PM Periods (m)

Fig. 2 Chromosome of one stage with 6 jobs and 2 machines

1.23 2.03 1.45 2.89 2.37 1.96

2.32 1.51 1.01 1.93 1.35 2.44

Parent 1

Parent 2 2.76

2.63

2.71

1.14

1.23 2.03 1.01 1.93 1.35 2.44

2.32 1.51 1.45 2.89 2.37 1.96

Offspring 1

Offspring 2 2.76

2.63

2.71

1.14

Fig. 3 Two-point crossover
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4.1.6 SPT cyclic heuristic

Since the assignment and sequence of jobs on machines

might be different in each stage, the SPT cyclic heuristic

(SPTCH) is utilized as Fig. 4. In this method, jobs are

sorted at the first stage on the bases of ascending order of

modified processing times, ~pgi . The modified processing

time of job i in stage g is defined as: ~pgi ¼ p
g
i þ minys

g
yi,

where s
g
yi is required setup time to process job i after job y

in stage g, and p
g
i is the processing time of job i in stage

g (Shahvari and Logendran 2017, 2016b; Kurz and Askin

2004). We use this heuristic in order to sort the jobs based

on their earliest ready times in the following stages.

4.2 HNSGA-II

In this study, a competitive algorithm for NSGA-II have

been developed to obtain a better performance than a

ordinal NSGA-II. The mechanism of this competitive

algorithm can assure an improvement in the performance

of a ordinal NSGA-II. Some studies have been perused on

hybridized NSGA-II. For instance, in one of these studies,

Pareto hill climbing NSGA-II (PHC-NSGA-II) have been

developed (Bechikh et al. 2008). They applied a hill

climbing local search on the front solutions with respect to

the crowding distance, and then improved solutions is

added to the front. They implemented a novel crowding

distance (in terms of the decision space, not the objective

space) to generate the next generation. They proved that

their algorithm functions better than the ordinal NSGA-II.

In another study, a neighboring-max crossover is accom-

panied by the ordinal NSGA-II and, consequently, the

population distribution of Pareto front is improved. This

algorithm is known as hybridization encouraged

mechanism based NSGA-II (HEM-Based NSGA-II) (Yijie

and Gongzhang 2008).

4.2.1 2-OPT local search

We developed a novel method for hybridized NSGA-II in

this study. In the ordinal NSGA-II, we only use the

crowding distance to select the last solutions of the next

generation, while in our presented algorithm, first a local

search applies on all chromosomes and then the obtained

solutions are added to the solution set. Then, the next

generation is determined using non-dominated sorting and

crowding distance.

We have inspired our suggested local search heuristic

from 2-OPT local search method. In the 2-OPT method,

two points are selected and all genes between these two

points is inversed (Nilsson 2003). In spite of inversing all

genes between two selected points, in our suggested

2-OPT, only two selected points will be replaced. Thus, the

assignment of jobs are constant and only the job sequence

will be changed by this method. Hence only the decimal

part of numbers in each gene is replaced and the natural

part of numbers is stable. This mechanism is applied on all

pair of genes and on all chromosomes and, consequently,

the new solutions are added to the solution set. Afterwards

using the non-dominated sorting and the crowding distance

sorting population, the next generation will be generated.

Figure 5 depicts the method of using local search heuristic.

As it is shown in Fig. 6, the new HNSGA-II differs with

the ordinal NSGA-II only in line 4 of pseudo-code. In other

words, the local search is applied on all solutions

Algorithm (2): SPT Cyclic Heuristic 
1: Generate modified processing times . 
2: Order the jobs in non-decreasing order (SPT) of . 
3: At each stage , assign job 0 to each machine in that stage. 
4: For stage 1 do 

a. Let . 
b. For [ , do

        For to do 
Place job [  last on machine . 

              Find the completion time of job [ . If this time is less on  than then
                    Let . 

Assign job [  to the last position on machine . 
5: For each stage do 

a. Update the ready times in stage g to be the completion times in stage g - 1. 
b. Arrange jobs in increasing order of ready times. 
c. Let . 
d. For [ , do

   For to do
Place job [  last on machine . 

              Find the completion time of job [ . 
If this time is less on  than on then 

                   Let . 
Assign job [  to the last position on machine . 

Fig. 4 SPTCH pseudo code

2.32 1.51 1.01 1.93 1.35 2.44 2.76 2.71

2.32 1.51 1.44 1.93 1.35 2.01 2.76 2.71

Fig. 5 Modified 2-OPT local search

Algorithm (3): HNSGA-II 
1: Generate initial populations  and  of size N
2: While stopping criteria are not verified do 
3:      Generate population 
4:      Implement Modified 2-OPT Local Search on every solution and add the results to  
5:      Construct the different fronts  of  by the non-dominated sorting procedure
6:      Put = ∅ and j = 0, 
7:      While | | + do
8:                 
9:                  j = j + 1 
10:      End While 
11:      Include in  the ( | |  according to the crowding distance 

procedure
12:    Generate  from  by selection and crossover 
13: End While 

Fig. 6 Pseudo code of HNSGA-II
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(sequences) and then the next phases of the algorithm are

followed.

5 Computational results

5.1 Data generation

In this research, Table 1 has been used to generate test

problems in order to evaluate the performance of devel-

oped algorithms.

The number of jobs, processing times of jobs, the

number of workstations (stages), the number of machines

in each stage, the failure rate of machines, and the repair

rate of machines have been shown in Table 1. Setup times

are calculated as 20–40% of processing times so that the

range of them will be [12, 24] (Rios-Mercado and Bard

1998). To validate bi-objective problems, 20 problems

have been generated with the help of the aforementioned

setting for parameters.

5.2 Parameter tuning

The performance of meta-heuristics has a straight rele-

vance with setting parameter of them, so that a wrong

parameter selection for an efficient algorithm might cause a

total failure of algorithm. For this purpose, various meth-

ods have been suggested in the literature in which most of

them are tentative. Parameter setting in the multi-objective

algorithms is very difficult particularly when there are

numerous parameters for the algorithm (Berrichi et al.

2009). We used a specialized experimental method for

setting parameters of the algorithms. In our method, an

appropriate combination of parameters for each kind of

problem is used. Three levels of job numbers (6, 30 and

100) along with three levels of stage numbers (2, 4 and 8)

and three different levels of machine distribution in each

stage have been considered. Both developed algorithms

have been run 5 times for each of the above combinations.

In other words, each algorithm has been run 135 times. For

all problems with any size, the crossover percentage is

Percentc ¼ 0:8 since it has been experimentally proved

that this amount of percentage leads to the best perfor-

mance of both algorithms for all problems. In both algo-

rithms, the population size is 200 for problems including 6

jobs. For problems including 30 jobs, the population size is

100 for 2 and 4 stages, while it is 50 for 8 stages. Finally,

the population size of 20 have been considered for prob-

lems including 100 jobs due to prevent unacceptable in-

crease of run time. Most usual stopping criteria of genetic

algorithms is based on a fixed number of iterations. We

also considered the specialized fixed number of iterations

as a stopping criterion according to the problem size and

run time. For 6 job problems, the fixed number of 100

iterations, for 30 job problems with 2 and 4 stages, the

fixed number of 100 iterations, for 30 job problems with 8

stages, the fixed number of 50 iterations, and for 100 job

problems, the fixed number of 35 iterations have been

considered as stopping criteria.

5.3 Comparison metrics

To evaluate the operational performance of multi-objective

algorithms, we use three methods and time elements. To

explain these methods, we consider PFKnown as the final

non-dominated solutions set of algorithm and PFTrue as the

optimum solutions set (or the best known solution) of the

algorithm. We might not have PFTrue for some multi-ob-

jective problems since deriving PFTrue is impossible.

5.3.1 Mean ideal distance (MID)

Van Veldhuizen and Lamont (1998) developed a method

known as Generational Distance which calculates the dis-

tance between PFKnown and PFTrue. In order to calculate

this metric, we should have PFTrue. However, sometimes in

the multi-objective optimization, we might not have an

access to this set. Therefore, the main difficulty of such a

method is its dependency to the optimum solutions set. In

this study, we use another method that it is not dependent

on the optimum solutions of the problem. Hence it can be

more general and applicable.

Table 1 Component levels for data generation

Components Levels

Number of jobs 6 30 100

Distribution of machines in a stage Uniform distribution in [2, 5] Uniform distribution in [2, 10]

Number of stages 2 4 8

Processing times Uniform distribution in [50, 70] Uniform distribution in [20, 100]

Setup times Uniform distribution in [12, 24]

Failure rate of machines 0.1 0.3

Repair rate of machines 0.1 0.3
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MID ¼
PU

u¼1 DSu

H
;

where U is the number of vectors in PFKnown and DSu is

the Euclidian distance between each member of set with

the zero point derived from equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 21u þ f 22u

p
. fhu is

hth objective function in uth Pareto solution vector.

Smaller value of this metric is preferable (Behnamian

et al. 2010).

5.3.2 Rate of achievement to both objectives

simultaneously (RAS)

This method is based on distance too. If a solution vector

only satisfies one objective, it is not a suitable solution

from this metric viewpoint. Solutions generating a balance

between both objectives are preferable. This metric is

defined as below:

RAS ¼
PU

u¼1
f1u�FIu
FIu

	 

þ f2u�FIu

FIu

	 
	 


U
;

where FIu ¼ min f1u; f2uf g. Smaller value of this metric is

preferable (Behnamian et al. 2010).

5.3.3 Covered surface under both sets (CS)

This metric compares covered surface under both sets and

delivers percentage of solutions that dominate other solu-

tions. In this method, there is no need to have PFTrue. It is

defined as follows:

CS X0;X00ð Þ ¼
u00 2 Xu00; 8�u 2 �X : �u� u00
�� ��

Xuj j ;

In this equation, two vectors of decision variable related

to X0 and X00 are shown. If CS ¼ 1, it means that X00

dominates X0 (Zitzler 1999).

5.4 Experimental results

In this study, both algorithms have been coded and run by

C# compiler in Windows Vista Home Edition operating

system, dual core 2.5 GHz, and 4 GB RAM. The results of

running NSGA-II and HNSGA-II in hybrid flowshop with

sequence-dependent setup times considering two objectives

of minimizing makespan and unavailability of the system

are compared.

5.4.1 Comparison among algorithms

Figure 7 shows the improvement progress of non-domi-

nated solutions in Pareto front through different iterations

of both developed algorithms by different colors and

symbols. Red squares are representatives of the last itera-

tion in relation with the best Pareto front and final best

population of each algorithm. This progress has been run

for 6 test problems and it is shown by graphical charts.

By an overview on the charts depicted in Fig. 7, it is

obvious that non-dominated solutions of HNSGA-II are

closer to the utopia point than non-dominated solutions of

NSGA-II. Therefore, HNSGA-II presents better perfor-

mance from the viewpoint of CS metric.

Table 2 shows obtained values of all comparison met-

rics for 270 solved test problems. As it is shown in Table 2,

HNSGA-II obviously has a better performance compared

to NSGA-II from the CS metric viewpoint and generates

better solutions. In other words, the percentage of Pareto

front solutions of HNSGA-II that dominate Pareto front

solutions of NSGA-II is obviously more. It can be con-

cluded that the solutions derived from the HNSGA-II

algorithm are closer to utopia point than the solutions from

ordinal NSGA-II algorithm.

In terms of MID metric viewpoint, HNSGA-II functions

better than NSGA-II in 30 and 100 job problems (medium-

and large-size problems), while in 6 job problems (small-

size problems) NSGA-II functions better than HNSGA-II.

In terms of RAS metric viewpoint, it is obvious that

NSGA-II functions better than HNSGA-II. In other words,

solutions derived from HNSGA-II are more suited for only

one objective despite both objectives simultaneously in

comparison with NSGA-II.

Finally, from the Time metric viewpoint, the HNSGA-II

functions better and need less computational time than

NSGA-II in 6 job problems (small-size problems), while

NSGA-II is faster than HNSGA-II in medium- and large-

size problems (30 and 100 job problems). The processing

time of the HNSGA-II algorithm increases 45% compared

to NSGA-II in medium- and large-size problems.

5.5 Results analysis according to problem size

With the help of paired t test shown in Table 3, we study

the development of rationalization of the two algorithms

based on number of jobs (problem size) and the amounts of

comparison metrics.

As it is shown in Table 3, the two developed algorithms

have significant difference (Pvalue ¼ 0:033) for medium-

size problems (30 jobs) with confidence level of 95% from

MID metric viewpoint, so that the development of two

separate algorithms is rational. Also, in confidence level of

90%, the difference for large-size problems (100 jobs) is

significant (Pvalue ¼ 0:091).

From RAS metric viewpoint, the analysis is the same as

MID metric. From CS metric viewpoint, the difference

between two algorithms is significant for all problem sizes

(small-, medium-, and large-size). From Time viewpoint, it
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Fig. 7 Improvement progress of Pareto front through different iterations for 6 sample problems
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is obvious that there is not a significant difference between

computational times of two algorithms and therefore

HNSGA-II is rational due to the improvement in the

algorithm performance in comparison with NSGA-II. Fig-

ure 8 depicts the aforementioned results.

6 Conclusions and future works

In this study two meta-heuristic algorithms have been

developed for a bi-objective hybrid flowshop problem with

sequence-dependent setup times. The objectives are to

minimize makespan and unavailability of the system

simultaneously. These objectives are considered jointly due

to real industries’ requirements. The problem is NP-Hard

and therefore meta-heuristic algorithms can be utilized.

The algorithms developed in this study have not been

implemented to solve this kind of problems in the litera-

ture. Also, joint production and preventive maintenance

scheduling for hybrid flowshop with sequence-dependent

setup times is a new problem in the literature that have not

been studied before. The developed algorithms are NSGA-

II and HNSGA-II where in the second one, a 2-OPT local

search procedure is accompanied by ordinal NSGA-II

algorithm to improve the algorithm performance.

In NSGA-II, we focus on selecting better solutions with

better objective function values which it is assured by

selecting better Pareto fronts until reaching the population

size limit. For selecting a part of solutions group in a Pareto

front, the crowding distance procedure is utilized, so that

the diversification of the next generation solutions selected

from a Pareto front is assured. However, the 2-OPT local

search is implemented on all solutions of the population in

the HNSGA-II. Therefore, the assignment of jobs to

machines will be constant and only the sequence of jobs

will be changed using the 2-OPT local search procedure.

We performed the local search procedure on all chromo-

somes and then added the derived solutions to the popu-

lation. Afterwards using non-dominated sorting and

crowding distance sorting, the chromosomes related to the

next generation will be selected.

To validate the performance of algorithms developed in

this study, they have been encoded for a bi-objective par-

allel machine problem in the literature (Berrichi et al.

2009). By comparing the number of Pareto front solutions

and the quality of derived solutions, our NSGA-II delivered

better performance than NSGA-II of Berrichi et al. (2009).

We used MID, RAS, CS, and computer processing time

(time) as comparison metrics. After comparing the two

algorithms, the following considerable conclusions have

been derived:

Table 2 Evaluation of non-dominated solutions derived from performed algorithms considering size of problems and comparison metrics

Problem size Algorithm and operational criterion

Jobs Stages MID RAS CS 9 1000 Time (s)

NSGA-

II

Hybrid NSGA-II NSGA-

II

Hybrid NSGA-II NSGA-

II

Hybrid NSGA-II NSGA-II Hybrid NSGA-II

6 Jobs 2 Stages 0.8685 0.8902 6.1302 3.4686 0.0000 9.9568 21.58 21.13

4 Stages 0.8355 0.832 11.2841 14.7161 0.0000 12.1957 74.23 86.31

8 Stages 0.7581 0.8734 19.2274 21.4629 0.0000 20.356 566.79 505.82

Average of 6 jobs 0.8207 0.8652 12.2139 13.2159 0.0000 14.1695 220.87 204.42

30 Jobs 2 Stages 0.8583 0.6977 10.1355 44.9649 0.0000 2.4333 134.33 373.12

4 Stages 0.814 0.7018 12.8839 33.5378 0.9667 6.6667 1006.88 2021.34

8 Stages 0.888 0.8032 9.8965 26.6092 8.9467 13.7187 1463.01 3743.87

Average of 30 jobs 0.8534 0.7342 10.9720 35.0373 3.3045 7.6062 868.07 2046.11

100 Jobs 2 Stages 0.8743 0.6731 18.4329 21.5443 0.1179 4.3898 1472.56 2119.38

4 Stages 0.9821 0.8063 20.0031 26.6728 4.4675 12.6667 6517.23 9896.61

8 Stages 0.8635 0.8124 24.2837 35.4386 6.3476 15.6233 10,831.45 13,254.52

Average of 100

jobs

0.9066 0.7639 20.9066 27.8852 3.6443 10.8933 6273.75 8423.50

Total average 0.8603 0.7878 14.6975 25.3795 2.3163 10.8897 2454.23 3558.01

Table 3 p values of paired t test for both NSGA-II and HNSGA-II

algorithms according to comparison metrics and problem size

Problem size p values

MID RAS CS Time

6 jobs 0.343 0.645 0.046 0.542

30 jobs 0.033 0.048 0.047 0.186

100 jobs 0.091 0.096 0.041 0.115
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1. From CS metric viewpoint, HNSGA-II obviously

operates better than NSGA-II.

2. From RAS viewpoint, NSGA-II obviously operates

better than HNSGA-II.

3. From MID viewpoint for small-size problems, NSGA-

II operates better than HNSGA-II, while for medium-

and large-size problems HNSGA-II operates better.

As opportunities for future works, we propose the fol-

lowing studies:

1. HNSGA-II can be implemented to optimize other

kinds of problems such as single machine, parallel

machines, and problems in job shop environments.

2. Other kinds of local search such as 3-OPT and another

kind of 2-OPT can be utilized to hybridize NSGA-II.

3. Some other assumptions can be added to the problem

such as considering due dates, random processing

times, an transportation times between stages to reflect

the real industries’ requirements.
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