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Embedding dynamics and control considerations within operational opti-

mization decisions can result in improved performance of processes and energy

systems. These efforts are motivated by modern sustainability initiatives, in par-

ticular demand response and demand management strategies for improving the

efficiency of the electric grid. In these scenarios residential, commercial, and in-

dustrial electricity consumers are provided with a financial incentive to shift their

demand such that the total load on the grid can be satisfied using efficient genera-

tion technologies and renewable energy sources. The financial incentive is typically

a time-dependent price structure, where rates reflect the demand level and stress

on the grid. Reacting to such fast-changing energy markets requires that pro-

cess and energy systems be highly flexible, which is a significant departure from

traditional steady state operation under fixed market conditions. In this context,

vii



flexibility means the ability to make frequent changes to the system operation (e.g.,

production setpoints, constraint levels, etc.) while still maintaining stability and

satisfying operating constraints at all times. This necessitates the development

of advanced control and decision making strategies which are aware of system

dynamics.

Accounting for dynamics by incorporating detailed, first-principles models

of a system into optimization-based controllers or scheduling calculations would

provide ample dynamic information. However, the resulting dynamic optimization

formulations would be plagued by a large problem size, numerical difficulties as-

sociated with stiff equations and multiple time scales, and the presence of integer

decisions. In this dissertation, we address these challenges through hierarchical

controller designs and novel scheduling (and rescheduling) formulations including

low-order models of relevant system dynamics, which are identified through an

appropriate model reduction or system identification procedure. Case studies in-

volving the built environment and chemical processes are used to demonstrate the

proposed methods.
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Chapter 1

Overview

1.1 Motivation

The complex infrastructure for delivering energy (e.g., electricity and natu-

ral gas) to residential, commercial, and industrial consumers must be both reliable

and efficient. The latter is particularly important to modern sustainability ini-

tiatives centered on energy conservation and reducing associated environmental

impacts. Consider that in the United States in 2014, approximately 4000 billion

kWhr of electricity was produced and consumed. Nearly three quarters of this

amount is used by residential and commercial customers (i.e., buildings) while the

remainder is attributed to industrial consumers. In order to produce this large

amount of electricity, a variety of fuel sources are used. A quarter of US elec-

tricity production used natural gas as the primary fuel, which accounts for 30%

of the total US natural gas consumption. The remainder of NG consumption is

attributed to residential/commercial customers (for heating, cooking, etc.) and

industrial customers (for plant fuel, CHP, etc.).

It is desirable to reduce the total yearly consumption of primary and sec-

ondary energy sources. Design modifications at all points in the energy supply

chain are an obvious source of energy savings, especially considering that old and
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inefficient technology contribute to the high consumption levels mentioned above.

For example, the widespread use of energy efficient LED lights and appliances, the

construction of integrated power plants (e.g., cogeneration and trigeneration facil-

ities), and incorporation of renewable energy sources (e.g., wind and solar) into

the power generation portfolio, are design modifications that ultimately reduce the

losses associated with electricity generation and consumption.

There is another opportunity for improving the efficiency of the electric

(and natural gas) grid, but to see it we must consider the dynamics of the system.

The supply in this case follows the demand of energy, and neither are constant;

rather, there are seasonal, daily, hourly, and even minute-wise fluctuations in en-

ergy consumption. Furthermore, the overall efficiency of the energy supply chain

varies greatly with these changes in demand. The operators of generation facilities

are well aware of this behavior, which is reflected in the spot market prices for

electricity (prices may increase up to a hundred times when the grid is stressed).

This is due to the use of less efficient spare generation capacity (often referred to as

“peaking plants”) to meet this temporary demand rise, often incurring additional

economic and environmental costs. Also, renewable generation technology, which

is weather dependent, has dynamic characteristics which are not naturally aligned

with consumer demand patters (e.g., solar electricity production may peak earlier

in the day than demand, and wind electricity is produced in large quantities at

night when demand is low).

Demand response and demand management strategies aim to alter the elec-

tricity demand pattern of consumers such that the resulting load on the grid can
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be satisfied efficiently. Typically, users are given a financial incentive to shift their

demand to off-peak times via tiered energy price structures, which entail charging

higher rates during the peak period. In order for this to be a ‘win-win’ scenario,

where the stress on the electric grid is reduced and consumers lower their energy

costs, advanced control strategies are needed to manage consumer energy use. This

is not a trivial matter, since in order to react to fast-changing energy markets and

hourly price changes, process and energy systems but be flexible and agile while

maintaining stability. This is a significant departure from steady state operating

regimes, and mandates that all decision-making should be aware of the system dy-

namics. In this dissertation, we develop dynamic optimization-based control and

scheduling strategies which are capable of orchestrating the operation of processes

and energy systems in the residential, commercial, and industrial sectors (specifi-

cally, residential/commercial buildings and grid-dependent chemical processes).

1.2 Problem Formulations and Solution Approaches

Our optimization-based control and scheduling strategies are inspired by

Model Predictive Control (MPC), a technique originally developed by the chemical

industry. MPC consists of solving an optimization problem (typically with an

objective of setpoint tracking) repeatedly over a finite moving horizon, using a

model of the process dynamics (e.g., first order transfer functions or state space

models which relate the process inputs and outputs) to anticipate future behavior.

With this formulation it is possible to account for system operating constraints and

forecasts of disturbances. The result of the optimization is a sequence of control
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moves which minimize the objective and satisfy the constraints. The first control

move in the sequence is implemented, and then the problem is solved again for the

shifted prediction horizon.

Since its introduction, MPC has been extended to include nonlinear pro-

cess models (which are presumably more accurate representations of the system

behavior) and economic objective functions, which aim to improve the controller

performance and overall process economics. Such formulations are of interest for

managing the process and energy systems discussed above because of their ability

to account for complex dynamics and energy prices. From an implementation point

of view, the limiting step in applying these formulations is the solution time. The

optimization must converge within the control interval. This is difficult to guar-

antee when the optimization formulation involves a nonlinear objective, model,

constraints, or some combination thereof. While desirable for increased accuracy,

detailed nonlinear models render the optimization difficult to solve because of:

• Large number of model states (increases problem size)

• Stiff equations (cause numerical difficulties)

• Dynamic variables must be discretized in order to use a simultaneous solution

approach (further increases the problem size)

• Multiple time scales (requires a long prediction horizon with short time steps

for the control interval, and high execution frequency)

• Possible presence of integer decisions (results in a mixed integer optimization)
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Note that when integer decisions are present the resulting formulation may have a

natural connection to process scheduling, since the integer decisions and economic

objective may relate to scheduling in addition to control concerns. Historically,

production scheduling and process control have been carried out by separate enti-

ties of a company, and scheduling decisions are made using limited information on

the processes dynamic behavior. Coordination of interactions between scheduling

and control is desirable to improve overall process economics and ensure dynamic

feasibility, which is an important consideration when process operating conditions

will be changes frequently in response to fluctuating energy prices or other eco-

nomic considerations.

In this dissertation, we address these challenges through:

• Meaningful model reduction. We identify computationally tractable dy-

namic model forms for the application at hand using a variety of methods,

ranging from perturbation analysis for first-principles models, to data-driven

empirical modeling.

• Hierarchical controller designs. We demonstrate how a thorough under-

standing of the system dynamics and operating space can be leveraged to

design hierarchical control systems for energy management.

• Novel scheduling formulations. We incorporate low-order dynamic mod-

els into scheduling calculations, which is a significant departure from tradi-

tion scheduling approaches which use tabulated process data to approximate

processing times.
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Ultimately, the control and scheduling formulations take the form of a (mixed-

integer nonlinear) dynamic optimization (DO), in which there are (partial and/or

ordinary) differential equations in the set of equality constraints. DO solutions

methods are based on either discretizing all differential equations so that a simul-

taneous solution algorithm can be applied, or using a sequential solution algorithm

which integrates the model equations and associated sensitivities in time. In this

dissertation, we demonstrate both approaches; the former using collocation of fi-

nite elements and the GAMS programming language along with open source and

commercial optimization solvers, and the latter using either the gPROMS software

package or control vector parametrization techniques built in Matlab.

1.3 Guide to Chapters

This dissertation is divided in two parts:

Part I contains four chapters related to hierarchical control of process and

buildings. The first two chapters are related to the control of energy-integrated

systems. Chapter 2 presents a theoretical foundation for analyzing a process

with significant energy recovery/recycle, and performing model reduction using

singular-perturbation arguments. A supervisory nonlinear MPC layer is designed

and demonstrated in a case study involving a reactor feed-effluent heat exchanger

process. In Chapter 3 we apply these principles to a building HVAC system which

has an energy recovery device and substantial thermal mass. We show that the

dynamics evolve over three distinct time scales, and derive reduced order models

for each which are physically meaningful and tied to the building design data.
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Economic and tracking nonlinear MPC objectives are demonstrated in a closed-

loop simulation, subject to disturbances, and the calculations are easily performed

in real-time using the reduced model. The ability to shift demand is seen un-

der the economic objective, which suggests that this model and associated control

structure show potential for rapid and cost-effective deployment as a model-based

energy management approach for single-zone buildings

In chapter 4, we present a hierarchical energy management strategy for

buildings with thermal energy storage. The distinct dynamics of the storage sys-

tem and load requirements are amenable to a composite fast-slow controller design,

where the slow controller takes the form of economic MPC. To alleviate chal-

lenges associated with integer decisions, we take advantage of the cyclical nature

of charging/discharging modes to create a NLP formulation of the problem. There

are three case studies in Chapter 4 which demonstrate different types of thermal

storage (chilled water vs. latent energy storage using phase change material) and

modeling approaches (detailed vs. lumped models). We show that our approach

can achieve significant cost savings for consumers subject to time-of-use pricing,

outperform (reasonable) operating heuristics even under uncertainty in forecast-

ing building loads, and have low solution times, showing real incentive for online

implementation in a recursive, moving horizon fashion.

In chapter 5, we turn our attention to distributed generation. In order to

evaluate the consequence of tighter interdependency between the electricity and

natural gas grids at intersection points near consumers due to widespread adop-

tion of micro-scale generation, we develop a model of a small neighborhood with
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several micro-turbines and establish the optimal operation of all units to achieve

load-leveling on the electric grid. Several cases are presented which establish the

effect of limitations on the current infrastructure capacity. We consider the differ-

ence between centralized and decentralized operation of the ensemble of distributed

generation units. Our results suggest that centralized decision-making and coordi-

nation of the operation of the generators results in optimal demand profiles, and it

is difficult to replicate this behavior with a decentralized decision-making scheme

whereby the operation of each generator is managed separately. This observation

is also expected to hold for the widespread use of strategies considered in chapters

3 and 4, which only consider the behavior of a single customer.

Part II contains 3 chapters on scheduling with dynamic models. In chapter

6 we summarize the foundations of integrated scheduling, control, and dynam-

ics using first-principles models, and present our initial work on scheduling using

data-driven and discrete models. We propose a scheduling formulation using a

hybrid representation of time, whereby the dynamic process model is presented in

discrete time and the scheduling problem uses a continuous time formulation. We

introduced a novel ‘reverse integrated error’ concept to determine transition times

between products in a continuous process.

In chapter 7 an industrial scale air separation case study is used to demon-

strate the importance of accounting for process dynamics in a flexible manufac-

turing scenario. We develop a scheduling formulation that includes dynamic in-

formation on product quality, production rate, and a subset of variables relevant

to process operating constraints. The novelty of our contribution consists of us-
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ing scheduling-oriented low-order dynamic models that predict the closed-loop dy-

namics of relevant constrained process variables in response to scheduled operating

point changes. Central to this effort, we introduce a new methodology for select-

ing the variables relevant to the scheduling calculation, and define the scope (i.e.,

model inputs and outputs) of the scheduling-oriented dynamic models. We high-

light importance of accounting for process constraints, historically only of interest

to the control domain, at the scheduling level. When applied to the air separa-

tion case study this framework is able to achieve significant cost savings in the

time-of-use pricing environment while ensuring that the plant operation remains

feasible.

In chapter 8 we turn our attention to rescheduling using dynamic process

models. We emphasize differences between disturbances to the scheduling and

process layer, and highlight how the latter can lead to changes in processing times

or recipes, transition times, and the overall product wheel. We propose a novel

event-driven rescheduling framework which relies on existing methods for process

monitoring and fault detection, identification, and reconstruction, which diagnose

specific changes in processing conditions. The integrated scheduling and dynamics

framework is well suited for accounting for these differences; the new operating

paradigm can be accounted for by altering constraint boundaries for the dynamic

model in a rescheduling calculation. We also discuss periodic rescheduling strate-

gies and the use of moving horizon scheduling, and compare their formulation to

economic MPC strategies. A case study is presented showing how online state esti-

mation can be used to update the dynamic model in the moving horizon scheduling
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formulation.

Finally, a summary of contributions in the areas of model reduction, hierar-

chical controller design, and scheduling with dynamic models is given in Chapter

9, in addition to recommendations for future research directions.
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Part I

Hierarchical Control for Processes
and the Built Environment
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Chapter 2

Nonlinear Model Predictive Control of

Energy-Integrated Processes

The material in this chapter has been published in [27] and [26].

2.1 Introduction

Improving energy efficiency has become particularly important in industrial

processes in view of recent increases in energy prices, growing environmental con-

cerns, and regulatory pressure. The principle of energy integration is quite simple,

and it entails identifying, within the process, sets of energy sources and corre-

sponding energy sinks between which energy can be transferred without violating

thermodynamic principles. Energy recovery has in general focused on thermal en-

ergy (heat or refrigeration) with the aim of minimizing the use of external utility

streams. These ideas apply directly to other energy forms, and significant reduc-

tions in capital and operating costs have been reported as a consequence of using

integrated designs in the chemical industry (see e.g., [18] for an overview).

Chemical processes are typically comprised of multiple units interconnected

through material streams and energy exchange in a main process flux. Intuitively,

integration creates physical connections between process units that are not part
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of the main flux and can thus give rise to feedback interactions which increase

the complexity of the dynamic behavior of the process. These effects (including

inverse response and open-loop instabilities) are by now well-documented in the

literature [54, 228, 187, 184, 148] and make the control of integrated process systems

especially challenging. Furthermore, in the recent past, market conditions have

become increasingly dynamic, dictating that the control of integrated chemical

processes go beyond simple regulation around a steady state, and towards efficient

transient operation within a broader operating envelope.

In this paper, we focus on the optimal control of energy-integrated process

systems. We concentrate on a particular class of systems in which energy recycling

and recovery are significant in comparison to any available external energy sources

and/or sinks. In our previous work [18, 127], we have shown that the simultaneous

presence of energy flows of different magnitudes causes model stiffness and is at

the origin of a time scale separation in the system dynamics, and derived reduced-

order descriptions of the dynamics in each time scale. In the present paper, we

demonstrate that the fast component of the dynamics of such systems is stable in

general and asymptotically stable in practical systems. Then, we use these results

to develop a hierarchical controller design, consisting of i) a linear control system

to exponentially stabilize the fast dynamics and, ii) a nonlinear model predictive

controller for the slow dynamics. We demonstrate that this composite approach

guarantees exponential stability for the overall system.

Subsequently, we utilize the proposed control approach to formulate a strat-

egy for optimal energy management and reduction of energy use at the system
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level, and establish a parallel between the approach introduced in this paper and

economic model predictive control [8, 114].

A case study considering a simulated Reactor-Feed Effluent Heat Exchanger

process is presented to illustrate the theoretical developments.

2.2 Process Systems with Energy Recovery

In general, a process system is a system of finite dimensions, whose states

can be used to define a set of additive inventory variables [94, 21]. In the present

paper we will focus on enthalpy, θ, as a state variable representative of process

energy use, and consider a process system consisting of N (lumped) units in series

(Figure 2.1). The feedback connection in the figure represents the energy transfer

between the last and the first units, making the process under consideration an

energy-integrated one. Note that, for now, we are not concerned with the trans-

fer mechanism or its physical implementation, we simply assume that transfer is

thermodynamically feasible and occurs at a rate Qin ≡ Qout.

H2   H1   Ho HN   

Qin   Qout   

Q1   Q2   QN   

Figure 2.1: Prototype energy-integrated system [127, 18]

Then, we assume that each of the units i = 2, . . . , N−1 receives energy from

the upstream unit (i− 1) at a rate Hi−1 and, transfers energy to the downstream

(i + 1) unit at a rate Hi via a material stream. Additionally, units 1 and N
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exchange energy in the same manner with the environment (e.g., other processes)

at rates Ho and HN . Energy flows Qi, i = 1, . . . , N , account for unit-level energy

sources or sinks, including local heating or cooling via heat exchange or chemical

reactions.

Our interest at this point is to elucidate the effect of this recycle connection

on the dynamics of the unit enthalpies θ = [θ1 . . . θi . . . θN ]T , θ ∈ Q ⊂ IRN . To

this end, under the assumptions listed above, we can write a mathematical model

of the process system under consideration as [18, 127]:

θ̇ =
∑
i=0,N

γi(θ)Hi +
N∑
i=1

φi(θ)Qi +
N−1∑
i=1

γi(θ)Hi + γinq (θ)Qin + γoutq (θ)Qout(2.1)

and γi(θ), γjq(θ) and φi(θ) being appropriately defined vector functions.

Using the steady state values (denoted by the subscript s) of the energy

flows, we can define the dimensionless variables ωi = Hi/Hi,s, i = 1, . . . , N ,

ωin = Qin/Qin,s and ωout = Qout/Qout,s. Let us also define the following di-

mensionless quantities: li = Hi,s/H1,s, i = 1, . . . , N − 1, min = Qin,s/H1,s and

mout = Qout,s/H1,s. We can thus rewrite (2.1) as:

θ̇ = H1,s

[
γinq (θ)minωin + γoutq (θ)moutωout +

∑N−1
i=1 γi(θ)liωi

]
(2.2)

+
∑

i=0,N γi(θ)Hi +
∑N

i=1φi(θ)Qi

Let us now concentrate on the dynamics of the system (2.2). First, we make

the following general observation regarding the steady-state of this system: in order

to achieve a high degree of energy integration, the amount of energy recovered from

unit N and transferred to unit 1 should be significant in comparison to the energy

input to the system either via the material input stream or through local heat
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generation or local heat exchange. Furthermore, the energy recovered must be

used in the process, and thus internal energy flow rates between units 1 and N

should be of the same magnitude as the rate at which energy is recovered.

These observations can be formalized in the following assumptions [18, 127]:

Assumption 2.1. The internal energy flow rates Hi,s, i = 1 . . . N−1 are of similar

magnitude (i.e., li =
Hi,s

H1,s

= O(1))

Assumption 2.2. The magnitude of the energy flow rate Qin ≡ Qout is similar to

the magnitude of the internal energy flows Hi, i = 1 . . . N − 1, and we have:

Qin,s

H1,s

≡ Qout,s

H1,s

= min = mout = O(1) (2.3)

Assumption 2.3. The internal energy flows are much larger than the inlet and

outlet energy flows Ho,s and HN,s, that is:

Ho,s

H1,s

� 1 and
HN,s

H1,s

� 1 (2.4)

Assumption 2.4. The energy inputs Qi, i = 1 . . . N to the individual units are

of similar magnitude to the inlet energy flow. Equivalently,
Qi,s

Ho,s

= O(1) and

Qi,s

H1,s

� 1.

We also make the following (non-restrictive, but convenient) assumption:

Assumption 2.5. The energy holdups θi are defined (e.g., in terms of enthalpy

or internal energy) such that θi ≥ 0.

16



Assumptions 2.3 and 2.4 are in effect the key to tight energy integration, as

they stipulate (as suggested above) that the amount of energy recovered from the

process exceed the amount of energy input to the process from external sources.

Furthermore, Assumption 2.3 suggests that a figure of merit for energy integration

can be defined in the form of an energy recovery number [18] as:

Rc =
1

ε
=
H1,s

Ho,s

(2.5)

Based on the above, we can rewrite the model (2.2) as:

θ̇ =
1

ε
Ho,s

[
γoutq (θ)moutωout + γinq (θ)minωin +

N−1∑
i=1

γi(θ)liωi

]
(2.6)

+
∑
i=0,N

γi(θ)Hi +
N∑
i=1

φi(θ)Qi

Or, in a more compact form, we can write (2.6) as:

θ̇ = Γs(θ)νs +
1

ε
Γl(θ)ν l (2.7)

where νs ∈ U s ⊂ IRms

, νs = [Ho/Ho,s HN/HN,s Q1/Q1,s QN/QN,s]
T is a vector of

scaled variables that correspond to the inlet and outlet energy flows and ν l ∈ U l ⊂

IRml

is a vector of scaled variables corresponding to the (much larger) internal

and recycle energy flows, with ν l = [ω1 . . . ωN−1 ωin ωout]
T . Γs, Γl are matrices of

appropriate dimensions.

Remark 2.1. In order to preserve the brevity of the presentation, we have not

included material balance considerations in the system models utilized above. How-

ever, the proposed framework can easily accommodate the inclusion of material
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balance equations when necessary (see., e.g., [18], as well as the case study later

in the paper).

Remark 2.2. Some (but not all) of the components of the vectors νs and ν l

constitute potential manipulated inputs for the system (2.7). For instance, the flow

rates of the material streams connecting units, or the rates of heat input or heat

removal from each unit can, in principle, be adjusted directly. On the other hand,

the rates of heat generation by chemical reaction depend on the process conditions

(temperature, composition, pressure) in each unit and are thus not available as

manipulated inputs for controller design. These points are further illustrated in

the case study in Section 2.5.

The representation in (2.7) provides a different perspective on process sys-

tems with energy integration. In effect, based on the energy integration figure of

merit ε, we can isolate processes with tight energy integration as the class of sys-

tems for which ε� 1 (see Assumption 2.3). Clearly, such systems are interesting

from the point of view of process economics, since increased reliance on energy

recuperated from the process outlet reduces the use of external energy sources and

diminishes operating costs.

From a mathematical point of view, if ε � 1, the generic model (2.7) is

in a nonstandard singularly perturbed form [95, 176, 146]. The dynamics of such

systems evolve over multiple time scales, a feature that must be accounted for in

controller design (which, in principle, should be carried out separately in each time

scale, an approach referred to as composite control [142, 57, 147]). In the following
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section, we derive separate reduced-order models of the fast and slow dynamics of

the process system under consideration; controller design will be addressed in the

sequel.

2.3 Dynamic Analysis and Model Reduction

In order to elucidate the potential two time scale behavior of such systems,

we extend the methods proposed in [127]. First, we obtain a description of the fast

dynamics. To this end, we define a fast (“stretched”) time scale τ = t/ε, in which

the process model (2.7) becomes:

dθ

dτ
= εΓs(θ)νs + Γl(θ)ν l (2.8)

We proceed using singular perturbation arguments, and consider the limit

ε → 0, which, from a physical perspective, corresponds to the ideal case of total

heat integration via infinite energy recycling. This results in an expression for the

fast dynamics, of the form:

dθ

dτ
= Γl(θ)ν l (2.9)

Recalling that inventories are additive, we can also define the total energy

stored in the system as:

θtot =
N∑
i=1

θi (2.10)

Intuitively, θtot is governed exclusively by the small external energy flows and the

(small) energy generation terms, i.e., the vector νs which captures energy exchange
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between the system and the environment. Equivalently, the (large) internal ν l flows

do not affect the total energy stored in the system. From a mathematical point of

view, it is straightforward to verify that the dynamics of θtot are independent of

ν l. Note, too, that the fast dynamics in (2.9) are independent of νs.

Based on these observations, we are now in a position to state our first

result.

Proposition 2.1. The fast component of the dynamics of systems with significant

energy recycle is stable.

Proof. Let V l = θtot. Based on Assumption 2.5, we have V (θ) > 0 and V l(0) = 0,

and therefore the total energy holdup of the system is a Lyapunov function. Our

reasoning above indicates that
dV l

dτ
= 0 and therefore the fast dynamics in (2.9)

are stable. �

In what follows, we will make a physical argument and a control argument

to derive stronger stability results.

Corollary 2.1. Considering the structure of the system and the developments

above, we can write a differential equation describing the evolution of the total

enthalpy of the process in the fast time scale as:

dθtot
dτ

=
1

H1,s

(Qin −Qout) (2.11)

Our assertion that Qin ≡ Qout is based on the ideal case where all energy recovered

from the outlet of the system can be recycled to the inlet. This, however, may not be
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true for real systems, where thermodynamic limitations (e.g., heat transfer) would

preclude the entire quantity of energy recovered from the last unit to be transferred

to the first. We would thus have Qout > Qin and, assuming that H1,s > 0,
dV l

dτ
≤ 0.

Consequently, the fast dynamics of process systems with significant energy recycling

is asymptotically stable.

Corollary 2.2. The inputs ν l can be set, e.g., via a linear state feedback law

ν l = Kθ (2.12)

Assuming that the gains K can be chosen so that the matrix Γl(θ)Kθ is Hurwitz for

any θ ∈ Q, the fast dynamics of systems with significant energy recycling becomes

exponentially stable.

We now continue our singular perturbation analysis and proceed with a

derivation of an expression for the slow dynamics of the process following closely

the arguments in [18, 127]. First, we note that the differential equations in the

fast subsystem (2.9) are not linearly independent, given that there exists a variable

(the total energy holdup) that does not depend on the internal energy flows. This

confirms the existence of a slow component of the system dynamics, and also

indicates that the solution of the system of algebraic equations that describes the

quasi-steady state of the fast dynamics,

0 = Γl(θ)Kθ (2.13)

is not an equilibrium point in the state space, but rather an equilibrium subspace

where the slower dynamics evolves. Based on the physical arguments above, the
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dimension of this subspace is equal to 1. To proceed with our analysis, we must

characterize this manifold and ensure that a set of linearly independent constraints

can be extracted from (2.13). To this end, we make the following assumption

[18, 127]

Assumption 2.6. There exist a full column rank matrix B(θ) ∈ IRN×N−1 and a

matrix Γ̃l(θ) ∈ IR(N−1)×ml

with linearly independent rows, such that Γl(θ) can be

rewritten as

Γl(θ) = B(θ)Γ̃l(θ) (2.14)

We note that numerous examples (see, e.g., [18]) have shown that this

assumption holds true for process systems of practical interest.

We can now substitute (2.14) in the original model (2.7), and consider the

model in the same limit case, ε → 0, in the original time scale t and under the

linearly independent constraints isolated from (2.13), obtaining:

θ̇ = Γs(θ)νs + B(θ) lim
ε→0

1

ε
Γ̃l(θ)Kθ

0 = Γ̃l(θ)Kθ
(2.15)

The terms limε→0
1
ε
Γ̃l(θ)Kθ (which, based on Equation (2.6), represent differences

between large internal energy flows) become indeterminate (but still finite) in the

slow time scale. These terms constitute an additional set of algebraic variables in

the model of the slow dynamics. Defining these variables as z = limε→0
1
ε
Γ̃l(θ)Kθ,

the reduced-order model of the slow dynamics becomes:

θ̇ = Γs(θ)νs + B(θ)z

0 = Γ̃l(θ)Kθ
(2.16)
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The differential-agebraic model (2.16) of the slow dynamics has a high index, since

the algebraic variables z cannot be computed directly from the algebraic equations

of the model. Thus, in order to compute z and obtain a state-space realization of

the slow dynamics, the algebraic constraints of Equation (2.16) must be differen-

tiated at least once with respect to the state variables θ.

After one differentiation, we obtain:

z = −LB(θ)

(
Γ̃l(θ)Kθ

)−1
LΓs(θ)

(
Γ̃l(θ)Kθ

)
νs (2.17)

noting that the assumption made in Corollary 2.2 ensures that the matrix

LB(θ)

(
Γ̃l(θ)Kθ

)
is invertible1

An ODE representation of the slow dynamics can be obtained by substitut-

ing (2.17) in (2.16). This representation is not of minimal order, and a coordinate

transformation must be used to obtain a minimal-order state-space realization.

A potential transformation involves the energy balance equations and the corre-

sponding quasi-steady state constraints [147], i.e.,:[
ζ
η

]
= T (θ)

[
δ(θ)

Γ̃l(θ)Kθ

]
(2.18)

which yields a reduced-order model of the slow dynamics of the form:

ζ̇ =
∂δ

∂θ
Γs(θ) |θ=T−1(ζ) ν

s +
∂δ

∂θ
B(θ)z |θ=T−1(ζ)

η = 0
(2.19)

or, in a more compact form,

ζ̇ = f̂(ζ) + Ĝ(ζ)νs (2.20)

1The Lie derivative (or directional derivative) of scalar function a(x) : IRn → IR along vector
function b(x) : IRn → IRn (with x ∈ IRn) is defined as: Lba(x) = ∂a

∂x (x)b(x).
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The aforementioned discussion on the dimension of the equilibrium manifold of the

fast dynamics leads us to conclude that ζ ∈ Q1 ⊂ IR1 (i.e., the slow component

of the dynamics is, in effect, one-dimensional), and (2.20) constitutes a (multiple-

input, single output) representation of the slow dynamics of the system.

Remark 2.3. Figure 2.1 presents the structural prototype for several processes of

elevated industrial interest, including systems with feed-effluent heat exchangers,

which are used to transfer heat from the process products to the feed stream, either

at high temperatures (a case that will be discussed in detail in Section 2.5) or under

cryogenic conditions (e.g., air separation units [281]). Systems with work exchange

are also widespread, using either reciprocating or centrifugal exchange devices. The

former are extensively employed in reverse osmosis water desalination processes

[97], while the latter (which consist of a feed compressor driven by expanding a

high-pressure product in a turbine installed on a common shaft) are a common

occurrence in air separation [281] and natural gas liquefaction processes [138].

The analysis of the dynamics of systems with work exchange can be carried out in

a manner similar to the one outlined above.

2.4 Supervisory Nonlinear Model Predictive Control

The implementation of the linear feedback controller (2.12) leads to the

exponential stabilization of the fast dynamics. A standard result in nonlinear

systems theory allows us to exploit this stability property to design a controller

for the entire system in the slow time scale, based solely on the slow model (2.20),

following the composite control paradigm [142] (see also [53, 52]).
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We formulate the system-wide control problem as the following Nonlinear

Model Predictive Controller (NMPC), aimed at computing the optimal inputs

νs∗(t) that provide exponential stability to the slow dynamics (2.20). To this end,

we define the stage cost

L(ζ(t),νs(t)) =
1

2

[
Sζ(t)2 + νs(t)TRνs(t)

]
(2.21)

the terminal cost

F (ζ(t)) =
1

2
Pζ(t)2 (2.22)

and the cost function

J(t, ζ,νs) = F (ζ(t+ T )) +

∫ t+T

t

L(ζ(s),νs(s))ds (2.23)

where T is the prediction time horizon, P > 0 and S > 0 are penalty coefficients
and R � 0 is a positive-definite matrix that captures the cost associated with each
energy input from external sources. Thus, we seek to identify the control signal
νs∗ as the solution to the optimization problem

νs∗ = arg min
νs

J (2.24)

s.t. ζ̇ = f̂(ζ) + Ĝ(ζ)νs,

νs ∈ Us ⊂ IRms
,

ζ ∈ Z ⊂ IR,

ζ(t+ T ) ∈ Zf ⊂ IR

where the last three constraints require that the inputs and the state belong to

their respective admissible sets, and the state at the end of the prediction time

horizon belongs to the terminal set Zf [178].

Proposition 2.2. Assuming that:

1. the set Zf is positively invariant with respect to νs
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2. there exists a local feedback controller νsk = k(ζ) defined in Zf such that F

is a local Lyapunov function, i.e.,

Ḟ (ζ) + L(ζ) ≤ 0 (2.25)

3. the prediction horizon T is sufficiently long for ζ∗(t+ T ) ⊂ Zf , where the ∗

symbol denotes the closed-loop state trajectory under the controller (2.24)

4. the function ψ(ζ,νs) = f̂(ζ) + Ĝ(ζ)νs is Lipschitz in ζ, with Lipschitz con-

stant L, i.e., ‖ψ(ζ,νs)‖ ≤ L‖ζ‖

the slow component of the system dynamics (2.20) is exponentially stable under

the control law (2.24).

Proof. The proof follows the arguments in [122] as well as the developments made

in [108] for SISO systems, and expands the reasoning to the MISO case of interest.

Let us consider the Lyapunov function candidate:

V (t, ζ) = min
νs

J(t, ζ,νs) (2.26)

We first establish the asymptotic stability of the slow dynamics under the proposed

controller. To this end, we compute the time derivative of the Lyapunov function,

V̇ , as:

V̇ = lim
∆t→0

V (t+ ∆t, ζ(t+ ∆t))− V (t, ζ(t))

∆t
(2.27)

Let ν̂(s), s ∈ [t,∞) be the input sequence consisting of the optimal input νs∗,

for the period of time s ∈ [t, t + T ), and the input νsk(s) computed by the local

controller at times s ≥ t+ T . Then, since V (t+ ∆t, ζ) ≤ J(t+ ∆t, ζ, ν̂s), we have

V̇ ≤ lim
∆t→0

J(t+ ∆t, ζ(t+ ∆t), ν̂s)− V (t, ζ(t))

∆t
(2.28)
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Now,
J(t+ ∆t, ζ(t+ ∆t), ν̂s) = F (ζ(t+ ∆t+ T )) (2.29)

+

∫ t+∆t+T

t+∆t
L(ζ, ν̂s)ds

= F (ζ(t+ ∆t+ T )) +

∫ t+T

t+∆t
L(ζ,νs∗)ds

+

∫ t+∆t+T

t+T
L(ζ,νsk)ds

and therefore

J(t+ ∆t, ζ, ν̂s)− V (t, ζ) = F (ζ(t+ ∆t+ T )) +

∫ t+T

t+∆t

L(ζ,νs∗)ds (2.30)

+

∫ t+∆t+T

t+T

L(ζ,νsk)ds

− F (ζ(t+ T ))−
∫ t+T

t

L(ζ,νs∗))ds

= F (ζ(t+ ∆t+ T )) +

∫ t+∆t+T

t+T

L(ζ,νsk)ds

− F (ζ(t+ T ))−
∫ t+∆t

t

L(ζ,νs∗)ds

Based on assumption 2 in the proposition, we have Ḟ (ζ) + L(ζ,νsk) ≤

0, ∀s∈[T,∞). Using this expression, we can write:∫ t+∆t+T

t+T

Ḟ (ζ(s))ds+

∫ t+∆t+T

t+T

L(ζ,νsk)ds ≤ 0 (2.31)

and thus

F (ζ(t+ ∆t+ T ))− F (ζ(t+ T )) +

∫ t+∆t+T

t+T

L(ζ,νsk)ds ≤ 0 (2.32)

Substituting all of the above in (2.28), we get

V̇ ≤ lim
∆t→0

∫ t+∆t
t −L(ζ,νs∗(s))ds

∆t
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≤ −1

2
Sζ(t)2 − 1

2
νs∗TRνs∗

≤ −1

2
Sζ(t)2

The Lyapunov function V thus meets the conditions in Theorem 4.9 in [137], and,

consequently, the slow component of the system dynamics is asymptotically stable.

In what follows, we use the Lipschitz properties of the function ψ to establish

bounds on V as follows:

• we have νs(t)TRνs(t) > 0 (R is positive definite) and F (ζ(t + T )) > 0.

Therefore, we have V (t, ζ) ≥ 1
2

∫ t+T
t

Sζ(s)2ds.

Then, since ψ is Lipschitz, we have that ‖ζ(s)‖ ≥ ‖ζ(t)‖ exp[−L(s− t)], s ∈

[t,∞) (see, e.g., Theorem 3.4 in [137]), and:

V (t, ζ) ≥ 1

2

∫ t+T

t
Sζ(s)2ds (2.33)

≥ 1

2
Sζ(t)2

∫ t+T

t
e−2L(s−t)ds

≥ 1− e−2LT

4L
Sζ(t)2

which provides a lower bound for V .

• Let ζ̄(s) be the state at time s starting from an initial condition ζo and with

zero energy input, νs(t) = 0. As V (t, ζ) is the minimum of J , V (t, ζ) ≤

J(t, ζ̄, 0). From the Lipschitz property of ψ, it follows that

‖ζ̄(s)‖ ≤ ‖ζ(t)‖ exp[L(s− t)], s ∈ [t,∞). Consequently, we have:

V (t, ζ) ≤ 1

2
P ζ̄(t+ T )2 +

1

2

∫ t+T

t
Sζ̄(s)2ds

≤ 1

2
Pe2LT ζ(t)2 +

1

2
Sζ(t)2

∫ t+T

t
e2L(s−t)ds
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≤
[

1

2
Pe2LT + S

e2LT − 1

4L

]
ζ(t)2

providing an upper bound for V .

With these bounds (and recalling the asymptotic stability property established

above), the function V satisfies the assumptions of Theorem 4.10 in [137], and

therefore the controller (2.24) guarantees the exponential stability of the slow dy-

namics (2.20). �

Remark 2.4. The fulfillment of Assumptions 1-3 in Proposition 2.2 guarantees

asymptotic stability [178], while Assumption 4 [108] is the key component for es-

tablishing the exponential stability property of the controller (2.24).

Following these developments, we can state:

Theorem 2.1. Consider an integrated process system of the type (2.1) with high

energy recycling, under the composite control consisting of the linear feedback (2.12)

and the MISO NMPC (2.24).

The closed-loop the dynamics of the system are described by:

ζ̇ = f̃(ζ,η) (2.34)

εη̇ = g̃(ζ,η, ε) (2.35)

Let us assume [137] that f̃(0,0) = 0 and g̃(0,0, ε) = 0, and that 0 = g̃(ζ,η, 0)

has an isolated root η = p(ζ), such that p(0) = 0. Then, there exists ε∗ > 0 such

that the origin (θ = 0) of the original system (2.1) is exponentially stable in Q for

all 0 < ε < ε∗.
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Proof. The proof follows the arguments of Theorem 11.4 in [137]. By converse

Lyapunov theorems, there exists a Lyapunov function V s for the closed-loop slow

dynamics2, such that:

c1 ||ζ||2 ≤ V s(ζ) ≤ c2 ||ζ||2 (2.36)

∂V s

∂ζ
· f̃(ζ,p(ζ)) ≤ −c3 ||ζ||2 (2.37)∣∣∣∣∣∣∣∣∂V s

∂ζ

∣∣∣∣∣∣∣∣ ≤ c4 ||ζ|| (2.38)

with ci > 0, i = 1, . . . , 4.

Observing that (2.35) is a slowly varying system with respect to ζ (see, e.g.,

Lemma 9.8 in [137]), we can write a Lyapunov function for the fast subsystem,

V f (ζ, η̄), with

η̄ = η − p(ζ) (2.39)

such that:

b1 ||η̄||2 ≤ V f (ζ, η̄) ≤ b2 ||η̄||2 (2.40)

∂V f

∂η̄
· g̃(ζ, η̄ + p(ζ), 0) ≤ −b3 ||η̄||2 (2.41)∣∣∣∣∣∣∣∣∂V f

∂η̄

∣∣∣∣∣∣∣∣ ≤ b4 ||η̄|| (2.42)∣∣∣∣∣∣∣∣∂V f

∂ζ

∣∣∣∣∣∣∣∣ ≤ b5 ||η̄||2 (2.43)

where bi > 0, i = 1, . . . , 5.

2We note that V s is not necessarily the same as the function V defined in (2.26)
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Under the new coordinates (2.39), (2.34)-(2.35) becomes:

ζ̇ = f̃(ζ, η̄ + p(ζ)) (2.44)

ε ˙̄η = g̃(ζ, η̄ + p(ζ), ε)− ε∂p

∂ζ
f̃(ζ, η̄ + p(ζ)) (2.45)

We can define a “composite” Lyapunov function candidate for (2.44)-(2.45)

as:

V fs = V f + V s (2.46)

We observe that:

• g̃ is Lipschitz in ε linearly in the states ζ, η̄:

||g̃(ζ, η̄ + p(ζ), ε)− g̃(ζ, η̄ + p(ζ), 0)|| ≤ εL1(||ζ||+ ||η̄||) (2.47)

• since f̃(ζ,p(ζ)) and p(ζ) vanish at ζ = 0, we have∣∣∣∣∣∣f̃(ζ, η̄ + p(ζ))− f̃(ζ, η̄)
∣∣∣∣∣∣ ≤ L2 ||η̄|| (2.48)∣∣∣∣∣∣f̃(ζ,p(ζ))

∣∣∣∣∣∣ ≤ L3 ||ζ|| (2.49)∣∣∣∣∣∣∣∣∂p

∂ζ

∣∣∣∣∣∣∣∣ ≤ k1 (2.50)

Based on the above, it can be verified that the derivative of V fs along the trajec-

tories (2.44)-(2.45) fulfils:

V̇ fs ≤ −a1 ||ζ||2 −
a2

ε
||η̄||2 + a3 ||η̄||2 + a4 ||ζ|| ||η̄||+ a5 ||ζ|| ||η̄||2 + a6 ||η̄||3 (2.51)
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with positive a1 and a2, and nonnegative a3, . . . , a6. For all bounded η̄ with ||η̄|| ≤

ρ, this simplifies to:

V̇ fs ≤ −a1 ||ζ||2 −
a2

ε
||η̄||2 + a7 ||η̄||2 + 2a8 ||ζ|| ||η̄|| (2.52)

= −
[
||ζ||
||η̄||

]T [
a1 −a8

−a8 (a2/eps)− a7

] [
||ζ||
||η̄||

]
(2.53)

Thus, there exists an ε∗ > 0 such that for all 0 < ε < ε∗ for which the above

quadratic form is positive definite, and we have (see, e.g., Theorem 4.10 in [137])

V̇ fs ≤ −2γV fs (2.54)

for γ > 0. Consequently, we have:

V fs(t, ζ(t), η̄(t)) ≤ e−2γ(t−t0)V fs(t0, ζ(t0), η̄(t0)) (2.55)

and, from the properties of the Lyapunov functions V s and V f , we have:

∣∣∣∣∣∣∣∣ ζ(t)
η̄(t)

∣∣∣∣∣∣∣∣ ≤ K1e
−2γ(t−t0)

∣∣∣∣∣∣∣∣ ζ(t0)
η̄(t0)

∣∣∣∣∣∣∣∣ (2.56)

Recalling that η̄ = η − p(ζ) and ||p(ζ)|| ≤ k1 ||ζ||, we obtain:∣∣∣∣∣∣∣∣ ζ(t)
η(t)

∣∣∣∣∣∣∣∣ ≤ K2e
−2γ(t−t0)

∣∣∣∣∣∣∣∣ ζ(t0)
η(t0)

∣∣∣∣∣∣∣∣ (2.57)

which captures the desired exponential stability property.

�

Remark 2.5. The role of the control law in (2.24) can be interpreted based on the

relative values of the penalty coefficients P , R and S. From this perspective, (2.24)
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can be construed as either a NMPC controller designed for disturbance rejection

or setpoint tracking (this is the case, for example, when P/S = O(1) and R =

diag[λ1 . . . λms ], with λi/λj = O(1) and P/λi = O(1)), or a real-time optimization

of energy use (in which case P/S = O(1) and P/λi � 1). Note that in the latter

case, control moves which consist of increasing the energy input to the system are

strongly penalized.

The framework developed above can also be extended to account for predicted

values of time-varying energy-relevant disturbances (e.g., weather, real-time or

time-of-day changes in energy utility costs), thereby providing a predictive, rather

than reactive, approach to managing system energy use.

Remark 2.6. A purely economic control objective that only accounts for the cost

of the external energy inputs (i.e., having P = S = 0) can be employed to develop

a version of the supervisory controller. However, this approach will only guarantee

the asymptotic stability [8] in the slow time scale and the overall stability result in

Theorem 2.1 is no longer valid. Note, however, that stability is still likely to be

achieved in practical situations.

2.5 Case Study: Control of a Reactor Feed-Effluent Heat
Exchanger Process

We consider a process with energy recovery as shown in Figure 2.2. The

process consists of an adiabatic continuously stirred tank reactor (CSTR) and a

feed-effluent heat exchanger (FEHE). Such process configurations are frequently

used in industry for carrying out reactions that occur at high temperature but
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are only mildly exothermic, when the role of the FEHE is to pre-heat the raw

material stream based on recovering heat (including the heat of reaction) from

the reactor effluent stream3. A fired heater is also present in the process for

improved operability: its role is to ensure that the temperature of the reactor feed

is at a desired value that ensures, e.g., maximum conversion. A bypass stream is

available as a further means to adjust the operation of the FEHE. We assume that

the reaction A→ B, which is first-order with rate constant k = koe
(−E/RT ), occurs

in the reactor. The component A is fed to the process at a volumetric flow rate

Fin, with the inlet stream having molar concentration cAo.

FEHE

Reactor

Feed

Product

Trim Heater

Bypass

(α)

TR

Ti

TH

TC

Figure 2.2: Reactor-FEHE process with fired furnace and exchanger bypass stream.

In order to derive a model for this process, we assume that the physical

properties of the process streams (notably, heat capacity, density and thermal

conductivity) do not vary significantly with temperature. Also, we consider that

heat exchange in the FEHE occurs without phase change (no evaporation or con-

densation take place) and, further, that the quantity of material contained in both

channels of the heat exchanger does not vary in time (i.e., constant holdup). Under

these assumptions, we can write the process model as [18]:

3The use of FEHEs is in general avoided when strongly exothermic reactions are involved due
to the risk of temperature runaway in the presence of disturbances that cause an imbalance in
the rate at which the heat recovered from the effluent is absorbed by the feed stream.
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dV

dt
= Fin − F

dcA
dt

=
Fin
V

(cAo − cA)− kcA
dTR
dt

=
Fin
V

(Ti − TR)− 1

ρ Cp
kcA∆H

∂TH
∂t

= −vH
∂TH
∂z
− UA

ρ Cp

TH − TC
VH

∂TC
∂t

= −vC
∂TC
∂z

+
UA

ρ Cp

TH − TC
VC

dTi
dt

=
Fin
Vf

(TCz=L
− Ti) +

QH
ρ CpVf

(2.58)

The temperature in the FEHE is distributed in the axial (z) direction, and, in order

to complete the model, we define the boundary conditions for TH , the temperature

in the hot leg of the exchanger, and, respectively, for TC , the temperature in the

cold leg, as THz=L
= TR, TCz=0 = Tin, with Tin being the temperature of the feed

stream, and TR the reactor temperature. We denote by Texit the temperature of

the product stream exiting the process, and by Ti the temperature of the stream

leaving the trim heater. Let vH = Fin(1−α)/AH and vC = Fin/AC , where α is the

bypass ratio. Finally, we denote the holdups of the reactor, the FEHE cold and

hot sides, and the trim furnace by V , VH , VC and Vf , respectively, and the duty of

the furnace by QH .

The nominal values of the process variables and parameters are presented

in Table 2.1.

By performing an energy balance calculation, we can show that the temper-

ature values in the two sides of the heat exchanger at the “cold end” (i.e., at the

inlet of the feed stream) are very similar (a situation often referred to as a “tem-
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Table 2.1: Process parameters (adapted from [18])

ko 1.2667×107 s−1 α 0.1
E 142870.0 J/mol TR 922.0 K
∆H -54.828 kJ/mol Ti 909.62 K
ρ Cp 4.184×106 J/m3/K Texit 301.83 K
UA 83680 W/K TC,z=L 864.59 K
cA 55.19 mol/l Tin 300.0 K
QH 108.7 kW V 0.1 m3

Fin 5.77×10−4 m3/s VH 0.1 m3

F 5.77×10−4 m3/s VC 0.09 m3

cAo 1000.0 mol/m3 Vf 0.01 m3

L 5.0 m

perature pinch” [157]). Evidently, this is very desirable and is indicative of the

fact that the process is of the type discussed above, having high energy recovery.

For this process, we can define the energy recovery number as

Rc = Hrec,s/[Finρ Cp(Tin − Tref )]s (2.59)

with Tref being a reference temperature. Following the developments in Section

2.3, we also define the following O(1) quantities, where j ∈ {R, i, C}:

kj =
[Finρ Cp(Tj − Tref )]s

Hrec,s

uj =
Finρ Cp(Tj − Tref )

[Finρ Cp(Tj − Tref )]s

(2.60)

and urec = Hrec/Hrec,s.

Following the procedure outlined earlier in the paper, we define the stretched,

fast time variable τ = t/ε. Subsequently, we can rewrite the model in the fast

time scale and, by considering the limit ε→ 0, we obtain a description of the fast

dynamics of the process in the form of Equation (2.9):
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dV

dτ
= 0

dcA
dτ

= 0

dTR
dτ

=
[Fin(Tin − Tref )]s

V
(kiui − kRuR) (2.61)

dTH
dτ

=
[Fin(Tin − Tref )]s

VH
(kRuR − urec)

dTC
dτ

=
[Fin(Tin − Tref )]s

VC
(−kCuC + urec)

dTi
dτ

=
[Fin(Tin − Tref )]s

Vf
(kCuC − kiui)

Subsequently, using the analysis tools presented earlier in the paper, a descrip-

tion of the slow dynamics of the process can be obtained [18] in the form :

V̇ = Fin − F

˙cA =
Fin
V

(cAo − cA)− koe(−E/RTR)cA

ṪR = [−kcATR∆HVUA + ρCpTin UA(Fin − F ) (2.62)

+ 8 (ρCp)2FFin TR(α− 1) + ρCp FTin αUA

− αρCp TR F UA + QH UA] /DEN

DEN = ρCp [UA(VC + Vf + V ) + 8 Vh Fin ρCp(1− α)]

which constitutes a state-space realization of the form (2.20), with ζ = TR and ωs

= QH .

In order to carry out numerical simulations for the subsequent examples, the spa-

tial derivatives in the plant model in Eq. (2.58) were discretized using a backwards

finite difference scheme on a grid of 301 nodes, while the supervisory controller was

based on the reduced-order model of the slow dynamics in Eq. (2.62). Lower and

upper bounds of, respectively, 910K and 940K were imposed on the reactor tem-

perature TR. In order to achieve offset-free tracking, we utilized a model extension
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following the ideas proposed in [204, 203], which effectively endows the NMPC

controller with integral action. We note that this approach does not change the

dynamic analysis and control results presented above.

2.5.1 Example 1

We performed simulations considering a production increase situation, whereby

the feed flow rate is increased by 10% at time t = 0.25h, along with an increase in

the feed temperature to 310K. We considered both a tracking controller (in which

case the tuning parameters in Eq. (2.24) were set to P = S = 10 and R = 10−6 as

discussed in Remark 2.5), and an economics-oriented optimization, in which case

R was increased to 10 and P = S = 10−6, indicating that the control objective is

the minimization of the total amount of energy used. The prediction horizon was

T = 10 minutes. Disturbance measurements were assumed to be unavailable to

the controller.

Figure 2.3 shows the response of the reactor-FEHE process to these disturbances

under the supervisory NMPC using the tracking objective defined above, with

TR,sp = 922K . Note that the controller exhibits excellent performance. The

simulation results obtained using the economic objective function are shown in

Figure 2.4. Again, the proposed control strategy exhibits very good performance;

as expected, the reactor temperature is maintained at the lower acceptable bound,

which, intuitively, translates into minimizing the heating rate QH in the furnace.

We note, however, that the lower bound on the temperature is violated briefly

when disturbances occur; this can be easily interpreted in light of the fact that
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the direction of the disturbance is such that the temperature of the reactor drops

(see the open-loop response shown in Figure 2.5), and a purely feedback control

strategy cannot counter this effect.

To further elucidate this matter, we performed an additional closed-loop sim-

ulation assuming that measurements are available for both the flow and the feed

temperature disturbance. In this case, the reactor temperature returns within the

admissible bounds faster (Figure 2.6), but - intuitively - at the cost of a more

aggressive control action.
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Figure 2.3: Evolution of the reactor temperature and furnace heat duty using a
tracking objective

2.5.2 Example 2

We simulated a production increase scenario, with a 7% feed flow rate increase

at t = 1h, along with an increase in the feed temperature to 310K. We considered

both a tracking controller (the tuning parameters in (2.24) were set to P = S = 10
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Figure 2.4: Evolution of the reactor temperature and furnace heat duty using an
economic objective
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Figure 2.5: Open-loop response of the reactor temperature for an increase in both
feed flow rate and inlet temperature

and R = 10−6 as discussed in Remark 2.5), and an economics-oriented optimiza-

tion, with R = 10 and P = S = 10−6. The prediction horizon was T = 10

minutes. We solved the problem using a standard “delta-input” formulation, with

|dQ/dt| < 0.3kW/min as an additional constraint. In simulating the tempera-
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Figure 2.6: Evolution of the reactor temperature and furnace heat duty using an
economic objective

ture tracking scenario, we also considered a 2K rise in the reactor temperature

setpoint, TR,sp, to compensate the conversion decrease associated with the rise in

throughput.

Figure 2.7 shows the response of the reactor-FEHE process to these disturbances

under the supervisory NMPC using the tracking objective defined in the previous

section. Note that the controller exhibits excellent performance. The simulation

results obtained using the economic objective function are shown in Figure 2.8.

As expected, the reactor temperature is at the lower acceptable bound, which,

intuitively, translates into minimizing the heating rate QH in the furnace.

41



0 0.5 1 1.5 2 2.5 3 3.5 4

900

920

940

t (hrs)

T
re

ac
to

r (
K

)

0 0.5 1 1.5 2 2.5 3 3.5 4

110

120

t (hrs)

Q
H
 (

kW
)

Figure 2.7: Evolution of the reactor temperature and furnace heat duty using a
tracking objective
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Figure 2.8: Evolution of the reactor temperature and furnace heat duty using an
economic objective

2.6 Conclusions

In this paper, we considered a class of systems with significant energy recovery.

Extending our previous results concerning the two time scale dynamics of such

systems, we demonstrated that the fast component of the dynamics of such sys-
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tems is stable in general and asymptotically stable in systems of practical interest.

We used this result to develop a composite controller design, consisting of i) a

linear control system to exponentially stabilize the fast dynamics and, ii) a non-

linear model predictive controller for the slow dynamics, and demonstrated that

it guarantees exponential stability for the overall system. Through a transparent

definition of the penalty terms in the NMPC objective function, we showed that

the proposed control approach can be translated into a strategy for optimal energy

management and reduction of energy use at the system level, and established a

parallel between the approach introduced in this paper and economic model predic-

tive control. Finally, we illustrated our theoretical developments with a simulation

case study.
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Chapter 3

Nonlinear Model Reduction and Model

Predictive Control of Residential Buildings with

Energy Recovery

The material in this chapter has been published in [253] and [254]

3.1 Introduction

Over 60% of the total electricity generated in the United States is used in

residential and commercial buildings [266]. Daily variations in building energy uti-

lization are at the origin of significant fluctuations in grid power demand. Meeting

such changes in demand requires the use of additional (intermediate and peaking)

power generation facilities, which operate at lower efficiencies, higher costs and

higher environmental footprints than their base load counterparts. To reduce the

variability of the energy demand posed by buildings, an understanding of the build-

ing dynamics, and of their impact on the design of predictive, proactive model-based

control and energy management strategies, is essential.

Buildings are dynamical systems evolving in a time-varying environment de-

fined by fluctuations in weather, occupancy and energy prices. In the presence of

such fluctuations, heating, ventilation and air conditioning (HVAC) systems must
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maintain occupant comfort within acceptable limits at a minimum cost. Opera-

tional decisions include the start-up and shutdown of heating and air-conditioning

equipment units, as well as dynamic utilization of potentially available renewable

energy and energy storage facilities. Decisions regarding the latter elements are

especially crucial in the smart grid environment [240].

Empirical or ad-hoc decision-making by operators in building management is

typically reactive in nature and based on the natural occupant response to vari-

ations in temperature throughout a given day. This leads to unnecessarily large

energy consumption at peak times, with a considerable impact on building elec-

tricity costs [65, 245, 190]. Given the significant energy costs of buildings, it is

quite surprising that on-off or simple linear controllers for temperature regulation

are still the norm in practical implementations [233]. The reluctance of practi-

tioners towards more advanced control and energy management techniques has

traditionally been motivated by their relatively high cost, by robustness and real-

time execution concerns, and by a potential lack of transparency for occupants and

operators [233]. However, rapidly rising energy prices and the need for advanced

control in the smart grid environment have spurred a surge in research regarding

the application of optimization and model-based controllers to the building energy

management problem [233, 289, 181].

The peak energy demand of buildings can be decreased significantly by adopting

a proactive energy management approach, based on forecasting and optimizing

energy generation, storage and utilization over a time horizon in the future [40, 65].

This requires i) predicting weather and other factors (e.g., human activity) that
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impact energy consumption, ii) using these predictions and a model of the building

to anticipate energy needs and, iii) optimizing energy use and reallocating loads

via an appropriate operating schedule for the HVAC and energy storage systems.

Of particular interest is the use of model predictive control (MPC), originally

developed by the chemical industry [218], owing to its ability to address an eco-

nomic or temperature tracking objective while satisfying constraints on the system

(e.g., occupant comfort levels) and accounting for forecasts of disturbances (e.g.,

changes in weather, occupancy). The implementation of these intuitive concepts

poses, however, a number of significant difficulties, both practical and fundamen-

tal. In particular, MPC implementations are vitally dependent on the availability

of an accurate building model that can be run rapidly, repeatedly and reliably

in real-time. Detailed design models such as those underlying advanced building

simulation software (e.g., EnergyPlus [263], eQUEST [123], TRNSYS [141]) are

of considerable size and complexity and do not lend themselves easily to use in

on-line calculations.

Several approaches have been employed for the identification of models consist-

ing of approximate representations of key components of the building dynamics,

which can then be used to provide the prediction of future states in the MPC

framework.

A number of works [104, 163, 164, 109, 224, 102, 103, 289, 195] discuss the use

of models with simplified structures such as resistance-capacitance (RC) networks.

Parameters are identified from building operating data or detailed simulations as

a means to simplify the modeling process. However, the derived models are typ-
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ically linear and therefore exhibit extrapolation difficulties, because buildings are

inherently nonlinear systems. Reduction approaches such as balanced realizations

[110] have been applied to obtain linear and nonlinear reduced-order models of RC

networks that retain a small number of states which evolve in a similar (typically

slow) time scale [104, 163].

Data-driven methods, including neural network models and genetic optimiza-

tion algorithms have lower online computational requirements but require long

training periods, have poor extrapolation performance and lose physical insight

[189, 144, 64]. Data obtained from detailed simulation software like EnergyPlus

[263] are often used to generate linear state-space models, which simplify the on-

line optimization calculation [197, 186, 162, 163, 215, 286, 285]. Even in cases

where nonlinear system identification is performed, the result may eventually be

linearized for use in MPC [196].

While all of these models are convenient for MPC implementations, their deriva-

tion is a laborious process that must be repeated for every new application; fur-

thermore, they are inherently inaccurate when the operating conditions deviate

from those considered during system identification [285]. Finally, the model vari-

ables themselves are devoid of physical meaning and carry no explicit correlation

with building design parameters (e.g., geometry, material properties, etc.).

On the other hand, first-principles, nonlinear models preserve their accuracy

over a broader range of operating conditions. To fully exploit this property, the

MPC problem should also be formulated in a nonlinear context (i.e., nonlinear

MPC - NMPC). Solving large-scale nonlinear optimization problems in real-time
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is problematic. In this context, nonlinear model reduction, i.e., the derivation

of low-dimensional nonlinear models that are suitable for online computations, is

extremely important. However, results using NMPC are rather scarce and varied

in their approach [216].

In this paper, we introduce an aggregate modeling approach and a singular

perturbations-based framework for the dynamic analysis and model reduction of

building models. While such techniques have been –more or less formally– used

in the past [136, 274, 85], applications have relied largely on ad-hoc arguments.

Working with a prototype building model, we present a theoretical justification of

the empirically observed multiple time scale dynamic response of buildings, and

develop a mathematically rigorous methodology for deriving reduced-order models

for the dynamics in each time scale. Our analysis accounts for the potential use of

Heat Recovery Ventilators (HRVs) [225, 159], and we show that their presence leads

to the emergence of a dynamic behavior with three time scales, including an overall,

system-wide component which involves both the building and the HVAC system.

A simulation case study demonstrates the use of the derived reduced-order models

in the synthesis of a nonlinear predictive model-based optimal energy management

strategy for a single-zone test building situated on the University of Texas campus.

The proposed controller exhibits excellent performance, can easily be executed in

real-time and its implementation results in a shifted peak demand with potential

cost savings compared to conventional control strategies.
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Figure 3.1: Prototype single-zone building HVAC model and control system

3.2 System Description

We consider a prototype single-zone building and its HVAC system, as shown

in Figure 3.1, which is based on one unit of the UT Thermal Façade Laboratory,

shown in Figure 3.2. Five of the laboratory’s surfaces are well insulated walls, and

the entire south façade is a window. Regarding the function of the HVAC system

units, outside air is pre-heated or pre-cooled with the zone exhaust air in a Heat

Recovery Ventilator (HRV). This reduces the amount of heating or cooling that

has to be provided by the Air Handling Unit (AHU). The fresh air exiting the

HRV is heated or cooled in the AHU, then fed to the interior space or zone. Air

then exits the interior zone; part of it may be recycled and mixed with the fresh

air feed, while the remainder is directed through the HRV to the atmosphere. The

building details and interaction with the environment are shown in Figure 3.3, and

values for the building parameters (geometric dimensions, physical properties of
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Figure 3.2: University of Texas Thermal Façade Laboratory (photo courtesy of the
UT School of Architecture).

materials, etc.) are presented in the Appendix. The outer wall material is cement

and the inner material is an insulating layer.

The operation of the system is subject to disturbances, which include fluctu-

ations in outdoor air temperature, changes in cloud cover and solar irradiation

through windows, and to variations in the heat generated by the building occu-

pants (including human presence, the use of lighting, etc.).

Note that a single-zone does not necessarily correspond to a single room; a zone

can be thought of as the airspace handled using the same HVAC system. In effect,

this representation can be used to capture the dynamics of a building with multiple

rooms, and possibly extending to a much larger size, e.g., a typical residential home

served by a single HVAC system.

We are interested in identifying the fundamental dynamic features of this sys-

tem and their influence on the design of an advanced control system. For this
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Figure 3.3: Interactions between the building zone and environment. The temper-
ature of the air in the zone is influenced by conductive heat transfer through the
window and walls (only one wall is shown) and convective heat transfer at these
surfaces. The structural element temperatures are influenced by solar radiation
(I), long wave radiation, and the outdoor air temperature.

analysis, we propose using a lumped-parameter representation of the prototype

building. Lumped parameter models are derived from grouping particular struc-

tural elements with similar properties in order to yield a model with fewer states

but reasonable accuracy. In this paper we will consider two possible lumped repre-

sentations (note that coarse-graining, or the derivation of such aggregate models,

is a research topic in its own right): i) a minimal aggregate model, consisting

of a single thermal mass representative of the entire building structure, and ii) a

more granular aggregate model, which represents each wall as two thermal masses

in series. The minimal aggregate model will be analyzed in detail because of its

simplicity. Then the same procedure will be applied to the more detailed model,

which will be used in the case study later in the paper.
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3.2.1 Minimal Aggregate Model

Based on the assumption that the air within the different system units is suf-

ficiently well-mixed, and on the assumption that the building structural elements

are sufficiently conductive for their temperature to be uniform, we propose the

minimal aggregate model in Figure 3.4.

Tz
Tc

Th

Tf

QHVAC

Tm

Hin Hc Hf
HzHh Hrec Hmix

Figure 3.4: Minimal aggregate model. Dashed lines represent mass flow while solid
lines represent heat transfer. Each block labeled Ti corresponds to a state in the
model, and the heat streams of enthalpy Hi show the connections between the
lumped building elements. QHV AC represents the heat removed from the zone feed
air stream by the AHU.

Here, we assume that the operating conditions of the building are such that the

heat capacity, density and thermal conductivity of the air and building materials

do not vary considerably. To simplify the dynamic analysis, we do not include

any complex interactions between the structural elements and the environment

(e.g., nonlinear terms like convection coefficient correlations, long wave radiation).

Under these assumptions, the dynamics of the system in Figure 3.4 can be described

by the following set of energy balance equations:

dTz
dt

=(Hf −Hz − UmAm(Tz − Tm)−Qdist)/ρairCp,airVz (3.1)

dTf
dt

=(Hc +Hmix −Hf +QHV AC)/ρairCp,airVf (3.2)
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dTc
dt

=(Hin −Hc −Hrec)/ρairCp,airVC (3.3)

dTh
dt

=(Hz −Hh −Hmix +Hrec)/ρairCp,airVH (3.4)

dTm
dt

=(UmAm(Tz − Tm) + UextAext(Text − Tm))/ρmCp,mVm (3.5)

where Hi = FiρCp,airTi is the enthalpy of air flow at point i, UmAm are the heat

transfer coefficient and heat transfer area between the zone air and the building

structural elements, and UextAext represents heat transfer from the lumped struc-

tural elements to the outside air. Note that the feed steam Hin is actually defined

using the outdoor temperature Text. Qdist represents any heat flux that may act

as a disturbance to the indoor temperature. The notation is summarized in Table

3.7.

The calculation of the amount of heat recovered in the HRV is, evidently, crucial

for accurate modeling, but can be done in several ways and will be discussed later.

3.2.2 Time-scale Analysis

We begin by observing that there is an inherent and significant discrepancy in

the parameters of the model (3.1-3.5). Namely, the heat capacity and density of

the building structural elements are significantly higher than the heat capacity and

density of the air circulated through the building. Thus, we can define:

ε1 =
ρairCp,air
ρmCp,m
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and note that, based on the above observation, ε1 � 1. We also capture the effect

of energy recovery in the HRV on the system dynamics, and define

ε2 =
Hss
in

Hss
rec

as the ratio of steady state input to recycled air enthalpy,

κi =
Hss
i

Hss
rec

as the ratio of steady state enthalpy of stream i to the steady state rate of heat

recycling, and

µi =
Hi

Hss
i

as the ratio of enthalpy of stream i to its steady state value.

Using this notation, the model (3.1-3.5) becomes:

ε1
dTz
dt

=
−UmAm(Tz − Tm)−Qdist + 1

ε2
Hss
in(κfµf − κzµz)

ρmCp,mVz
(3.6)

ε1
dTf
dt

=
QHV AC +Hmix + 1

ε2
Hss
in(κcµc − κfµf )

ρmCp,mVf
(3.7)

ε1
dTc
dt

=
Hin + 1

ε2
Hss
in(−µrec − κcµc)

ρmCp,mVc
(3.8)

ε1
dTh
dt

=
−Hh −Hmix + 1

ε2
Hss
in(κzµz + µrec)

ρmCp,mVh
(3.9)

dTm
dt

=
UmAm(Tz − Tm) + UextAext(Text − Tm)

ρmCp,mVm
(3.10)

Owing to the presence of the small parameter ε1, the system (3.6-3.10) is in a

singularly perturbed form [147]; more specifically, since ε1 multiplies the derivatives
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of a subset of state variables, the system is in a standard singularly perturbed form.

Standard theory (see, e.g., [142]) indicates that the system will have a two time

scale behavior, with the temperatures of the air in the different units, i.e., the

vector Tair = [Tz Tf Tc Th]
T being the fast variables, and the temperature of the

building structure, Tm, being the slow variable. Singular perturbation theory also

allows us to derive separate models for the dynamics in each time scale. In the limit

ε1 → 0, which physically corresponds to an infinitely large structure heat capacity

(or an infinitely small air heat capacity), an expression for the slow dynamics (i.e.,

for the evolution of Tm) can be obtained in the form of a differential-algebraic

equation (DAE) system

0 =fT(Tair, Tm) (3.11)

dTm
dt

=
UmAm(Tz − Tm) + UextAext(Text − Tm)

ρmCp,mVm
(3.12)

where, for convenience of notation, we used fT to denote the right-hand-side of

(3.6), (3.7), (3.8) and (3.9). Equation (3.11) can be solved to obtain expressions

for Tair, which can be subsequently substituted in the differential equation (3.12) to

obtain a state-space realization (ODE representation) of the slow dynamics which

are, evidently, associated with the thermal mass.

Subsequently, by defining the stretched, fast time variable τ1 = t/ε1, and con-

sidering the same limit case ε1 → 0, we obtain

dTz
dτ1

=
−UmAm(Tz − Tm)−Qdist + 1

ε2
Hss
in(κfµf − κzµz)

ρmCp,mVz
(3.13)

dTf
dτ1

=
QHV AC +Hmix + 1

ε2
Hss
in(κcµc − κfµf )]

ρmCp,mVf
(3.14)
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dTc
dτ1

=
Hin + 1

ε2
Hss
in(−µrec − κcµc)

ρmCp,mVc
(3.15)

dTh
dτ1

=
−Hh −Hmix + 1

ε2
Hss
in(κzµz + µrec)

ρmCp,mVh
(3.16)

dTm
dτ1

=0 (3.17)

which represents a description of the fast (boundary layer) dynamics associated

with the air temperature, when the slow variable Tm is at quasi-steady state.

Let us now focus on the effect of the HRV (and, in general, of energy recovery

and recycling) on the dynamics of the building. To this end, recall that the term

ε2, present in the above model of the fast dynamics, represents the ratio of the

energy flow rate associated with the air stream to the energy flow within the HRV,

i.e., the amount of energy recovered from the exhaust air. Based on the value of

ε2, we can distinguish two specific cases:

• ε2 � 1, i.e., very low energy recovery

• ε2 � 1, i.e., significant energy recovery

The first case corresponds, in practice, to the absence of an HRV (in this case,

its capital cost would not be justified by the small energy savings realized). The

second case is in fact the case of practical interest because of very large potential

energy savings. Note that a third, intermediate case (i.e., ε2 = O(1)) can also

be discussed, which corresponds to achieving some modicum of energy recovery.

This situation is typically not of practical interest because energy savings would

be offset by capital expenditure.

Let us now reconsider the fast dynamics (Equations 3.13-3.16) in the high energy
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recovery case. Owing to the presence of ε2 � 1, the model (3.13-3.16) is in a

nonstandard singularly perturbed form [147], having thus itself the potential to

exhibit a two time scale response. Note that in this case κi and µi are O(1), so the

tare at which energy is circulated throughout the system is the same magnitude as

the rate at which energy is recycled (κiµi = O(1)). We proceed by considering the

fast dynamics of this system (and, by extension, the fastest dynamics of the entire

building). To this end, let us define the fastest time scale τ2 = τ1/ε2 = t/(ε1ε2),

where the model becomes:

dTz
dτ2

=
ε2(−UmAm(Tz − Tm)−Qdist) +Hss

in(κfµf − κzµz)
ρmCp,mVz

(3.18)

dTf
dτ2

=
ε2(QHV AC +Hmix) +Hss

in(κcµc − κfµf )
ρmCp,mVf

(3.19)

dTc
dτ2

=
ε2Hin +Hss

in(−µrec − κcµc)
ρmCp,mVc

(3.20)

dTh
dτ2

=
ε2(−Hh −Hmix) +Hss

in(κzµz + µrec)

ρmCp,mVh
(3.21)

and consider the limit case ε2 → 0, which corresponds to the (ideal and, evidently,

highly desirable) case of an infinitely large rate of energy recycling. In this case,

we obtain a description of the fastest dynamics of the air in the building:

dTz
dτ2

=
(κfµf − κzµz)
ρmCp,mVz

(3.22)

dTf
dτ2

=
(κcµc − κfµf )
ρmCp,mVf

(3.23)

dTc
dτ2

=
(−µrec − κcµc)
ρmCp,mVc

(3.24)

dTh
dτ2

=
(κzµz + µrec)

ρmCp,mVh
(3.25)
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Note that not all the quasi-steady state constraints,

0 =κfµf − κzµz (3.26)

0 =κcµc − κfµf (3.27)

0 =− µrec − κcµc (3.28)

0 =κzµz + µrec (3.29)

corresponding to the above equations are linearly independent; in effect, the first

equation above can easily be obtained from the sum of the last three. This suggests

that the fast dynamics (3.22-3.25) do not have an isolated equilibrium point; rather,

they will feature an equilibrium subspace (manifold), in which a slower dynamic

component evolves. We will refer to this dynamic component as the intermediate

dynamics of the building. To obtain an explicit description of the intermediate

dynamics, we consider the same limit case ε2 → 0 in the time scale τ1, and under

the quasi-steady constraints corresponding to the fastest dynamic component, i.e.,

Equations (3.27-3.29):

dTz
dτ1

=
1

ρmCp,mVz
[−UmAm(Tz − Tm)−Qdist + z1] (3.30)

dTf
dτ1

=
1

ρmCp,mVf
[QHV AC +Hmix + z2] (3.31)

dTc
dτ1

=
1

ρmCp,mVc
[Hin + z3] (3.32)

dTh
dτ1

=
1

ρmCp,mVh
[−Hh −Hmix − (z1 + z2 + z3)] (3.33)

where z1 = lim
ε2→0

1
ε2

(κfµf−κzµz), z2 = lim
ε2→0

1
ε2

(κcµc−κfµf ), and z3 = lim
ε2→0

1
ε2

(−µrec−

κcµc) are indeterminate (yet finite) algebraic variables. Equations (3.30-3.33),
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along with the (linearly independent) constraints (3.27-3.29) constitute a DAE

model of the intermediate dynamics of the building. This DAE system is of high

index, as the algebraic variables zi cannot be computed directly from the algebraic

constraints1. A single differentiation of the constraints is, however, sufficient to

obtain an expression for z, which can then be used to derive a state-space realiza-

tion (ODE representation) of the intermediate dynamics. The dimensions of the

differential equation system and algebraic constraints indicate that this ODE will

be one-dimensional2.

3.2.3 Energy Management and Control System Design

Remark 3.1. The developments above demonstrate that the use of energy recov-

ery in buildings (a highly desirable feature from an energy efficiency standpoint)

is at the origin of a dynamic behavior with three distinct time scales; (1) the tem-

peratures of the structural elements evolve over a long time horizon, (2) the air

temperature in the building zone evolves in a fast time scale and, finally, (3) an

intermediate dynamics emerges as a result of energy integration. It can be shown

[129] that the intermediate dynamics are associated with the total energy content

of the air in the building.

1The index of a DAE system is defined as the minimum number of times the algebraic equa-
tions must be differentiated in order to obtain an expression for time derivative of the algebraic
variables z [147, 142, 18].

2The dimensionality of the slow variables ζ is related to the difference between the number
of states x ∈ Rn and algebraic constraints z ∈ Rp. In this case, there are 4 states and 3 linearly
independent algebraic constraints, and the dimension of the ODE representation of the slow
dynamics will be at most one.
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The design of controllers for systems with multiple time scale dynamics should

be addressed separately for each time scale, an approach known as composite

control [142]. Along with the developments above, this suggests that the control

and energy management of buildings should consider three separate tiers of control

action, addressing control objectives i) in each element of the HVAC system, ii)

over an intermediate time horizon that concerns the overall energy content of the

air and, iii) related to the temperature of the structural elements. Our main

interest in this paper is to identify, in a generic fashion, the structure of an overall,

building-level energy management strategy. To this end, we make the following

observations:

• intuitively, the dynamics in each time scale are stable (with no energy input, the

building will eventually reach thermal equilibrium with its environment).

• controlling the temperature of the structural elements is not of practical interest,

which eliminates the need for designing a controller for the dynamics in the slowest

time scale. However, the significant thermal inertia (reflected in the slow dynamics)

of the structural elements should be accounted for.

• it may not be necessary to control the temperature in each element of the HVAC

system (or in each room of a zone). The temperature/energy use in one of these

elements may not have a significant impact on the total building energy use.

The above observations suggest that managing building energy use should con-

sider the evolution of the total energy stored in the air mass of the building, as

well as the energy stored in the building structural elements. The models of the

intermediate and slow dynamics should be used as a basis for synthesizing model-
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based control structures that accomplish these goals. To this end, the availability

of explicit low-dimensional state-space realizations of the dynamics in each time

scale provides significant flexibility for controller design, and allows for the use of

both inversion- and optimization-based controllers.

3.2.4 Model reduction

Because the intermediate dynamic is associated with the total energy content of

the air in the building, this dynamic component will impact energy consumption.

It should be explicitly characterized and accounted for in the controller design. The

procedure for deriving the state space representation of the intermediate dynamics

of the nonstandard singularly perturbed system (3.6 - 3.10) is described in [18, 27].

It involves a nonlinear coordinate transformation T(x) = [T̃z η]T , where x includes

the states in the DAE model, T̃z represents the evolution of variable Tz in the

intermediate time scale, and η the fast variables. Note that, in order to proceed

with this step, an explicit expression (i.e., in terms of the temperatures Tair) of the

energy flow rate Hrec must be provided. We use the Underwood approximation

[261] to define the driving force for heat transfer in the HRV:

Hrec = UrecArec

(
(Tc − Tz)1/3 + (Text − Th)1/3

2

)1/2

(3.34)

The Underwood approximation has better numerical properties than the log

mean temperature difference (LMTD) ∆TA−∆TB
ln(∆TA/∆TB)

in this situation because of the

potential to have ∆TA = Tc − Tz = Text − Th = ∆TB, in which case the LMTD is

indeterminate.
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Subsequently, we compute an ODE representation of the zone temperature in

the DAE model accounting for overall temperature dynamics in the building (see,

e.g., [19] for details) as:

dT̃z
dt

=
8T̃zF

2
in(ρairCp,air)

2 + UrecArec(Qdist +QHV AC + UmAm(Tm − T̃z))
ρairCp,air(UrecArec(Vc + VHV AC + Vz)− 8FinVhρairCp,air)

(3.35)

This model is non-stiff and can be used as a basis for controller design.

3.3 Case Study

We consider the problem of managing HVAC energy use in the UT Thermal

Facade Laboratory, which we represent using a detailed model comprised of the

partial-differential equations (3.36 - 3.46) presented in section 3.3.1. A finite dif-

ference discretization of this model yields an ODE representation consisting of

over 400 ordinary differential equations, which is evidently too large for use in

practical online optimization calculations. In response to this challenge, we will

design our control system based on an aggregate model of similar structure as the

model discussed in Section 3.2.1, but featuring a more detailed (and hence, more

realistic) representation of the thermal properties and dynamics the wall elements

of the building. This model, which we refer to as a granular aggregate model,

is described in section 3.3.2. Table 3.1 summarizes the models developed in this

paper.

3.3.1 Detailed System Model

Figure 3.3 shows the details of the building structure and interactions with the

outdoor environment. The south facing wall is a single window, and each remaining
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Table 3.1: Model naming conventions

Name Equations
Minimal aggregate model 3.1 - 3.5
Granular aggregate model 3.54 - 3.60
Reduced order minimal model 3.35 and 3.5
Reduced order granular model 3.74 and 3.58 - 3.60
Detailed full-order system model 3.36 - 3.46

wall (including the roof an floor) has an inner insulation and outer cement layer.

The insulation is such that the majority of the heat transferred into the air space

comes from sunlight through the window. The parameters defining the components

of this model are in Tables 3.2, 3.3, 3.4, and 3.5. The sets

w ∈ Wall ={North,East,West, Roof, F loor}

win ∈ Win ={South}

s ∈ Surfaces =Wall ∩Win

are used in the detailed system description, presented in Equations (3.36 - 3.46).

In order to simulate the detailed building system, the PDEs (3.38), (3.39), (3.43),

(3.44) were each discretized using a finite-difference approach and,respectively, 100,

100,10, and 30 nodes. The final model therefore includes over 400 states.

dTz
dt

=
Hfed −Hz +

∑
w∈W U in

w Aw(Tm2
w − Tz) +

∑
win∈Win U

in
winAwin(Twin − Tz)

ρairCp,airVz
(3.36)

dTf
dt

= (Hc +Hmix −Hfed +QHV AC) /(ρairCp,airVHV AC) (3.37)

∂Tc
∂t

=− νx
∂Tc
∂x

+
UrecArec
ρCpVc

(Tc − Th) (3.38)

∂Th
∂t

=− νx
∂Th
∂x

+
UrecArec
ρCpVc

(Th − Tc) (3.39)
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Tc|x=0 = Text (3.40)

Th|x=l = Tz (3.41)

dTwin
dt

=
αwinI

out,tot
win + Iout,lwwin − U in

winAwin(Twin − Tz)− U out
winAwin(Twin − Text)

ρwinCp,winVwin

∀win ∈ Win (3.42)

∂Tm1
w

∂t
=

(
Um1
w

∂2Tm1
w

∂x2

)
/(ρwCp,wVw)|m1 (3.43)

∂Tm2
w

∂t
=

(
Um2
w

∂2Tm2
w

∂x2

)
/(ρwCp,wVw)|m2 (3.44)

dTm1
w

dt
|out = αm1

w Iout,totw + Iout,lww − U out
w Aw(Tm1

w − Text) ∀w ∈ W (3.45)

dTm2
w

dt
|in = αm2

w I in,beamw + I in,fractionw − U in
w Aw(Tm2

w − Tz) ∀w ∈ W (3.46)

The main natural disturbances to the building environment include changes in

outdoor temperature and solar radiation, which is summarized in the following

set of equations that define the remaining parameters in the system (3.36 - 3.46).

Based on the calculation methods in EnergyPlus, in this model all beam radiation

transmitted by the window is assumed to fall on the floor. The diffuse radiation

transmitted is distributed among the interior surfaces by area. Thermal radiation

between the interior surfaces is negligible, but the model does account for interac-

tions between the exterior surfaces and the sky and ground (Equations 3.52 and

3.53) assuming a view factor of 0.5. The values of Iout,diffs , Iout,beams , Idiff transmittedwin ,

Ibeamtransmitted
win , Tsky, and Tground may be obtained over any time period using an

EnergyPlus model and appropriate TMY data.

Iout,tots =(Iout,diffs + Iout,beams )As (3.47)

I in,diffw =Idiff transmittedwin

αm2
w Aw∑

w(αm2
w Aw) + (τwinAwin)

(3.48)
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I in,beamw =0 ∀w 6= Floor ∈ Wall (3.49)

I in,beamFloor =Ibeamtransmitted
win AFloor (3.50)

Iout,lww =I lww→sky + I lww→ground (3.51)

I lww→sky =
1

2
εwεskyAwσ(T 4

w − T 4
sky) (3.52)

I lww→ground =
1

2
εwεgoundAwσ(T 4

w − T 4
ground) (3.53)

Table 3.2: HVAC Properties

par. val. units
Fin 0.11 m3/s
VC 0.08 m3

VH 0.08 m3

VHV AC 0.7 m3

UrecArec 20 W/K
ρairCpair 1214 J/m3K

Table 3.3: Wall Dimensions

par. val. units
AN 12.96 m2

AE,W 10.51 m2

AR,F 14.41 m2
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Table 3.4: Wall Material Properties

Property Outside (m1) Inside (m2) Units
ρCp 2.16E6 5.5E5 J/m3K
U 1 0.173 W/m2K
UN 2 7 W/mK
UE 2.4 9.3 W/mK
UW 2.1 7 W/mK
UR 1.3 10.6 W/mK
UF 3.2 2.9 W/mK
thickness 0.013 0.244 m
α 0.7 0.7
ε 0.95

Table 3.5: Window Properties

par. val. units
U in 1.7 W/mK
U out 6.3 W/mK
A 12.96 m2

thickness 0.0057 m
ρCp 2.1E6 J/m2K
α 0.16
τ 0.77

Table 3.6: Estimated parameters used in the granular model

Parameter Value (W/K)
UrecArec (coarse model) 20
UrecArec (reduced coarse model) 20E3
UwAw∀w ∈ W 0.173

66



Table 3.7: Nomenclature

Variable Description
T Temperature
H Enthalpy
ρ Density
Cp Heat capacity
V Volume
QHV AC Cooling load
I Solar radiation
α Absorption coefficient
τ Transmission coefficient
U Heat transfer coefficient
Subscript Description
w Wall
win Window
z Zone
f Zone feed
c HRV feed leg
h HRV exhaust leg
in Inlet stream
mix Air recycle stream
rec Energy recycle
Superscript Description
m1 Material 1 in wall w
m2 Material 2 in wall w
ss Steady state
in Interior wall or window surface
out Exterior wall or window surface
tot Combined diffuse and beam solar radiation
beam Direct (beam) solar radiation
diff Diffuse solar radiation
lw Long wave radiation
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3.3.2 Granular Aggregate Model

The main difference between the simple prototype model used for our theoretical

derivations in Section 3.2.1 and the granular model proposed in this case study is

that the granular model uses a separate thermal mass to represent each material

in every wall shown in Figure 3.3. This extension of the minimal model provides

a more accurate representation of the different wall layer materials. In the model

equations (3.54-3.60), two thermal mass elements (m1 and m2) are modeled for

each wall w ∈ W = {North,East,West, Roof, F loor}. The south window is

assumed to have a uniform temperature because it is a single glass pane, and is

labeled win = {South}.

The physical properties of each thermal mass are based on the construction of

the physical system discussed in the Appendix.

dTz
dt

=
Hf −Hz +

∑
w∈W U in

w Aw(Tm2
w − Tz) + U in

winAwin(Twin − Tz)
ρairCp,airVz

(3.54)

dTf
dt

= (Hc +Hmix −Hf +QHV AC) /(ρairCp,airVHV AC) (3.55)

dTc
dt

=(Hin −Hc −Hrec)/(ρairCp,airVc) (3.56)

dTh
dt

=(Hz −Hh −Hmix +Hrec)/(ρairCp,airVh) (3.57)

dTwin
dt

=
αwinI

out,tot
win + Iout,lwwin − U in

winAwin(Twin − Tz)− U out
winAwin(Twin − Text)

ρwinCp,winVwin
(3.58)

dTm1
w

dt
=
αm1
w Iout,totw + Iout,lww − U out

w Aw(Tm1
w − Text)− UwAw(Tm1

w − Tm2
w )

ρm1
w Cm1

p,wV
m1
w

∀w ∈ W

(3.59)
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dTm2
w

dt
=
αm2
w I in,beamw + I in,diffw − U in

w Aw(Tm2
w − Tz) + UwAw(Tm1

w − Tm2
w )

ρm2
w Cm2

p,wV
m2
w )

∀w ∈ W

(3.60)

I denotes various types of radiation (either solar or thermal) at each surface and

the calculation of these values is described in detail in the Appendix. U in
w and U out

w

represent convective heat transfer coefficients for the inside and outside surfaces

of each wall, and Uw is the coefficient for heat transfer between the two thermal

mass elements in each wall.

Tz

Twin

TNm2 TNm1

TEm2

TWm2

TRm2

TFm2

TEm1

TWm1

TRm1

TFm1

Tc

Th

Tf

QHVAC

Figure 3.5: Granular aggregate model. Dashed lines represent mass flow while solid
lines represent heat transfer. The enthalpy labels are not shown but are identical
to those in the minimal aggregate model.

All model parameters are based on the building structure and are defined in

the Appendix. Two parameters in the minimal and associated reduced model

that cannot be specified based on the physical properties of the detailed system

are UrecArec and UwAw, which represent the conduction coefficients and area for,

respectively, the legs of the heat recovery device and the two wall layers. One

method for the identification of these values would involve a rigorous parameter
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estimation procedure using data measured in a real building or obtained from an

EnergyPlus simulation. For this work the parameters were established by manually

comparing the open loop behavior of the lumped and detailed system models. It

is important to note that the value of UrecArec in the coarse and reduced coarse

models is not the same. This is a result of the model reduction procedure, and

can be attributed to the fact that the state corresponding to air temperature in

the reduced model accounts for all of the air in the system, not just the air in the

zone. Consequently, the value of UrecArec in the reduced model must be increased.

The values of these additional parameters are summarized in Table 3.6.

3.3.3 Analysis and Model Reduction

Following the results in section 3.2.1 for the minimal model, we extend the analy-

sis and model reduction for the granular model with several thermal mass elements.

In this case the choice of the perturbation parameter ε1 is not as straightforward

because there is not a single mass to compare to the thermal inertia of air.

Let

εk1 =
ρairCp,air
ρkCp,k

� 1 (3.61)

where k ∈ κ is the set of indices for all thermal mass elements directly connected

to the zone (corresponding to states labeled Tm2
w∈W and Twin in Figure 3.5) and

εg1 =
ρairCp,air
ρgCp,g

� 1 (3.62)

where g ∈ γ is the set of indices for all thermal mass elements in contact with the

outside air and the interior masses (i.e., states labeled Tm1
w∈W in Figure 3.5). We
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will show that as long there are only small differences in the material properties of

each mass, the system dynamics will exhibit the same three time scales identified

in section 3.2.2.

We begin with the assertion that the materials for every structural element have

sufficiently similar properties so that we can define the O(1) quantities δ, such that

Comparison between inner materials: δk1k2 =
εk11

εk21

=
ρk1Cp,k1
ρk2Cp,k2

= O(1)

(3.63)

Comparison between inner and outer materials: δgk =
εg1
εk1

=
ρgCp,g
ρgCp,g

= O(1)

(3.64)

We designate εK1 with K ∈ κ as the desired reference structural element for the

entire system (i.e., we wish to write all the model equations in terms of this single

perturbation parameter). Using

ρkCp,k =
ρairCp,air

εk1
=
ρairCp,air

εK1

1

δkK
(3.65)

ρgCp,g =
ρairCp,air

εg1
=
ρairCp,air

εK1

1

δgK
(3.66)

we can rewrite Equations (3.54) - (3.60) as

dTz
dt

=

∑
w U

in
w Aw(Tm2

w − Tz) + U in
winAwin(Twin − Tz)

ρairCp,airVz
+

Hin,ss

ε2
(κfµf − κzµz)
ρairCp,airVz

(3.67)

dTf
dt

=

(
Hmix +QHV AC +

Hin,ss

ε2

(κcµc − κfµf )
)
/(ρairCp,airVHV AC)

(3.68)

dTc
dt

=(Hin +
Hin,ss

ε2

(−µrec − κcµc))/(ρairCp,airVc) (3.69)
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dTh
dt

=(−Hh −Hmix +
Hin,ss

ε2

(κzµz + µrec)/(ρairCp,airVh) (3.70)

1

εK1

1

δwinK

dTwin
dt

=
αwinI

out,tot
win + Iout,lwwin

ρairCp,airVwin
+

−U in
winAwin(Twin − Tz)− U out

winAwin(Twin − Text)
ρairCp,airVwin

(3.71)

1

εK1

1

δwm1K

dTm1
w

dt
=
αm1
w Iout,totw + Iout,lww

ρairCp,airV m1
w

+

−U out
w Aw(Tm1

w − Text)− UwAw(Tm1
w − Tm2

w )

ρairCp,airV m1
w

∀w ∈ W (3.72)

1

εK1

1

δwm2K

dTm2
w

dt
=
αm2
w I in,beamw + I in,diffw

ρairCp,airV m2
w

+

−U in
w Aw(Tm2

w − Tz) + UwAw(Tm1
w − Tm2

w )

ρairCp,airV m2
w

∀w ∈ W (3.73)

Multiplying by εK1 results in a system of equations in the same form as (3.6-

3.10), where the perturbation parameter multiplies the derivative of the fast vari-

ables Tair and the remaining derivatives of the thermal mass element temperatures

are multiplied by O(1) quantities and therefore constitute slow variables in the

system. Comparing (3.6) to (3.67) we see that the main difference is the addition

of convective heat transfer terms to the system, which will appear collectively in

the reduced order model, shown below. Following the same methods used to derive

Equation (3.35), the Underwood approximation (3.34) was again used to model

heat recovery in the HRV and an ODE representation of the DAE model associated

with the intermediate dynamics of Equations (3.67 - 3.73) was computed as:

dT̃z
dt

=[8T̃zF
2
in(ρairCp,air)

2 + UrecArec(Qdist +QHV AC +
∑
w

U in
w Aw(Tm2

w − T̃z)

(3.74)

+ U in
winAwin(Twin − T̃z))]/DEN
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DEN =ρairCp,air(UrecArec(Vc + VHV AC + Vz)− 8FinVhρairCp,air)

Equations (3.74) and (3.35) differ only in the number of terms in the numerator

that relate to the structural elements. This result is significant because for any

single air zone, the reduced order model for the intermediate air temperature dy-

namics will have the same form regardless of the coarse-graining approach used to

construct the lumped parameter model of the building structure. Also, while the

reduction in the number of states in the model is less significant in this case (there

are still a significant number of ODEs representing the thermal mass elements), the

equation lacks the multiple time scale behavior that contributes to the stiffness of

the original model and is therefore well suited for online control and optimization

calculations. This point is demonstrated in the following section.

3.3.4 Model Stiffness Analysis

Designing inversion or optimization-based controllers using stiff models can be

problematic [18]. To demonstrate the benefits of the proposed model reduction

and time scale decomposition methodology we have linearized the detailed, gran-

ular, and reduced granular models about a common operating point in order to

calculate the eigenvalues and condition number of each system. This calculation

was performed assuming constant outdoor air temperature and solar radiation on

the surfaces and no occupants in the zone. The eigenvalues of the system matrices

are shown in Figure 3.6 and the condition numbers of the actual, granular, and

reduced order granular systems are, respectively, 1.58E7, 6.08E7 and 1.72E3. We

make the following observations:
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• The condition number of the full-order model system is slightly less than that

of the coarse model. While the smallest eigenvalue is the same for both, the

eigenvalues associated with slower states are larger in the full-order system than the

granular model. This is likely a result of the discretization of the PDEs describing

temperature in the wall materials.

• The condition number of the reduced order granular model is significantly less

than that of the granular model. This is a natural result of the time scale de-

composition and can be expected to yield significant benefits in controller design.

Evidently, the use of this model in controller synthesis is preferred.

• The eigenvalues were calculated at several operating points with very similar

results. This supports the fact that the stiffness of the system is a structural

property and not a function of the operating point.

3.3.5 Energy Management

The reduced order granular model (3.74) was used to formulate the energy

management problem as a moving-horizon optimal control problem, following the

economic model-predictive control paradigm (see, e.g., [226]):

min
QHV AC

J =

t0+NM∫
t0

C(t)QHV AC(t)dt (3.75)

s.t. reduced order granular model equations

Tminz ≤ T̃z ≤ Tmaxz

Qmin
HV AC ≤ QHV AC ≤ Qmax

HV AC(
dQHV AC

dt

)min
≤ QHV AC(t+M)−QHV AC(t) ≤

(
dQHV AC

dt

)max
(3.76)
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Figure 3.6: Model eigenvalues for 404-dimensional full-order model, the 15-
dimensional granular aggregate model, and the 12-dimensional reduced-order ag-
gregate model

The optimization objective, shown in Equation (3.75), is the total cost of energy

input to the AHU over the prediction horizon, where M is the sampling rate and

N is the number of samples taken over the prediction horizon. C(t) represents

the unit cost of energy. The constraints include bounds on the zone temperature,

cooling load, and the rate of change of the cooling load.

We will compare the performance of this economic objective to a temperature

tracking objective (3.77) subject to the same constraints (3.76)3.

min
QHV AC

J =

t0+NM∫
t0

(Tz − T SPz )2dt (3.77)

3Note that both economic and tracking terms could easily be included in a single MPC
weighted objective [27]
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In order to account for the inherent plant-model mismatches, we extended the

model with a disturbance term d (see, e.g., [204, 285]), defined as the time integral

of the discrepancy between the state predicted by the reduced model and the

corresponding state measured from the plant:

ẋ =

[
θ̇

ḋ

]
=

[
f(θ) + Dd
θmeasured − θ

]
(3.78)

where θ is the reduced granular model and D is a matrix of weight parameters.

This approach can be construed as providing the NMPC controller with integral

action; however, given the nature of the moving horizon formulation (3.75), the

role of the extended model is to eliminate plant-model mismatch rather than to

provide offset-free tracking. In the following simulations only the zone temperature

is measured and D is defined below. It has the same number of rows and columns

as the number of states in the reduced granular model (3.74 and 3.58 - 3.60), and

the nonzero elements correspond to states that are also measured in the actual

system.

D =

[
10−5 [0]1×11

[0]11×1 [0]11×11

]
(3.79)

3.3.6 Results and Discussion

The nonlinear MPC (NMPC) controller described in the previous section is used

to control the full-order system described in the Appendix, which consists of a set

of PDEs discretized using a finite-difference approach to yield over 400 equations.

Disturbances to the system include fluctuations in outside temperature and solar

radiation on each surface. These profiles are shown in Figure 3.7 for a typical
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August day in Austin, Texas, and are part of TMY2 weather data tabulated using

EnergyPlus. There is an increase in energy price from 3pm - 6pm, shown in Figure

3.8, which is representative of peak market prices in Austin in the summer months.

The controller has complete knowledge of the weather and pricing information,

and its ability to deal with incorrect forecasts is evaluated through the use of

unmeasured changes in the occupant profiles. Three different occupancy patterns

are considered and shown in Figure 3.9. In the first case there are no occupants

so we will directly observe the effect of the cost increase. The next two cases both

have 2 occupants (corresponding to a 200W heat load) entering the zone, and in

the third case the occupancy forecast is incorrect.

The NMPC settings when using the economic objective are: M = 20min.,

N = 24 (i.e., the prediction horizon is 8hrs long), Qmax
HV AC = 0W , Qmin

HV AC =

−3000W , Tminz = 21◦C, Tmaxz = 26◦C. Under the tracking objective, the bounds

are tightened to Tminz = 23◦C, Tmaxz = 25◦C and T SPz = 24◦C.

We evaluated the proposed energy management strategy through simulations.

Figure 3.10a shows the zone temperature subject to the three occupant patterns

when using the proposed economic strategy and the tracking NMPC.

Owing to the availability of accurate weather forecasts, the controller resorts

to precooling, anticipating impending disturbances to the system regardless of the

occupant scenario or objective function. In Figure 3.10a(a), the proposed energy

management strategy results in a significant decrease in the zone temperature

between hours 7− 15, a measure taken to counteract the large increase in energy

costs in the early-afternoon hours. For the tracking case, temperature is always
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Figure 3.7: Weather Profile for August 1
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Figure 3.8: Energy Cost

well within the specified bounds.

For the economic case, the increased energy consumption and operating cost

for this time interval is compensated for by the cost savings incurred during hours

15 − 18. We note that the overall cost savings compared to the tracking case are

negligible for the studies shown here (the maximum savings were in the case with

no occupants and were approximately 2.5%, and this figure depends on the price

structure and setpoint value). This is because the thermal mass in the Thermal
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Figure 3.9: Occupancy Disturbances

Façade Laboratory is relatively small, so in spite of the precooling action the con-

troller cannot significantly reduce the cooling load during the peak cost period by

storing refrigeration in the building walls (see Figure 3.11). It is therefore reason-

able to expect a larger cost savings and shift in energy demand in residential homes

or larger commercial buildings. Regardless of the savings incurred, this example

demonstrates the ability of economic NMPC to shift peak loads. The reduced-

order model used in the optimization calculation enabled the NMPC actions to

be computed within the controller sample time. We recognize that the continuous

nature of the HVAC system modeled here is not representative of HVAC systems

that operate only on an on/off basis; the energy management problem in the pres-

ence of such devices involves the formulation and solution of problem (3.75 - 3.76)

in a mixed-integer context, and will be the subject of our future work.
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We also note from the simulation results that there are limited time intervals

where the constraints on the zone temperature are violated. We attribute this

to the inherent plant-model mismatch (e.g., Figure 3.12, where we note that the

model predictions are still within the comfort bounds when the full-order system

slightly deviates from them). For the cases with occupants entering the zone,

when the model receives an incorrect occupant forecast, the closed-loop behavior

is similar to the case when there are no occupants (Figure 3.10(c) is more similar

to 3.10(a) than 3.10(b)). When the correct forecast is provided there is an even

longer precooling period in the economic case because of the anticipated larger

heat inputs to the system.

3.4 Conclusions

In this paper, we have addressed the building energy management problem

through the use of model-based predictive control, and focused on buildings which

are equipped with energy recovery devices. Our initial focus has been on modeling,

where we used singular perturbation theory to demonstrate that the dynamics of

buildings with energy recovery evolve over three distinct time scales: a slow time

scale, associated with the temperature of the structural elements, a fast time scale,

associated with the air temperatures in the building and HVAC system units, and

an intermediate dynamics that emerges as a result of the use of energy recovery

and involves the total energy stored in the air present in the entire building and

HVAC system. We have shown that this is true for a single zone and air-loop,

regardless of the number of structural elements involved in the model. Singular
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perturbation arguments were then used to derive reduced-order models for the

dynamics in each time scale of a residential (single-zone) building. These models

are physically meaningful, and we are able to draw from the building design data

to obtain values for the model parameters.

Economic and tracking objectives in an NMPC environment using the reduced-

order models were compared in simulations subject to different occupancy profiles

and forecasts. The single-zone building studied is representative of the University

of Texas Thermal Façade Laboratory. As expected, cost savings, though small,

and the ability to shift demand were seen under the economic objective. Most

importantly, the calculations are easily performed in real-time using the reduced

model. The derivations in the paper suggest that this model and associated con-

trol structure are applicable to a broader palette of single zone buildings, which

we consider to be a very encouraging result towards the rapid and cost-effective

deployment of model-based energy management approaches for small, residential

buildings.
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Figure 3.10: Zone Temperature Profiles
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Figure 3.11: AHU Power for Occupant Profile 1

0 3 6 9 12 15 18 21 24

21

23

25

27

t (hrs)

T
em

p
 (

°C
)

 

 
detailed system model
reduced granular model

Figure 3.12: Plant-Model Mismatch Using the Economic Objective for Occupant
Profile 1
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Chapter 4

Hierarchical Scheduling and Control Strategies

for Thermal Energy Storage Systems

The material in this chapter has been published in [252, 260, 256]

4.1 Introduction

Over 70% of the electricity use in the US can be attributed to commercial

and residential buildings [267]. In addition to being large electricity consumers,

buildings use power at a variable rate over the course of a day. In general, demand

from buildings exhibits a peak in the afternoon hours. Electricity producers and

grid operators typically use spare generation capacity (often referred to as “peaking

plants”) to meet this temporary demand rise, often incurring additional economic

and environmental costs [240]. Demand response (DR) strategies aim to alter the

electricity demand pattern of buildings [4], typically focusing on “load leveling,”

i.e., lowering peak demand and distributing power requirements more evenly during

the day. Demand Response initiatives incentivize users to shift their demand to

off-peak times via tiered energy price structures, which typically entail charging

higher rates during the peak period (see the example in Figure 4.1 for real-time

prices in the ERCOT market). In this context, energy storage technologies are
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Figure 4.1: Energy Reliability Council of Texas (ERCOT) demand and day ahead
settlement point prices for June 25, 2012 (Source: www.ercot.com)

key to enabling HVAC users to change their demand patterns without sacrificing

comfort [248].

Energy storage is an important component of peak shifting and load leveling

strategies: energy can be generated in excess of demand and stored during off-peak

hours, and used to supplement the generation capacity during peak times. In this

manner, generators can operate at or close to their peak efficiency. Evidently, the

use of energy storage for load leveling purposes is dependent on the availability of

an energy storage facility of adequate capacity. At present, grid-level installations

of storage batteries are cost-prohibitive, and efforts have concentrated on using

storage to modulate the energy use of large consumers. Since HVAC systems

account for over 20% of the energy use of buildings [267], and methods for HVAC

control and building temperature regulation remain fairly basic and are centered

on simple linear feedback control [233], HVAC energy management has become a

primary target for load leveling initiatives.
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Thermal energy storage (TES) technologies provide a viable and cost-effective

means of shifting electricity demands for HVAC loads. In particular, residential

and commercial buildings offer multiple modes of thermal energy storage. On the

one hand, structural elements (walls, foundations and foundation slabs, floors, etc.)

in some building designs constitute a significant thermal mass that can be used to

retain and release energy [253, 166, 234, 38]. Additionally, heating, ventilation and

air conditioning (HVAC) systems can be designed or retrofitted with tanks that

store cooling or heating agents (e.g., chilled or hot water) to help improve operating

efficiency and flexibility [117, 66]. Notably in the case of a predominantly cooling

climate (i.e., in hot weather), building HVAC systems can be operated in a pre-

cooling mode, where the structure is cooled beyond the usual limit during the

(morning) off-peak hours; in turn, this allows the HVAC system to operate at

lower intensity during the peak (afternoon) hours. Storage tanks are also typically

charged at night, and the chilled water is used to supplement HVAC operation at

peak times.

Maximizing the load-leveling benefits afforded by building thermal energy stor-

age does, however, require a close coordination of the charge/discharge events with

external factors such as grid load (which, in turn, dictates energy prices in real-

time price structures), weather, and building occupancy. This, in turn, calls for the

development of advanced optimization-based control strategies, which are capable

of orchestrating the operation of the HVAC system and TES elements under the

uncertainty provided by the aforementioned factors.

In this chapter, we introduce a framework for developing such energy manage-
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ment strategies. Both “active” (e.g., storage tanks) and “passive” (e.g., building

structural elements) TES systems are considered. Regarding active storage, we

present case studies involving cold water and latent energy storage using phase

change material (PCM). PCM-based systems are advantageous due to their com-

pact size [237]. However, their operation is complicated by the nonlinear behavior

induced by the melting/solidification cycles [6], and the development of strategies

for optimally integrating active PCM TES systems in building operations remains

a pressing and open problem since the majority of the literature is focused on

the design and control of passive PCM elements incorporated into the building

structure [237, 180].

4.2 Background: Optimal Control Strategies for Buildings

Engaging HVAC systems in DR strategies involves operating the system at

a higher level than actually needed during the off-peak hours, and storing the

excess energy (heating or refrigeration) for use during peak times. Since storing

energy incurs some losses, load leveling carries a penalty in terms of increased

overall energy consumption. Incentives for implementing DR strategies are often

provided in the form of time-of-use (TOU) pricing, where customers are subject

to a time-sensitive rate structure similar to the market price for electricity, with

energy prices typically much higher at peak times than in off-peak periods.

Shifting HVAC electricity demands in a TOU pricing framework calls for the use

of an advanced control system, which, i) can account for the dynamic prices and

minimize operating costs through the use of TES, while, ii) meeting indoor comfort
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(i.e., temperature) requirements for the building occupants and, iii) preserving the

integrity of the equipment and abiding by all operating constraints. Initially devel-

oped for applications in the chemical industry, Model Predictive Control (MPC)

provides an ideal framework for addressing these goals and has recently become

of major interest in the buildings sector [115]. It consists of a dynamic optimiza-

tion that is repeatedly solved over a finite, rolling time horizon [227] that yields

trajectories of system inputs.

The development of such control strategies for buildings is a challenging task,

owing to several (potentially conflicting) requirements. The controller, must i)

account for a long time horizon (at least equal to the period of time for which

electricity price and weather predictions are available), but may, ii) potentially

be executed frequently, such that control decisions are made over an appropriate

time scale to account for short-term fluctuations in, e.g., weather and occupancy.

Moreover, iii) the controller must include sufficient information about the building

dynamics (i.e., incorporate an appropriate model), and iv) set the operating mode

(e.g., charge, discharge) of TES storage systems, which, in turn, involves making

integer, rather than continuous, decisions.

Most industrial applications of MPC rely on a tracking objective function, for-

mulated in terms of minimizing the discrepancy between a (subset) of the system

states and their corresponding target values (setpoints). In the case of HVAC

systems, rather than tracking a prescribed temperature setpoint, it is more ad-

vantageous to formulate the controller objective function to account directly for

operating cost. In this case, the indoor temperature is allowed to vary within
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specified upper and lower comfort limits, and serves as an important handle for

reshaping the energy consumption profile of the building. This approach is re-

ferred to as Economic MPC (E-MPC), and it has been increasingly adopted in

buildings energy management research and applications [197, 166, 162, 181]. By

accounting for the costs associated with dynamic changes in ambient conditions,

occupancy and energy prices, E-MPC can outperform steady-state optimization

and heuristics-based approaches from an economic perspective [10, 9].

Using economic MPC for advanced energy management in buildings thus con-

sists of solving an optimization problem repeatedly over a prediction time horizon

T that is periodically shifted forward in time. The objective of the problem is

formulated in terms of operating cost (based on energy consumption), and the

optimal value is established subject to (s.t.) a set of constraints, which includes

the dynamic model of the building and equipment and comfort limitations:

min
u,m

Cost =

∫ T

to

f(electricity prices, electricity consumption)dt

s.t. dynamic building model equations

HVAC system model

TES system model

occupant comfort limits

equipment limitations

disturbance forecasts

(4.1)

While the details of the problem formulation and associated solution strategies

are elaborated on later in the paper, we discuss here a few of the challenges of E-
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MPC for buildings. Specifically, the solution of (4.1) is complicated by the multiple

time-scale nature of the system, comprising:

• a slow component, owing to longer-term trends imposed by daily weather

changes and fluctuations in energy prices. Fully accounting for this dynamic

component typically requires extending the prediction horizon T to a full day

(24 h) period

• a fast component, which is associated with short-term fluctuations in occu-

pancy, insolation and ambient conditions. Properly dealing with the short-

term dynamics requires controller outputs to be recalculated frequently; typ-

ical applications reduce this sampling time to a few minutes, which, in turn,

requires that controller calculations be completed within this time frame.

Moreover, since both continuous (u) and discrete (m) decision variables are typ-

ically present, and the system model must capture the system dynamics (rep-

resented by ordinary or partial differential equations), the formulation (4.1) is

classified as (difficult to solve) a mixed-integer dynamic optimization (MIDO).

Given that an optimal value for each manipulated variable (or “control handle”

u,m) of the system must be determined at every sample time over the entire time

horizon, meeting these requirements considerably increases the size of problem

(4.1). Additional complications arise from potential nonlinearities and discontinu-

ities in the set of differential equations describing the building, HVAC and TES

models (the latter, particularly due to capturing the melting/solidification events
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if latent thermal storage is used). Moreover, building models can be themselves of

large scale, compounding the dimensionality challenge.

Past research efforts seeking an efficient solution of the E-MPC controllers for

buildings follow two main directions. On the one hand, model reduction is centered

on simplifying the model elements to decrease the problem size. Methods for the

derivation of low-order models that are suitable for online calculations have been

proposed, e.g., in [164, 195, 104, 163]. On the other hand, modifications of the

optimization problem formulation can improve execution efficiency. These include,

e.g., utilizing the mixed logical dynamical (MLD) system paradigm [42]. Move

blocking strategies [172], consisting of using the same value for a decision variable

for all the time samples that are close to the end of the prediction horizon T

(thereby decreasing the granularity of the problem), were shown to reduce problem

size without significant economic penalty in terms of the value of the objective

function in (4.1) [166, 167]. In a different vein, the use of simultaneous (rather than

sequential) numerical solution approaches for the E-MPC optimization problem [9]

was shown to lead to improvements in computational performance and robustness

when dealing with problems involving unstable and ill-conditioned systems.

In this paper, we discuss a framework for developing such energy management

strategies. Our work considers using “active” storage systems, as an extension of

the available body of work that considers “passive” storage in buildings’ structural

elements whose operation can only be modulated indirectly by altering the indoor

air temperature. In particular, we focus on cold water storage and latent energy

storage in phase change materials (PCMs) embedded in, e.g., chilled water storage
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tanks [249, 206]. This affords us the opportunity to explore the equation-oriented

modeling, simulation and control challenges posed by the nonlinearity associated

with the solidification/melting phenomena that accompany the TES system charg-

ing and discharging events. Active TES systems feature multiple operating modes

(including charging, discharging and an inactive/off state), and coordinating their

operation with that of HVAC systems entails determining the optimal timing for

activating each mode of operation. Heuristics are often used [116, 305], but a more

sophisticated management approach is evidently desirable [66]. Model Predictive

Control (MPC) is ideally suited to this end.

The novelty of our approach consists of performing a time-scale decomposition of

the problem, followed by the design of a hierarchical control structure, comprising

i) of a scheduling calculation in the slow time scale, which establishes the operating

pattern of the thermal energy storage system, and, ii) a control system (e.g., MPC)

operating in the fast time scale, which addresses short-time disturbances related to

occupancy and ambient conditions. There are several examples [252, 152, 168, 284]

in the literature that discuss use of hierarchical control schemes tailored to the use

of storage in different time scales. In this work, we generalize this idea and present

a framework for controlling passive and active TES in buildings. Focusing on

the active storage management, we propose a reformulation of the optimization

formulation that makes this problem tractable online and in real time.
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4.3 Proposed Method: Optimization Framework for En-
ergy Management

A schematic of a building and HVAC system with thermal energy storage is

shown in Figure 4.2. This will form the basis for our discussion on energy man-

agement. The system can be described by a model of the form:

f1(t, ẋB,xB,xP ,uP ,mP,d) = 0 (dynamic building model equations)

f2(t, ẋP ,xP ,xB,xA,uP ,mP,d) = 0 (air-side HVAC model equations)

f3(t, ẋA,xP ,xA,uA,mA,d) = 0 (coolant-side HVAC and TES model equations)

where xB is a vector of variables representing the temperature of the air at points

inside the building and the temperatures of the structural elements of the building,

xP represents the temperature of the air within the HVAC system, and xA repre-

sents the temperatures of the coolant in the HVAC system and TES. Subscripts

P and A refer to passive and, respectively, active TES components. d are the ex-

ternal disturbances (e.g., weather, occupants, etc.) to the system. The functions

f1, f2, f3 are systems of differential equations. Note that the equations are coupled

to reflect the heat exchange between the components of the physical system, i.e.,

the terms xB, xP , and xA appear in more than one function.

The time-varying decision variables of the optimization problem are divided into

two subsets:

• continuous variables uP ∈ Ri and uA ∈ Rj, which comprise, e.g., temperature

setpoints and flow rates on the air-side and coolant-side of the HVAC system.
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• binary variables mP ∈ Bk and mA ∈ Bl, which represent the valve configura-

tions and on/off equipment states that correspond to each distinct operating

mode (as described in Section 4.7.1).

4.3.1 Centralized Optimization Formulation

We begin by describing a centralized control configuration where all decisions

regarding the control of thermostat setpoints, as well as concerning the operation

of the TES are made by a single optimization entity that follows the paradigm in

(4.1), as illustrated in Figure 4.2. The grey area designated ‘Load’ shows the heat

load that must be removed by the coolant part of the HVAC system.

Load

Building

(Passive 

Storage P)

xb

Thermal Energy 

Storage (Active 

Storage A)

Centralized 

Control

Disturbances (d)

Measurements

Control 

actions

Electricity

PHVAC

Air- side  
HVAC 

xp up mp

Coolant- side 
HVAC

xa ua ma

Forecast Mechanism

Figure 4.2: Centralized EMPC
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In this case, the E-MPC problem (4.1) for building systems with TES becomes:

min
uP ,mP,uA,mA

J =

t0+T∫
t0

C(t)PHV AC(t,uP ,mP,uA,mA)dt (4.2a)

s.t. f1(t, ẋB,xB,xP ,uP ,mP,d) = 0

(dynamic building model equations) (4.2b)

f2(t, ẋP ,xP ,xB,xA,uP ,mP,d) = 0

(air-side HVAC model equations) (4.2c)

f3(t, ẋA,xP ,xA,uA,mA,d) = 0

(coolant-side HVAC and TES model equations) (4.2d)

d = f4(t) (disturbance profiles) (4.2e)

xlowB < xB < xhighB (occupant comfort limits) (4.2f)

uP
low < uP < uP

high (equipment limitations) (4.2g)

uA
low < uA < uA

high (4.2h)∑
mP = 1

∑
mA = 1 (logical constraints) (4.2i)

The optimization objective function J represents the cost over the prediction

horizon T of power consumption in the HVAC system, PHV AC , subject to the

time-variable price structure C(t).

The dynamic models of the building, TES, and HVAC systems are embedded

in the problem formulation in constraints (4.2b) - (4.2d), and the disturbance fore-

casts are provided by (4.2e). Additional constraints (4.2f) - (4.2i) capture occupant
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comfort bounds on the indoor air (zone) temperature, as well as equipment limi-

tations. The latter include both physical limits (e.g., maximum and minimum air

and coolant flow rates), and reliability and durability constraints (e.g., preventing

short cycles for the HVAC equipment).

We refer to (4.2) as a “centralized” control strategy due to the fact that it is

tasked with finding the optimal values of all manipulated variables/control handles

(i.e., uP ,mP,uA,mA) that pertain to managing the operation of both the building

HVAC and TES systems. The solution of this problem for a warm day typically

involves pre-cooling the building (the elements of xB representing indoor air tem-

perature are at their lower bound xlowB ) in order to further cool the structural

elements, and charging the thermal storage tank (which corresponds to a specific

value of mA and uA) for a period of time before the price increase [297, 117]. Then,

during the peak price period, the structural elements can act as a heat sink to help

maintain indoor comfort (the elements of xB representing indoor air temperature

are usually allowed to drift to their upper bound xhighB ) and the TES is used instead

of the chiller to maintain the desired coolant temperature.

In the generic formulation (4.2) , the control problem is infinite-dimensional, and

a discretization step is required to obtain a solution. To this end, the prediction

horizon T is divided into N intervals of length M , such that T = NM . The

solution then consists of finding the optimal values of the decision variables for

each of the N intervals assuming that each decision variable remains constant over

the duration of an interval. The problem is solved on a moving time horizon,

such that the solution for the first time interval is implemented in the system, the
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prediction horizon is shifted in time by M time units, and the solution process is

repeated.

As alluded earlier, in order to take full advantage of the predictive component of

the controller, the time horizon T in (4.2) should be at least as long as the time span

over which energy prices are provided (a 24-hour period in most energy markets).

On the other hand, a short value of M must be used (typically, M = 10 minutes) in

order to recompute control decisions and respond to disturbances (such as changes

in occupancy and ambient conditions) as they occur. These two requirements

increase the number of control intervals N , and, in turn, the total number of

optimization decision variables (which is equal to N × (i + j + k + l), where i, j,

k, and l are the dimensions of the decision variables - see the definitions at the

start of section 4.3) over the entire time horizon. A large number of integer and

continuous decision variables, coupled with a complex building model, renders this

problem difficult to solve in the amount of time available to compute a control

move (i.e., within the time span M) [32, 82].

4.3.2 Hierarchical Energy Management Strategy

The above observations motivate us to seek a new strategy for dealing with

the dimensionality challenges related to solving the optimal energy management

and control problem (4.2). To this end, we build on the developments in [252],

and propose a hierarchical control strategy based on time scale decomposition. To

begin, we make the following (reasonable) assumptions:

Assumption 4.1. Electricity prices are known at least one day in advance for a
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duration Tp.

Assumption 4.2. The interaction between the air-side and water-side of the

HVAC system is defined in terms of the exchange of heat through a cooling coil

(or a set of cooling coils).

Assumption 4.3. Owing to the fact that charging and discharging the TES in-

volves changing the temperature and phase of a significant thermal mass, the dy-

namics of the TES are slower than those of the air-side HVAC.

These assumptions indicate that the active thermal storage on the coolant-side

of the HVAC system is distinct from the passive storage in the building in terms of

both the dynamics, the dominant time scale, and level of uncertainty in operation.

In turn, this suggests that a hierarchical control strategy, consisting of separate

tiers of control action, is suitable for separately managing the use of active and

passive storage in a building.

We develop the hierarchy of control actions based on the (centralized) problem

formulation (4.2). We begin by noting that the solution to the problem (4.2)

calculated at t = 0 will remain optimal over the course of a day if the disturbance

variables (i.e., energy prices, occupancy and changes in ambient conditions) do not

deviate from their forecast values. Based on Assumption 4.1 (i.e., that day-ahead

energy prices are known with certainty), we note that the occupancy and ambient

condition disturbances can typically be regarded as short-term fluctuations around

a (forecast) mean. It is thus reasonable to assume that the solution calculated
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at t = 0 will remain close to the optimal value even in the presence of such

disturbances.

Using this observation and Assumptions 4.2 and 4.3, we conclude that control-

ling the operation (i.e., charging and discharging) of the active TES system is

closely related to the day-ahead energy price profile and, as a consequence, should

be addressed over the longer time horizon (slower time scale) for which these prices

are available. Conversely, short-term fluctuations in occupancy and ambient con-

ditions call for the use of a controller acting over a faster time scale. Consequently,

we separate the centralized control structure (4.2) into two layers. The slow layer

consists of an optimal scheduling calculation for the active TES in the slow time

scale. The fast control layer operates over a shorter time horizon to reject short-

term disturbances (Figure 4.3). Notice that the thermal load on the coolant side

is essentially determined by the performance of the fast control layer.

A hierarchical control approach is widely-accepted for controlling systems with

slow and fast dynamics [235]. The interactions between the control layers (dis-

cussed later in Section 4.3.2.3) distinguish this method from a distributed control

system, where the individual controllers act over a similar time scale and share

(limited) information with each other. Distributed controllers have been applied

over the fast time scale for the control of multiple zones in large buildings (e.g.,

[185]). Below, we discuss in detail the two layers of control action in the hierarchical

system, starting with the optimal scheduling system.

Remark 4.1. We note that hierarchical control schemes consisting of multiple

MPC controllers acting over different time horizons have been recently proposed in
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Figure 4.3: Hierarchical energy management scheme

the building systems literature, (e.g., [152]), as well as in the areas of microgrid

(e.g., [301]) and process control (e.g., [90]). In the latter, the slow (economic)

controller has a longer prediction horizon and less accurate forecasts than the fast

controller, with the mission of the latter being to implement the setpoints computed

in the slow layer.

4.3.2.1 Slow Layer: TES Scheduling System

As we observed above, the centralized EMPC problem (4.2) could, in princi-

ple, be solved only once during the course of the day, namely, when energy prices

become available for the next 24 hour period. This effectively transforms the op-
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timal control problem into a scheduling one, consisting of optimally synchronizing

the operation of the active TES system with weather, energy price and occupancy

fluctuations. Thus, we define the optimal scheduling problem based on the original

EMPC formulation (4.2).

While this eliminates the challenge of solving a large, mixed-integer nonlinear

optimization problem in closed loop and in real-time, it does not alleviate the diffi-

culty of obtaining a solution. Our experience suggests that this difficulty is largely

due to the need to use integer variables to capture the operating modes of the

HVAC equipment as well as to the challenges related to modeling the phase trans-

formation phenomena in the PCM-based TES system. To address the former, we

propose reformulating problem (4.2) as nonlinear program that has only continuous

decision variables. Modeling phase change is discussed in Section 4.7.2.4.

To begin, we make the key observation that the operating sequence of the active

TES system is cyclical and the succession of the operating modes is known a-priori:

charging must occur before discharging, and the two events are naturally separated

by periods of time when the system is idle. This is represented in Figure 4.4a.

Furthermore, it is reasonable to assume that the charging and discharging steps

are uninterrupted, in the sense that a situation in which one would begin charging

the storage and then stop for a period of time before resuming charging is not

expected. This observation allows us to reformulate the mixed-integer dynamic

optimization (MIDO) for operating the TES system by focusing our attention on

the timing and duration of the operating events, rather than on their succession.

This eliminates the discrete decisions associated with deciding the operating model
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of the system (Figure 4.4b).

t=0hrs t=24hrs
Assign continuous and integer 

variable values for each control 

interval

(a) Mixed integer formulation for establishing the operating mode and continuous
decision variables. In this example there are hourly control intervals.

charge normal operation discharge

Δt=? Δt=? Δt=? Δt=? Δt=?

Event Points

(b) Continuous representation of the operating mode assignment problem. Rather
than using integer variables to select the operating state of the system at each
(discretized) time point, the durations of the events in the established cyclical

operating pattern are optimized.

Figure 4.4: Cyclical mode transition behavior.

The continuous reformulation of the optimal scheduling problem is shown in

equation (4.3).

min
uA,t1,...,tv

JS =

Tslow∫
0

C(t)PHV AC(t,uP ,mP,uA, S)dt (4.3a)

s.t. f1(t, ẋB,xB,xP ,uP ,mP,d) = 0

(dynamic building model equations) (4.3b)

f2(t, ẋP ,xP ,xB,xA,uP ,mP,d) = 0

(air-side HVAC model equations) (4.3c)
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f3(t, ẋA,xP ,xA,uA,mA,d) = 0

(coolant-side HVAC and TES model equations) (4.3d)

d = f4(t) (disturbance profiles) (4.3e)

uA
low < uA < uA

high (equipment limitations) (4.3f)

S = [{s1 → · · · → sv}, {t1, . . . , tv}], si ∈mA (4.3g)
v∑
i=1

ti = Tslow (4.3h)

where uP and mP are fixed to values uP and mP (i.e., the assumed values of the

continuous and discrete decision variables in the air side of the HVAC system) and

are not part of the decision variable set. In (4.3g), we use si to denote an event of

duration ti in the schedule S with v total events. The schedule is given by the pair

S = ({s1 → · · · → sv}, {t1, . . . , tv}). The nature and order of each event (i.e., the

elements of S) are pre-specified by assigning an operating state from the set mA to

each event si. On the other hand, the event durations ti, i ∈ 1, . . . , v become part

of the decision variables. The prediction horizon is T slow ≈ Tp, and an additional

constraint (4.3h) ensures that the total duration of all events is the same as the

prediction horizon.

4.3.2.2 Fast Layer: Air-Side Controller

The fast control layer is tasked with addressing the control objectives related

to the fast dynamics of the system, that is, the air-side of the HVAC. The corre-

sponding control problem can be formulated as:
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min
uP ,mP

JF (4.4a)

s.t. f1(t, ẋB,xB,xP ,uP ,mP,d) = 0 (dynamic building model equations)
(4.4b)

f2(t, ẋP ,xP ,xB,xA,uP ,mP,d) = 0 (air-side HVAC model equations)
(4.4c)

d = f4(t) (disturbance profiles) (4.4d)

xlowB < xB < xhighB (occupant comfort limits) (4.4e)

uP
low < uP < uP

high (equipment limitations) (4.4f)∑
mP = 1 (logic constraints) (4.4g)

Equation (4.4) does not include the model of the TES system and the related

control decisions (xA approximates the values of the variables on the coolant side).

This reduces the size and complexity of (4.4), which can be solved and implemented

online. The objective function JF can be formulated in two different ways: as

a tracking or an economic objective. Both of these MPC objectives have been

discussed extensively in the literature [9, 179, 27], and are summarized below:

• Tracking objective

JF =

∫ t0+Tfast

t0

(xP − xspP )2dt (4.5)

where xP comprises, e.g., the indoor air temperature(s). This objective seeks

to minimize the difference between the indoor temperature(s) and given tem-

perature setpoint(s). The setpoints can either be defined by the occupants

or, in the case of the hierarchical control strategy discussed in this paper,

computed by the optimal scheduling system.
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• Economic objective, whereby the fast controller attempts to minimize oper-

ating cost.

JF =

∫ t0+Tfast

t0

C(t)PHV AC(t,uP ,mP,uA, S)dt (4.6)

In this case, the temperature of the building zone is no longer steered to-

wards the desired setpoint; rather, it is allowed to fluctuate within upper

and lower comfort limits. This approach was shown to result in a precooling

behavior (see, e.g., [297, 135]). The lower comfort limit is reached during

the off-peak morning hours, when excess refrigeration is used to precool the

building structure. Subsequently, temperatures are allowed to drift to the

upper comfort limit during the peak hours in order to save energy.

Remark 4.2. The choice of controller for the fast time scale is largely driven by

the operating conditions of the building. When disturbance forecasts are accurate,

tracking the temperature setpoint with a simple feedback controller would main-

tain the system close to the optimal solution calculated by solving (4.3). On the

other hand, when significant fluctuations in weather and occupancy may be present,

choosing an advanced control option is indicated.

Remark 4.3. The stability of the proposed hierarchical, composite control scheme

can be inferred from the stability of the individual controllers in the different time

scales (see, e.g., the arguments in [27]). Since the scheduling layer provides the

setpoints for the low level controllers but does not operate in closed-loop , the issue

of stability is related to the implementation of the lower level controllers. Stability
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can therefore be guaranteed as long as the systems remains closed-loop stable in the

presence of setpoint changes and known disturbances.

4.3.2.3 Interaction and Information Exchange Between Control Tiers

The optimal scheduling problem (4.3) relies on the assumption that the behavior

of the building and the air-side loop is known, so uP and mP are fixed to values uP

and mP. The models f1 and f2 are still used to approximate the load to be removed

by the coolant loop, which is modeled in equation f3. Ultimately, this assumption

results in a model that approximates the ‘Load’ to the coolant-side of the HVAC

system. It is therefore possible to avoid modeling the building and air-side HVAC

system if the ‘Load’ to the coolant-side can be modeled directly. This approach

further simplifies the optimization problem for scheduling TES usage to:

min
uA,t1,...,tv

JS =

Tslow∫
0

C(t)PHV AC(t, Load,uA, S)dt (4.7a)

s.t. f3(t, ẋA,xA,uA,mA,Load) = 0 (4.7b)

Load = f5(t) (4.7c)

uA
low < uA < uA

high (4.7d)

S = [{s1 → · · · → sv}, {t1, . . . , tv}], si ∈mA (4.7e)
v∑
i=1

ti = Tslow (4.7f)

where f3 represents the model of the cooling loop based directly on the load, rather

than on the interactions between xP and xA. In practice, the Load value (or the

estimates uP and mP) can be determined based on the recorded behavior of a
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previous day. Equation (4.7c) provides the load forecast and replaces the need to

model disturbances directly. This approach is represented graphically in Figure

4.5.
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Figure 4.5: The slow layer of the energy management scheme using approximates
of the load instead of a detailed building model.

In case there are significant day-to-day changes in the behavior of the sys-

tem, a schedule update/rescheduling scheme can be easily implemented based on

i) transferring uP , mP, and/or Load data in real-time to the scheduling layer,

ii) monitoring the discrepancy between uP , mP, or Load and the corresponding

estimates uP ,mP, and the load forecast (4.7c) and, iii) re-solving (4.3) or (4.7)

when the discrepancy (or its integral in time) exceeds a specified threshold. This

rescheduling approach is facilitated by the fact that the continuous formulation of

the problems (4.3) and (4.7) are likely easy to solve online.

The information exchange between the two control tiers can, however, be de-

signed to be bidirectional. Thus, in addition to the uP and mP data transfer from
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the fast controller to the scheduling layer, it is possible to include the decision

variables related to the building and air-side HVAC and their associated models

in the optimal scheduling problem. The optimal values of, e.g., the thermostat

setpoints in the building zone, calculated at the scheduling level, could serve as an

initial guess for the fast control layer calculations at the start of the day.

Remark 4.4. Scheduling and control for process and energy systems have tradi-

tionally been considered separately (and often independently of each other) owing

to the fact that they involve different time horizons and levels of modeling detail.

Their integration has recently become of interest owing to potential economic ben-

efits; however, the development of a generic and transparent methodology for the

integration of scheduling and control remains an open question (see, e.g., the re-

view in [24]). The framework discussed above can be construed as a “top-down”

approach for integrating scheduling and control. Furthermore, our developments

suggest that energy systems with storage represent excellent potential test beds for

new control/scheduling integration techniques.

4.4 Solution Methods

Obtaining a solution to a MIDO (which is the form of all of our schedul-

ing/control tiers) is very challenging, particularly when the mathematical model

is complex and the time horizon under consideration is large. In addition to the

presence of binary decision variables, the solution is complicated by the model

discontinuity associated with the temperature-enthalpy relationship for the PCM

behavior. Methods for solving MIDOs fall into two broad categories.

108



Simultaneous methods for solving MIDOs have found extensive use in the

solution of nonlinear model predictive control problems [9]. They rely on discretiz-

ing the equations of the system’s mathematical model using, e.g., finite difference

approximations or collocation on finite elements. This converts the MIDO into a

large-scale mixed-integer nonlinear program (MINLP), which can be solved with

existing solvers. Challenges associated with simultaneous methods include manag-

ing the size of the resulting MINLP, as well as finding appropriate starting points

for the solution algorithm when the system dynamics are complex [32].

However, an additional complication of using a simultaneous approach arises

from dealing with the IF-THEN statements in the temperature-enthalpy relation-

ship for PCM (this will be demonstrated in the case study). These cannot be

directly accounted for in the MINLP formulation; rather, they must be converted

to logical conditions based on binary variables using a “big-M” formulation and

disjunctive programming [230, 151, 120]. In turn, this introduces a significant num-

ber of additional binary variables (in this case, three for each time discretization

point), considerably increasing the computational resources and time required to

solve the problem and severely limiting the potential for obtainig a solution on-line

and in real-time.

By contrast, sequential solution approaches [277] alternate between the time

integration of the model equations and appropriate sensitivities over the time hori-

zon of the problem, and the solution of a simpler NLP. While less widespread in

the solution of control problems, sequential methods provide a more natural ap-

proach for dealing with the discontinuities in the PCM model and thus represent
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the method of choice for the following case studies.

4.5 Overview of Case Studies

The following three sections present case studies demonstrating various aspects

of the hierarchical energy management system applied to thermal storage applica-

tions. The case studies are summarized in Table 4.1.

Table 4.1: TES Case Study Summary

Section System Description Demonstrated Control Layer
4.6 Chilled water TES

tank and building
which is based on the
UT Thermal Facade
Lab

Centralized optimization (formulation (4.2)
in Section 4.3.1) but with variables only of
the class uP,uA,mA. The cyclical operation
observation is applied to transform the cen-
tralized MINLP to a NLP (this is successful
because there are no decision variables of the
class mP, which would still be present after
the transformation). This case study demon-
strates the behavior of both the TES and the
fast air temperature dynamics.

4.7 PCM TES tank and
building which is
based on the UT
Thermal Facade Lab

Slow layer using a model of the building load
(formulation (4.7)).

4.8 PCM TES tank and
building load profiles
based on a commer-
cial building simula-
tion

Slow layer using a model of the building load
but without the cyclical operation assump-
tion to transform the problem to an NLP.
The formulation is similar to that in (4.7),
but binary variables of the class mA are still
present.
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4.6 Case Study: Chilled Water TES Scheduling

We will demonstrate the proposed hierarchical control framework on a simulated

version of the University of Texas Thermal Façade Lab (TFL), which is a single

zone prototype building about the size of a large room that is outfitted with a

detailed measurement system to monitor all aspects of energy consumption. A cold

water tank is currently being installed in the coolant loop of the HVAC system.

We aim to model and design a control scheme for the TFL that will minimize

energy cost and consumption and take full advantage of the thermal storage unit.

A schematic of the TFL is shown in Figure 4.6.
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Figure 4.6: Coolant loop in the TFL HVAC system. Also shown are two propor-
tional controllers that manipulate F2 and the chiller cooling load.

The four operating modes of the TES system are summarized in Table 4.2. In

Mode 1 (TES inactive), coolant flows through the cooling coil only and there is no
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Table 4.2: Operating Modes

Mode V1 V2 V3 V4 Chiller CC
m1 - Cooling Only 1-2 open closed any on on
m2 - Charging Only 1-3 open open 3-2 on off
m3 - Cooling & Charging 1-2&3 open open 3-2 on on
m4 - Cooling & Discharging 1-2 closed open 2-1 off on

flow to or from the tank. In Mode 2 (TES charging), coolant is fed into the tank

from the bottom. In Mode 3, the coolant flow is split between the tank and the

cooling coil. In Mode 4 (TES discharging), coolant from the tank flows out at the

bottom and is cycled through the cooling coil and the chiller (with the latter turned

off). These four modes can be selected via the binary vector m = [m1m2m3m4]T ,

which is a special ordered set of type one (SOS1).

4.6.1 TES Model

The chilled water storage tank is assumed to be well-mixed in the radial direction
(i.e., no temperature gradients along the radius). Furthermore, a narrow axial
zone with high axial temperature gradients (thermocline) is assumed to exist at
all times, separating the chilled water at the bottom from warmer return water at
the top. The tank has height h and area A. The tank temperature can be modeled
as:

(ρCp)cVtank
∂Ttank
∂t

= −v∂Ttank
∂z

+ k
∂2Ttank
∂z2

(4.8)

where the velocity is defined as a function of the operating mode as v = (m2 +

m3)F4/A + m4F3/A. As the temperature gradients outside the thermocline are

minimal, we neglect the effect of thermal conductivity in the tank in this work.

We define the state of charge based on the enthalpy of the tank as:

Hmax =
∫ h

0
(ρCp)c(284)dz
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Hmin =
∫ h

0
(ρCp)c(277)dz

TES charge = max(0,
Hmax−

∫ h
0 (ρCp)cTtank(t,z)dz

Hmax−Hmin
) ∈ (0, 1) (4.9)

with Hmax and Hmin being the enthalpies corresponding to uniform temperature

distributions at the maximum (i.e., 284K) and, respectively, minimum (i.e., 277K)

chilled water temperatures possible given the limits on the system. Note that a

negative TES charge state may be reported when the temperature at the top of

the tank rises slightly above the upper limit set in equation (4.9). This is not a

concern because in the following day the tank will still be able to charge to full

capacity.

The tank model was discretized using a finite-difference approach on a grid

consisting of 100 nodes. We note that modeling the tank is a non-trivial matter

because the direction of flow and velocity change when switching between charging

and discharging modes. This necessitates switching between backwards and for-

wards discretization schemes to solve the PDE (4.8), depending on the operating

mode.

4.6.2 Building Model

The single zone building is modeled as a well mixed air volume in contact with

a thermal mass block that represents the structural elements (Figure 4.7).

The indoor air (Tz) and thermal mass (Tm) temperatures are given by Equa-

tions (4.10) and (4.11), where Qm = (UA)m(Tm − Tz) represents the total heat

transfer through the building envelope, Qext = (UA)ext(Text − Tm) represents the
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Figure 4.7: Model of the building zone

interaction of the structural elements with the environment (with Text the outside

air temperature), Qocc represents heat generated through the presence of occupants

and their associated behavior, and Qs accounts for incident solar radiation on the

structural elements. Qcc is the heat removed by the cooling coil as explained in

the next section.

(ρCp)airVzone
dTz
dt

= Qm +Qocc − (1−m2)Qcc (4.10)

ρmCp,mVm
dTm
dt

= Qext +Qs −Qm (4.11)

4.6.3 Low Level Controllers

Within each mode described in Table 4.2, PI controllers manipulate several

continuous variables to maintain the operating setpoints. Because of the thermal

stratification in the storage tank and the need to maintain a temperature gradient

across the cooling coil, it is necessary to regulate the flow rate coming out of the

cooling coil such that the temperature is 5oC greater than the tank temperature.

The flowrate F2 is therefore manipulated based on deviations in the cooling coil

temperature, Tcc, from the setpoint T spcc . This constraint is also included in the

formulation of the control problem in the next section in order to limit the total
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temperature rise seen in the cooling loop during the discharge mode.

Vcc
dTcc
dt

= F3(Tchill − Tcc) + (1−m2)
Qcc

(ρCp)c
(4.12)

The flows around valve 1 are given below. F1a is a constant representing the

steady state chiller flow rate. The parameter α ∈ [0, 1] is determined based on

the operating mode and reflects the position of valve 1 as listed in Table 4.2 (in

charging mode, α = 0, and in discharge and cooling modes α = 1. In the charge

and cool mode α is anywhere in the range (0, 1)).

F1b = F1a − F2

F3 = αF2

F4 = (1− α)F2

A PI controller is used to regulate Tchill, the temperature of the stream ex-

iting the chiller, by manipulating Qchill, the heat removed inside the unit. The

temperature exiting the chiller, Tchill is shown in equation (4.13).

Vchill
dTchill
dt

= (F1bTchill + (m1 +m3)F3Tcc + (4.13)

(m2 +m3)F4Ttank(h) +m4F3Ttank(0)

−F1aTchill)− (1−m4) Qchill

(ρCp)c

We assume that the cooling coil removes all the heat necessary to maintain the

zone temperature at the desired setpoint, and do not model the physical aspects

of the cooling coil dynamics, which can be quite complex. The heat removal Qcc

is computed as the output of a PI controller that maintains the zone temperature

at its setpoint, T spz .
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4.6.4 Hierarchical Control Implementation

The slow controller is based on the formulation in (4.3). We will compare two

different schedule structures, that differ in the choice of charging mode. In SI , the

tank is charged using m2 (charge only), while in SII , m3 (charge and cool) is used.

This results in the operating sequences shown in Equation (4.14) and (4.15) with

n = 5 stages over a 24 hour horizon starting at midnight:

SI = (m1 → m2(charge)→ m1 → m4(discharge)→ m1, t1, t2, t3, t4, t5) (4.14)

SII = (m1 → m3(cool & charge)→ m1 → m4(discharge)→ m1, t1, t2, t3, t4, t5) (4.15)

The formulation for the slow MPC (Equation 4.3) is shown below. The chiller

load contribution in the objective function is squared to improve the convergence

of the optimization solver. Furthermore, while the operating mode in each stage

is fixed, we allow for a finite number of changes of T spz in each stage.

min
T sp
z ,t1,...,t5

J =

24∫
0

C(t)Q2
chill(t, T

sp
z , S)dt (4.16)

s.t. building model equations in previous section

297 < T spz < 302

295 < Tz < 305

Tcc < 285∑5
i=1ti = 24

In the formulation (4.16) there are two bounds related to the indoor temperature.

T sp,maxz = 302K is the upper limit for the zone setpoint temperature, and Tmaxz =

305K is the upper limit for the actual zone temperature. It is necessary to specify

the latter because when the charge only mode m2 is used there is no means for

heat removal in the zone to maintain the specified value of T spz . Tmaxz therefore

116



represents a comfort limit that must be satisfied even in the charge only mode

when it is not possible to track T spz .

In this case study, we assume that there is no plant-model mismatch (i.e., the

models used in both the optimization and the system being controlled are the

same). We do, however, consider there are different forecasts provided to the

optimization and the system. The values of T spz calculated by the slow MPC can

thus be assumed to be near-optimal (barring the effect of inaccurate disturbance

forecasts) and can be imposed by the distributed controllers described above, which

act as the fast control layer (alternatively, a MPC controller can be implemented

to control the dynamics in the fast time scale).

4.6.5 Model Inputs

Figure 4.8 depicts the disturbance profiles for the single zone building. The

‘actual’ values are provided to the system being controlled (i.e., the plant), while

the ‘forecast’ profiles are used by the model in the optimization calculations. A

heat input associated with about 4 occupants acts as a disturbance to the zone,

and is not provided to the supervisory controller. The weather data are based on

TMY2 (Typical Meteorological Year) data for a July day. Qs is the net radiation

on all building surfaces at a given time, and this profile was obtained through an

EnergyPlus [263] simulation of the TFL.

Model parameters are presented in Table 4.3. There are two different storage

tank volumes that will be compared to see the effect on total cost of having surplus

or insufficient storage capacity.
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Figure 4.8: Disturbance profiles. The ‘actual’ values are provided to the system
being controlled (i.e., the plant), while the ‘forecast’ profiles are used by the model
in the optimization calculations.

The cost profile is shown in Figure 4.9 and is representative of a real-time pricing

structure. We note that fifty-fold cost changes between peak- and off-peak times

are typical in the Southern US (see Figure 4.1, as well as [65]).

4.6.6 Results and Discussion

The system was modeled and solved using the gPROMS dynamic optimization

solver [217] using a control vector parametrization approach [278]. The solutions

to (4.16) when there is surplus storage (Vtank = 1m3) are shown in Figure 4.10, and

when there is insufficient storage (Vtank = 0.75m3) in Figure 4.11. We note that the

optimal discharge time (i.e., the time when TES switches to mode 4–discharging)

coincides with the start time of peak energy pricing in both cases. This indicates
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Table 4.3: Parameter values

Parameter Value
F1a 8 gal/min
Vcc 0.03 m3

Vzone 500 m3

Vm 100 m3

Vtank (large) 1 m3

Vtank (small) 0.75 m3

h 1 m
k 0 W/m2K
(ρCp)c 4e6 J/m3K
ρmCp,m 2.2e6 J/m3K
(ρCp)air 1214 J/m3K
(UA)m 75 W/K
(UA)ext 100 W/K
T spchill 279 K
T spcc 284 K

that an operating heuristic replicating this behavior would be correct for systems

of this type, regardless of the amount of active storage available.

Table 4.4: Objective function value at t = 24 hours (as J/107)

Surplus Stor-
age (SI)

Insufficient
Storage (SI)

Insufficient
Storage (SII)

Model 2.94 3.77 4.31
Plant 3.04 4.70 6.73

When there is sufficient storage capacity in the TES system, the optimization

results suggest using only the active storage and not take advantage of the passive

storage in the building walls through precooling behavior. In fact, the TES system

is only charged to the extent required to cover the peak-price time interval, as seen

by comparing the charge state in Figures 4.10 and 4.11. On the other hand, when
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Figure 4.9: Cost profile

there is insufficient active TES to span the entire cost increase period, precooling

of the building structure is needed directly before the price increase takes place

(Figure 4.11). There is also an effort to precool the thermal mass in the brief

period before charging the TES, as shown in both Figures 4.10 and 4.11. This is

because the charge time is ultimately limited by the zone temperature constraint.

When the charging and cooling mode (m3) is incorporated in the schedule, this

is no longer a limiting factor. This is demonstrated in Figure 4.12, where the

charge and cool mode is applied to the case with insufficient storage. It should be

noted that when both operations are performed simultaneously the tank cannot

be charged using the maximum flow rate (i.e., α > 0. In this example, α = 0.1

was used.). Therefore the time needed to charge the tank will increase compared

to the results using the charge only mode, which has the fastest rate of charging.

Charging the tank using the charge and cool mode took nearly double the charge

time in the charge only mode, and the tank does not fully charge because of an

additional practical constraint that limits the time allotted for this task is four

hours. However, the discharge scenario is nearly identical so the savings during

the peak period remain relatively constant. Differences arise because without the
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tank fully charged, there is an even lower utilization of the active TES and more

precooling is required to minimize the total operating costs.

The 24h-operating costs for the three cases are shown in table 4.4. The compar-

ison between the plant and model rows highlights the effect of incorrect forecasts

(especially the lack of occupancy predictions) used in the calculation. As expected,

the total cost when there is surplus storage is lower than in the case when not all

the needed storage capacity is available. The actual cost incurred by the “plant” is

higher than that predicted by the “model” because of the incorrect forecasts. The

difference is more pronounced when there is insufficient storage because the chiller

must actually be turned on during the peak cost period (which is not anticipated

by the model) in order to maintain the desired temperature setpoint.

We note that the solution to (4.16) was found in approximately ten minutes

for each case on a regular desktop computer. This is sufficiently fast for a ‘slow’

MPC where the optimization is only solved once per day. In fact, in light of this

relatively short solution time it would be possible to repeat the calculation more

than once throughout the day, although this is not necessary. We conjecture that

similarly low computing times would be required for the fast MPC calculation,

and conclude that the proposed methodology shows real incentive for practical

implementation.

Remark 4.5. In all the scenarios explored in this case study, the presence of the

TES system leads to a significant reduction (or complete elimination) of energy

consumption in the building during the peak price hours (note the low values of

Qchill in Figures 4.10-4.12). This suggests that implementing energy storage on a
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Figure 4.10: From top to bottom: Zone temperature and setpoint in the optimiza-
tion model and plant, operating mode, TES charge state, and chiller load for the
surplus storage case.

large scale would be a significant enabling factor (together with appropriate coor-

dination mechanisms) for mitigating the variability of the load that buildings place

on the grid and achieving a “load leveling” effect.
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Figure 4.11: From top to bottom: Zone temperature and setpoint in the optimiza-
tion model and plant, operating mode, TES charge state, and chiller load for the
insufficient storage case.

4.7 Case Study: PCM TES Scheduling with Detailed Dy-
namic Model

In this section, we present a detailed simulation case study of the slow control

layer for TES scheduling. The fast control layer and use of MPC for indoor comfort

has been well represented in the literature (see the review papers [3, 295]). For

this reason, we maintain our focus on the operation of active TES and the design

of the Slow MPC control layer. The Thermal Facade Laboratory at the School of
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Figure 4.12: From top to bottom: Zone temperature and setpoint in the optimiza-
tion model and plant, operating mode, TES charge state, and chiller load for the
insufficient storage case when using the ’charge and cool’ mode instead of ’charge
only’.

Architecture of the University of Texas at Austin is the inspiration for our model

of a building with a complex and flexible HVAC system with energy storage. The

case study is focused on the operation of the coolant loop and the solution of a

TES scheduling problem of the type in (4.7), so the construction of the building

is not discussed in detail. For information on the design of the Thermal Facade

Lab, we direct the reader to [262], and for information on the construction of the
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storage Tank, [36, 37] present the parameters and results of the preliminary design

analysis.

4.7.1 System Description

The system (see Figure 4.13) consists of a single-zone building, equipped with

a chiller-based HVAC system. Chilled coolant is produced by an electric chiller

and circulated through a cooling coil placed inside the building zone. The chilled

coolant can also be (partially) directed into a storage tank filled with PCM cap-

sules. The coolant circuit can operate in four distinct, discrete modes:

1. a normal mode (m1), where the chiller and cooling coil are used to remove

heat from the zone

2. a charging mode (m2) where the refrigeration generated by the chiller is

stored in the form of latent heat, by freezing the PCM capsules in the storage

tank

3. a combined charging and cooling mode (m3)

4. a discharge mode (m4) where the TES is used in place of the chiller to remove

the heat from the coolant loop. The chiller may turn on in this mode as well,

depending on the building cooling demand

The system configurations (defined in terms of valve positions and equipment

on/off states) associated with each operating mode are summarized in Table 4.5.

The implementation of each operating mode (and switching between them) should
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be monitored through a building automation system that satisfies the ASHRAE

guidelines (e.g., Guideline 13: Specifying Building Automation Systems). The

heat load removed from the building zone using the cooling coil is labeled Qbldg

(this is the Load in the formulation (4.7)). The calculation of this quantity can be

performed using detailed models of the building physics, occupant behavior, and

weather effects or approximations/predictions of the heat load itself (see Section

4.7.2.5).

Zone

Chiller

Cooling 

Coil

Thermal 

Energy 

Storage

F1a Tchill

F1b

F2

F3

F4

Tcc

V5

V1
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V4
Discharge 

flow 

direction

Charge flow

direction

Qbldg

Qchill

TC

FC

1

2

3

1

2

3

Figure 4.13: Flexible configuration of the coolant circuit in the University of Texas
Thermal Facade Lab HVAC system and additional PI controllers (control loops are
indicated by red dotted lines). Small dashed lines show heat transfer in/out of the
system
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Table 4.5: Operating Modes

Mode V1 V2 V3 V4 Chiller Cooling Coil
m1 - Cooling
Only

1-2 Open Closed Any On On

m2 - Charging
Only

1-3 Open Open 3-2 On Off

m3 - Cooling &
Charging

1-2&3 Open Open 3-2 On On

m4 - Cooling &
Discharging

1-2 Closed Open 2-1 On or Off On

A cylindrical storage tank packed with PCM-filled cylindrical elements is cur-

rently under construction at the TFL. A schematic is provided in Figure 4.14;

chilled coolant supplied by the chiller flows through the interstitial space sur-

rounding the encapsulated PCM. Energy is stored by removing latent heat from

the material (i.e., freezing), and released by circulating warmer coolant from the

coil outlet through the charged tank (which leads to melting the PCM).

PCM

Coolant

Top ViewSide View

Z = 0

Z = L

x = R   x = 0

Figure 4.14: Configuration of the PCM TES tank.
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While the primary focus of this paper is on active TES with PCM, it is worth

noting that PCM can also be incorporated in a building’s walls and air vents to

increase the amount of passive TES. For both active and passive PCM storage, the

selection of material properties (e.g., PCM melt temperature) and system geome-

try (e.g., size of the PCM elements and configuration of coolant flow around the

PCM) are important design decisions [243, 303, 290, 180]. Several active storage

medium geometries have been investigated in the literature. For example, [249]

studies a PCM filled tank with a winding coil that contains the heat transfer fluid.

[206] considers a large active PCM tank with encapsulated spheres, and references

several other experimental efforts. The design choices affect the dynamics of the

PCM behavior, which must be accounted for in a sophisticated controller for the

system.

4.7.2 Equation-Oriented System Modeling

The parameters used in all of the following equations are listed in Table 4.8.

The set of equations described here is general enough such that any coolant or

PCM could be modeled by applying the appropriate parameter values, which may

be established based on experiments or known physical properties. For this study,

we have used the known physical properties of water and ice to specify the model

parameters, and the tank has been sized such that the chiller can remain off for

several hours even on a hot day. The properties of the TES tank being designed

for the Thermal Facade Lab have recently been characterized in [37], which uses a

paraffin for the PCM with a melting point around 5oC and CPVC tubing for the
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encapsulation.

4.7.2.1 Coolant Loop Model

Figure 4.13 describes the configuration the coolant loop of the Thermal Facade

Laboratory. Two essential low-level control loops are implemented:

• The chiller temperature (Tchill) is regulated by a PI controller (TC in Figure

4.13) that manipulates the load Qchill.

Qchill(t) = Q0
chill + kD1(Tchill − T SPchill) + kI1

∫ t

0

(Tchill − T SPchill) (4.17)

The setpoint is set to a value lower than the PCM melting temperature

during the charging modes m1 and m3 (T lowSPchill ) in order to freeze the PCM,

and a slightly higher value in the other modes (T highSPchill ):

T SPchill = (m1 +m3)T lowSPchill + (m2 +m4)T highSPchill (4.18)

The flow rate of the coolant through the chiller (F1a) is kept constant. Thus,

the dynamics of Tchill depend on the mode of operation:

(ρCp)cVchill
dTchill
dt

= (ρCp)c

[
F1bTchill + (m1 +m3)F3Tcc (4.19)

+ (m2 +m3)F4Ttank(L) +m4F3Ttank(0)− F1aTchill

]

• In order to ensure that heat transfer between the building zone and the

cooling coil is possible, a PI controller is used during modes m1 and m3

to regulate the temperature of the coolant exiting the cooling coil. The
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temperature is maintained at the desired setpoint T SPcc by modulating the

flow rate F2.

The PI controller is not used during the discharge mode m4. Instead, the

flow rate F2 is fixed during m4 to F discharge
2 (this parameter was selected

based on the corresponding rate of freezing/melting the PCM). If the PI

controller were used during the discharge mode, it is possible that the changes

in the flow rate of coolant through the tank could hinder the effectiveness of

the PCM storage (e.g., maintaining a set cooling coil temperature typically

requires increasing flow rate F2, which reduces the amount of heat transfer

from the PCM to the coolant during the discharge mode).

F2 = (m1+m3)

(
F 0

2 + +kD2(Tcc − T SPcc ) + kI2

∫ t

0

(Tcc − T SPcc )

)
+m4F

discharge
2

(4.20)

The resulting cooling coil dynamics are shown in Equation (4.21).

(ρCp)cVcc
dTcc
dt

= (ρCp)cF3(Tchill − Tcc) + (1−m2)Qbldg (4.21)

The values of the flow rates at other points in the cooling loop during each mode

are summarized in Table 4.6, and reflect the valve positions listed in Table 4.5. We

assume that in the combined charge and cool mode the coolant is equally divided

between the coolant coil and the storage tank, so that F3 = F4 = 0.5F2.

In the charge only mode m2, it is not possible to guarantee comfort levels inside

the building because there is no heat removed by the cooling coil (see Equation

(4.21)). For this reason, we will use the charge and cool mode (m3) when freezing

the PCM in the following examples instead of m2.
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Table 4.6: Flow conditions. F2 is calculated using the option indicated. The charge
only mode (m2) is not used in the current operation of the coolant loop.

Mode F2 F3 F4

m1 - Cooling Only PI = F2 = 0
m3 - Cooling & Charging PI = 0.5F2 = 0.5F2

m4 - Cooling & Discharging F discharge
2 = F2 = 0

4.7.2.2 Modeling of PCM-based Active Thermal Energy Storage

In general, PCM-based TES systems consist of a tank filled with encapsulated

PCM elements. The shape of the encapsulation shells (spheres, cylinders) and the

layout of the elements within the tank are chosen to provide a high packing density

(which, in turn, maximizes the energy storage density), while ensuring a uniform

distribution of the coolant flow through the tank and appropriate surface area for

heat exchange between the flowing liquid and the PCM elements.

In this work, without loss of of generality, we consider a cylindrical storage

tank that is packed with PCM-filled cylindrical rods. Water flows through the

interstitial space surrounding the pipes (Figure 4.14). This geometry is based on

the design in [36], which is currently being constructed at the Thermal Facade

Laboratory. In developing the mathematical model of the tank, we assume that:

• the packing is arranged symmetrically with respect to the central axis of the

tank, and the coolant is evenly dispersed into the free-flow area upon entering

the tank

• the longitudinal temperature profiles in every coolant channel and PCM el-

ement are the same
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• the conductivity of the shell of the PCM elements is high and does not limit

heat transfer between the coolant and the PCM itself.

• the tank is well insulated and there are no heat losses to the environment

The tank has height L and total interstitial area A, and each of the Npcm PCM

elements has a radius R (Figure 4.14).

The equation-oriented model of this system is divided into two domains:

4.7.2.3 The Coolant Domain

The coolant temperature can be modeled as:

(ρCp)cVtank
∂Ttank
∂t

= −v∂Ttank
∂z

+ kc
∂2Ttank
∂z2

−Qpcm (4.22)

where the velocity is defined as a function of the operating mode as

v = (m2 +m3)F4/A+m4F3/A (4.23)

and Vtank represents the total volume of coolant in the tank. We assume that

evolution of the temperature is dominated by convection because of the nonzero

velocity in the interstitial areas and, as a consequence, we neglect the effect of

thermal conduction in the coolant flow.

4.7.2.4 The PCM domain

Assuming that the thermal conductivity of the shells of the PCM elements is

high enables us to focus our modeling efforts on the PCM domain. Here, we
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rely on to a two-dimensional spatially distributed model to capture significant

gradients present in the axial and radial directions. It is advantageous to model

the PCM in terms of enthalpy rather than temperature, to avoid discontinuities in

the temperature derivatives when phase change occurs. We construct the model

below using a “mushy region” approximation of the interface between the solid

and liquid phases, based on the developments in [237, 290, 6, 84].

We begin by describing the evolution of the enthalpy of the PCM (also see

Figure 4.14):

ρ
∂Hpcm

∂t
=

∂

∂z

(
k
∂Tpcm
∂z

)
+

1

x

∂

∂x

(
kx
∂Tpcm
∂x

)
(4.24)

with boundary conditions:

Tpcm(z,R) = Ttank(z) (4.25)

∂Tpcm(z, 0)

∂x
= 0 (4.26)

∂Hpcm(0, x)

∂z
= 0 (4.27)

∂Hpcm(L, x)

∂z
= 0 (4.28)

which specify that the temperatures of the coolant and PCM are the same at the

PCM/coolant interface (4.25), capture symmetry in the radial direction (4.26) and,

reasonably, assume that there is no heat transfer through the top and bottom of

the PCM (Equations 4.27 and 4.28).

The rate of heat transfer between the coolant and PCM is computed as

Qpcm = Npcm × k(z, R)
∂Tpcm(z,R)

∂x
(4.29)
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The phase of the PCM at each point in space is inferred from the corresponding

enthalpy:

phase =


solid if Cp,sTm < Hpcm(z, x)
phase change if Cp,sTm − Λ < Hpcm(z, x) < Cp,sTm
liquid if Hpcm(z, x) < Cp,sTm − Λ

(4.30)

Based on the phase, the temperature (TPCM) and conductivity (k) at each point

can be calculated as:

Tpcm(z, x) =


Hpcm(z,x)

Cp,s
if solid

Tm if phase change
Hpcm(z,x)+(Cp,l−Cp,s)Tm−Λ

Cp,l
if liquid

(4.31)

k(z, x) =


ks if solid
(1− s(z, x))ks + s(z, x)kl if phase change
kl if liquid

(4.32)

s(z, x) =


1 if solid

1− Hpcm(z,x)−Cp,sTm
Λ

if phase change
0 if liquid

(4.33)

where it is assumed that the density of the PCM does not change significantly

as a consequence of phase change, and the solid fraction 0 ≤ s ≤ 1 is used to

create a smooth (“mushy region” [6]) approximation of the evolution of thermal

conductivity between the liquid and solid domains.

Furthermore, the state of charge for the storage system is defined using the total

enthalpy of the PCM (4.36), the minimum total enthalpy (4.34), and the maximum

total enthalpy (4.35):

Hmin
pcm = ρCp,sT

min
pcm Vpcm (4.34)

Hmax
pcm = Hmin + ρCp,l(T

max
pcm − Tm)Vpcm + ρVpcmΛ (4.35)
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H total
pcm =

∫ L

0

∫ R

0

Hpcm(z, r)2πrdrdz (4.36)

Charge =
Hmax
pcm −H total

pcm

Hmax
pcm −Hmin

pcm

(4.37)

The temperatures TminPCM and Tmaxpcm are selected such that the state of Charge in

Equation (4.37) varies from 0 to 1. Note that the values of Tminpcm and Tmaxpcm are

not equal to the melting point Tm because the storage can be cooled (or heated)

below (or above) the melting temperature. Therefore the Charge metric includes

both sensible and latent heat, although the majority of the storage capacity is

associated with latent heat.

4.7.2.5 Building Load and Cost Model

We capture the building dynamics in the form of the thermal load profile Qbldg,

which aggregates the heat duty of the cooling system due to changes in weather,

insolation, and the zone occupancy. This is effectively the load required to achieve

thermal comfort in the building. Figure 4.15 shows two potential load profiles,

representing high and low demand that might occur on, respectively, a hot or

mild day. They were approximated based on the known insolation pattern for the

UT Facade Lab, which has been simplified into well-defined steps to facilitate the

interpretation of the simulation results. These profiles are representative of the

load patterns typically seen in a commercial building, with occupants present (and

thus and a larger cooling demand) during the daytime hours, and a flat base load

over night.

The price schedules in Figure 4.16 provide the incentive for load shifting. We
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Figure 4.15: Building thermal load profile.

consider two cost profiles (presented on a relative basis); in the first case (a “two-

hour peak”) the energy cost rises from the baseline by a factor of ten from hours 14

to 16. The second case has a “4 hour peak” price schedule where the cost increases

during the hours 12 to 16. We will compare the effect of different load and cost

scenarios on the optimal use of TES for this system.

4.7.3 Controller Design

Following the developments in Section 4.3, we define the operating sequence

(4.38) to be used in formulating the optimal scheduling problem (4.39).

S =[{m1 → m3(cool & charge)→ m1 → m4(discharge)→ m1}, (4.38)

{t1, t2, t3, t4, t5}]
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Figure 4.16: Real-time energy price profiles for a 24-hour time period. In the first
case the energy cost rises from the baseline by a factor of ten from hours 14 to
16. The second case has a broader, four-hour peak price schedule, where the cost
increases during the hours 12 to 16

min
t1,...,t5

J =

24∫
0

C(t)Q2
chill(t, S)dt (4.39)

s.t. Storage tank model: Equations (4.22)− (4.37)

Coolant loop model: Equations (4.19)− (4.21) and Table 4.6

Qbuild forecast: Figure 4.15

C(t) forecast: Figure 4.16

Mode schedule in Equation (4.38)∑5
i=1ti = 24

The formulation (4.39) follows the development of (4.7) in section 4.3.2.3 and

is much simpler than the general problem (4.3). This can be attributed to the

use of the Qbldg profile for the modeling heat load on the coolant loop instead of a

detailed model of the building and air-side of the HVAC system.
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4.7.4 Results and discussion

In order to deal with the infinite-dimensional PCM model (4.24), we discretize

the spatial domain using orthogonal collocation on finite elements, with four ele-

ments in the radial direction, and using central differences with 10 nodes in the

axial direction. We note that modeling the coolant flow is a non-trivial matter

because the direction of flow and velocity change when alternating between charg-

ing and discharging modes. This necessitates switching between backwards and

forwards discretization schemes to solve the partial differential equation (4.22),

depending on the operating mode. Following spatial discretization, we employ

the sequential solution approach proposed by [277, 278] to solve the scheduling

problem (4.39), using the software package gPROMS [217].

In order to evaluate the performance of the proposed energy management ap-

proach, we first define a baseline as the system performance (in terms of operating

cost) under the time of use pricing scheme without the use of TES. In this case,

the chiller is responsible for heat removal from the system at all times and will

not turn off during the price peak. We will refer to this baseline operation as base

operation in the sequel.

Second, we also define a heuristic to establish the timing of the charge/discharge

events in (4.38). The operating guidelines are: charge the storage for 10 hours, and

wait to begin using it until the price increases. Then, continue using the storage

until it is depleted at the rate of discharge given by Table 4.6.

Finally, we present an analysis of the effect of incorrect forecasts on the effec-
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tiveness of the optimal schedule. This entails simulating the implementation of

the optimal schedule with a load profile that is different from the forecasted load

used in the scheduling calculation. We also include a discussion on the effect of

the system design, and limitations that this creates for the charge and discharge

cycles.

4.7.4.1 Discussion: Optimal Scheduling vs. Heuristic Operation

Table 4.7 shows the values of the objective function (4.39) under the baseline,

heuristic, and optimal control, along with the improvements made to the baseline

under the latter two methods. Figure 4.17 shows the optimal schedule calculated

for the four combinations of the load levels and pricing schemes (solid lines), and

compares this result to the behavior under heuristic control (dashed lines).

In Figure 4.17, we observe that the total storage capacity is not used when the

load is low (Figures 4.17a and 4.17b) and the storage is used outside of the peak

pricing hours when possible. This lowers costs by not using the chiller during times

when the load is high, in addition to times when the price is high. This behavior

is especially evident in the extreme case of 4 hour peak pricing with a high load

(Figure 4.17d) when it is not possible for the storage use to completely span the

peak price period. Instead, the storage is used during the time when the load is

highest. These features are not accounted for the by the heuristic, where delaying

the use of the storage from the time of the price increase (Figure 4.17d) leads to a

higher cost. The same is true for low load days, when the peak demand may occur

before the price increase.
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In Figures 4.17a and 4.17b, the discharge operation under the heuristic lasts

much longer than the optimal schedule due to not using the storage during the

peak load, and also overcharging the storage compared to the optimal case. There

is also a small inverse response seen in the Charge metric towards the end of the

discharge period. This is caused by the temperature of the return coolant from the

cooling coil being lower than the PCM temperature, so the storage tank charge

is slightly increased. However this results in the chiller requiring more energy to

decrease the temperature of the coolant to its setpoint. Switching back to the

normal operating mode before this occurs would be more cost effective.

In the optimal cases, there are instances where the chiller may turn on shortly

before the end of the discharge operation (e.g., around hour 16 in Figures 4.17a,

4.17b, 4.17c). As the storage is depleted, the rate of heat exchange with the

PCM decreases because the outer layers of the PCM elements have melted and the

thermal conductivity of the liquid phase is lower than that of the solid. The chiller

turns on during this period in order to maintain the temperature at its desired

setpoint (the spike seen in Qchill at the end of this period can be attributed to the

controller tuning). Note, however, that the chiller load is still lower than the load

in the baseline case during this period.

The optimal controller outperforms the heuristic, with lower total costs and a

higher reduction to the baseline operating costs in Table 4.7. This does not mean

that the heuristic is a poor controller - there are still substantial improvements

over the baseline costs. However, it is possible that the heuristic may result in

wasted energy by overcharging the storage tank when this is not necessary (Figure
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Table 4.7: Total cost (scaled by 1e7) and the reduction of the baseline cost through
the use of optimal control and heuristics

Low Load Low Load
2hr Peak 4hr Peak

(Fig. 4.17a) (Fig. 4.17b)
Base 5.41 10.34
Optimal 1.24 1.22
Reduction 77% 88%

Heuristic 1.83 1.69
Reduction 66% 84%

High Load High Load
2hr Peak 4hr Peak

(Fig. 4.17c) (Fig. 4.17d)
Base 89.37 177.59
Optimal 19.05 64.05
Reduction 79% 64%

Heuristic 22.22 73.56
Reduction 75% 59%

4.17a). We conclude that the optimized schedule is more effective than the heuristic

because the system model provides an accurate insight into the behavior of the

storage system, including PCM dynamics.

4.7.4.2 Assumptions and Potential Design Limitations

While a similar amount of time is spent charging the storage tank in both the

low and high load cases of Figure 4.17, the Charge variable does not reach the

same level. This can be attributed to the difference in the flow rate for charging

between the two cases. Recall that the flow rate in the charge and cool mode is set

by a PI controller (described in Section 4.7.2.1). This configuration results in the

flow rate being proportional to the load needed to maintain the cooling coil exit
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Figure 4.17: Comparison of optimal results and heuristic behavior for the two load
profiles subject to the 2 and 4 hour peak price schedule (peak from hours 14-16 or
12-16). The chiller power, TES charge level, and active mode are shown for each
optimal and heuristic controller. In the mode subplot, blue represents charging
(m3) and red discharging (m4). All other periods are the normal operating mode
(m1).
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temperature, which is not the same in the two load profiles considered. Therefore,

the charge rate on the low load day is half of what it is on the high load day.

In a real-life situation, more consideration would be given to the design of the

flow controllers in the system to ensure that they minimize the charging time and

maximize the discharging time regardless of the ambient conditions.

Also, notice that the initial condition for the storage Charge level for the optimal

and heuristic cases in Figure 4.17 is not zero. We made the assumption of a non-

zero initial storage level because, as can be observed on the low load days, it is

possible that at the end of the day the storage amount will be not return to the

original level. One situation where this behavior would be expected is when the

prediction horizon is extended to two days and the prices on the first day are in

general lower than those on the second day. In this case, it would be beneficial

to overcharge the storage on the first day and save some stored energy for use on

the second day. On the third day in this scenario, the storage would need to be

charged starting from a completely empty state.

4.7.4.3 Effect of Forecasting Error

In practice, it is unlikely that the forecasts of the load used by the scheduling

calculation will completely accurate. It is thus necessary to consider the effect of

mismatch between the forecasted load and the load actually imposed on the system.

We present this analysis for the high load (4 hour peak price) combination only as

it is the most energy-demanding scenario.

Specifically, we consider a situation where the high load profile (Figure 4.15)
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is used to determine the optimal schedule in Figure 4.17d. The actual load in

the building is different when this schedule is implemented. Figure 4.18a shows a

range of Qbuild values (based on a sample set of ten different Qbuild profiles) that

are variations on the high load profile from Figure 4.15. The variations have a

peak that occurs either before or after the forecast peak, and the magnitude may

be about the same or lower than the forecast peak.

For each of the ten Qbuild variations a new base cost (the cost when storage is not

used) was calculated and the resulting sub-optimal cost reduction was calculated.

These ranged from 29% to 63% with a median reduction of 55%. While lower than

the optimal savings of 64% from Table 4.7, these values still indicate a substantial

reduction in the energy costs under the peak pricing schedule.

Figure 4.18b shows the range of chiller demand under the different loads under

the optimal schedule. Notice that there are some cases where the chiller is still

off at the end of the discharge mode (i.e., the lower bound of the error bars is

at 0 around hour 15). This indicates that the storage was not fully discharged,

which means there was the potential to continue using it and have a higher cost

reduction. Ultimately, this demonstrates the importance of rescheduling in the

face of uncertainty. Because of the low computational times associated with the

NLP reformulation of the scheduling problem, having a shorter rolling horizon (say,

every 2 hours instead of once per day) is feasible.
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(b) The Qchill profiles when subject to the nominal
schedule from Figure 4.17d. The red line corresponds to
the nominal profile, while the results for the ten alternate
load cases fall within the range shown by the black bars.

Figure 4.18: The effect of error in the Qbuild forecast
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Table 4.8: Case Study Parameters

Name Description Value
(ρCp)c Density and heat capacity of the coolant 2.00e6 J/m3K
ρ Density of the PCM 1.00e3 kg/m3

Cp,s Solid PCM heat capacity 2.11e3 J/kgK
Cp,l Liquid PCM heat capacity 4.18e3 J/kgK
Λ Latent heat of PCM 333.00e3 J/kg
F1a Flow rate exiting the chiller 30.3 l/min

F discharge
2 Flow rate in the coolant loop during the

discharge mode
3.9 l/min

F 0
2 Nominal flow rate in the PI controller for

F2

11.4 l/min

ks Solid PCM conductivity 2.22 W/mK
kl Liquid PCM conductivity 0.56 W/mK
kD1 Chiller PI controller proportional gain 300 kW/K
kI1 Chiller PI controller integrator gain 500 kW/K
kD2 Cooling coil PI controller proportional gain 0.50 kW/K
kI2 Cooling coil PI controller integrator gain 0.70 kW/K
Qo
chill Nominal chiller heat removal rate 500 kW

T lowSPchill Chiller exit temperature low setpoint 260 K

T highSPchill Chiller exit temperature high setpoint 279 K
T SPcc Cooling coil exit temperature setpoint 284 K
Tm Melt temperature of PCM 273 K
Vchill Chiller volume .00284 m3

Vcc Cooling coil volume 0.03 m3

Vtank Volume of the coolant flow channels in the
tank

0.50 m3

R Radius of PCM cylinders 1.59 cm
L Tank height 1.00 m
Npcm Number of PCM cylinders 100

4.8 Case Study: PCM TES Scheduling with a Low Order
Model

In this example, we rely on a prototype system comprised of a heat pump - used

for charging the storage and cooling the building - and a PCM TES as our basis
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Table 4.9: Variable Nomenclature

Name Description
Charge(t) State of charge of the PCM tank
C(t) Time-varying price schedule
F1b(t) Flow recycled to the chiller
F2(t) Flow before the split at valve 1
F3(t) Flow to the cooling coil
F4(t) Flow to the storage tank
Hpcm(t, z, x) Enthalpy of the PCM
k(t, z, x) Conductivity of the PCM
mi(t) Operating modes of the coolant loop (i=1,2,3,4)
PHV AC(t) Electricity consumption in the chiller
Qchill(t) Heat removed by the chiller
Qpcm(t, z) Heat transfer between the PCM and coolant
Qbldg(t) Load removed by the cooling from the building
s(t, z, x) Solid fraction of the PCM
S Cyclical schedule of operating modes
Tchill(t) Chiller temperature
Tcc(t) Cooling coil temperature
Ttank(t, z) Temperature of coolant in the tank
Tpcm(t, z, x) Temperature of the PCM
T SPchill(t) Chiller setpoint temperature
v(t) Velocity of coolant in the tank
t0 Start time of the horizon
T Prediction horizon length
Tp Horizon of price forecast
T slow Prediction horizon in the TES scheduling calculation
T fast Prediction horizon in the Fast MPC

for formulating and solving the optimal operation problem for PCM TES systems.

The system components are modeled based on industrial equipment included in a

test facility currently under construction, and are assumed to be in use to meet

the thermal requirements of a large commercial office building.
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Based on the daily demands and total storage capacity, we delineate several

classes of load characteristics and identify those where advanced decision-making

and control can lead to economic and energy gains. A second contribution con-

sists of formulating the optimal operation problem of the heat pump/PCM TES

ensemble as a mixed integer dynamic optimization (MIDO), with the goal of min-

imizing total cost subject to comfort constraints. Our formulation captures the

different potential operating modes (e.g., charging, discharging, and off) of the

system via binary variables, which can considerably complicate the computation

of an optimal solution. We propose a novel numerical solution strategy based on

a sequential approach, showing that its computational implementation results in

fast solution times with potential for real-time implementation. We present sim-

ulation results comparing optimal operation with different price schedule profiles

typically encountered in the United States and European countries, and discuss

the influence of energy price variability on the choice of operating strategy for the

energy storage system.

4.8.1 System Description

4.8.1.1 Building

The system under consideration (which is representative of a 3000 square meter

building currently under development in Lyon, France) includes a heat pump with

a variable speed compressor and an electronically controlled expansion valve, a

compact PCM storage device allowing the system to answer peak demands on

short periods when demand may exceed the heat pump capacity, and a water chiller
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linking the heat exchanger, the cold production group and the storage device. The

coolant loop and water loop inside the building are shown in Figure 4.19.

Heat Pump 
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Figure 4.19: Coolant loops in the building system including the active PCM TES.
The charging and discharging configurations are shown.

In this system, the flow configuration of the coolant loop and flow direction

inside the PCM storage device changes depending on the operating mode (charging

or discharging). Equations (4.40) to (4.46) model the coolant and water loops in

the system. The building thermal load profiles (Load) are based on a detailed

thermal simulation of the commercial building located in Lyon over one year with

a one hour time step.

ρfCpfVhp
dThp
dt

= M1[FhpCpf (Ts − Thp − Php]
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+M2[FhpCpf (Techs − Thp)−BhpPhp] (4.40)

ρfCpfVs
dTs
dt

= M1[FhpCpf (Thp − Ts) +Kp(TPCM − Ts)]

+M2[FsCpf (Techs − Ts) +Kp(TPCM − Ts)] (4.41)

ρfCpfVech
dTechs
dt

= M2[FtotCpf (Ttot − Techs)

+K(Techs − Techb)] (4.42)

ρCpVech
dTechb
dt

= FbCp(Tb − Techb)−K(Techs − Techb) (4.43)

ρCpVbat
dTb
dt

= FbCp(Techb − Tb) + Load(t) (4.44)

Ftot = Fhp + Fs + Fbypass (4.45)

dTtot
dt

= M2(−Ttot +
FhpThp + FsTs

(Fhp + Fs)
) (4.46)

The model states and control variables are described in Table 4.10. We note

that, in the above model, flow configurations (modes) are represented mathemati-

cally using binary variables M1 and M2. Possible modes are charging (M1 = 1) and

discharging (M2 = 1), of which only one can be nonzero at any point in time (see

(4.49)). The operation of the heat pump is defined in terms of a binary variable,

Bhp, with the non-zero value denoting the “on” state of the pump and Bhp = 0 (in

either charging or discharging mode) representing the system “off” state.
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Table 4.10: Variables

States Unit Description
Thp

oC Temperature of the heat pump
Ts

oC Temperature of the TES fluid
TPCM

oC Temperature of the PCM
Ttot

oC Heat exchanger input temp. (source side)
Techs

oC Heat exchanger output temp. (source side)
Techb

oC Heat exchanger output temp. (building side)
Tb

oC Heat exchanger input temp. (building side)
Hpcm J/kg Enthalpy of the PCM

Decision Var.
Php kW Cooling load removed by the heat pump
Bbp Binary variable for heat pump on/off state

M1,M2 Binary variables for the charge/discharge configu-
ration

Fs kg/s Storage flow rate in discharge mode
Disturbance

Load kW Thermal load removed from the building

4.8.1.2 PCM Storage

We use a lumped approximation for the PCM in the storage system, model-

ing the evolution of the system total enthalpy as a function of time. The phase

regime of the system (liquid, solid and melting/freezing) is defined as a function of

enthalpy, and is used to select the appropriate temperature-enthalpy correlation.

Mn
dHpcm

dt
= Kp(Ts − Tpcm) (4.47)

Tpcm =


HPCM

Cp,s
if solid

Tmelt if phase change
HPCM+(Cp,l−Cp,s)Tmelt−Lf

Cp,l
if liquid

(4.48)
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We chose to model the PCM enthalpy rather than temperature as a dynamic

variable because enthalpy is a continuous function of temperature during the phase

change process, whereas temperature is only a C0 function (i.e., its time derivatives

are discontinuous) [6].

We note here that, while the lumped approximation does not accurately capture

the melt front observed during a phase change, it can provide a reasonable approx-

imation to the overall dynamics of the system, which are of interest in deriving

an optimal operation strategy. To this end, experimental data were used to tune

the heat transfer coefficient Kp in (4.41) so that the times for melting and freezing

approximated by the lumped model accurately represent the storage system.

4.8.1.3 Constraints

The constraint (4.49) guarantees that the optimization selects only one active

mode at a time for the flow configuration.

M1 +M2 = 1 ∀t (4.49)

Bounds are imposed on the temperature of the PCM in the TES system and the

heat pump:

TminPCM < TPCM < TmaxPCM (4.50)

Tminhp < TPCM < Tmaxhp (4.51)

The power level of the pump is defined by Php, which has a non-zero lower bound

denoting that the pump should only operate in a range where its efficiency is
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reasonably high.

Pmin
hp < Php < Pmax

hp if Bhp = 1 (4.52)

The water flow rate to the storage during the discharge mode is limited by

(4.53). During the charge mode its value is fixed to the (constant) heat pump

flowrate Fhp. This is automatically enforced through equation (4.41).

Fmin
s < Fs < Fmax

s if M2 = 1 (4.53)

We assume that the required thermal load to be removed from the building in order

to satisfy comfort constraints is known (this is the variable Load). We also assume

that this load will always be satisfied by the devices in the water loop (hence, Load

is added directly to Tb in (4.44)). However, we must still include a constraint that

guarantees all of the thermal load will be removed from the water loop so there is

always a driving force for heat removal from the building. Therefore, we limit the

building output temperature using (4.54).

Tminb < Tb < Tmaxb (4.54)

4.8.2 Analysis of Operation Scenarios

We define a set of operating scenarios based on comparing the total daily de-

mand to the total storage capacity available and to the maximum heat pump

capacity. The following (reasonable) assumptions are used when defining each

scenario:

• Approximate thermal load profiles are available for each day of the year with

hourly measurements Load(i).
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• The daily total energy demand D can be found using the hourly load profiles

for each day. D =
∑24

i=1 3600Load(i).

• The maximum load that can be removed by the heat pump is Pmax
hp = 55kW .

There are days where the maximum Load(i) value will exceed this limit.

• The maximum storage capacity is Emax
storage, and this has been sized based on

the need to meet the load requirements on the most extreme day of the year,

when the heat pump alone is not sufficient.

• To satisfy the temperature constraints on the system, nearly all of the build-

ing thermal load must be removed from the coolant loop using the heat pump

and storage.

Based on the above, we define the operating scenarios:

Case 1: On low days the storage is sufficient to supply the total demand (4.55)

and the heat pump is not needed.

D < Emax
storage (4.55)

Case 2: On average days the storage is not able to provide enough power for

the whole day (4.56) but the heat pump does not reach the power limit (4.57).

D > Emax
storage (4.56)

Load(i) < Pmax
hp ∀i (4.57)
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Case 3: On limited days days, the storage cannot provide enough power for

the whole day (4.56) and the power limit is reached by the heat pump.

∃i ∈ [1 . . . 24] Load(i) > Pmax
hp (4.58)

Case 4: On extreme days, all the same criteria for a limited day are met, and

the total load exceeding Pmax
hp is near the total storage capacity. We differentiate

this case from the limited day because, as we will see below, it leads to a significant

loss in degrees of freedom for the operation of the PCM TES system.

An example of each scenario is shown in figure 4.20. These profiles were obtained

from a detailed simulation of the building involved in the project.
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Figure 4.20: Types of load profiles, shown for the hours where Load is nonzero.

Figure 4.21 shows two potential cost profiles. The “peak schedule” is represen-

tative of a time of use (TOU) profile frequently encountered in the United States,

where there is a sharp increase in the price during the late afternoon. The “flat

schedule” is a day-night profile where there is a higher cost during the day and
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a low cost overnight; this profile is more frequently encountered in countries in

the European Union. The flat schedule is based on the rates at the French utility

company (Electricité de France), while the peak schedule has been designed so

that the total daily cost will be similar to that when subject to the flat schedule.

We note that in both cases, the energy price fluctuations generally follow a natural

trend in grid demand, i.e., the prices increase when grid demand increases (i.e.,

during daytime) and are low during low-demand periods (i.e., at night).
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Figure 4.21: Comparison of electricity price profiles (cost in EU cents/kWh)

Based on the discussion above concerning load profiles and the corresponding

operating scenarios, we make the following observations regarding the use of an

advanced control system for the building under consideration.

• The control actions for a Case 1 day can be easily determined heuristically:

since it is possible to meet all of the load requirements using the PCM TES

system, the optimal charging and discharging pattern is to charge the storage

at night and use as much as necessary during the day. This would be true

regardless of the cost profile, and it is unlikely that the use of an advanced

control system would significantly alter this operating strategy.
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• Similarly, the operating schedule on the Case 4 day can be specified em-

pirically. Since the storage system is sized to meet the amount of load in

excess of the heat pump capacity, and the constraints on the system dictate

the load must be satisfied, control actions are limited to operating the heat

pump at or near full capacity and using the storage (which is charged during

the previous night) to meet the excess load.

In light of the above, we will focus our efforts in the remainder of the paper

on defining an optimal control strategy for Case 2 and Case 3 type days. In the

climate scenario considered (Lyon, France), approximately 50 days of the year fall

into these categories (the majority of the load profiles belong to Case 1). The

number of such days is, however, much higher in a warmer climate, such as the

(subtropical) climate of Austin, TX and many other locations in the Southwestern

United States.

4.8.3 Optimal Operation Problem

The goal of the control system is to minimize operating cost by marshaling

the operation of the PCM TES and heat pump in the face of fluctuations in load

and energy prices described above. This can be formulated as an optimization

problem, aimed at minimizing an objective function (4.59) that reflects the total

cost of operating the heat pump over the time horizon T (which is typically 24

hours), subject to the system model and operating constraints introduced above:

min
M1,M2,Bhp,Php,Fs

∫ T

0

(C(t)[Bhp(t)Php(t)])
2 (4.59)
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s.t. Model (4.40) - (4.48)

Constraints (4.49) - (4.54)

where C(t) denotes electricity cost as a function of time (Figure 4.21).

The decision variables in (4.59) include the operating modes M1,M2, heat pump

variables Bhp, Php, and the storage flow rate Fs. Given a price profile, the optimiza-

tion should determine the optimal charging/ discharging pattern for the thermal

storage in addition to the other operating variables. In this work, we assume com-

plete and accurate knowledge of the Load profiles so there is no uncertainty when

making the control decisions. Note that modifications to traditional MPC formu-

lations for building control can account for optimization in the face of uncertainty

[169].

We assume that the cost of charging does not change from day to day, that

charging happens at night and that it is a continuous process (in the sense that

the TES system will not be charged during the day and there are no frequent

switches from charging to discharging and back) [252]. Note that this does not

mean that the storage system will be discharged continuously. It is possible for

the flow rate of chilled water from the storage system to be set to zero even when

in the discharge mode, so the timing of using the storage tank is not certain.

Therefore, the time horizon T in (4.59) does not need to span the entire day.

Rather, it only needs to span the period when the system is in the discharging

configuration. At the minimum, this should include the period θ where the cost

is higher than the base value and when Load is nonzero. Based on the above, we
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propose the following simplification of problem (4.59), whereby we designate the

times T ′ and t where T ′ − t ≥ θ as the interval of interest, and set the operating

mode of the system to discharge, i.e., M2 = 1. This results in the following mixed

integer dynamic optimization (MIDO) problem:

min
Bhp,Php,Fs

∫ T ′

t

(C(t)[Bhp(t)Php(t)])
2 (4.60)

s.t. Model (4.40) - (4.48)

Constraints (4.49) - (4.54)

M1 = 0

M2 = 1

Equation (4.60) provides a complete description of the PCM TES and heat

pump operating problem for the scenarios of interest. However, in view of the

complications posed by integer decision variables (which we discuss further below),

we also study a relaxation of this problem, which assumes that the heat pump is

not subject to the minimum power constraint (4.52), allowing for a continuous

transition between the off state (Php = 0) and the variable power in the on state.

This formulation is shown below.

min
Php,Fs

∫ T ′

t

(C(t)[Bhp(t)Php(t)])
2 (4.61)

s.t. Model (4.40) - (4.48)

Constraints (4.49) - (4.54) excluding (4.52)

M1 = 0

M2 = 1
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Bhp = 1

We obtained the solution of (4.60) following the control vector parametrization

approach [277, 278]. We divided the time horizon into 1 hour control intervals, us-

ing piecewise constant approximations for the continuous decision variables in each

interval. We dealt with integer variables using the outer approximation proposed

by Duran and Grossmann [82]. The time horizon spans the hours where the load

is nonzero, so t = 5 and T ′ = 19. We implemented intermediate point (path) con-

straints of the form y(t) < ylim in section 4.8.1.3 using an integral transformation

[278]: ∫ T ′

t

max(0, y − ylim) < γ (4.62)

where 0 < γ. To avoid discontinuities in (4.62), a differentiable approximation of

the max function [132] was used:

max(0, f(y)) ≈ 1

2
[
√
f(y)2 + β2 + f(y)] (4.63)

4.8.4 Results

The optimization problem (4.60) (as well as the relaxation (4.61)) was imple-

mented in gPROMS [217] and solved following the method described above. The

system parameters are shown in Table 4.12. The objective values for all of the

simulations are listed in Table 4.11. Results for the optimizations using Case 3

load profiles are discussed. We did verify the optimization for the Case 1, 2, and

4 profiles and the results were consistent with the assumptions in Section 4.8.2.
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Figure 4.22: Results of the MINLP for the Case 3 load using the flat cost schedule.
The dashed line shows the Pmin

hp limit.

We begin by comparing the results to the MINLP formulation on a Case 3 load

for the flat (Fig. 4.22) and peak (Fig. 4.23) cost profiles. In both cases, the

storage is completely discharged by the end of the simulation time. As expected,

more storage is used during the hours 13-16 in the peak profile case when the price

is higher than the flat profile. Also, notice the TES is used at the beginning and

end of the time horizon regardless of the price structure. This can be explained by

comparing Php in Figure 4.23 to the result of the NLP optimization with a peak

cost profile, shown in Figure 4.24. There are times when Php is lower than the

minimum operating level in the constraint (4.52) (recall this constraint is relaxed

in the NLP problem) and because of this extra freedom the objective for the NLP

is lower than the MINLP. This is because a non-zero lower bound on the heat pump

161



power makes it more cost effective to use the storage, rather than the heat pump,

to satisfy a low load requirement. Without a significant price peak, the storage is

mainly used to satisfy high demands (hours 15-17) and very low demands that the

heat pump cannot satisfy at as low of a cost as the storage. This demonstrates

the benefits of using an optimal controller as opposed to a heuristic for managing

the TES on days when there is significant freedom in the operating decisions - the

controller behavior may change day-to-day depending on the load patterns.
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Figure 4.23: Results of the MINLP for the Case 3 load using the peak cost schedule.
The dashed line shows the Pmin

hp limit.

It is worth noting that both MINLP solutions were obtained in about 8 minutes

on a desktop computer (exact times are in Table 4.11). This provides a significant

incentive for real-time, recursive implementation of the proposed methodology.
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Figure 4.24: Results of the NLP for the Case 3 load using the peak cost schedule.
The dashed line shows the Pmin

hp limit, which has been relaxed.

Table 4.11: Objective Values and Solution Times

Load
Case

Optim.
Type

Cost Profile Scaled Ob-
jective

Computation
Time

3 MINLP flat 650 455 sec. (Fig. 4.22 )
3 MINLP peak 828 486 sec. (Fig. 4.23 )
3 NLP peak 767 31 sec. (Fig. 4.24 )

4.9 Conclusion

Motivated by the ability to improve the operation of the electric grid through

managing the demand patterns of buildings, we focused on devising optimal strate-

gies for coordinating charging and discharging events of passive and active storage

with the operation of the grid. We proposed a hierarchical energy management
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Table 4.12: Parameters

Name Value Unit Description
Fhp 2 kg/s Heat pump flow rate
Ftot 4 kg/s Total flow rate
Fb 2 kg/s Building water loop flow rate
Vech 0.05 m3 Heat exchanger volume
Vs 2 m3 Storage total volume
Vhp .05 m3 Heat pump volume
Vbldg 4 m3 Building water volume
ρ 1000 kg/m3 Water density
ρf 1061 kg/m3 R410A density
Cp 4185 J/kg K Water heat capacity
C(p,f) 1690 J/kgK R410A heat capacity
C(p,nS) 2060 J/kgK Solid PCM heat capacity
Kp 8400 W/K UA value for the PCM
K 15000 W/K Heat exchanger UA value
Lf 333000 J Latent heat
Ms ρfVs(0.4) kg Mass of fluid in the storage
Mn ρVs(0.9)(0.6) kg Mass of PCM in storage (60% effi-

cient packing) accounting for PCM
spheres only being about 90% full

Pmin
hp 12 kJ

Pmax
hp 55 kJ
Fmin
s 0 kg/s

Fmax
s 2 kg/s
Tmaxb 17 oC
Tminb 5 oC
Tminn -3 oC
Tminhp -30 oC
γ 10
β 2
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strategy, based on controlling the use of active and passive TES in the building

and HVAC system in different time scales. We showed that the operation of active

TES systems must account for a longer time horizon, and formulated the opti-

mal operation of active TES as an optimal scheduling problem. We proposed a

continuous reformulation of this scheduling problem, that can be solved efficiently

in a short amount of time, while accounting for the complexity and discontinu-

ities associated with a detailed model of the phase change material-based storage.

Extensive case studies for thermal storage using chilled water and phase change

material demonstrated that our approach can achieve significant cost savings, out-

perform (reasonable) operating heuristics even under uncertainty in forecasting

building loads, and have low solution times, showing real incentive for online im-

plementation in a recursive, moving horizon fashion.
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Chapter 5

The Effect of Distributed Electricity Generation

Using Natural Gas on the Electric and Natural

Gas Grid

The material in this chapter has been submitted for publication [258].

5.1 Introduction

Electricity and natural gas (NG) are supplied to residential, commercial, and

industrial customers using complex networks that are in many ways interconnected.

For example, natural gas fired power plants are used for load following on the

electric grid [155]. Alternate methods for efficient electricity generation (e.g., CHP,

microturbines, or fuel cells) have a range of operating capacities and can rely on

NG as a primary energy source. It is possible to envision a future scenario where

a large number of these units, ranging from the kW to MW production scale,

are deployed in a region, thereby creating an increased dependency of the electric

grid on the NG grid at multiple points along the transmission and distribution

supply chains. This scenario appears as an attractive option for planning future

residential or mixed-use communities under the assumption that natural gas prices

remain low [161]. However, the potential changes in the interactions between the
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electricity and NG grids that arise in this situation should be carefully evaluated.

In this work, we focus specifically on this issue, and address the question “What

is the consequence of tighter interdependency between the electric and NG grids

through intersection points spanning utility-scale electricity generation through res-

idential use of distributed generation?” We develop several case studies illustrat-

ing the local requirements of both the electric and NG grids for a small neigh-

borhood model considering multiple configurations of NG-based generators and

various weather conditions and operating restrictions. Data for customer energy

demands are based on national energy surveys and information provided by the

Electricity Reliability Council of Texas (ERCOT). We formulate and solve the

model for the operation of the ensemble of consumers and generators as a mixed-

integer linear program, and analyze the resulting optimal energy usage profiles in

terms of the ability to flatten the load placed by the host neighborhood on the

electric grid.

5.2 Background

5.2.1 Overview of the Electric and Natural Gas Grids

The electricity and natural gas grids are both comprised of a transmission and

distribution system, with components (e.g., substations for electricity and com-

pression stations for NG) which ensure the safe and efficient delivery of energy to

consumers. However, the similarities stop here. The dynamic characteristics of the

electric grid are very different than those of the natural gas grid. The electric grid

must operate with the supply and consumption of electricity in perfect balance;
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large imbalances of electricity supply and demand lead to changes in voltage and

frequency which cause (potentially catastrophic) failures [5]. On the other hand,

natural gas is compressible and can therefore be stored in underground facilities or

“linepacked.” Linepacking is the temporary increase in pressure in the distribution

pipelines to act as a buffer for daily demands larger than the base load [268, 229].

Because natural gas can be easily stored, the natural gas grid has slower dynamics

than the electric grid and it does not have to operate with a perfect instantaneous

balance of supply and demand.

Planning for both short and long-term future production and demand is an im-

portant aspect of the operation of both grids for safety, reliability, and economic

reasons [201]. It is particularly important for the electric grid because of the lack

of cost-effective grid-scale storage (see [81] for a review of grid-scale battery tech-

nology). Consequently, the planning mechanisms for the two grids are structured

differently.

The need to balance supply and time-varying demand on the electric grid has

influenced the technology portfolio used by generation facilities and utility com-

panies. Base load power generation (i.e., plants that run 24/7 and produce a

constant amount of power) relies on hydro-electric, nuclear, coal, and natural gas

combined cycle (NGCC) plants [269], while load-following power generation relies

almost exclusively on natural gas-fired plants because of their ability to be ramped

up and down quickly [155, 269, 150]. Natural gas-based electricity generation has

lower greenhouse gas emissions than coal-fired power plants [124], so natural gas

is a preferable fuel source for centralized electricity production for environmental
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reasons. In the US, the fraction of electricity produced using NG has been steadily

increasing over the past decade due to decreasing natural gas prices (attributed

to the development of hydraulic fracturing of shale). In fact, approximately 35%

of natural gas consumed in the US in 2014 was used for electricity generation,

and 31% for industrial processes, while the remainder was used by residential and

commercial consumers [270].

The variability of demand poses special challenges to grid operations. When

the load on the grid is too high to be satisfied by typical generation resources, spe-

cial “peaking plants” may be brought online for brief periods to meet the extreme

demand level [269, 240]. In many cases, these are inefficient and tend to produce

more CO2 emissions than base load power plants. The desire to lower the peak

load on the electric grid has lead to the development of demand response (DR)

and demand management (DM) programs, which encourage consumers to curtail

or shift their electricity use from peak times [4, 202]. These programs are typi-

cally based on a time-dependent price schedule (e.g., time-of-use pricing) which

penalizes consumers for electricity consumption during peak demand times. As

a consequence, there has been a significant amount of research in how consumers

should (or do) behave in such a scenario. For example, optimal scheduling of ap-

pliance usage [154] and the control of thermal energy storage in residential and

commercial buildings [165, 253, 252] have been investigated as load-shifting strate-

gies. Flattening electric grid load using batteries has been examined at both the

grid scale [80] and locally at individual homes [35].

Another difficulty in operating the electric grid is the increased variability and
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uncertainty in supply introduced by the increase in use of renewable generation

technology, since their production levels are weather dependent [101, 207]. Natural

gas based electricity generation can be used to mitigate the uncertainty of supply

associated with the increased presence of renewable sources of electricity. This is

–again– due to the flexibility natural gas provides for production to be ramped up

or down quickly to satisfy short term load balancing needs. Distributed generation

(discussed in the next section) can also aid in this effort.

5.2.2 Distributed Generation Technology

Distributed generation (DG) describes small-scale electricity generation tech-

nology located close to consumers, which leads to minimal losses associated with

transmission (which can be up to 6% [272]). DG is a broad term and can refer

to units producing from a few kW of electricity up to the MW scale [1]. In a

similar vein, microgrids [125, 300] comprise a set of DG units and consumers, and

have the ability to operate independently from the traditional electric grid. These

are elements of the so-called ’smart grid’ [240, 93], and aim to address the peak

demand and intermittency issues associated with the incorporation of renewable

energy sources in the generation mix at the grid level. DG can also be used as

an ancillary service, which helps increase the reliability of the electric grid [131].

There is a large body of literature dedicated to the design and operation of DG

technology in this context but, true to the scope of our paper, we will briefly review

the NG-fired DG area.

Combined Heat and Power (CHP) and Combined Cooling Heating and Power
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(CCHP) refer to electricity generation systems which also recover and use waste

heat, increasing the overall efficiency. A detailed review of CCHP strategies is pro-

vided in [293], along with representative system designs – classified as micro-scale

(under 20kW), small-scale (20kW - 1MW), medium-scale (1MW -10MW), and

large-scale (over 10MW). Micro-CHP can be used by residential customers [72],

while commercial customers may employ small-scale CHP [171]. Large-scale de-

signs for planned communities and microgrids should also account for the presence

of other energy sources, like photovoltaics (PV) [198, 300]. The “prime mover” for

electricity generation in CCHP tends to be natural gas-based combustion turbines

[293]. Solid Oxide Fuel Cells (SOFC) using natural gas as their fuel source are

a promising technology for the small to large scale because of their high efficien-

cies and low environmental impacts [291, 56]. Hybrid micro-turbine and SOFC

systems have also been proposed [68]. Micro-turbines (defined by [86] as under

500kW in size) are well-suited for DG applications because of their small size, high

(greater than 80%) efficiencies, and flexible startup/load following capabilities [86].

In addition to being used for CHP, they can operate as a baseload or peak-shaving

unit, or as a standby power source in case of emergencies [86]. Both micro-turbine

based CHP systems and fuel cells used for distributed generation can have lower

greenhouse gas emissions than centralized generation technology [246].

The design and operation of individual systems is a major focus of the literature

on DG. The design and operation of single CHP systems were discussed, e.g., in

[198, 73, 232], the design and operation of a grid-connected microgrid was con-

sidered in [107], and investment opportunities in DG for industrial facilities were
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analyzed in [213]. Nearly all of the works mentioned consider capital investment

and operating expenses. Another important research avenue is the optimal place-

ment of DG units with respect to the distribution grid [98, 100, 283]. Available

studies typically assume the generator acts as a baseload facility by a utility or

grid operator. Several studies consider the implications of the use of DG resources

on the electric grid stability (i.e., power quality and reliability) [2, 30] but do not

focus on their potential for load-shifting applications or their cumulative effect on

the dynamics of the electric and natural gas grids.

5.2.3 Points of Connectivity

We identify three different points of connectivity between the natural gas and

electric grid, summarized in Figure 5.1. The first interconnection point between

the natural gas and electric grids is at the supply side, where grid-scale power

plants use natural gas (whether for load following or to help reduce renewable

variability). Also, the natural gas grid relies on electricity for compressors that

create the pressure gradients required to transport the gas through the pipeline

network [92].

Interdependencies between the electric and natural gas grid should be under-

stood in order to prepare for emergencies, where a small failure in one system may

impact the other (see, e.g., the discussion in [200]). There are significant security

and reliability concerns that arise from the interdependency of the supply of nat-

ural gas and the electric grid, and a large body of literature addresses this topic

(e.g., [92, 118, 155]). Moreover, there has been a significant amount of research re-
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Figure 5.1: Points of connectivity between the electric and natural gas grids

garding the markets at this level, because it is important to capture the interaction

between the energy sector and fuel availability [31]. For example, by coordinating

the planning and scheduling of the electric and natural gas grids, market inefficien-

cies can be reduced and operating costs lowered [150]. This is itself a challenging

undertaking owing to the multi-scale nature of the integrated system, with the

dynamics of the electric grid being much faster than the evolution of the natural

gas grid [118]. The simultaneous scheduling of power generation and NG supply

(using detailed models of both electricity transmission and NG transport, e.g., as

in [158]) has been demonstrated to improve the economic performance of the two

systems [51, 55]. The literature review presented above shows that the current

interest on the interdependency of the gas and electric grid is primarily focused
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on the market considerations, and security and reliability concerns associated with

the first point of (supply-side) connectivity.

The next point of connection is labeled “medium-scale DG” in Figure 5.1. Here,

we are referring to distributed generation units with capacities > 1MW, such as

CHP systems serving entire neighborhoods. These systems are likely operated by a

utility and may still be connected to the distribution grid. Also, microgrids which

still purchase some power from the central electric grid can be viewed similarly.

Most of the literature reviewed in the previous section is dedicated to the design

and operation of such systems for demand management, or considering their effect

on the stability of the electric grid. Typically, these studies only consider a single

generator serving a large group of consumers. They do not extend their analysis to

the effects of many distributed CHP plants on the electric and natural gas grids.

Finally, small-scale distributed generation serving only a single consumer or

small number of consumers is the last point of connectivity in Figure 5.1, and

these DG units may even be located behind the meter for either/both electricity

and natural gas (i.e., owned and operated by the consumer rather than a utility).

Similar to the medium-scale DG, there is significant ongoing research in the design

and operation of individual units. Recently, the interactions of a single small-scale

generator with both grids was been investigated from a dynamic perspective [294].

The operation of an ensemble of small-scale distributed natural gas-based elec-

tricity generation units for load shifting, and their effect on the interdependency

of the two grids has not been explicitly characterized in the literature, and will

be considered in this paper. Specifically, we aim to examine (i) the effect of the
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presence of several distributed generation units in a single area on the local grid

load, (ii) the effect of distributed generation unit size on load patterns, and (iii)

using the integration of the units within a residential community to flatten overall

electric grid load.

To support this study, we develop a model of a future residential community

that obtains electricity from the traditional electric grid and a set of small-scale

(< 50kW) natural gas distributed generation units. We assume that the units are

already in place, and do not need to consider capital investment. These units are

used for local load following and peak load shifting for the electric grid. We will

investigate the effect of the size of the natural gas distributed generation units and

their ability to achieve a flat grid load within the limitations of the current NG

grid infrastructure, while accounting for seasonal effects.

5.3 System Model

We develop a model of electricity and NG consumption for a residential neigh-

borhood. In this model, a neighborhood is defined as a group of generators and

the associated home consumers. Figure 5.2 shows a sample connectivity map of a

single generator to the allocated consumers within the neighborhood. Each gen-

erator can only deliver electricity to its subset of consumers, while all consumers

can receive electricity from the grid.

We assume that the neighborhood consists of 100 consumers (homes), and each

consumer is connected to a single generator, the natural gas grid, and the electric

grid. In Section 5.3.1 we present the mathematical description of the neighborhood
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energy consumption and assumptions involved in developing it. This model will

be used in an optimization formulation presented in Section 5.3.2 to establish the

optimal operation of the distributed generation units under different scenarios. The

parameters of the model (e.g., demand profiles, number of generators, assignment

of houses to each generator) are discussed in Section 5.3.3.

Natural Gas 

GridC1

C2

Cn

Electric 

Grid

G1

.

.

.

��,�
����

��,�
	�


��,�
���������

��,�
����

��,�
	��

Electricity 

from Generator

�,�

�
���

�,�

�,�

�,�
	�


��,�
	�


��,�
	��

�,�

Figure 5.2: Structure of residential neighborhood grids with distributed generation
units

5.3.1 Model formulation

The variable nomenclature and definitions are presented in Table 5.1. Each

consumer c ∈ C (where c = 1 . . . Nc and C is the set of consumers) has a predicted

total electricity demand for appliances and cooling Delectricity
c,t and heating demand

Dheat
c,t at time t. Equation (5.1) states each of the consumers’ total electricity

demand must be satisfied using electricity from the grid Eelec
c,t and the generator

Egen
c,t .

Delectricity
c,t = Eelec

c,t + Egen
c,t ∀c, t (5.1)
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Table 5.1: Model Parameters and Variables

Indices and Sets

c ∈ C Consumers
Si ⊆ C Consumers mapped to generator i
i ∈ I Generators
t ∈ T Time steps

Parameters

∆t Time interval of each time step (0.25 hr)
fmini Minimum fractional operating level of natural gas

generator (0.8)
fmaxi Maximum fractional operating level of natural gas

generator (1.0)
Lmaxi Load capacity of NG generator (kW)

εi Efficiency of NG generator ( BTUkWhr )
Dheat
c,t Consumer demand for heating (kW)

Delectricity
c,t Consumer demand for electricity (kW)

HHV High heating value (BTU
ft3

)

NGFlow Cap Volumetric flow rate capacity (120 ft3

hr )

NGTot Cap Volumetric consumption capacity (35,880 ft3

hr )
M Constant used in ’big M’ reformulations

Continuous Variables

Eelectc,t Electricity used by each consumer from the electric
grid (kW )

Egenc,t Electricity used by each consumer from the dis-
tributed generation (kW )

Ggasc,t Gas used by each consumer for heating (kW)

Li,t Electricity produced by each generator (kW)
fi,t Generator operating level (–)

Vi,t Flow rate of NG consumed by each generator (ft
3

hr )
V gen
c,t Flow rate of natural gas attributed to each consumer

for distributed generation (ft
3

hr )
V gas
c,t Flow rate of natural gas attributed to each consumer

for heating (ft
3

hr )
V tot
c,t Total flow rate of natural gas attributed to each con-

sumer for heating and distributed generation (ft
3

hr )

EgridTott Total electricity used by the entire neighborhood
Eecxess Electric load on the grid relative to a target load
α Target electric grid load (kW )
N events Number of on/off events

Binary Variables

Bi,t NG generator ON (1) or OFF (0)177



We initially assume that the entire demand for heating is met by gas supplied

from the natural gas grid Ggas
c,t (i.e., no electric heating). This is represented in

Equation (5.2).

Dheat
c,t = Ggas

c,t ∀c, t (5.2)

The amount of electricity produced by generator i ∈ I is divided among its

subset of consumers, Si ⊆ C. The sum of all the electricity used by the consumers

within a generator’s consumer subset is equal to the total amount of electricity

produced, Li,t, by generator i at time t. Equation (5.3) represents this division

of generator electricity among the consumers. Note that we do not impose any

constraints on this division; it is therefore possible to have an unequal split of

electricity among the consumers assigned to a generator.

Li,t =
∑
c∈Si

Egen
c,t ∀i, t (5.3)

The operating state of each generator is defined by a binary variable Bi,t, which

represents whether generator i is on (i.e., Bi,t = 1) or off (i.e., Bi,t = 0) at time

t, and the fractional operating level fi,t, which represents the operating level with

respect to the maximum electricity production Lmax. Equation (5.4) defines the

amount of electricity produced by generator i.

Li,t = fi,tL
max
i Bi,t ∀i, t (5.4)

The generator operating level fi,t is constrained, as shown in Equation (5.5),

so that each generator operates efficiently when turned on. We specify fmin and
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fmax so that generators can operate at 80-100% of their maximum capacity.

fmin ≤ fi,t ≤ fmax (5.5)

For practical reasons, the generators should not repeatedly turn on and off

since this causes excessive wear. Equations (5.6) and (5.7) impose that generators

remain on for at least an hour and a half once they are turned on, and stay off for

at least an hour once they are turned off, respectively.

Non(Bi,t −Bi,t−1) ≤
Non∑
θ=1

Bi,t+θ Non =
1.5

∆t
− 1 ∀i, t (5.6)

Noff (Bi,t−1 −Bi,t) ≤ N2 −
Noff∑
θ=1

Bi,t+θ Noff =
1

∆t
− 1 ∀i, t (5.7)

Every generator load has an associated volumetric flowrate Vi,t of natural gas

that is calculated based on the generator efficiency εi and the generator fractional

operating level. Equation (5.8) provides the total natural gas flow rate required

for generator i to produce the required amount of electricity under its current

operating level, based on the energy content of natural gas (high heating value

HHV = 1027Btu
ft3

).

Vi,t =
Li,tεi
HHV

∀i, t (5.8)

The portion of natural gas used by a generator attributed to each of the con-

nected consumers, V gen
c,t , is based on the consumer’s electricity consumption from

the generator Egen
c,t .

V gen
c,t =

Egen
c,t Bi,tεi

HHV
∀i, c ∈ Si, t (5.9)
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Additionally, the volumetric flow that each consumer uses for gas heating is defined

as:

V gas
c,t =

Ggas
c,t

HHV
∀c, t (5.10)

so that the total flow of natural gas used by each consumer V tot
c,t is:

V tot
c,t = V gen

c,t + V gas
c,t ∀c, t (5.11)

The current pipeline infrastructure may limit the amount of natural gas that

can be delivered to the generators. The pipe diameter at various points along the

supply chain imposes a restriction on the flow rate of natural gas. To account

for this possibility, equations (5.12) and (5.13) constrain the flow rate and total

consumption, respectively, of a generator i.

The parameter NGFlow Cap is determined by pipe material, length, and pressure

drop. In practice, these properties may very greatly among consumers. For our

model, we have selected a fairly conservative maximum flow rate of 120 ft3/hr

for the parameter NGFlow Cap for all generators(this is reasonable for a maximum

allowable pressure of 0.5psi). NGTot Cap is based on the maximum observed gas

use in the winter, when demand for gas is at its peak. We assumed a value of

115% of the natural gas consumption in an average Texas household during the

winter (NGTot Cap), which is 35,880 ft3/day for a group of 100 consumers (this

metric was based on the average monthly natural gas residential consumption for

Texas[273] and average number of residential consumers [271]).

∑
c∈Si

V gen
c,t ≤ NGFlow Cap ∀c, t (5.12)
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∑
all t

∑
c

V gen
c,t ∆t ≤ NGTot Cap ∀c (5.13)

The main decision variables when establishing the optimal operation of gener-

ators are fi,t and Bi,t. Note that equations (5.4) and (5.9) contain bilinear terms

(comprising the product of two variables, one binary and the other continuous). A

linear model is preferred to simplify the optimization calculation. Consequently,

we transform the bilinear terms into a set of equivalent linear inequalities using a

“big M” technique. Equation (5.4) is rewritten as:

Li,t ≥ fi,tL
max
i −M1(1−Bi,t) ∀i, t (5.14a)

Li,t ≤ fi,tL
max
i +M1(1−Bi,t) ∀i, t (5.14b)

Li,t ≤M1Bi,t ∀i, t (5.14c)

and Equation (5.9) is rewritten as:

V gen
c,t ≥

Egen
c,t εi

HHV
−M2(1−Bi,t) ∀c, t (5.15a)

V gen
c,t ≤

Egen
c,t εi

HHV
+M2(1−Bi,t) ∀c, t (5.15b)

V gen
c,t ≤M2Bi,t ∀c, t (5.15c)

We set M1 and M2 to a value 10% greater than the maximum generator load to

ensure a tight formulation of the optimization problem.

5.3.2 Optimization Problem Formulation

The purpose of the set of distributed generators is to improve the overall opera-

tion of the electric grid. To this end, we aim to flatten the load on the electric grid
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over the course of a day, which will help reduce the peak load. We will consider a 24

hour time horizon with ∆t = 15 minute time steps. The optimization calculation

will be used to establish the operating pattern of the generators such that a flatter

load profile is achieved. Rather than minimizing the peak load directly (e.g., as

in [67]), we seek to minimize the excess energy, Eexcess, defined as the difference

between the grid load and a target load, α, over the time horizon considered.

Eexcess =
∑
all t

|Egrid Tot
t − α| ∗∆t kWhr (5.16)

Note that α is also a decision variable and we do not penalize any particular α value.

In other words, we are not concerned with the magnitude of α but rather focus on

imposing an effective use of the generation capacity. This includes reducing the

number of times the generators turn on/off to avoid unnecessary wear on the units

(this was also discussed in relation to equations (5.6) and (5.7)). Equation (5.17)

is used to determine N events, the number of times the set of generators either turn

on or off.

N events =
∑
all i

Tbill∑
t=2

|Bi,t −Bi,t−1| (5.17)

We will include this term in the optimization objective, with the added benefit

of tightening the formulation (owing to the large number of decision variables,

which is equal to the number of time steps × number of of generators × number

of decision variables, degenerate solutions may arise, indicating that are multiple

ways to reach the same excess energy level).

The model is examined in three different cases: an unconstrained case, a con-

strained case, and a decentralized case. We evaluate these cases for different sea-
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sonal demand profiles and configurations of gas vs. electric heating. The objective

is to minimize the excess energy observed on the electric grid and the number of

on/off events. The two objectives are weighted (the weighting factors are Wexcess

and Wevents) to create a single objective function. The choice of weighting factors

will be discussed after the optimization problem formulations are presented below.

Unconstrained case

The unconstrained case is the base case for establishing the operation of the gen-

erator units, with no limit on the amount or on the rate of consumption of natural

gas. This is a centralized approach: the operation of all generators over the course

of the day is assumed to be coordinated centrally and hence established simultane-

ously. Equations included in the optimization problem for the unconstrained case

are described in the formulation (5.18):

min
Bi,t,fi,t,α

WexcessE
excess +WeventsN

events

s.t. (5.1), (5.2) Demand definition and constraint
(5.3) Relate generator load to electricity used by consumer
(5.5) Limitations on generator operating level
(5.6), (5.7) Minimum amount of time to remain on/off
(5.8), (5.11) Natural gas flow rate to each generator and consumer
(5.10), (5.15) Total natural gas used for heating and electricity

per consumer
(5.14) Determine generator load
(5.16), (5.17) Define variables in objective

Constrained Case

The unconstrained case is idealistic since it does not account for limitations due

to the current NG distribution infrastructure. In the constrained case, we include
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Equations (5.13) and (5.12), leading to the problem (5.18):

min
Bi,t,fi,t,α

WexcessE
excess +WeventsN

events

s.t. (5.1), (5.2) Demand definition and constraint
(5.3) Relate generator load to electricity used by consumer
(5.5) Limitations on generator operating level
(5.6), (5.7) Minimum amount of time to stay on/off
(5.8), (5.11) Natural gas flow rate to each generator and consumer
(5.10), (5.15) Total natural gas used for heating and electricity

per consumer
(5.12), (5.13) Infrastructure volumeric flow rate and consumption

constraints
(5.14) Determine generator load
(5.16), (5.17) Define variables in objective

Decentralized Case

In the constrained and unconstrained cases, centralized decision making is im-

plied (the operation of all the generators is determined in a single calculation which

would be performed on a centralized computer, likely by the utility). This may

not be feasible in practical situations. For example, consider a scenario in which

the generators are owned and operated by the consumers instead of a utility com-

pany. In this case, the consumers would be less likely to coordinate their actions or

willing to relinquish control of their assets, and instead focus on minimizing their

own utility bills.

In order to understand how centralized operation affects the performance and

grid flattening objective, we compare the two scenarios already described to a

decentralized optimization which considers a single generator, so that the set of

consumers involved is Si ∈ C. Because the formulation involves only a single
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generator, excess energy is redefined as:

Eexcess
i =

∑
all t

|
∑
c∈Si

Eelec
c,t − αi| ∗∆t kWhr (5.18)

and equation (5.17) is redefined as:

N events
i =

Tbill∑
t=2

|Bi,t −Bi,t−1| (5.19)

The decentralized optimization formulation is unconstrained (i.e., similar to the

formulation (5.18) because it does not include the constraints based on current

infrastructure as in (5.18)), and described in Equation (5.20) below. In this case,

the optimization will have to be solved once for each generator i.

min
Bi,t,fi,t,α

WexcessE
excess
i +WeventsN

events
i

s.t. (5.1), (5.2) Demand definition and constraint
(5.3) Relate generator load to electricity used by consumer
(5.5) Limitations on generator operating level
(5.6), (5.7) Minimum amount of time to stay on/off
(5.8), (5.11) Natural gas flow rate to each generator and consumer
(5.10), (5.15) Total natural gas used for heating and electricity

per consumer
(5.14) Determine generator load
(5.18), (5.19) Define variables in objective

(5.20)

Note that when we present the results of the decentralized case, the sum of all

the individual generators’ operation is used to analyze the effect of decentralized

operation relative to centralized operation.
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Electric Heating Case

The previous cases assume that consumers only rely on gas heating. When

the consumers are assumed to have electric heating, equations (5.1) and (5.2) are

extended to:

Delectricity
c,t +Dheat

c,t = Eelec
c,t + Egen

c,t ∀c, t (5.21)

0 = Ggas
c,t ∀c, t (5.22)

Equation (5.10) is no longer needed so Equation (5.11) becomes:

V tot
c,t = V gen

c,t ∀c, t (5.23)

The equations included in the optimization formulation of the unconstrained elec-

tric heating case are described in Equation (5.24).

min
Bi,t,fi,t,α

WexcessE
excess +WeventsN

events

s.t. (5.21), (5.22) Demand definition and constraint
(5.3) Relate generator load to electricity used by consumer
(5.5) Limitations on generator operating level
(5.6), (5.7) Minimum amount of time to stay on/off
(5.8), (5.23) Natural gas flow rate to each generator and consumer
(5.15) Find total natural gas used for electricity per consumer
(5.14) Determine generator load
(5.16), (5.17) Define variables in objective

(5.24)

Objective Function Weighting Factor

Different ratios of weighting factors were examined to select values for the ob-

jective function used in the case studies. Figure 5.3 shows the resulting excess

energy and number of events for the solution of the unconstrained formulations for
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both gas and electric heating when the weighting factors are varied. It is possible

to achieve very low excess energy levels when Eexcess is heavily weighted, however

there was a large number of on/off events and we observed several degenerate so-

lutions. For this reason, we have selected weighting factors of Wexcess = 1 and

Wevents = 25 (W2/W1 = 25 in Figure 5.3).
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Figure 5.3: Varying Weighting Factors

5.3.3 Model Parameters

The main parameters that define the neighborhood are the number of consumers

(c ∈ C), consumer demand profiles (Delectricity
c,t and Dheat

c,t ), number of generators

(i ∈ I), generator capacity (Lmaxi ) and efficiency (εi), and connectivity between

houses and generators (Si ⊆ C). We present below the parameters for all of the

case studies considered in the results section.
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Consumer Demand Profile

The variables Delectricity
c,t and Dheat

c,t define the customer demand profiles. For

consistency, we use kW as the unit for both, even though in the US it is customary

to express the heat load in Btu. This is important for Dheat
c,t , as the heating demand

may be satisfied using either electricity or gas, in which case the efficiency of the

heating unit is accounted for to convert the power to the required amount of natural

gas (this is discussed further shortly). We will develop profiles for a 24 hour period,

for both the hot and cold seasons.

The representative demand profiles for electricity and natural gas (for heating)

in a neighborhood consisting of 100 consumers are developed from EIA historical

data and ERCOT typical load profiles for residential consumers in Texas. The EIA

Residential Energy Consumption Survey [265] provided annual energy consump-

tion statistics by end-use (space cooling, space heating, water heating, cooking,

and other). We divided these data into seasonal and daily consumption levels,

and assumed that the space cooling and other categories would be accounted for

in Delectricity
c,t , while the space and water heating and cooking categories are ac-

counted for in Dheat
c,t . ERCOT provides representative hourly load profiles for

different types of consumers [87], which we used to represent the dynamic trends

of the consumer appliance demand patterns. For heating, we assumed that the

demand is higher in the morning and evening when generating the representative

dynamic pattern. Based on these sources, we created a representative daily load

profile for the appliance and heating requirements of a single residence in a hot

and cold season, and then generated random perturbations on this profile in order
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to obtain the Delectricity
c,t and Dheat

c,t profiles for one hundred consumers. An example

of this is shown in Figure 5.4 for the hot season. The general equation used to

create the load perturbations is shown below. For each consumer, the uniformly

distributed random number RA
c is used to shift the mean load while RB

c,t is used to

scale the reference load at each time point.

Dc,t = RA
c +RB

c,tD
ref
t (5.25)

The total neighborhood demand for appliances and heating (i.e.,
∑

cD
electricity
c,t

and
∑

cD
heat
c,t in the hot and cold season are shown in Figure 5.5). In order to

calculate the amount of gas required (this is applicable in the gas heating scenario),

we assume that all the equipment has efficiency ratings of 70% (based on reported

efficiency values for commercially available water and space heaters). In the case

of electric heating, we assume there are negligible conversion losses.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Time (15 min intervals)

Lo
ad

 [k
W

]

(a) Consumer Appliance Demand Delectricity
c,t

0 20 40 60 80 100
0

2

4

6

8

10

12

Time (15 min intervals)

Lo
ad

 [k
W

]

(b) Consumer Heating Demand Dheat
c,t

Figure 5.4: Hot season demand profiles for 100 individual consumers.
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Figure 5.5: Total Daily Appliance and Heating Demands

Generator Size

The capacity of the generators used in this model is an important design con-

sideration. Oversized generators may have a minimum load capacity (i.e., 80% of

the maximum capacity) higher than the demand level during most of the day, and

as a result will not turn on very often. Undersized generators serving a demand

higher than their capacity will likely always be turned on to lower the load on the

grid. Finding the appropriate generator size is therefore necessary to ensure that

dynamic load levelling can be achieved.

In the following case studies, we will consider two generator sizes: Lmaxi = 10kw

with εi = 15, 031 BTU
kWhr

and Lmaxi = 50kw with εi = 13, 308 BTU
kWhr

. The generator

size was determined based on observed peak demand for different groupings of

houses. The selection of the generator sizes was carried out in conjunction with

the mapping between consumers and generators, and is described below.
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Consumer and Generator Configuration

The number of consumers serviced by an individual generator affects the op-

erating state of the distributed generation system. When too few consumers are

allocated to a generator, the combined demand is not high enough to allow the

generator to turn on at its lowest operating level. When too many consumers

are using the same generator, the generator will operate at maximum capacity for

most of the day. Such a configuration would not allow for load following with the

generators.

The ideal number of generators (and number of consumers assigned to each

generator) is that which results in the lowest excess energy levels (as defined by

equation (5.16)). To establish these conditions, the problem (5.18) was solved con-

sidering the hot season demand profiles for a variable number of generators. We

assume that the same number of consumers is allocated to each of the generators

(when the result of the division is not an integer, some generators may serve an ad-

ditional consumer). The results for the Lmaxi = 10kW case are shown in Figure 5.6,

which plots the excess energy as a function of the ratio of consumers to generators

(e.g., the consumer:generator=10 point indicates that there is 1 generator serving

10 consumers or, equivalently, that there are 10 generators for the 100 consumers

considered). Based on this analysis, we decided to consider 16 generators, each

of which serves between 6-7 consumers. A similar analysis was performed for the

Lmaxi = 50kW case, which showed that three generators are sufficient, with each

generator serving 33 or 34 consumers.
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5.4 Results

There is a large combination of potential scenarios to evaluate based on the

choice of optimization model, hot or cold season demand, generator configuration,

and electric or gas heating option. Table 5.2 lists the scenarios that are discussed

here. This set of results was selected as the most practically meaningful. First,

we discuss the unconstrained, constrained, and decentralized formulation solutions

for the hot season. Then, we compare these data to the system behavior in the

cold season. Finally, we evaluate the impact of electric heating.

5.4.1 Reporting Approach

Important output variables are presented in a results table for each case: the

number of on/off events (N events), the total volume of natural gas used for electric-
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Table 5.2: Scenario Definitions

Results
Section

Optimization
Formulation

Heat
Source

Season
Generator
Size (kW)

Label

Sec. 5.4.2
Unconstrained

(5.18)
Gas Hot 10 Case1

Unconstrained
(5.18)

Gas Hot 50 Case2

Sec. 5.4.3 Constrained (5.18) Gas Hot 10 Case3

Sec. 5.4.4
Decentralized (5.20) Gas Hot 10 Case4
Decentralized (5.20) Gas Hot 50 Case5

Sec. 5.4.5

Unconstrained
(5.18)

Gas Cold 10 Case6

Unconstrained
(5.18)

Gas Cold 50 Case7

Sec. 5.4.6
Unconstrained

(5.24)
Electric Hot 50 Case8

Unconstrained
(5.24)

Electric Cold 50 Case9

ity generation over the time horizon (V gen,tot), the total natural gas used for gas

heating equipment (V gas,tot), the maximum natural gas flow rate to the generators

(V gen,Max), the maximum natural gas flow rate for heating equipment (V gas,Max),

the excess energy (Eexcess), and the target grid load (α). These values of these

variables for each case are summarized in Table 5.3.

The solution for each scenario is also described with two plots: (a) the neigh-

borhood demand and power use by energy source for each hour of the day, and (b)

a Gantt chart of the generator operating levels throughout the day. The demand

curve is equivalent to the sum of the natural gas generation load curve and elec-

tric grid load curve. The shaded, transparent area around each curve represents

the range of solutions for different demand levels, which can be interpreted as the

193



size of the operating space or the effect of uncertainty for the given season. This

was determined by solving the optimization problem for four other demand curves

corresponding to 80, 90, 110, and 120% of the baseline demand profile determined

in Section 5.3.3.

Figure (b) shows the generator operating schedules. Any white space within the

chart indicates that the generator is off and the colored squares show the changes

in operating level for each time step, where the color map represents ramping from

80% to 100% of the generator capacity.

Table 5.3: Summary of Case Results

Label
Number
of on/off
Events

Excess
Energy

(Eexcess)

Grid
Target

(α)

Total
NG

Con-
sumed

by Gen-
erators

Total
NG for
Heating
Equip-
ment

Max.
Gen-
erator
Flow

– – kW-hr kW ft3/day ft3/day ft3/hr
Case1 13 246.50 190.15 21823 31.79 146.4
Case2 4 180.57 187.39 23121 31.79 767.0
Case3 13 359.79 200.50 18889 31.79 120.0
Case 4 16 593.45 178.2 25728 31.79 146.4
Case 5 3 387.48 183.11 25323 31.79 767.0
Case6 22 469.93 65.90 15694 255.51 146.4
Case7 6 349.61 43.98 21936 255.51 767.0
Case8 5 297.09 230.36 25014 0.00 767.0
Case9 6 486.39 268.13 23673 0.00 767.0
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(a) Neighborhood Power Load by Source

Number of Events = 13
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(b) Generator Operating Level

Figure 5.7: Case 1 Results (unconstrained, gas heat, hot season, 10kW generators)

(a) Neighborhood Power Load by Source
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(b) Generator Operating Level

Figure 5.8: Case 2 Results (unconstrained, gas heat, hot season, 50kW generators)

5.4.2 Unconstrained Case Results

Figures 5.7 and 5.8 show the total load and generator behavior for the uncon-

strained cases 1 and 2. Interestingly, the excess energy and α value are lower in

case 2 than case 1. This is unexpected since the total capacity for the 16 small
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generators is 160kW, while the total capacity of the three larger generators is only

150kW. Also, the large number of small generators conceivably has the potential to

achieve more precise load following by staggering the on/off time of each generator

to reflect small changes in demand. This was not the case because, as can be seen

in Figure 5.7b, not all of the generators are utilized. This is due to the value of α

and the fact that the objective is formulated to achieve a flat load profile without

penalizing the magnitude of the load. Also, because the 50kW generators have a

larger operating range (40-50kW) than the 10kW generators (8-10kW), the larger

generators have greater flexibility and can more broadly vary their operating range

without incurring an on/off event that is penalized in the objective function. This

is also shown in the Gantt charts of Figure 5.7 and 5.8. The 50kW generators

experienced broader changes in their operating levels than the 10kW generators.

5.4.3 Constrained Case Results

Figure 5.9 shows the results of Case 3, whereby a constraint is imposed on the

amount of natural gas delivered to the neighborhood to reflect potential natural gas

infrastructure limitations. We did not consider a constrained version of the 50kW

generator configurations based on the assumption that a dedicated NG delivery

infrastructure would be implemented for larger generators. In both Case 1 and

Case 2, there is a substantial increase in the amount of natural gas being delivered

to the generators compared to a neighborhood lacking this type of distributed

generation. As a result, the excess energy in Case 3 increases by 46% relative to

the unconstrained case 1. The generators are forced to operate at only 82% capacity
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due to NG availability limitations (constraint (5.12) is active). The results in Table

5.3 show that the total natural gas consumption is always less than the maximum

allowable consumption, 35,880 ft3

hr
, while the flow rate to each generator reaches

the pipe capacity of 120 ft3

hr
. As a result, the generator on/off times are further

apart in Case 3 than in Case 1 (compare Figures 5.9b and 5.7b) to help with load

following. It is clear that establishing the appropriate generator size depends on

potential supply constraints in addition to the demand pattern.

(a) Neighborhood Power Load by Source

Number of Events = 13
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(b) Generator Operating Level

Figure 5.9: Case 3 Results (constrained, gas heat, hot season, 10kW generators)

5.4.4 Decentralized Case Results

Figures 5.10 and 5.11 show the results for Cases 4 and 5. The decentralized

operation of the set of generators shows a substantial increase in excess energy

compared to the centralized optimization results (141% and 115% increase, re-

spectively, compared to Cases 1 and 2). This is due to the lack of coordination

of on/off times for all the generators, which causes a sharp drop in the grid load
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when all generators turn on at about the same time. A similar behavior is to be

expected if the objective of each consumer were rewritten in terms of unilateral

cost minimization, in which case it is likely that every consumer would decrease its

demand during the peak pricing period (potentially causing a secondary rebound

peak [202, 140]). This behavior is not desirable from the utility operators’ perspec-

tive (see, e.g., the challenges associated with operating the grid in the California

“duck curve” scenario [41]), and these observations demonstrate the important

role of a centralized decision making entity within the context of building energy

management, particularly in the context of residential buildings. As such, the

development of communication protocols (e.g., OpenADR [99] and cloud-based

information sharing architectures [139]) between the utility and consumers par-

ticipating in demand response programs is an ongoing effort. For the interested

reader, we note that the utility-level economic implications of customer-owned DG

were been discussed in [83], and the broad question of ownership of commonly

pooled DG resources has been reviewed in [292].

5.4.5 Cold Season Cases

The results for Cases 6 and 7 are shown, respectively, in Figures 5.12 and 5.13.

The electricity demand profile for the cold season has a different load pattern

than the hot season, and overall the demand is lower at all times during the day.

Because of these differences, the generators are underutilized, especially in the

scenario involving the 10kW generators. One reason for this is the large slope of

the demand curve affects the optimal value of α, and in this situation the optimal
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(a) Neighborhood Power Load by Source
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(b) Generator Operating Level

Figure 5.10: Case 4 Results (decentralized unconstrained optimization, gas heat,
hot season, 10kW generators)

(a) Neighborhood Power Load by Source
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(b) Generator Operating Level

Figure 5.11: Case 5 Results (decentralized unconstrained optimization, gas heat,
hot season, 50kW generators)

α value is low enough that not all the generators are needed.

Another reason is that the generator size choices and the allotment of consumers

to generators may not be optimal. Houses with low demand should be grouped
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with houses that have high demand so there is enough total demand within a

consumer set to allow the corresponding generator to turn on. Grouping houses

with dissimilar demand profiles might also allow for more variation in the generator

fractional operating level, which can improve load following. In this sense, the

results presented here represent a “worst-case scenario,” in which the allocation

of consumers to generators is random. In some cases, the combined demand of

all the houses assigned to certain generators is lower than the minimum operating

level of the corresponding generator for large periods of time (a similar behavior

was observed for the constrained version of Case 6, not shown), which indicates

that the generators are oversized for this season. The lack of staggering of times

when the generators switch on is not desired, and this behavior is different from

that observed in Case 1. This is explained by noting that all of the houses are

increasing their demand around the same time and reach the minimum operating

threshold of the generator (notice the steep slope of the demand curve around time

step 45).

However, in the 50kW case (Case 7) the three generators are all used and

the resulting excess energy and grid target α are much lower than in Case 6.

There is still a similar issue regarding the inability to stagger the times when the

generators switch on, which results in a steep drop in the load on the grid. This

may be undesirable from the grid-operating point of view, and could be addressed

by adding an explicit penalty in the optimization formulation on the rate of change

of the grid load.
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(a) Neighborhood Power Load by Source

Number of Events = 22

Time Step (15 min Intervals)
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

G
en

er
at

or
 I

2

4

6

8

10

12

14

16

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(b) Generator Operating Level

Figure 5.12: Case 6 Results (unconstrained, gas heat, cold season, 10kW genera-
tors)

(a) Cold Season Neighborhood Power Load by
Source (BC4)
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(b) Cold Season Operating Level (BC4)

Figure 5.13: Case 7 Results (unconstrained, gas heat, cold season, 50kW genera-
tors)

5.4.6 Electric Heating Cases

If the neighborhood is designed such that all the consumers rely on electricity for

heating (rather than natural gas), the total electricity demand is higher throughout
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the day and has multiple peaks due to the bimodal heating demand profile (see

the red curves in Figures 5.14a and 5.15a for the hot and cold season electricity

demand). The results for Cases 8 and 9 are shown in Figures 5.14 and 5.15. First, it

is clear that the generators are undersized for these demand levels because they can

not perform load following in the afternoon and they spend a significant portion of

time operating at their maximum capacity. As such, their predominant function is

to lower the baseload. However, in the cold season the demand in the morning is

so high because of the added heat load that a generator turns on (Figure 5.15b),

and this behavior was not observed in any of the previous cases.

(a) Neighborhood Load by Source (EH3)
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(b) Generator Operating Level (EH3)

Figure 5.14: Case 8 Results (unconstrained, electric heat, hot season, 50kW gen-
erators)

5.5 Conclusion

In this paper, we considered the interaction of the natural gas and electricity

grids at the residential level, the lowest level of reticulation of the two networks. In
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(a) Neighborhood Load by Source (EH4)

Number of Events = 6

Time Step (15 min Intervals)
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(b) Generator Operating Level (EH4)

Figure 5.15: Case 9 Results (unconstrained, electric heat, cold season, 50kW gen-
erators)

particular, we considered the case of gas-fired distributed electricity generation in

conjunction with home natural gas use (i.e., cooking and heating), under realistic

demand scenarios and limitations posed by the natural gas distribution infrastruc-

ture. We demonstrated that it is indeed possible to use a large number of small

scale generators to flatten the electricity demand of a residential neighborhood.

Our optimization-based framework suggests that the system design should con-

sider demand dynamics and limitations of current infrastructure, and the effects

of mapping consumers to generators. Moreover, our results suggest that central-

ized decision-making and coordination of the operation of the generators results

in optimal demand profiles, and it is difficult to replicate this behavior with a

decentralized decision-making scheme whereby the operation of each generator is

managed separately. While a large number of small scale generators is useful for

localized load balancing, the need for a centralized control system and the ease of

203



designing and operating a smaller number of larger generators indicates that using

higher-capacity DG units (in our case, 50kW) is an attractive investment for the

future electric and natural-gas grids.
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Part II

Scheduling with Dynamic Process
Models
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Chapter 6

Scheduling with Data-Driven Process Models

The material in this chapter has been published in [257] and [259].

6.1 Introduction

Chemical processes are complex systems whose operation spans multiple time

and space horizons. Decision-making in the chemical supply chain has historically

abided by the time scales of process and market phenomena (Figure 6.1), with sep-

arate decision tiers dedicated to production management functions (i.e., planning

and scheduling), and to process control (including the supervisory and regulatory

control layers).

hours-days

Manufacturing process 
(physical layer)

Regulatory control

Supervisory control

Planning

seconds-minutes

minutes-hours

Scheduling

weeks-months

De
ci

sio
ns

Figure 6.1: Decision-making hierarchy in process control and operations.
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More recently, however, researchers have emphasized the potential benefits of

exchanging information and integrating decisions between the tiers of the oper-

ation hierarchy in Figure 6.1. The current economic environment features rapid

changes in market conditions, e.g., fluctuations in product demand, variations of

the cost and availability of raw materials and energy. As a consequence, produc-

tion management decisions are increasingly made at time intervals that overlap

with the time scale of the process dynamics (see, e.g., [210, 46] for a case study

focusing on the air separation industry).

Under these circumstances, a tighter coordination between the production man-

agement and control layers of the decision-making hierarchy in Figure 6.1, and in

particular between production scheduling and supervisory process control, becomes

critical [22]. Integrating scheduling and control is, however, a difficult task. On the

one hand, there are organizational challenges that stem from the fact that produc-

tion scheduling and, respectively, process control, are generally the prerogatives of

different divisions of a commercial enterprise. These entities have different goals,

operating tools and, more importantly, personnel with different backgrounds and

expertise [238].

On the other hand, the integration of scheduling and control is faced with

significant technical challenges, related to the need to, i) consider a sufficiently long

(scheduling) time horizon to capture the process economics, ii) account for discrete

variables that are inherent to production management decisions, and, iii) carry out

the relevant calculation online and in real-time, in a manner that can guarantee

the closed-loop properties (stability, disturbance rejection) that are expected to be
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satisfied by the control system.

The majority of research efforts aimed at integrating scheduling and control of

continuous processes that have been reported in the literature follow a top-down

approach [22]. This consists of embedding dynamic information (i.e., the dynamic

process model) in the scheduling framework, with the purpose of improving the

accuracy of estimating the transition times (and associated costs) between different

product grades and/or production rates. The resulting integrated scheduling and

control formulation is a mixed-integer dynamic optimization (MIDO) problem,

whose solution can become computationally costly as the model size and the length

of the scheduling horizon increase [111]. Both simultaneous [96, 250, 309] and

sequential methods [50, 214] have been proposed to solve this problem, along with

several decomposition strategies [251, 60] for reducing computation time. The

reader is directed to the recent survey [22] for more details on the current status

of pathways for integrating scheduling and control.

In our previous work [77, 25, 210, 259], we introduced a new paradigm for in-

tegrating scheduling and supervisory control. Our approach consisted of deriving

a low-order model of the closed-loop behavior of the process. This representa-

tion, which we refer to as a scale-bridging model (SBM), is then embedded in the

scheduling formulation and used to evaluate the impact of process dynamics on

scheduling decisions. All of the works cited rely on continuous time models.

In this work, we introduce a novel method for incorporating discrete-time models

of the process dynamics in the integrated scheduling and control framework. We

use autoregressive with exogenous inputs (ARX) models of the closed-loop process
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response as a discrete-time scale-bridging model (DSBM). Based on these DSBMs,

we define a hybrid discrete-continuous formulation of the integrated scheduling

and control problem, and propose a computationally efficient reverse integral error

criterion for establishing the completion of transitions between products.

6.2 Problem Formulation

In this work, we focus on continuous process systems that can be described

using an input-affine nonlinear model (6.1)

ẋ = f(x) + G(x)u (6.1a)

y = h(x) (6.1b)

where x ∈ Dx ⊂ IRnx are the differential (state) variables, u ∈ Du ⊂ IRnu are

manipulated inputs available for control, f : Dx → Dx and G is a nx × nu dimen-

sional function with every column gj : Dx → Dx. The process quality variables

are defined based on outputs y ∈ Dy ⊂ IRny , with h : Dx → Dy.

The process is assumed to make Np ≥ 1 products, which are defined in terms of

the corresponding values of the quality variables. Thus, each product has distinct

values of the quality variables, yi, with i = 1, . . . , Np.

For each product i: the price πi, demand rate δr,i and inventory cost cstorage,i,

are assumed to be known. The (possibly time-varying and product-dependent)

production rate q(t) is defined as a function of the states x and inputs u. Without

significant loss of generality, we assume there is no input-output multiplicity and
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that the state space Dx is such that each product yi can be reached from at least

one other product yi′ via a continuous path in the phase plane.

6.2.1 Scheduling

For the continuous processes under consideration, production scheduling con-

sists of optimizing the order (production cycle) in which the Np products are made,

and identifying the production time for each product, maximizing an objective

function defined in terms of the operational profit [96, 25]:

J =
1

Tm

Np∑
i=1

Ns∑
s=1

ωi,s
[
πi − cstorage,i(Tm − tfs )

]
(6.2)

Following the approach in [96, 25, 77], we assume that production of each prod-

uct i occurs in successive time intervals (time slots), with only one product pro-

duced in each time slot. For simplicity, a cyclical production scenario in which a

product is made only once during the production cycle is considered. This implies

that the number Ns of production slots is equal to the number of products, i.e.,

Ns = Np.

The binary variables zi,s ∈ {0, 1} are used for the assignment of products to

slots. The above assumptions can be expressed in terms of zi,s using the following

assignment constraints imposed on (6.2):

Np∑
i=1

zi,s = 1 ∀s (6.3a)

Ns∑
s=1

zi,s = 1 ∀i (6.3b)

210



which require that only one product be made in each time slot (6.3a), and, that a

product i can only be made once in each production cycle (6.3b).

We will utilize a continuous-time formulation, in which the start time tss ≥ 0

and end time tfs > 0 of each slot define the production time tpi,s in slot s. Along

with the transition time τs, which is the (sequence- and product-dependent) time

needed to switch from producing product i′ in slot s − 1 to making product i in

slot s, these variables are used to define the production timing constraints:

tfs = tss + τs +

Np∑
i=1

tpi,s ∀s (6.3c)

Additional timing constraints are included to match end and start times of subse-

quent slots, fix the start and end times of the initial and final slots, and limit slot

duration:

tss = tfs−1 ∀s 6= 1 (6.3d)

tfNs
= Tm (6.3e)

ts1 = 0 (6.3f)

tpi,s ≤ zi,st
p
max ∀i, s (6.3g)

The production time and slot assignment of each product can then be used to

impose constraints on demand satisfaction:

ωi ≥ δr,iTc ∀i

ωi ≤ λiδr,iTc ∀i

ωi,s = qit
p
i,s ∀i, ∀s

ωi =
Ns∑
s=1

ωi,s

(6.3h)
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6.2.2 Interaction of Scheduling and Process Dynamics

In a continuous process, the transition between products manufactured in differ-

ent time slots does not happen instantaneously, as illustrated in Figure 6.2. Rather,

such changeovers depend on both the dynamic characteristics of the process, and

on the performance of its control system. The transition times τs in the scheduling

problem formulation (6.2)-(6.3) capture the duration of such transitions (e.g., in

the form of a transition table with nonzero entries for all possible transitions).

Time slot 1 Time slot 2

Transition 
time 1

Production 
time 1

Transition 
time 2

Production 
time 2

Scheduled ysp

Product quality y

~

~

Time

Q
ua

lit
y 

va
ria

bl
e

Figure 6.2: Slot-based continuous-time schedule and transitions between products
[96, 22].

In the conventional approach to production scheduling, the parameters τs are

constant and thus constitute a static representation of the process response; be-

yond this information, conventional scheduling calculations are agnostic to the

process dynamics. This shortcoming can be addressed by augmenting the op-

timization problem with the dynamic model of the process, (6.1). The process

inputs u become an additional set of decision variables, and the transition times
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are determined from the actual process dynamics:

max
u,z,tps ,tss,t

f
s

J (6.4)

s.t. scheduling constraints (6.3)

dynamic process model (6.1)

x,y,u ∈ Dx,y,u

This mixed-integer dynamic optimization (MIDO) problem is computationally ex-

pensive [111], especially when the process model is large and nonlinear. Addi-

tionally, solving (6.4) at the beginning of the production cycle will result in an

open-loop control solution u(t), which is optimal in the nominal case (in the sense

that it results in the optimal production sequence, including optimal changeovers,

when imposed on the process), but may lead to significant performance degrada-

tion or even loss of stability in the case of plant-model mismatch or in the presence

of disturbances.

6.3 Integrated Scheduling and Control of Continuous Pro-
cesses

Based on the system definition and problem formulation presented above, we

can infer that:

i) in advanced manufacturing scenarios, where information exchange between the

levels of the process decision-making hierarchy is prevalent, process dynamics must

be considered at the scheduling stage. This becomes especially true in highly

dynamic market conditions, when product changeovers are frequent and transition
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times are not negligible compared to production times in each slot.

ii) the optimal production schedule should be implemented in closed-loop, i.e.,

a control system should be in place to account for the presence of disturbances

and/or plant-model mismatch.

Moreover, observation ii) suggests that it is of interest for scheduling models to

incorporate an expression of closed-loop process dynamics, whereby the setpoint of

the control system becomes a decision variable in the scheduling calculation.

6.3.1 Scale-Bridging Models

In our previous work [77, 25], we have introduced the concept of a scale-bridging

model (SBM) as precisely this representation of the closed-loop process dynamics

(Figure 6.3).

Setpoints
ysp

Controller ProcessScheduling Inputs
u

Scale Bridging Model

~ ~y

Figure 6.3: Scale-bridging models for integrated scheduling and control [77, 25].

More specifically, the SBM framework relies on defining ỹ as the subset of

the process quality variables y that are relevant to scheduling, and capturing the

dynamic behavior of ỹ in response to changes in the relevant setpoints ỹsp. A SBM
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thus takes the form:

0 = Ψ(ỹsp, ỹ, ˙̃y, ¨̃y, . . . ) (6.5)

The use of SBMs to represent the process dynamics in scheduling calculations

is well motivated by extensive previous research[18], where it was shown that the

slow dynamics (i.e., over time scales relevant to scheduling) of quality variables

such as product purity, total material inventory, production rate, can be captured

with low dimensional models.

Assuming that a SBM is available, the integrated scheduling and control prob-

lem takes the form:

max
ỹsp,z,t

p
s ,tss,t

f
s

J (6.6)

s.t. scheduling constraints (6.3)

scale-bridging model (6.5)

ỹ ∈ Dỹ

In our previous work [77], we have shown that, under certain conditions on

the dynamics of the process (6.1), geometric control ideas [71] can be used to

derive a (nonlinear) control law that imposes, for each quality variable, a linear

input-output behavior of the form

ỹ +

rk∑
k=1

βk
dkỹ

dtk
= ỹsp (6.7)

which represents the desired SBM, and can be used for accounting for process

dynamics and controller performance at the scheduling stage. Here rk represents

the relative degree of the system and βk are tuning parameters.
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6.4 Handling Discrete-Time Dynamic Process Models

In this work, we introduce a novel method for incorporating discrete-time models

of the process dynamics in the integrated scheduling and control framework. We

use autoregressive with exogenous inputs (ARX) models of the closed-loop process

response as a discrete-time scale-bridging model (DSBM). Based on these DSBMs,

we define a hybrid discrete-continuous formulation of the integrated scheduling

and control problem, and propose a computationally efficient reverse integral error

criterion for establishing the completion of transitions between products.

However, first-principles dynamic process models are often not available in prac-

tical applications, and data-driven process models are used instead.

6.4.1 Discrete-time Scale Bridging Models

In this section, we rely on ARX models that capture the closed-loop evolution of

the process output y and are driven by the exogenous input ysp, i.e., the controller

setpoint. Our discussion will be limited to single input, single output (SISO)

systems for simplicity, but can be easily generalized to the multiple input, multiple

output (MIMO) case. Thus, we will assume that an ARX DSBM that describes the

closed-loop input-output behavior of the process can be identified from available

historical process data:

yt,s =
na∑
i=1

aiyt−i,s +

nb∑
j=1

bjy
sp
t−j,s ; ti = ti−1 + δ (6.8)

where the output at time t in slot s (yt,s) is calculated based on na previous output

points, nb previous values of the setpoint, with a sampling interval δ.
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Using this model for the purpose of integrating scheduling and control is, how-

ever, not a simple matter of substituting equation (6.5) in formulation (6.6) with

the ARX SBM (6.8). Specifically, when using the continuous-time models, the

MIDO (6.6) is transformed into a mixed-integer nonlinear program by discretizing

the differential equations in time using a finite-element or finite-difference scheme

with elements of equal but variable length [33]. The discretization spans exactly

the length of the transition period. This in turn facilitates computing the transi-

tion durations τs, which are the key information provided by the dynamic model.

On the other hand, this strategy is not applicable when using the ARX DSBM,

since the sampling interval of the model is fixed and it cannot be used as a decision

variable in the optimization.

In order to deal with this challenge, we develop below a hybrid formulation

for integrating scheduling and control, whereby the dynamic process model is ex-

pressed in discrete time, and the remainder of the scheduling framework preserves

its continuous-time formulation. This framework is shown in Figure 6.4. Our

formulation is predicated on using the ARX DSBM to represent a fixed span TH

(where TH is chosen such that it is longer than any of the transition times observed

in historical data) of the process dynamics in the scheduling problem. The time

horizon contains NH = TH/δ time points. This dynamic representation captures

the evolution of the process output y following a change in the setpoint ysp, and

we make the following assumptions: (i) The tracking and stabilizing properties of

the control law ensure the output of the process will reach a vicinity ε of the new

steady state corresponding to the desired product in slot s at some time τs < TH ,
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i.e., et,s < ε ∀τs ≤ t < TH . (ii) The error et,s may be computed using the absolute

or squared deviation of the output from its setpoint, (ysps − yt,s).

�
�

time

Ts
SS

RIE

time

Backwards Time Integration

τtransition

θ

δt

TH

��
point

Figure 6.4: A time slot in the DSBM - based integrated scheduling and control
formulation.

Determining the transition time τs is a key issue in this formulation. This task

could, in principle, be accomplished by i) defining, at each time point (t,s), a bi-

nary variable which becomes true when the error et,s is lower than an established

threshold and, ii) using the earliest time point where the binary variable becomes

true as the transition time value. This approach does, however, have some disad-

vantages: first, it calls for the use of a large number (Ns ·NH) of binary variables,

which complicates the solution of the problem, and, second, it can lead to erroneous
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results in the case when the process response exhibits overshoot and/or oscillatory

behavior, in which case the end of the process transition would be misidentified.

Instead, we propose identifying the end of the transition period τs by “looking

backwards” from the end of the time span TH for NH − N̄H points, where N̄H > 1.

We thus compute a reverse integrated error (RIE):

RIEt,s =

NH∑
i=t

ei,s ∀ t ≥ N̄H (6.9)

We introduce the threshold parameter θ to identify the time at which the process

is still in the vicinity of the desired steady state in the respective slot. Specifically,

while the RIE is still below the threshold, the transition is complete and the process

is assumed to be at steady state. The corresponding time points are catalogued

using the binary variable bt,s, which is true when the process is in the neighborhood

of the steady state (i.e., bt,s = 1 if RIEt,s < θ). Then, T SSs is defined based on

the total number of points that are below the threshold (6.10), and the transition

time is the remaining portion of the forecast horizon.

T SSs = δ

NH∑
t=1

bt,s ; τs = TH − T SSs (6.10)

Thus, integrating scheduling and control using the proposed ARX DSBM involves

solving the following optimization problem:

min
zk,s,ωk,t

p′
s ,tbs,t

e
s

J (6.11)

s.t. Scheduling constraints (6.3)

ARX model (6.8) and RIE calculation (6.9)

Transition time and production time calculation (6.10)
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6.4.2 Case Study

We consider the non-isothermal CSTR discussed by [96]. The reactor is capable

of producing four products (Pk = [p1, p2, p3, p4]). Product properties are described

in [78]. The system model comprises two equations, describing the evolution of

dimensionless concentration C = C/Cin and dimensionless temperature T = T/Tin

[96]. The manipulated variable for this system is the coolant flow rate Fc, which can

be altered to modify the concentration C of the reactor product.We use an input-

output linearizing controller with integral action [70], to impose critically damped

second-order linear behavior with time constant 0.86 h. The aim of the scheduling

problem is to determine the optimal production sequence, processing time for

each product, production quantities, and total production time, such that the

operational profit is maximized. We will compare the FDS approach (referred to

as problem P1) to the scheduling with an ARX model and RIE conditions (referred

to as problem P2). The MIDO corresponding to the scheduling problem using the

dynamic process model was reformulated as MINLP via orthogonal collocation on

finite elements following the approach in [78].

Setting up P2 (Equation (6.11)) required identifying an ARX DSBM. Data

for system identification were obtained by simulating the process in closed loop

subject to a sequence of random step changes in concentration setpoint. The target

concentration values ranged from 0.09−0.24 and the switching times between steps

were between 20 and 40 hours to ensure a sufficient settling time. The sampling

time was δ = 5 minutes. The ARX model coefficients were identified using the arx

function in MATLAB with na = nb = 10. The ARX model uses C as the output
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and the concentration target/setpoint CSS
k as the exogenous input. To complete

the formulation of P2, we considered a horizon TH = 10h with NH = 120 points,

N̄H = 40 points, and the sampling interval δ = 5min. We chose to formulate the

endpoint constraint and RIE in terms of the absolute error, ARIE(t) =
∑NH

i=t |ysps −

yt,s|; the threshold θ was set to θ = 0.04.

Problems P1 and P2 are MINLPs and were solved using GAMS with SBB as

the MINLP solver, CONOPT as the NLP solver, and CPLEX as the MIP solver.

Figure 6.5 shows the concentration setpoint schedule and anticipated transition

dynamics. Both solutions identify the same production schedule (p1 → p2 → p3 →

p4), production quantities, and production times. They also produce very similar

profit ($5542 and, respectively, $5515) and makespan values (82.63h for P1 and

82.78h for P2). This indicates that the ARX model is effective in representing the

system dynamics. Figure 6.5 shows the closed loop implementation of the sched-

ule determined in P2. The profit derived from this closed-loop implementation

($5,407) compares favorably with the results above given the presence of a small

plant-model mismatch.

The computational effort required to solve P2 is higher than for P1 (96.60s

vs. 10.61s); this is due to the increased number of binary variables present in the

problem formulation (16 in P1 vs. 336 in P2). However, our recent work [210]

suggests that the computational effort of SBM-based integration of scheduling and

control does not increase significantly with problem size, owing to the fact that the

dimension of the SBM P2 is small compared to the number of process states that

must be included in P1. We therefore expect that the proposed approach will be
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Figure 6.5: Optimal setpoint schedule and transition dynamics as determined by
P1 and P2.

very effective in the case of large-scale processes having complex, high-dimensional

models.

6.5 Conclusions

Motivated by the prevalence of data-driven models in practice, we discussed the

integration of scheduling and control using data-driven models of the closed-loop

process behavior. We formulated the integrated scheduling and control problem

using a hybrid representation of time, whereby the (ARX) dynamic process model

is presented in discrete time and the scheduling problem uses a continuous time

formulation. We introduced the reverse integrated error concept to determine

transition times between products. A CSTR case study was used to demonstrate

our framework.
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Chapter 7

Optimal Process Operations in Fast-Changing

Electricity Markets: Framework for Scheduling

with Low-Order Dynamic Models and an Air

Separation Application

The material in this chapter has been published in [210].

7.1 Introduction

Fast-changing markets and the emergence of responsive, on-demand manufac-

turing require that production schedule changes occur over time scales comparable

to the time constants of process systems. In turn, this requires that the dynamic

characteristics and performance of the process and its control system be accounted

for at the production scheduling stage [175, 106, 23].

However, embedding dynamics and control information in scheduling calcula-

tions has proven to be a difficult task [23]. Production scheduling and process

control are typically carried out by separate entities of a company, and the coor-

dination of interactions between the two functions is often challenging [239]. Sig-

nificant challenges also arise from the need to account for the wide range of time

scales involved in making scheduling and control decisions, and the corresponding
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requirement to balance long-term prediction with real-time execution [23].

Intuitively, optimal scheduling decisions should consider process dynamics in

markets where prices (and therefore operating costs and profit margins) change

at a high frequency, i.e., over time intervals that are comparable to the dominant

time constant of the process. A typical example is the electricity market, where,

owing to deregulation, prices change over short time spans (typically hours or even

minutes). Participation in a real-time electricity market is often voluntary for in-

dustrial sites, who also have the option of entering fixed contracts with their utility

suppliers. Variable pricing options become attractive when a site can quickly mod-

ulate its production rate by, i) increasing production and storing excess product

when energy prices are low and, ii) using stored product to meet customer demand

when prices are high and production rates are reduced.

Conventional methods for calculating optimal production schedules rely on tab-

ulated transition information between (a set of discrete) operating points, coupled

with steady state process models or production recipes[173]. It is implicitly as-

sumed that the process is at a steady state prior to a production target change,

and that it reaches steady state again before a new such change is made. How-

ever, in the case where market fluctuations are rapid and occur at a frequency

comparable to the (slowest) dynamic modes of the process, this assumption is not

valid, and may result in the calculation of a dynamically infeasible sequence of

transitions (see Figure 7.3 below for an illustration of this phenomenon).

In this paper, we develop a scheduling formulation that includes dynamic in-

formation on product quality, production rate, and a subset of variables relevant

224



to process operating constraints. The novelty of our contribution consists of us-

ing scheduling-oriented low-order dynamic models that predict the closed-loop dy-

namics of relevant constrained process variables in response to scheduled operating

point changes. Central to this effort, we introduce a new methodology for select-

ing the variables relevant to the scheduling calculation, and define the scope (i.e.,

model inputs and outputs) of the scheduling-oriented dynamic models. We also

discuss the motivation for identifying such models from (closed-loop) historical op-

erating data. These models are then integrated in the scheduling problem, which is

formulated as a (mixed-integer) dynamic optimization aimed at maximizing profit

over the scheduling time horizon.

The theoretical concepts are illustrated with an air separation unit (ASU) appli-

cation. Here, taking advantage of a variable, time-of-day electricity price structure

requires imposing production turn-up and turndown by exploiting the dynamic

agility of the plant, and optimally utilizing the available cryogenic liquid product

storage capacity to satisfy product demand at all times.

The paper is organized as follows: in the next section, we describe air separation

units, and summarize the literature concerning their variable-rate operation. This

motivating example is followed by a review of scheduling using dynamic models and

associated computational challenges. We then introduce the proposed framework

for scheduling using low-order models of the closed-loop process dynamics and

demonstrate its implementation in an air separation unit case study.
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7.2 Motivating Example: Air Separation Units

The purified components of air are an important feedstock for many manu-

facturing processes. For example, oxygen is used for steel production and in the

chemical industry for production of ethylene oxide [91], and nitrogen gas serves as

an inert replacement for air in the food and metals industries. Cryogenic distilla-

tion is the preferred method of separating air into its constituent gases when high

production rates and moderate to high purities are required [282].

Air separation units (ASUs) have a very high energy consumption, and typically

use electricity to drive the compressors that are used to handle and compress the

air feed stream. The industrial gas sector utilized 19.4 TWh of electricity in 2010,

or about 2.5% of the amount consumed by the entire manufacturing sector in

the U.S. [264] Numerous publications and patents have contributed novel design

concepts to minimize the nominal electricity use through tight process integration,

more efficient unit operations, etc. [48, 74]

In a different vein, investigations have suggested improving operating economics

by taking advantage of the deregulation of electricity markets, which has resulted

in fast and significant fluctuations in electricity prices [182, 211]. This, in turn,

requires exploiting the agility and switchability of the process, i.e., frequently

changing process outputs in response to electricity price changes [45, 304]. In

principle, this calls for ramping up production rates during low electricity price

periods and storing the excess products as cryogenic liquid. Then, stored liquid

can be vaporized to satisfy gas demand while reducing production rates when

electricity prices increase [121, 182, 134, 183, 308, 211].
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Several studies have investigated variable production rate ASU operation. Zhu

et al. [308] considered the optimal operation of an ASU subject to time-varying

electricity prices and uncertain product demand over the course of a day using

a multiperiod formulation to capture the uncertainty. A detailed steady-state

nonlinear model was used and the process dynamics were approximated via fixed

transition times. Miller et al. [182] considered the variable operation of ASUs pro-

ducing liquid and gaseous products when subject to hourly electricity price varia-

tions. They computed the maximum-to-minimum energy price ratio that defines

the profitability boundaries of a plant changing production rates to take advan-

tage of time-varying electricity prices. The estimates were based on a simplified

static plant model which used an ideal work calculation to compute the minimum

power requirement of the ASU. Depending on the economic assumptions made, a

ratio between two and seven (maximum-to-minimum electricity price) was required

to render variable-rate production profitable [182]. In our recent work [211], we

developed a similar design blueprint for a variable-capacity ASUs, showing that

the design of the multistream heat exchanger may limit the agility of the process.

Ierapetritou et al.[121] and Karwan and Keblis [134] also investigated a variable

production rate ASU with a liquid storage tank, relying on simplified steady-state

linear models to represent process performance. Mitra et al. [183] extended these

results by considering the transition behavior and various limitations on produc-

tion during the transitions, relying however on a linear problem formulation. All of

these works suggested that modulating ASU operation (in particular, production

rates) when subject to time-varying electricity prices can result in significant cost
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savings, with the benefits increasing as the gap between peak and off-peak energy

prices becomes wider.

The settling time (i.e., the time to reach steady state after a change in pro-

cess inputs or controller setpoints) for ASUs is typically in the order of hours.

When utility prices (and, consequently production rate targets) change at a high

(e.g., hourly) frequency, accurate dynamic models of relevant process variables

should be utilized to ensure that a sequence of scheduled production rate transitions

is feasible and optimal. Cao et al. [44, 45, 47] presented initial results on dynamic

modeling and optimization of ASU operations using a large-scale, first-principles,

detailed dynamic process model. However, their results only focus on the optimal

trajectory of individual production rate transitions, and do not consider multiple

optimally scheduled production rate changes over an economically-relevant time

horizon.

Motivated by the above, in this work, we study the integration of dynamics

and control information in scheduling calculations for ASUs operating under fast-

changing and highly variable market conditions. In particular, we will present

a case study focusing on the cryogenic air separation process flowsheet shown in

Figure 7.1 [45, 211]. The process utilizes a single cryogenic distillation column for

producing high purity nitrogen. Inlet air at ambient conditions is compressed to

6.8 bar and is subsequently cooled to 300K in an auxiliary heat exchanger. The

inlet air passes through the primary multistream heat exchanger (PHX) where the

product and waste streams provide cooling. A portion of the air stream is removed

from the PHX as a superheated vapor and sent through a turbine to generate elec-
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Figure 7.1: Flowsheet for the cryogenic air separation unit for the production of
N2 [211, 44].

tricity, and the balance is liquefied in the PHX. The vapor and liquid air streams

are then fed to the bottom of the cryogenic distillation column. Adiabatic expan-

sion of the bottoms provides cooling via the Joule-Thomson effect and is used to

condense the vapor at the top of the column in an integrated reboiler/condenser.

The low pressure waste stream from the reboiler and the high pressure gas product

stream are returned to the PHX to cool the inlet air stream. To ensure full uti-

lization of the available refrigeration, the product stream is expanded in Turbine

2 and repassed through the heat exchanger.

To further modulate plant production capacity, a separate nitrogen liquefier
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is included in the process flowsheet along with a liquid nitrogen storage tank.

These allow the process to meet gas nitrogen demand with (regasified) stored

liquid nitrogen when electricity prices are high and production rate is decreased.

During periods of low electricity price, production can be increased to build up

liquid nitrogen inventory.

7.3 Scheduling under Dynamic Constraints

In this work, we consider a process system with a single product stream and

storage capability. The role of production scheduling within the hierarchy of pro-

cess operation decisions is illustrated in Figure 7.2. All nomenclature is described

in Table 7.1. The planning step is performed by business units aiming to meet

contractual agreements related to product specifications and quantities. In the

planning step, ȳ, which represents (long-term) targets of product grade and quan-

tity, is established. Scheduling then determines the optimal sequence of production

setpoints (yspp ) and inventory utilization targets (αsp represents the fractional split

of the process output which bypasses the storage unit, and yspinv represents the

inventory output setpoint) which minimizes operating costs and satisfies ȳ. Most

available scheduling approaches rely on capturing process dynamics in the simplest

possible form, and typically assume that the plant output (yp) is able to meet new

target values (yspp ) in a well-defined, transition period whose duration is invariable.

With this assumption, the process control and operation layers (at the bottom of

Figure 7.2) can be ignored when making scheduling decisions.

As alluded to earlier, this assumption is not valid when setpoint changes are
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made in response to time-varying market conditions which change at frequencies

comparable to (or even higher than) the (slowest) dynamic modes of the process.

In this case, the process dynamics and operating constraints must be considered

to ensure that the sequence of transitions determined by the scheduling layer is

feasible from a process dynamics point of view. This is illustrated in Figure 7.3,

where in step change sequence 1, a hypothetical process is allowed to settle to

steady state prior to making another setpoint change, resulting in two feasible

transitions. In step change sequence 2, the process does not settle to steady state

prior to making another setpoint change. The result is a violation of the upper

constraint bound for the output y.
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Scheduling

Control

Process
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Production sequence         ��
��
			���		���	
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�
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�
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Figure 7.2: Hierarchy of decisions for process operation.

The general problem for production scheduling using dynamic models for a

continuous process with product storage capacity and known product demand
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rates can be stated as:

Problem Statement

—————————————————————————

Given:

• Schedule and production information

– Time horizon

– Product specifications and demand rates (product quality and quantity

constraints)

– Feedstock and utility prices or price forecasts

– Length or number of production time slots

• Inventory information

– Dynamic model of storage system

– Inventory constraints

• Process information

– Dynamic process model

– Process operating constraints

Determine:

• Optimal schedule: production rate and rate of inventory accumulation/ de-

pletion in each time slot
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• Optimal operating cost and/or profit for the given time horizon

—————————————————————————

We describe each of these elements in detail below:

upper 

bound

y

u

t t
Step change sequence 1 Step change sequence 2

Figure 7.3: Left: a hypothetical process is allowed to settle to steady state prior
to changing the setpoint resulting in a dynamically feasible transition. Right: the
process does not reach steady state prior to the setpoint change, potentially leading
to temporary constraint violations during the transition.

Schedule and Production Information

Time horizon and feedstock/utility prices: The time horizon for scheduling (or

makespan) Tm should span the duration for which accurate price forecasts p(t)

and product specifications and demand rates are expected to be available. For

example, in the context of electric utilities, energy prices may be known with

reasonable certainty over a 3 day time horizon [121]. Predicted prices for a longer

time horizon are less certain and likely necessitate optimal scheduling decisions

under uncertainty and/or re-scheduling over a moving horizon [302].

233



Table 7.1: Nomenclature

Variable Description
α Fraction of process output which bypasses the storage unit
αsp Setpoint for α
n Index for scheduling time slots
Ne Number of time slots in the scheduling horizon
p Price profile
t Time
τ Slot duration
Tm Makespan/schedule horizon
J Objective function
ȳ Production target characteristics
ỹ Product stream characteristics
ˆ̃y Reduced set of scheduling-relevant product variables
yp Process output
yspp Setpoint for process output
ŷp Reduced set of scheduling-relevant process variables
yinv Inventory output
yspinv Setpoint for inventory output
uinv Inventory manipulated variables
vinv Inventory inputs
xp Process states
up Process manipulated variables
vp Process inputs
zp Process algebraic variables
v̂p Reduced set of scheduling-relevant process input variables
ŵp Reduced set of scheduling-relevant process states

Product specifications and demand rates: ȳ provides the desired product specifi-

cations and demand rates, which may be either constant in time or time-varying.

Without loss of generality, we assume in this work that there is a single product

stream. Product quality and production rate constraints are enforced on charac-
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teristics, ỹ, of the product stream:

hproduct(ỹ, ȳ, t) ≤ 0 ∀t (7.1)

This set of contraints requires the process output to match the targets set by the

production planning layer. We refer to (7.1) as quality and quantity contraints, or

QCs.

Note that we have formulated the demand using a rate rather than a fixed

quantity with a known due date. We have chosen this approach because it is more

appropriate for the ASU case study, where product is supplied continuously via

pipelines.

Time slots: In this case, the time slots are defined by the periods over which the

process setpoints are fixed. We assume that there are Ne slots (designated by

the superscript n = 1, 2, . . . Ne), each of duration τn. Equation (7.2) shows the

calculation of the start and end points of the event slots within the scheduling

horizon:

tnend = tnstart + τn (7.2a)

tnstart = tn−1
end (7.2b)

t1start = 0 (7.2c)

tNe
end = Tm (7.2d)

Depending on the application, τn may be fixed or included in the decision vari-

able set. During each slot, the setpoints ysp,np , αsp,n, and ysp,ninv are the schedul-

ing decision variables. The discrete-time sequence of setpoints is converted to a
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continuous-time setpoint signal using:

yspp (t) = ysp,np ∀n, t ∈ [tnstart t
n
end) (7.3a)

αsp(t) = αsp,n ∀n, t ∈ [tnstart t
n
end) (7.3b)

yspinv(t) = ysp,ninv ∀n, t ∈ [tnstart t
n
end) (7.3c)

yspp (Tm) = ysp,Ne
p (7.3d)

αsp(Tm) = αsp,Ne (7.3e)

yspinv(Tm) = ysp,Ne

inv (7.3f)

Inventory Information

Dynamic model of storage system: In its most general form, the storage system

can be modeled as a differential-algebraic equation (DAE) system of the form:

finv(ẋinv, xinv, zinv, uinv, vinv, t) = 0 (7.4a)

ginv(xinv, zinv, uinv, vinv, t) = 0 (7.4b)

uinv = Kinv(xinv, zinv, y
sp
inv, t) (7.4c)

where finv : R2nxinv+nzinv+nuinv+nvinv → Rnxinv and ginv : Rnxinv+nzinv+nuinv+nvinv →

Rnzinv are the differential and algebraic equations in the storage system model,

respectively. The variables of the stream exiting the storage system (e.g., flowrate,

composition, temperature) are represented by yinv where {yinv} ∈ [{xinv}∪ {zinv}]

and {·} denotes set membership. The inlet stream to the storage system, charac-

terized by vinv, is a function of the split fraction α ∈ [0, 1] of the process outlet

stream and the states of the process outlet stream, yp:

vinv = gsplit(α, yp) (7.5)
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where gspliti = ypi for all of the intensive states (i) of the process outlet stream

(e.g., pressure, temperature, composition), and gsplite = (1 − α)ype for all of the

extensive states (e) of the process outlet stream (e.g., flowrate). The controller

Kinv modulates the variables uinv, which are typically limited to the flowrate of the

stream exiting the storage system (with the setpoint yspinv defined by the scheduling

layer).

While the storage system model presented here is general, we note that in

practice (and as will be illustrated in the case study later) the model of such

systems are typically fairly simple, with a low number of differential and algebraic

variables and corresponding conservation equations.

Holdup restrictions: Knowledge of the inventory is required so that the following

inventory constraints (ICs) can be enforced at all times.

hinv(xinv, zinv, uinv, t) ≤ 0 (7.6)

Constraints (7.6) include maximum/minimum inventory levels, restrictions on the

rate of accumulation/depletion, etc.

Process Information

Dynamic process model: In a dynamic scheduling problem formulation a dy-

namic process model should be utilized which captures the transient behavior of

relevant process variables. In the most general case, the process dynamics can be

described by a DAE system of the form [18]:

fp(ẋp, xp, zp, vp, up, t) = 0 (7.7a)
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gp(xp, zp, vp, up, t) = 0 (7.7b)

up = Kp(xp, zp, vp, y
sp
p , t) (7.7c)

where fp : R2nxp+nzp+nup+nvp → Rnxp and gp : Rnxp+nzp+nup+nvp → Rnzp are the dif-

ferential and algebraic equations in the process model, respectively. The process

outlet stream variables are defined by yp where {yp} ∈ [{xp} ∪ {zp}]. The manip-

ulated process variables, up, are set through either an explicit control law, as in

(7.7c), or an advanced control system for which a closed-form control law may not

be available. Additionally, we define the set of variables vp which correspond to

the process inputs (utilities and raw materials).

The variables corresponding to the product stream supplied to the customers

are computed accounting for the mixing of the outputs of the process and the

storage system:

ỹ = gmix(yp, yinv, α) (7.8)

For example, the material flowrate supplied to customers for the process in Figure

7.2 is given by: F̃ = αFp + F out
inv .

Process operating constraints: The process operating constraints are given by:

hprocess(xp, zp, up, vp, y
sp
p , t) ≤ 0 (7.9)

We refer to constraints (7.9) as the process operating constraints (PCs). These

constraints ensure that the operation is feasible and meets safety and equipment

restrictions throughout the scheduling horizon. Note that these constraints are

different from the QCs in (7.1), and that the set of PCs is typically larger than

the set of QCs.
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Optimal Scheduling under Dynamic Constraints

The optimal scheduling problem utilizing the detailed dynamic process model

can be expressed as:

minimize
ysp,np ,αsp,n,ysp,ninv

J =

∫ Tm

0

φ(p, vp, yp, yinv, ỹ)dt (7.10)

subject to

Time slots (7.2)− (7.3)

Process model (7.7)

Inventory model (7.4)

Product split (7.5)

Product m ixing (7.8)

ICs (7.6)

QCs (7.1)

PCs (7.9)

The objective function, J , which represents the integral of process operating

costs φ over the course of the scheduling horizon, depends on the process input

and output variable trajectories, vp and yp, respectively, in addition to the inven-

tory outputs yp and yinv. We have framed the objective in terms of minimizing

operating cost. However, profit maximization could also be considered. The op-

timization decision variables are the process and inventory quality and quantity

setpoint trajectories. In this formulation, we assume that a control law deter-

mines the manipulated variable trajectories, but u(t) may also be included in the
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optimization objective and decision variable set.

Remark 7.1. Problem (7.10) assumes that the same product is made at a time-

varying production rate. In the case when the process is capable of producing mul-

tiple products (or a similar product at different quality grades), an additional set

of binary decision variables must be introduced, along with appropriate constraints

to define the allocation of products to the production time slots. The modeling ap-

proaches discussed in this paper can be naturally extended to this type of problem,

and this will constitute the object of future work.

7.3.1 Challenges of Scheduling under Dynamic Constraints

Equation (7.10) reveals one of the principal challenges posed by optimal schedul-

ing problems under dynamic constraints: detailed, first-principles process models

are almost invariably highly-dimensional and highly nonlinear. This makes it very

challenging to solve this problem in an amount of time that is sufficiently short

to make the solution useful in a practical situation [28, 33]. As a consequence,

it is natural to explore the development of scheduling-oriented low-order dynamic

models that can be embedded in this scheduling formulation. We discuss specific

issues related to this task below.

7.3.1.1 Problem Size

The formulation (7.10) falls under the category of integrated scheduling and

dynamic optimization problems, which is a relatively recently proposed approach

for improving process economics [23, 112]. Many case studies reported in the
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literature which implement integrated scheduling and dynamic optimization focus

on relatively low-dimensional systems, where the dynamic models have a small

number of state variables. In this situation, problem (7.10) can typically be solved

directly in a reasonable amount of time. This is the case in several works that

demonstrate the benefits of scheduling with dynamic knowledge for continuous

processes (e.g., polymerization reactors [76, 75, 310, 58, 214]) and batch processes

where a dynamic model is used for some of the units (e.g., reactors [61, 192, 193]

and separation units [192]) in the sequence of operations.

However, when applied to large-scale, complex systems, the increased computa-

tional load caused by using a detailed model can render the problems untractable

in a practical time frame, especially if the need to perform rescheduling arises

[143]. For this reason, obtaining scheduling-oriented low-order dynamic models

representative of process dynamics has recently received attention [76, 75, 126].

Low-order dynamic model-based scheduling is compared to scheduling using a de-

tailed process model in Figure 7.4. The model highlighted in Figure 7.4b is an

input-output model that relates the output of the scheduling layer (i.e., the pro-

cess operating targets and controller setpoints) to the output of the process, and

provides predictions of the dynamic behavior of the process when executing the

schedule. The scheduling-oriented low-order dynamic model should be designed to

have (significantly) fewer states and nonlinearities than the detailed process model

(7.7).

There are two broad approaches to deriving low-order dynamic process models.

While a comprehensive critical exploration of the extensive literature available on
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this topic is beyond the scope of our paper, we provide a brief review below:

• Model reduction, which assumes that a (high-dimensional, first-principles)

detailed dynamic process model is available. The derivation of low-order mod-

els can then proceed via several avenues: asymptotic analyses based on physi-

cal insight and singular perturbation arguments (e.g., [147, 18]), or null-space

projection methods[191, 299] are often employed for system models exhibiting

multiple-time scale dynamics to eliminate stiffness and reduce the number of

states, resulting in a lower-dimensional differential-algebraic equation (DAE).

The system can then be solved as-is, or a state-space realization (equivalent ODE

representation) can be derived. The advantage presented by such approaches is

that they result in models with physically meaningful states. However, these

methods can be laborious and their application does require physical insight.

Absent such information, empirical nonlinear model reduction methods are also

available; these include the use of balanced empirical gramians [110], and the

use of empirical eigenfunctions via proper orthogonal decomposition [149]. Em-

pirical methods have the disadvantage of producing models whose states are not

physically meaningful.

• Conversely, system identification techniques are required when a high-fidelity

system model is not available as a starting point. System identification involves

deriving a process model from operating data, which are collected in a set of

tests during either open- or closed-loop operation. The tests consist of excit-

ing the system inputs, typically by applying step changes; the trend is towards
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increasing the efficiency of this process (which can be costly and time consum-

ing) by exciting all inputs simultaneously via pseudo-random input sequences,

either binary [306] (when the purpose is the identification of a linear model)

or multi-level [29](when a nonlinear model is desired). The collected data are

then used to perform the system identification/model fitting process. We direct

the reader to the text by Ljung[160] for a thorough overview of system identi-

fication techniques, and to the book by Zhu [307] for a process systems-centric

perspective.

Developing and maintaining high fidelity process models requires considerable

technical expertise and financial resources[236] and, consequently, such models are

not always available in practical scenarios. Data-driven dynamic system modeling

remains widespread in industrial use and motivates our choice of using system

identification approaches to develop the scheduling-oriented low-order models used

in this work. We note, however, that the framework we propose below is generic,

and lends itself naturally to the use of models derived via model reduction when

such models are available.

7.3.1.2 Choice of PCs and QCs

The selection of variables and information to be included in the scheduling-

oriented low-order dynamic model of a large and complex process is an important

consideration. In a situation where the process model is relatively small (i.e., nxp

is low), the ratio of the number of product quality and production rate-related

variables to the total number of state variables is close to unity,
nyp

nxp
≈ 1, indicating
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Figure 7.4: Comparison of integrated scheduling and control modeling choices

that the majority of the state variables are relevant to the scheduling calculation

and they likely appear in the hproduct constraints ((7.1)).

For a more complex process, it is intuitive that
nyp

nxp
= ε� 1, i.e., the number of

variables relevant to the scheduling calculation is much lower than the number of

states. While the selection of variables relevant to the product quality and produc-

tion rate constraints (7.1) may be straightforward, the choice of process variables
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relevant to the process operating constraints (7.9) requires further analysis. It is

likely that only a subset of the PCs are relevant from the scheduling perspective,

because not all operating constraints are near their bounds in transient operation.

Tracking the PCs is required to ensure feasibility of the process operation through-

out the execution of the schedule, so it is crucial to determine the (minimal) set

of scheduling-relevant PCs.

These observations provide the motivation for the developments below. Previ-

ous efforts [23] on low-order dynamic modeling for scheduling applications focused

mainly on multi-product processes with constraints in the form of QCs (i.e., con-

straints related directly to the production output, manipulated variables, or a

measurable operating state such as temperature). In this work, we address the

challenge of ensuring that the process operating constraints (PCs) (7.9) are also

satisfied throughout the execution of the schedule, while significantly reducing the

problem size. Specifically, we explore the development of scheduling-oriented low-

order dynamic models which capture the dynamic behavior of the process inputs,

outputs and operating constraints in response to production rate and product grade

changes. Our models are data-driven and in the single-input, multiple-output for-

mat, which, in addition to the reduction in the number of variables, present the

advantage of promoting sparsity.

7.4 Scheduling with rPCs and rQCs

Our approach is based on constructing a set of low-order models which accu-

rately describe the dynamics of scheduling-relevant product quality and process
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variables, and can be used in the scheduling calculation in lieu of the detailed

dynamic model. Our framework for scheduling with scheduling-oriented low-order

dynamic models consists of the following steps:

Variable Selection

1. Establish the set of relevant variables to be represented in the scheduling-

oriented low-order dynamic models

a. Determine the subset of PCs and QCs that are active during production

transitions and/or steady state operation

b. Identify the subset of variables whose dynamics are relevant to the PCs

and QCs

c. Identify the subset of process input and output variables whose dynam-

ics are relevant to the scheduling objective

Model Identification

2. Identify low-order dynamic models of the variables selected in Step 1.

a. Obtain historical process transition data for model identification

b. Determine model form and model parameters for each variable of inter-

est

Scheduling
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3. Solve the integrated scheduling and dynamic optimization problem using the

low-order dynamic models

In the next sections we describe in detail the steps outlined above.

7.4.1 Step 1: Selection of Variables for Scheduling-Oriented Low-Order
Dynamic Models

Step 1a: The selection of operating constraints and process variables relevant

to the scheduling calculation is based on the following conjecture:

Conjecture 7.1. In a complex process with multiple operating constraints related

to the process performance, efficiency, and safety, the subset of constraints relevant

to the scheduling calculation are the constraints that closely approach or reach their

corresponding bounds during steady state operation and/or during transitions be-

tween operating points. The behavior of the process variables involved in this subset

of active constraints should be captured in scheduling-oriented low-order dynamic

models, which are then embedded in the scheduling calculation.

The operating constraints that are not near their bounds during static or tran-

sient operation are not relevant to the optimal scheduling calculation, and thus

variable trajectories related to these constraints do not need to be predicted. The

subset of PCs and QCs to be included in the low-order problem formulation follow-

ing the analysis outlined in Conjecture 7.1 are designated, respectively, ĥprocess and

ĥproduct. Note that dim(ĥprocess) ≤ dim(hprocess) and dim(ĥproduct) ≤ dim(hproduct).
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The identification of active constraints can be carried out using historical op-

erating data which are often available. These data can be supplemented with a

limited set of system identification experiments. Together, these data provide a

more complete set of information concerning the operating space of the plant. We

note here that the use of a mix of historical data and identification campaign exper-

iments is typical for all data-driven approaches currently employed in model-based

process operations, including, e.g., MPC and process scheduling using steady-state

models (where it is common practice to define a convex envelope of the operat-

ing region of the process). If a high quality model is available, the identification

of rPCs and rQCs becomes a matter of exploring the operating domain of the

plant through simulations. Alternatively, the tangent space of the Jacobian of the

full-order model (if available) can be studied to identify constraints which become

active throughout this set of dynamic simulations [194]. However, this approach

will not identify variables which approach their constraint bounds but never reach

them during the simulation (and could reach or violate these bounds in practical

scenarios). Further, neither approach can identify constraints that may become

active in new operating scenarios that are very different from those for which data

are available (or from those considered in the simulation set mentioned above).

Steb 1b: The variables relevant to the subset of QCs are denoted by ˆ̃y, and it

is necessary to define a subset of process output variables {ŷp} ⊆ {yp} where {·}

denotes set membership, which are used to calculate ˆ̃y:

ˆ̃y = gmix(ŷp, yinv, α) (7.11)

For example, for the air separation process discussed earlier, the production rate,
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impurity concentration and product pressure are QCs which must be satisfied

throughout the scheduling horizon. However, we assume that the outlet pressure

does not change, and thus is not relevant to the scheduling calculation. Thus, ˆ̃y

and ŷp would not include product pressure.

The set of reduced product quantity and quality constraints (rQCs) is thus given

by:

ĥproduct(ˆ̃y, ȳ, t) ≤ 0 (7.12)

where ȳ is the product demand forecast set by the planning layer.

Additionally, we define {ŵp} ∈ {xp} ∪ {zp} as the subset of state and algebraic

variables included in the reduced PCs. Without loss of generality and for notation

convenience, ŵp and ŷp are defined such that they do not have any variables in

common (i.e., {ŵp}∩{ŷp} = ∅). The reduced process operating constraints (rPCs)

are given by:

ĥprocess(ŵp, y
sp
p , t) ≤ 0 (7.13)

Step 1c: The input and output variables present in the objective (7.10) are vp,

yp, yinv and ỹ. We assume that the variables ŷp and ˆ̃y, identified as the reduced set

of constrained output variables, contain the states of the output stream required

to calculate the objective function (otherwise, these sets should be augmented

appropriately). We also assume that the inventory model defined in (7.4) is itself

low-dimensional and does not require a low-order dynamic model, so it will be

used in the original form. The only remaining variable subset to define is v̂p, the

subset of scheduling-relevant input variables. These may include raw material feed
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rates or the heating or cooling rate applied to the process. In regards to the ASU

case study, the feed air is obtained free of cost and therefore does not need to be

included in v̂p; however, the operating cost depends on electric power usage which

is in turn a function of the feed flow rate; thus, a variable corresponding to the

electricity use should be identified.

Evaluating each constraint in (7.13) may require predictions of several vari-

ables. Rather than modeling each of these variables individually, ŵp can represent

meaningful groupings of variables (e.g., dimensionless groups/numbers) in order

to minimize the required number of low-order dynamic models.

Remark 7.2. Conjecture 7.1 is conceptually similar to the ideas behind the “self

optimizing control” framework [242, 14]. Specifically, determining a self optimizing

control structure involves identifying variables that are at or close to their bounds

during normal operation and thus may have a considerable impact on economic

performance. The control structure is designed such that these variables are con-

trolled at their setpoints. The number of such self-optimizing variables is lower

than the number of process outputs (see the previous discussion on the value of

the
nyp

nxp
ratio). Our work extends self-optimizing ideas to the scheduling level, by

selecting sets of schedule-relevant process variables which, when maintained within

their prescribed limits, ensure that the schedule remains feasible from a dynamic

point of view.
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7.4.2 Step 2: Identification of Scheduling-Oriented Low-Order Dy-
namic Models

In this subsection, we address Step 2 of the proposed approach, which consists

of identifying the scheduling-oriented low-order dynamic models used to predict

the dynamic behavior of the variables ŷp, v̂p, and ŵp in response to desired changes

in the process output.

Step 2a: Low-order dynamic models can be identified either from appropriate

transformations of first principles models (see, e.g., [20, 15, 14, 16, 17, 128, 253,

18]) or constructed from experimental data using existing system identification

techniques. When available, historical data recorded from step-wise production

transitions that cover the process operating space can provide a rich and cost-

effective source of information for model identification [170].

Step 2b: The inputs to the set of scheduling-oriented low-order dynamic models

are the decision variables of the scheduling calculation, i.e., the process output

setpoints yspp (since we are using the original model of the storage system, there

is no need for low-order models with αsp and yspinv as inputs). The outputs of the

low-order dynamic models are the trajectories of the process input and output

variables v̂p and, respectively, ŷp, and the trajectories of the constrained process

variables ŵp:

FR(v̂p, ˙̂vp, y
sp
p , t) = 0 (7.14a)

GR(ŷp, ˙̂yp, y
sp
p , t) = 0 (7.14b)

HR(ŵp, ˙̂wp, y
sp
p , t) = 0 (7.14c)
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Remark 7.3. The scheduling-oriented low-order dynamic models are identified

from closed-loop data, and inherently reflect the actions and performance of the

control system of the plant. Thus, it is not necessary to explicitly model the ma-

nipulated variable trajectories, up, in the low-order dynamic model.

Remark 7.4. In the general case, the low-order models are multiple-input multiple-

output, where the inputs are the trajectories of the production targets (e.g., the

product purity and product flowrate setpoints), and the outputs are the variables

relevant to the scheduling calculation. In the case study presented later in the

paper, the models are single-input multiple-output owing to the fact that the product

flowrate target is the only time-varying setpoint.

Remark 7.5. The proposed framework is agnostic to the format of the scheduling-

oriented low-order dynamic models (7.14), and can accommodate any class of dy-

namic model (linear or nonlinear, continuous- or discrete-time, based on first-

principles or empirical). These models should represent the system with a level of

accuracy that is appropriate for the application domain (see, e.g., the discussions

in Ljung [160], p. 7, and in Seborg et al.[236], p. 16). We will illustrate this point

further in the case study presented later in the paper, where we rely on several types

of Hammerstein-Wiener models to capture the process dynamics.

7.4.3 Step 3: Optimal Scheduling Under Low-Order Dynamic Con-
straints

The scheduling problem utilizing low-order models of the process dynamics can

be formulated as:
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minimize
ysp,np ,αsp,n,ysp,ninv

Ĵ =

∫ Tm

0

φ(p(t), v̂(t), ŷp(t), yinv(t), ˆ̃y(t)) (7.15)

subject to

Time slots (7.2)− (7.3)

Low-order dynamic process models (7.14a), (7.14b), (7.14c)

Inventory model (7.4)

Production split ratio (7.5)

Mixing (7.11)

ICs (7.6)

rQCs (7.12)

rPCs (7.13)

Problem (7.15) differs from the formulation using the full-order dynamic model

(7.10) in several important ways. First, only a subset of the process operating

constraints (those that are active or close to their bounds – ĥprocess) are included

in the low-order problem formulation. Moreover, the relevant variable trajectory

predictions, v̂p(t), ŷp(t) and ŵp(t) are determined using the low-order dynamic

models rather than the detailed dynamic process model (7.7).

The inclusion of PCs in addition to QCs distinguishes this formulation from

those of the type (7.16):

minimize
ysp,np ,αsp,n,ysp,ninv

Ĵ =

∫ Tm

0

φ(p(t), v̂p(t), ŷp(t), yinv(t), ˆ̃y(t)) (7.16)
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subject to

Time slots (7.2)− (7.3)

Low-order dynamic process models (7.14a) and (7.14b)

Inventory model (7.4)

Production split ratio (7.5)

Mixing (7.11)

ICs (7.6)

rQCs (7.12)

which are often encountered in the literature, but only consider QCs, and do

not consider the process operating constraints and the trajectories of the relevant

process variables ŵp. Problem formulation (7.16) implicitly assumes that a control

system will prevent violation of the PCs throughout the production horizon. If

this assumption is not valid, the optimal schedule will be infeasible from a dynamic

point of view. We will compare the results of the formulations (7.15) and (7.16) in

the case study.

Remark 7.6. The key to the proposed dynamic scheduling method is the iden-

tification of accurate low-order dynamic models. In the ideal scenario where the

low-order dynamic models predict the same trajectories (of the variables relevant

to the scheduling calculation) as the detailed process model, the optimal schedule

obtained using formulation (7.10) is equivalent to the schedule determined using

the formulation given in (7.15), but likely requires much lower computational re-

sources.
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Remark 7.7. In practice, the low-order dynamic models do not (and most likely,

cannot) provide perfect predictions of the scheduling relevant dynamics. This can

be due to limitations in the model functional forms, gradual process drift, or unan-

ticipated disturbances. Nevertheless, we note that practitioners in industry face

these challenges every day in one of the most successful applications of optimiza-

tion in process operations, namely, model predictive control. Notably, most MPC

implementations rely on a linear and thus (given the nonlinear nature of chemi-

cal processes) inherently inaccurate model, to make closed-loop, real-time process

operating decisions. Mechanisms such as disturbance modeling [205] have been

devised to compensate for unmeasured disturbances and/or unmodeled dynamics,

while controller performance assessment techniques are implemented to detect (and

potentially correct) for other causes of performance degradation [288]. In spite of

these apparent impediments, MPC has become the de-facto standard for advanced

process management, with thousands of implementations reported in the last com-

prehensive survey carried out by Qin and Badgwell (2003) [221], which is already

a decade old.

We expect that similar disturbance modeling and performance assessment tech-

niques can be applied to this proposed scheduling framework with dynamic process

models. For example, the proposed dynamic scheduling framework can be imple-

mented in a rolling horizon fashion by periodically recalculating the schedule when

new price forecasts are available, or when disturbances or process drift are detected.

In effect, the recursive application of the proposed framework can be construed as a

new optimal operation paradigm that unites production scheduling and (economic)
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model predictive control, and is the subject of ongoing research [11].

7.5 Case Study

We present a case study based on the the motivating example introduced earlier.

In the next section, we describe the dynamic model of the air separation unit

(ASU). Then, the scheduling-oriented low-order dynamic models proposed above

are derived, and the main scheduling problem is presented in addition to some

comparative formulations. Finally, the solution of the problem and simulation

results are presented and discussed.

7.5.1 ASU Model

In this section, we briefly discuss the mathematical models describing the dy-

namic behavior of the unit operations of the ASU process shown in Figure 7.1.

The detailed dynamic process model is discussed in detail in the thesis by [130],

which is in turn based on the models developed by Cao et al.[43, 45].

Distillation Column Model

The cryogenic distillation column model is based on the work by Huang et al.

[119]. We assume that (i) the inlet air stream contains only three gases: 78%N2,

21%O2 and 1%Ar, (ii) the vapor phase behaves as an ideal gas, (iii) the material

is well-mixed on every stage, (iv) vapor-liquid equilibrium (VLE) is established on

each stage, and (v) the column is well insulated and there are no heat losses. The

column consists of 30 equilibrium stages and the condenser operating pressure is 6.4
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bar with a 0.2 bar linear pressure drop along the column. The phase equilibrium

is modeled using an activity model for the non-ideal liquid phase:

yijPi = γijP
sat
ij xij (7.17)

where index i and j represent the stage number and component, respectively. The

vapor pressure, P sat
ij is determined using Antoine’s equation [296] and the activity

coefficients, γij are determined using the Margules equations [113].

The Material, Equilibrium, Summation and Heat (MESH) equations which de-

scribe each equilibrium stage constitute an index-2 system of differential algebraic

equations (DAEs). The high index is due to the fact that the vapor flow from each

stage (an algebraic variable) is not present in the algebraic equations, and thus

cannot be solved for directly. Using the procedure outlined in [119] the index was

reduced to one.

Integrated Reboiler/Condenser Model

The liquid at the bottom of the column is expanded adiabatically to 2.5 bar

to condense the vapor at the top of the column in a heat-integrated reboiler/

condenser. The model for the integrated reboiler/condenser is adapted from Cao

[43].

The following assumptions are made for the condenser model: (i) fast dynamics

(i.e., material or energy accumulation are not considered) (ii) the condensed liquid

is saturated, (iii) the outlet liquid composition is the same as the composition of

the vapor inlet from the top of the column, and (iii) the heat duty required to
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condense the vapor inlet stream can be supplied completely by the reboiler.

The reboiler is modeled as an equilibrium stage, with an additional heat input

equivalent to the condenser heat duty. A proportional controller is implemented to

maintain the reboiler liquid level by manipulating the liquid drain rate. The liquid

waste drain rate is typically very small in order to minimize energy loss from the

process [43].

Primary Heat Exchanger (PHX) Model

The PHX is a brazed aluminum plate-fin multistream heat exchanger and the

corresponding model is adapted from the structure described by Cao [43]. The

model consists of two zones (see Figure 7.1) which are delimited by the location

where the inlet air gas stream is withdrawn from the PHX. The fraction of va-

por removed prior to zone 2 is a manipulated variable at the control level. The

two zones correspond, respectively, to sensible and latent heat removal from the

inlet air stream, and the corresponding temperature changes of the product and

waste streams. The first zone is further discretized into 50 segments, while the

second zone, in which a portion of the inlet air stream is completely liquefied, is

modeled by a single lumped energy balance equation to simplify the phase trans-

formation calculations. Within each zone, the geometry of the channels created

by the plates/fins is accounted for when calculating energy accumulation of each

stream in each finite volume [43].
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Compressor and Turbine Models

The compressor is the main energy consumer in the air separation process.

Generators are coupled to the turbine expanders used in the process and serve to

partially meet the compressor power demand. We assume that the dynamics of

turbines, compressors and generators are fast and these units can be modeled using

steady state equations. In order to calculate the power demand of the compressor

(Wc), and power generated by the two turbines (Wt1,Wt2), we assume that the

compression and expansion are polytropic processes with corresponding head and

efficiencies calculated using the approach presented in Chapter 10 of [105].

Liquefier and Liquid Storage Tank Model

A liquefier is included in the process to liquefy a portion of the gaseous nitrogen

product. A liquid nitrogen storage tank accumulates the liquefied nitrogen and an

evaporator vaporizes the liquid before delivering the gas to customers. We assume

that the physical dimensions of the liquefier are much smaller than those of the

plant, and, unlike the ASU, the liquefier does not contain any significant material

holdups (e.g., sumps). As a consequence, it is to be expected that the dynamics of

the liquefier are much faster than those of the plant itself. As a consequence, we

model the liquefier using the steady state versions of the corresponding material

and energy balance equations. Further, we assume that the liquefier operates in

an ideal refrigeration cycle with a constant 40% efficiency. The liquefier power

demand (Wl) is computed based on the net work of the compressor and turbine.

We assume that the evaporator is at ambient conditions and does not require any
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additional energy input to operate.

The storage tank is sized such that, when full, it holds enough nitrogen in the

tank to satisfy the demand rate with the plant operating at its lowest production

level for 10 hours. The holdup, Minv, is given by:

dMinv

dt
= F in

inv − F out
inv (7.18a)

Minv(0) = M0
inv (7.18b)

The scheduling problem formulation requires the storage system model and

constraints (ICs). The storage tank model consists of a mass balance equation

(7.18), and the holdup Minv is constrained such that the inventory is always greater

or equal to zero, and never exceeds the maximum storage capacity Mmax
inv :

0 ≤Minv ≤Mmax
inv ∀ t (7.19)

Additionally, it is required that the holdup at the end of the scheduling horizon

Tm be greater or equal to a minimum terminal value (Mmin):

Minv(Tm) ≥Mmin (7.20)

In this case, we set Mmin equal to Minv(0) to ensure that inventory is not depleted

throughout the horizon. Note that when the scheduling framework is implemented

in a rolling horizon fashion, it is beneficial to fix the terminal constraint to ensure

recursive feasibility and stability [7].

We use simple heuristics to determine α and F out
inv based on the demand rate F̄ ,

such that demand is satisfied exactly:

α =

{
F̄
Fp

if Fp ≥ F̄

1 if Fp < F̄
(7.21)
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F out
inv =

{
0 if Fp ≥ F̄

F̄ − Fp if Fp < F̄
(7.22)

The inlet flowrate to the storage system is calculated by the split equation:

F in
inv = (1− α)Fp (7.23)

and the product flowrate is given by the mixing equation:

F̃ = αFp + F out
inv (7.24)

By including these heuristics, yspinv and αsp are not decision variables in our opti-

mization formulation, leaving the process production rate Fp as the main schedul-

ing decision variable.

Process Operation

We assume a constant nitrogen demand of 20mol/s at a purity greater than

99.8%, which corresponds to a total impurity (oxygen and argon) concentration

of less than 2000 ppm. We assume that the production rate can deviate by up

to ±20% from the nominal value. The total power required to operate the plant

P total(t) is given by:

P total(t) = Wc(t) +Wl(t)−Wt1(t)−Wt2(t) (7.25)

In this case, the net work of the compressor, liquefier, and turbines is proportional

to the flow rate through each unit. This is due to the fact that the process operates

at constant pressure between production rate changes, and the inlet temperatures

do not change significantly, which results in a nearly constant polytropic head

[130].
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We assume that electricity is purchased from a utility company at market rates

which fluctuate hourly, but are forecasted accurately for a three day horizon. In

order to minimize operating costs, the production level will be lowered during high

price periods, and increased during low price periods with the assumption that

production rate setpoints may only change hourly.

Additionally, we assume that transitions between production levels are handled

using a heuristic that mimics an operator’s approach to adjusting the manipulated

variables. The transition control heuristics are described in detail in the next

section.

Transition Control

The manipulated variables of the process are the feed air flow rate, F in
air, the

split of the inlet air liquefied in the PHX, KPHX , and the column reflux ratio,

Rcol. To mimic the actions of an operator, a heuristic control law was set to adjust

the manipulated variables through any possible production rate change sequence.

First, the steady state values of the manipulated variables were determined at 9

different steady-state production rates such that i) the production rate matched

the target, ii) the impurity level was 500 ppm, and iii) the energy consumption

was minimized. Polynomial curves were fitted to approximate the optimal values

across the entire range of possible production rate setpoints. These can be seen in

Figure 7.5.

The piecewise linear control heuristic for determining the trajectory of the ma-

nipulated variables during a production setpoint transition between any two points
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Figure 7.5: Optimal steady state values of the manipulated variables as a function
of production setpoint level

within ±20% of the nominal production flowrate was determined such that the de-

viations between the production flowrate and the setpoint are minimized. The

trajectories of the reflux ratio, Rcol, and the fraction of inlet air liquefied in the

PHX, KPHX , consist of a piecewise linear function with 2 segments, where the

intermediate point, or peak of the trajectory, is determined as a function of the

magnitude and direction of the setpoint change. The piecewise linear control law
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(7.7c) for Rcol at time slot n is given by:

dRcol

dt
=


RP,n

col −R
SS,n−1
col

1
2
TP,n if tnstart ≤ t < tnstart + 1

2
T P,n

RSS,n
col −R

P,n
col

1
2
TP,n if tnstart + 1

2
T P,n ≤ t < tnstart + T P,n

0 if tnstart + T P,n ≤ t < tnend

(7.26)

where RP,n
col is the peak of the trajectory in time slot n which occurs at t = tnstart +

1
2
T P,n (notice the “peak” of the column return split trajectory (RP,n

col ) in Figure

7.6), and RSS,n
col is the steady state optimal value at time slot n, which is obtained

using the polynomial fit in Figure 7.5c. T P,n is the length of the transition time

for the manipulated variables in time slot n. Likewise, the piecewise linear control

law (7.7c) for KPHX at time slot n is given by:

dKPHX

dt
=


KP,n

PHX−K
SS,n−1
PHX

1
2
TP,n if tnstart ≤ t < tnstart + 1

2
T P,n

KSS,n
PHX−K

P,n
PHX

1
2
TP,n if tnstart + 1

2
T P,n ≤ t < tnstart + T P,n

0 if tnstart + T P,n ≤ t < tnend

(7.27)

again, note the “peak” of the inlet air liquefied fraction trajectory (KP,n
PHX) in

Figure 7.6. The piecewise linear control law ((7.7c)) for F in
air is:

dF in
air

dt
=

{
F in,SS,n
air −F in,SS,n−1

air
1
2
TP,n if tnstart ≤ t < tnstart + 1

2
T P,n

0 if tnstart + 1
2
T P,n ≤ t < tnend

(7.28)

RP,n
col , KP,n

PHX , and T P,n are determined as a function of the production rate target

change (F sp,n
p − F sp,n−1

p ):

RP,n
col = aR(F sp,n

p − F sp,n−1
p ) + bR (7.29a)

KP,n
PHX = aK(F sp,n

p − F sp,n−1
p ) + bK (7.29b)

T P,n = aT (F sp,n
p − F sp,n−1

p ) + bT (7.29c)
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where aR, aK , aT , bR, bK , and bT are constants. As described in Equation (7.28),

the inlet air flowrate changes to its new steady state value in half the manipulated

variable transition time (1
2
T P,n). The trajectories of the manipulated variables and

the corresponding production rates are illustrated in Figure 7.6 for a 10% increase

(Figure 7.6a) and decrease (Figure 7.6b) in the setpoint. The production (the

control variable) overshoots the setpoint, but quickly settles to the desired value.
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Figure 7.6: Manipulated variable trajectories and production rate during setpoint
changes

Remark 7.8. The control law above is open-loop, and thus offset-free tracking

cannot be guaranteed. However, it is representative of operator actions during pro-
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duction setpoint changes (which are often carried out manually). Additional PI

controllers would likely be implemented to ensure offset-free control of the produc-

tion flow rate once the transition is complete and the process is near the target

production rate.

7.5.2 Scheduling-Oriented Low-Order Dynamic Modeling of ASU Dy-
namics

We follow the procedure outlined in the theoretical part of the paper to derive

the relevant rPCs, rQCs, and associated variables for the ASU process.

Product Quality and Production Rate Constraints (QCs)

Step 1a requires that the relevant product quality and production rate con-

straints (QCs) be identified:

QC1 The total production flowrate must be greater than or equal to the demand

throughout the production horizon

QC2 Impurity levels in the product stream must be lower than the maximum

allowed value

QC3 The product stream pressure must be maintained close to 1.3bar throughout

the schedule

QC1 It is assumed that a perfect forecast of product demand F̄ is given through-

out the horizon (here we assume that it is constant) and it must be satisfied at all
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times using the product stream F̃ , which was defined in (7.24):

F̃ ≥ F̄ ∀ t (7.30)

QC2 The impurity level (Ĩ) in the product is reported in parts per million

(ppm) and calculated based on the mole fraction of nitrogen, xp,N2 , in the stream

as Ĩ = 106(1− xp,N2). The impurity level is required to be below a threshold level

Imax = 2000ppm.

Ĩ =
F out
inv Iinv + FpIp

F̃
≤ Imax ∀ t (7.31)

Given the critical nature of this constraint, and to compensate for possible inaccu-

racies in the low-order impurity model, a “back-off” is used, setting the threshold

to Îmax = 1800ppm during scheduling calculations based on the low-order mod-

els. We note that such “back-off” from active constraints is implemented in many

practical situations to avoid infeasible operation in the presence of disturbances or

model error. We refer the reader to the works by Aske et al.[12] and the earlier

work by Narraway and Perkins[188] for more details.

Rather than constraining the impurity levels in the stream supplied to the cus-

tomer (Ĩ), we constrain the process output impurity (Ip):

Ip ≤ Îmax ∀ t (7.32)

While (7.32) is a more restrictive constraint than imposing a bound on impurity

levels in the stream supplied to the customer, it guarantees that constraint (7.31)

is satisfied and avoids the need to model the impurity concentration in the storage

system, Iinv.
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QC3 The pressure of the product stream must be within specified limits:

P̄l ≤ P̃ ≤ P̄u (7.33)

In the process model, the pressure in each piece of equipment is fixed to ensure

that the outlet pressure is 1.3 bar at all times. As a result, constraint QC3 is

inherently satisfied. Thus, only constraints QC1 and QC2 are relevant to the

scheduling problem, and (7.30) and (7.32) constitute the rQCs.

Process Operating Constraints (PCs)

Step 1a also requires that we identify the scheduling-relevant process operating

constraints (PCs). These are:

PC1 No weeping in the distillation column

PC2 The liquid level in the sump of the column should never go to zero or beyond

the maximum capacity

PC3 No surging in the compressor

PC4 The liquid level in the reboiler should never go to zero or beyond the maxi-

mum capacity

PC5 The reboiler holdup at the end of the scheduling horizon should be at least

as much as the initial holdup

PC6 All streams in the first zone of the PHX must be in the gas phase
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PC7 The air stream exiting the second zone of the PHX must be in the liquid

phase

PC8 No flooding in the distillation column

PC9 The temperature driving force across the integrated reboiler/condenser must

be greater than a lower limit

Through observation of the process transition data (which are discussed later

in the paper), it was determined that constraints PC1 - PC4 are not active during

steady state operation or during transitions. These constraints therefore present

no limitation to the feasibility of the production schedule, and modeling the corre-

sponding dynamic behaviors during transitions is not required. Constraints PC5 -

PC9 may, however, become active, and therefore make up the set of rPCs, which

will be described below.

PC5 To ensure that refrigeration stored within the process is not depleted, a

constraint must be enforced that requires the reboiler holdup to be greater or equal

to a terminal value:

Mreb(Tm) ≥Mmin
reb (7.34)

As with the inventory constraint, we select Mmin
reb equal to the inventory level at

the start time, Mreb(0).

PC6 and PC7 As discussed earlier in the paper, the primary heat exchanger

is divided into two zones, whereby only sensible heat is removed from the incoming

air stream in zone 1, and the inlet air is condensed in zone 2. To ensure that no
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phase transformations occur in zone 1, the air feed stream at the outlet of zone 1

is constrained to be in the vapor phase at all times by requiring the outlet pressure

(Pzone1) to be less than 96% of the dew pressure of air at the outlet temperature

(Pdew):

Pzone1
Pdew

≤ 0.96 ∀ t (7.35)

Additionally, a constraint is imposed to ensure that the air feed stream at the

outlet of zone 2 is in the liquid phase:

Pzone2
Pbubble

≥ 1.05 ∀ t (7.36)

where Pzone2 is the pressure at the outlet of zone 2 and Pbubble is the corresponding

bubble point pressure.

PC8 Flooding of distillation columns is a faulty operating state that occurs

when liquid from a stage (or a subset of stages) is carried to the stages immediately

above due to an excessively large vapor flow rate. Flooding drastically reduces

stage efficiencies and increases the column pressure drop. We impose a flooding

constraint based on the work of Coulson and Richardson (as described in [241])

and Cao [43]. The flooding fraction for each tray i, δfloodingi , is constrained to be

below 97%:

δfloodingi =
ui

uflooding,i
< 0.97 ∀ i, t (7.37)

where ui is the vapor velocity at tray i [m/s], and uflooding,i is the flooding veloc-

ity at tray i [m/s] (the velocity calculations are detailed in the thesis by [130]).

However, evaluating the flooding fraction for each tray is not necessary because

there are typically only a few trays in the column that are susceptible to flooding,
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and flooding usually happens simultaneously on these trays. We therefore define

the maximum flooding level in the column, δfloodingmax , and use this single variable to

evaluate the flooding constraint.

δfloodingmax = max
i

(δfloodingi ) < 0.97 ∀ t (7.38)

PC9 To ensure that the heat flow rate Q = UA(Tcondenser−Treboiler) required to

condense the liquid in the condenser is positive, a minimum temperature driving

force constraint must be met at all times:

Tcondenser − Treboiler ≥ ∆Tmin ∀ t (7.39)

The minimum approach temperature is set at ∆Tmin = 1.9◦C.

Equations (7.34), (7.35), (7.36), (7.38) and (7.39) represent the set of rPCs.

Step 1b consists of identifying the variables whose trajectories are relevant

to the rQCs and rPCs. To ensure that the rQCs are satisfied throughout the

scheduling horizon, a dynamic model of Fp is required to evaluate constraint QC1,

and we use a dynamic model of the evolution of the product output impurity (Ip) to

evaluate constraint QC2. Similarly, several variable trajectories must be predicted

to evaluate the rPCs. Constraint PC5 can be evaluated by using the level in the

reboiler. Constraints PC6 and PC7 can be evaluated from the ratio of the pressure

to the dew and bubble point pressures, respectively (e.g., instead of modeling Pzone1

and Pdew separately and then evaluating the constraint). The flooding constraints

PC8 can be evaluated from a single variable (δfloodingmax ), and constraint (7.39) can

be evaluated from the temperature difference across the reboiler/condenser.
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Step 1c requires the selection of variables relevant to the calculation of the

scheduling objective function. The objective function in this case study captures

the total electricity cost throughout the production horizon, which is described in

equation (7.25). As stated earlier in the paper, the rate of electricity consump-

tion/production in the compressors/turbines is proportional to the flowrates of the

respective units, and the level of electricity consumption in the liquefier is propor-

tional to the flow rate of the material directed to the storage system. We define

the following correlations for electricity consumption:

Wc = γcFfeed (7.40a)

Wt1 = γt1Ffeed (7.40b)

Wt2 = γt2Fp (7.40c)

Wl = γlF
in
inv (7.40d)

where γc, γt1, γt2, and γl are parameters computed based on the polytropic heads,

which are nearly constant irrespective of the production rate. F in
inv is calculated

from Fp in equation (7.5). Thus, the variables required to evaluate the objective

function are Ffeed and Fp.

Based on the discussion above, the variables whose dynamic behavior is relevant

to the scheduling problem are listed and categorized in Table 7.2.

7.5.3 Building ASU Low-Order Dynamic Models

In this section, we describe the system identification approach we followed to

establish the low-order dynamic models for each variable in ŷp, ŵp, and v̂p in Table
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Table 7.2: Variables described by the scheduling-oriented low-order dynamic mod-
els

Variable type Variables
ŷp Fp
(process outputs) Ip
v̂p Ffeed
(process inputs)
ŵp Mreb

(constrained δfloodingmax

process Pzone2/Pbub
variables) Pzone1/Pdew

Tcondenser − Treboiler

7.2.

7.5.3.1 Data Collection

A training dataset is required to identify scheduling-relevant low-order dynamic

models. These data should describe the dynamic behavior of the process variables

during production transitions. This information can be obtained from historical

process data when available, or obtained from a system identification campaign at

the plant site. The dataset should include a series of setpoint transitions which

cover the range of potential operation setpoints, and the sampling frequency must

be high enough to capture all of the process time scales. In particular, we refer

to historic data collected from operations that did involve production target tran-

sitions of the kind considered in the scheduling procedure. Such production rate

transitions are in many cases effectively equivalent to the step tests imposed during

dedicated system identification experiments and, as such, the resulting historical
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data can be used for the purpose of building the proposed low-order dynamic

models.

For this work, process transition data were generated using the detailed process

model described in the previous section. Specifically, to generate a training dataset

with sufficiently rich dynamic information, a production target trajectory was de-

termined by optimizing the production schedule using a simplified (static) process

model, where it was assumed that the production flowrate and impurity levels

match their setpoints following each transition. This formulation is representative

of a conventional scheduling approach, where process dynamics are not explicitly

modeled and the transition information is captured in tabulated transition time

data. The schedule optimization problem used to create this “static” schedule is

described below:

minimize
F sp,n
p

φ =

∫ T

0

p(t)(γcF
sp
p (t)− γt1F̂feed − γt2F sp

p + γlF
in
inv)dt (7.41)

subject to Time slots (7.2)− (7.3)

Inventory model: (7.18)

Split: (7.21) and (7.23)

Mixing: (7.22) and (7.24)

ICs: (7.19)− (7.20)

Demand Constraint: (7.30)

abs(F sp,n+1
P − F sp,n

p ) ≤ 2mol/s (7.42)

0.8 ≤ F sp,n
p /F nom

p ≤ 1.2 (7.43)

F̂feed = βF sp
p (7.44)
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where Ffeed is predicted from F sp
p using the static model in equation (7.44). The

electricity price data used in this optimization and throughout the case study are

given in Figure 7.7.
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Figure 7.7: Data from the ERCOT day ahead market[88] for electricity market
prices on September 9-11, 2013.

To take process dynamics into account, we implemented constraint (7.42), which

limits the product flow rate target changes to 2mol/s (or 10% of the nominal

production rate) over the course of an hour, and constraint (7.43), which constrains

the production rate to within ±20% of the nominal value. Separate production

target step change experiments indicated that any change of ±2mol/s from any

production level within ±20% of the nominal rate is feasible if the system is allowed

to settle to steady state. However, as will be shown below, it cannot be guaranteed

that any sequence of step changes is feasible if the system does not reach steady

state prior to a new step change.

The optimal production rate target sequence determined by solving (7.41) is

shown in Figure 7.8a. Notice that it covers the entire range of allowable production
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rate levels (i.e., ±20% of the nominal product flowrate). The optimal schedule was

implemented on the detailed dynamic model using the transition control heuristic

discussed in the Transition Control section in the ASU Model description. The

corresponding trajectories of the variables of interest (given in Table 7.2) during

the prediction horizon make up the training dataset which was used to identify the

desired scheduling-oriented low-order dynamic models.

It is important to note that, while the manipulated variable trajectories reach

their new steady state values within one hour, the time to steady state for the

slowest process variables (specifically, impurity levels) is much longer. Despite

individual ±20% changes in the production rate being feasible when the process

is given time to settle to steady state, the implementation of production setpoint

sequence obtained from solving (7.41) results in constraint violations during pro-

duction transitions because the process dynamics are not adequately taken into

account. Specifically, the product impurity levels and the reboiler/condenser tem-

perature driving force constraints are violated on several occasions (see Figure

7.8). Nevertheless, the results presented in Figure 7.8 constitute a valid dataset

for model identification purposes.

7.5.3.2 Low-Order Dynamic Model Identification

To determine good initial estimates of the model order and time constants

for variables with longer dynamics, an additional dataset was generated, where

the production rate transitions occur infrequently (i.e., enough time is allowed to

elapse for all process variables to reach steady state). Note that this dataset was
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not used to train the models; rather, it assisted with the pre- and post-processing

phases of our system identification effort, in that the data were used to establish the

appropriate model form and order, and, respectively, to validate the models once

the identification was completed. In practice, this strategy would correspond to the

additional (limited) set of step test experiments required to build the scheduling-

relevant low-order dynamic models as described earlier in the paper.

Low-order dynamic models were identified for all variables in Table 7.2. The

models were trained using the historical transition data given in Figure 7.8 using

the System Identification Toolbox in MATLAB [177]. Continuous time, nonlinear

Hammerstein-Wiener models of the general form

u′ = Ψ(yspp ) (7.45a)

˙̄x = Ax̄+Bu′ (7.45b)

y′ = Cx̄ (7.45c)

ẑp = Φ(y′) (7.45d)

were identified for each variable. Here, Ψ and Φ are the input and output non-

linearity functions, respectively, and A, B and C are the matrices of the linear

state-space model. ẑp represents the output variable (ẑp = [ŷp, v̂p, ŵp]). Input

nonlinearities were represented as piecewise linear functions:

Ψ(yspp ) =
pwi+1 − pwi
bpi+1 − bpi

(yspp − bpi) + pwi if bpi < yspp ≤ bpi+1 (7.46)

where i ∈ I is the set of piecewise linear segments, bpi is the breakpoint at segment

i, and pwi is the value of the input function for segment i. The output nonlinearities
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were represented either as polynomials of the form:

Φ(y′) =
N∑
j=0

njy
′j (7.47)

where nj are the polynomial coefficients, or by piecewise linear functions:

Φ(y′) =
pwi+1 − pwi
bpi+1 − bpi

(y′ − bpi) + pwi if bpi < y′ ≤ bpi+1 (7.48)

To fit the models, the order of the linear state space models, the number of

piecewise segments, and the order of the polynomials were adjusted in a trial-and-

error fashion, with the model that resulted in the closest fit (i.e., lowest normalized

mean square error - NMSE) being retained for each variable. An overview of the

resulting scheduling-oriented low-order dynamic models is given in Table 7.3, while

full details are provided as supplementary material. The predicted outputs of

each low-order dynamic model, along with the corresponding variable trajectories

computed using the full-order model, are shown in Figure 7.8.

The statistical analysis of our models attests to their quality, as reflected by

the high normalized mean square error (NMSE) values provided in Table 7.3 for

the training and validation data. Note that the NMSE values for the validation

data in some cases are higher than the training data; this is due, in part, to the

fact that the validation data has a longer time horizon with fewer switches, and

reflects a high quality prediction of the steady state gain. The low NMSE in the

prediction of impurity for the validation dataset reflects the need to implement a

constraint “back-off” as discussed above (Equation (7.32)).
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Table 7.3: Identified model details

Variable Number of
piecewise
linear
input
segments

Linear
sys-
tem
order

Output
model type

Output
polynomial
order

Number of
piecewise
linear
output
segments

NMSE
(train-
ing)

NMSE
(vali-
dation)

Fp 5 3 Polynomial 2 – 0.96 0.99
Ip 4 4 PW Linear – 6 0.82 0.52
Ffeed 3 2 Polynomial 2 – 0.99 0.99
Mreb 3 4 Polynomial 1 – 0.78 0.75

δfloodingmax 5 5 Polynomial 2 – 0.91 0.92
Pzone2/Pbub 8 4 Polynomial 2 – 0.78 0.72
Pzone1/Pdew 2 8 PW Linear – 6 0.83 0.97
(Tcondenser−
Treboiler)

9 4 Polynomial 2 – 0.69 0.84

7.5.4 ASU Scheduling Under Low-Order Dynamic Constraints

The complete ASU scheduling formulation (based on the general form (7.15))

using scheduling-oriented low-order dynamic models for product and process dy-

namics is given by:

minimize
F sp,n
p

φ =

∫ Tm

0

p(t)(γcF̂p(t)− γt1F̂feed − γt2F̂p + γlF̂
in
inv)dt (7.49)

subject to Time slots (7.2)− (7.3)

ŷp models of the form (7.45)

v̂p models of the form (7.45)

ŵp models of the form (7.45)

Inventory model: (7.18)

Split: (7.21) and (7.23)

Mixing: (7.22) and (7.24)
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Simulated data Model prediction

(b) Feed flowrate
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Simulated data Model prediction

(c) Impurity
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Simulated data Model prediction

(d) Reboiler temperature
difference

0 6 12 18 24 30 36 42 48 54 60 66 72
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Time (hours)

F
lo

od
in

g 
F

ra
ct

io
n

 

 

Simulated data Model prediction

(e) Flooding
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Simulated data Model prediction

(f) Bubble pressure
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Simulated data Model prediction

(g) Dew pressure
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Simulated data Model prediction

(h) Reboiler holdup

Figure 7.8: Simulated “historical” process transition data and corresponding pre-
dictions from the scheduling-oriented low-order dynamic model. Several con-
straints are violated throughout the production horizon by following the sched-
ule determined using the static process model. These include the impurity level,
Pzone1/Pdew and the condenser/reboiler minimum temperature driving force, and
the reboiler holdup endpoint constraint.

ICs: (7.19) and (7.20)

rQCs: (7.30) and (7.32)
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rPCs: (7.35), (7.36), (7.38), (7.39), (7.34)

0.8 ≤ F sp,n
p /F nom

p ≤ 1.2

where p(t) is the price forecast profile throughout the horizon Tm = 72h. The

decision variables, F sp,n
p , are continuous and are bounded between ±20% of the

nominal production flow rate (F nom
p ). The setpoint can change hourly, i.e., Ne = 72

and τn = 1h ∀ n.

7.6 Results and Discussion

In this section we present and compare the results of the optimal schedules

determined using:

P1 Formulation (7.41), using a static process. This is referred to as problem P1.

P2 An additional problem formulation that only considers the rQCs.

minimize
F sp,n
p

φ =

∫ T

0

p(t)(γcF̂p(t)− γt1F̂feed − γt2F̂p + γlF̂
in
inv)dt (7.50)

subject to Time slots (7.2)− (7.3)

ŷp models of the form (7.45)

v̂p models of the form (7.45)

Inventory model: (7.18)

Split: (7.21) and (7.23)

Mixing: (7.22) and (7.24)

ICs: (7.19)− (7.20)
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rQCs: (7.30)− (7.32)

0.8 ≤ F sp,n
p /F nom

p ≤ 1.2

We refer to this as problem P2. The solution of P2 (which is based on the

general expression ((7.16))) will illustrate the effects of excluding process

operating constraints from the dynamic scheduling problem formulation.

P3 Formulation (7.49), which includes a process model for the rQCs and rPCs.

We refer to this as problem P3.

P4 A scheduling and dynamic optimization calculation including the full-order

process model based on (7.10). The solution time of P4 will be compared to

that of problems P2 and P3 using low-order dynamic models to evaluate the

improved computational performance of our approach.

The characteristics of each of these formulations are summarized in Table 7.4.

Note that the model of the air separation process used in P4 is highly coupled and

nonlinear and involves 6094 equations and 430 state variables. In comparison, the

P2, P3, and P1 have nearly two orders of magnitude fewer equations and states.

The problems were implemented and solved in gPROMS [217] using a sequen-

tial dynamic optimization solver. All calculations were performed on a 64 bit

Windows system with Intel Core i7-2600 CPU at 3.40 GHz and 16 GB RAM. The

convergence tolerances used for changes in the objective function and constraint

violations were, respectively, 10−3 and 10−9. Sequential solution approaches alter-

nate between the time integration of the DAE model equations and appropriate
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Table 7.4: Summary of problem formulations.

Formulation Description Problem Size
P1 Scheduling using steady-state correlations

(7.41)
1 differential vari-
able

P2 Scheduling with a dynamic process model
and constraints on rQCs (7.50)

10 differential vari-
ables

P3 Scheduling with dynamic process model
and constraints on rQCs and rPCs (7.49)

51 differential vari-
ables

P4 Scheduling with a detailed dynamic pro-
cess model

430 differential
variables, 6094
algebraic variables

sensitivities over the time horizon of the problem, and the solution of an (MI)NLP.

Discontinuities such as those in equations (7.26)-(7.28), (7.46), and (7.48). Dis-

continuities are dealt with at the integrator level by i) identifying the time point

where the discontinuity occurs and, ii) performing a reinitialization calculation at

that point, which involves imposing state and sensitivity continuity, and finding

new consistent values for the algebraic variables. The reader is referred to the

papers by Vassiliadis [277, 278], and the books by Brennan, Campbell and Petzold

[39], and Cellier and Koffman [49] for further details.

The solutions of P1-P4 are discussed in the following sections. First, the optimal

production target sequence determined from formulations P1-P3 will be compared

and analyzed, then comparisons of the predictions of the rQCs and rPCs given

by the low-order model will be compared with the results given by simulation of

the production schedule on the full-order model, and finally a comparison of the

variable trajectories given by all three schedules implemented on the full-order

model will be presented.
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7.6.1 Optimal Sequence of Production Rate and Inventory Level Set-
points for Problems P1, P2, and P3

The schedule was optimized for a three-day time horizon using the price profile

shown in Figure 7.7, which are historical hourly prices from the Energy Reliability

Council of Texas [88] (ERCOT) in the month of September 2013. The initial guess

for each production schedule was a constant production rate equal to the product

demand rate (because the models are nonlinear and nonconvex, it is possible that

the solutions are only locally optimal). The optimal operating costs at the end

of the horizon are shown in Table 7.5 (both the cost predictions using the low-

order process models and the actual costs computed using the full-order model are

presented).

Intuitively, as more constraints are introduced, the expected operating cost in-

creases. The optimized schedules result in significant cost savings (about 2.7% over

the 3 day horizon) in comparison to a production scenario where the production

rate is constant and no storage is utilized (the energy prices reflect moderate-

weather days in September in Texas). Intuitively, days with higher temperatures

will have higher price variability owing, e.g., to increased energy consumption by air

conditioning systems [255, 198] and are expected to result in even higher electricity

cost savings compared to an operating scenario based on a constant production

rate.

The optimal production setpoint schedules determined by P1, P2, and P3 are

shown in Figure 7.9. The solution of P1 results in the most aggressive schedule,

with the production setpoint rate of change constraint (7.42) active during sig-
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Figure 7.9: Optimal production schedule and inventory holdup prediction from
P1, P2, and P3.

nificant production rate changes. The optimal schedules determined by solving

problems P2 and P3 are more conservative in the approach and departure from

the maximum production level. This is mainly owing to the presence rQCs, and

specifically to the predicted value of Ip (see Figure 7.10) being at or near its bound

(recall Imax = 1800ppm). In the case of P3, several rPCs (∆Treb, Pzone1/Pdew,

δfloodingmax , and the final reboiler holdup) are also near their bounds, which results

in a more conservative (but feasible) production setpoint schedule. The predicted

trajectories for these variables are shown in Figure 7.11.

The importance of the storage unit can be seen in Figure 7.9b. Stored product

is used to satisfy demand when prices are at their highest. Also, the three-day

horizon increases the flexibility of the schedule and provides a buffer for days when

energy prices are at their highest (e.g., in day 3).

Remark 7.9. Note that it is possible to solve the dynamic optimization problems
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Figure 7.10: Evolution of impurity levels predicted by solving P2 and P3. Notice
that a ’back-off’ upper bound constraint of 1800ppm is imposed.

associated with our integrated scheduling/dynamic formulation using a simultane-

ous approach, which entails discretization of the time domain to convert a DAE

system to a large system of algebraic equations. The resulting algebraic model

can be solved as a (mixed integer) nonlinear program. Employing a simultaneous

approach in the present case study (especially for P4) would require overcoming

several significant hurdles. First, the dimension of the state-space of the mod-

els, and the need to capture multiple time scale dynamics over long time horizons

would result in a nonlinear program of extremely large scale. Second, the chal-

lenge of finding a feasible initial guess for such models (an issue that has been time

and again been emphasized in the literature [34]) is amplified by specific and severe

nonlinearities associated with, e.g., phase transitions and the computation of phase

equilibria. Motivated by the above, we opted for a sequential solution strategy [276]

and, for consistency in evaluating the results and computational effort, we chose

to use the same strategy for all the dynamic optimization problems considered.
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7.6.2 Implementation on Full-Order Model

The optimal schedules illustrated in Figure 7.9a were implemented and sim-

ulated in the detailed dynamic model to evaluate the efficacy of the proposed

low-order model scheduling method. The control heuristic discussed in section

7.5.1 was used to set the trajectories of the manipulated variables. The imple-

mentation of P1 (the static schedule) on the detailed model is shown in Figure

7.8. A comparison of the low-order model predictions and the trajectories of the

corresponding variables in the detailed process model during the optimal schedule

determined in P3 is shown in Figure 7.11.

As seen in Figure 7.11c, the model for impurity levels under-predicts on several

occasions, but the actual constraint bound of 2000ppm is never violated. The low-

order model of the condenser/reboiler temperature driving force (Figure 7.11d)

provides a very accurate prediction. The corresponding constraint is near its bound

often throughout the time horizon, which limits the production rate from reaching

the maximum level. Additionally, the liquid level in the reboiler is completely

replenished before the end of the horizon.

The optimal schedules determined with formulations P2 and P3 were imple-

mented on the detailed ASU model to evaluate the effect of considering the rPCs

in the scheduling formulation. The rQCs are plotted in Figure 7.12 where Fig-

ure 7.12a shows the product impurity throughout the schedules in both P2 and

P3, and Figure 7.12b shows the fraction of the production that is sent to storage

throughout each schedule. The impurity level in P2 violates the constraint bound

by 200 ppm for several hours on days 2 and 3 (due to the underprediction by the
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(b) Feed flowrate
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(f) Dewpoint pressure
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(g) Bubble Pressure
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(h) Reboiler holdup

Figure 7.11: A comparison of the low-order model predictions (labeled P3 low-
order) and the trajectories of the corresponding variables in the full-order process
model during implementation of the optimal schedule determined using P3 (labeled
P3 full-order)

low-order model).

The rPCs are plotted in Figure 7.13. Recall that here the schedule in P2 is

optimized without considering the rPCs. The bubble point constraint in zone 2 of

the PHX does not approach the constraint bound in either P2 or P3. Constraints
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Table 7.5: Optimal solutions of problems P1-P4. The cost values are for the 3 day
horizon.

Formulation Predicted
optimal
cost (using
low-order
model) ($)

Actual
electricity
cost (using
full-order
model) ($)

Savings
compared
to constant
production
rate

Constraint
violations
when im-
plemented

Solution
times

P1 21466 21470 3.2% Yes 0.33h
P2 21500 21504 3.1% Yes 0.83h
P3 21584 21584 2.7% No 1.2h
P4 21520 21520 3.0% No 97h
Constant
production
rate

22187 22187 – – –

∆T rebmin and Pzone1/Pdew along with the flooding constraint are violated on several

occasions indicating that the schedule is not physically realizable by the process.

Additionally, the reboiler holdup is depleted by about 10% at the end of the P2

horizon indicating that the process is effectively losing refrigeration over time. This

justifies the need to include rPCs in the scheduling problem formulation.

7.6.3 Comparison of P3 and P4

Finally, we compare the result of P3 to P4, i.e., the optimization of the schedule

using the low order model and full-order dynamic process model.

minimize
F sp,n
p

φ =

∫ T

0

p(t)(γcFp(t)− γt1Ffeed − γt2Fp + γlF
in
inv)dt (7.51)

subject to Time slots (7.2)− (7.3)

Detailed process model (7.7)
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Figure 7.12: Comparison of rQCs when optimal schedules produced by P2 and P3
are simulated on the detailed model

Inventory model: (7.18)

Split: (7.21) and (7.23)

Mixing: (7.22) and (7.24)

ICs: (7.19)− (7.20)

QCs: (7.30)− (7.32)

PCs: (7.35), (7.36), (7.38), (7.39), (7.34)

0.8 ≤ F sp,n
p /F nom

p ≤ 1.2

The optimal production setpoint schedules and inventory holdup are compared

in Figures 7.14a and 7.14b. The schedules are very similar, with the discrepancies

stemming from the under-prediction of the impurity concentration in P3 (Figure

7.14c), and the lack of backoff constraint used in P4 since the model assumes

perfect knowledge of the system in this situation. As a result, the cost savings
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Figure 7.13: rPCs comparison when optimal schedules produced by P2 and P3 are
simulated on the detailed model

associated with P3 (2.7%) is about 90% of the savings achieved using the detailed

process model and P4 (3.0%). This similarity in overall savings combined with a

feasible production schedule validates the quality of our low-order models. The

important difference between the solutions of P3 and P4 is in the computation

time; P3 required 1.2 hours to solve, while the solution of P4 required 97 hours

(see Table 7.5). This reduction in computation time demonstrates the potential

for executing P3 in a periodic or rolling-horizon fashion, and quickly updating the

schedule in response to identified disturbances.
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Figure 7.14: Results comparison between optimal schedules determined using the
low-order process model (P3) and the detailed process model

7.7 Conclusion

In this work, we proposed a novel framework for optimal scheduling of continu-

ous processes when subjected to high market variability, using scheduling-oriented

low-order dynamic process models identified from historical process transition data.

The scope of these models encompasses product quality, production rates, and vari-

ables relevant to product and process constraints that are near their limits during

transitions between production targets. Low-order dynamic models of these vari-

ables are identified from historical process transition data. However, our framework

is generic and can accommodate low/reduced-order representations of detailed pro-

cess models if available. The low-order models predict the dynamic response of

the process inputs, outputs and operating constraints to changes in the production

setpoints.

The scheduling-oriented low-order models are then used in an optimal schedul-

ing problem aimed at minimizing operating costs (or maximizing profit) by ad-

justing the product setpoints and utilizing the available inventory. This renders
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the scheduling problem aware of the process dynamics and operating constraints

without the need for a detailed process model.

Our framework represents a significant departure from the traditional scheduling

approaches, which use static process models with tabulated transition information

between discrete operating levels to determine the optimal production schedules.

It allows for continuous (rather than discrete) changes to the production targets

and ensures that the transitions are dynamically feasible. Additionally, the smaller

dimension of the process models make this approach computationally efficient.

We applied the proposed optimal scheduling method to an air separation unit

producing nitrogen. The ASU is outfitted with a nitrogen liquefier and a liquid

nitrogen storage tank, which enable the process to adjust the production rate in re-

sponse to variable electricity prices while satisfying product demand by re-gasifying

the liquid nitrogen inventory. The optimal schedule results in a 2.7% savings in

electricity cost over the course of 3 days in comparison to a scenario where the

production rate is constant. The optimal production schedule was compared to

the result produced using a static process model and a model which only accounts

for the product (not process) constraints. The resulting schedules are dynamically

feasible only in the case in which both product quality constraints and process

operating constraints are included in the low-order dynamic model, emphasizing

the importance of defining the scope of scheduling-oriented process models. Ad-

ditionally, we show that the results determined using the low-order process model

are very similar to the optimal schedule determined using a full-order dynamic

process model, but are obtained in two orders of magnitude less time.
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Chapter 8

Closing the Scheduling Loop: Rescheduling

Formulations Incorporating Dynamic Process

Models, Fault Detection-Based Triggers, and

Moving Horizon Concepts

The second case study in this chapter is published in [209]. The majority of the

material in this chapter is in preparation for publication.

8.1 Introduction

The objective of scheduling within the range of management decisions (shown

in Figure 8.1) for multi-product processes is to establish the most profitable pro-

duction sequence and inventory levels over the course of the scheduling horizon.

Recently, cross-functional coordination between the layers of decision making in

Figure 8.1 has been shown to improve the overall economics of chemical process

systems [106, 275]. In particular, the integration of scheduling and control or in-

tegration of scheduling and process dynamics has been the subject of many recent

reviews [24, 63, 112] and is a major ongoing research thrust. Research efforts aim

to incorporate knowledge of process dynamics and control actions within schedul-

ing calculations, typically by creating a dynamic model of the process (e.g., a set

of differential equations or a data-driven discrete model) and linking the model to
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Figure 8.1: Process management decisions. Scheduling with a dynamic process
model is an alternate method for obtaining a production schedule.

key scheduling decisions. Accounting for process dynamics explicity in scheduling

is a significant departure from traditional scheduling calculations (e.g., those re-

viewed in [174] for chemical processes), where process information is represented

using tabulated performance data (e.g., transition tables) or heuristics. Scheduling

with a dynamic process model (highlighted in Figure 8.1 as an alternate method

for obtaining a production schedule) is desirable because it can provide more ac-

curate knowledge of transition times, operating costs, and the feasibility of certain

transitions.

Rescheduling is necessary when the current schedule cannot be executed as

planned, usually due to an unforeseen event. Methods for scheduling under uncer-

tainty [156, 69] are employed accross a variety of sectors [279] to minimize the need
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to reschedule by creating schedules that are ‘robust’ to differences in processing

times and unforseen events. However, rescheduling is unavoidable in the event of

a major disturbance that impacts the ability to make a subset of products. Such

‘major disturbances’ typically have a direct impact on the scheduling calculation

formulation (e.g., new/rush order arrival or machine break-down), and can there-

fore be viewed as disturbances to the scheduling layer in Figure 8.1. These have

been extensively studied in the literature (the reviews [280, 231, 13, 199] provide

a summary of rescheduling formulations and circumstances). There are several

examples of rescheduling due to scheduling layer disturbances in the chemical pro-

cess literature using reactive (i.e., event-driven, where the need to reschedule is

‘triggered’ by an adverse event) and periodic (i.e., the schedule is regenerated at a

regular interval in a moving horizon fashion, using updated information on the per-

formance of the schedule in the previous interval) techniques using static process

information.

On the other hand, disturbances to the process layer can cause changes in the

product quality and processing times, which may also necessitate rescheduling

[280]. Addressing events that impact the process dynamics (e.g., disturbances af-

fecting the operation of one unit within the system, without leading to an obvious

failure) has received less attention, under the likely implicit assumption that their

impact will be addressed by the local control system. Unlike disturbances to the

scheduling layer, these are a result of the uncertainty present within a process

[212, 143] and may be a result of drift in process parameters over time or sud-

den unmeasured changes in operating conditions. The development of integrated

296



scheduling and control provides novel opportunities for rescheduling in response

to disturbances at the process level, as opposed to disturbances to the scheduling

level. Recent works have shown that predictions of the state variables through

surrogate models can be used to define and confirm the need to reschedule pro-

cess operations [310, 62]. The general state of the literature regarding the role of

dynamic models in event driven and periodic rescheduling is summarized these in

Table 8.1. In general, the development of a unified approach for exploiting the

wealth of information that can be derived from accounting for process dynamics

at the scheduling stage, and from monitoring the closed-loop process performance

during scheduling execution, remains an open question.

Table 8.1: Rescheduling Strategies

with dynamic model without dynamic model

Disturbance
type

Event-driven Periodic Event-driven Periodic

Schedule
layer

There is some literature
here

accounted for in the tradi-
tional rescheduling litera-
ture

Dynamic This is the focus of our
work

not possible to account
for these explicitly us-
ing traditional reschedul-
ing methods

In this work, we will demonstrate novel rescheduling concepts that are possible

when scheduling with a dynamic process model. In particular, we emphasize dif-

ferences between disturbances to the scheduling and process layer, and highlight

how the latter can lead to changes in processing times or recipes, transition times,

and the overall product wheel. For this reason, the scheduling layer should be
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aware of changes in the dynamic process behavior. We propose an event-driven

rescheduling framework using existing methods for process monitoring and fault

detection, identification, and reconstruction, which diagnose specific changes in

processing conditions, as triggers. The integrated scheduling and dynamics frame-

work is well suited for accounting for these differences; we propose that the new

operating paradigm can be accounted for by altering constraint boundaries for the

dynamic model in a rescheduling calculation. In this context, rescheduling effec-

tively closes the loop at the scheduling level in response to the presence of faults

at the process level. We also discuss a moving horizon scheduling formulation,

which uses a state observer to track the evolution of model variables and reduce

plant-model mismatch. A discussion on the differences between moving horizon

scheduling and economic MPC is provided to highlight this contribution.

8.2 Rescheduling in Response to Dynamic Disturbances

8.2.1 Motivation

Figure 8.2 highlights the presence of three different types of disturbances, which

can appear at the scheduling layer or process layer in the decision making hierar-

chy. Rescheduling in response to failures (e.g., machine breakdown or any event

resulting in the inability to operate the process and possibly requiring downtime

to perform maintenance) and schedule disturbances (e.g, rush orders, order cancel-

lations, or due date changes) have been extensively studied within the operations

research community. These disturbances are similar in that they provide an obvi-

ous rescheduling trigger, and are not related to the process dynamic.

298



Supervisory Control

Regulatory Control

production schedule

setpoints

control actions

(Re)Scheduling with Dynamic 

Models of Closed Loop Behavior

Scheduling

Process

Notification of changes 

in dynamic behavior or 

constraints

process

failure

dynamic 

disturbance

Actuators

Sensors

Process Monitoring / 

Fault Detection & Identification

Schedule 

disturbance

measurements

Figure 8.2: Closing the scheduling loop in response to dynamic disturbances using
scheduling approaches with dynamic models and process monitoring.

In this paper we focus on dynamic disturbances at the process level in Figure

8.2. Dynamic disturbances are those that alter the plant operating conditions but

do not lead to a failure. Examples of these events include valve stiction, controller

saturation, changes in raw material properties, or drifts in process parameters and

operating conditions. While these incidents do not completely stop the process,

they will likely limit the operating range (i.e., tighten process constraints on inputs

and/or states). The consequences of this are:

(A) some products may no longer be feasible

(B) some predicted processing times or transition times may change (they

will likely be longer than expected)
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(C) some transitions may no longer be feasible.

Notice that item (A) affects the product wheel, item (B) affects the makespan, and

item (C) affects the sequence of the original schedule. Therefore, dynamic incidents

at the control/process level can have serious consequences at the scheduling level.

Also, evaluating each of these faults requires dynamic information (for a continu-

ous process, steady state information may also be useful). Even though changes

in processing times are frequently counted amongst reasons for rescheduling in the

literature, methods tailored specifically for rescheduling in response to dynamic

disturbances have received less direct attention. This is due to the fact that (i) in

a traditional static or recipe based scheduling calculation, it is not possible predict

how dynamic disturbances impact product recipes or feasibility. Such information

would need to be established offline. Also, (ii) scheduling under uncertainty can

be used to increase the robustness of schedules to dynamic disturbances and avoid

rescheduling. Finally, (iii) it is often assumed that these disturbances at the pro-

cess level will be mitigated by the control system so that the potential dynamic

differences when executing the schedule are negligible. Note that the last assump-

tion may not always hold in the presence of actuator faults, thereby providing

further support for incorporating dynamic models of closed-loop process behavior

into scheduling calculations.

Given the potential for dynamic disturbances to impact the outcomes of im-

plementing a predefined schedule, rescheduling can be useful to update the ex-

pected processing times as the operating environment changes. We will leverage
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the availability of scheduling formulations incorporating dynamic models to pro-

vide a unified approach for rescheduling, which can account for such changes in

the operating conditions. A crucial component of this framework is a feedback link

between changes at the process level and the scheduling level, which (i) identifies

dynamic disturbances that may impact the predictions from the dynamic model

in the scheduling calculation, and (ii) accounts for these disturbances in future

scheduling efforts. The method behind each of these tasks is summarized in the

following sections.

8.2.2 Framework

To begin, we assume a scheduling system is in place which follows the integrated

scheduling and control paradigm (i.e., the scheduling calculation includes a model

of the closed loop process dynamics [210]). The general scheduling formulation is

given in Table 8.2.

The problem is a dynamic optimization (DO) because of the presence of a dy-

namic process model, and will be a mixed-integer DO in the most general case.

The type of process model used in this environment has a significant impact on the

quality and feasibility of the resulting schedule, the difficulty of solving the associ-

ated optimization problem and choice of solution algorithm, and the opportunities

for rescheduling.

Regarding the form of the process model, this may be a detailed first prin-

ciples model or a low-order model of scheduling relevant process variables (also

referred to as a scale bridging model - SBM [76]). For complex processes using
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Table 8.2: General Scheduling with Dynamic Model Problem Statement

Given:
Timing Information

- Time horizon
- Event timing and schedule characteristics

Material Information
- Product requirements
- Demand quantities or rates
- Prices of raw materials, utilities, and products
- Inventory restrictions

Dynamic Process Knowledge
- Process model
- Operating constraints

Establish:
Optimal production sequence/schedule that maximizes the profit
or minimizes the operating costs of the process

optimization-based controllers, it is not desirable to use a detailed process model in

the scheduling calculation because of the problem size, nonlinearity, and presence

of nested optimization formulations. For this reason, SBMs are identified from

data for use in scheduling calculations. In this work, we assume that the SBM of

the general form

0 = f(ysp,w, ẇ, ẅ, . . . ,p, t) (8.1)

is used in the formulation in Table 8.2, along with the operating constraints

wmin ≤ w ≤ wmax (8.2)

g(w, ẇ, t) ≥ 0 (8.3)

where ysp represents the scheduling decision variables for product sequence, and

w is the vector of scheduling relevant variables that are modeled using the SBM
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(8.1). The variables w are subject to the bounds (8.2) and nonlinear constraints

(8.3), which may include rate of change limits on the derivatives ẇ. For a detailed

discussion on the derivation of such SBMs and the selection of scheduling relevant

variables, we refer the reader to [210].

8.2.2.1 Process Monitoring Provides Rescheduling Triggers

It is intuitive that dynamic disturbances which necessitate rescheduling are

those which impact the model or constraints associated with the scheduling rele-

vant variables w, and any sensor or actuator faults that impact the variable w.

Such disturbances are expected to cause changes to the behavior of the process

as predicted by the formulation in Table 8.2, and should be accounted for at the

scheduling layer. The remaining question is ‘how will the dynamic disturbances be

identified?’ We believe that existing methods for process monitoring [298], fault

detection/identification and diagnosis [170, 220], fault reconstruction [79, 219],

and state/disturbance observers [223, 145] can provide information relevant to

rescheduling in response to dynamic disturbances.

In fact, these methods are likely already in place at many plant sites. Quanti-

fying changes in process characteristics and operating conditions (which we have

called dynamic disturbances) have been identified as a top priority for maintaining

the accuracy of virtual sensors [133] and is important for controller performance

assessment [287]. There is a clear industrial motivation for identifying dynamic

disturbances and relaying this information to several levels of the decision making

hierarchy. Ultimately, closing the loop at the scheduling level may just be a mat-
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ter of relaying the information from process monitoring efforts to the rescheduling

layer, which must be flexible enough to account for such disruptions.

The link between process monitoring/fault diagnosis and rescheduling effectively

provides feedback about changes within the process level to the scheduling level.

This is similar to the feedback provided by measurements to the regulatory and

supervisory control layers in Figure 8.2, which plays a crucial role in ensuring

optimal performance of the control system. We believe similar improvements can

be made in scheduling through the act of rescheduling in response to dynamic

disturbances.

Consider that in the literature on scheduling incorporating models of process

dynamics there are case studies demonstrating its application to air separation unit

[210], multi-product CSTRs [257, 310] and polymerization reactors [214, 76, 250],

catalytic cracking [126], and multi-unit batch processes [59, 192]. For each of these

applications, there are parallel case studies in the process monitoring literature

which seek to identify faults or changes in conditions that are relevant to the

models the corresponding scheduling formulation.

For example, the use of fault reconstruction to identify the magnitude of a leak

in a reboiler [79] is of interest to the model of reboiler holdup in [210] In [244],

an observer is used to estimate changes in the reaction kinetic parameters and

also to detect a disturbance in the feed temperature for a styrene polymerization

reactor. Statistical PM methods and fault reconstruction are used to identify

changes in feed concentration and temperature for a CSTR in [153]. These are all

dynamic disturbances that are relevant to the multi-product reactors in [257, 310,
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214, 76, 250]. [244] and [208] demonstrate, respectively, the use of an observer or

statistical fault detection method to address actuator faults or changes in physical

properties in a fluid catalytic cracking unit. Fault detection for batch systems is

also a well-established research area, and there are numerous case studies in the

literature which demonstrate methods for detecting sensor and actuator faults for

batch systems.

These examples serve to justify our claims that existing methods for process

monitoring can detect information relevant to the models and constraints in the

scheduling formulation, and that the link between these components is plausible

and warrants further study.

8.2.2.2 Formulation

The last piece of the framework shown in Figure 8.2 is the formulation of the

rescheduling calculation. Once the process monitoring/fault detection step has

identified a dynamic disturbance and communicated it to the scheduling layer,

how will this information be incorporated in the optimization? The presence of a

process model provides the ability to explicitly account for changes in constraints

or parameters which may alter processing/transition times and the feasibility of

operating states. Thus, it is possible to update the model parameters in (8.1)

and constraints (8.2) and (8.3) on affected variables with new values as identified

through process monitoring and fault detection. This is shown below, where p̂, ŵ, ĝ

denote updated model components.

0 = f(ysp,w, ẇ, ẅ, . . . , p̂, t) (8.4)
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ŵmin ≤ w ≤ ŵmax (8.5)

ĝ(w, ẇ, t) ≥ 0 (8.6)

With these model updates, it is possible to easily evaluate the feasibility of the

remainder of the schedule and perform rescheduling (e.g., a right shift, partial, or

complete reschedule). This is a major benefit of scheduling with a dynamic model

compared to static scheduling approaches, where it is not straightforward to use

heuristics to predict how a variety of dynamic disturbances impact product recipes

or feasibility (such information would need to be established offline).

Depending on the complexity of the process, it may be beneficial to evaluate the

feasibility of the product wheel in the new operating conditions before resolving the

scheduling problem. For example, for a continuous process this involves identifying

the new stable state-state operating space and ensuring that all products are still

within this region. For a large multi-unit batch process, a simplified dynamic

optimization for the affected unit may be evaluated.

8.2.2.3 Opportunities for Model Based Process Monitoring

The connection between process modeling and rescheduling does not need to

be a one-way link. As shown in Figure 8.3, it is possible that the predictions of

variable trajectories from a scheduling calculation with a dynamic model can be of

use for model-based process monitoring. Although, the value of this information

may be at odds with the desire to reduce scheduling complexity with SBM forms.

Consider that if a detailed process model is incorporated into scheduling, this
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would provide a large quantity of information for PM, whereas a SBM containing

only a few scheduling-relevant variables provides limited information.

Regardless, it is important to recognize that the models used in scheduling with

dynamics should be synchronized with those used for (model-based) process control

and process monitoring. Communication of changes made to any of the models

due to dynamic disturbances is needed to ensure all decision making is done with

up-to-date information and minimal error.

(Re)Scheduling with Dynamic 

Models of Closed Loop Behavior

Notification of changes 

in dynamic behavior or 

constraints

Process Monitoring / 

Fault Detection & Identification

Predictions from integrated 

scheduling and control provide 

additional information for 

dynamic process monitoring

Figure 8.3: Opportunities for providing additional information to model based
fault detection schemes

8.2.3 Summary

To summarize, the framework that we are utilizing to close the scheduling loop

consists of:

1. Process monitoring to quantify the change in operating conditions and con-
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straints due to dynamic disturbances. Some of the methods discussed in

section 8.2.2.1 are assumed to be already in place and capable of quantifying

dynamic disturbances which impact the scheduling relevant variables.

2. A feasibility analysis on the dynamic process model, to evaluate the effect of

the change in operating conditions. As discussed in section 8.2.2.2, this step

may be useful for complex processes.

3. Updating model parameters and constraints to reflect the changes at the pro-

cess layer, and performing a rescheduling calculation to update the schedule.

This is, to our knowledge, the first proposed use of process monitoring for up-

dating dynamic models incorporated into scheduling calculations. Because we are

relying on existing process monitoring techniques, demonstrating the fault detec-

tion and reconstruction steps are not the focus of this paper. In the case studies

in the following section we aim to highlight the impact of dynamic disturbances

and demonstrate how, once identified through process monitoring, they are eas-

ily accounted for through rescheduling with a dynamic process model. Our focus

will employ schedule repair methods (e.g., right shifts or partial rescheduling),

which make minimal changes to the original schedule to avoid nervousness. These

developments effectively close the scheduling loop through initiating rescheduling

calculations under the impetus of changes in external factors that affect the oper-

ation of the process.
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Figure 8.4: State equipment network for the batch flowshop process.

8.2.4 Case Study

We present a case study for rescheduling in a multi-unit sequential (flowshop)

batch process based on the example originally proposed in [192]. The following

equations and nomenclature are developed and presented in detail in [192], where

the benefits of scheduling with a dynamic model compared to a fixed recipe are

shown by evaluating the operating costs and profit of the two schedules. In this

work, we provide an overview of the problem formulation and use this scenario to

demonstrate our rescheduling framework.

The state equipment network (SEN) is shown in Figure 8.4. The reactions

A → B and B → C take place in the reactor, which receives a feed of pure A.

The first intermediate stream (with components A, B, and C) is sent through a

filtration step, which is assumed to completely remove component C. The second

intermediate (containing only B and C) is fed to a batch distillation column.

The column can be run in two distinct states to produce product 1 (the total

distillate has ≥ 99.5%B) or product 2 (the total distillate has ≥ 99.7%B). A
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slot based scheduling formulation with N time slots is developed incorporating

dynamic models of the reactor and distillation column, while the filtration step is

modeled using algebraic equations.

Table 8.3: Nomenclature - Indices and Sets

Indices/Sets Description

j ∈ J units
r ∈ R materials
s ∈ S operating states
n ∈ N event slots
c ∈ C chemical components

Rprod ⊆ R final products
Rraw ⊆ R raw materials
Js ⊆ J units with operating state s
Jpr ⊆ J units that produce material r
Jcr ⊆ J units that consume material r
Rps ⊆ R materials produced in state s
Rcs ⊆ R materials consumed in state s
Rpj ⊆ R materials produced in unit j

Rcj ⊆ R materials consumed in unit j

Spr ⊆ S states that produce material r
Scr ⊆ S states that consume material r
Sj ⊆ S states that are possible in unit j
Cr ⊂ C components of material r

8.2.4.1 Scheduling Problem Formulation

The MIDO for scheduling is presented in equations (8.7) - (8.36). The nomen-

clature is explained in Tables 8.3 and 8.4. The optimization problem aims to

maximize profit, and the scheduling constraints describe a manufacturing scenario

with no changeover delays and no fulfillment deadlines, and uses the unlimited

intermediate storage policy. For details regarding their construction, we refer the
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Table 8.4: Nomenclature - Parameters and Variables

Parameters Description

N cardinality of set N
Pr price of material r
H scheduling horizon

Bmin
j , Bmax

j bounds on batch size

Eminr , Emaxr bounds on excess material
Ēr initial amount
ηr,c,1 initial composition

φ̄j,r,c, η̄r,c quality requirements

Variables Description

wj,s,n binary variable indicating state of unit j in slot n
Fj,n operating cost
Er,n excess material
Er,0 initial excess material
Rpj,r,n production of r by j in slot n

Rcj,r,n consumption of r by j in slot n

bj,n batch size
Tj,n slot start time
Tpj,n processing duration
zj,n differential variables
yj,n algebraic variables
τ normalized time

ηr,c,n composition of material r
φj,r,c,n composition of material r produced by j

reader to the original paper describing the case study [192].
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max
bj,n,ws,j,n,uj,n(τ)

Profit = Sales− Costraw materials − Costunit operations (8.7)

Sales =
∑

r∈Rprod

Pr(Er,N +
∑
j∈Jp

r

Rp
j,r,N ) (8.8)

Costraw materials =
∑

r∈Rraw

PrEr,0 (8.9)

Costunit operations =
∑

j∈J,n∈N

Fj,n (8.10)

Subject to:

Assignment constraints

∑
w∈Sj

wj,s,n ≤ 1 ∀j ∈ J, n ∈ N (8.11)

Material balances

Er,n = Er,n+1 +
∑
j∈Jp

r

Rp
j,r,n−1 −

∑
j∈Jc

r

Rc
j,r,n ∀r ∈ R, n ∈ N, n > 1 (8.12)

Er,1 = Er,0 −
∑
j∈Jc

r

Rc
j,r,1 ∀r ∈ R (8.13)

Er,0 = Ēr ∀r ∈ R′ ⊂ R (8.14)∑
r∈Rp

j

Rp
j,r,n =

∑
r∈Rc

j

Rc
j,r,n ∀j ∈ J, n ∈ N (8.15)

Capacity constraints

∑
s∈Sj

wj,s,nB
min
j ≤ bj,n ≤

∑
s∈Sj

wj,s,nB
max
j ∀j ∈ J, n ∈ N (8.16)
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Emin
r ≤ En

r ≤ Emax
r ∀r ∈ R, ∀n ∈ N (8.17)

Timing constraints

Tj,n+1 ≥ Tj,n + Tpj,n ∀j ∈ J, n ∈ N, n < N (8.18)

Tj′,n′ ≥ Tj,n + Tpj,n −H

2−
∑

s∈Sj∩Sp
r

wj,s,n −
∑

s′∈S′j∩Sc
r

wj′,s′,n′


∀r ∈ R, j ∈ Jpr , j′ ∈ J cr , j 6= j′, n ∈ N, n′ ∈ N, n < n′ ≤ N (8.19)

Tj,n ≤ H ∀j ∈ J, n ∈ N (8.20)

Tj,N + Tpj,N ≤ H ∀j ∈ J (8.21)

Tpminj,s ≤ Tpj,n ≤ Tpmaxj,s ∀j ∈ J, s ∈ Sj, n ∈ N (8.22)∑
n∈N

Tpj,n ≤ H ∀j ∈ J (8.23)

Unit models

dzj,n(τ)

dτ
= fj,s (zj,n(τ), yj,n(τ), uj,n(τ))Tpj,n (8.24)

0 = gj,s (zj,n(τ), yj,n(τ), uj,n(τ)) (8.25)

zj,n(0) = Zj,s(bj,n, ηr,c,n) (8.26)

Unit operating constraints

zminj,s ≤ zj,n(τ) ≤ zmaxj,s (8.27)

yminj,s ≤ yj,n(τ) ≤ ymaxj,s (8.28)

uminj,s ≤ uj,n(τ) ≤ umaxj,s (8.29)
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Unit operating cost

Fj,n = hj,s (uj,n(τ), Tpj,n, bj,n) (8.30)

Material quality and constraints

ηr,c,n =
ηr,c,n−1Er,n−1 +

∑
j∈Jp

r
φj,r,c,n−1R

p
j,r,n−1

Er,n−1 +
∑

j∈Jp
r
Rp
j,r,n−1

∀r ∈ R, c ∈ Cr, n ∈ N, n > 1 (8.31)

f (ηr,c,n, ¯ηr,c) ≥ 0 ∀r ∈ R, c ∈ Cr, n ∈ N (8.32)

Link equations between unit models and schedule variables

φj,r,c,n = Φ(zj,n(τ), yj,n(τ)) (8.33)

Rp
j,r,n = Rp

j,s(zj,n(1), zj,n(1)) (8.34)

Rc
j,r,n = Rc

j,s(zj,n(0), zj,n(0)) (8.35)

Disjunctions 
wj,s,n = 1

Unit models
Unit operating constraints

Linking equations
Unit operating cost


s∈Sj

∨

∑

s∈Sj
wj,s,n = 0

Rp
j,r,n = 0

Rc
j,r,n = 0
Fj,n = 0
Tpj,n = 0


∀j ∈ J, n ∈ N, τ ∈ [0, 1] (8.36)

In this formulation, the manipulated variables are part of the decision variable

set. Therefore, this is not a true closed loop representation of the process dynamics.

However, under the assumption that the controller dynamics are very fast the open

loop model is a reasonable approximation of the closed loop performance.
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Note that one of the main benefits to incorporating dynamic unit models into

a batch scheduling calculation is the ability to alter the properties of intermediate

streams and unit recipes simultaneously with the schedule optimization. Consid-

ering the entire system operation can result in improved economic performance

compared to optimizing units individually and using fixed recipes when schedul-

ing. This is demonstrated in Figure 8.5, which shows two trajectories (A and B)

for the evolution of a quality variable for a sequential batch process made up of

two units and a schedule with two event slots. The duration of the event slots for

each trajectory and the intermediate value of the quality variable are different, but

at the end of the schedule the quality variable is the same. One trajectory may

be favored over the other because it has a lower operating cost. Furthermore, it

is possible to adjust these recipes online as part of rescheduling when a dynamic

model is present. If the initial conditions at the start of the schedule changes, or if

there is a disturbance during the first event slot, it is possible to update the sched-

ule and recipe such that the target quality is still achieved. These capabilities will

be demonstrated in the case study.

8.2.4.2 System Model

The reactor concentration model is shown in (8.37). Here, v is a scaled tem-

perature and β = 3.875× 10−3 is a scaled kinetic coefficient. v is the manipulated

variable for controlling the reactor, and the initial batch size breact,n is a decision

variable.

dCA
dt

= −vC2
A (8.37a)
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Figure 8.5: Variations in batch operations for making the same product

dCB
dt

= vC2
A − βv2CB (8.37b)

dCC
dt

= βv2CB (8.37c)

The binary distillation model includes the differential equations for the bottoms

amount S (8.38a) andB composition xb (8.38b), constant vapor flow rate V (8.38c),

mass balance at the top of the column (8.38d) - (8.38e), tray composition balances

(8.38f) - (8.38h), and phase equilibrium (8.38i) - (8.38j). The product concen-

tration x̄d is described by (8.38k). Notice that the initial conditions depend on

the concentration and amount of the Int2 stream. The reflux ratio R is the only

manipulated variable for the column, which has N = 4 trays.

dS

dt
= L− V, S(0) = bdist,n = Rprod

Int2 (8.38a)
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dxb
dt

=
V (xb − xd)
S(R + 1)

, xb(0) = CInt2
B (8.38b)

Vn = kbdist,n (8.38c)

R = L/D (8.38d)

V = L+D (8.38e)

Lx1 + V y1 = Lx2 + V yb (8.38f)

Lxi + V yi = Lxi+1 + V yi−1 ∀i = 2 . . . N (8.38g)

LxN + V yd = LxD + V yN−1 (8.38h)

yi =
αxi

1 + (α− 1)xi
∀i = 1 . . . N (8.38i)

yb =
αxb

1 + (α− 1)xb
(8.38j)

x̄d =
S(0)xb(0)− S(t)xb(t)∫ t

0
Ddt

(8.38k)

where α = 2.46 and k = 1.646. The filter model is given in (8.39). The initial batch

size is completely separated into a waste stream containing only C and the Int2

stream containing A and B. The variables Rcons and Rprod represent the amount

produced and consumed of each stream.

Rcons
Int1 = bfilt,n = breact,n (8.39a)

Rprod
Wst = CInt1

C bfilt,n (8.39b)

Rprod
Int2 = (1− CInt1

C )bfilt,n (8.39c)

T pfilt,n = .8 + .02bfilt,n (8.39d)

The operating costs (8.40) associated with the reactor and distillation column are

based on the processing time Tp and utility prices p associated with the manipu-
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lated variables. The filter operating cost is based only on the batch size.

Freact,n = preactbreact,n

∫ Tpreact,n

0

u(t)dt (8.40a)

Ffilt,n = Rprod
Int2 + 4Rprod

Wst (8.40b)

Fdist,n = pdistV Tpdist,n (8.40c)

where preact = 0.3 and pdist = 1.5. The operating constraints are of the form (8.2)

initially

vmin ≤ v ≤ vmax (8.41a)

Rmin ≤ R ≤ Rmax (8.41b)

where vmin = 1.8, vmax = 7.9, Rmin = 2, and Rmax = 7.

The model for the reactor (8.37) is an ODE system and the model for the

distillation (8.38) is a DAE system. The filter model (8.39) is a simple linear

function of the batch size only. These equations constitute the unit model (8.24) -

(8.26) in the general optimization formulation. The general operating constraints

(8.29) and costs (8.30) for this system are given in (8.41) and (8.40). In addition,

the material cost/sale prices are

Pfeed = 5 (8.42a)

Pprod1 = 30 (8.42b)

Pprod2 = 45 (8.42c)

and the parameters for the bounds (8.22) on slot duration for each unit are

1.5 ≤ Tpreact,n ≤ 3 ∀s ∈ Sreact (8.43a)
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1.5 ≤ Tpdist,n ≤ 3 s = dist1 (8.43b)

1.125 ≤ Tpdist,n ≤ 2.5 s = dist2 (8.43c)

and the bounds on batch size and excess material quantity are the same for all

units/materials, where Bmin = 30kg, Bmax = 60kg, Emin = 0kg, and Emax =

400kg. We use a scheduling horizon of H = 8hours. In this formulation, there

is no penalty associated with the makespan so the optimal schedule will typically

extend over the entire horizon in order to maximize profit.

The differential equations in the MIDO are discretized using orthogonal collo-

cation of finite elements to convert the problem into a MINLP [32]. We use 8 finite

elements per event slot with 2 collocation points each. The resulting MINLP is

solved in less than a minute using GAMS and the SBB solver, with CPLEX as the

MILP solver and CONOPT as the nonlinear subsolver. The decision variables for

the unit recipes (v and R) are allowed to change for every finite element.

8.2.4.3 Results and Discussion

We consider two fault events in addition to the ‘Base’ schedule:

• Base: This is the nominal solution to the scheduling problem, obtained

before the schedule is executed or any fault occurs.

• Fault 1: At t=1hr the existing PM efforts indicate that there is a fault in

the reactor heating jacket (e.g., loss of steam quality) and it is not possible

to operate the reactor at temperatures greater than vmax = 6. We assume
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there is no delay in the PM step and that the scheduling layer is notified of

the fault at t=1hr.

• Fault 2: The second fault is identified by batch PM techniques using recent

batch data, in which the final product concentration is slightly below the

target concentration. The PM efforts indicate that the reflux ratio setpoints

are not being tracked perfectly by the control system (e.g., due to valve

stiction) and that in order to maintain controller performance the reflux

setpoint changes should not be greater than 0.25/hr. This fault information

is relayed to the scheduling layer before the start of the third event slot, and

is accounted for in an additional constraint R(k)−R(k− 1) < 0.25, where k

denotes the finite element.

Each fault will trigger a reschedule. When the rescheduling calculation is per-

formed, constraints are added to ensure the quality of the updated schedule. We

consider separately two different requirements:

• Requirement 1: We require the final amount of product produced to be

equal to that predicted in the Base case.

• Requirement 2: We require the duration of the schedule to be the same as

that in the Base case. There is no penalty for producing less product than

the amount predicted for the Base case.

Figure 8.6 presents a Ganntt chart comparing the optimal production schedules

for the Base case to those obtained after Fault 1 and Fault 2 when Requirement 1 is
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imposed in the rescheduling calculation. In order for the production schedule to be

feasible after each fault occurance, the scheduling horizon and makespan H must

be extended (see the Tend values reported on each plot in 8.6). Figure 8.7 shows

the corresponding optimal values of the manipulated variables v and R during each

unit operation. After Fault 1, only the second reactor batch is impacted because

the scaled temperature is well below the upper bound at time t=1hr. Slot n=2

must be extended to reach the desired level of conversion in place of having a high

initial temperature, and minor adjustments are made to the distillation recipe in

the fourth event slot. After Fault 2, the distillation recipes in the third and fourth

event slots are adjusted to compensate for the restriction on rate of change of

the reflux ratio. The first distillation operation is particularly affected since the

original recipe called for a large increase in the reflux ratio towards the end of the

processing time. The expected product quantity and profit for all three cases are

reported in Figure 8.8. The amount of product 1 and product 2 is the same after

each rescheduling calculation, however the expected profit is slightly lower due to

the longer processing times.

The optimal variable trajectories when Requirement 2 is imposed are shown

in Figure 8.9. The slot durations and total makespan are the same as the Base

case in Figure 8.6. After each fault, the recipes for each unit operation adjust

in a similar fashion to the changes observed when imposing Requirement 1. The

average reactor temperature for the second reactor batch is higher than that for the

original recipe in order to reach an appropriate conversion level without extending

the event duration. This is the main cause of the large drop in profit reported in
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Figure 8.10 after Fault 1.

In each of these cases, we demonstrate that obtaining a new, feasible schedule

can be accomplished relatively easily once the relevant fault information has been

communicated from the process control layer to the scheduling layer in Figure 8.2.

Furthermore, depending on how long a fault was present before it was detected, it

is likely that past schedules were not accurate representations of what was actually

happening when the schedule was executed. Using this framework, the scheduling

layer can be made aware of changes in the process and prepare for future production

accordingly. This serves to ‘close the loop’ at the scheduling level.
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Figure 8.6: Gantt charts for optimal production schedules for the base case and two
faults subject to Requirement 1. Arrows indicate when the rescheduling calculation
is triggered and performed.
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Figure 8.7: Variable trajectories under Requirement 1.
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Figure 8.8: Profit and production levels under Requirement 1.
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Figure 8.9: Variable trajectories under Requirement 2.
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8.3 Moving Horizon Scheduling with Low-Order Dynamic
Models

The solution of the scheduling problems formulated above, whether using a

full-order process model or using the low-order scale-bridging models, provides a

sequence of production targets that covers the entire horizon. While sufficient

in the ideal case when demand and price forecasts are available for an extended

amount of time and the process model is a perfect representation of the plant

dynamics, this solution is likely suboptimal in practical situations when prices

may fluctuate and the predicted process dynamics may not be accurate owing to

disturbances and plant-model mismatch.

The above observations are best captured by drawing an analogy with control

systems. Namely, determining the schedule for the entire horizon H amounts to

an “open loop” solution which lacks process feedback. Thus “closing the loop”

for productions scheduling requires incorporating process feedback. Our approach

is based on the receding horizon control framework (and, more specifically, on

economic model predictive control [9, 89]), in that we propose implementing the

optimal schedule on a periodic basis, with the time horizon correspondingly shifted

in time.

This effectively amounts to a moving horizon scheduling, with the price and

demand forecasts being updated at each time point. Moreover, measurements of

the process states are used to update the states of the model at each time point

via an observer. Our moving horizon scheduling framework is described in the

algorithm below:
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1. Optimize the schedule using the dynamic model over the horizon for which price

and demand forecasts are available

2. Implement the optimal schedule on the plant (here we use a detailed model

to represent the plant) and track measurements of scheduling-relevant process

variables

3. Use a state observer to determine the trajectories of the states of the scale-

bridging models

4. When new price and demand forecasts are available, or a disturbance is detected

(this would be an event-driven rescheduling trigger), return to the scheduling

problem and:

• Shift the time horizon by the amount of time elapsed since the previous

update

• Update the initial conditions of the low-order model with the states of the

observer

• Update price and demand forecasts

• Update endpoint constraints for inventory levels (to avoid depletion of prod-

uct inventory)

5. Return to step 1

8.3.1 Comparison to Economic MPC

While the objective of the two methods is the same, i.e., to minimize operating

costs over a forecast horizon while meeting operational constraints, there are several
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important differences between our proposed moving horizon scheduling framework

using SBMs (or any dynamic model for that matter) and economic MPC (EMPC).

(1) Model Structure: The SBMs used in this work are single-input multi-output,

and capture the closed-loop dynamics of the scheduling-relevant variables in re-

sponse to a product target sequence, i.e., the input is the production target (prod-

uct flowrate or quality) and the outputs are the evolution of the scheduling-relevant

variables assuming that a (supervisory) control system is effectively guiding the

plant throughout the production target changes. In contrast, EMPC models are

multi-input multi-output, where the inputs are the manipulated variables (or set-

points for distributed control loops) and the outputs are the controlled variables

throughout the process.

SBMs have a single input and only several outputs resulting in a relatively small,

sparse model [210]. MPC systems often accounts for m manipulated variables and

n control variables (where m and n can be on the order of tens to hundreds)

resulting in a much larger, non-sparse process model [222].

(2) Execution Frequency: An EMPC system must ensure that the process is

stabilized throughout the horizon, and thus, it must be updated frequently (re-

optimize the manipulated variable trajectories) to compensate for high frequency

disturbances or plant-model mismatch. In contrast, the moving horizon schedul-

ing framework assumes that a process control system is guiding (and stabilizing)

the plant throughout transitions, and thus, the schedule can be re-optimized in-

frequently (e.g., when new price or demand forecasts are available). Conceivably,

constraints could be imposed to ensure that the process remains within stability
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limits of the control system.

8.3.2 Case Study: Moving Horizon ASU Scheduling

We consider the air separation unit (ASU) example used in Chapter 7 and use

his to demonstrate the moving horizon scheduling concept.

Recall that the optimization problem is formulated to include the low-order

dynamic models of scheduling-relevant variables and constraints:

minimize
ysp,np ,αsp,n,ysp,ninv

J =

∫ Tm

0

φ(w, yinv, ỹ)dt (8.44)

Subject to: Time slots (7.2)

Inventory model (7.4)

Production split/mixing ratio (7.5)

Process model:

Low-order dynamic process models (SBMs)

for each identified variable w

Constraints:

Inventory: (7.6)

Quality: ĥproduct(w, ȳ, t) ≤ 0 (8.45)

Process: ĥprocess(w, y
sp
p , t) ≤ 0 (8.46)

This formulation alters the original problem considering the full-order dynamic

process model by, i) considering only the scheduling relevant subset of product

quality and process operating constraints ( ĥproduct and ĥprocess). Additionally, ii)
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the relevant variable trajectory predictions, w(t), are determined using low-order

dynamic models rather than the detailed dynamic process model (7.7).

We relied on Hammerstein-Weiner models of the form (8.47) to capture the

nonlinear dynamic behaviour of the eight scheduling relevant variables (refer to

Chapter 7). Here, Ψ and Φ are nonlinear transformations of the input (i.e.,the

production setpoints) and output. The matrices A, B and C describe a linear

state-space model. The single output variable w contains dynamic information of

a variable relevant to the scheduling calculation.

u′ = Ψ(yspp ) (8.47a)

˙̄x = Ax̄+Bu′ (8.47b)

y′ = Cx̄ (8.47c)

w = Φ(y′) (8.47d)

In conjunction with the Hammerstein-Wiener models (8.47), we use use a high-

gain (Luenberger) observer to update the model states x̄:

u′ = Ψ(yspp ) (8.48a)

˙̄x = Ax̄+Bu′ + L(ŵ − w) (8.48b)

y′ = Cx̄ (8.48c)

w = Φ(y′) (8.48d)

where ŵ is the measurement of the scheduling relevant variable. The states x̄ are

assumed to be observable.
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Figure 8.11: Day-ahead market prices for July 10 - July 15 2013 from the Electricity
Reliability Council of Texas (http://www.ercot.com/mktinfo/)
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Figure 8.12: Production rate setpoint. The nominal flowrate (demand) is 20mol/s
and the production rate may vary by up to 20%

8.3.2.1 Results and Discussion

We assume that accurate 2-day forecasts of time-variable electricity prices are

available daily at noon (Figure 8.11). Thus, the algorithm introduced at the start

of the section was implemented with a rescheduling period of 1 day (when new

forecasts are available) with a two-day prediction horizon. A terminal point con-

straint [247] (Minv ≥ 0.5Mmax
inv ) was implemented to stabilize the inventory level

throughout the horizon. The optimal production setpoint and inventory levels to

meet a constant demand of 20mol/s with impurity levels below 2000ppm are shown
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Figure 8.13: Evolution of inventory level. The storage capacity is limited to 200
kmol.

in Figures 8.12 and 8.13. Markers indicate points where the schedule was recal-

culated. While there are eight scheduling-relevant constraints and models, we will

focus our discussion on the impurity and temperature driving force across the re-

boiler/condenser because these are examples of variables that evolve, respectively,

over very slow and fast time scales and are near their bounds.

As expected, the production flowrate setpoint increases when prices are low,

thus the inventory level in the liquid nitrogen storage tank rises. Then, when

prices are high, the production target setpoint is lowered to the minimum allowed

value and stored product is used to satisfy the remaining demand. Note that the

maximum production rate (24mol/s) is only reached on several brief occasions;

this is due to the fact that several operating constraints are near their bound when

production rate is increased significantly in a short time interval. The impurity

level and reboiler/condenser temperature difference, shown in Figures 8.14 and

8.15, are near their bounds at these times. Overall, the variable capacity operation

results in an electricity cost savings of $1620 (or 4.85%) over the 4-day horizon in
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Figure 8.14: Evolution of impurity levels in the product. The maximum allowed
level is 2000ppm
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Figure 8.15: Evolution of reboiler/condenser temperature driving force. The tem-
perature difference must be greater than 1.85K.

comparison to a constant production profile set at the nominal rate.

In this case study, we assume that there are no disturbances, and plant-model

mismatch is minimal. However, in reality, processes are always subject to dis-

turbances, and this framework allows for a rapid rescheduling calculation online

when a disturbance is detected. We note here that the average CPU time for each

optimization calculation was around 30 min on a desktop computer, a significant

reduction compared with the computational effort required to solve the equivalent

problem based on the full-order model of the process.
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8.4 Conclusion

In this chapter, we emphasized differences between disturbances to the schedul-

ing and process layer, and highlight how the latter can lead to changes in processing

times or recipes, transition times, and the overall product wheel. We proposed a

novel event-driven rescheduling framework which relies on existing methods for

process monitoring and fault detection, identification, and reconstruction, which

diagnose specific changes in processing conditions. The integrated scheduling and

dynamics framework is well suited for accounting for these differences; the new

operating paradigm can be accounted for by altering constraint boundaries for the

dynamic model in a rescheduling calculation. A case study for a sequential batch

process was used to demonstrate the ease of rescheduling once a dynamic distur-

bance has been identified. We also discussed periodic rescheduling strategies and

the use of moving horizon scheduling, and compared the dynamic models used in

this formulation to those used in economic MPC strategies.
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Chapter 9

Conclusion and Future Directions

9.1 Summary of Contributions

In this thesis, we have demonstrated how embedding dynamics and control con-

siderations in operational optimization decisions can improve the economic per-

formance and energy management of processes and energy systems. Specifically,

we considered the built environment (Chapters 3, 4, 5) and chemical processes

(Chapters 2, 6, 7, and 8). The desire to participate in demand response initiatives

and take advantage of time of use pricing schemes motivates the development of

advanced decision making frameworks that can leverage differences in price (by

increasing energy consumption at times when prices are low, and reduce consump-

tion when prices are high) to achiever lower daily operating costs (Chapters 3, 4,

7). Such load shifting behavior, and the use of distributed generation resources

(Chapter 5), can result in overall improvements in the efficiency of the energy

supply chain by aligning demand with the availability of renewable resources and

use of efficient generation technologies. In addition, manufacturing processes can

lower their operating costs and improve predictions of event durations accounting

for transition dynamics in continuous (Chapter 6 and 7) and batch (Chapter 8)

production scheduling.
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Incorporating a dynamic model into an optimization-based controller or schedul-

ing formulation necessitates solving a dynamic optimization. Solution strategies

rely on either (i) discretization of any differential equations in the constraint set

to convert the dynamic optimization into a (large) program, which can be solved

using a simultaneous solver, or (ii) using a sequential solution approach. In both

cases, the presence of a nonlinear model with a large number of states, integer

decision variables, and multiple time scales can render the optimization problem

not solvable in a practical amount of time. We address these challenges through

meaningful model reduction, hierarchical controller design, and novel scheduling

formulations.

Model reduction. We identify computationally tractable dynamic model

forms for the application at hand. In Chapters 2 and 3 we use singular per-

turbation to derive low-order, non-stiff models of the process dynamics which are

relevant to energy management. Chapters 3 and 4 also use aggregate models of a

building envelope and heat load in place of a high fidelity model of the building ge-

ometry and occupant behavior. In chapters 6 and 7 system identification methods

are employed to develop low-order models of a subset of variables whose dynamics

are relevant to the optimization objective and constraints. A framework for se-

lecting variables and dynamics of interest to operational decisions was presented

in Chapter 7.

Hierarchical controller designs. In Part I we demonstrate how a thorough

understanding of the system dynamics and operating space can aid the design of

hierarchical control systems for energy management. In Chapter 2 we propose a
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supervisory nonlinear MPC layer for optimizing the trajectories of the slow process

dynamics, while a linear controller is used to guarantee stability of the fast dynam-

ics. This composite controller design is applicable to a general class of processes

with tight energy integration. Based on this result, we design a nonlinear MPC for

energy management in buildings with energy recovery in Chapter 3. In this case,

we focus on the slow dynamics because the fast dynamics are inherently stable. In

Chapter 4 we justify a composite control system for buildings with thermal energy

storage based on the different dominant time scales for active and passive stor-

age in the building and HVAC system, and the differences in minimum prediction

horizon length for the economic and tracking objectives. In Chapter 5 we consider

the difference between centralized and decentralized operation of the ensemble of

distributed generation units. This is an important consideration for anticipating

the effect on the electric grid of widespread adoption of the strategies proposed in

Chapters 3 and 4.

Novel scheduling formulations. In part II we incorporate low-order dy-

namic models into scheduling calculations, which is a significant departure from

tradition scheduling approaches which use tabulated process data. In Chapter 6

we developed a novel continuous-time scheduling formulation using a discrete-time

process model, and introduced a novel ‘reverse integrated error’ concept to deter-

mine transition times between products. Chapter 7 presents a general framework

for the selection of scheduling-relevant variables and an industrial-scale case study

to demonstrate the benefits of scheduling with a dynamic scale bridging model. In

chapter 8 we propose using information from existing process monitoring methods
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for fault detection and state estimation to update parameter values and constraint

formulations in the dynamics models incorporated into scheduling. These efforts

aim to ‘close the scheduling loop’ using feedback on the process conditions.

Collectively, these efforts span operational decisions involving regulatory con-

trol, supervisory control, and scheduling, and demonstrate the ability to reduce

the operating costs of residential, commercial, and industrial consumers. These

improvements are attributed to the additional information provided by a dynamic

model compared to heuristics or tabulated process data. In each case considered,

we observed reductions in solution times for the optimization problems at hand

due to the desirable computational characteristics of the models, thereby providing

real incentive for online implementation in a moving horizon fashion. Ultimately,

these strategies for managing the dynamics of processes and energy systems will

have positive effects throughout the energy supply chain.

9.2 Future Research Directions

The work in Part I has furthered the study of building energy management

and coordination of distributed generation, however we have considered a rela-

tively small control volume for all of these studies (i.e., individual buildings or

small neighborhoods). Future efforts should focus on a larger geographic area in

order to quantify the exact benefits (reductions in primary energy consumption,

associated changes in emissions, etc.) of widespread adoption of advanced control

strategies and participation in demand response programs, rather than extrapo-

late such conclusions from small data sets. This is an analytical effort, instead of
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controller or schedule design, so the tradeoff between accuracy and solution speed

when modeling consumer behavior and decision-making should favor accuracy and

quantify uncertainties. This model should be a holistic picture of residential, con-

sumer, and industrial consumer behavior and the dynamics of the electric grid

and electricity generation, and should take advantage of existing software (e.g.,

the recently developed FESTIV model by NREL, for multi time-scale modeling of

power systems).

Similarly, the combined operation of electric and natural gas grid dynamics

provides an interesting path forward, and is an emerging research thrust in the

literature. The huge discrepancies in dominant time constant, robustness to un-

certainties in demand, and market structure for the two systems make the model

development for an area the size of the ERCOT grid a challenging task, which is

probably worthy of high performance computing. A high fidelity model of both

grids would provide a test bed for evaluating new market structures and the ability

to investigate the optimal operation of the combined system.

There are several possible extensions of the scheduling concepts presented in

Part II. It would be valuable to apply the framework for selection of scheduling-

relevant variables to other grid-dependent processes with storage (e.g., production

of pulp and paper, ammonia, etc.) and analyze their cumulative impact on the

electric grid. The frameworks for moving horizon scheduling and rescheduling using

process monitoring-based triggers should be extended beyond this proof-of-concept

stage. This entails developing case studies which demonstrate all aspects of the

framework in detail. This will be a highly interdisciplinary undertaking, requiring
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expertise in the fields of process monitoring, control, and scheduling. As is the

case with integrating scheduling and control, a major challenge will be effectively

communicating these concepts to each individual research community. A rigorous

mathematical definition of the framework with a unified notation for discussing and

sharing information between process monitoring, control, and scheduling would

serve to reduce the communication barrier.
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• Patil, R., Sharma, R. and Touretzky, C., NEC Laboratories America, Inc., POWER

MODELING BASED BUILDING DEMAND MANAGEMENT SYSTEM. U.S. Patent

Application 20,150,268,650., issued September 24, 2015.

Presentations

* indicates the presenting author.
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1. C. R. Touretzky*, I. Harjunkoski, M. Baldea, Fault Detection-Based Triggers for
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Nov. 2015.
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