
An MBO Algorithm for a Flow Shop Problem with
Sequence-Dependent Setup Times

Aymen Sioud and Caroline Gagné

Abstract— In this paper, we propose a migrating birds algo-
rithm (MBO) to solve a permutation flowshop with sequence-
dependent setup times and the objective of minimizing the
makespan. In this approach, we adapt several MBO operators
and we embed an intensification process. Indeed, we introduce
an original leader selection process, a restart mechanism and an
adapted neighborhood. Sensitivity analysis results are further
presented to show the effectiveness and performance of the
presented MBO on benchmarks from the literature.

I. INTRODUCTION

W ITH more tough competition and economic envi-

ronment, manufacturers are obliged to make several

optimization plans. The same goes for their production

systems where most of the classical scheduling models move

away from reality and no longer meet the real requirements.

Indeed, managers face increasingly more complex constraints

such as job precedence, time lags and setup times, to name

just a few. In the literature, sequence-dependent setup times

have attracted less attention, although there are frequently

setup times on equipment between two different activities

in many industries including the food industry, electronics,

pharmaceutical and metallurgical production [1]. Sequence-

dependent setup times involve operations that have to be

performed on machines that are sequence-dependent, i.e, the

order changes the setup time, which is not part of the pro-

cessing time, as considered in a lot of papers [1]. In [2], when

studying 250 industrial projects, the author shows that when

these setup times are taken into account, 92% of the order

deadlines would be met and that 50% of the projects contain

sequence-dependent setup times. Many other studies show

that considering sequence-dependent setup times produces

good schedules [1][3][4].

Among the classical scheduling models, the flowshop

scheduling area has been a very active research field where

we find a great number of papers [6]. A flowshop scheduling

problem can be defined by a given set N = {1, . . . ,n}
of n independent jobs that have to be processed on a set

M = {M1, ...,Mm} of m machines. Sequentially, all jobs

are processed on machine M1, then on machine M2 and so

on until the last machine Mm. Each job has a known and

deterministic fixed processing time denoted as pij , i ∈ M
and j ∈ N . To be closer to real production systems, several

constraints have been added to this model, such as sequence-

dependent setup times.

Aymen Sioud and Caroline Gagné are with the Department of Computing
and Mathematic, The University of Quebec, Chicoutimi, Quebec, Canada
(email: {aymen.sioud, caroline.gagne}@uqac.ca).

This work was supported by the Natural Sciences and Engineering
Research Council of Canada

In this paper we consider the permutation flowshop prob-

lem with sequence-dependent setup times and the objective

of minimizing the makespan, noted as F/prmu, sijk/Cmax

in accordance with the notation of Graham et al. [5]. In the

flowshop model, when the sequence on the first machine is

the same for all the other machines, i.e the jobs can not

overlap, the flowshop is called the permutation flowshop.

Also, deterministic and non-negative sequence-dependent

setup times are also considered and denoted by sijk on

machine i, i ∈ M , when processing the job k, k ∈ N after

processing the job j, j ∈ N . For m = 1, the sequence-

dependent setup times flowshop problem is known to be

a special case of the Traveling Salesman Problem (TSP),

that is also well known to be NP-hard [7], making the

F/prmu, sijk/Cmax problem is also NP-hard.

The general permutation flowshop has been more thor-

oughly treated in the literature than the permutation flowshop

with sequence-dependent setup times. In [6] and [8], the

authors give very comprehensive literature surveys of the

permutation flowshop problem, but they do not mention

any research dealing with sequence-dependent setup times.

To solve the F/prmu, sijk/Cmax, both Gharbi et al. [9]

and Rios-Mercado et al. [11] introduced lower bounds in a

branch and bound algorithm that was used to solved small

instances. Ladhari et al. [10] and Shaller [12] proposed

constructive methods and greedy searches, respectively. In

the literature, we found only a few metaheuristics to solve

the F/prmu, sijk/Cmax problem. Shen et al. [13], Ruiz

and Maroto [14] and Ciavotta et al. [15] introduced tabu

search, a memetic algorithm and an iterated greedy heuris-

tic (IGH), respectively. In a comparison study, the IGH

of Ciavotta et al. [15] improved the results of the other

heuristics/metaheuristics. More recently, a migrating birds

algorithm [16] was used to solve the F/prmu, sijk/
∑

Ci

problem. The algorithm presented there behaves well com-

pared to other algorithms from the literature[19].

In this paper we introduce an original migrating birds opti-

mization algorithm (MBO) to solve the F/prmu, sijk/Cmax

problem. Several adaptations are made to this MBO in

order to solve this problem. Indeed, we introduce a new

intensification capability, an adapted neighborhood and a

restart process. The new leader selection process is also

enhanced to improve the MBO behavior. The adaptations, the

MBO algorithm and the experimental results are presented in

the following sections. The last section provides a conclusion

and perspectives for future work.

2016 12th World Congress on Intelligent Control and Automation (WCICA)
June 12-15, 2016, Guilin, China

978-1-4673-8414-8/16/$31.00 ©2016 IEEE 2471

II. MBO ALGORITHM FOR THE F/prmu, sijk/Cmax

In [16], the authors introduced the migrating birds op-

timization (MBO), a new nature-inspired metaheuristic for

combinatorial optimization problems inspired by bird migra-

tion. This neighborhood based metaheuristic uses the birds’

”V” formation to improve the solutions. Indeed the ”V”

formation allows the birds to save energy and therefore to

travel longer distances. They use the movement of the air

caused by the flapping of a leader’s wing. When the leader

is exhausted, it goes to the end of the line and another bird

takes its place at the front.

Starting with the leader, i.e, the first solution, the MBO

tries to improve the solution by exploring its k size neigh-

borhood. The following solution evaluates both a number

of its own neighbors (x neighbors) and a number of the

best unused neighbors (k - x) from the previous solution.

The unused neighbors represent solutions inherited from the

neighbor that is not used to replace the existing solution. If it

is better, the best solution replaces the current solution. Once

all of the solutions in the flock are considered, this process

is repeated again. After m tours, the leader solution is moved

alternately to the end of one of the wings, and the following

solution in the same wing is forwarded to the leader position.

This process is repeated until a termination condition is met

(K iterations).

After initializing the MBO algorithm, the leader is im-

proved by generating a mixed neighborhood based on the

swap and the forward insertion moves [17]. Then, an im-

provement heuristic is applied to the leader as an intensifi-

cation process. In our case we use a simple hill climbing

algorithm based on the swap move [17]. The followers are

improved in the same manner. This process aims to enhance

the intensification process and exploit more search space.

In general, the metaheuristics have different ways of

balancing exploitation and diversification. Whereas the MBO

focuses strongly on its exploitation ability, we also aim to

avoid premature convergence by introducing a restart phase.

The main advantage of this restart procedure is that it is a

very fast way to introduce diversification inside the presented

MBO. The main inconvenience consists of the difficulty in

choosing a suitable restarting criterion. In our case, for each

solution in the flock, we use an age variable to represent

the updating surviving process. The age of a newly created

solution is set to zero. At each iteration and when a solution

is not replaced, its age is increased by one. If the solution is

improved, its age is reset to zero. A solution will be replaced

when its age is larger than a parameter noted age. In this case,

this solution is replaced by a randomly generated one.

In the basic MBO algorithm [16], the leader solution is

moved alternately to the ends of the left and the right wings,

and the first solution in the corresponding wing becomes

the new leader as in the real bird migration process. In the

presented MBO algorithm the leader is chosen by a pseudo-

random rule according to the age solution variable as shown

in Equations (1) and (2). Indeed, the less the age is, the

more the solution has a chance to become the leader. This

process encourages exploiting promising ”‘young” regions in

the search space. In Equation (1), q is a random number and

q0 is a parameter; both are between 0 and 1. The parameter

q0 determines the relative importance of the age variable.

Indeed, Equation (1) states that the next leader will be a

solution in the left or right wing equiprobably when q ≤ q0
or by the probabilistic rule of Equation (2) when q > q0.

Equation (2) describes the rule pSOLi(t) based on the age
solution variable.

next leader =

{
first bird in left or right wing if q ≤ q0

SOL if q > q0
(1)

where SOL is chosen according to the probability pSOL

pSOLi(t) =

1
ageSOLi

(t)∑n
i=1 ageSOLi

(t)
(2)

The introduced MBO algorithm is presented in Figure 1.

After initializing n random solutions, these solutions are

placed on hypothetical V formation arbitrarily. Then the

main K-loop starts. The intensification process is applied

to each solution before generating the neighborhood using

both swap and forward insertion. This process is applied b
times and returns the best solution found. After both the

intensification and neighborhood generating phases, the age
variable is updated. Finally, the new leader is chosen by a

pseudo-random rule based on the age variable among all the

other solutions in the flock after m tours.

Procedure MBO
Initialize n random solutions

Place the n solutions arbitrarily in a hypothetical V

formation

i := 0
while i ≤ K do

for i := 0 to m do
Apply improvement heuristic to the leader with b
iterations

Update the leader age variable

Generate the k neighborhood of the leader

Update the leader age variable solutions

for all the other flock solutions do
Apply improvement heuristic with b iterations

Update the solution age variable

Generate the k − x neighborhood of the solution

Update the solution age variable

end for
end for
Select a new leader using a pseudo-random rule accord-

ing to the age
Promote the new leader

end while
Fig. 1. The MBO algorithm

2472

III. COMPUTATIONAL RESULTS AND DISCUSSION

In [15], the authors introduced benchmarks consisting of

220 problem sets and based on the benchmarks of [18].

Each set contains instances with several combinations for the

number of jobs n and number of machines m. The n×m
combinations are: {20, 50, 100} x {5, 10, 20} and {200}
x {10, 20} for a total of 11 different groups of instances.

The processing times pij are generated from a uniform [1,

99] distribution. The setup times are generated according to

two distributions [0, 49] and [0, 124]. This corresponds to a

ratio between setup and processing times of 50% and 125%,

respectively. The two sets are referred to as SSD50 and

SSD125. In the original benchmarks, weights are considered,

which is not the case here.

All the experiments were run on an Intel Core i7 2.8

GHz processor with 8 GB of main memory. Each instance

was executed 20 times. To evaluate the different algorithms

we use the relative percentage deviation (RPD) as shown in

Equation 3.

RPD =
Msol −Bestsol

Bestsol
× 100 (3)

Here Msol is the makespan obtained by a given algorithm

and Bestsol is the best makespan obtained by the whole

experiment. The response variable is the average of the 20

executions for the considered heuristic.

We first proceed to the comparisons of the proposed MBO

algorithm with other existing algorithms from the literature.

Among the existing methods, we have fully recoded in C++

the following : the IGH in [15] and the two migrating birds

optimization algorithms in [19] and [16], noted as IGH, TBO

and IBO, respectively. All these algorithms have shown high

performance in the original papers. In their respective papers,

IGH and IBO used CPU times as the stopping criterion.

In this work, we used 30 000 evaluations as the stopping

criterion for all the algorithms. For the introduced MBO the

parameters are initialized as follows : n = 9, m = 100,

k = 5, x = 1, age = 100, q0 = 0.7 and b = 10. The

averages grouped by group instances of IGH, TBO, IBO

and the presented migrating birds optimization algorithm

are presented in Table I where the MBO column shows the

results of the MBO algorithm.

As we can see, the proposed MBO algorithm outperforms

the IGH, TBO and IBO algorithms in every instance group.

Indeed, MBO obtain best RPD in every instance group.

Adapting the neighborhood enhancing the leader quality

could explain this MBO algorithm behavior. We can conclude

that these processes enhance the search space exploration.

When we look at the MBO results, the improvement is

noticeable on all the-job instances. The best averages are

in boldface in this table. As can be seen, MBO provides

statistically better results them the other tested algorithms.

We also analyze the efficiency of the different algorithms,

measuring the time in seconds that a given method needs

in order to provide a solution. We remind the reader here

that the stopping criterion is 30 000 evaluations for all the

TABLE I

COMPARISON OF DIFFERENT ALGORITHMS FOR THE

F/prmu, sijk/Cmax

considered algorithms. We note that all the algorithms are

less time-consuming. The IGH obtains the best CPU time

average. We can remark that the introduced MBO is very

competitive (1.00 vs 0.59 average) and obtains the second

fastest CPU time in every instance group.

TABLE II

AVERAGE CPU TIMES FOR TESTED ALGORITHMS IN SECONDS

IV. CONCLUSIONS

In this paper, we have introduced a migrating birds opti-

mization to solve a permutation flow shop with sequence-

dependent setup times by minimizing the makespan. The

proposed MBO algorithm uses an adapted neighborhood

search based on swap and forward insertion moves. Besides

adapting the neighborhood solution, the MBO embeds an

original new leader selection process and a restart process.

The proposed MBO improves state-of-the-art results for all

group instances from the literature.

We think that more adaptations can be made to improve

the proposed algorithm’s capability and behavior. We are also

considering using it to solve other real scheduling problems

such mutli-objective ones.

2473

REFERENCES

[1] A. Allahverdi, C. Ng, T. Cheng, and M. Y. Kovalyov, “A survey of
scheduling problems with setup times or costs,” European Journal of
Operational Research, vol. 187, no. 3, pp. 985 – 1032, 2008.

[2] G. Conner, “10 questions,” Manufacturing Engineering Magazine, pp.
93–99, 2009.

[3] A. Allahverdi and H. Soroush, “The significance of reducing setup
times/setup costs,” European Journal of Operational Research, vol.
187, no. 3, pp. 978 – 984, 2008.

[4] X. Zhu and W. E. Wilhelm, “Scheduling and lot sizing with sequence-
dependent setup: A literature review,” IIE Transactions, vol. 38, no. 11,
pp. 987–1007, 2006.

[5] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. G. H. R. Kan,
“Optimization and approximation in deterministic sequencing and
scheduling: a survey,” Annals of Discrete Mathematics, vol. 5, pp.
287–326, 1979.

[6] R. Ruiz and C. Maroto, “A comprehensive review and evaluation of
permutation flowshop heuristics,” European Journal of Operational
Research, vol. 165, no. 2, pp. 479 – 494, 2005, project Management
and Scheduling.

[7] J. N. Gupta and W. P. Darrow, “The two-machine sequence dependent
flowshop scheduling problem,” European Journal of Operational Re-
search, vol. 24, no. 3, pp. 439 – 446, 1986, flexible Manufacturing
Systems.

[8] Q.-K. Pan and R. Ruiz, “A comprehensive review and evaluation of
permutation flowshop heuristics to minimize flowtime,” Computers &
Operations Research, vol. 40, no. 1, pp. 117 – 128, 2013.

[9] A. Gharbi, T. Ladhari, M. K. Msakni, and M. Serairi, “The two-
machine flowshop scheduling problem with sequence-independent
setup times: New lower bounding strategies,” European Journal of
Operational Research, vol. 231, no. 1, pp. 69 – 78, 2013.

[10] T. Ladhari, M. Msakni, and A. Allahverdi, “Minimizing the total com-
pletion time in a two-machine flowshop with sequence-independent
setup times,” Journal of the Operational Research Society, vol. 63,
pp. 445 – 459, 2011.

[11] R. Z. Rios-Mercado and . F. Bard, “A branch-and-bound algorithm
for permutation flow shops with sequence-dependent setup times,” IIE
Transactions, vol. 31, no. 8, pp. 721–731, 1999.

[12] J. Schaller, “Scheduling a permutation flow shop with family setups
to minimise total tardiness,” International Journal of Production
Research, vol. 50, no. 8, pp. 2204–2217, 2012.

[13] L. Shen, J. N. Gupta, and U. Buscher, “Flow shop batching and
scheduling with sequence-dependent setup times,” Journal of Schedul-
ing, vol. 17, no. 4, pp. 353–370, 2014.

[14] R. Ruiz and C. Maroto, “A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility,” European
Journal of Operational Research, vol. 169, no. 3, pp. 781–800, March
2006.

[15] M. Ciavotta, G. Minella, and R. en Ruiz, “Multi-objective sequence
dependent setup times permutation flowshop: A new algorithm and
a comprehensive study,” European Journal of Operational Research,
vol. 227, no. 2, pp. 301 – 313, 2013.

[16] E. Duman, M. Uysal, and A. F. Alkaya, “Migrating birds optimization:
A new metaheuristic approach and its performance on quadratic
assignment problem,” Information Sciences, vol. 217, no. 0, pp. 65
– 77, 2012.

[17] M. Prandtstetter and G. R. Raidl, “An integer linear programming
approach and a hybrid variable neighborhood search for the car
sequencing problem.” European Journal of Operational Research, vol.
191, no. 3, pp. 1004–1022, 2008.

[18] E. Taillard, “Benchmarks for basic scheduling problems,” European
Journal of Operational Research, vol. 64, no. 2, pp. 278 – 285, 1993,
project Management anf Scheduling.

[19] Q.-K. Pan and Y. Dong, “An improved migrating birds optimisation
for a hybrid flowshop scheduling with total flowtime minimisation,”
Information Sciences, vol. 277, no. 0, pp. 643 – 655, 2014.

2474

