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Abstract. We propose a decomposition based method for solving mixed-
integer nonlinear optimization problems with “black-box” nonlinearities, where
the latter, e.g., may arise due to differential equations or expensive simulation
runs. The method alternatingly solves a mixed-integer linear master problem
and a separation problem for iteratively refining the mixed-integer linear
relaxation of the nonlinear equalities. The latter yield nonconvex feasible
sets for the optimization model but we have to restrict ourselves to convex
and monotone constraint functions. Under these assumptions, we prove that
our algorithm finitely terminates with an approximate feasible global optimal
solution of the mixed-integer nonlinear problem. Additionally, we show the
applicability of our approach for three applications from optimal control with
integer variables, from the field of pressurized flows in pipes with elastic walls,
and from steady-state gas transport. For the latter we also present promising
numerical results of our method applied to real-world instances that particularly
show the effectiveness of our method for problems defined on networks.

1. Introduction

Mixed-integer nonlinear models (MINLPs) form an important class of optimization
problems because they combine the possibility of modeling nonlinear aspects and
discrete decisions. However, since MINLPs allow for both nonlinearities and discrete
variables they also inherit the theoretical and practical difficulties of nonlinear and
mixed-integer optimization; see, e.g., [1] for a recent survey of MINLPs. This is the
reason why general-purpose MINLP algorithms often have their limits when it comes
to solving large-scale instances from real-world applications. Thus, typically problem
tailored approaches must be developed to solve application-specific subclasses of
MINLPs.

One main branch of MINLP techniques tries to rely on mixed-integer linear (MIP)
solvers as working horse. These approaches approximate or relax the nonlinearities
by (piecewise) affine-linear constraints. Moreover, in certain cases the resulting
linearization error can be controlled such that multiple MIPs are solved with
adaptively chosen linearization quality, finally leading to a global MIP solution not
violating the original nonlinearities by more than a prescribed tolerance.

All these approaches suffer from an inherent drawback, namely that they require
to re-model the original nonlinearities to obtain a mixed-integer linear surrogate
model. This re-modeling is typically done by the modeler before the resulting MIP
is solved. Furthermore, there are many situations in which such a re-modeling is not
possible because the original nonlinearity is not known explicitly. Typical examples
are nonlinearities described by differential equations for which no analytic solutions
are known or nonlinearities that are the result of expensive simulation runs.
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In our contribution, we propose a decomposition based method for solving mixed-
integer nonlinear problems with “black-box” nonlinearities. The term “black-box”
is meant w.r.t. the actual optimization problem that is solved within our solution
method. Here, the “black-box” nonlinearity is not explicitly part of the model
but is only evaluated in a separate simulation step. The main assumption of
the algorithm is that the addressed nonlinear equalities are convex and monotone
functions. Although the resulting feasible set is nonconvex it is possible to construct
a mixed-integer linear relaxation of the nonlinear equality using a mix of separating
hyperplanes and piecewise linear approximations. These hyperplanes and piecewise
linearizations are obtained using the simulation step—i.e., by solving, e.g., an
initial value problem for a differential equation—and are then used to refine the
linear relaxation of the original MINLP feasible set. By doing so, we construct a
MIP surrogate model for the original MINLP without explicitly re-modeling the
nonlinearity.

The contribution of this paper is threefold. The first goal is to formally state the
problem class under consideration and the algorithm. Second, we prove correctness of
our method. In the context of the presented algorithm, this means that it terminates
after a finite number of iterations with a globally optimal and approximately feasible
point or with an indication of infeasibility. The third goal is to illustrate the
applicability of our modeling approach by three case studies from the fields of
stationary gas transport, of pressurized flows in pipes with elastic walls, and of
optimal control with integer variables. In all these three cases, the nonlinearity arises
due to the presence of certain differential equations and thus leads to optimization
problems that are typically hard to solve for state-of-the-art general-purpose MINLP
solvers. We show that in all cases, our analytical assumptions mentioned above
are satisfied such that our tailored method can be applied. For the first case we
also present detailed computational results of our algorithm applied to the Greek
gas transport network that particularly show the effectiveness of our method for
problems defined on networks.

This paper is organized as follows. In Section 2 we define the class of optimization
problems we consider, discuss a tailored decomposition of these problems, and
finally present the decomposition based solution algorithm. Moreover, we relate our
solution approach to other methods from the literature. In Section 3 we then prove
that the algorithm always terminates with a globally optimal and approximately
feasible solutions. Section 4 presents some exemplary applications that can be
tackled with our method and Section 5 presents numerical results that show the
applicability of our approach. The paper ends with a summary and some notes on
future work in Section 6.

2. Problem Statement and Algorithm

In this section we present the type of problem we address in the following, state
a tailored decomposition, and finally the decomposition based solution algorithm.

The problems that we consider are discrete-continuous optimization models. Let C
and I be finite index sets of continuous and integer variables, i.e., the entire variable
vector reads x := (x>C ,x>I )

> ∈ R|C| × Z|I| and is assumed to be constrained by
bounds

¯
x ≤ x ≤ x̄. All non-trivial linear constraints are denoted in LP form Ax ≥ b

with A ∈ Rm×n,n = nC +nI = |C|+ |I|, and b ∈ Rm. We assume that the objective
function is linear with coefficients c ∈ Rn. For the remaining constraints we choose
a rather abstract setting. Let xd = (xd1 ,xd2) be a pair of variables for all variable
index pairs d = (d1, d2) ∈ D with d1, d2 ∈ {1, . . . ,nC} and a finite set D. Moreover,
let (xd1 ,xd2) be coupled by a function fd : R → R, i.e., xd2 = fd(xd1) holds for
all d ∈ D. For instance, think of D as the set of node pairs (u, v) associated to
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arcs a = (u, v) of a graph. In this situation, xd1 and xd2 are node variables that
are coupled by the arc-related function fd. Throughout the paper, we make the
following assumption:

Assumption 1. The functions fd, d ∈ D, are strictly monotonic, strictly concave
or convex, and differentiable with a bounded first derivative.

Moreover, we note that our method does not require explicit knowledge of the
nonlinear functions fd and that the assumption of differentiability might also be
dropped. For the latter case, fd is differentiable almost everywhere and we can use
sub- or supergradients at the points of non-differentiability. We also remark that
all of our results hold for all four combinations of strictly increasing or decreasing
and strictly concave or convex functions. For the ease of presentation, we fix the
setting to strictly increasing and strictly concave functions in the following. Finally
consider the case in which it is possible to construct DC decompositions f = ϕ− ψ
of general nonlinear equality constraints, where ϕ and ψ satisfy Assumption 1; see,
e.g., [41]. In this case, a much more general class of problems can be tackled by our
method.

With these notations, we can state the problem under consideration:

min
x

c>x (1a)

s.t.
¯
x ≤ x ≤ x̄, xC ∈ R|C|, xI ∈ Z|I|, Ax ≥ b, (1b)
xd2 = fd(xd1) for all d ∈ D. (1c)

Note that Problem (1) is an MINLP equipped with “black-box” constraint func-
tions fd that yield a nonconvex feasible set. We now highlight some exemplary
situations in which Assumption 1 is satisfied. Detailed real-world applications are
discussed in Section 4.

Example 1. Assume an initial value problem with an ordinary differential equation
(ODE)

y′ = g(x, y(x)), y(0) = y0, x ∈ [0,L],

is given and denote the solution by y = y(x; y0). If the function f : R→ R that maps
initial values onto the solutions of the initial value problem, i.e., f(y0) = y(L; y0),
satisfies Assumption 1, this initial value problem solution mapping is a possible
function f that can be used in Problem (1).

Example 2. Sufficient conditions to ensure the satisfaction of Assumption 1 can be
found if the functions fd are given as the solutions of a separable ordinary differential
equation with initial value y0 ∈ R,

y′ = g(y)h(x), y(0) = y0, (2)

with g ∈ C1(R,R) and h ∈ C0(R,R). Assume that g(y) 6= 0 in some interval [
¯
y, ȳ].

Note that the solution is constant if g(y) = 0 holds. Application of separation of
variables yields that the solution of (2) satisfies∫ y

y0

1

g(z)
dz =

∫ x

0

h(s) ds.

Defining the primitive of 1/g as G(y) =
∫ y

0
1/g(z) dz yields

G(y)−G(y0) =

∫ x

0

h(s) ds. (3)

For y ∈ [
¯
y, ȳ], the function G is strictly monotonic as g(y) 6= 0 for y ∈ [

¯
y, ȳ]. Thus,

its inverse exists and the solution of (2) is given by

y(x) = G−1

(
G(y0) +

∫ x

0

h(s) ds

)
.
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The derivative of the solution w.r.t. the initial value can be obtained by differentiat-
ing (3):

G′(y)∂y0y −G′(y0) = 0

⇐⇒ ∂y0y =
G′(y0)

G′(y)
=

g(y)

g(y0)
6= 0 for y ∈ [

¯
y, ȳ].

The second derivative fulfills

∂2
y0y =

g(y)

g(y0)2
(g′(y)− g′(y0)).

Consequently, Assumption 1 with y0 = xd1 and fd(xd1) = y(y0) is fulfilled if
g(y) 6= 0 on [

¯
y, y], which ensures monotonicity, and g is either strictly convex or

strictly concave.

Example 3. A more abstract setting than the case of separable ODEs has been
discussed in [28], where it is shown ([28, Theorem 2.4]) that the dependence of a
solution of the initial value problem

y′ = g(x, y), y(0) = y0

is convex with respect to the initial value, if
• the function g is continuous, bounded, and the derivative gy is bounded;
• for each x ∈ [0,L] the function g(x, ·) is quasimonotone nondecreasing; and
• for each x ∈ [0,L] the function g(x, ·) is convex.

Our driving hypothesis about Problem (1) is that optimizing over the full con-
straint set is very expensive, whereas solely optimizing over Constraints (1b) as
well as the sole evaluation of the functions fd is also expensive but tractable in
practice. This gives us a direct recipe for decomposing the problem: We split up (1)
into a master problem and a subproblem by separating the “easy” mixed-integer
linear part (1b) and the Constraints (1c) involving nonlinear black-box functions.
Thus, the master problem is a MIP relaxation of the original problem and the
subproblem consists of the handling of (1c). The main algorithmic idea is that
these problems are solved alternately and that the solution of the subproblems
are used to generate refined (piecewise) linear relaxations of the feasible set of
Constraints (1c) by only exploiting local knowledge about the functions fd that
are delivered by the subproblem. By doing so, the master problem iteratively gets
a better approximation of the original problem and finally yields an approximate
global optimal solution of Problem (1) or a proof of infeasibility.

We now give a formal description of the master problem and subproblem and
start with the latter. To this end, let d be fixed and yd, d ∈ D, be part of a solution
of the master problem. The subproblem determines the closest point w.r.t. the
given solution yd on the graph (xd1 , fd(xd1)), i.e., we solve the following minimum
`2 distance problem over the bounded feasible set of Constraint (1c):

χ(yd) := min
xd

{
||xd − yd||22 : xd2 = fd(xd1),

¯
xd ≤ xd ≤ x̄d

}
. (4)

We choose the `2 norm for the subproblem since it can be directly used in a
continuous optimization problem like (4); the Euclidean norm is only squared to
obtain a differentiable objective. The solutions of (4) are denoted by zd. Moreover,
we assume that solving the subproblems also delivers the values fd(zd1) and f ′d(zd1).

The master problem is a relaxation of Problem (1), in which we neglect Con-
straint (1c) but take a piecewise linear relaxation of its feasible set

gr(fd) :=
{
xd ∈ R2 : xd2 = fd(xd1)

}
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xd2

xd1

gr(fd)

xd2 = fd(xd1)

¯
xd1 x̄d1 = ud1

x̄d2

ld2 =
¯
xd2

gr(fd) with ld ≤ xd ≤ ud

ld1

ud2

xd2

xd1

gr(fd)

P
d
(L

d
, C

d
, G

d
)

x0
d1

x1
d1

x1
d2

x0
d2

Figure 1. Left: Bound tightening for xd; the gray area represents
the tightened box. Right: Linear relaxation Pd(Ld,Cd,Gd) with
Ld = {x0

d1
,x1
d1
}, Cd = {x0

d2
,x1
d2
}, and Gd = {f ′d(x0

d1
), f ′d(x

1
d1

)}.

into account. Initially, Assumption 1 is combined with the bounds
¯
xd ≤ xd ≤ x̄d to

strengthen the original formulation to ld ≤ xd ≤ ud with

ld1 = max
{

¯
xd1 , f−1

d (
¯
xd2)

}
, ud1 = min

{
x̄d1 , f−1

d (x̄d2)
}

,

ld2 = max {
¯
xd2 , fd(

¯
xd1)} , ud2 = min {x̄d2 , fd(x̄d1)} ,

see Figure 1 (left) for an illustration. The piecewise linear relaxation of gr(fd)∩[ld,ud]
is obtained by a combination of the incremental method [32] and classical outer
approximations [10, 12]. To this end, we define the sets Ld,Cd, and Gd containing
linearization points, corresponding function values, and corresponding derivatives
of fd, respectively. That is, we have

Ld :=
{
ld1 = x0

d1 ,x1
d1 , . . . ,xr−1

d1
,xrd1 = ud1

}
,

Cd :=
{
ld2 = x0

d2 ,x1
d2 , . . . ,xr−1

d2
,xrd2 = ud2

}
,

Gd :=
{
f ′d(x

0
d1), f ′d(x

1
d1), . . . , f ′d(x

r
d1)
}

,

with xid1 < xi+1
d1

for all i ∈ [r − 1] := {0, . . . , r − 1}. As fd is strictly increasing and
strictly concave, xid2 < xi+1

d2
and f ′d(x

i
d1

) > f ′d(x
i+1
d1

) hold for all i ∈ [r − 1] as well.
With this notation, the master problem reads

min
x

c>x (5a)

s.t. Ax ≥ b, xC ∈ R|C|, xI ∈ Z|I|, (5b)

¯
x ≤ x ≤ x̄, (5c)

xd2 ≤ xid2 + f ′d(x
i
d1)(xd1 − xid1) for all d ∈ D, i ∈ [r], (5d)

xd1 = x0
d1 +

r∑
i=1

(xid1 − xi−1
d1

)δid for all d ∈ D, (5e)

xd2 ≥ x0
d2 +

r∑
i=1

(xid2 − xi−1
d2

)δid for all d ∈ D, (5f)

δid ≥ wid ≥ δi+1
d for all d ∈ D, i ∈ [r − 1] \ {0}, (5g)

δid ∈ [0, 1] for all d ∈ D, i ∈ [r] \ {0}, (5h)

wid ∈ {0, 1} for all d ∈ D, i ∈ [r − 1] \ {0}. (5i)
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The linear overestimators (5d) are valid outer approximation cuts and Con-
straints (5e)–(5g) are piecewise linear underestimators by Assumption 1. The
relaxed version of the incremental method uses the auxiliary variables in (5h)
and (5i). The variables and constraints in (5d)–(5i) thus yield a piecewise linear
relaxation of the feasible set of the original constraints (1c). We denote the feasible
set of (5c)–(5i) by Pd = Pd(Ld,Cd,Gd) for every d ∈ D; see Figure 1 (right).

We are now able to formally state the decomposition algorithm for solving
Problem (1); see Algorithm (1). In the following section we then prove that this

Algorithm 1 Decomposition Method
Input: Problem (1) and ε > 0.
Output: If there is an ε-feasible point for Problem (1), the algorithm returns an globally

optimal ε-feasible solution y. Otherwise, it returns an indication of infeasibility.

1: Set Ld := {ld1 ,ud1}, Cd := {ld2 ,ud2}, and Gd := {f ′(ld1), f
′(ud1)} for all d ∈ D.

2: for k = 0, 1, 2, . . . do
3: Solve master problem (5) with Ld,Cd, and Gd.
4: if master problem (5) is infeasible return “Problem (1) is infeasible”.
5: Denote the solution of master problem (5) by yk.
6: Solve subproblem (4) for all d ∈ D yielding solutions zkd and objective values χ(ykd).
7: if χ(ykd) ≤ ε for all d ∈ D then
8: return globally optimal ε-feasible solution yk

9: else
10: Set Ld ← Ld ∪ {zkd1},Cd ← Cd ∪ {zkd2}, and Gd ← Gd ∪ {f ′(zkd1)} for all d ∈ D

with χ(ykd) > ε.
11: end if
12: end for

algorithm is correct in the sense that it terminates at globally optimal ε-feasible
points of Problem (1):

Definition 1 (ε-feasibility). A solution of the master problem (5) is called ε-feasible
if χ(yd) ≤ ε for all d ∈ D. Otherwise it is called ε-infeasible.

The main ideas of the proof are to show that the subproblem solutions yield an
improved piecewise linear relaxation of the original problem that cut off the last
master problem solution and that a finite number of these improvements suffices to
achieve an ε-feasible point. Thus, the solution of the subproblem can also be seen
as a separation oracle that yields new cutting planes for the last infeasible (master
problem) solution.

Before we prove the theoretical properties of Algorithm 1 in the next section we
first discuss the relation to other algorithms of mixed-integer nonlinear optimization.
For a much broader overview over MINLPs see the recent survey [1] and the references
therein.

As a result of Algorithm 1 the nonlinearities of the MINLP are replaced with
(piecewise) linear relaxations that are iteratively tightened by the algorithm. This
idea is related to the MIP based solution techniques for MINLPs discussed in [14,
17] that have also been applied to problems from the field of gas transport; see [16,
18, 34] and Section 4.3. The algorithms published in the given citations mainly
differ in two facts. First, they rely on the fact that the nonlinear functions are given
in closed form, and second, they construct the relaxations a-priori in dependence
of some given tolerance and not on demand as in our case. An additional minor
difference is the use of the `1 norm in [14, 17] whereas we use an `2 projection.
To model the piecewise linear relaxations the incremental method [32] is used in
both approaches. We refrain from reviewing the large literature on piecewise linear
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approximation of nonlinear functions but refer the reader to the references in the
hitherto cited papers.

Moreover, our method has similarities to Generalized Benders Decomposition [2,
19]; see [4] for a textbook version. However, it is known that the standard version
of Generalized Benders Decomposition does not converge for nonconvex problems
[37]—a problem that our algorithm does not suffer from.

At last we want to highlight that the class of problems that we consider is related
to problems from the fields of mixed-integer optimal control (MIOCP) and mixed-
integer dynamic optimization (MIDO), where systems governed by ODEs or PDEs
are optimized over a control input; see, e.g., [1, Chap. 7], [36] as well as [7], and the
references therein. Also related are approaches for mixed-integer optimization with
differential equations based on linearization; see, e.g., [13, 15]. However, MIOCP
addresses integers distributed in time or space, which is not considered in this paper.

Very recently, an approach for mixed-integer optimal control with semilinear
elliptic PDEs and static integer controls has been proposed in [6]. This approach has
some similarities with our approach since they also decouple the entire problem into a
master and subproblem. The former addresses all mixed-integer aspects whereas the
latter addresses the differential equation and delivers outer approximation cutting
planes for the next master problem. However, the focus of [6] is more on the specific
type of differential equation that yields convex feasible sets whereas our approach
abstracts from specific differential equations but also considers nonconvex feasible
sets from nonlinear equality constraints.

3. Convergence Results

In order to prove the correctness of Algorithm 1 we show that an ε-infeasible
solution yk of the kth master problem is cut off in the next iteration k + 1 due to
suitable extensions of the sets Ld, Cd, and Gd, which are augmented for all d ∈ D
with χ(ykd) > ε. This is proven in Theorem 1. The correctness is then stated in
Theorem 2. Throughout the section we use the notations epi(fd) and hyp(fd) for the
epi- and hypograph of the function as well as the notations epiS(fd) and hypS(fd)
for their strict versions.

We first prove an auxiliary result for which we need the following definition:

Definition 2. Let yd ∈ Pd. For yd ∈ epi(fd) we define

R̄(yd) := {xd ∈ gr(fd) : xd1 ≥ yd1 ,xd2 ≤ yd2}
and for yd ∈ hyp(fd) we define

¯
R(yd) := {xd ∈ gr(fd) : xd1 ≤ yd1 ,xd2 ≥ yd2}.

Lemma 1. Let yd ∈ Pd(Ld,Cd,Gd) and let zd be the solution of the subsequent
subproblem (4). Then the following holds:

(a) If there exists an index j ∈ [r] with (xjd1 ,xjd2) = (yd1 , yd2) then zd = yd and
χ(yd) = 0.

(b) Suppose that χ(yd) > ε > 0 holds. Then there exists an index j ∈ [r − 1]
with

xjd1 < yd1 < xj+1
d1

, xjd2 < yd2 < xj+1
d2

, (6a)

xjd1 < zd1 < xj+1
d1

, xjd2 < zd2 < xj+1
d2

. (6b)

Moreover, zd ∈ R̄(yd) if yd ∈ epiS(fd) or zd ∈
¯
R(yd) if yd ∈ hypS(fd).

Proof. (a) Since yd ∈ Pd(Ld,Cd,Gd) holds it also fulfills the Constraints (5d)–(5i).
As the linearization points (xid1 ,xid2) are chosen such that xid2 = fd(x

i
d1

) holds for
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Figure 2. Illustration of the proof of (6b) of Lemma 1 for the
case yd ∈ hypS(fd) and Ld = {x0

d1
,x1
d1
}, Cd = {x0

d2
,x1
d2
}, Gd =

{f ′d(x0
d1

), f ′d(x
1
d1

)}

all i ∈ [r], we have f(yd1) = f(xjd1) = xjd2 = yd2 . Thus, yd is feasible for (4) with
optimal value χ(yd) = 0 and zd = yd.

(b) Because χ(yd) > ε > 0 and (a), there exists an index j ∈ [r − 1] with

xjd1 < yd1 < xj+1
d1

.

Together with (5e) this implies δ1
d = · · · = δjd = 1, δj+1

d ∈ (0, 1), and δj+2
d = · · · =

δrd = 0. Thus, (5f) and monotonicity of fd yield

xjd2 < yd2 < xj+1
d2

.

We only prove the case yd2 ∈ hypS(fd); see Figure 2 for an illustration. The
case yd2 ∈ epiS(fd) can be shown analogously. We first prove zd ∈

¯
R(yd). Let

x′d ∈ gr(fd) \
¯
R(yd) with yd1 < x′d1 . Strict monotonicity of fd and yd2 < fd(yd1)

imply yd2 < fd(yd1) < fd(x
′
d1

) = x′d2 and we obtain

||yd − (yd1 , fd(yd1))||22 < ||yd − x′d||22.

This implies that the subproblem’s objective at (yd1 , fd(yd1)) ∈
¯
R(yd) is smaller than

at x′d /∈ ¯
R(yd). The same holds for every x′d ∈ gr(fd) \

¯
R(yd) with x′d1 < f−1

d (yd2).
This shows zd ∈

¯
R(yd), which then yields

zd1 ≤ yd1 and yd2 ≤ zd2 .

From (6a) now follows
zd1 < xj+1

d1
and xjd2 < zd2

and strict monotonicity of fd finally implies

xjd1 < zd1 < xj+1
d1

and xjd2 < zd2 < xj+1
d2

. �

Part (a) of Lemma 1 states that χ(yd) = 0 holds if the solution of the master
problem is a linearization point in Cd. In this case, we do not have to cut off the
solution of the master problem. Thus, we only consider the case χ(yd) > ε > 0 in
the following and exploit the situation given by Lemma 1(b).
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Proposition 1. Let yd ∈ Pd be a solution of the master problem (5) with
yd ∈ epi(fd) and let zd be the solution of the subsequent subproblem (4) with
χ(yd) > ε > 0. Then zd is the orthogonal projection of yd onto gr(fd), respec-
tively on the tangent

xd2 = fd(zd1) + f ′d(zd1)(xd1 − zd1).

We now prove that a solution yd of the master problem with χ(yd) > ε > 0 is
always cut off in the formulation of the subsequent master problems.

Theorem 1. Let yd ∈ Pd(Ld,Cd,Gd) be a solution of the master problem (5) and
let zd be a solution of the subsequent subproblem (4) with χ(yd) > ε > 0. Then
yd /∈ Pd(L′d,C ′d,G′d) with L′d = Ld∪{zd1}, C ′d = Cd∪{zd2}, and G′d = Gd∪{f ′(zd1)}.
Proof. We distinguish the two cases yd ∈ epiS(fd) and yd ∈ hypS(fd) and start with
the former. The outer approximation cut for fd at zd as given in Constraint (5d) can
be written as n̄>d xd ≤ ξ̄d with n̄d = (−f ′d(zd1), 1)

> and ξ̄d = zd2 − f ′d(zd1)zd1 , where
n̄d is the normal and n̄>d zd = ξ̄d. Proposition 1 yields that zd is the unique orthogonal
projection of yd onto gr(fd). Thus, there is some cd ∈ R>0 with yd − zd = cdn̄d.
Multiplication of the tangent with cd yields n>d xd ≤ ξd with nd = yd − zd and
ξd = cdξ̄d. Obviously, hyp(fd) is strictly convex since fd is strictly concave. Hence,
we have (zd − yd)>(zh − zd) ≥ 0 for all zh ∈ hyp(fd) because yd /∈ hyp(fd). This
implies

n>d zh ≤ n>d zd = cdn̄
>
d zd = cdξ̄d = ξd.

Thus, n>d xd ≤ ξd is a valid cut for gr(fd) as gr(fd) ⊆ hyp(fd). On the other hand,

n>d yd = n>d zd + n>d (yd − zd) = ξd + ||nd||22 > ξd

holds. Hence, n>d xd ≤ ξd separates yd and we have shown yd /∈ Pd(L′d,C ′d,G′d). See
Figure 3 (left) for an illustration.

Consider now the case yd ∈ hypS(fd) and define Pd(L′d,C
′
d,G

′
d) by integrating zd

into the linearization. Lemma 1(b) yields

L′d = {x0
d1 , . . . ,xjd1 , zd1 ,xj+1

d1
, . . . ,xn+1

d1
}, (7a)

C ′d = {x0
d2 , . . . ,xjd2 , zd2 ,xj+1

d2
, . . . ,xn+1

d2
}, (7b)

G′d = {f ′d(x0
d1), . . . , f ′d(x

j
d1

), f ′d(zd1), f ′d(x
j+1
d1

), . . . , f ′d(x
n+1
d1

)}. (7c)

We define

W (yd) := {xd ∈ gr(fd) : yd /∈ Pd(L̂d, Ĉd, Ĝd),xjd ≤ xd ≤ x
j+1
d },

W̄ (yd) := {xd ∈ gr(fd) \W (yd) : xjd ≤ xd ≤ x
j+1
d },

with L̂d := Ld ∪ {xd1}, Ĉd := Cd ∪ {xd2}, and Ĝd := Gd ∪ {f ′d(xd1)}. The set
W (yd) represents all solutions zd of the subproblem (4), for which yd is cut off
in the next master problem; see Figure 3 (right) for an illustration. Thus, we
have to show zd ∈ W (yd). Since Lemma 1(b) ensures zd ∈

¯
R(yd) it is sufficient

to prove
¯
R(yd) ⊆ W (yd). Assume zd /∈ W (yd), i.e., zd ∈ W̄ (yd). This implies

yd ∈ Pd(L′d,C ′d,G′d). We now consider the Constraints (5e) and (5f) with δid = 1 for
all i ≤ j, δj+1

d ∈ [0, 1], and δid = 0 for all i ≥ j + 2;

yd1 = xjd1 + (zd1 − xjd1)δj
∗

d + (xj+1
d1
− zd1)δj+1

d , (8)

yd2 ≥ xjd2 + (zd2 − xjd2)δj
∗

d + (xj+1
d2
− zd2)δj+1

d . (9)

Here, j∗ is the new index of the incremental method after adding zd to L′d,C
′
d, and

G′d; see (7). Finally, we apply a case analysis:

(i) δj
∗

d = δj+1
d = 0. Equation (8) yields yd1 = xjd1 , which contradicts (6a) of

Lemma 1.
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xd2

xd1

gr(fd)

zd1x0
d1

x1
d1

zd2

x1
d2

x0
d2

ndy1
d

y2
d

zd

•
•

•
P
d
(L

′ d
, C

′ d
, G

′ d
)

xd2

xd1

gr(fd)

P
d
(L

d
, C

d
, G

d
)

x0
d1

x1
d1

x1
d2

x0
d2

•
Wd

W̄d

y2
d

Figure 3. Illustration of the proof of Theorem 1; Left: first
case y1

d ∈ epiS(fd) and second case y2
d ∈ hypS(fd) with

L′d =
{
x0
d1

, zd1 ,x1
d1

}
, C ′d =

{
x0
d2

, zd2 ,x1
d2

}
, and G′d ={

f ′d(x
0
d1

), f ′d(zd1), f ′d(x
1
d1

)
}
, Right: The proof of the second case

uses the sets W (yd) and W̄ (yd).

(ii) δj
∗

d ∈ (0, 1), δj+1
d = 0. Thus, (8) yields xjd1 < yd1 < zd1 ; a contradiction

because zd ∈
¯
R(yd) implies zd1 ≤ yd1 .

(iii) δj
∗

d = 1, δj+1
d = 0. Thus, (8) yields yd1 = zd1 respectively

fd(yd1) = zd2 and (9) yields yd2 ≥ zd2 . However, yd ∈ hypS(fd) implies
yd2 < fd(yd1) = zd2 ; again a contradiction.

(iv) δj
∗

d = 1, δj+1
d ∈ (0, 1). Thus, (8) yields zd1 < yd1 < xj+1

d1
and (9) yields

yd2 ≥ zd2 + (xj+1
d2
− zd2)δj+1

d > zd2 . Additionally, zd ∈
¯
R(yd) implies

yd2 ≤ zd2 ; a contradiction.
(v) δj

∗

d = δj+1
d = 1. In this case, (8) yields yd1 = xj+1

d1
, which contradicts (6a).

This shows zd ∈W (yd) and thus yd /∈ Pd(L′d,C ′d,G′d); see Figure 3 (left). �

We remark that the first case also follows from a suitable minimum principle; see,
e.g., [31, Theorem 9.3.3]. See also [3] for an application of the principle in a closely
related context.

Theorem 2. Algorithm 1 terminates after a finite number of iterations at an
globally optimal ε-feasible solution of (1) or with an indication that (1) is infeasible.

Proof. We first consider a single d ∈ D. Assume that the algorithm does not
terminate after a finite number of iterations. That is, there exists a subsequence
(indexed by `) of the iterates with

χ(y`d) > ε for all `.

Thus, there exists a further subsequence indexed by m such that all m-iterates
satisfy

ymd ∈ epiS(fd) or ymd ∈ hypS(fd).

We show that both cannot happen and start with the first case.
Let ymd be the corresponding master problem solutions. Since all variables

are bounded, this subsequence of iterates is bounded as well and we thus have a
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convergent subsequence (yµd ). Thus, for every δ > 0 we have

||yαd − yβd ||2 < δ (10)

for all sufficiently large indices α and β of the µ-subsequence. On the other hand,
all µ-iterates are excluded by an outer approximation cut from the feasible set of
the master problem in iteration m+ 1; see Theorem 1. This cut excludes at least
the ε-ball Bε(ymd ), which yields

||yαd − yβd ||2 > ε > 0

for all α,β. This contradicts (10).
Next, we consider the case ymd ∈ hypS(fd) for all iterates in the subsequence

indexed by m. Strict monotonicity of fd implies that the rectangle spanned by
the points ymd and zmd is cut off from the feasible set of the master problem in
iteration m+ 1 by the Constraints (5e) and (5f). Let δ > ε > 0 be the length of the
diagonal of this rectangle and let a and b denote its sides. Since zmd is an orthogonal
projection of ymd on fd, the equality

a

b
= f ′d(z

m
d1)

holds. Using the Pythagorean theorem, a and b can be written depending on δ and
f ′d(z

m
d1

) and so can the area of the rectangle:

ab =
δf ′d(z

m
d1

)√
1 + f ′d(z

m
d1

)
2

δ√
1 + f ′d(z

m
d1

)
2

=
δ2f ′d(z

m
d1

)

1 + f ′d(z
m
d1

)
2 > δ2γ > ε2γ

for some γ > 0 since f ′d is both bounded above and bounded away from zero.
However, the area of

hypS(fd) ∩ [ld,ud]

is finite, yielding a contradiction. �

We close this section by some concluding remarks. First, if Problem (1) is
infeasible, the master problem can still have ε-feasible solutions (see Definition 1)
that then will be found by Algorithm 1 according to Theorem 2. Second, let x∗ be
the solution of Problem (1) and let x̂ be the solution returned by Algorithm 1. Then,
c>x̂ ≤ c>x∗ holds because Algorithm 1 always considers a relaxation of the original
problem (1). Third, we remark that we have not made any statements about the
speed of convergence. It is possible to give worst-case iteration bounds based on the
geometrical ideas of the proof of Theorem 2. However, pathological examples might
exist that lead to arbitrary large worst-case estimations on the required number
of iterations. See, e.g., Figure 4, where the area that is cut off in every iteration
is very small and the subsequent master problem solutions are very close to each
other. Finally, we remark that one may also think of using other distance measures
like the `2 norm in the subproblem. We expect that it is also possible to prove
a theorem analogue to Theorem 2 when using, e.g., the `1 norm. However, the
presented proofs rely on the `2 norm and thus do not carry over directly.

4. Applications

In this section we show that our approach can be applied to a wide range of
applications. First, we discuss a simple mixed-integer optimal control problem for a
car fleet in Section 4.1. It is shown that the model can be reformulated such that it
is of type (1) and that it satisfies Assumption 1. Afterward, we show that the system
of differential equations for modeling pressurized flow in pipes with elastic walls
also satisfies the claimed analytical properties in Section 4.2. Finally, we present a
detailed mixed-integer nonlinear model of steady-state gas flow in pipeline networks
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xd2

xd1

gr(fd)

x0
d1

:= ld1
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:= ld2 ••
yd
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Pd(L
′
d, C

′
d, G

′
d)

Figure 4. A pathological example with slow convergence

in Section 4.3 and show that Assumption 1 is satisfied. Numerical results of our
decomposition method applied to the latter problem are given in the next section.

4.1. Optimal Control of a Fleet of Rocket Cars. The control of a rocket car
is a classical example in the optimal control literature; see, e.g., Example 1 in [30].
Although the system dynamics for a single rocket car are linear, with a quadratic
objective function (e.g., for measuring the control cost in the L2 norm) this classical
example gives rise to a nonlinear optimal control problem.

In order to illustrate how discrete and continuous control decisions are combined
in the problems that we consider in this paper, we extend this problem to the
problem to control a fleet of rocket cars. The cars have to be chosen in such a way
that the overall control cost satisfies an inequality constraint and, at the same time,
the objective function is minimized. In the objective function, the terminal time T
appears at which the cars have reached the target state. The corresponding control
cost depends on T in a nonlinear way.

Let a fleet of N ∈ N rocket cars be given. For i ∈ [N ] and t ∈ (0,T ), the ith
rocket car is modeled by the linear system

xi(0) = 0, x′i(0) = 0, (11a)

x′′i (t) = diui(t), t ∈ (0,T ), (11b)

xi(T ) = τ , x′i(T ) = 0, (11c)

where di > 0 is a real number that models the efficiency of the car; see, e.g., [24].
Here, the target state is described by a real number τ 6= 0. Initially the cars start
at zero.

The aim is to choose M ≤ N rocket cars from the fleet that can be steered to
the target state in such a way that an overall fuel constraint is satisfied. To define
this constraint, let some bound γ > 0 for the sum of the control costs be given. The
objective function that is to be minimized is the sum of the time T when all M cars
have arrived at the target and the costs ci of using the separate cars. Usually, the
most efficient cars have the highest cost.
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We consider the problem of time-optimal control of a selection ofM out ofN rocket
cars with a constraint on the total fuel consumption

min T +

N∑
i=1

ciσi (12a)

s.t. σi ∈ {0, 1} for all i ∈ [N ], (12b)
N∑
i=1

σi‖ui‖2L2(0,T ) ≤ γ,

N∑
i=1

σi = M , (12c)

xi(0) = 0,x′i(0) = 0 for all i ∈ [N ], (12d)

x′′i (t) = σidiui(t) for all i ∈ [N ], t ∈ (0,T ), (12e)

xi(T ) = σiτ ,x′i(T ) = 0 for all i ∈ [N ]. (12f)

The variable vector contains T ≥ 0,ui ∈ L2(0,T ), and σi ∈ {0, 1} with i ∈ [N ].
Note that both Constraint (12c) and (12e) introduce nonlinearities to the problem.
To rewrite this problem in the form (1), for i ∈ [N ] and T ≥ 0 we define the strictly
decreasing differentiable convex function

fi(T ) = inf ‖ui‖2L2(0,T )

s.t. ui ∈ L2(0,T ) and (11).

For an optimal fleet of cars, all fuel resources will be used to reach the target
state as fast as possible. Therefore we may assume that for an optimal fleet of
cars, the inequality constraint in (12c) is active. Thus, we can replace it by the
corresponding equality constraint. To obtain a linear model we introduce auxiliary
variables zi, yi ∈ R and additional linear inequality constraints. In fact, (12) is
equivalent to

min T +

N∑
i=1

ciσi

s.t. σi ∈ {0, 1} for all i ∈ [N ],

N∑
i=1

yi = γ,

N∑
i=1

σi = M ,

zi − γ(1− σi) ≤ yi ≤ γσi,
0 ≤ yi ≤ zi, zi = fi(T ).

with variables T ≥ 0,σi ∈ {0, 1}, and zi, yi ∈ R for all i ∈ [N ], where the auxiliary
variables yi are used to linearize the nonlinear products σizi. This model is exactly
of type (1) and satisfies Assumption 1. Thus, it can be tackled by our proposed
algorithm.

4.2. Pressurized Flow in Pipes with Elastic Walls. We now consider the
following system of hyperbolic balance equations describing fluid flow in an extensible
pipe system. Such systems are adequate for describing blood flow in arteries or flow
in high pressure pipe systems, in particular under high temperature; see, e.g., [5]
for a recent survey. Especially for the latter case, the design of high pressure steam
pipes in, e.g., power plants, requires the incorporation of discrete aspects; see [39].

The system under consideration can be described as follows. Let A0 be the
stress-free reference cross section, e.g., at the beginning, of the given straight pipe
and A(x, t) the cross section at the spatial point x ∈ [0,L] at time t ∈ [0,T ]. The
averaged velocity of the fluid is denoted by m(x, t), ρ denotes the fluid’s density
which is assumed to be constant for simplicity, ν is the viscosity, and α > 1 is a
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parameter representing the Coriolis force. The system of equations consisting of the
continuity and momentum equation reads

∂

∂t
A+

∂

∂x
m = 0,

∂

∂t
m+

∂

∂x

(
αm2

A

)
+
A

ρ

∂

∂x
p(A) = − 2α

α− 1
ν
m

A
.

Let the wall stiffness β ≥ 1 be given. Then the pressure law is given by

p(A) = G0

((
A

A0

) β
2

− 1

)
.

The case β = 1 is a commonly studied situation, while β →∞ represents the case
when the wall stiffness tends to∞ and, thus, no extension takes place. We, therefore,
have the following closed system

∂

∂t
A+

∂

∂x
m = 0,

∂

∂t
m+

∂

∂x

(
αm2

A
+

G0βA0

ρ(β + 2)

(
A

A0

) β
2 +1
)

= − 2α

α− 1
ν
m

A
.

We define a := A/A0 > 1,

F (a,m) :=
αm2

A0

1

a
+

G0βA0

ρ(β + 2)
a
β
2 +1,

and assume A0 to be a constant, as well as that the process is stationary, i.e.,
∂

∂t
A = 0,

∂

∂t
m = 0, (x, t) ∈ [0,L]× [0,T ].

This implies that m(x, t) = m0 for all (x, t) ∈ [0,L]× [0,T ]. The equation to solve
for a is then given by

∂

∂x
F (a,m) = − 2α

α− 1

νm

A0

1

a
.

Separation of variables leads to the implicit equation

F(a,m)(x) = F(a,m)(x0)− 2α

α− 1
νm(x− x0)

for a, where x0 = 0 indicates the left end of the pipe and

F(a,m)(x) = −αm
2

A0
ln(a(x)) +

G0βA0

ρ(β + 4)
a(x)

β
2 +2.

We assume positive pressure in this particular pipe and obtain
∂

∂a
F(a,m) = −αm

2

a
+
G0β

2ρ
a
β
2 +1.

Clearly, for suitable parameters, ∂aF(a,m) > 0 and

∂2

∂a2
F(a,m) =

αm2

A0

1

a2
+
G0βA0

4ρ
(β + 2)a

β
2 +1 > 0

holds. Thus, as a function of a, F(a,m) is, on (1,∞), strictly monotonically
increasing and convex. Hence, the inverse is concave and, as a function of a(x0),
a(·) is concave because minus the inverse of F(·,m) is convex and F(·,m) is convex
as well as strictly monotonically increasing in the given range. A detailed analysis
as in the previous example also reveals this fact. In summary, models of type (1)
that include the discussed system satisfy Assumption 1 and can thus be tackled by
the proposed method.
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4.3. Stationary Gas Transport Optimization. The optimization of gas trans-
port networks is currently a highly active field of research of applied optimization;
for an overview of the literature see the recent book [26] and the survey article [35]
as well as the references therein.

One of the main questions in gas transport is to decide feasibility of nominations,
i.e., of prescribed supply and discharge flows together with additional restrictions like
bounds for the gas pressures etc. Gas mainly flows from higher to lower pressures.
Thus, in order to transport gas over large distances through pipeline systems it is
required to increase the gas pressure by compression. This is realized by compressors
that can be, among other network devices, controlled by the dispatcher and thus
add discrete aspects to the problem. In combination with highly nonlinear gas
physics, entire gas transport models are mixed-integer nonlinear problems governed
by differential equations for modeling gas physics.

We focus on two special cases: First, we consider the stationary case, i.e., the
network is in an equilibrium. Second, we restrict ourselves to transport networks
that are trees—a case that is frequently discussed in the literature; see, e.g., [35] for a
recent survey and, e.g., [21] for a theoretical study. This case leads to priorily known
flows in the network. In what follows we describe the considered mixed-integer
model with ODEs and show why it can be tackled with the algorithm presented
above.

We model a gas network as a directed graph G = (V ,A) with node set V and
arc set A. The set of nodes is partitioned into the set of entry nodes V+, where gas
is supplied, and the set of exit nodes V−, where gas is discharged from the network,
and the set of inner nodes V0. Entry nodes model, e.g., points where liquefied
natural gas (LNG) carriers arrive and feed in gas, whereas exit nodes may be power
plants or municipal utilities. The set of arcs consist of pipes Api, control valves Acv,
and compressor machines Acm, which all are described in detail below.

Gas flow in networks is mainly described by mass flow q and the three gas
state quantities pressure p, temperature T , and density ρ. These state quantities
are coupled by an equation of state, which we choose to be the thermodynamical
standard equation for real gases

ρRszT = p, (13)

where Rs is the specific gas constant and z is the compressibility factor that we
model using the formula

z(p,T ) = 1 + αp, α = 0.257
1

pc
− 0.533

Tc

pcT

of the American Gas Association; see, e.g., [27]. The quantities pc and Tc are
the pseudocritical pressure and temperature, respectively, which we assume to be
constant. We further assume isothermal gas flow, i.e., we fix the gas temperature T
at a suitable constant value. We associate positive gas flow on arcs a = (u, v) with
flow in arc direction, i.e., qa > 0 if gas flows from u to v and qa < 0 if gas flows from
v to u. The sets δin(u) := {a ∈ A : a = (v,u)} and δout(u) := {a ∈ A : a = (u, v)}
are the sets of in- and outgoing arcs for node u ∈ V .

For each node u ∈ V , we assume lower and upper values p−u and p+
u to be given

that bound the corresponding pressure variable pu, i.e.,

pu ∈ [p−u , p+
u ] for all u ∈ V . (14)

In addition, we model mass conservation by

∑
a∈δout(u)

qa −
∑

a∈δin(u)

qa = qu


≥ 0, u ∈ V+,

≤ 0, u ∈ V−,

= 0, u ∈ V0,

for all u ∈ V . (15)
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For every arc a ∈ A there is a mass flow variable qa that is bounded from below
and above, i.e.,

qa ∈ [q−a , q+
a ] for all a ∈ A. (16)

The remaining model of an arc depends on the specific arc type.
Pipes a ∈ Api are used to transport the gas through the network. They typically

outnumber all other network elements. A pipe is specified by its length La, its
diameter Da, and its friction factor λa, which we model using the empirical formula
of Prandtl–Colebrook; see, e.g., [8] or [38, Chap. 9]. We assume each pipe to be
cylindrically shaped and horizontal. In this situation, isothermal gas flow through a
pipe is described by a system of partial differential equations—the Euler equations
for compressible fluids [11]—consisting of the continuity and the momentum equation
that form a quasilinear system of hyperbolic balance laws. In what follows, we only
consider the case in which the gas network is in an equilibrium. In this stationary
case the continuity equation states constant mass flow for every pipe, justifying the
choice for a single flow variable qa for all arcs a ∈ A. Thus, we are left with the
stationary variant

∂x

(
pa +

q̄2
a

ρa

)
= −1

2
θa
q̄a|q̄a|
ρa

, q̄a = qa/Aa, θa =
λa
Da

, a ∈ Api, (17)

of the momentum equation, coupling density ρa = ρa(x) and pressure pa = pa(x)
with mass flow qa along the arc, i.e., x ∈ [0,La]. In words, the momentum equa-
tion (17) describes the pressure loss in a pipe due to ram pressure and frictional
forces. Note that the density ρ in (17) can be eliminated using the equation of
state (13). The coupling of the pressure solution of (17) with node pressure variables
of (14) is given by

pu = pa(0), pv = pa(La) for all a = (u, v) ∈ Api. (18)

We remark that we also consider so-called short pipes that are used as auxiliary
network elements, e.g., to model multiple entries at a single entry node. They can
be seen as pipes a = (u, v) with length 0, yielding pu = pv.

Control valves a ∈ Acv are used to decrease gas pressure. This is mainly required
at transition points between large transport pipelines and regional substructures that
are not able to handle high pressure levels. These elements involve some discrete
aspects since they can be operated in different modes: They can be active, in bypass
mode, or closed. Closed control valves simply block the gas flow (qa = 0) and thus
decouple the in- and outflow pressure. If they are open, control valves can operate in
bypass mode, yielding equal pressures pu = pv. Finally, if activated, control valves
are able to decrease the inflow pressure by a controllable amount ∆a ∈ [∆−a , ∆+

a ].
In summary, the complete description reads

a is active =⇒ pv = pu −∆a, ∆a ∈ [∆−a , ∆+
a ], (19a)

a is in bypass mode =⇒ pv = pu, (19b)
a is closed =⇒ qa = 0. (19c)

More detailed information about control valves and specific MIP models can be
found in [16].

Finally, we describe our model of compressor machines a ∈ Acm. They are
used to increase the inflow gas pressure to a higher outflow pressure in order to
transport gas over large distances. In general, a compressor machine can be in the
same three modes as control valves, see (19). However, the active state is much
more complicated. We only consider so-called turbo compressors that are typically
modeled by characteristic diagrams; see Figure 5 for an example. The gray area
denotes the feasible operating range of the machine and the additionally given
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Figure 5. Characteristic diagrams of a turbo compressor. Feasible
operating ranges are marked gray.

isolines allow to compute the required power Pa for the compression process. It
turns out that the model of a turbo compressor is highly nonlinear and nonconvex.
Since our focus here does not lie on detailed compressor modeling we use known
mixed-integer linear outer approximations

ca(pu, pv, qa,Pa, ya) ≥ 0 for all a = (u, v) ∈ Acm (20)

of the operating ranges. The variables ya are additional auxiliary variables required
to formulate the specific outer approximation model; see [16] for the details.

We now collect all component models and obtain the entire optimization problem

min
∑
a∈Acm

Pa (21a)

s.t. pressure and flow bounds: (14), (16); (21b)
mass conservation: (15); (21c)
pipe model: (17), (18); (21d)
control valve model: (19); (21e)
compressor model: (20). (21f)

This model is a nonconvex mixed-integer optimization problem that contains the
ODE (17) for every pipe. Typically, the ODE is discretized or replaced by an
approximation of its solution in order to obtain a finite-dimensional problem; see [26,
40] and the references therein. We, however, follow a different approach and
decompose (21) as described in Section 2.

To this end, we have to prove that the described model can be written as an
optimization problem of type (1) with concave and strictly increasing functions f .
In our setting, the functions fd correspond to the relation between in- and outflow
pressures of the pipes, i.e., D = Api. We now prove that the relation between in-
and outflow pressures is concave and strictly increasing. Under the assumption of
subsonic flow, i.e., for the squared mach number η satisfying

ηa(x) :=
q̄2
aT̂

pa(x)
2 < 1, x ∈ [0,La], T̂ := RsT (22)

and a positive compressibility factor

z(pa(x)) > 0 for all x ∈ [0,La], (23)
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the pressure loss along pipe a = (u, v) ∈ Api for given inflow pressure pu = pa(0)
and mass flow q̄a reads

pa(x; pu, q̄a) = F−1
a

(
Fa(pu)− 1

2
T̂ q̄a|q̄a|θax

)
, x ∈ [0,La], (24)

where
Fa(pa) :=

1

α
pa +

(
q̄2
aT̂ −

1

α2

)
ln(|1 + αpa|)− q̄2

aT̂ ln(pa)

holds; see [23] for the case of real gas and [22] for the case of ideal gas. The
derivatives of Fa are given by

F ′a(pa) =
p2
a − q̄2

aT̂

pa(1 + αpa)
, F ′′a (pa) =

p2
a + q̄2

aT̂ (1 + 2αpa)

p2
a(1 + αpa)

2 , (25)

and satisfy
F ′a(pa) > 0, F ′′a (pa) > 0. (26)

Thus, the use of the inverse in (24) is justified because Fa is strictly increasing in
pa for subsonic flow. From now on, we omit the parameters pu, q̄a of the function
pa(x; pu, q̄a) and assume x ∈ (0,La]. The first derivatives of the pressure solution
are given by

∂pupa(x) =
F ′a(pu)

F ′a(pa(x))
and

∂q̄apa(x) =
2q̄aT̂ pa(x)za(pa(x))

pa(x)
2 − q̄2

aT̂

[
ln

(
za(pu)

za(pa(x))

)
− ln

(
pu

pa(x)

)
− 1

2
sign(q̄a)θax

]
.

For positive flow they satisfy ∂pupa(x) > 0 and ∂q̄apa(x) < 0. Having these
preliminary results at hand, we can now state and prove concavity of pa(x) as a
function of pu.

Theorem 3. Suppose that assumptions (22), (23), and q̄a > 0 hold. Then

∂2
pupa(x) < 0 for all x ∈ (0,La].

Proof. For the ease of presentation, we now also drop the argument x and the arc
index a of pa(x). A straightforward calculation gives

∂2
pup =

F ′(p)F ′′(pu)− F ′(pu)F ′′(p)∂pup

F ′(p)2

and substituting the first derivative yields

∂2
pup =

F ′′(pu)

F ′(p)
− F ′(pu)

2
F ′′(p)

F ′(p)3 .

We multiply by F ′(p) and obtain

F ′(p)∂2
pup = F ′′(pu)−

(
F ′(pu)

F ′(p)

)2

F ′′(p),

i.e., we see that because of (26) only the right-hand side determines the sign of ∂2
pup.

Substituting (25) yields

F ′(p)∂2
pup

=
p2
u + q̄2T̂ (1 + 2αpu)

p2
u(1 + αpu)2

−
(

(p2
u − q̄2T̂ ) p(1 + αp)

(p2 − q̄2T̂ ) pu(1 + αpu)

)2
p2 + q̄2T̂ (1 + 2αp)

p2(1 + αp)2

=
p2
u + q̄2T̂ (1 + 2αpu)

p2
u(1 + αpu)2

− (p2
u − q̄2T̂ )2 (p2 + q̄2T̂ (1 + 2αp))

(p2 − q̄2T̂ )2 p2
u(1 + αpu)2

.
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Table 1. Data of the Greek gas network with 134 nodes (above)
and 133 arcs (below). One of the entry nodes is of LNG type.
Eleven of the exit nodes are power plants.

Type Quantity

Entries 3
Exits 45
Inner nodes 86

Pipes 86
Short pipes 45
Control valves 1
Compressors 1

We take the common denominator and get

F ′(p)∂2
pup =

(p2
u + q̄2T̂ (1 + 2αpu))(p2 − q̄2T̂ )2 − (p2

u − q̄2T̂ )2(p2 + q̄2T̂ (1 + 2αp))

p2
u(1 + αpu)2(p2 − q̄2T̂ )2

.

The sign is completely determined by the numerator, which we denote by N . Using
the squared mach numbers as defined in (22) we obtain

N = p2
u(1 + η0(1 + 2αpu))p4(1− η)2 − p2

u(1 + η0(1 + 2αp))p4
u(1− η0)2,

where η0 = ηa(0) is used. We compare the relevant terms one by one. For positive
flow the pressure is decreasing in x; see [23]. Thus, p4 < p4

u holds and the squared
mach numbers satisfy η0 < η, yielding (1− η)

2
< (1− η0)

2. Using α < 0 we get
αp > αpu, which implies

1 + η0(1 + 2αpu) < 1 + η0(1 + 2αp).

It remains to prove the positivity of 1 + η0(1 + 2αp) and 1 + η0(1 + 2αpu). Combin-
ing (22) and (23) we get

1 + η0(1 + 2αp) = 1− η0 + 2η0(1 + αp) > 0.

The term 1 + η0(1 + 2αpu) can be treated analogously. Finally, putting all together
yields N < 0 and the claim ∂2

pupa(x) < 0 follows. �

5. Numerical Results

We now present and discuss numerical results of Algorithm 1 applied to Prob-
lem (21). Our real-world test instance is the Greek natural gas transport network
that is operated by the Greek natural gas transmission system operator DESFA;
see [9]. Figure 6 visualizes the network topology and Table 1 gives some statistical
information about the network. Note that the considered network is a tree. Since
detailed information about the compressor are not publicly available, we use the
data of the compressor compressor_1 of the publicly available instance GasLib-135;
see [25]. Daily nomination data ranging from 11/01/2011 to 02/17/2016 is available
on the DESFA website. 336 days in this range have imbalanced nominations or
other invalid data, yielding an instance set of 1234 remaining days. We additionally
increase all supplied and discharged flows by a factor of 2 in order to increase the
nonlinearity and thus the overall hardness of the problem.

Algorithm 1 iteratively solves an MIP and multiple NLP models. We imple-
mented the MIP models using the C++ software framework LaMaTTO++ [29] and
used Gurobi 6.5.0 [20] for solving the MIPs. All NLP models are implemented in
Matlab R2015b [33] and solved using fmincon with default settings. That is, we
use the internal SQP solver with given first- and second-order information and a
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Figure 6. The Greek gas network with entries (triangle), one
compressor machine (circle), and one control valve (square). The
large number of exits (45) are distributed over entire network.

Table 2. Basic overview of the results; separated for feasible and
infeasible instances. The number of iterations is denoted by k and
all runtimes are given in seconds.

Solution status # ∅k ∅ Runtime ∅ Runtime (id.)

optimal 710 4.20 14.99 1.09
infeasible 524 1.00 0.59 0.06

constraint violation and termination tolerance of 10−6. All computations have been
performed on an Intel c© CoreTMi5-3360M CPU with 4 cores and 2.8 GHz each and
4 GB RAM. We choose ε = 10−5 (scaled to denote error in bar for the pressure loss
on pipes) as the tolerance of Algorithm 1.

Table 2 gives a basic overview of the results. All instances have been solved by
our algorithm: Approximately 58 % of the instances are solved to global optimality
whereas ∼42 % are proven to be infeasible by our method. It can be seen that
infeasibility is detected faster than global optimality is proven (∼1 vs. 4 iterations).
The last two columns state the average runtime of our current implementation
(∅ Runtime)—in which we solve all 86 subproblem NLPs (one for every pipe)
sequentially—and the idealized runtime (∅ Runtime (id.)) that we obtain if all
independent subproblems would have been solved in parallel.

For a more detailed analysis of the results and the behavior of our algorithm we
have randomly chosen 30 instances and state the results in Table 3. Here, 66 % of the
considered instances are solved to optimality while the remaining 33 % are proven
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Table 3. Detailed results for 30 randomly chosen instances. Solu-
tion status (Stat.), optimal objective function value (Obj.), required
number of iterations (k) and total runtimes (Total), idealized total
runtimes (Total (id.)) in case of subproblem parallelization, aggre-
gated runtimes of all master problems (Master), of all subproblems
(Sub), and of all subproblems in case of parallelization (Sub (id.)).
All runtimes are given in seconds.

Runtimes

Instance Stat. Obj. k Total Total (id.) Master Sub Sub (id.)

11/05/2011 inf. — 1 0.28 0.02 0.01 0.27 0.01
11/08/2011 inf. — 1 0.29 0.02 0.01 0.28 0.01
12/23/2011 opt. 525.81 4 12.14 0.88 0.06 12.08 0.82
04/03/2012 opt. 362 4 12.28 0.83 0.09 12.19 0.74
04/19/2012 opt. 314.23 4 13.29 0.95 0.14 13.15 0.81
05/29/2012 opt. 510.19 4 11.94 0.83 0.06 11.89 0.77
07/29/2012 opt. 455.45 4 20.63 1.38 0.11 20.51 1.27
09/19/2012 opt. 0 5 14.99 1.04 0.18 14.81 0.86
10/08/2012 opt. 497.92 4 12.59 0.88 0.08 12.51 0.80
03/06/2013 inf. — 1 0.26 0.01 0.01 0.25 0.01
03/16/2013 inf. — 1 0.30 0.03 0.01 0.29 0.02
04/24/2013 opt. 644.42 4 11.94 0.84 0.06 11.88 0.78
05/27/2013 opt. 332.4 4 12.31 0.96 0.07 12.24 0.88
08/24/2013 opt. 334.23 4 12.46 0.90 0.09 12.37 0.82
01/25/2014 inf. — 1 0.40 0.05 0.01 0.40 0.04
05/15/2014 opt. 0 5 15.30 1.14 0.20 15.10 0.94
07/04/2014 inf. — 1 0.32 0.03 0.01 0.32 0.03
07/23/2014 opt. 0 5 16.75 1.26 0.23 16.51 1.03
08/12/2014 opt. 281.57 4 12.27 0.87 0.08 12.19 0.79
09/04/2014 opt. 441.71 4 12.75 0.84 0.06 12.69 0.78
09/07/2014 opt. 250.44 4 13.03 1.00 0.12 12.91 0.88
11/06/2014 inf. — 0 0.00 0.00 0.00 0.00 0.00
11/14/2014 inf. — 0 0.00 0.00 0.00 0.00 0.00
11/25/2014 opt. 440.35 5 18.56 1.45 0.17 18.40 1.28
03/21/2015 opt. 0 3 9.54 0.79 0.07 9.47 0.72
07/19/2015 opt. 405.8 5 17.16 1.18 0.19 16.97 0.99
08/27/2015 opt. 282.92 4 12.50 0.92 0.10 12.39 0.82
09/06/2015 opt. 397.69 4 14.42 0.98 0.07 14.35 0.91
11/06/2015 inf. — 1 0.26 0.03 0.01 0.26 0.02
12/14/2015 inf. — 1 0.28 0.01 0.00 0.28 0.01

to be infeasible. Feasible instances can be further distinguished into nominations
that require compression (i.e., the objective value is larger than zero) and those that
do not require compression. It is noteworthy, that ∼71 % of all feasible instances
require compression yielding an optimal objective greater than 0. Regarding the
method itself it can be seen again that infeasibility is detected quite fast (0 or
1 iteration), while finding a global optimal solution requires more iterations (3 to 5).

Finally, we discuss the complexity of the overall method that is determined by the
complexity of the master and subproblems as well as the number of iterations of the
method itself. Applied to the gas transport problem, the number of (independent)
NLPs to be solved in the subproblem is constant over all iterations and equals the
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Figure 7. Average fmincon iterations for all subproblems (left)
and Gurobi simplex iterations for all master problems (right) for all
instances in iteration k of the decomposition method.

number of pipes in the network. Thus, the complexity of all subproblems stays
the same over the course of the iterations. Nevertheless, the NLPs become easier
to solve as the master problems provide better initial solutions from iteration to
iteration. This can be seen in Figure 7 (left), where the respective average fmincon
iterations for all 1234 instances are plotted. Note further that there are even average
fmincon iteration values less than 1. In these cases, the master problem’s solution is
often already feasible for the subproblem. The development of the complexity of
the MIPs of the master problem over the course of the iterations is different. These
MIPs grow from iteration to iteration due to added cut inequalities and additional
binary variables. Since we never add more than one discretization point per iteration
and pipe, this growth is bounded from above and the size of the MIP (in terms of
constraints and variables) grows linearly over the course of the iterations. This linear
growth translates into an exponential increase in simplex iterations; see Figure 7
(right). However, this fact cannot be avoided when solving MIPs since it is due to
the exponential worst case complexity of MIPs themselves. As a consequence, our
method is especially tailored for instances that yield low iteration counts of the
overall method as it is the case for the gas transport problem at hand.

6. Conclusions

In this paper we proposed a decomposition based method for solving mixed-
integer nonlinear problems, where the nonlinearity is not explicitly known. Those
“black-box” nonlinearities may arise, e.g., due to differential equations for which no
analytic solution is known or due to expensive simulation runs. By assuming certain
analytic properties of the nonlinearities we can prove that our algorithm finitely
terminates with an approximate feasible global optimal solution. The applicability
of our method is illustrated by three case studies from the field of steady-state
gas transport, of pressurized flows in pipes with elastic walls, and from the field
of optimal control. It is shown that all these applications satisfy the analytical
assumptions on the nonlinearities. For the gas transport problem we also present
promising numerical results on instances of the Greek natural gas transport network.
We are convinced that comparable results could be obtained on similar problems
that are also defined on a network like, e.g., water or power flow networks.

Nonetheless, there is still room for improvement and there are more complicated
cases to consider. For instance, one focus of our future work will be to extend the
algorithmic ideas in this paper to the case of mixed-integer nonlinear models where
the nonlinearities are given by time-dependent partial differential equations.
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