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Abstract— The abundance of natural gas in the United
States and the need for cleaner electric power have prompted
widespread installation of gas-fired power plants and caused
electric power systems to depend heavily on reliable gas
supplies. The use of gas generators for peak load and reserve
generation causes high intra-day variability in withdrawals
from high pressure gas transmission systems, which leads
to gas price fluctuations and supply disruptions that affect
electric generator dispatch and threaten the security of both
power and gas systems. In this manuscript, we investigate
different gas compressor operation policies and their influence
on the affected power system. Specifically, we consider constant
pressure boost ratios and dynamic adjustment of these ratios
to track pressure set-points. We also implement a joint opti-
mization of generator dispatch schedules and gas compressor
protocols using a dynamic gas flow model. We develop tractable,
physically accurate implementations that are compared using
an integrated model of test networks for power and gas systems
with 24 and 25 nodes, which are coupled through gas-fired
generators. This demonstrates the benefits that can be achieved
with globally optimized gas system operations and increased
gas-electric coordination.

I. INTRODUCTION

Natural gas is increasingly used for electricity generation,
which has facilitated the retirement of older coal and nuclear
power plants and integration of renewable resources [1]. The
expansion in gas-fired generators (GFGs) to over 40% of
total capacity in North America has brought environmental
and efficiency benefits, but also created a dependence on
gas simultaneously with vulnerabilities in the natural gas
supply chain [2]. Fuel usage of GFGs is determined by
generation schedules in the day-ahead electricity market,
which is cleared by an independent (electric) system operator
(ISO) by solving the optimal power flow (OPF) problem [3],
[4]. Single cycle GFGs can quickly go online and modulate
output, and are used as marginal resources that start and
shut down multiple times a day. This creates highly variable
withdrawals from gas pipeline networks (GPNs).

Natural gas was historically withdrawn from transmission
systems with little intra-day variation by local distribution
companies (LDCs) that purchase firm delivery contracts [5].
In contrast, GFGs usually purchase short-term gas contracts
that may be subjected to scheduling restrictions or inter-
rupted. When this happens, ISOs must change their planned
intra-day operations, which can impact system security or
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increase costs. ISOs are therefore challenged to meet de-
mand, maintain operating reserves, and ensure power system
reliability. Conversely, GFGs play a complex role in natural
gas markets because their demand is price sensitive.

Despite growing concerns about the lack of gas and power
system coordination [6], adapting market timing, regulation,
and physical operations remains problematic [7]. Infrastruc-
ture expansion and market synchronization do not advance
current practices for physical GPN operations to react to gen-
erator requirements or improve coordination across systems
and regions [8]. The main control variables available to gas
pipeline operators (GPOs) are protocols for gas compressor
stations (GCSs), which boost flow to compensate for dis-
sipative friction effects in pipelines. Policies are regionally
fragmented and usually ad-hoc reactions to local conditions
[8]. Optimization of steady-state compression protocols has
been formalized in optimal gas flow (OGF) problems [9],
[10], which determine optimal constant GCS set-points for
balanced injections and withdrawals over a network while
satisfying system pressure constraints.

Because of increasing GFG construction, the steady-
state assumption no longer realistically represents short-term
operating conditions. Extending the OGF to variable and
unpredictable gas withdrawals requires dynamic modeling
and optimal control strategies. However, GPN dynamics
are notoriously difficult to simulate and optimize in an
efficient way [11], [12]. In related optimization problems,
the partial differential equations (PDEs) for gas flows com-
prise constraints that must be satisfied over widely dis-
tributed space and time domains, and their nonlinearity
makes computational tractability a hurdle. New models that
incorporate the physics of gas pipelines [13] and networks
[14] were recently developed and validated by comparison
with traditional numerical PDE methods. They were used
to extend the OGF to dynamic flows involving time-varying
gas withdrawals by representing the PDE constraints in the
resulting optimal control problems (OCP), which was solved
numerically after discretization to a nonlinear program (NLP)
using pseudospectral (PS) approximation.

Joint optimization for operational planning for power and
gas infrastructures was previously studied, including joint
gas-electric OPF [15], [16], unit commitment with gas secu-
rity constraints [17], [18], and multi time-period scheduling
[19], [20]. Those studies rely on the steady-state Weymouth
equations, which do not capture the dynamic fluctuations
that lead to intra-day gas supply issues, or use simple finite-
difference approximations that may create scaling issues.
To enable coordination, optimization and control techniques
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must use dynamic GPN models that are physically realistic
on the time-scale of ISO operations.

In this study, we demonstrate the feasibility of rapidly
optimizing power and gas flows in integrated systems with
GFGs that cause rapidly varying, high volume gas flow
transients. Moreover, in addition to formulating separate
and combined optimization problems based on static and
dynamic gas system models, respectively, we contrast the
two distinct modes of GCS operation. Specifically, while
both modes use globally optimized constant boost ratios, one
applies the ratio and another adjusts the boost to track the
nominal compressor outlet pressure. We propose a compu-
tational methodology to solve each scenario, and compare
them by quantifying operational cost and feasibility using a
case study of interacting gas and electricity test models.

The manuscript is organized as follows. In Section II,
we summarize the co-optimization and compressor operation
cases to be examined and describe the test systems. In
Section III, we describe how generator dispatch is obtained
based on an OPF. Section IV reviews a recent method to
model a GPN with gas compressors as a reduced control sys-
tem model. In Section V, we describe schemes for separate
and combined day-ahead optimization of generator dispatch
and gas pipeline operations. In Section VI we compare the
scenarios under different compressor operation protocols and
stress levels, and Section VII concludes the study.

II. COORDINATION SCENARIOS AND TEST SYSTEM

We consider three paradigms for operational planning for
integrated electric power and natural gas systems.

Scenario A: Approximates current practice. Power sys-
tem operation ignores gas system impacts. Given generator
dispatch schedules, GFGs calculate average gas usage and
contract constant-rate delivery from the GPN. The GPO cal-
culates constant compression ratio set-points using a steady-
state model, and checks system feasibility by simulation.

Scenario B: Distributed control of compressors. As in
Scenario A, GFGs contract gas required for their generation
schedule from the GPN. The GPO calculates constant set-
points for compressor outlet pressure assuming a steady-state
model, and checks system feasibility by simulation where
compressors adjust ratios dynamically to track the set-points.

Scenario C: Gas-aware power system operation. The ISO
mitigates congestion in the gas system by adjusting GFG fuel
usage to conform with gas system limitations. This allows
the GPO to operate compressors at constant boost ratios as in
current practice, but the ISO would need gas system models
and data, which requires regulatory and market changes.

The case studies use the 24-node IEEE One Area RTS-96
test network [22] coupled with a 24-pipe LANL benchmark
gas system test network, which was used in a gas network
control study [14], as illustrated in Figure 1. The production
limits of generators in the power system network are scaled
so that total generation capacity is 2724 MW. Line capacities
are reduced to 50%, system loads are scaled to 80% of
nominal values, and some loads are scaled with one of two
time-varying curves (A or B) inset at top left in Figure 1.

Fig. 1. Schematic of integrated electric and gas test networks. IEEE RTS96
One Area 24 node power system test network (top) coupled with the LANL
benchmark 25 node gas system test network (bottom) through GFGs (G1
to G4). Electric loads marked with A or B are scaled by the time-varying
load curves in the inset plot at right. Electric buses (K1 to K24), gas pipes
(P1 to P24), pipe junctions (J1 to J25), and gas compressors (C1 to C5) are
indicated. Data available online [21].

For the baseline case, remaining constant electric loads are
scaled to 50% of nominal values. We place gas-fired shoulder
plants at buses 7 and 13, and peak power plants at 15 and
22, for which costs c(pi) = cgq(pi) of generations pi are
based on gas usage according to a heat rate curve

q(pi) = q0 + q1pi + q2p
2
i . (1)

The quadratic coefficients (q0, q1, q2) are (3.08, 0.48, 0.001)
and (7.83, 0.26, 0.0015) for peaking and shoulder plants,
respectively [23], and a gas price of cg = 6 $/mmBTU is
used. Cost coefficients for other generators are obtained from
MatPower [24]. GFGs at power system nodes 22, 15, 13, and
7 draw fuel from gas system junctions 8, 13, 24, and 19,
respectively. The friction factor and sound speed parameters
used for the gas pipelines are λ = 0.01 and a = 377.968
m/s. The integrated model is scaled so that 40% of generating
capacity is gas-fired, and approximately 50% of gas is used
for power in the baseline case. LDCs at gas system junctions
6, 12, 18, and 25 each use the remaining gas at a mean rate
of 40 kg/s, weighted by the A profile in the inset plot in
Figure 1. Gas is available at junction J1 at 500 psi, and
boosted into the system by compressor C1, with total daily
throughput of ≈500,000 mmBTU. Pressure and compression
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ratios are bounded in [500, 800] psi and [1, 2], respectively.

III. ELECTRIC POWER SYSTEM OPERATION

ISOs such as PJM [4] clear the market by solving optimal
power flow (OPF) and unit commitment problems [3] to
obtain hourly generation schedules for the following day.
We estimate this mechanism by solving an OPF where
demand and production are continuous functions of time
in order to model generator dispatch response to intra-day
load variation. The result is used to approximate GFG fuel
consumption, and enables mathematical integration with the
smooth dynamic gas flow model in Section V.

Because gas withdrawals are determined by the active
power generation, we model power system flows using the
DC approximation, which agrees with previous integration
studies [15], [17]. For simplicity, we disregard line outage,
ramping, and unit commitment constraints, but note that they
(and the AC power flow equations) can be incorporated.

We formulate the continuous-time DC OPF as an exten-
sion to the standard single time-step formulation [25]. Let
GP = (VP , EP ) represent the graph of the power network,
where VP is the set of nodes with |VP | = m and EP is
the set of edges/lines of the system with |EP | = n. The
set of generators is denoted by G. To simplify notation, we
assume that there is one generator with production pi(t)
and one demand with consumption hi(t) per node, such that
|G| = |VP | = m. The demands hi(t) are given as continuous
demand functions defined for 0 ≤ t ≤ T where T = 24
hours. The power flows from bus i to bus j are denoted
by fij , with maximum values of f̄ij . The objective is to
minimize the total cost of generation over the time horizon
[0, T ] where ci(pi(t)) are cost functions for production, i.e.,

JP ,
∑
i∈G

∫ T

0

ci(pi(t))dt. (2)

The constraints ∀ t ∈ [0, T ] for total system power balance,
generator production limits, and power flow limits are∑

i∈V
(pi(t)− hi(t)) = 0, (3)

0 ≤ pi(t) ≤ pmaxi , ∀ i ∈ G, (4)
− f̄ij ≤M(ij,·)(p(t)− h(t)) ≤ f̄ij , ∀ {ij} ∈ EP , (5)

where p(t) and h(t) are vector functions containing pi(t)
and hi(t), respectively. The matrix M ∈ Rn×m relates the
line flows to the nodal power injections, and is defined as

M = Bf

[
(B̃bus)

−1 0
0 0

]
(6)

where Bf and B̃bus are line and bus susceptance matrices,
where B̃bus lacks the column and row corresponding to the
slack bus [26]. M(ij,·) is the row of M related to line (ij) ∈
EP . The continuous-time DC OPF is then given by

min
p(t)

JP in (2)

s.t. power system constraints: (3)− (5)
(7)

The dispatch solutions pi(t) are translated into GFG gas
usage curves di(t) = q(pi(t)) using (1). Next, we describe
how the effects of gas withdrawals on the GPN are modeled.

IV. MODELING OF GAS NETWORK DYNAMICS

We use a reduced model for the dynamics of a GPN
actuated by nodal compressor stations [14]. The GPN is
represented as a directed graph G = (V, E), where edges
(pipes) {i, j} ∈ E connect nodes (junctions) i, j ∈ V . The
state on the edge {i, j} is given by the density ρij and flux
ϕij defined on a time interval [0, T ] and the distance variable
xij ∈ [0, Lij ], where Lij is the length of edge {i, j}.

Assuming slow transients that do not excite shocks or
waves, the flow of gas on the edges is described by a
simplification of the Euler equations in one dimension [27],
given after nondimensionalization [14] by

∂tρij + ∂xϕij = 0, ∀ {i, j} ∈ E (8)

∂tϕij + ∂xρij = − λij`
2Dij

ϕij |ϕij |
ρij

, ∀ {i, j} ∈ E (9)

The parameters are the friction factor λ, pipe diameter D,
speed of sound a, and nondimensionalization scaling `. The
term on the right hand side of (9) aggregates friction effects.
We assume isothermal flow in which gas pressure p and
density ρ are related by p = a2ρ.

Gas compression is modeled as conservation of flow and
multiplicative change in density at a point x = c, i.e.,
ρ(t, c+) = α(t)ρ(t, c−) and ϕ(t, c+) = ϕ(t, c−), where α(t)
is a compression ratio. We denote h(c−) = limx↗c h(x) and
h(c+) = limx↘c h(x). The required power is proportional to

C ∝ η−1|ϕ(t, c)|(max{α(t), 1}2m − 1) (10)

with 0 < m < (γ − 1)/γ < 1 where γ is the heat capacity
ratio and η is the compressor efficiency [9]. We define the
controller set C ⊂ E × {+,−}, where {i, j} ≡ {i, j,+} ∈ C
(resp. {j, i} ≡ {i, j,−}) denotes a controller at node i ∈ V
(resp. j ∈ V) that augments the density of gas flowing into
edge {i, j} ∈ E in the + (resp. −) direction. Compression
is expressed as a ratio αij : [0, T ]→ R+ for {i, j} ∈ C.

We denote by sj : [0, T ]→ R the density of gas entering
the GPN from a node j ∈ VS in the set of supply terminals
called “slack” junctions, able to supply any mass flux at
the given density. A mass flux withdrawal (or injection, if
negative) at a junction j ∈ VD = V \ VS is denoted by
dj : [0, T ] → R, where VD is the set of demand (non-
“slack”) nodes. The functions {αij}{i,j}∈C , {dj}j∈VD , and
{sj}j∈VS create nodal balance conditions of the form

αji(t)ρjk(t, 0) = αjk(t)ρij(t, Lj),

∀ j ∈ VD and {i, j}, {j, k} ∈ E , (11)

dj(t) =
∑
i∈VD

ϕij(t, Lij)−
∑
k∈VD

ϕjk(t, 0), ∀ j ∈ VD, (12)

ρij(t, 0) = si(t), ∀ i ∈ VS . (13)

The reduced model for the network flow dynamics (8)-
(9) with nodal conditions (11)-(13) has been formulated by
integrating pipe segments as lumped elements [14]. In the
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result, let V = |VD| and E = |E| and assign to each edge an
index in [E], where [N ] = {1, . . . , N} for a positive integer
N ∈ N, using the mapping πe : E → [E]. Each node in
VD is assigned an internal density and each edge in E is
assigned a flow, yielding the nodal density and edge flow
state vectors ρ = (ρ1, . . . , ρV )T and ϕ = (ϕ1, . . . , ϕE)T .
Here nodal ρi and ρj are related to ρij(t, 0) and ρij(t, L) at
edge boundaries with nodal compression variables αij by

ρij(t, 0) = αijρi(t) and ρij(t, L) = αjiρj(t). (14)

Each node j ∈ VD is subject to withdrawal flux dj
(that is negative if an injection), forming the vector d =
(d1, . . . , dV )T . Slack node densities are s = (s1, . . . , sb)

T ,
where b = |VS |. Parameters are contained in the diagonal
matrices Λ,K ∈ RE×E defined by Λkk = Lk and Kkk =
`λk/Dk, where Lk, λk, and Dk are the nondimensional
length, friction coefficient, and diameter of edge k = πe(ij).

Define the weighted incidence matrix B : RE → RV by

Bik =

 αij edge k = πe(ij) enters node i,
−αij edge k = πe(ij) leaves node i,
0 else

(15)

as well as the incidence matrix A = sign(B). Let As, Bs ∈
Rb×E denote submatrices of rows of A and B that corre-
spond to VS , and let Ad, Bd ∈ RV×E relate similarly to
VD. Define a function g : RE × RE+ → RE by gj(x, y) =
xj |xj |/yj . The reduced network flow (RNF) ODE model is

ρ̇ = (|Ad|Λ|BTd |)−1[4(Adϕ− d)− |Ad|Λ|BTs |ṡ], (16)

ϕ̇ = −Λ−1(BTs s+BTd ρ)−Kg(ϕ, |BTs |s+ |BTd |ρ). (17)

For a connected graph, Ad ∈ RV×E and Bd ∈ RV×E are full
rank, and therefore |Ad|Λ|BTd | is invertible. Time-varying
parameters are gas withdrawals d ∈ RV , input densities s ∈
Rb+, and compressions αij ∈ C. The RNF (16)-(17) is a
consistent spatial discretization of the PDE (8)-(9) [13].

When ρ̇ = 0, ϕ̇ = 0, ṡ = 0, ḋ = 0, and α̇ij = 0 for all
{i, j} ∈ C, equations (16)-(17) reduce to

Adϕ = d, (18)

ΛK(ϕ� |ϕ|) = (BTs s+BTd ρ)� (|BTs |s+ |BTd |ρ), (19)

where � denotes the point-wise vector product. This corre-
sponds to steady-state GPN balance laws [9], [14].

V. OPTIMIZATION AND CONTROL SCHEMES

We now describe optimization schemes and control proto-
cols that are implemented for the three considered scenarios.

Scenario A: The ISO solves the OPF (7), and each GFG
applies (1) to compute its gas usage schedule. This is
averaged and given to the GPO, who computes constant gas
compressor set-points by solving the steady-state OGF [9].
For that problem, the optimization objective is to minimize
compression costs of the form (10), i.e.,

JG ,
∑

{i,j}∈C

|ϕπe(ij)|
ηij

(
(max{αij , 1})2m−1

)
. (20)

Nodes are subject to steady withdrawals dj for j ∈ VD,
available supply densities sj for j ∈ VS , and box constraints

ρmin
i ≤ αijρi ≤ ρmax

i , ∀ i ∈ VD (21)
1 ≤ αij ≤ αmax

ij , ∀ {i, j} ∈ C, (22)

on the density and compression. Steady-state flow balance
laws are enforced using (18)-(19), where decision variables
αij for {i, j} ∈ C are embedded in the weighted incidence
matrices Bs and Bd. The static OGF is given by

min
αij

JG in (20)

s.t. flow balance constraints: (18)− (19)
density & control constraints: (21), (22)

(23)

To compensate for errors related to steady-state modeling,
conservative compression ratios are required to maintain
balanced gas flows under actual transient conditions. We
multiply the averaged withdrawals by an engineering factor
of 1.25 when computing the OGF. The resulting ratios αij
are embedded within the weighted incidence matrices Bs and
Bd in (16)-(17) to simulate the gas flows that result when
the actual time-varying gas usage is in effect.

Scenario B: The OPF and OGF are computed as in
Scenario A. In addition to compression ratios, the steady-
state OGF solution yields values of the pressure at compres-
sor outlets, which are used as set-points ρ∗out for dynamic
compressor operation. The boost ratios are adjusted to track
these set-points according to

α(t) =

 αmin ρ∗out/ρin < αmin

ρ∗out/ρin αmin ≤ ρ∗out/ρin ≤ αmax

αmax ρ∗out/ρin > αmax

(24)

while remaining within the box constraint α(t) ∈
[αmin, αmax] = [1, 2]. This model of distributed local control
illustrates the result of policies that do not anticipate the
effect of changes to gas flows elsewhere in the system.

Scenario C: A combined optimization scheme is im-
plemented to represent gas-aware power system operation,
where the OPF is optimized together with constant compres-
sion ratios for the GPN subject to gas dynamics and density
constraints. The latter are now time-dependent, and we use
periodic terminal conditions on the state of the gas network
(for simplicity), resulting in

ρmin
i ≤ αijρi(t) ≤ ρmax

i , ∀ i ∈ VD (25)
ρ(0) = ρ(T ), ϕ(0) = ϕ(T ), (26)

over the same 24-hour period [0, T ] as used in the OPF
problem (7). The combined gas-electric OCP is then

min
p(t), αij

βPJP + βGJG using (2) and (20)

s.t. power system constraints: (3)− (5)
generator heat-rate coupling equation: (1)
RNF gas dynamics constraints: (16)− (17)
gas density & terminal constraints: (25), (26)
compression ratio constraints: (22).

(27)

The DC OPF (7) and OGF (now subject to dynamic con-
straints) are coupled in (27) through the heat rate curve (1),
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Fig. 2. Comparison of Scenarios A, B, and C (left to right) for the baseline case. From top to bottom: Simulated nodal gas pressures (color) and bounds
(dashed); Compression ratios; Gas-fired generator dispatch solutions.

which relates the GFG fuel usage to power output. The scal-
ing coefficients βP and βG are used to appropriately weight
the power and gas system objectives, respectively. Because
we aim to optimize costs for the ISO while maintaining
pressure constraint feasibility for the GTS, compression cost
is kept a minimal part of the objective (to guarantee a unique
solution), choosing βP and βG to get βPJP ≈ 102βGJG.

VI. IMPLEMENTATION AND CASE STUDIES

We solve the OPF (7) using a polynomial approximation
scheme that will be required to resolve time-dependent GPN
dynamics [14], which enables solution of the combined opti-
mization problem (27). The OGF problem (23) is a nonlinear
program without time-dependence, where the constraints are
algebraic relations. The joint optimization problem (27) is
a constrained OCP on a continuous function space with
dynamic constraints, which we approximate with a nonlinear
program (NLP) obtained using PS discretization [28] on 35
collocation points in time. The decision variables are constant
compressor ratios αij , as well as coefficients of polynomial
expansions that approximate the time-varying gas generator
dispatch p(t) and gas dynamics solutions ρ(t) and ϕ(t).
Transcription from the OCP to the NLP is described in the
context of gas networks in previous work [14]. Solutions
for problems (7), (23), and (27) are implemented using
the interior-point solver IPOPT version 3.11.8 running with
the linear solver ma57 [29] by providing functions for the
objective, constraints, and their gradients with respect to
the decision variables and initializing at feasible random
initial conditions. With compression ratios obtained from the
optimizations, (16)-(17) are used to simulate gas network
dynamics with the low-order solver ode15s for stiff ODE
systems in MATLAB. Evaluation requires several seconds
(depending on rates of change in withdrawals d) for the 24-
pipe gas test network for a 24-hour period.

The results of Scenarios A, B, and C are shown in columns
of Figure 2 from left to right.

Scenario A: The GFG dispatch (bottom) obtained by
solving (7), the constant compression ratios (center) obtained
from the static OGF, and the resulting pressure trajectories
obtained from the RNF simulation (top) are given. A system
pressure drop results even with the safety margin of 25%.

Scenario B: The GFG dispatch (bottom) and compression
ratios (center) are the same as in Scenario #1, but tracking
local pressure set-points increases the pressure constraint
violation of trajectories obtained from the RNF simulation.
This phenomenon can be interpreted an amplification of
cascading pressure fluctuations by a GCS that is unaware of
conditions elsewhere in the GPN. When the GCS increases
compression to boost downstream pressure, it aggravates
upstream pressure drops.

Scenario C: The GFG dispatch solutions (bottom) and
constant compressor ratios (center) differ from those for
Scenarios A and B. The compression ratios are applied in the
RNF simulation, and the pressure trajectories (top) are within
bounds. Changes to the dispatch schedule of the electric
system to maintain gas system feasibility increases the OPF
cost by 5% because it changes away from the optimum.

In addition to the baseline case where constant electrical
loads were scaled to 50% of nominal RTS96 model values,
we also consider low and high stress cases in which this
scaling is 25% and 65%, respectively. We compare the
scenarios in the three stress cases by evaluating the DC
OPF objective function value, the total daily gas used for
generation, and the L2 norm of pressure constraint violation
of the form vρ = ‖Vρ‖2, where

Vρ=

[∫ T

0

(p(t)− pmax)
2
+dt

] 1
2

+

[∫ T

0

(pmin − p(t))2+dt

] 1
2

(28)

and (x)+ = x if x ≥ 0 and (x)+ ≡ 0 if x < 0. These
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DC OPF objective ($ ×106) Pressure Violation Norm (psi-days) GFG Gas Usage (mmBTU ×105)
Scenario A B C A B C A B C

low (25%) 0.5972 0.5972 0.5971 5.5270 39.039 0.3270 2.1446 2.1446 2.1415
base (50%) 0.7316 0.7316 0.7708 104.27 137.37 0 3.0608 3.0608 3.0010
high (65%) 0.8256 0.8256 0.9961 273.01 172.55 0.0526 3.8015 3.8015 3.1697

Fig. 3. Comparison of metrics for scenarios and stress cases

metrics quantify aspects of the scenarios at various levels of
system stress. Their values for the three scenarios under low,
base, and high stress cases are given in the table in Figure
3. The metric vρ is computed using ODE solution using
the RNF equations (16)-(17) embedded with the optimized
compression ratios αij . The compression ratios obtained in
Scenario A with the static OGF alone lead to pressure vio-
lations. Moving to Scenario C eliminates pressure constraint
violations in each case, albeit at higher dispatch cost for
the baseline and high cases. Using local pressure set-point
tracking at compression stations (Scenario B) may worsen
pressure constraint violation relative to constant ratios by
amplifying spatiotemporal fluctuations that cascade through
the system. Moving from Scenario A to C will improve
system security but at increased generation dispatch cost,
and would require substantial regulatory change.

VII. CONCLUSIONS

We have compared scenarios for separate and combined
optimization for integrated electric power and natural gas
infrastructures, and two gas compressor operation protocols.
The performance assessment within a simulation and optimal
control framework demonstrates the feasibility of computing
optimal and secure solutions for these large-scale systems
that interact through gas-fired generators that create large
and variable gas flows. Solutions to optimization problems
involving gas dynamics were investigated using physics-
based continuous-time simulations to quantify the advantages
of joint optimization. We also showed that when the gas
system is optimized using a steady-state model, local track-
ing of pressure set-points by compressors increases pressure
violations compared to using constant compression ratios.
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