ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 49-12 (2016) 408413

The migrating birds optimization
metaheuristic for the permutation flow
shop with sequence dependent setup times

Iméne Benkalai* Djamal Rebaine * Caroline Gagné *
Pierre Baptiste **

* Université du Québec a Chicoutimi, Saguenay (QC), Canada
G7H-2B1(e-mails: imene.benkalail Qugac.ca ; djamal.rebaine@uqac.ca ;
caroline.gagne@uqac.ca).

** Ecole Polytechnique de Montréal, Montréal (QC), Canada H3T-1J4
(e-mail: pbaptiste@polymtl.ca)

Abstract: This paper addresses the problem of scheduling a set of independent jobs with setup
times on a set of machines in a permutation flow shop environment. A metaheuristic known
as the Migrating Birds Optimization (MBO for short) is designed for the minimization of the
overall completion time. A computational study is conducted to analyze the efficiency of this
approach on instances that can be found in Sistemas de Optimizacion Aplicada (http://soa.

iti.es/problem-instances).

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Scheduling, flow shop, setup times, metaheuristic, migrating birds optimization.

1. INTRODUCTION

We address in this paper the permutation flow shop prob-
lem with sequence dependent setup times. This problem
can be briefly described as follows. We are given a set
of n independent jobs to be processed on a set of m
machines. Each job comprises m operations that have to be
processed without preemption, in this order, on machine
M7, machine Ms, and so on until it completes on machine
M,,. The operating sequence of the jobs is the same on
every machine, i.e. if one job is at the j-th position on
machine M7, then this job will be at the j-th position
on all the machines. Furthermore, if operations j and k
are processed in that order on machine M;, then a setup
time s;5, must elapse at the completion of operation j and
before operation k takes place on machine M;. This time
is needed to adjust machines before they execute the next
job in the processing sequence. We seek a valid schedule of
the jobs in order to minimize the overall completion time,
known as the makespan. Using the classical scheduling no-
tation (see e.g. Pinedo [2002]), this problem is represented
as Fp,[prmu, k| Cmaz-

In cases involving sequence dependent setup times, the
algorithms for minimizing the makespan tend to be com-
plicated ; indeed, the consideration of setup times adds to
the complexity of scheduling problems, as it is the case in
the one-machine environment for example [Pinedo [2002]].

Flow shop scheduling problems with setup times exist
naturally in many real world situations. Various applica-
tions are given in the literature where setup times may
be needed for instance to change temperature or a man-
ufacturing mold. We may cite the paper cutting where
the machines need to be adjusted when changing from
one cutting batch to another [Ruiz and Stutzle [2008]].

Another example is the problem that arises when manu-
facturing different types of tires requiring to change the
manufacturing mold of the multi-purpose machines. A
third and last example is the bakery problem where the
baked products need different temperatures to cook, so
adjustments would be required between two products.

The permutation flow shop scheduling problem with setup
times is known to be A P-hard in the strong sense [Gupta
[1986]], even for the case of m = 1 machine [Ruiz et al.
[2005]]. Therefore, the approximation approach is well
justified as a solving method. In recent years, intelligence-
oriented search algorithms such as Genetic Algorithms,
Tabu Search, Simulated Annealing, and so on, that mimic
nature phenomena, have been employed to solve schedul-
ing problems. In this paper, we focus on a metaheuris-
tic known as the Migrating Birds Optimization method
(MBO for short), recently introduced by Duman et al.
[Duman et al. [2012]]. This metaheuristic has only been
applied to a very few problems. In addition, the promis-
ing results of this method on the Quadratic Assignment
Problem [Duman et al. [2012]] make it a good candidate
to solve the problem under study.

This paper is organized as follows. Section 2 describes the
problem under study. Section 3 presents a brief review
of the previous works related to this problem. Section 4
discusses the Migrating Birds Optimization method. Sec-
tion 5 presents the experimental study we conducted on
the efficiency of this method. Finally, in Section 6, we
present our concluding remarks.

2. PROBLEM DESCRIPTION

The flow shop scheduling problem with setup times can
be described as follows. Let J = {1,2,...,n} be a set

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.07.640

Imeéne Benkalai et al. / IFAC-PapersOnLine 49-12 (2016) 408—413 409

of n jobs to be processed without preemption by M =
{My, M, ..., M} aset of m machines. A processing time
p;j is given to denote the time spent by job j on machine
M;, and a setup time s;;; denotes the time that must
elapse between the completion of job j and the start of
job k whenever the former precedes the latter on machine
M; in a given sequence. We seek a valid schedule of the
jobs in order to minimize the makespan. More formally,
we seek a permutation © = (7(1),...,7(n)) on set J such
that

Crnaz (") = max Cya0 (1),
mell
where I denotes the set of the n! permutations over set J,

m and 7* are in II, and Cjuqq () is the overall completion
time associated with permutation 7.

The value of the makespan for a given permutation 7 is
computed as follows. Let C((5),4) be the completion time
of job m(j) on machine M;. It then follows Cps(m) =
C(m(n), m), where C(n(j),k) of job 7(j) on machine My
is given by the following recursive formula.

k
C(ﬂ—(]‘)? k) = Zpi,‘n'(l); k= 17€7m
i=1

j—1

C(ﬂ—(])v 1) = Z(pl,ﬂ(q) + Sl,‘n’(q),ﬂ(q—i-l)) +p1,7r(j);j = 27£a n

q=1
C(m(5), k) = max{Cr1,x(5), Cr,m(j—1) + Skm(j-1),7(5) }
+pk,7'r(j)7 k= 27£7m ; .] = 2a€7 n.

3. RELATED WORKS

Since the problem is N P-hard in the strong sense, the
metaheuristic approach has been extensively utilized as a
solving approach for the F,,|prmu, s;i|Cras problem. In
this section, we review the state of the art of the important
works that have been done in this area. A general survey
is given in Allahverdi et al. [Allahverdi et al. [2008]].

Let us first start with the Genetic Algorithm designed by
Ruiz et al. [Ruiz et al. [2005]]. The authors compare the
efficiency of Genetic Algorithms with other approaches
that have been shown to produce good results on the
standard flow shop (without setup times). They extended
Taillard’s standard flow shop instances. Their Genetic
Algorithm modifies a part of the population if the search
happens to ”stagnate” !, and has a selection strategy
based on The Roulette Wheel and Tournament Selection
[Talbi [2009]]. The offspring are taken to build the next
population along with the best parents. The authors also
introduce a new crossover operator that they consider
more efficient. It allows to preserve sequences of the
solutions by copying ”blocs” of two jobs that are present
in both parents directly in the offspring and then applies
the two-point crossover. It is claimed in that paper this
algorithm outperforms by far the other algorithms listed
in their study.

Kumar and Singhal [Kumar and Singhal [2013]] also pro-
posed a Genetic Algorithm for the resolution of the same
problem as above with splittings. This algorithm has the

1 The algorithm does not manage to improve the current best
solution for a certain number of iterations.

same evolution strategy as the previous one, a tournament
selection strategy, and uses a two-point crossover followed
by a repair phase?. Its mutation operator consists in re-
positioning a job. The authors also tested the effects of
the variation of crossover and mutation probabilities on
the quality of the results. Their algorithm often manages
to find the optimal solutions for the instances in their
testbed more or less rapidly depending on the previously
cited probabilities.

Another algorithm, the Iterated Greedy Algorithm, was
also applied to the same problem as above by Ruiz and
Stiitzle [Ruiz and Stutzle [2008]]. This algorithm consists
of two phases: a phase of destruction that produces a par-
tial solution, and a phase of construction that completes
the latter and replaces the current solution according to
some acceptance criterion. Their experimental study shows
that the efficiency of this algorithm is quite promising.

Let us also cite the Tabu Search algorithm designed by
Santos et al. [Santos et al. [2014]], in which the total
weighted tardiness is now the criterion to minimize. The
idea here is to explore a small neighborhood based on job
insertion with a dynamic tabu list, being supported by
a speedup due to a bookkeeping of solution information.
Their algorithm is quite efficient as it improves the best
known solutions within short running times.

To solve a flow shop with the so-called family setup times,
Lin et al. [Lin et al. [2011]] suggest using a multi-start
version of the Simulated Annealing approach. The job set
can be split into ”families”, and the setup times occur
only between two jobs that belong to different families.
Their approach takes advantage of the main properties
of the Simulated Annealing (e.g. effective convergence,
efficient use of memory, and easy implementation) and
those of multi-start hill climbing strategies (e.g. sufficient
diversification, and efficient sampling of the neighborhood
solution space). It performs a given number of restarts
from different solutions, thus, offering more chances to
escape from local optima. The explored neighborhood is
based on family jobs swaps and insertions. Their approach
was shown to perform extremely well compared to other
existing algorithms such as the Mimetic Algorithm of
Franga et al. [Franca et al. [2005]] and the Tabu Search
algorithms of Hendizadeh et al. [Hendizadeh et al. [2008]].

Finally, we cite the work of Dong et al. [Dong et al. [2009]]
in which different priority rules are compared such as the
NEHT-RB heuristic [Rios-Mercado and Bard [1998]], and
the PB heuristic by Tseng et al. [Tseng et al. [2006]]. This
study resulted in a classification of which heuristic is best
suitable depending on the setup times.

On the other hand, the Migrating Birds Optimization is
a rather recent method that has only been applied to a
very few problems to date. First designed by Duman et
al., its first application was on the Quadratic Assignment
Problem [Duman et al. [2012]]. The authors used a 2-
interchange neighborhood that consisted in switching two
cells in a solution. The promising results it provided made
researchers consider it as a solving method for scheduling
problems. It was adapted to solve the permutation flow
shop scheduling problem by Tongur and Ulker [Tongur and

2 To fix the unfeasible solutions.

410 Iméne Benkalai et al. / [FAC-PapersOnLine 49-12 (2016) 408413

Ulker [2014]]. They used the same neighborhood structure
as in the original algorithm and tested their method on
Taillard’s benchmark for the flow shop scheduling problem.
They obtained good results comparatively to the bench-
mark’s upper bounds. Another application of the Migrat-
ing Birds Optimization was for the industrial scheduling
problem [Ramanathan and Ulaganathan [2014]]. Although
it is not clear whether the authors dealt with the permuta-
tion flow shop scheduling problem or with the hybrid flow
shop scheduling problem.

4. THE MIGRATING BIRDS OPTIMIZATION
APPROACH

The MBO method is a population-based metaheuristic.
The basic principle of this approach relies on a ”struc-
tured” exploration of the neighborhoods of the popula-
tion’s individuals. In what follows, we describe the MBO
method, its analogy with natural phenomena, and the
neighborhood we used.

4.1 The Algorithm

The MBO method is a metaheuristic inspired from the
flight of migrating birds, and especially their V-flight
shape?® that is known for its energy saving properties as
illustrated in Figure 14.

Fig. 1. V-flight shape.

For a lone bird, the most important factor in achieving lift
is the forward speed, the higher it is, the higher the lift.
The power needed to generate this lift is called induced
power.

When birds fly together in a specific formation, if one of
them flaps its wings, the air goes above and below and
generates two tubular vortices which contribute to the
lifting of a following bird, thus reducing its requirement
for induced power and making it spend less energy [Duman
et al. [2012]].

This energy saving depends on multiple parameters such
as the distance between the birds and their number. Let us
mention that the leading bird is the one that spends most
of the energy. So, after a while, it will go back to the end
of the group leaving its leading place to one of the birds
that was behind it.

Before we describe the MBO algorithm as in Figure 2, let
us first list its parameters:

3 That gets its name from its similarity with the letter ”?V?”
4 https://karthijaygee.wordpress.com/2011/01/02/do-you-know-
why-do-birds-fly-in-v-formation

£: number of solutions.

k: number of neighbors to evaluate for each solution.
e z: number of neighbors that are shared with the next
solution.

t: number of iterations before changing the ”leader”
solution.

e K: maximum number of iterations.

Generate ¢ random solutions;

Place them so as to form a V-shape in an
arbitrary way;

i+ 0;

While(i < K)

{

For(j=0; j<t; j++)

Improve the leader solution by
generating k neighbors;

11+ k;

For(Every solution s,. of the flight
(except the one associated with the
leader))

Improve it by evaluating (k — x) of
its neighbors along with x unused
neighbors of the solution ahead of
it;

i i+ (k—x);

}

Change the leader;

Return the best solution of the flight;

Fig. 2. Pseudo-code of the MBO [Duman et al. [2012]].

After randomly generating ¢ solutions and placing them in
the form of a V-shape®, the algorithm will first attempt to
improve the leader solution by generating k of its neighbors
from which the best will eventually replace that solution
in case it is better. In our case, the neighborhood that
is explored is that of 3-interchange. It is defined by the
transformation presented in Section 4.3. Then, the unique
sharing mechanism that is specific to this method comes
into play. For every solution, other than the one associated
with the leader, we only generate (k — x) solutions, and
take the remaining = ones from the set of unused neighbors
of the solution ahead of it. The best of these (k — z) +
x neighbors will then replace the initial solution if it is
better, else, the population remains unchanged.

These steps are repeated for ¢ iterations, and then, the
leader solution will be changed ; it will go to the end of
the right line and be replaced by the solution that was
behind it at the right. The algorithm stops after a given
number of K generated neighbors.

4.2 Analogy

The Table 1 presents the analogy between the MBO
algorithm and the natural phenomenon of bird migration.

5 We use a data structure that keeps in memory the positions of the
successors and predecessors of every solution

Iméne Benkalai et al. / IFAC-PapersOnLine 49-12 (2016) 408—413 411

Table 1. Analogy between MBO and the nat-
ural phenomenon of migration.

MBO
Nb of solutions ¢
Nb of evaluated neighbors k
Nb of shared neighbors x
Nb of Iterations ¢

Flight of migrating birds
Number of birds
Required induced power *
Distance between the birds
Flight time of a bird as a leader

* Power that is necessary for a bird to rise.
N.B : Nb=Number

4.3 Neighborhood

The 3-interchange transformation consists in exchanging
in a solution S the positions of three jobs, as illustrated
by Figure 3, where the jobs at positions 3, 5, and 9
respectively, are exchanged.

S[1]2]3[4]5[6]7[8]9]
S'[1]2[9[4[3[6]7[8]5]

Fig. 3. 3-interchange transformation.

This neighborhood has been chosen for its capacity to
preserve the absolute positions of the jobs in a solution.
The goal is, throughout its exploration, to improve the
starting solution by modifying the positions of triplets of
jobs.

5. EXPERIMENTAL STUDY

The MBO metaheuristic was coded in C++ language, and
debugged using Microsoft Visual Studio 2013 on an Dell
Inspiron 3537-1648-BLK machine with an intel core”™ i7-
4500U processor and a RAM of 8 GB. In what follows,
we present a description of our testbed, the tuning of the
parameters, and the analysis of the obtained results of the
experimental study we conducted.

5.1 Description of the testbed

In order to test the algorithm we designed, we have
chosen a set of 16 instances for which the numbers of
jobs and machines range, from 20 to 50 and from 5 to
20, respectively. These instances, available at http://soa.
iti.es/problem-instances, are extensions of Taillard’s
instances of the classical flow shop where setup times have
been added and BKS (Best Known Solution) values are
available. More details can be found in [Ruiz et al. [2005]].
We took 4 instances (ta001,ta011, ta021, ta031) out of each
one of the 4 instance sets that are as follows:

e SDST10: setup time values are uniformly drawn
between 1 and 9.

e SDST50: setup time values are uniformly drawn
between 1 and 49.

e SDST100: setup time values are uniformly drawn
between 1 and 99.

e SDST125: setup time values are uniformly drawn
between 1 and 124.

The names of the instances specify their sizes as follows:

e ta001 have 20 jobs and 5 machines.
e ta011 have 20 jobs and 10 machines.

e ta021 have 20 jobs and 20 machines.
e ta051 have 50 jobs and 5 machines.

5.2 Parameters fine tuning

The solutions were represented as vectors of size n. The
initial population was generated randomly using a con-
structive heuristic that assigns at each iteration a task j,
j = 1,n to a random position h, 1 < h < n, until the
vector representing the solution is completed.

Having set K to 10000 as the maximum number of solution
evaluations ® , we have four parameters left to tune. To do
this, we proceeded by progressive steps. First, we assigned
reference values to the different parameters as follows:
¢ =21,k =05 t=2 and x = 2. Then, we tuned the
parameters one by one. The Figures 4, 5, 6 and 7 show the
mean deviation percentages (y axis) that were obtained for
each group of instances (z axis (number of jobs x number
of machines).

Number of birds:

For the MBO method, it is recommended to take odd
values for ¢ [Duman et al. [2012]]. Indeed, in addition
to the leading bird, we would ideally want to have the
same number of birds on both legs of the V-shape. In their
article, the authors of the MBO method advocate modest
sizes for the flight. Thus, we tested Algorithm 1 on sizes
ranging from 11 to 41.

We run Algorithm 1 twenty times for each instance.
Figure 4 pictures the results of the experiment on our
testbed we conducted. From the results we got, we have
chosen to take 11 as the flight size as it gives the best
average results in general.

2005 20x10 20x20 50x5

Fig. 4. Effects of the variation of ¢ (the flight size).

Number of evaluated neighbors:

With the limited number of 10000 evaluations, we tested
Algorithm 1 on small values of k so as to allow the
exploration of the neighborhood of a bigger number of
solutions throughout the running of Algorithm 1. As
shown in Figure 5, the tests we conducted on the different
instances sizes for k = 5, 10, 15, 20 made it possible
to observe that both 5 produced the best average results.

6 The stopping criterion for this method is set to the generation of
a maximum number of 10000 neighbors.

412 Iméne Benkalai et al. / [FAC-PapersOnLine 49-12 (2016) 408413

Following this, we decided to take k = 5 for the remaining
tests.

14

12

10

ms

L)

mis

20

2045 20x10

20x20 5005

Fig. 5. Effects of the variation of k (the required induced
power [Duman et al. [2012]]).

Time spent by a solution as a leader:

Parameter t defines the algorithm running time spent
with the same flight configuration before changing the
leader bird. This change allows a better exploration of
the neighborhoods of the new solutions. Again, it is
recommended to take small values for this parameter.
Given the maximum number of evaluations and the flight
size as well as the number of evaluated neighbors, we run
Algorithm 1 another twenty times for each instance for
values of ¢ ranging from 1 to 4. The generated results
illustrated in Figure 6 support to fix the value of 1.

14

12

10

ml

u2

w3

u4

2005 20x10

20x20 50x5

Fig. 6. Effects of the variation of ¢ (Flight time as the
leader).

Number of shared neighbors:

It is suggested in [Duman et al. [2012]] to use small values
for z such that z < k — 1. In the series of twenty runs
for each instance that were performed on our testbed, we
successively took values of 1,2,3 and 4 for . The results
presented in Figure 7 suggest it is preferable to set x to 4.

5.8 Analysis of the numerical results

Algorithm 1 was run five times for each instance. The
results are summarized in Table 2; all the computed
functions (mean, standard deviation, etc.) are in terms of

14

ml

u2

=3

e

20x5 20x10

20x20 50x5

Fig. 7. Effects of the variation of (distance between birds
[Duman et al. [2012]]).

the deviation percentages d relatively to the BKS (Best
Known Solution):

100(ZyBo — Z7)

zZ* ’
where Zygpo and Z* are the evaluation of the solution
generated by MBO and the Best Known Solution, re-
spectively. The other results are the standard deviation:
4.63, the variance: 21.48, the mean: 5.61, the maximum
average: 17.69, and the minimum average: 1.26. The means
of computational times in seconds are presented in Table 3.

d:

Table 2. Means of the deviation percentages.

SDST10
ta001 | ta0l1 | ta021 | ta031
1,26 | 2,34 | 1,62 | 3,05
SDST50
ta001 | ta011 | ta021 | ta031
3,62 | 356 | 2,18 | 9,95
SDST100
ta001 | taO1l | ta021 | ta031
6,32 | 4,24 | 2,98 | 1526
SDST125
ta001 | taO1l | ta021 | ta031
703 | 4,78 | 3,25 | 17,60

Table 3. Means of computational times.

Time (s)
ta001 ta011 ta021 ta031
509,5 | 652,35 | 2617,75 | 3117,9

According to the results shown in Table 2, it is clear that
the MBO method produced results of acceptable quality
given the limited number of solution evaluations, which is
quite restrictive for a metaheuristic. Indeed, it manages
to approximate the best known solution within less than
2% for some instances and does not exceed 18% for the
largest ones. The computations take around 8 minutes for
the smallest instances and do not exceed an hour (around
51 minutes) for the largest ones.

We have also noticed that the efficiency of the method
is not very much affected by the setup times variations
nor by the increase of the number of machines. But, it

Imeéne Benkalai et al. / IFAC-PapersOnLine 49-12 (2016) 408—413 413

is affected significantly by the increase on the number of
jobs. To improve the quality of our algorithm, it would
be interesting to assess the quality of other neighborhood
structures. We also believe that increasing the number
of the evaluations (the stopping criterion) would allow a
significant improvement on the quality of the results. For
example, if we consider only the largest instances with 50
jobs and 5 machines, we find that the mean is 11.49% and
the standard deviation is 5.61. Our computations allowed
us to set that the mean could reach 8.5% with a level of
significance of «=1%. Also, the mean of all results could
be reduced to 4.3% with the same level of significance (The
confidence interval of level 99% being [4.27;6.94]).

6. CONCLUSION

In this paper, we adapted the MBO method for solving
the permutation flow shop with sequence dependent setup
times. During the design process, we sought to utilize the
structural properties of the problem under study so as to
obtain a method that would be suitable for its resolution.
The MBO method generated good results in general on
the instances of the testbed. There is no doubt that the
quality of the solutions could be improved by increasing
the number of evaluations. Indeed, since our metaheuristic
is based on structured neighborhood exploration, a larger
number of solution evaluations would allow to improve the
latter.

Indeed we noticed that the present version of the MBO
provided much better results than another version with
only 6000 possible solution evaluations (Although 10000 is
still restrictive for a metaheuristic). The results presented
above showed an improvement of up to 14.6% of the older
results (whose mean was 6.57%).

A way to obtain even better results would be to construct
neighborhood structures that would better suit the com-
plexity of the problem. On the other hand, it would be
interesting to add other ingredients to the basic MBO,
seeking inspiration in the tools previously developed for
other metaheuristics. For example, one would consider
restructuring the population of the solutions after a given
number of iterations without improving the current best
solution. That could allow to direct the search towards
another area of the solutions space and thus getting a
better exploration of the latter. We could also hybridize
the MBO with other metaheuristics such as VNS (Vari-
able Neighborhood Search)[Mladenovié¢ and [1997]]. This
would allow us to enhance both the exploration and ex-
ploitation abilities of the method.

REFERENCES

Allahverdi, A., Ng, C., Cheng, T., and Kovalyov, M.
(2008). A survey of scheduling problems with setup
times or costs. Furopean Journal of Operational Re-
search, 187, 985-1032.

Dong, X., Huang, H., and Chen, P. (2009). Study on
heuristics for the permutation flowshop with sequence
dependent setup times. In IEEFE International Confer-
ence on Information Reuse & Integration.

Duman, E., Uysal, M., and Alkaya, A.F. (2012). Migrating
birds optimization : A new metaheuristic approach

and its performance on quadratic assignment problem.
Information Sciences, 217, 65-77.

Franca, P., Gupta, J., Mendes, A., Moscato, P., and
Veltink, K. (2005). Evolutionary algorithms for schedul-
ing a flow shop manufacturing cell with sequence depen-
dent family setups. Computers and Industrial Engineer-
ing, 48(3), 491-506.

Gupta, J. (1986). Flowshop schedules with sequence
dependent setup times. Journal of the Operational
Research Society of Japan, 29 (3), 206—219.

Hendizadeh, S., Faramarzi, H., Mansouri, S., Gupta, J.,
and ElMekkawy, T. (2008). Metaheuristics for schedul-
ing a flowline manufacturing cell with sequence de-
pendent family setup times. International Journal of
Production Economics, 111(2), 593-605.

Kumar, G. and Singhal, S. (2013). Genetic algorithm opti-
mization of flow shop scheduling problem with sequence
dependent setup time and lot splitting. International
Journal of Engineering, Business and Enterprise Appli-
cations, 4(1), 62-71.

Lin, SW., Ying, K.C., Lu, C.C., and Gupta, J. (2011).
Applying multi-start simulated annealing to schedule
a flowline manufacturing cell with sequence dependent
family setup times. International Journal of Production
Economics, 130, 246-254.

Mladenovié, N. and (1997), P.H. (1997). Variable neigh-
borhood search for the p-median. Location Sci., 5, 207—
226.

Pinedo, M. (2002). Scheduling : Theory, algorithms and
systems. Prentice Hall.

Ramanathan, L. and Ulaganathan, K. (2014). Nature-
inspired metaheuristic = optimization technique-
migrating birds optimization in industrial scheduling
problem. SSRG International Journal of Industrial
Engineering (SSRG-1JIE), 1(3), 1-6.

Rios-Mercado, R. and Bard, J. (1998). Heuristics for the
flow line problem with setup costs. European Journal of
Operational Research, 110, 76-98.

Ruiz, R., Maroto, C., and Alcaraz, J. (2005). Solving the
flowshop scheduling problem with sequence dependent
setup times using advanced metaheuristics. Furopean
Journal of Operational Research, 165, 34-54.

Ruiz, R. and Stutzle, T. (2008). An iterated greedy algo-
rithm for the flowshop problem with sequence dependent
setup times. Furopean Journal of Operational Research,
187, 1143-1159.

Santos, N., Pedroso, J., and Rebelo, R. (2014). A tabu
search for the permutation flow shop problem with
sequence dependent setup times. International Journal
of Data Analysis Techniques and Strategies (IJDATS),
6 (3), 275 — 285.

Talbi, E.G. (2009). Metaheuristics, from design to imple-
mentation. John Wiley & Sons, Inc.

Tongur, V. and Ulker, E. (2014). Migrating birds opti-
mization for flow shop sequencing problem. Journal of
Computer and Communications, 2, 142-147.

Tseng, F., Gupta, J., and Stafford, J. (2006). A penalty-
based heuristic algorithm for the permutation flow
shop scheduling problem with sequence-dependent set-
up times. Journal of the Operational Research Society,
57, 541-551.

