

ESSAYS ON HEURISTIC SOLUTION METHODS
FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Dissertation

at the Frankfurt School of Finance and Management

submitted by

Michael Hamann

supervised by

Prof. Dr. Jörn-Henrik Thun

Prof. Dr. Jürgen Strohhecker

Prof. Dr. Andreas Größler

Mannheim, March 2015

For Hannah

III

CONTENTS

List of Papers ... V	

List of Figures ... VI	

List of Tables .. VII	

1 An introduction to combinatorial optimization and metaheuristics 1	

2 Purpose and structure of the thesis .. 3	

3 A novel pheromone model for ant colony optimization – Normalizing pheromone trails

for effective search behaviour .. 8	

3.1	 Introduction ... 8	

3.2	 Quantification and update of pheromone trails in the ant colony optimization

metaheuristic .. 10	

3.3	 Ant colony optimization for the multidimensional knapsack problem 11	

3.4	 NormANTS – Combining normalized pheromone trails with an iteration-

dependent pheromone delta .. 13	

3.5	 Computational study ... 16	

3.5.1	 Experimental design ... 16	
3.5.2	 Parameter settings and evolution of pheromone trails ... 17	
3.5.3	 Search behaviour analysis: diversification and intensification 19	

3.5.4	 Results .. 22	

3.6	 Conclusion .. 24	

4 Ant colony optimization for the multi-period mixed-model assembly line sequencing

problem .. 26	

4.1	 Introduction ... 26	

4.2	 Literature review ... 28	

4.3	 The multi-period mixed-model sequencing problem .. 29	

4.3.1 	 Problem description ... 29	

4.3.2	 Model .. 32	

4.4	 Solution approaches for the MPMMS .. 34	

4.4.1	 Greedy algorithms .. 34	

4.4.2	 Ant colony optimization ... 36	

IV

4.5	 Computational study ... 41	

4.5.1	 Experimental design ... 41	

4.5.2	 Parameter settings for ACO .. 43	
4.5.3	 Results .. 44	

4.6	 Conclusion .. 47	

5 Loading and sequencing heuristics for unrelated parallel machine scheduling with long,

sequence-dependent setup times .. 49	

5.1	 Introduction ... 49	

5.2	 Literature review ... 51	

5.3	 Problem description and heuristic strategies ... 53	

5.3.1	 Problem setting ... 53	
5.3.2	 Heuristic strategies ... 54	

5.4	 Model, data, and simulation analysis .. 57	

5.4.1	 Simulation model and input data .. 57	
5.4.2	 Performance measures .. 61	

5.5	 Results ... 61	

5.6	 Conclusion .. 68	

6 Conclusion ... 70	

Bibliography ... 74	

Appendix .. 85	

Statement of certification .. 88	

V

LIST OF PAPERS

• Michael Hamann1 (2014), “A novel pheromone model for ant colony optimization

– Normalizing pheromone trails for effective search behaviour”.

• Michael Hamann1, Jörn-Henrik Thun2, Andrej Saweljew3 (2014), “Ant colony

optimization for the multi-period mixed-model assembly line sequencing problem”.

• Jürgen Strohhecker2, Jörn-Henrik Thun2, Michael Hamann1 (2014), “Loading and

sequencing heuristics for unrelated parallel machine scheduling with long,

sequence-dependent setup times”.

1 Frankfurt School of Finance and Management, Management Department,
Sonnemannstr. 9-11, D-60314 Frankfurt am Main, Germany, m.hamann@fs.de

2 Frankfurt School of Finance and Management, Management Department,
Sonnemannstr. 9-11, D-60314 Frankfurt am Main, Germany

3 University of Mannheim, Center for Doctoral Studies in Business,
Graduate School of Economic & Social Sciences, D-68131 Mannheim, Germany

VI

LIST OF FIGURES

Figure 2.1: Double-bridge experiment with Iridomyrmex Humilis (Goss et al., 1989) 4	

Figure 3.1: Iterative pheromone deposit and evaporation for 5.100-00 over 1000 iterations

(average over ten runs) .. 18	

Figure 3.2: Differentiated pheromone map for 5.100-00 after 1000 iterations

(average over ten runs) .. 18	

Figure 3.3: Evolution of the resampling ratio for 5.100-00 and 10.00-00 over 200 iterations

(average over ten runs) .. 20	

Figure 3.4: Evolution of the similarity ratio for 5.100-00 and 10.00-00 over 200 iterations

(average over ten runs) .. 22	

Figure 4.1: Evolution of pheromone map for 100 iterations (i)), 1000 iterations (ii)), and

10.000 iterations (iii)) .. 41	

Figure 4.2: Solution quality development and convergence of ant-2 for problem 1_1_1 44	

Figure 5.1: Scheduling task with two unrelated parallel machines and sequence-dependent

setup times ... 53	

Figure 5.2: Overview of the discrete event simulation model structure 57	

Figure 5.3: Box and whisker diagrams of KPIs for the scenario combination FCL-DS 64	

Figure 5.4: Box and whisker diagrams of KPIs for the scenario combination NDS-EW 66	

VII

LIST OF TABLES

Table 3.1: Results of NormANTS for instances from Weingartner & Ness (1967)

and Shih (1979) .. 23	

Table 3.2: Results of NormANTS for instances from Chu & Beasley (1998) with five

constraints .. 23	

Table 3.3: Results of NormANTS for instances from Chu & Beasley (1998) with ten

constraints .. 24	

Table 4.1: Overview of heuristic algorithms .. 41	

Table 4.2: Overview of problem sets .. 43	

Table 4.3: Results for small problem sets 1 to 3 ... 45	

Table 4.4: Results for medium problem sets 4 to 6 .. 46	

Table 4.5: Results for large problem sets 7 and 8 ... 47	

Table 5.1: Possible heuristic strategies ... 57	

Table 5.2: Setup matrix and categories ... 59	

Table 5.3: Setup time scenarios (setup time in hours) .. 59	

Table 5.4: Illustration and descriptive data of production rate scenarios (units per hour) 60	

Table 5.5: KPI mean values for production rate and setup time scenario combination

FCL-DS .. 63	

Table 5.6: KPI mean values for production rate and setup time scenario combination

NDS-EW .. 65	

Table 5.7: Analysis of best-performing heuristic strategies for all 12 production rate and

setup time scenario combinations .. 67	

Table 5.8: Best-performing heuristic strategies for the FCL-DS scenario combination 67	

Table 5.9: Production order characteristics .. 85	

Table 5.10: Experiment design with 108 strategy-scenario combinations 85	

Table 5.11: Experiment results for the 90 strategy-scenario combinations not reported in

the text ... 86	

1

1

AN INTRODUCTION TO COMBINATORIAL OPTIMIZATION
AND METAHEURISTICS

Combinatorial optimization, i.e. the identification of the best arrangement or selection of a

finite number of discrete possibilities (Lawler, 1976), has its origin in the economic

challenge to efficiently utilize scarce resources and to effectively plan and manage

operations. Decision problems in the field of operations management were among the first

to be modelled as combinatorial optimization problems, for example the sequencing of

machines, the scheduling of production, or the design and layout of production facilities

(Grötschel and Lovász, 1995). Today, combinatorial optimization problems are recognised

in all areas of management when it comes to the minimization of cost, time, or risk, or the

maximization of profit, quality, or efficiency (Talbi, 2009). Typical examples are variants

of assignment and scheduling problems, location problems, facility layout problems, set

partitioning and set covering problems, inventory control, and traveling salesman or

vehicle routing problems (Grötschel and Lovász, 1995; Osman and Kelly, 1996).

The level of problem difficulty of such optimization problems is conceptualized by the

theory of computational complexity (Garey and Johnson, 1979; Papadimitriou, 1994;

Wolsey and Nemhauser, 2014). In this context, especially two complexity classes are of

interest: 𝒫 and 𝒩𝒫 (whereby the inclusion 𝒫 ≤𝒩𝒫 holds). The problem class 𝒫 contains

all decision problems that can be solved in polynomial time in the size of the input on a

deterministic sequential machine. These problems are considered as easy and efficiently

solvable (Pintea, 2014). The class 𝒩𝒫 contains all decision problems for which the

validity of possible solutions can be verified in polynomial time. Equivalently, they are

solvable in polynomial time on a non-deterministic machine. Note that the concept of non-

deterministic algorithms is not used to solve combinatorial optimization problems but

serves as a means to define the complexity class 𝒩𝒫 (Garey and Johnson, 1979). The term

non-deterministic refers to the fact that there is no actual solution determined – it is only

confirmed (in polynomial time) that a given possible solution is correct. A subclass of

problems in 𝒩𝒫 is called 𝒩𝒫-complete. These problems are considered to be the hardest

to solve in 𝒩𝒫 . If a decision problem is 𝒩𝒫 -complete then its corresponding

combinatorial optimization problem is called 𝒩𝒫-hard (Krantz and Parks, 2014; Pintea,

2014).

2

Many important combinatorial optimization problems are known to be 𝒩𝒫-hard, i.e. in

the worst case the time needed for solving a problem instance to optimality grows

exponentially with its size. Hence, these problems are – although typically easy to describe

and understand – difficult to solve. Even for problems of moderate size it is practically

impossible to determine all possibilities in order to identify the optimum. As a

consequence, heuristic approaches, i.e. approximate solution algorithms, are considered as

the only reasonable way to solve hard combinatorial optimization problems (Osman and

Kelly, 1996).

Accordingly, there is a vast and still growing body of research on metaheuristics for

combinatorial optimization that aim at balancing the trade-off between computation times

and solution quality (Blum and Roli, 2003). Metaheuristics provide general frameworks for

the creation of heuristic algorithms based on principles borrowed from classical heuristics,

artificial intelligence, biological evolution, nervous systems, mathematical and physical

sciences, and statistical mechanics (Glover, 1986; Osman and Kelly, 1996). The most

important families in the field include but are not limited to greedy randomized adaptive

search, evolutionary algorithms, variable neighbourhood search, simulated annealing, tabu

search, scatter search, and ant colony optimization (ACO) (Gendreau and Potvin, 2005;

Yang et al., 2013).

Although metaheuristics have proven their potential to identify high quality solutions

for many complex real-life combinatorial optimization problems from different domains,

the effectiveness of any heuristic strongly depends on its specific design (Osman and Kelly,

1996; Glover and Kochenberger, 2003). Hence, the abilities of researchers and

practitioners to construct and parameterize heuristic algorithms strongly impact

algorithmic performance in terms of solution quality and computation times. As a

consequence, there is a need for a deeper understanding of how heuristics need to be

designed so that they achieve a high effectiveness when searching the solution spaces of

combinatorial optimization problems.

3

2

PURPOSE AND STRUCTURE OF THE THESIS

This thesis provides insights into heuristic optimization techniques for solving

combinatorial optimization problems that occur in various areas of management. It

develops and presents heuristic solution methods that are tested on different optimization

problems, namely the multidimensional knapsack problem (MKP), the multi-period mixed-

model assembly line sequencing problem (MPMMS) and the production-scheduling

problem in the case of unrelated parallel machines. All these problems are highly relevant

in industrial practice and, being 𝒩𝒫-hard, difficult to solve.

The thesis is composed of three articles, which have been submitted to academic

journals. The structure is as follows.

Chapter 3 and chapter 4 both present applications of the ant colony optimization

metaheuristic. Algorithms of this family, so-called ant algorithms, transfer the biological

principles of swarm intelligence to mathematical optimization algorithms, i.e. they make

use of some of the mechanisms that enable the emergence of intelligent behaviour in

swarms of social insects such as termites, bees, or ants (Dorigo et al., 1991a; Dorigo and

Stützle, 2003, 2004; for an overview of the most important ACO variants and applications

see Dorigo et al., 2006, or Dorigo and Stützle, 2010).

The ACO metaheuristic has been inspired by the foraging behaviour of ants. Its origin is

in biological research of the nineteen hundred-nineties. Biologists examined the foraging

behaviour of the argentine ant Iridomyrmex humilis using the so-called two-bridge

experiment where the nest of an ant colony is connected with a food source by bridges of

different length. Figure 2.1 shows the original double-bridge experiment as reported by

Goss et al. (1989); a) depicts the general experiment design while b) and c) show photos

taken during the experiment four and eight minutes after the placement of the bridge.

In the experiment, laboratory colonies of I. humilis are given access to a food source

connected with the nest by a bridge consisting of two branches of different length. The

branches are arranged so that a foraging ant (going in either direction, i.e. from nest to food

source or vice versa) has to select one or the other (at two decision points 1 and 2 denoted

in Figure 2.1. a), respectively). Except for their length, the branches are basically identical

so that the ant has no preference for either of the two branches due to its disposition. Five

to ten min after nest and food have been connected, foraging ants have crossed the bridge

4

and discovered the food. In this early phase of the experiment, the foraging ants at first

choose equally (randomly) between the short and the long branch. After a while, however,

one branch – the short one – becomes visibly preferred. Note that the ant species

Iridomyrmex humilis studied in this experiment has only a limited individual capability for

orientation, i.e. the ants are almost blind. Nevertheless, the ant colony as a whole is capable

of identifying the shortest route between nest and food source with great reliability (Aron

et al., 1989; Deneubourg et al., 1990; Goss et al., 1989).

Figure 2.1: Double-bridge experiment with Iridomyrmex Humilis (Goss et al., 1989)

It has been found that the basis for the ability of ant colonies to identify the shortest

route between nest and food source (or more generally to “solve shortest-path problems”)

is an indirect form of communication, which is referred to as stigmergy (Grassé, 1959;

Garnier et al., 2007): In nature, individual ants deposit chemical messenger substances on

their way, so-called pheromones, i.e. a moving ant lays pheromone on the ground, thus

marking its path by a trail of this substance. Functioning as an attractant, other ants of the

colony are able to perceive – “smell” – these pheromones. The higher the concentration of

pheromone, the more attractive is the respective way, i.e. the probability that other ants

choose the same way increases with the pheromone concentration (Dorigo et al., 2000).

Based on this indirect communication via pheromones, the double-bridge experiment

can be explained as follows. In the beginning, there is no pheromone on either of the

branches of the bridge linking nest and food. Hence, there is no stimulus for the ants to

prefer one way or the other. When the first ants arrive at decision point 1 on their way from

5

the nest to the food source, they have no clue about which is the best choice, and, as a

consequence, randomly choose one of the branches. Due to the different length of the

branches, ants using the short branch arrive at the food roughly 20 seconds before ants

using the long branch and, making their way back to the nest, reach decision point 2 even

before the ants on the long branch have passed this point on their way from the nest to the

food source. As a consequence, at this point in the experiment there is still no pheromone

on the long branch while on the short branch there is a pheromone trail (deposited by the

first group of ants during their first passage). This now influences the decision of the ants:

the short branch is more attractive due to the pheromone trail and will be preferred by the

ants, leading to a further accumulation of pheromone on the short branch. When the second

group of ants reaches decision point 2 on its way back, it is faced with a similar situation.

There are pheromone trails on both branches; however, the trail on the short branch is

stronger since the first group of ants has passed it twice already. Again, the short branch is

more attractive and is chosen by the second group of ants with a high probability. In the

course of the experiment, the difference in the amount of pheromone on the two branches

becomes larger, which in turn increases, with a positive feedback effect, the number of ants

choosing the shorter route so that in the end basically all ants choose the short branch

(Goss et al., 1989; Dorigo and Gambardella, 1997).

In the ACO metaheuristic, artificial ants communicate in a similar fashion during their

iterative solution construction. Analogous to the deposit of real pheromone by real ants on

the way between nest and food source in the double-bridge experiment, artificial ants

deposit artificial pheromone on their solutions for the respective optimization problem.

More precisely, the artificial ants follow the artificial pheromone trails during the solution

construction process, i.e. solution components with stronger pheromone trails will be

selected with a higher probability. The pheromone deposit by individual artificial ants

depends on the solution quality. Good solutions will receive a larger amount of pheromone

than weak solutions in order to guide the search of the artificial ant colony towards good

solutions. Hence, one could say that individual ants exchange information about the quality

of chosen solutions via pheromone trails, i.e. the higher the pheromone concentration, the

better (and more attractive for other ants) the respective solution (at least theoretically).

Consequently, the pheromone trails on superior solutions (or their components,

respectively) typically grow stronger during the search, while the trails on inferior

solutions remain weak or fade completely over time. Although individual ants are able to

generate feasible solutions, solutions of good quality are usually only achieved through this

6

kind of interaction and indirect communication within the colony (Dorigo and Stützle,

2004). Hence, the pheromone trails can be considered as the global memory of the colony

where information about desirable solution components is stored (Boysen, 2005). Based on

this information the colony is able to iteratively improve the solutions until the (near)

optimal solution is found.

Chapter 3 introduces a novel pheromone model for ant colony optimization, which aims

at improving the search behaviour of artificial ants so that the ant colony explores the

solution space of a combinatorial optimization problem more effectively. In order to

evaluate the search behaviour, different performance measures are analysed that help to

understand how solutions iteratively develop in the course of the search. Moreover, the

algorithm is tested on various benchmark MKP problems from the literature. The results

are compared to a selected set of ant algorithms.

Chapter 4 presents a novel multi-period variant of the mixed-model sequencing problem

and develops a correspondingly adapted ant algorithm, which makes use of the pheromone

concept introduced in chapter 3. The algorithm is tested on 48 different randomly

generated problem instances of various size and compared with the solver Gurobi as well

as problem-specific probabilistic and deterministic greedy algorithms.

In chapter 3 the focus is on the methodological advancement of the ant colony

optimization metaheuristic. The main objective is to analyse and improve the design and

search behaviour of a generic problem-unspecific ant algorithm, not to find an algorithm

that performs particularly well for a specific optimization problem. Chapter 4 concentrates

on the introduction of a novel optimization problem, namely the multi-period mixed-model

assembly line sequencing problem. Hence, the presented algorithm features more problem-

specific intelligence and is less generic in nature.

Although recent research shows that ant colony optimization belongs to the most

promising heuristic techniques, the question remains whether such complex methods are

justified in practice or if – at least in some cases – simpler approaches can achieve

satisfying results in real-world settings. Hence, in chapter 5, a different perspective is taken.

With a stronger focus on practicality, the study presented in this chapter investigates some

less complex heuristic techniques for production scheduling on unrelated parallel machines

such as, e.g., the earliest due date or the shortest processing time heuristic. Since short-

term planning typically involves the use of rolling planning horizons in practice (de Araujo

et al., 2007), the number of problem components of respective decision problems such as,

e.g., the optimization of the production sequence, remains comparably small. Therefore,

7

even simple heuristic approaches might be a feasible alternative to more sophisticated

metaheuristics such as, for instance, ant colony optimization, genetic algorithms, simulated

annealing, scatter search, or tabu search. The specific scheduling problem considered in

chapter 5 comprises two sub problems, i.e. first, the assignment of production orders to

machines and, second, the determination of the production sequence. Accordingly,

combinations of heuristic algorithms for both sub problems are investigated by simulating

different randomized real-world scenarios generated based on genuine data taken from an

international pharmaceutical company. The analysis of overall 108 unique strategy-

scenario combinations provides a robust view of the interaction of loading and sequencing

heuristics and enables an assessment of the potential of simpler heuristic techniques in

unrelated parallel machine settings under different operational conditions.

Chapter 6 summarizes and concludes the thesis.

8

3

A NOVEL PHEROMONE MODEL FOR ANT COLONY OPTIMIZATION –
NORMALIZING PHEROMONE TRAILS FOR EFFECTIVE SEARCH
BEHAVIOUR

Michael Hamann

Abstract

This paper introduces a novel generic pheromone model for algorithms of the ant colony

optimization metaheuristic, which improves the searching behaviour of the artificial ants.

The algorithm, NormANTS, is based on a normalization of pheromone trails between zero

and one and a coupling of the iterative pheromone deposit with the total number of

iterations. In order to investigate the impact of the pheromone model, a detailed analysis

of the search behaviour of the artificial ants in terms of intensification and diversification is

conducted. Moreover, NormANTS is applied to the multidimensional knapsack problem

and tested on 33 different knapsack instances from the literature. In order to evaluate

performance, the algorithm is compared to various ant-based approaches that differ

regarding their level of problem specificity and complexity. In the computational study,

NormANTS exhibits a high degree of effectiveness regarding the sampling of the search

space. Overall, the algorithm consistently generates optimal solutions and achieves a

particularly high average solution quality. While the algorithm is applied to the

multidimensional knapsack problem in this paper, the pheromone model can be easily

transferred to other combinatorial optimization problems due to its generic nature.

3.1 Introduction

The ant colony optimization metaheuristic comprises a wide range of search heuristics

inspired by the foraging behaviour of real ants (Dorigo et al., 1996). Indirect

communication between individual ants enables ant colonies to find shortest paths between

their nest and food sources (Deneubourg et al., 1990). The same principle, i.e.

communication via chemical substances called pheromones, is used in artificial ant

colonies in the field of combinatorial optimization (Dorigo and Stützle, 2004). Since the

early nineties, numerous applications for well-known problems such as the traveling

9

salesman problem (TSP) (Cordón et al., 2000; López-Ibáñez et al., 2013), the knapsack

problem (Boryczka, 2007; Ke et al., 2010; Leguizamón and Michalewicz, 1999), or the

quadratic assignment problem (Gambardella et al., 1999; Stützle and Hoos, 2000) have

been presented.

In this study, a novel pheromone model for ACO is proposed which aims at an

improved effectiveness in terms of search space sampling. It is based on a normalization of

pheromone trails between zero and one and a coupling of the iterative pheromone deposit

with the total number of iterations. Correspondingly, the algorithm is named NormANTS.

In order to analyse the performance of the algorithm, a computational study is carried

out in which NormANTS is applied to the multidimensional knapsack problem. Note that

the algorithm and the pheromone concept introduced in this paper are highly generic and

thus could have been applied to other combinatorial optimization problems as well. The

MKP has been chosen in the computational study since there are numerous test problems

in the literature for which results of different ant algorithms with traditional pheromone

concepts are available. Overall, 33 different knapsack instances ranging from small to large

size are solved in the experimental study. The solutions obtained by different alternative

algorithms based on the ACO metaheuristic serve as benchmarks and enable an evaluation

of the results of NormANTS.

The contribution of this study with respect to past research in this field primarily lies in

(i) the introduction of a novel pheromone model that differs regarding the quantification of

pheromone trails and the definition of the pheromone delta for the update procedure, (ii) a

detailed analysis of the resulting search behaviour of the artificial ants, and (iii) an

experimental comparison with state-of-the-art ACO-based approaches from the literature

for the multidimensional knapsack problem.

The remainder of this paper is organized as follows. Section 3.2 provides a brief

overview of the pheromone models of the most successful ACO variants and discusses

implications for the search behaviour of the artificial ants. Section 3.3 reviews the relevant

literature in the field of ant colony optimization and multidimensional knapsack problem.

The characteristics and constituent properties of NormANTS are presented in section 3.4.

In section 3.5, the design of the experimental study, the analysis of the search behaviour,

and the computational results are reported. In the last section, the paper concludes with a

brief discussion of the results and future research topics.

10

3.2 Quantification and update of pheromone trails in the ant colony optimization
metaheuristic

Traditionally, in applications of the ACO metaheuristic the increase of the pheromone

trails during the pheromone update procedure is defined as some function of the quality of

the solutions found. More precisely, the pheromone delta either depends on the objective

function value obtained by the ant that modifies the trails (see, e.g., Dorigo et al., 2006), or

the number of ants that generated the respective solution (see, e.g., Seçkiner et al., 2013).

In the following, a brief comparison of the most successful variants of ACO (Dorigo

and Socha, 2007), namely Ant System (AS) (Dorigo et al., 1991b, 1996), Ant Colony System

(ACS) (Dorigo and Gambardella, 1997; Gambardella and Dorigo, 1996), and MAX-MIN

Ant System (MMAS) (Stützle and Hoos, 2000) illustrates the typical logic of quantifying the

iterative pheromone delta. Note that originally all these algorithms have been applied to the

traveling salesman problem so that the original formulas make use of problem-specific

terminology. The definitions provided in the remainder of this section abstract from the

TSP but are otherwise identical.

The first algorithm, AS, computes the amount of pheromone deposited on a solution

component 𝑖 by ant 𝑘 as

 ∆𝜏!! =
𝑄 𝐿! 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑛 𝑖𝑡𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.1)

where 𝑄 is a constant and 𝐿! is the objective function value of the solution constructed

by ant 𝑘. The pheromone delta used by MMAS is defined in a similar way with

 ∆𝜏!!"#$ =
1 𝐿! 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑎𝑛𝑡 𝑢𝑠𝑒𝑑 𝑖 𝑖𝑛 𝑖𝑡𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.2)

whereby only the best ant (either of the iteration or globally) is allowed to lay

pheromone on its solution components. The third algorithm, ACS, uses the same definition

of ∆𝜏!!"#$ as MMAS but additionally conducts a local update in which each ant deposits

pheromone only to the last solution component chosen.

As can be seen from equations (3.1) and (3.2), the pheromone delta depends on

specifics of the current problem such as actual objective function values and the

corresponding distance between good and bad solutions. Hence, the amount of pheromone

that is deposited at the end of each iteration varies for different problems and even for

different ants of the same colony optimizing one specific problem (given that more than

11

one ant is allowed to carry out an update and the ants found solutions of different quality).

Although this inherent dynamic in the pheromone update and trail development is intended

in order to favour convergence towards good solutions, there remains a certain pitfall to

this concept: It is difficult to understand how much pheromone is deposited by individual

ants in each iteration, and, as a result, how quickly pheromone trails develop and how

strong the pheromone trails become on individual solution components in the course of the

search. Consequently, without further knowledge about the particular problem instance at

hand, it is not fully clear in what way the solution space is actually browsed by the ants and

to what extent the search is explorative or exploitative.

Even if good values are found for the set of parameters that controls an ant algorithm,

the problem persists that to a certain extent the evolution of the pheromone trails remains a

black box. This makes it challenging to guarantee for effective search behaviour without

premature convergence or stagnation situations.

The pheromone model introduced in this paper intents to remove this black box, i.e. it

aims at obtaining a higher level of control over the pheromone trail development

independently from the specific optimization problem at hand.

3.3 Ant colony optimization for the multidimensional knapsack problem

Since the MKP is used in the experimental study of this paper, this section provides a brief

overview of this combinatorial optimization problem and discusses the most relevant

aspects when applying ACO to the MKP.

The objective of the multidimensional knapsack problem is to find a subset of objects

that maximizes the total profit while satisfying several resource constraints. As the

resources are typically denoted with index 𝑚 , the MKP is also referred to as the

m-dimensional knapsack problem. In line with the definition given by Chu and Beasley

(1998), the MKP can be formulated as follows:

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑝!𝑥!!
!!! (3.3)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟!"𝑥! ≤ 𝑏! !
!!! ∀ 𝑖 = 1,… ,𝑚 (3.4)

 𝑥! ∈ 0,1 (3.5)

12

The objective function, i.e. the maximization of the total profit, is given in equation (3.3)

with 𝑝! being the profit of an object 𝑗 and 𝑥! the corresponding binary decision variable

(equation (3.5)). If 𝑥! is equal to one, object 𝑗 is selected leading to the realization of 𝑝!.

Equation (3.4) reflects the 𝑚 resource constraints whereby 𝑟!" is the quantity that is

consumed of resource 𝑖 if object 𝑗 is selected. The overall available amount of resource 𝑖 is

given by 𝑏!. Note that a MKP is considered as well-stated if the assumptions 𝑝! > 0 and

𝑟!" ≤ 𝑏! < 𝑟!"!
!!! hold.

In the literature, there are several papers that solve this well-known 𝒩𝒫-hard problem

using ant colony optimization. Leguizamón and Michalewicz (1999) were the first to

present an ant algorithm for the multidimensional knapsack problem. In their paper, they

suggest an adapted version of AS which was introduced by Dorigo et al. (1991b).

Boryczka (2007) also proposes a modified version of AS making use of a different

transition rule. Alaya et al. (2004) introduce an adapted version of MMAS as presented by

Stützle and Hoos (2000), which successfully implements pheromone trails on pairs of

objects. The MMAS is also the basis for the algorithm presented by Ke et al. (2010) who

achieve an improved search behaviour by dynamically adjusting the lower pheromone

boundary. The algorithm of Kong et al. (2008) applies a pheromone laying method

specifically designed for the binary solution structure, which allows the generation of

infeasible solutions during solution construction.

The majority of ACO-based applications for the MKP use heuristic factors in form of a

pseudo-utility value in order to provide some local information about solution components

and thus enable a more directed search. Although static definitions were tried (see, e.g.,

Fidanova, 2002), the majority of algorithms uses the dynamic approach suggested by

Leguizamón and Michalewicz (1999), who define the heuristic factor of an object

(analogously to the efficiency ratio of Dobson (1982)) as the ratio between its value and its

average requirements regarding the remaining capacities (equation (3.6)). Reflecting the

current state of the solution construction, 𝑆! is defined as the set of selected objects at the

𝑡!! construction step. For each of the remaining objects 𝑗, the corresponding heuristic

value 𝜂! 𝑆! is denoted with

 𝜂! 𝑆! = !!
!! !

 (3.6)

13

The average tightness 𝛿! 𝑡 of an object 𝑗, i.e. its average demand of the remaining

resources, is given as

 𝛿! 𝑡 = !!" !!
!!!

!
 (3.7)

with

 𝛿!" 𝑡 = !!"
!! – !!"!∈!!

 (3.8)

Besides the definition of heuristic values, the choice of an appropriate pheromone

representation is considered as essential. In recent years, different options for laying

pheromone trails have been described in the literature, i.e. associating pheromone trails

directly with each object (Leguizamón and Michalewicz, 1999), depositing pheromone on

each pair of successively selected objects (Fidanova, 2002), or laying pheromone trails on

all pairs of objects (Alaya et al., 2004).

Following the intuition to use the least complex and most obvious pheromone

representation for a specific problem, the algorithm developed in this study applies the

simplest type, i.e. vertex-oriented pheromone trails.

3.4 NormANTS – Combining normalized pheromone trails with an iteration-
dependent pheromone delta

NormANTS is based on the MAX-MIN Ant System introduced by Stützle and Hoos

(2000). More precisely, it applies two key features of MMAS, i.e. it sets a minimum and a

maximum boundary for pheromone values, 𝜏!"# and 𝜏!"#, and it uses the same tye of

transition probability. However, NormANTS incorporates a novel pheromone model,

which substantially differs in terms of quantification of pheromone trails and update

procedure.

Solutions are constructed as follows: In each iteration, every ant 𝑘 subsequently selects

objects from the set of remaining feasible objects, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠!, that do not violate any of

the knapsack constraints. When no object satisfying the capacity constraints is left, the ant

stops its search for the current iteration.

14

The transition probability with which an ant decides to select an object 𝑗 is defined as

 𝑝! =

!!
! !!

!

!! ! !! !! ∈ !"#$%$"&'(!
 𝑖𝑓 𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠! ,

 0 𝑒𝑙𝑠𝑒,

 (3.9)

The intensity of the pheromone trails on an object 𝑗 is denoted with 𝜏!, whereas 𝜂! is the

heuristic value. For the MKP instances in the experimental study, NormANTS applies the

dynamic computation of pseudo-utility values as described in section 3.3, i.e. the local

attractiveness 𝜂! of an object 𝑗 is defined as its value divided by its average tightness. The

parameters 𝛼 and 𝛽 balance the relative importance of pheromone and heuristic values.

As the designation of the set 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠! implies, candidate lists are used, i.e. only a

subset containing a predefined number of the most attractive objects is considered during

the current step of the solution construction (Dorigo and Stützle, 2003; Gambardella and

Dorigo, 1996). Hence, an ant 𝑘 does not choose from all remaining feasible objects that

have not been selected yet, but from the subset 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠!, which contains the orders

with the highest heuristic values.

Regarding the pheromone update, an elitist strategy is used (Bullnheimer et al., 1997;

Dorigo et al., 1996; Stützle and Hoos, 2000). At the end of each iteration the iteration-best

ant, 𝑘!!"#$, and the best ant so far, 𝑘!!"#$%", are allowed to deposit pheromone on their

respective solution components. Combined with the iterative pheromone reduction through

evaporation with rate 𝜌, the trails are updated with

 𝜏! = 1 − 𝜌 𝜏! + ∆𝜏!!
!!"#$

+ ∆𝜏!!
!!"#$%"

 (3.10)

As discussed in section 3.2, traditional ways to quantify pheromone trails and the

iterative pheromone delta create certain dependence from specifics of the current problem

instance such as actual objective function values and the corresponding distance between

good and bad solutions. Hence, the pheromone limits are typically chosen problem-

dependent so that the distance between 𝜏!"# and 𝜏!"# somehow fits to the expected rate of

growth of the pheromone trails. Stützle and Hoos (2000) define 𝜏!"# as a function of 𝜏!"#

(with 𝜏!"# = 𝜀𝜏!"#) and suggest computing 𝜏!"# as an estimate of the asymptotically

maximum pheromone trail value. However, this value depends on the amount of

15

pheromone that is deposited during the search, which again varies from one problem to

another (Solnon and Fenet, 2006).

In order to achieve a higher level of control in this regard, NormANTS introduces the

following two instruments. First, heuristic values and pheromone values are normalized

between zero and one. Accordingly, the pheromone deltas for the iteration-best and the

globally best ant so far, ∆𝜏!!
!!"#$

 and ∆𝜏!!
!!"#$%"

, are defined as

 ∆𝜏!!
!!"#$

= 𝜗∆!!"#$ ∙ 𝜌 𝜋!!
!"#$

− 𝜋!!
!"#$%"

𝜋!!
!"#$%"

− 𝜋!!
!"#$%"

 (3.11)

and

 ∆𝜏!!
!!"#$%"

= 𝜗∆!!"#$%" ∙ 𝜌 𝜋!!
!"#$%"

− 𝜋!!
!"#$%"

𝜋!!
!"#$%"

− 𝜋!!
!"#$%"

 (3.12)

, respectively. The variable 𝜋 denotes the objective function value of the solution generated

by some ant 𝑘, with 𝑘! (𝑘!) being the best (worst) ant either of the current iteration

(𝑘!!"#$) or so far (𝑘!!"#$%"). 𝜗∆!!"#$%" and 𝜗∆!!"#$ are control parameters that can be used

to adjust the weight of the different elitist ants and to increase or decrease the

corresponding pheromone delta. In this regard, emphasizing the iteration-best ant supports

exploration while focusing on the globally best ant intensifies exploitation (Levine and

Ducatelle, 2004). Besides the pheromone also the heuristic values are normalized

following the same principle, i.e.

 𝜂!!"#$%&'()* = 𝜂! − 𝜂!"#$% 𝜂!"#$ − 𝜂!"#$% (3.13)

This prevents distortions regarding the relative importance of pheromone and heuristic

values in the calculation of transition probabilities.

Second, the evaporation rate 𝜌 is defined as a function of the total number of iterations

of the search procedure with

 𝜌 = 1 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (3.14)

Combined, these two instruments work as follows. Using normalized values decouples

the pheromone delta from individual characteristics of problem instances while

information about the relative distance between good and bad solutions remains available.

16

In combination with the limited range of the normalized pheromone values, the direct link

between 𝜌 and the number of iterations ensures that the pheromone delta (which is also a

function of 𝜌) is completely under control. More precisely, the number of iterations

directly determines the size of the delta so that the amount of pheromone deposited at the

end of each iteration is on the one hand large enough to enable the evolution of an

adequately differentiated pheromone map throughout the optimization run and on the other

hand small enough to keep the difference between objects under control.

3.5 Computational study

3.5.1 Experimental design

In the computational study, NormANTS is applied to the multidimensional knapsack

problem. It is tested on 33 different MKP instances from the literature. In order to evaluate

both the impact of the novel pheromone concept as well as the overall performance, the

results of NormANTS are compared with different benchmarks.

First, in order to be able to associate observed differences in performance with the

pheromone concept, ant algorithms that use a vertex-oriented pheromone model such as

Leguizamón and Michalewicz (1999), Boryczka (2007), and Ke et al. (2010) are selected.

Besides the similarity regarding pheromone representation, none of these algorithms

includes any kind of additional knapsack specific local search procedure that might

significantly improve weak results generated during the artificial ants search and thus

distort the comparison. Note that with its dynamic adjustment of the pheromone limits

DMMAS of Ke et al. (2010) is more complex than the algorithms of Leguizamón and

Michalewicz (1999) and Boryczka (2007), who follow the traditional pheromone update

models discussed in section 3.2. Accordingly, the most appropriate benchmarks for an

evaluation of the impact of the novel pheromone model with normalized pheromone trails

are the ant algorithms of Leguizamón and Michalewicz (1999) and Boryczka (2007).

Second, to analyse the overall performance independently from the pheromone model,

the results of Alaya et al. (2004), Ant-knapsack, are considered additionally. This algorithm

deposits pheromone trails on all pairs of objects (instead of individual vertices).

MKP test instances were selected in line with the above so that a satisfying number of

suitable results were available for the respective benchmark algorithms. In order to analyse

the overall performance of NormANTS, problems of different size were chosen including

17

instances that used to be particularly hard to solve. All test problems used have been

downloaded from OR-Library (Beasley, 1990).

The algorithm described in this study has been implemented in MatLab R2012a. All test

runs have been conducted on a Macintosh computer with an Intel Core i5 processor (1.7

GHz) and 4 GB RAM.

3.5.2 Parameter settings and evolution of pheromone trails

For all problem sets, the number of iterations and ants were set to 1000 and 100,

respectively. The parameters that balance the relative importance of pheromone trails and

heuristic values were set to 𝛼 = 2 and 𝛽 = 3. Compared with the parameter configurations

reported by Leguizamón and Michalewicz (1999) or Boryczka (2007), who both suggest

lower values for 𝛼 and higher values for 𝛽, the chosen setting results in a relatively strong

influence of the pheromone. This supports a rather explorative search in the early phase

(when all trails are still undeveloped and close to their initial values) and a rather

exploitative search towards the end of an optimization run (when the pheromone map is

differentiated and potentially desirable objects are intensely marked). The initial

pheromone values were defined as 𝜏!"! = 0.5 . The upper and lower bound for the

pheromone trails were set to 𝜏!"# = 0.1 and 𝜏!"# = 1, respectively. The evaporation rate

was defined as 𝜌 = 1 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 0.001. The control factors

𝜗∆!!"#$ and 𝜗∆!!"#$%" for the update of the iteration-best and globally best ant were set to

𝜗∆!!"#$ = 𝜗∆!!"#$%" = 0.5.

Figure 3.1 exemplarily shows the iterative pheromone deposit and evaporation for

problem 5.100-00, one of the knapsack instances taken from Chu and Beasley (1998). The

chosen values for 𝜏!"! , 𝜏!"# , 𝜏!"# , ρ , 𝜗∆!!"#$, and 𝜗∆!!"#$%" resulted in an average

pheromone deposit of 1.4 and an average evaporation of 0.37 per solution component over

1000 iterations. On the one hand there is a clear differentiation between good and bad

objects, which prevents the ant’s search from becoming too diversified. On the other hand,

the absolute differences in terms of pheromone values do not grow too large. Accordingly,

many objects remain actually (not only theoretically) selectable throughout the whole

optimization run. This minimizes the risk of stagnation.

18

Figure 3.1: Iterative pheromone deposit and evaporation for 5.100-00 over 1000 iterations
(average over ten runs)

Figure 3.2: Differentiated pheromone map for 5.100-00 after 1000 iterations (average
over ten runs)

The fact that the iterative pheromone delta is independent from absolute objective

function values of the problem instance and linked to the number of iterations enables a

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0 250 500 750 1000

Ph
er

om
on

e
m

od
ifi

ca
tio

n

Iterations

Evaporation Deposit

1
2

3
4

5
6

7
8
9
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

A
bs

ol
ut

e
st

re
ng

th
 o

f p
he

ro
m

on
e

tr
ai

ls

Objects

19

slow and coordinated evolution of the pheromone trails. As can be seen from Figure 3.1,

both pheromone deposit and evaporation remain on a relatively constant level. This is

essential for maintaining a high degree of control over the incremental modification of the

trails. Note that without further adjustments of any of the parameters, the average

pheromone deposit and evaporation are highly similar for all other instances from the

computational study. This reduces the necessity for problem instance-specific adjustments

of the parameter settings of the ant algorithm.

As a consequence of the regulated pheromone evolution, the solution quality is

gradually improved in the course of the ants’ search. A stronger convergence to solutions

occurs only towards the end of the optimization run. However, if need be for a more

aggressive search, a reduction of the number of iterations would automatically trigger an

adjustment of the cumulated pheromone delta per iteration. For example, setting the

number of iterations to 100 resulted in an average evaporation of 0.004 and an average

deposit of 0.0133 per object and iteration for problem instance 5.100-00 (i.e. roughly ten

times the value than for 1000 iterations). Accordingly, the pheromone trails developed

significantly faster so that a differentiation similar to the one depicted in Figure 3.2 was

reached after 100 iterations already. In addition, one could also increase the pheromone

deposit by setting higher values for 𝜗∆!!"#$ and 𝜗∆!!"#$. This would also support a stronger

intensification leading to larger differences between “good” and “bad” solution

components.

3.5.3 Search behaviour analysis: diversification and intensification

In order to further analyse the ability of NormANTS to effectively explore the search

space two measures, namely resampling ratio and similarity ratio, are considered. Both

metrics have been used in the field of ACO to evaluate the diversification and

intensification of ant algorithms (Ke et al., 2010; Solnon and Fenet, 2006). After a brief

definition of the metrics, the results are given in Figure 3.3 and 3.4. Note that in both

figures, the plotted values for DMMAS and MMAS are only rough estimates as they have

been derived from the corresponding graphs reported by Ke et al. (2010). However, the

fitted curves are sufficiently accurate to reflect the general behaviour of DMMAS and

MMAS and thus enable a schematic comparison with NormANTS.

20

Resampling ratio

Analogous to the definitions provided by Van Hemert and Bäck (2002) and Solnon and

Fenet (2006) the resampling ratio in the 𝑡!! iteration is computed as

 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜 = (!"#$%&'()"*+(,-.(*/) – !"#$%&'()"*+(,-.,+/"%)
!"#$%&'()"*+(,-.(*/)

 (3.15)

where 𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙 is the total number of solutions generated so far (i.e. until

the 𝑡!! iteration) and 𝑁𝑢𝑚𝑏𝑒𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝑈𝑛𝑖𝑞𝑢𝑒 is the number of unique solutions found

in iteration 𝑡. Note that “unique” refers to all solutions generated during the iterations

1 to (𝑡 − 1). A resampling ratio close to zero implies an effective search with only few

duplicate solutions whereas values close to one indicate stagnation, i.e. hardly any new

solutions are generated in the course of the search.

Figure 3.3: Evolution of the resampling ratio for 5.100-00 and 10.00-00 over 200
iterations (average over ten runs)

Figure 3.3 shows the average resampling ratio for the instances 5.100-00 and 10.100-00

over ten runs. The number of iterations was set to 200 (accordingly, 𝜌 = 1 200). All

other parameter values were chosen as reported above. For both instances, the resampling

ratio of NormANTS remains below 0.05 until three quarters of the iterations are completed

and clearly below 0.1 at all times. Only towards the end, a slight increase can be observed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

R
es

am
pl

in
g

ra
tio

Iterations

NormANTS: 5.100-00 NormANTS: 10.100-00

DMMAS: 10.100-00 MMAS: 10.100-00

21

However, this is actually a good sign as it indicates a certain degree of intensification

during the final phase of the search. For MMAS with a traditional pheromone model the

resampling ratio develops in a substantially different way. Already in an early phase, i.e.

after about 50 iterations, a quite steep increase can be observed, ultimately leading to a

resampling ratio of around 0.55 in iteration 200. Hence, it can be stated that NormANTS is

significantly more effective in sampling the search space than the original MMAS. Note

that the only difference between these two algorithms is the novel pheromone model of

NormANTS, which appears to have a strong positive impact on the search behaviour. The

comparison with DMMAS shows that both algorithms maintain good resampling ratios

throughout the optimization. However, for NormANTS the ratio increases considerably

later, indicating that during the first three quarters of the search it is less prone to

duplicates than DMMAS.

Similarity ratio

The formulation of the similarity ratio used in this paper follows the definition given by

Solnon and Fenet (2006) and its adaption provided in Ke et al. (2010). Hence, it also

corresponds to the pair-wise population diversity measures suggested by Sidaner et al.

(2002) and Morrison and De Jong (2002). Let 𝑥!! be the manifestation of the binary

variable for the 𝑗!! object from the solution of the 𝑘!! ant, and 𝑛! the number of ants, then

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 =
 !!

! ∙ !!
! !!!!

!!!
!!
!!!

!
!!!

!! ! ! ∙ !!
!!!

!!!
!
!!!

 (3.16)

If the solutions of all ants are identical, this ratio is equal to one. If all ants select

completely different objects, it is equal to zero.

Figure 3.4 depicts the development of the similarity ratio for the instances 5.100-00 and

10.100-00. For NormANTS, the ratio rises for both problems steadily from around 0.55 to

0.8. In the first half of the search it is considerably lower than for MMAS and DMMAS

which both start with values around 0.72. While in the long run, DMMAS and NormANTS

reach similar final values between 0.75 and 0.8, the similarity ratio of MMAS

asymptotically approaches one after three quarters of the iterations. Generally, the results

for the similarity ratio support the findings based on the analysis of the resampling ratio, i.e.

that NormANTS with the novel pheromone model is able to effectively search the solution

22

space, especially in comparison to the MMAS with the traditional pheromone concept

described in section 3.2.

Figure 3.4: Evolution of the similarity ratio for 5.100-00 and 10.00-00 over 200 iterations
(average over ten runs)

Note that a good balance of the trade-off between diversification and intensification is

exactly what also Ke et al. (2010) aim for. While NormANTS uses normalized values and

a coordinated pheromone delta to keep the relative differences within the pheromone map

under control, DMMAS dynamically adjusts the lower pheromone limit in order to achieve

just the same.

3.5.4 Results

The first test set contains instances from Weingartner and Ness (1967) and Shih (1979).

The size of these problems ranges from two constraints and 28 to 105 objects (weing01-08)

to five constraints and 30 objects (weish01-05). The results are given in Table 3.1. If

available, the best solution, the average objective function value as well as the standard

deviation are reported. For all problems of the first set, NormANTS finds the best known

solution consistently. Only for weing07, one of the two largest instances, the standard

deviation is larger than zero and the average solution quality is unequal to the best known

solution. Overall, NormANTS outperforms the algorithm of Leguizamón and Michalewicz

(1999) and matches the results of Boryczka (2007).

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 50 100 150 200

Si
m

ila
ri

ty
 r

at
io

Iterations

NormANTS: 5.100-00 NormANTS: 10.100-00

DMMAS: 10.100-00 MMAS: 10.100-00

23

Table 3.1: Results of NormANTS for instances from Weingartner & Ness (1967) and Shih

(1979)

Instance
 L. & M. (1999) Boryczka (2007) NormANTS

Best known Best Avg. Best Best Avg. Std.Dev.

Weing01 141278 141278 141078 141278 141278 141278 0.0

Weing02 130883 130883 130883 130883 130883 130883 0.0

Weing03 95677 95677 95667 95677 95677 95677 0.0

Weing04 119337 119337 119337 119337 119337 119337 0.0

Weing05 98796 98796 98796 98796 98796 98796 0.0

Weing06 130623 130623 130623 130623 130623 130623 0.0

Weing07 1095445 1095382 1095382 1095445 1095445 1095420 34.5

Weing08 624319 624319 624319 624319 624319 624319 0.0

Weish01 4554 4554 4554 4554 4554 4554 0.0

Weish02 4536 n/a n/a 4536 4536 4536 0.0

Weish03 4115 n/a n/a 4115 4115 4115 0.0

Weish04 4561 n/a n/a 4561 4561 4561 0.0

Weish05 4514 n/a n/a 4514 4514 4514 0.0
Best found and average objective function values as well as standard deviation of ten runs per instance.
The best results are in boldface.
n/a: not available

The second test bed encompasses problems taken from Chu and Beasley (1998). All

instances of this set comprise 100 objects and five constraints. The results are summarized

in Table 3.2.

Table 3.2: Results of NormANTS for instances from Chu & Beasley (1998) with five

constraints

Instance Best
known

L. & M. (1999) Alaya et al. (2004) Ke et al. (2010) NormANTS

Best Avg. Best Avg. Std.Dev. Best Avg. Std.Dev. Best Avg. Std.Dev.

5.100-00 24381 24381 24331 24381 24342 29.3 24381 24362 23.8 24381 24381 0.0

5.100-01 24274 24274 24245 24274 24247 38.5 24274 24273 6.2 24274 24274 0.0

5.100-02 23551 23551 23527 23551 23529 8 23551 23540 7.2 23551 23542 7.5

5.100-03 23534 23527 23463 23534 23462 32.6 23534 23482 14.9 23534 23512 16.8

5.100-04 23991 23991 23949 23991 23946 31.8 23991 23954 10.8 23991 23972 16.8

5.100-05 24613 24613 24563 24613 24587 31.3 24613 24608 6.3 24613 24608 6.6

5.100-06 25591 25591 25504 25591 25512 43.8 25591 25591 0 25591 25591 0.0

5.100-07 23410 23410 23361 23410 23371 30.3 23410 23404 13.3 23410 23410 0.0

5.100-08 24216 24204 24173 24216 24172 32.9 24216 24211 5.9 24216 24211 6.6

5.100-09 24411 24411 24326 24411 24356 44.3 24411 24406 13.8 24411 24411 0.0
Best found and average objective function values as well as standard deviation of ten runs per instance.
The best results are in boldface.

24

Again, NormANTS is able to identify the best known solution for all instances. In terms

of average solution quality, NormANTS considerably outperforms Alaya et al. (2004). For

5.100-05, 5.100-06, and 5.100-08, NormANTS and DMMAS achieve the same averages.

Still, for seven out of ten instances NormANTS outperforms DMMAS in this regard and

obtains the best average solution quality of all algorithms.

Table 3.3 displays the results for large sized problems also taken from Chu and Beasley

(1998). Each instance of the third set consists of ten constraints and 100 objects. For nine

out of ten instances, the best known solution was found. In this regard only the algorithm

of Ke et al. (2010) performed equally well. Interestingly, for problem 10.100-05

NormANTS obtained a higher average solution quality than DMMAS even though the

latter was able to identify the optimum while NormANTS was not.

Table 3.3: Results of NormANTS for instances from Chu & Beasley (1998) with ten

constraints

Instance Best
known

L. & M. (1999) Alaya et al. (2004) Ke et al. (2010) NormANTS

Best Avg. Best Avg. Std.Dev. Best Avg. Std.Dev. Best Avg. Std.Dev.

10.100-00 23064 23057 22996 23064 23016 42.2 23064 23045 19.6 23064 23055 5.8

10.100-01 22801 22801 22672 22801 22714 67.2 22801 22742 40.8 22801 22753 47.0

10.100-02 22131 22131 21980 22131 22034 66.9 22131 22091 29.8 22131 22110 30.7

10.100-03 22772 22772 22631 22717 22634 60.6 22772 22710 37.6 22772 22689 50.3

10.100-04 22751 22654 22578 22654 22547 66.3 22751 22617 43.9 22751 22643 45.5

10.100-05 22777 22652 22565 22716 22602 63.3 22777 22663 40.3 22716 22666 36.5

10.100-06 21875 21875 21758 21875 21777 44.9 21875 21826 28.4 21875 21833 46.4

10.100-07 22635 22551 22519 22551 22453 89.2 22635 22557 31 22635 22567 36.0

10.100-08 22511 22418 22292 22511 22351 69.4 22438 22409 17.3 22511 22431 26.3

10.100-09 22702 22702 22588 22702 22591 88.5 22702 22696 32.7 22702 22702 0.0
Best found and average objective function value as well as standard deviation of ten runs per instance.
The best results are in boldface.

Overall, NormANTS achieves the best average solution quality for nine out of ten

instances and outperforms DMMAS in this regard. Compared with Leguizamón and

Michalewicz (1999) and Alaya et al. (2004), NormANTS consistently obtains better results

regarding both, the best solution found as well as the solution average.

3.6 Conclusion

In this paper, a novel pheromone concept for ACO is introduced. The two constituent

characteristics of this pheromone model are (i) the normalization of pheromone values

between zero and one and (ii) the coupling of the iterative pheromone delta with the total

25

number of iterations. These properties ensure a high degree of control of the iterative

modification of pheromone trails. The balance of pheromone deposit and removal leads to

a coordinated evolution of the pheromone map so that after the chosen number of iterations

an adequate differentiation between good and bad objects is achieved. Accordingly,

diversification and intensification are well balanced throughout the search of the artificial

ants.

In order to analyse the performance of the proposed algorithm, an experimental study

was conducted. Without any further problem specific adjustments, NormANTS was

applied to the multidimensional knapsack problem and tested on 33 different instances

taken from the literature. The solutions were compared with various benchmarks, namely

the ant algorithms of Leguizamón and Michalewicz (1999), Alaya et al. (2004), Boryczka

(2007), and Ke et al. (2010). The results indicate that the pheromone model with

normalized pheromone trails and an iteration-dependent pheromone delta allows for an

effective search behaviour. For 32 out of 33 instances, the optimum was found. Moreover,

the average solution quality was consistently close to the best known solution. Interestingly,

this was also the case for the single instance that was not solved to optimality. Overall,

NormANTS clearly outperformed the algorithms of Leguizamón and Michalewicz (1999)

and Alaya et al. (2004) in terms of average solution quality and best solution found. A

comparison with the results of Ke et al. (2010) revealed that in terms of average solution

quality NormANTS performed better.

An analysis of the similarity and resampling ratio further supported the high search

capability. The effectiveness in exploring the search space can be considered the major

reason for the good results in the experimental study. Note that in this regard, NormANTS

and DMMAS exhibit similar behaviour with comparable similarity and resampling ratios,

which explains why both algorithms obtain such good results.

Furthermore, the results imply that not necessarily the choice of the right type of

pheromone trails (in this case vertex-oriented or pair-wise) determines the search

capabilities. Mechanisms to control the evolution of these trails in the course of the search

seem to be at least as important.

Although NormANTS is applied to the multidimensional knapsack problem in this

study, the suggested pheromone model is of generic nature and not problem specific.

Hence, it can be easily transferred to other optimization problems. Accordingly, the

application of the algorithm presented in this paper (or its key properties, respectively) to

other optimization problems is an interesting topic for further research.

26

4

ANT COLONY OPTIMIZATION FOR THE MULTI-PERIOD MIXED-MODEL
ASSEMBLY LINE SEQUENCING PROBLEM

Michael Hamann, Jörn-Henrik Thun, and Andrej Saweljew

Abstract

This paper introduces a model for a multi-period variant of the assembly line sequencing

problem, expanding the objective of the original mixed-model sequencing problem by a

labour dimension. The production sequence has to be chosen such that work overload does

not occur and the total labour requirement over multiple work shifts is minimized. An ant

algorithm with a novel pheromone concept based on normalized pheromone values and a

directly controlled pheromone map evolution is presented and tested on 48 different

randomly generated problem instances of various sizes. Optimal solutions generated with

Gurobi as well as the solutions of probabilistic and deterministic greedy algorithms serve

as benchmarks. The results of the computational study show that the ant colony

optimization approach provides optimal or near-optimal solutions within short computation

times and outperforms the other algorithms.

4.1 Introduction

Today, automotive manufacturers face a demanding and highly competitive market

environment, in which it is indispensable to satisfy individual customer demands in order

to gain sustainable competitive advantage (Holweg and Pil, 2001; Pil and Holweg, 2004).

Accordingly, they have to offer a great variety of different models (Holweg and

Greenwood, 2001; Röder and Tibken, 2006), which implies the production of many

variants of the same base product on the same assembly line. One of the most important

models for sequencing products on such a mixed model assembly line is the mixed-model

sequencing model (MMS) (Wester and Kilbridge, 1963). It aims at finding a production

sequence that meets the overall demand and at the same time minimizes the total amount

of work overload. Work overload occurs when the processing of a model cannot be

finished within the boundaries of the respective workstation. Various characteristics of the

27

assembly line such as cycle time, processing times and station borders are explicitly

considered.

In this paper, we present a multi-period variant of such a mixed-model sequencing

problem (MPMMS), which focuses on the minimization of the overall labour requirement

over multiple working shifts. As for the MMS, a solution of the MPMMS consists of a

sequence of different models that are to be processed by workstations along the assembly

line. The production sequence has to be chosen so that work overload does not occur and

the total labour requirement is minimal. This requires solution procedures to provide some

flexibility and problem-specific intelligence, since we need to smoothen labour

requirements within shifts while we need to allow for a different staffing of workers

between shifts in order to realize minimal overall labour requirements. Furthermore, the

multi-period character of the model increases the complexity of the problem, as every time

a solution is evaluated in terms of feasibility and quality, multiple shifts have to be

evaluated individually.

As traditional exact approaches such as branch-and-bound or branch-and-cut often

require inadequately high computation times for 𝒩𝒫-hard problems such as the MMS, we

use ant colony optimization to solve the MPMMS. Besides some problem-specific features

regarding the use of local information during the search, we apply a novel pheromone

update concept, which is based on normalized pheromone values and enables a direct

control of the speed with which the pheromone map evolves. In addition to the ant

algorithms, we propose two greedy algorithms, which utilize information about the

similarity of models in terms of labour requirement for the solution construction. To

evaluate the algorithms, we test them on 48 different MPMMS instances ranging from

small to large size. Solutions generated with Gurobi serve as a benchmark for the results

obtained by the heuristic approaches.

The remainder of this paper is organized as follows. In section 4.2, the relevant

literature in the field of mixed-model assembly line sequencing is reviewed. In section 4.3,

we introduce a model for the multi-period mixed-model sequencing problem. The

characteristics of the proposed greedy and ant algorithms are summarized in section 4.4. In

section 4.5, we present an extensive experimental study and report the computational

results. In the last section, we conclude with a discussion of our results.

28

4.2 Literature review

There exists a massive body of literature on a broad variety of assembly line sequencing

problems, assembly line balancing problems, and combinations of both. Hence, the

literature review presented in this section is restricted to research with a high relevance for

this study, i.e. a) research that focuses on the core problem of this paper, the mixed-model

sequencing problem, and b) research that solves the MMS or closely related problems

using ant colony optimization. For a more comprehensive overview, the reader is referred

to Boysen et al. (2009), who present a hierarchical classification scheme for the three

alternative modelling approaches for sequencing problems discussed in the literature,

namely mixed-model sequencing, car sequencing and level scheduling.

Moradi and Zandieh (2013) apply a novel imperialist competitive algorithm to a just-in-

time mixed-model sequencing problem where variations of production rates are to be

minimized. To evaluate performance, the proposed algorithm is compared against a genetic

algorithm. Boysen et al. (2011) investigate a variant of the mixed-model sequencing

problem in which a utility worker takes over whenever it is foreseeable that work overload

will occur in a production cycle. They present a binary linear program along with a

complexity proof and test different exact as well as heuristic solution approaches. Work

overload minimization criteria are also investigated by Cano-Belmán et al. (2010). In their

study, they address a mixed-model assembly-line sequencing problem with a scatter search

based hyper-heuristic. The results of their experimental study show the effectiveness of the

proposed hyper-heuristic compared to existing heuristics. Bautista and Cano (2011) present

a formulation for the mixed-model sequencing problem with workload minimization for

production lines with serial workstations. To solve this variant of MMS, they suggest a

procedure through bounded dynamic programming. Akgündüz and Tunalı (2010) propose

an adaptive genetic algorithm to solve a mixed-model assembly line sequencing problem

with multiple objectives such as variation in part consumption rates, total utility work and

setup costs. The results of their computational study show that the adaptive GA-based

approach outperforms the non-adaptive algorithm in terms of solution quantity and quality.

Multiple objectives, i.e. the minimization of number of setups and variation of production

rates, are also considered by Moradi et al. (2011), who combine a ranked-based roulette

wheel selection algorithm with a pareto-based population ranking algorithm. The results of

the hybrid algorithm are compared against solutions obtained via total enumeration in

29

small problems and also against other search heuristics in small, medium and large

problems.

Regarding the optimization technique, there are a couple of publications that apply

ACO to the car sequencing problem, which is closely related to the MMS. Gottlieb et al.

(2003) provide one of the first studies on ant colony optimization for the car sequencing

problem. A car sequencing problem with three production stages, i.e. construction, painting,

and assembly, is solved by Gagné et al. (2006) using ant colony optimization. Solnon

(2008) introduces an ant colony optimization approach for solving the car sequencing

problem with two different pheromone structures, i.e. one learning for “good” car

sequences and one learning for “critical” car sequences. The paper shows that the

combination of the two pheromones leads to promising results. Morin et al. (2009) propose

a specialized pheromone trail structure, which is specifically adapted to the type of

constraints in the car sequencing problem. Again, the ant colony optimization approach

shows good results.

Only few publications presenting applications of ACO to mixed-model sequencing

problems can be found. McMullen (2001) propose an ant algorithm for the production-

sequencing problem with two objectives, namely minimization of setups and optimization

of stability of material usage rates. The solutions obtained with ACO are compared against

solutions generated with simulated annealing, tabu search, genetic algorithms and neural

network approaches. The experimental results show that the ACO approach is competitive

in terms of solution quality and CPU requirements. Zhu and Zhang (2011) consider a

similar objective. They propose an ant algorithm with an elitist ant strategy for identifying

optimal sequence of multi-product models, such that the deviation between the ideal

material usage rate and the practical material usage rate is minimized.

4.3 The multi-period mixed-model sequencing problem

4.3.1 Problem description

In a just-in-time environment, the final production sequences for assembly lines are

typically defined for a fixed planning horizon in order to enable an exact coordination of

deliveries by suppliers. Such a fixed horizon typically ranges from one or two days up to

two weeks (see, e.g., Ervolina et al., 2009). As a consequence, a production sequence

incorporates multiple working shifts, e.g. ten shifts, if we assume a five-day planning

horizon and two working shifts per day. Depending on the economic objectives of the

30

sequencing process, it is – as in this paper – necessary to explicitly take this multi-period

character into consideration.

According to Boysen et al. (2009), sequencing approaches in literature mainly focus on

two basic objectives, namely minimizing work overload and levelling part usage. The

extended mixed-model sequencing problem in this paper considers a third objective in

addition to the work overload criterion: It aims at minimizing the labour requirements

along the assembly line over multiple working shifts. Labour requirement here is defined

as the required number of operators per work station that need to be staffed to process the

scheduled production orders. This objective was directly motivated by a real-world

assembly line of a large German manufacturing plant from the automotive industry. At the

respective company, fixed cost determined by the workforce play a major role when it

comes to minimizing production costs. Since the required number of operators depends on

the specific models that are scheduled for production, an efficient assignment of operators

to stations is one major objective of the detailed scheduling process.

It is important to note that the amount of labour (or its cost, respectively) is not

determined by work overload as in the original MMS but by the staffing of personnel at the

workstations during a work shift. Since every model has individual labour requirements on

each station of the assembly line, the number of operators depends on the models that are

processed during a shift. The differences regarding the labour requirements are driven by

the overall cycle time or production tact of the assembly line. By parallelizing time-

consuming tasks and assigning them to a higher number of operators, processing times are

adjusted in order to match the given cycle time of the production system. The cycle time is

not adjusted on a frequent basis and hence not subject to short-term planning but output of

the simple assembly line balancing problem (SALBP) that focuses on minimizing the cycle

time for a fixed number of workstations (or minimizing the number of work stations for a

fixed cycle time) and typically precedes the MMS.

In each shift, the overall labour requirement per station is determined by the maximum

labour requirement of the different orders that pass the station within a shift. For example,

assume that ten models are processed at a station during a shift. If five of them require

three operators while five require two, three operators need to be scheduled at the station

for the whole shift to cover the labour requirements of the first five models. This example

raises the question why such differences in terms of labour are not covered using utility

workers or floaters, which are not assigned to a certain workstation but can flexibly move

along the assembly line to support stations where labour-intensive models are processed.

31

The answer to this question is twofold. First, in practice, there are organizational limits to

the use of such utility workers. The higher their number and the higher the number of

stations, the higher will be the complexity of coordination and the risk of diversion and

nervousness along the assembly line. Hence, in the case of several dozens up to several

hundred stations, it does not seem convincing to argue that utility workers should be the

only means to cover work overload situations. Second, the differences between models

regarding their labour requirements are known a-priori, i.e. before the final production

sequence is determined. It is reasonable to utilize this information in the short term

planning process if possible.

Since we focus on labour as the major objective dimension, we formulate the

minimization of work overload, which is the major objective of the original MMS, as an

additional hard constraint. More precisely, we drop the assumption that work overload

does not impact succeeding workstations and consider solutions that lead to violations of

station boundaries as infeasible.

Note the characteristics of a “good” production sequence and the implication for the

optimization algorithms: A good sequence smoothens the labour requirement within

individual working shifts. The more alike the labour requirements of orders being

processed within one shift, the better is typically the utilization of the operators and the

lower will the overall labour amount be. Between shifts, however, the number of operators

per station differs. As a consequence, the optimization algorithms need to be able to

smoothen labour requirements within shifts while allowing for differences between shifts

in order to minimize the overall labour demand. Furthermore, it is important to understand

that labour differences between shifts do not imply that the total workforce strongly

fluctuates over time. It is the assignment of operators to stations that is different in

different shifts within the short term planning horizon but not necessarily the average size

of the overall workforce.

In line with the explanations above and following the basic assumptions of the MMS as

stated by Scholl and Klein (1999), Boysen et al. (2009), and Golle et al. (2014), the

characteristics of the MPMMS can be summarized as follows:

• The assembly line consists of a given number of workstations of individual station

length.

• The stations are closed, i.e. an operator can only process a model within his station

boundaries and must not move beyond.

32

• Individual deterministic processing times (station times) are given for all models at

every station.

• Assigning more personnel to a workstation cannot reduce processing times any

further. It is assumed that this has already been done as far as possible during the

process of setting the cycle time for the assembly line.

• The conveyor moves at constant speed from left to right.

• Fixed rate launching is applied, i.e. models are launched according to a fixed cycle

time.

• The demand for each model is given and non-negative in the actual period. Rush

orders are not allowed.

• The operators have zero return times, i.e. we neglect the time an operator needs to

move from where he finished working on one model to the point where her starts

working on the next model.

• Times and distances are standardized, i.e. one time unit is needed to cover one

distance unit.

• Work overload is not allowed.

• The labour demand is determined by	 the maximum requirement of all orders that

pass a station within a shift.

4.3.2 Model

To describe the problem, we use the following notations:

𝑇 number of production cycle, i.e. sequence length (index 𝑡)

𝑀 number of models (index 𝑚)

𝐾 number of stations (index 𝑘)

𝑆 number of work shifts (index 𝑠)

𝑐 cycle time

𝑑! demand for model 𝑚

𝑙! length of station 𝑘

𝔩! left border of station 𝑘

𝔯! right border of station 𝑘

𝑝!" processing time of model 𝑚 in station 𝑘

𝜃!" start position of the 𝑡!! model in station 𝑘

𝜊!" end position of the 𝑡!! model in station 𝑘

33

𝜄! start time of shift 𝑠

𝜁! end time of shift 𝑠

𝜙!" start time of the 𝑡!! model in station 𝑘

𝜔!" end time of the 𝑡!! model in station 𝑘

ℒ!" labour requirement of model 𝑚 in station 𝑘

𝑥!" binary variable, 1 if 𝑚 is produced in slot 𝑡, 0 otherwise

𝑦!"# binary variable, 1 if 𝑚 is processed in station 𝑘 during shift 𝑠, 0 otherwise

With the problem description, notation, and assumptions above, we get the following

multi-period MMS model:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜋 = 𝑚𝑎𝑥!∈! ℒ!" ∙ 𝑦!"#!! (4.1)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

 𝜃!" = 𝑚𝑎𝑥 𝜃!,!!! + (𝑝!" ∙ 𝑥!,!!!)!∈! − 𝑐 , 𝔩! ∀ 𝑘 ∈ 𝐾; 𝑡 = 2,… ,𝑇 (4.2)

 𝜊!" = 𝜃!" + 𝑝!" ∙ 𝑥!"!∈! ∀ 𝑘 = 1,… ,𝐾; 𝑡 = 1,… ,𝑇 (4.3)

 𝜃!" + 𝑝!" ∙ 𝑥!"!∈! ≤ 𝔯! ∀ 𝑘 = 1,… ,𝐾; 𝑡 = 1,… ,𝑇 (4.4)

 𝜙!" = 𝔩! ∀ 𝑘 = 1,… ,𝐾; 𝑡 = 1 (4.5)

 𝜙!" = 𝑚𝑎𝑥 𝜔!,!!!; 𝑐 𝑡 − 1 + 𝔩! ∀ 𝑘 = 1,… ,𝐾; 𝑡 = 2,… ,𝑇 (4.6)

 𝜔!" = 𝜙!" + 𝑝!" ∙ 𝑥!"!∈! ∀ 𝑘 = 1,… ,𝐾; 𝑡 = 1,… ,𝑇 (4.7)

 𝑦!"# =
 1 𝑖𝑓 𝜙!" ≤ 𝜁! ∧ 𝜙!" ≥ 𝜄!) ∨ (𝜔!" ≤ 𝜁! ∧ 𝜔!" ≥ 𝜄!)
 0 𝑒𝑙𝑠𝑒

 (4.8)

 ∀ 𝑚 = 1,… ,𝑀; 𝑘 = 1,… ,𝐾; 𝑠 = 1,… , 𝑆; 𝑡 = 1,… ,𝑇

 𝑥!" ∈ 0,1 ∀ 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (4.9)

 𝑥!" = 𝑑! ∀ 𝑚 ∈ 𝑀!∈! (4.10)

34

 𝑥!" = 1 ∀ 𝑡 ∈ 𝑇!∈! (4.11)

 𝜙!" ≥ 0 ∀ 𝑘 ∈ 𝐾; 𝑡 = 2,… ,𝑇 (4.12)

 𝜔!" ≥ 0 ∀ 𝑘 ∈ 𝐾; 𝑡 ∈ 𝑇 (4.13)

The objective function given in equation (4.1) minimizes the total labour requirement

over all shifts and stations. The labour requirement per station and shift depends on the

models 𝑚 that are processed in station 𝑘 during shift 𝑠.

The starting position of the processing of the order in the 𝑡!! production slot in a station

𝑘 is equal to the maximum of the left border of station 𝑘 and the start position of the

previous order plus the distance covered during processing minus the distance covered

during the cycle time 𝑐 (equation (4.2)). The end position of an order equals the starting

position plus the distance covered during the processing time of this order in station 𝑘

(equation (4.3)). Equation (4.4) reflects that the processing of orders has to be completed

within the station borders. As mentioned before, while this is the objective of the original

MMS, it is formulated as an additional hard constraint in this model.

For the first order in the production sequence, the starting time of processing equals the

left station border at every station 𝑘 (equation (4.5)). For the following orders the

definition of starting time is considerably more complex as it depends on all previous

orders, potential waiting times induced by station boundaries and the production cycle time

(equation (4.6)). The end time is defined as the starting time plus the respective processing

time at each station (equation (4.7)).

Equations (4.8) and (4.9) describe the binary variables of the model. 𝑦!"# indicates, if

model 𝑚 is processed in station 𝑘 within shift 𝑠. 𝑥!" indicates if model 𝑚 is scheduled in

production slot 𝑡. For each model, the demand needs to be fully satisfied (equation (4.10))

and in each production slot, exactly one model has to be scheduled (equation (4.11)).

Moreover, starting and end times of orders are non-negative (equations (4.12) and (4.13)).

4.4 Solution approaches for the MPMMS

4.4.1 Greedy algorithms

Basically, any combinatorial optimization problem can be approached with more or less

simple greedy algorithms, which iteratively add solution components according to some

35

problem-specific heuristic rule until a complete solution is built. Typically, utility values of

potential solution components are set in relation to their resource requirements in order to

define priorities. Consider a traveling salesman problem (TSP), for example, where

geographically distributed customers have to be served. Here, the utility value of a route

between two customers usually is defined as the inverse of its length: the shorter the route,

the higher is its utility or “heuristic value”. Since a connection between two cities or

customers is either short or long (at least in the general case), the calculation of heuristic

values is basically straightforward. Naturally, good overall solutions for TSPs make use of

shorter connections. In other words, by prioritizing shorter connections during solution

construction, convergence towards favourable solutions can be both guided and speeded up.

However, different to a TSP, solution components of the multi-period MMS are not per

se advantageous or not – they do not have a certain value or cost upfront. As a

consequence, it is more challenging to assign utility values. Good solutions consist of a

production sequence that results in a high utilization of the personnel assigned during the

different working shifts, i.e. it is generally favourable to have models with rather similar

labour requirements within one shift. Hence, we designed the general utility of an order so

that it is determined by the previous orders of the production sequence that are processed

during the same working shift: An order gets a low utility value if its labour requirements

strongly deviate from the requirements of its predecessors and vice versa. By preferring

orders with high utility values during the solution construction, it is ensured that partial

sequences are generated such that the labour requirements of the respective orders are quite

constant. This leads to a high utilization of the core personnel and a low overall labour

demand over all shifts.

We designed two different greedy algorithms that both follow this logic in general but

differ slightly regarding their definitions of “labour deviation”. The first greedy logic

considers only positive deviations, i.e. orders that have lower labour requirements than

their predecessors at each work station still get the maximum heuristic value assigned. The

second variant considers the overall deviation, i.e. both a labour increase as well as a

decrease result in a lower utility value of the respective order.

• “Greedy logic I”: Choose first the order that requires the lowest

increase in term of labour over all workstations.

• “Greedy logic II”: Choose first the order that has the smallest overall

deviation in terms of labour requirement.

36

For greedy logic I and greedy logic II, both, a deterministic variant as well as an

iterative probabilistic variant have been implemented. While the deterministic variants,

gre-1-det and gre-2-det, always select the model with the highest heuristic value, the

probabilistic algorithms, gre-1 and gre-2, define transition probabilities according to the

heuristic values and iteratively construct solutions based on these probabilities.

4.4.2 Ant colony optimization

The ant colony optimization metaheuristic has been inspired by the behaviour of foraging

ants (Dorigo et al., 1996). Indirect communication between individual ants via chemical

substances called pheromones enables ant colonies to identify the shortest paths between

their nest and food sources (Deneubourg et al., 1990). The same principle is exploited in

artificial ant colonies in order to solve combinatorial optimization problems (Dorigo and

Stützle, 2004).

Since the early nineties, various ant algorithms have been developed and used to solve

to different combinatorial optimization problems. Successful applications for extensively

studied problems such as the traveling salesman problem (Cordón et al., 2000; López-

Ibáñez et al., 2013), the vehicle routing problem (Bell and McMullen, 2004; Fuellerer et al.,

2009), the knapsack problem (Boryczka, 2007; Leguizamón and Michalewicz, 1999), or

the quadratic assignment problem (Gambardella et al., 1999; Stützle and Hoos, 2000),

demonstrate that ACO is capable to deliver competitive results that match or are close to

state-of-the-art algorithms for the respective problems.

Also for problems that are more closely related to the MMS such as, e.g., the car

sequencing problem, ant algorithms have been applied with promising results (Morin et al.,

2009; Solnon, 2008; Zhu and Zhang, 2011). Hence, ACO has been selected in this study to

solve the multi-period MMS.

The ant algorithm presented in this paper is an advancement of the MAX-MIN Ant

System as presented by Stützle and Hoos (2000). It uses the different types of greedy logic

explained in section 4.1 as heuristic functions, which add some local problem-specific

information during the search process to complement the artificial learning. Moreover, the

algorithm combines different techniques, which aim at improving the overall performance

in terms of solution quality and computation times. Besides proven methods such as

candidate lists, it applies the novel pheromone model presented in chapter 3.

In the remainder of this section, the solution construction of the ant algorithm, the

search procedure, and the pheromone concept are explained in detail.

37

Solution construction

Similar to other combinatorial optimization problems, the MPMMS can be depicted as a

fully connected directed graph where each node 𝑖 resembles an order that needs to be

scheduled for production. A feasible solution is represented by a complete tour through the

graph that doesn’t violate any of the given restrictions. To generate such a solution, an ant

𝑘 moves stepwise through the construction graph, i.e. it selects order after order from the

set of remaining orders and schedules them for production. When all orders have been

assigned to a slot in the production schedule (or if there is no order left satisfying the

capacity constraint), the ant stops its search for the current iteration. The transition

probability with which ant 𝑘 chooses the next node 𝑗 is given with

 𝑝!" =

!!"
! !!"

!

!!" ! !!" !! ∈ !"#$%$"&'(!
 𝑖𝑓 𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠! ,

 0 𝑒𝑙𝑠𝑒,

 (4.14)

with 𝜏!" being the pheromone intensity of the trail, i.e. the learnt desirability to process

order 𝑗 after order 𝑖 , and 𝜂!" being the heuristic value, i.e. the local attractiveness of

scheduling order 𝑗 after order 𝑖 given by a heuristic function. As mentioned above, we

implemented two types of greedy logic as heuristic functions to generate local information

about the similarity of solution components.

Moreover, we applied candidate short lists as described by Gambardella and Dorigo

(1996) and Dorigo and Stützle (2003). Generally, each individual solution component is

assigned a candidate list based on the local attractiveness of all other (feasible) solution

components. Only the most attractive components are included in the candidate list for the

current solution component and are made available for selection in the next step of the

solution construction process. In this case this means that during solution construction an

ant 𝑘 does not need to choose from all remaining feasible orders that have not been

assigned to a slot in the production sequence yet, but only considers a subset containing the

orders with the highest heuristic values, namely 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠!.

Focusing on a reduced number of potentially desirable solution components during each

step of the solution construction has both positive and negative implications. On the one

hand, the downside of this technique lies in the risk of information loss during the search

procedure. It is possible that solution components are temporarily neglected, as they don’t

seem desirable from a local point of view, although they might be required from a global

38

perspective in order to achieve the global optimum. On the other hand, however, using a

limited number of candidates during the solution construction can drastically reduce

computation times. Regarding the complexity of MPMMS the gain in solution speed

outweighs the potential loss of solution quality.

Pheromone update

As in the original MAX-MIN Ant System we set a minimum and a maximum boundary for

the pheromone values, 𝜏!"# and 𝜏!"#, in order to ensure exploitation of the solution space

at any time and prevent the artificial ant colony from entering a stagnation situation.

Furthermore, an elitist strategy similar to the suggestions of Dorigo et al. (1996) and

Bullnheimer et al. (1997) is used for the pheromone update. The iteration best ant, 𝑘!!"#$,

as well as the best ant so far, 𝑘!!"", are allowed to modify the pheromone trail on their

solution components. In order to favor exploration, not only a positive update is conducted

as in the majority of ant algorithms. A negative update, i.e. pheromone subtraction, as

suggested by Cordón et al. (2000) and Montgomery and Randall (2002) is additionally

carried out by the worst ant of the iteration, 𝑘!!"#$.

Note that a purely positive update by only the best ant(s) as it is commonly used in

applications of ACO would work as well in this case. However, considering the

computational complexity and the potential size of real-world instances of the MPMMS

with high numbers of work stations and orders, enhancing convergence by adding

information about inferior solutions during the search seems desirable.

Together with the pheromone evaporation, the trails are updated at the end of each

iteration with

 𝜏!" = 1 − 𝜌 𝜏!" + ∆𝜏!"!
!!"#$

+ ∆𝜏!"!
!!""

− ∆𝜏!"!
!!"#$

 (4.15)

Note that since both, the iteration-best as well as the globally best ant so far, carry out a

pheromone update, the positive update outweighs the negative update at any time. As

partial sequences are often simultaneously part of both, the best and the worst solution

found by the ants, this is essential in order to prevent a neutralization of positive and

negative update, which would negatively influence the evolution of differentiated

pheromone trails.

39

Normalizing pheromone and heuristic values and controlling search speed

Many ant algorithms compute the increase of the pheromone trails as a function of the

quality of the solution of the respective ant that modifies the trails (Alaykỳran et al., 2007;

Boryczka, 2007; Stützle and Hoos, 2000) or as a function of the number of ants that

generated the respective solution (Seçkiner et al., 2013). In other words, either the absolute

value of the respective solution or the temporary strength of the convergence of the

artificial colony influence the amount of pheromone deposited on the trails.

By linking the iterative pheromone delta of some ant 𝑘 to the solution quality with, e.g.,

∆𝜏!"! = 1 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒 (if (𝑖, 𝑗) is used by ant 𝑘), the search behaviour of

the algorithm directly depends on the numerical values of the problem instance and

temporary solutions found. As a consequence, even with the same parameter settings

(number of iterations and ants, relative importance of pheromone and heuristic values, etc.)

the artificial ants will behave differently for problem instances with relatively small

differences between very good and very bad solutions (in terms of objective function value)

and problem instances with relatively large differences.

In this paper, an approach is used which allows for a more direct control of the speed

with which the pheromone map evolves and, hence, a more direct control of the search

behaviour. First, heuristic values and pheromone values are normalized between zero and

one. Using such normalized values has several advantages. High absolute objective

function values do not lead to a bias when the transition probabilities are calculated during

solution construction, i.e. the potential risk of negative search bias towards non-optimal

areas of the solution space because of good temporary solutions is mitigated. Furthermore,

normalization provides the basis for a direct control of the pheromone delta by which the

pheromone trails are updated iteratively during the search process, i.e. the speed with

which the artificial ants explore the solution space and converge to certain regions is

independent from individual characteristics of problem instances.

40

Second, the evaporation rate ρ (and as a consequence an ant’s pheromone delta) is

defined as a function of the total number of iterations of the search procedure with

 𝜌 = 1 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (4.16)

Especially when applying different types of pheromone modification such as increase,

decrease and evaporation simultaneously, it is important to carefully regulate their

interaction so that they form a balanced system that iteratively leads to a differentiated

evaluation of solution components. Ideally, the overall pheromone delta is designed so that

the pheromone trails develop reasonably within the chosen number of iterations, i.e. the

trails on desirable solution components slowly grow stronger while the trails on

undesirable solution components slowly vanish. In order to achieve this, the number of

iterations and the modification of the pheromone trails are directly linked. The normalized

pheromone deltas for the iteration-best and -worst ant, 𝑘!!"#$ and 𝑘!!"#$, and the globally

best ant so far, 𝑘!!"", are defined as

 ∆𝜏!"!
!!"#$

= 𝜌 𝜋!!!"#$ − 𝜋!!!"" 𝜋!!!"" − 𝜋!!!"" (4.17)

 ∆𝜏!"!
!!"#$

= 𝜌 𝜋!!!"#$ − 𝜋!!!"" 𝜋!!!"" − 𝜋!!!"" (4.18)

 ∆𝜏!"!
!!""

= 𝜌 𝜋!!!"" − 𝜋!!!"" 𝜋!!!"" − 𝜋!!!"" (4.19)

Combining normalized pheromone and heuristic values with the iteration-dependent

pheromone delta results in a controlled evolution of the pheromone map within the given

number of iterations (or computation time, respectively). In other words, without changing

the general parameterization of the algorithm, learning rate and search speed vary

depending on the number of iterations that is chosen based on problem size or complexity.

For a smaller (larger) number of iterations, the pheromone trails will develop quicker

(slower), i.e. the ants will automatically converge faster (slower) towards certain solutions.

Figure 4.1 exemplarily shows the development of the pheromone trails for different

settings regarding the number of iterations (the test runs have been conducted for a random

MPMMS instance with 15 orders and ten stations).

41

Figure 4.1: Evolution of pheromone map for 100 iterations (i)), 1000 iterations (ii)), and

10.000 iterations (iii))

The orders that need to be scheduled are depicted on the horizontal axes, while the absolute

strength of the pheromone trails is shown on the vertical axes. Despite the different

numbers of iterations, desirable combinations of orders (that are in fact part of the optimal

solution) are clearly marked in all three cases. Overall the pheromone maps show the

differentiated structure that is wanted.

4.5 Computational study

4.5.1 Experimental design

In the experimental study, three different versions of the ant algorithm as well as two

stochastic and two deterministic greedy algorithms are tested on overall 48 different

problem instances. The algorithms ant-1 and ant-2 use the greedy logic I and II as heuristic

functions. The heuristic learning only (lo) works with pheromone-based learning only and

doesn’t consider any heuristic values. It serves as a benchmark to evaluate the impact and

importance of local information when solving the MPMMS with ACO. Besides the ant

algorithms, the greedy algorithms described in section 4.4, gre-1 and gre-2 as well as gre-

1-det and gre-2-det, are tested. Table 4.1 provides an overview of the heuristic approaches.

Table 4.1: Overview of heuristic algorithms

Algorithm Description

lo ACO without heuristic function

ant-1 ACO with heuristic function following greedy logic I

ant-2 ACO with heuristic function following greedy logic II

gre-1 Probabilistic greedy algorithm following greedy logic I

gre-2 Probabilistic greedy algorithm following greedy logic II

gre-1-det Deterministic greedy algorithm following greedy logic I

gre-2-det Deterministic greedy algorithm following greedy logic II

42

In order to evaluate the performance of the different algorithms, we generated random

test instances adapting the principles of the general instance generator of Scholl and Klein

(1999) and the suggestions of Golle et al. (2014). This approach is also used by Cano-

Belmán et al. (2010) and Emde et al. (2010) and is well suited for the generation of multi-

period instances of MMS in this paper. It provides a general framework for generating

problem instances that have the same structure and are similar to a certain extent in a

realistic manner but still differ in terms of parameter values that are chosen randomly

based on the following limits and distributions.

The length of the workstations is randomly distributed in the interval 100; 140 , and,

for all instances, the cycle time is set to 𝑐 = 90. Furthermore, each station has two possible

processing times, a long one and a short one, namely 𝑝!! < 𝑐 and 𝑝!! > 𝑐 , that are

randomly chosen from the intervals 0.75𝑐, 𝑐 − 1 and 𝑐 + 1,𝑚𝑖𝑛 1.15𝑐, 𝑙! ,

respectively. The processing times per model and station, 𝑝!", are then randomly chosen

from 𝑝!!;𝑝!! so that each model is unique and the average processing time for each

station 𝑘 over all models and for each model 𝑚 over all stations are not larger than 𝑐. The

labor requirement per station and model, 𝑙𝑎𝑏!", is randomly chosen from the intervals

1; 3 and 2; 4 . Overall, each randomly generated model resembles one production order

that needs to be scheduled and fulfilled.

The number of orders as well as the number of workstations have been varied in order

to generate problem sets that differ in size and complexity. An overview is given in Table

4.2.

All heuristic algorithms have been implemented in MatLab R2012a; the mixed integer

program has been modelled in GAMS 23.73 with Gurobi 4.5.1. The test runs have been

conducted on a Windows 7 Professional computer with an Intel Core i7 processor with six

cores (3.20 GHz each), twelve threads, and 32 GB RAM in total.

43

Table 4.2: Overview of problem sets
Problem Set Orders Stations Instances Problem Set Orders Stations Instances

1

1_1

10

10
1_1_1

5

5_1

40

20
5_1_!

1_1_2 5_1_2
1_1_3 5_1_3

1_2 15
1_2_1

5_2 25
5_2_1

1_2_2 5_2_2
1_2_3 5_2_3

2

2_1

15

10
2_1_1

6

6_1

50

20
6_1_1

2_1_2 6_1_2
2_1_3 6_1_3

2_2 15
2_2_1

6_2 25
6_2_1

2_2_2 6_2_2
2_2_3 6_2_3

3

3_1

20

10
3_1_1

7

7_1

75

30
7_1_1

3_1_2 7_1_2
3_1_3 7_1_3

3_2 15
3_2_1

7_2 40
7_2_1

3_2_2 7_2_2
3_2_3 7_2_3

4

4_1

30

20
4_1_1

8

8_1

100

30
8_1_1

4_1_2 8_1_2
4_1_3 8_1_3

4_2 25
4_2_1

8_2 40
8_2_1

4_2_2 8_2_2
4_2_3 8_2_3

4.5.2 Parameter settings for ACO

During pre-tests, we examined the learning and convergence behaviour of the ant

algorithm for different parameter settings. We varied 𝛼 and 𝛽, the number of iterations and

ants, the number of candidates, and the evaporation rate. Of all tested settings, the one

described in the following performed best, and has thus been used for the experimental

study.

For the smaller problem sets one to three, the number of iterations and ants were set to

500 and 50 for all ant algorithms and probabilistic greedy algorithms. For the larger

problem sets four to eight, these numbers were increased to 1000 iterations and 100 ants.

For all runs, we set 𝛼 = 2 and 𝛽 = 3 in order to enable a more explorative search in the

beginning and a more exploitative search towards the end of an optimization run. The

pheromone values were initialized with 𝜏!"! = 0.5; the limits were set to 𝜏!"# = 0.1 and

𝜏!!" = 1. The pheromone evaporation was set to 𝜌 = 1 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.

As explained above, this resulted in an adequate pheromone trail development within the

chosen number of iterations. The number of candidates was set to 20 (or the maximum

number of orders in case the problem instance consisted of less than 20 orders). This

number is higher than for example reported by Gambardella and Dorigo (1996), since we

found already for smaller problems that the solution quality decreased for lower numbers

of candidates.

44

For this parameterization, the artificial ants iteratively improve solution quality and

converge after a reasonable number of iterations as intended. Figure 4.2 exemplarily shows

the solution quality development of the algorithm ant-2 for the test problem 1_1_1 over

500 iterations. The graph shows the best solution found per iteration.

Figure 4.2: Solution quality development and convergence of ant-2 for problem 1_1_1

It is clearly visible that already in the early explorative phase of the search, good solutions

and even the global optimum (with an objective function value of 67) are identified (due to

the fact that 1_1_1 is quite a small problem with ten orders and ten stations only). Still, the

colony doesn’t “get stuck” on these early solutions; there is no indication for stagnation or

premature convergence. Moreover, the graph reflects the explorative component of the

search: In the different phases of the optimization run, the solution quality oscillates in

certain ranges, while overall it continuously improves until the ants finally converge to the

global optimum.

4.5.3 Results

The results for the smaller problem sets one to three are presented in Table 4.3. For all

these problems, the probabilistic greedy and especially the ant algorithms achieved very

good results. With ant-1 and ant-2, the global optimum was identified for nine out of 18

instances. For the remaining nine instances, ACO still found the best solution of all

heuristics. Moreover, including the already relatively complex instances from problem set

three, the deviation from the optima was only 1.3% on average. For gre-1 and gre-2, the

average gap was considerably larger with 2.1%.

45

Table 4.3: Results for small problem sets 1 to 3

1_1_1 1_1_2 1_1_3 1_2_1 1_2_2 1_2_3

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time
Opt 67 - 2.0 71 - < 1 79 - 1.0 111 - 4.0 121 - 7.0 117 - 8.0
lo 67* 0.0% 24.7 71* 0.0% 25.0 79* 0.0% 25.0 111* 0.0% 25.8 121* 0.0% 25.9 117* 0.0% 26.1
ant-1 67* 0.0% 24.7 71* 0.0% 25.0 79* 0.0% 25.0 111* 0.0% 25.9 121* 0.0% 25.9 117* 0.0% 26.0
ant-2 67* 0.0% 24.6 71* 0.0% 25.0 79* 0.0% 25.0 111* 0.0% 25.8 121* 0.0% 25.9 117* 0.0% 25.9
gre-1 67* 0.0% 24.3 71* 0.0% 24.7 79* 0.0% 24.7 111* 0.0% 25.6 121* 0.0% 25.7 117* 0.0% 25.6
gre-2 67* 0.0% 24.3 71* 0.0% 24.7 79* 0.0% 24.7 111* 0.0% 25.5 121* 0.0% 25.7 117* 0.0% 25.6
gre-1-det 71 6.0% < 1 77 8.5% < 1 91 15.2% < 1 120 8.1% < 1 128 5.8% < 1 124 6.0% < 1
gre-2-det 73 9.0% < 1 81 14.1% < 1 88 11.4% < 1 123 10.8% < 1 132 9.1% < 1 125 6.8% < 1

2_1_1 2_1_2 2_1_3 2_2_1 2_2_2 2_2_3

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time
Opt 75 - 18.0 80 - 43.0 73 - 27.0 126 - 93.0 118 - 321.0 121 - 538.0
lo 75* 0.0% 42.3 82 2.5% 42.4 76 4.1% 42.6 129 2.4% 44.1 120 1.7% 44.1 123 1.7% 44.4
ant-1 75* 0.0% 42.5 82 2.5% 42.4 75 2.7% 42.5 126* 0.0% 44.2 119 0.8% 44.2 123 1.7% 44.2
ant-2 75* 0.0% 42.5 81 1.3% 42.4 73* 0.0% 42.5 126* 0.0% 44.2 119 0.8% 44.2 123 1.7% 44.4
gre-1 75* 0.0% 41.7 82 2.5% 41.8 76 4.1% 41.9 126* 0.0% 43.5 120 1.7% 43.5 124 2.5% 43.7
gre-2 75* 0.0% 41.5 81 1.3% 41.8 76 4.1% 41.8 127 0.8% 43.5 120 1.7% 43.5 123 1.7% 43.8
gre-1-det 80 6.7% < 1 88 10.0% < 1 79 8.2% < 1 132 4.8% < 1 129 9.3% < 1 nfsf - < 1
gre-2-det 92 22.7% < 1 87 8.7% < 1 78 6.8% < 1 131 4.0% < 1 123 4.2% < 1 131 8.3% < 1

3_1_1 3_1_2 3_1_3 3_2_1 3_2_2 3_2_3

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time
Opt 99 - 60093.3 101 - 13838.5 90 - 2919.9 151 - 23978.0 153 - 3 d 150 - 3 d
lo 106 7.1% 65.1 107 5.9% 62.5 97 7.8% 64.9 157 4.0% 66.6 160 4.6% 65.7 159 6.0% 66.6
ant-1 100 1.0% 65.0 104 3.0% 63.5 95 5.6% 65.1 153 1.3% 66.7 158 3.3% 65.8 155 3.3% 66.6
ant-2 100 1.0% 65.1 105 4.0% 62.5 95 5.6% 64.9 152 0.7% 66.8 158 3.3% 66.0 155 3.3% 66.5
gre-1 104 5.1% 63.7 106 5.0% 61.6 95 5.6% 63.8 155 2.6% 65.4 160 4.6% 64.6 157 4.7% 65.5
gre-2 103 4.0% 63.9 106 5.0% 59.7 95 5.6% 63.6 156 3.3% 65.7 160 4.6% 64.8 156 4.0% 65.4
gre-1-det 106 7.1% < 1 nfsf - < 1 97 7.8% < 1 160 6.0% < 1 165 7.8% < 1 162 8.0% < 1
gre-2-det 110 11.1% < 1 nfsf - < 1 101 12.2% < 1 171 13.2% < 1 166 8.5% < 1 164 9.3% < 1
Best found results and average CPU time in seconds of three runs per instance.
* indicates that the global optimum is found.
nfsf = no feasible solution found.

For the medium and large sized problems (see Tables 4.4 and 4.5, respectively), ACO

outperformed all other heuristic algorithms. For all instances of problem sets four to eight,

either ant-1 or ant-2 generated the best solution found so far. For ACO, the average gap

from the best known solution was 0.6% for the medium sized problems and 0.5% for the

large sized problems. The average deviation of the greedy algorithms was again larger with

1.3% and 1.0%, respectively.

The performance of the deterministic greedy algorithms was not competitive. There are

a few exceptions (due to the randomly generated problem instances) where good results

were obtained. However, for many of the larger instances and even some of the small test

problems, no feasible solutions have been found. The deterministic character of these

algorithms seems to be unsuitable for the combination of work overload constraint and

labour minimization objective and insufficient for the complexity of the MPMMS.

46

Table 4.4: Results for medium problem sets 4 to 6

4_1_1 4_1_2 4_1_3 4_2_1 4_2_2 4_2_3

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time
Opt (215) - 3 d - - - - - - (290) - 3 d - - - - - -
lo 229 6.5% 433.3 238 3.0% 424.2 224 2.3% 433.3 300 3.4% 432.6 283 1.8% 448.2 277 2.2% 449.8
ant-1 224 4.2% 434.5 231 0.0% 415.1 223 1.8% 433.5 290 0.0% 431.8 280 0.7% 443.6 274 1.1% 448.6
ant-2 222 3.3% 434.5 231 0.0% 422.7 219 0.0% 433.7 290 0.0% 433.9 278 0.0% 453.0 271 0.0% 450.5
gre-1 224 4.2% 425.4 232 0.4% 401.5 224 2.3% 424.3 295 1.7% 416.7 284 2.2% 432.4 273 0.7% 438.6
gre-2 224 4.2% 425.4 234 1.3% 409.8 220 0.5% 424.6 295 1.7% 419.0 282 1.4% 441.2 271 0.0% 440.5
gre-1-det 228 6.0% < 1 nfsf - < 1 235 7.3% < 1 nfsf - < 1 nfsf - < 1 nfsf - < 1
gre-2-det 229 6.5% < 1 nfsf - < 1 228 4.1% < 1 304 4.8% < 1 nfsf - < 1 286 5.5% < 1

5_1_1 5_1_2 5_1_3 5_2_1 5_2_2 5_2_3

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time
Opt (268) - 3 d - - - - - - - - - - - - - - -
lo 278 3.7% 612.4 293 2.8% 603.7 289 4.0% 614.8 350 2.3% 661.8 362 2.3% 640.7 356 2.0% 635.6
ant-1 272 1.5% 608.9 287 0.7% 610.0 278 0.0% 618.7 342 0.0% 657.7 357 0.8% 643.1 350 0.3% 653.2
ant-2 268 0.0% 609.9 285 0.0% 608.1 278 0.0% 618.5 342 0.0% 662.4 354 0.0% 638.2 349 0.0% 642.8
gre-1 275 2.6% 591.6 287 0.7% 594.8 279 0.4% 602.2 345 0.9% 637.6 357 0.8% 624.8 351 0.6% 635.7
gre-2 274 2.2% 593.7 288 1.1% 591.8 281 1.1% 600.8 343 0.3% 640.1 357 0.8% 621.9 353 1.1% 622.9
gre-1-det 280 4.5% < 1 nfsf - < 1 285 2.5% < 1 nfsf - < 1 nfsf - < 1 nfsf - < 1
gre-2-det 278 3.7% < 1 nfsf - < 1 290 4.3% < 1 353 3.2% < 1 nfsf - < 1 nfsf - < 1

6_1_1 6_1_2 6_1_3 6_2_1 6_2_2 6_2_3

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time
Opt - - - - - - - - - - - - - - - - - -
lo 360 4.3% 797.6 361 5.6% 780.5 361 4.3% 809.8 441 4.0% 853.9 427 2.2% 780.1 446 4.4% 850.4
ant-1 345 0.0% 801.6 342 0.0% 797.8 346 0.0% 798.6 424 0.0% 852.9 419 0.2% 794.5 430 0.7% 852.1
ant-2 346 0.3% 797.8 351 2.6% 790.0 346 0.0% 803.6 431 1.7% 863.7 418 0.0% 775.9 427 0.0% 849.5
gre-1 346 0.3% 783.6 342 0.0% 780.7 349 0.9% 779.5 428 0.9% 845.5 423 1.2% 770.9 429 0.5% 836.1
gre-2 352 2.0% 779.0 354 3.5% 779.9 348 0.6% 780.6 430 1.4% 846.1 422 1.0% 750.4 429 0.5% 830.6
gre-1-det 346 0.3% < 1 nfsf - < 1 nfsf - < 1 424 0.0% < 1 nfsf - < 1 436 2.1% < 1
gre-2-det 369 7.0% < 1 nfsf - < 1 nfsf - < 1 448 5.7% < 1 nfsf - < 1 431 0.9% < 1

Best found results and average CPU time in seconds of three runs per instance.
* indicates that the global optimum is found.
nfsf = no feasible solution found.

The algorithm without heuristic information, learning only, principally works, but with

an average gap of 4.3% the results are inferior to both, the ant and probabilistic greedy

algorithms. The heuristic information about the similarity of orders seems to support the

search of the artificial ants as intended and should be considered during solution

construction.

An analysis of the computation times further underlines the potential of ACO. Already

for the third problem set (which is still of relatively small size with 20 orders and up to 15

stations), the computation times of the solver literally went through the roof. For 3_1_1, it

took Gurobi almost 17 hours to identify the optimum, while the ant algorithms generated

solutions that were constantly within 99.0% of the global optimum in about one minute.

For the larger problem sets, the solver could not find any feasible solution within a time

span of three days.

47

Table 4.5: Results for large problem sets 7 and 8

7_1_1 7_1_2 7_1_3 7_2_1 7_2_2 7_2_3

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time
Opt - - - - - - - - - - - - - - - - - -
lo 707 6.5% 1494.4 690 6.3% 1484.3 700 6.5% 1459.4 920 5.6% 1625.1 896 6.3% 1685.3 948 6.6% 1710.6
ant-1 664 0.0% 1527.1 655 0.9% 1459.9 657 0.0% 1455.0 879 0.9% 1656.9 852 1.1% 1712.2 889 0.0% 1744.1
ant-2 671 1.1% 1509.4 649 0.0% 1531.1 666 1.4% 1453.6 871 0.0% 1638.1 843 0.0% 1680.9 899 1.1% 1677.3
gre-1 666 0.3% 1494.0 658 1.4% 1439.7 659 0.3% 1417.1 883 1.4% 1617.3 856 1.5% 1676.9 893 0.4% 1696.6
gre-2 679 2.3% 1473.0 654 0.8% 1486.3 675 2.7% 1413.9 875 0.5% 1596.8 846 0.4% 1638.5 906 1.9% 1633.0
gre-1-det 664 0.0% < 1 nfsf - < 1 nfsf - < 1 nfsf - < 1 857 1.7% < 1 nfsf - < 1
gre-2-det 689 3.8% < 1 nfsf - < 1 nfsf - < 1 nfsf - < 1 861 2.1% < 1 nfsf - < 1

8_1_1 8_1_2 8_1_3 8_2_1 8_2_2 8_2_3

Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time Best Gap Time
Opt - - - - - - - - - - - - - - - - - -
lo 687 8.0% 2209.9 713 8.5% 2214.5 718 8.6% 2242.5 971 8.0% 2628.8 970 7.7% 2413.2 951 8.4% 2663.7
ant-1 638 0.3% 2286.9 657 0.0% 2261.4 661 0.0% 2258.0 901 0.2% 2640.1 901 0.0% 2425.9 881 0.5% 2665.0
ant-2 636 0.0% 2264.9 670 2.0% 2210.6 663 0.3% 2246.8 899 0.0% 2619.0 928 3.0% 2418.0 877 0.0% 2612.3
gre-1 640 0.6% 2241.7 657 0.0% 2215.1 663 0.3% 2210.7 906 0.8% 2597.8 903 0.2% 2384.7 885 0.9% 2538.3
gre-2 641 0.8% 2215.1 674 2.6% 2158.9 661 0.0% 2196.6 901 0.2% 2572.9 928 3.0% 2375.6 882 0.6% 2551.7
gre-1-det 645 1.4% < 1 nfsf - < 1 nfsf - < 1 905 0.7% < 1 nfsf - < 1 nfsf - < 1
gre-2-det 648 1.9% < 1 nfsf - < 1 nfsf - < 1 904 0.6% < 1 nfsf - < 1 nfsf - < 1

Best found results and average CPU time in seconds of three runs per instance.
* indicates that the global optimum is found.
nfsf = no feasible solution found.

Note that the solver results reported in Table 4.4 for the instances 4_1_1, 4_2_1 and

5_1_1 (numbers are in brackets) could only be obtained by using the best ACO solution as

a starting solution. Again the runs were aborted after three days. Only for the smallest of

these three instances, 4_1_1, the ACO solution could be slightly improved. For the two

larger problems, the solver could not find superior solutions within the given three days,

even having the advantage of an initial solution.

Note also that the computation times reported in the tables above are a result of the

predefined number of iterations and ants, which are both standardized over several

problem sets in order to enable a fair comparison of the heuristic algorithms. However,

especially for some of the smaller problems, the ant algorithms are able to identify the

optimal solutions in significantly less time. For the problem sets one and two, the minimal

runtimes lie between 1 and 45 seconds, i.e. ACO requires similar computation times as the

solver to achieve the solution quality reported above.

Regarding the success rate and the stability of the solution quality, all ant and

probabilistic greedy algorithms perform quite well with standard deviations between 0.66

and 1.00.

4.6 Conclusion

In this paper, a multi-period variant of the mixed-model assembly line sequencing problem

is presented. Moreover, different heuristic solution approaches are investigated. The

48

classical mixed-model assembly line sequencing problem addresses situations where

different orders have to be scheduled for production, taking different constraints into

account. The model developed in this study goes beyond the existing models. It considers

that in practice scheduling problems often comprise multiple periods. As in many other

papers on mixed-model assembly line sequencing, the problem of avoiding work overload

is considered. Additionally, the objective to minimize the overall amount of labour over

multiple production periods is taken into account.

To solve the MPMMS, different greedy heuristics and algorithms based on the ant

colony optimization metaheuristic are developed. The ant algorithms feature a novel

pheromone model, which normalizes pheromone values and heuristic values and directly

controls the evaluation of the pheromone trails by linking the iterative delta with the

number of iterations. Naturally, this pheromone concept cannot change the fact that a low

number of iterations will probably still not be sufficient to solve large-size problems to

(near-) optimality. Nevertheless, the pheromone model ensures that the speed of the

pheromone trail development (and thus the convergence of the artificial ants towards

specific solutions) is balanced adequately. As a consequence, the ant algorithms identify

very good solutions within very short computation times.

To evaluate the performance of ACO, an experimental study has been conducted. The

solutions obtained via ACO are compared to different greedy algorithms and solutions

generated with the solver Gurobi. The results indicate the potential of this ACO approach

for solving the MPMMS. The ant algorithms outperformed the other heuristic algorithms

and delivered optimal or near-optimal solutions in short time.

For the smaller test problems, the ant algorithms achieved an average solution quality of

almost 99% and identified the global optimum for about half of the instances. For the

medium and large sized test problems, the solver was unable to find better solutions than

ACO within three days, even with the ACO solution available as a starting solution.

For further research, three different topics come to mind. First, related variants of the

MPMMS problem should be researched. Second, it would be interesting to see how other

proven heuristic methods, such as for example genetic algorithms or simulated annealing,

would perform on the MPMMS problem proposed in this paper. Third, the performance of

the ant algorithms presented in this study might still be considerably improved, especially

for larger problems where the infeasibility of solution becomes more and more problematic.

An additional pheromone developing purely based on the infeasibility of partial sequences

instead of solution quality might help to guide and speed up the ants search.

49

5

LOADING AND SEQUENCING HEURISTICS FOR UNRELATED PARALLEL
MACHINE SCHEDULING WITH LONG, SEQUENCE-DEPENDENT SETUP
TIMES

Jürgen Strohhecker, Jörn-Henrik Thun, and Michael Hamann

Abstract

The purpose of this paper is to develop robust and well-performing heuristics for the

scheduling of production orders on parallel machines with sequence-dependent setup times

that can easily be used in practice. In particular, this paper examines the combined effects

of assignment and sequencing policies on several commonly used performance indicators

in the context of unrelated parallel machine scheduling. Discrete event simulation is used

in the analysis, since this approach is capable of capturing the complexity of real-world

scheduling problems with production orders that differ in many aspects, more than one

machine, and varying and product-specific machine speed and setup times that depend on

the (dis)similarity of successive orders. Evaluation of 108 unique strategy-scenario

combinations provides a robust view of the interaction of loading and sequencing

heuristics and production system variability in an unrelated parallel machine setting. The

analysis reveals that a loading heuristic based on order quantity and scheduled capacity in

combination with a shortest setup heuristic performs best regarding total busy time and

service level in most scenarios. The results presented in this paper represent a valuable

contribution for practitioners, as well as scientists, since they show that a relatively simple

loading and sequencing heuristic is able to save about 17% of total machine busy time.

5.1 Introduction

Since McNaughton's (1959) seminal work on the scheduling of multiple processors, a great

variety of papers has evolved in the literature on different variants of parallel machine

scheduling. Typically, parallel machine scheduling problems are divided into three

categories. The machines can be identical (all machines have the same processing times for

all jobs), uniform (the machines have different processing times that are independent of the

jobs being processed), or unrelated (the processing time of a machine is different

50

depending on the machine and on the job being processed (Chuang et al., 2010). Such

scheduling tasks become even more demanding if sequence-dependent setup times have to

be considered explicitly. A setup time is called sequence dependent if it depends on both

the job to be processed and the preceding job (Allahverdi and Soroush, 2008).

Prior research has addressed the unrelated parallel machine scheduling problem mostly

by using analytical or heuristic optimization techniques (e.g., Fanjul-Peyro and Ruiz, 2011;

Mokotoff and Jimeno, 2002). Typically, a static situation with a fixed number of products,

machines and jobs known in advance is assumed (e.g., Kim et al., 2002). However, from a

practical perspective, companies have to deal with dynamic settings; that is, those in which

production orders of varying quantity are received continuously over time. The assignment

of orders to machines as well the production sequence have to be determined in a dynamic

manner, since the exact number and type of orders during the entire period are not known a

priori. Approaches that optimize the order sequence for a longer period of time become

obsolete whenever sequencing has to be redone frequently for smaller numbers of orders

within a rolling horizon (de Araujo et al., 2007). In such a scenario, the additional value of

highly sophisticated analytical or heuristic optimization techniques compared to simple

approaches is debatable. Moreover, complex optimization scheduling techniques often lack

acceptance due to their low comprehensibility for practitioners. Simple priority-sequencing

rules such as, e.g., first come, first served (FCFS) or earliest due date (EDD) are

commonly preferred in practice (Tay and Ho, 2008). However, these simple rules focus on

sequencing only and have to be complemented by assignment rules in order to address the

scheduling problem adequately in the case of parallel machines.

This paper focuses on the problem of scheduling unrelated parallel machines with

sequence-dependent setup times, which is challenging to solve but often observed in

practice and therefore highly relevant for practitioners (MacCarthy and Liu, 1993;

Mokotoff, 2001; De Paula et al., 2007). It provides robust heuristics for the assignment and

sequencing of production orders on parallel machines, matching the requirements of

practitioners as described above. The study analyses to what extent practical heuristics can

improve manufacturing performance with regard to setup times, processing times and

overall capacity utilization. In particular, the study is motivated by the problem of a

pharmaceutical company striving to improve packaging performance with regard to

processing time and capacity utilization while maintaining acceptably high service levels.

In this company, packaging is done on two automated parallel lines, each consisting of a

51

single machine (note that our analysis also applies to lines with multiple machines if they

are integrated with a high degree of automation, as is often observed in practice).

In order to capture adequately the complexity of a production system with two unrelated

machines and product-specific production rates, sequence-dependent setup times, several

hundred product variants and more than 1000 orders per year, discrete event simulation

(Arena) is used.

The remainder of this paper is organized as follows. First, the relevant literature in the

respective field is reviewed in order to specify the current research gap precisely. Second,

the specifics of the unrelated parallel machine scheduling problem are described in detail

and the research methodology is introduced. Third, the simulation model, the data set and

the simulation analysis are described. Fourth, the results are presented and discussed.

Finally, the paper ends by drawing together the main conclusions, highlighting

implications for manufacturing companies and suggesting approaches for future research.

5.2 Literature review

The unrelated parallel machines case with sequence-dependent setup times has been paid

less attention than related problems with identical or uniform parallel machines or settings

without explicit consideration of setup times. Hence, only a few papers can be found in the

literature that address scheduling on unrelated parallel machines including sequence-

dependent setup times.

A generic literature review on parallel machine scheduling problems regarding different

performance measures is provided by Cheng and Sin (1990). Mokotoff (2001) gives a

more specific overview by categorizing the literature on scheduling parallel machines

according to identical, uniform and unrelated parallel machines. Unrelated parallel

machines can be regarded as the more general case, since some machines are faster while

some machines are slower and the jobs being processed also influence the processing time

(Fanjul-Peyro and Ruiz, 2011).

Kim et al. (2002) suggest simulated annealing in order to solve a scheduling problem

for unrelated parallel machines with sequence-dependent setup times with the aim of

minimizing total tardiness. Helal et al. (2006) propose a tabu search algorithm for the

unrelated parallel machines scheduling problem with sequence- and machine-dependent

setup times, striving for a minimization of the makespan. This tabu search algorithm

outperforms the partitioning heuristic proposed by Al-Salem (2004) dealing with the same

problem. Another algorithm based on tabu search is presented by Bozorgirad and

52

Logendran (2012), who address a sequence-dependent group scheduling problem on a set

of unrelated parallel machines. Rabadi et al. (2006), who also address this problem,

introduce a new meta-heuristic referred to as Meta-RaPS, which is capable of identifying

all optimal solutions for the small problems described and outperforms the solutions

obtained by the existing heuristic for larger problems, such as the partitioning heuristic by

Al-Salem (2004). Logendran et al. (2007) propose a methodology in unrelated parallel

machine scheduling with sequence-dependent setups developing six different search

algorithms based on tabu search to identify the best schedule that gives the minimum

weighted tardiness of jobs. Ravetti et al. (2007) introduce the metaheuristic greedy

randomised adaptive search procedure as a solution to minimize the total makespan and the

weighted delays in an unrelated parallel machine scheduling problem with sequence-

dependent setup times and due dates, based on a real case of a refractory brick company.

Senthilkumar et al. (2011) study a variant of the unrelated parallel machine scheduling

problem for jobs with the objective of minimizing the deviations of job completion times

from their corresponding due dates. They propose a hybrid approach based on particle

swarm optimization and ant colony optimization, which outperforms the genetic algorithm

techniques suggested by Sivrikaya-Şerifoǧlu and Ulusoy (1999) and Raja et al. (2008).

Investigating the unrelated parallel machine scheduling problem with sequence- and

machine-dependent setup times under due date constraints, Ying and Lin (2012) suggest an

artificial bee colony algorithm with the aim of minimizing total tardiness. They compare

their solution with several state-of-the-art solutions on the same problem set and show that

the bee algorithm outperforms the existing ones.

This literature review reveals that the majority of existing papers focus on improving

the performance of complex optimization algorithms or developing new methods for

different variants of this scheduling problem. Typically, an evaluation in this context is

based on how well the proposed algorithms perform on large test problems in comparison

to alternative approaches that serve as benchmarks. However, from a practitioner’s

perspective, it remains unclear to what extent simple and easy-to-use scheduling heuristics

and dispatching rules might contribute to performance improvements in a real-world

parallel machine setting with sequence-dependent setup times and unrelated machines.

Hence, it is the purpose of this paper to close this research gap by evaluating different

techniques for the assignment and sequencing of production orders on two unrelated

parallel machines.

53

5.3 Problem description and heuristic strategies

5.3.1 Problem setting

Figure 5.1 provides an overview of the entire scheduling problem that we address in our

study. First, production orders differing in their specific characteristics have to be assigned

to one of the two unrelated parallel machines. Second, the orders have to be sequenced

before they are released to production.

Figure 5.1: Scheduling task with two unrelated parallel machines and sequence-dependent

setup times

Ideally, the two interrelated tasks – loading and sequencing – of the scheduling problem

could be integrated and solved simultaneously in order to receive a truly optimal solution

(Shanker and Tzen, 1985). However, as such, this problem is 𝒩𝒫-hard and therefore

requires complex and CPU-intensive optimization methods in order to obtain a solution

(Graham et al., 1979; Lenstra et al., 1977). By decomposing the scheduling problem into

two parts the problem structure is simplified, which provides the basis for the application

of heuristics with a lower conceptual complexity.

Hence, the two problems are solved sequentially in a combined manner: the outcome of

the first problem, the loading problem, is regarded as input for the second problem, the

sequencing problem. Note that in general orders could also first be sequenced and then

assigned to a line. However, with respect to the sequence dependence of setup times this

does not seem to be reasonable: if sequencing is done prior to loading, order sequences that

result in short setups are likely to be torn apart again when the products are assigned to

different machines.

In order to test heuristics for the assignment and sequencing problem, discrete event

simulation modelling and analysis have been chosen as the research methodology (e.g.,

54

Law, 2007). This approach allows for a production system to be modelled in a realistic

way and for practical decision rules to be tested in a wide array of scenarios.

In order to ensure the practical relevance of this research and the applicability of the

results, our study is grounded in an empirical case – the packaging production system at a

pharmaceutical company. In this company, a portfolio of 288 different products was filled

into bottles of ten different sizes, which were put into cartons of seven different types and

completed with leaflets in three different sizes. Packaging was accomplished on two

parallel lines that differed from each other in terms of technology, resulting in different

machine speeds (which also differ between products) and setup times. Setup times were

dependent on the scope of the changeover between two production runs: setup was slow if

orders differed in various aspects, for instance product, bottle size, carton size and leaflet

size; it was fast if only the order number changed and everything else remained unchanged.

Only very few technical restrictions had to be considered in assigning production orders to

the two packaging lines so that nearly complete exchangeability was provided: almost all

products could be packaged on either of the two lines.

For the simulation study, production data of one year were available. Specifically, a list

of 1127 orders including product specifics, due dates and quantities was at hand, whereby

in this case an order always contains one particular product. In addition to this, we also had

access to a broad range of master data, for instance the product-specific production rates as

well as sequence-dependent setup times for both lines. Furthermore, data on the work

shifts for the two packaging lines were available.

5.3.2 Heuristic strategies

In this section, different heuristics for the underlying problem are explained. In the first

step, we discuss three heuristics for the assignment problem. In the second, we suggest

three different heuristics for the consecutive sequencing problem. In order to address the

requirement for practical usage, we focus on simple heuristics. This approach is reasonable

since the planning problem is characterized by its dynamic short-term focus and a situation

that can be described by a rolling horizon; that is, only short time periods (typically a

single-digit number of days) are considered for solving the assignment and sequencing

problem. As motivation for using a rolling horizon approach, de Araujo et al. (2007) raise

the question of why detailed schedules for later periods should be calculated with great

effort if they are never implemented. Furthermore, Drexl and Kimms (1997) stress the

importance of a rolling horizon due to its practical relevance.

55

For solving the assignment problem the following three heuristics are proposed: random

loading (RL), scheduled capacity-based assignment (SC), and an order quantity and

scheduled capacity assignment (OQSC). RL reflects a situation that is often observed in

practice where the assignment is simply defined ex ante during product development, fixed

in the master data and finally used for scheduling. When it comes in the short term to

imbalances in machine utilization and bottleneck situations, orders are reassigned on an ad

hoc basis following no strict rules. The result, as we found in our case company, could be

interpreted as more or less random loading. We model this heuristic by assigning orders to

one of the packaging lines using a predefined probability that takes line speed, setup times

and shift model differences into account.

According to the SC heuristic, the already scheduled capacity on both packaging lines is

taken into account. More precisely, setup and production times of all orders assigned to a

specific line and not yet finished are summed up (for instance, 35.9 h for line A and 45.1 h

for line B) and percentages of scheduled capacity are calculated (44.3% on line A and

55.7% on line B). Based on production rates, setup times and shift plans, desired loading

percentages are calculated (for example, 55% on line B, 45% on line A). In addition a rule

has to be set for which machine is loaded first (for instance, line B is filled first as it is

generally faster). Then, based on the SC heuristic and using the example data provided

above, a new order would be assigned to line A, as the actual scheduled capacity

percentage of line B is 55.7%, which is larger than the desired value of 55%.

The OQSC heuristic refines the SC heuristic by always assigning orders with production

quantities larger than a specific threshold (for example, 10,000 units) to one of the lines

(for instance, because one line is generally faster when producing but slower when setups

have to be made) instead of following a fixed, predefined loading rule for all orders

regardless of their size, as in the SC heuristic. All orders smaller than the threshold follow

the SC heuristic.

Besides the assignment heuristics, different dispatching rules are applied. A dispatching

rule determines which job is given the highest priority to be processed next on a particular

machine. We selected three approaches that have either been applied in previous research

or are frequently used by practitioners: earliest due date (EDD), shortest processing time

(SPT), and shortest setup time (SST) (see, e.g., Kia et al., 2010; Pickardt and Branke, 2012;

Vinod and Sridharan, 2009).

Following EDD, jobs are processed with respect to their due date: if a job has a due date

that is earlier than the other jobs, this one will be taken first. This is a very simple approach

56

of sequencing due to the fact that other aspects such as capacity-oriented performance

criteria are not taken into consideration. However, we use EDD as a benchmark because it

is widely considered in both theory and practice. Moreover, our case company relied on

this dispatching rule.

According to SPT, jobs are sequenced based on their processing times (not including

setup times, as these can be determined only after sequencing is completed). The highest

priority is given to the job with the shortest processing time. Hence, the job with the

shortest processing time is scheduled first.

Following SST, all products are categorized in terms of their setup-relevant product

characteristics, which in our case are bottle size, carton/leaflet size and bulk type – a

procedure similar to creating so-called setup families. The more two subsequent production

orders differ with respect to these characteristics, the higher is the setup time. Therefore,

orders should be sequenced so that subsequent orders are as similar as possible to the

preceding ones. The SST heuristic achieves this by lexicographical sorting of the

production orders (e.g., Hendizadeh et al., 2008; Wemmerlöw and Vakharia, 1991). In our

case, the bottle size is considered first since it has only 10 different variants, followed by

the carton/leaflet size with 12 variants and the bulk type with 80 variants (see the appendix

for detailed numbers).

Note that many production scheduling problems belong to the class of 𝒩𝒫-hard

problems and hence require appropriate and often complex optimization methods if they

are large (Graham et al., 1979; Lenstra et al., 1977). However, in this case the number of

orders to be scheduled is relatively small within the individual time buckets (approximately

25 to 43 orders maximum per bucket) due to the rolling planning horizon of ten days.

Hence, we expect even simple dispatching rules to yield relatively good results.

Altogether, the heuristics for the assignment problem and the sequencing problem can

be combined so that nine different combinations are possible as heuristic strategies. We

define a heuristic strategy as a combination of two or more heuristics that are applied

simultaneously to solve an overall scheduling problem. In our case, a heuristic strategy

consists of one heuristic for the assignment problem and one heuristic for the sequencing

problem. For example, one heuristic strategy might combine the heuristics OQ and SPT.

Table 5.1 provides an overview of all possible heuristic strategies.

57

Table 5.1: Possible heuristic strategies

 EDD SPT SST

RL RL/EDD RL/SPT RL/SST

SC SC/EDD SC/SPT SC/SST

OQSC OQSC/EDD OQSC/SPT OQSC/SST

In the following, these nine strategies are applied to the scheduling problem as described in

section 5.3.1. In order to generalize our analysis of which heuristic strategies are most

effective, different scenarios are developed, since it can be assumed that the effectiveness

of a certain heuristic strategy depends on several operational factors such as the diversity

of setup times and production rates or the overall similarity of the parallel machines. Note

that the assignment of products to packaging lines primarily influences the processing time,

while the sequencing of orders affects the setup time. In order to evaluate the impact of

individual heuristics, we report processing times and setup times separately.

5.4 Model, data, and simulation analysis

5.4.1 Simulation model and input data

The model of the production system was developed using the simulation software Arena

(Kelton et al., 2010). It consists of four major parts: (1) production order creation; (2) order

scheduling; (3) order completion; and (4) production. Figure 5.2 provides an overview of

the model.

Figure 5.2: Overview of the discrete event simulation model structure

With regard to a single simulation run, 1127 production orders (as in the practical case)

are created using a bootstrapping procedure; that is, the sequence and due dates of the

58

actual orders are changed using randomly computed numbers (actual order quantities in a

randomized sequence). Due dates are set based on delivery times that are drawn from a

normal distribution with a mean value of 28 days and a standard deviation of 4 days. All

attributes characterizing an order, such as product number, order quantity, bulk type, bottle

size, carton size and leaflet size, are assigned. Then orders are sent to the scheduling part of

the model, which includes both the three line-loading heuristics RL, SC and OQSC and the

three sequencing heuristics EDD, SPT and SST, as described above.

While applying one of the three line-loading heuristics, it is assumed that all products

can be produced on both packaging lines. Once an order is loaded to a packaging line, the

processing time on this line is computed by dividing the product-specific production rate

by the quantity ordered. Note that production rates differ between products and lines

(examples are given in Table 5.4).

In order to determine the processing sequence, the jobs first wait in two queues (one for

each line) that resemble a pre-shop pool, which is commonly used in the context of order

review and release methods (Bergamaschi et al., 1997; Sabuncuoglu and Karapınar, 1999).

Before they are released to production after the ten-day time bucket, the orders are sorted

according to the respective sequencing heuristic. The waiting time of a maximum of ten

days prevents the production system from being overloaded; that is, the waiting time

functions in the sense of a workload control (Stevenson et al., 2005). Furthermore, it

reduces lead times as well as the inventory of work in progress (WIP) and finished goods

(Hendry and Wong, 1994), at least as long as the orders are waiting in a virtual rather than

a physical way.

Once released from the sequencing queues, it is assumed that production is never

starved of bulk-ware and materials. Therefore, the setup process can start as soon as the

production order is released and the assigned packaging line becomes available. The setup

time between two subsequent orders is determined by the following four factors: order

change, bulk type change, bottle size change and carton or leaflet size change. Depending

on the number of changes that have to be prepared, the production order is assigned to one

of the four setup categories XS, S, M and L, as listed in Table 5.2.

59

Table 5.2: Setup matrix and categories

Carton/leaflet
change Bottle size change Bulk change Order change Setup category

- - - X XS

- X - X S

X - - X S

X X - X M

- - X X M

- X X X M

X - X X M

X X X X L

Grounded in our case data but also generalizing to some extent from this specific

situation, four setup scenarios – as shown in Table 5.3 – were defined. Scenarios DS

(which is closest to the case) and DW represent situations where setup matrices differ (D)

between packaging lines A and B. The sequence dependence of setup times is strong (S) in

scenario DS and weak (W) in scenario DW. This can be seen from larger mean absolute

deviations in setup times across the four categories for scenario DW compared to DS (line

A: 0.833 > 0.275; line B: 0.963 > 0.381). Scenarios ES and EW again represent strongly

and weakly sequence-dependent situations, but now the setup times are equal (E) for both

lines. As is typical for pharmaceutical production and packaging processes, setup times are

generally long (see, for instance, Strohhecker et al., 2014). In our case they can easily

exceed the production time, especially when order quantities are limited.

Table 5.3: Setup time scenarios (setup time in hours)

 Setup category

Scenario Line XS S M L Mean MAD

DS A 1.333 2.167 3.167 3.667 2.583 0.833

 B 1.540 2.503 3.659 4.236 2.985 0.963

DW A 2.100 2.500 2.700 3.000 2.575 0.275

 B 2.425 2.887 3.118 3.464 2.973 0.318

ES A 1.542 2.083 3.417 4.083 2.781 0.969

 B 1.542 2.083 3.417 4.083 2.781 0.969

EW A 2.250 2.650 2.950 3.250 2.775 0.325

 B 2.250 2.650 2.950 3.250 2.775 0.325

Besides the setup scenarios, three different production rate scenarios were defined.

Table 5.4 shows for five exemplary products how many units per hour can be produced on

either line for each of these scenarios. It also compiles descriptive measures.

60

Scenario FCL stands for the case where one line is always faster compared to the other

line (F) and the ratio between the lines stays nearly constant (C); that is, line B is between

2.50 and 2.89 times as fast as line A. Moreover, the differences between production rates

are large (L); that is, line B produces on average 1898.09 units per hour more than line A.

In this, scenario FCL resembles closely the situation found in the case company. Scenario

FDS describes a situation where one line is faster (F) but, in contrast to scenario FCL,

variations across products are high; that is, for some products the processing rates are

almost equal while for other products there are great differences (D) – ranging from B

running as fast as A to B being three times as fast as A. Moreover, in the FDS scenario the

absolute differences between production rates are smaller (S) than in the FCL scenario (a

mean of 1091.96 vs. 1898.09 units per hour). Scenario NDS illustrates the case where no

line shows a permanently higher production rate (N); that is, for some products line A is

faster and for some products line B is faster (implying different ratios, D). Furthermore, the

differences regarding the absolute processing rates are very small (S). Both lines can be

seen as nearly equal regarding production rates.

Table 5.4: Illustration and descriptive data of production rate scenarios (units per hour)

 Scenario FCL Scenario NDS Scenario FDS

Product Line A Line B Line A Line B Line A Line B

1 591.24 1528.82 973.74 1146.32 835.39 1284.67

2 1027.79 2947.94 2023.53 1952.20 1982.83 1992.90

3 1044.02 2821.77 2046.04 1819.75 1929.89 1935.90

4 1026.55 2798.43 2001.50 1823.47 1347.47 2477.50

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

288 1516.17 3885.44 2734.74 2666.87 2475.21 2926.40

Min 4.66 12.29 7.91 9.04 4.26 12.69

Max 4659.03 12840.97 8415.27 9084.73 5574.53 11925.47

Mean 1130.60 3028.69 2083.30 2075.99 1533.67 2625.63

SD 564.20 1518.85 1042.52 1055.81 815.42 1369.30

In order to simplify and generalize the analysis, identical shift models are used for both

lines. A five-day workweek with two eight-hour shifts per day is assumed, resulting in a

capacity of 4016 hours per line and year (based on 251 workdays per year).

In order to build as much confidence as possible in the simulation model described above,

a large number of validity tests have been conducted. Model validation is essential in any

simulation study and has attracted intense methodological research (e.g., Cochran, 1987;

61

Naylor and Finger, 1967). Numerous test runs were conducted in which the assignment of

entity attributes, for instance the different setup categories and setup times, were carefully

traced in debug mode. Using animation features provided by the software, the flow logic of

all different entity types was traced and examined. In addition, the computation of all

model variables was carefully debugged. Simulation results for selected performance

measures, for instance total production time, were compared against values calculated

statically using the master data and a spreadsheet. For all validity tests that we conducted,

the model showed plausible behaviour.

5.4.2 Performance measures

In the existing literature, different performance dimensions are considered in the context of

parallel machine scheduling. Widely used measures include completion time–based, due

date–based and flow time–based criteria (e.g., Cheng and Sin, 1990; Schmidt, 2000). For

instance, Chuang et al. (2010) minimize total completion time, while Cortés et al. (2012)

also take due date–based measures into account. In addition, utilization metrics and busy

time measures, which are related to completion-based measures, are minimized (e.g.,

Flammini et al., 2009). Since the scheduling heuristics analysed in this study mainly aim at

increasing manufacturing performance, the total busy time – that is, the sum of production

and setup times – is chosen as the major performance criterion (which correlates perfectly

with the average utilization in our case). In addition to this, we also report results for a

flow time indicator, more precisely the ‘packaging cycle time’, which measures the time

span between production order release to the loading and sequencing process and

termination of the packaging process, not including storage time as finished product. To

cover typical conflicting behaviour between completion time–based and due date–based

goals in short-term machine scheduling, and motivated by the existence of service-level

agreements with customers in our case company, the beta-service level (or fill rate) is also

taken into account. Principally, the service level is considered as an externally given

restriction; that is, when optimizing the busy time, service levels need to be kept constantly

at a certain level, for example 95%.

5.5 Results

The simulation was started with empty sequencing queues and inventories (both finished

products and work in progress). Each simulation run was terminated as soon as all 1127

production orders had been delivered to customers. All scenarios were simulated with 100

62

replications, which provided for an analysis of performance measures with half-widths in

the ± 5% range.

Using a full factorial experimental design, the nine heuristic strategies (see Table 5.1)

are evaluated in a total of 12 different scenarios that result from combining the three

production rate scenarios (see Table 5.4) with the four setup time scenarios (see Table 5.3).

This generates 108 unique strategy-scenario combinations (see also Table 5.10 in the

appendix), providing a robust view of the interaction of loading and sequencing heuristics

and production system variability in an unrelated parallel machine setting. The Process

Analyzer included in the Arena software package was used to run the simulations as well

as to analyse and statistically compare the results. By default, the best experiments are

identified using 95% confidence (Kelton et al., 2010).

The impact of the various scheduling heuristics can best be seen by looking at the two

most extreme scenario combinations: the case with almost identical machines (NDS) and

weakly sequence-dependent setup times (EW); and the case with very different machines

(FCL) and strongly sequence-dependent setup times (DS), the latter being the closest to the

situation we observed in our case company. Hence, we focus on these two scenario

combinations in this section. The outcomes for the remaining eight scenario combinations

are included in the appendix.

The results of the nine simulation experiments for the production rate and setup time

scenario combinations resembling the empirical case (FCL-DS) are shown in Table 5.5.

For all but one key performance indicator (KPI) – the packaging cycle time – we find a

clearly dominating heuristic strategy: the combination of the loading heuristic OQSC with

the sequencing heuristic SST. This strategy leads to the lowest total busy time, the best

beta service level and the lowest utilization of lines A and B. Regarding the packaging

cycle time KPI, the shortest processing time sequencing rule outperforms the shortest setup

time heuristic in combination with OQSC significantly by 0.41 days. This is in line with

other research showing that the SPT rule often results in the lowest cycle times (e.g.,

Chang et al., 1996; Lu et al., 2011; Vinod and Sridharan, 2011). However, using SPT

instead of SST in combination with OQSC comes with significant disadvantages in all

other KPIs; for instance, total busy time increases by 417 hours (5.9%).

63

Table 5.5: KPI mean values for production rate and setup time scenario combination

FCL-DS

Exp.
No.

Line
Loading
Heuristic

Sequencing
heuristic

Total Busy
Time

Total Setup
Time

Total
Production

Time

Beta Service
Level

Packaging
Cycle Time

Utilization
of Lines
A and B

1 RL EDD 8,159 h 4,250 h 3,909 h 86.9% 16.54 d 85.0%
2 RL SPT 7,989 h 4,080 h 3,909 h 86.5% 14.01 d 83.5%
3 RL SST 7,595 h 3,685 h 3,909 h 94.2% 13.75 d 79.6%
4 SC EDD 8,219 h 4,242 h 3,977 h 91.8% 15.42 d 86.1%
5 SC SPT 8,013 h 4,064 h 3,949 h 90.2% 13.27 d 84.0%
6 SC SST 7,550 h 3,654 h 3,896 h 95.1% 13.46 d 79.2%
7 OQSC EDD 7,600 h 4,114 h 3,485 h 95.0% 13.01 d 79.7%
8 OQSC SPT 7,438 h 3,959 h 3,479 h 94.4% 11.58 d 78.0%
9 OQSC SST 7,021 h 3,545 h 3,476 h 95.7% 11.99 d 73.6%

Best values are highlighted in bold; mean values calculated from 100 replications.

Regardless of the loading heuristic used, in terms of total busy time SST always

significantly outperforms SPT and EDD. This also holds for the beta service level measure.

Only when directly compared does EDD achieve slightly higher averages than SPT;

however, only the difference between experiments 4 and 5 – that is, 91.8% vs. 90.2% – is

statistically significant. Moreover, SPT has statistically significant advantages in lowering

the cycle time only when combined with the OQSC heuristic. In combination with the SC

and RL heuristics, no significant differences are observed.

When comparing the nine experiments by means of the box and whisker diagrams

shown in Figure 5.3, it becomes obvious that the various combinations of loading and

sequencing heuristics also result in different KPI distributions. The span between minimum

and maximum total busy time decreases from RL over SC to OQSC (with the exception of

experiment 9 compared to 6). Sequencing, in contrast, does not have much of an impact.

This changes to some extent when the service level and cycle time KPIs are considered.

The maximum distance between minimum and maximum service level can be drastically

reduced if RL is combined with SST instead of EDD or SPT. The same is true for the SC

and OQSC heuristics. Overall, one can state that the OQSC-SST strategy does not only

outperform the other combinations in terms of average total busy time and average beta

service level, it also decreases variations in cycle time and service level to a minimum.

When focusing only on total busy time, the strategies with the lowest differences between

minimum and maximum values are OQSC/EDD and OQSC/SPT.

64

Figure 5.3: Box and whisker diagrams of KPIs for the scenario combination FCL-DS

The results for the set of experiments that contrast most with the FCL-DS scenario

combination – that is, the production rate scenario with nearly identical line characteristics

(NDS) and the setup time scenario with weakly sequence-dependent setup times (EW) –

are shown in Table 5.6.

6,600
6,800
7,000
7,200
7,400
7,600
7,800
8,000
8,200
8,400
8,600

1 2 3 4 5 6 7 8 9

To
ta

l B
us

y
Ti

m
e

Experiment

40.0%
45.0%
50.0%
55.0%
60.0%
65.0%
70.0%
75.0%
80.0%
85.0%
90.0%
95.0%
100.0%

1 2 3 4 5 6 7 8 9

B
et

a
Se

rv
ic

e
Le

ve
l

Experiment

5.0

10.0

15.0

20.0

25.0

30.0

1 2 3 4 5 6 7 8 9

Pa
ck

ag
in

g
C

yc
le

 T
im

e

Experiment

65

When comparing these outcomes to the results shown in Table 5.5, it can be seen that all

measures are improved. For instance, random loading with earliest due date sequencing

(experiment 1 vs. 64) results in 877 h lower total busy time (731 h less setup time and 146

h less production time), 8.3 percentage points better service level, and 4.22 days less cycle

time. This result is not surprising. With nearly identical machines and equal setup times

that are only weakly sequence dependent, the production system can be expected to show

superior performance.

Table 5.6: KPI mean values for production rate and setup time scenario combination

NDS-EW

Exp.
No.

Line
Loading
Heuristic

Sequencing
heuristic

Total Busy
Time

Total Setup
Time

Total
Production

Time

Beta Service
Level

Packaging
Cycle Time

Utilization
of Lines
A and B

64 RL EDD 7,282 h 3,518 h 3,764 h 95.2% 12.32 d 76.4%
65 RL SPT 7,210 h 3,447 h 3,764 h 94.2% 10.91 d 75.6%
66 RL SST 7,050 h 3,286 h 3,764 h 95.2% 12.41 d 73.9%
67 SC EDD 7,246 h 3,518 h 3,727 h 95.6% 12.07 d 76.0%
68 SC SPT 7,168 h 3,444 h 3,725 h 95.0% 10.71 d 75.2%
69 SC SST 6,988 h 3,275 h 3,713 h 95.7% 12.17 d 73.3%
70 OQSC EDD 6,990 h 3,491 h 3,499 h 95.7% 11.55 d 73.3%
71 OQSC SPT 6,927 h 3,427 h 3,501 h 95.4% 10.53 d 72.7%
72 OQSC SST 6,751 h 3,246 h 3,504 h 95.7% 11.56 d 70.8%

Best values are highlighted in bold; mean values calculated from 100 replications.

Much less obvious, though, is the result that the OQSC/SST strategy is still the best

choice when total makespan and service level matter most. It achieves clearly and

significantly the lowest total makespan, while differences to the next best experiments in

beta service level are not significant. It also results in the smallest maximum–minimum

difference for the service level and cycle time KPIs, with an only marginally larger value

regarding total makespan (111.96 h vs. 104.01 h in experiment 71). Only when minimizing

cycle time is the most important goal is SPT in combination with OQSC significantly

lower. This can be attributed to the SPT rule that prefers orders with lower packaging times

over those with longer ones, resulting typically in very good cycle time measures. The

same effect can be observed with the random loading and scheduled capacity loading

heuristics. SPT performs in all three cases significantly better than SST and EDD.

66

Figure 5.4: Box and whisker diagrams of KPIs for the scenario combination NDS-EW

Table 5.7 gives an overview of the best-performing heuristic strategies based on all 108

simulation experiments. Separately for each of the 12 production rate and setup time

scenario combinations and each of the three KPIs – total busy time, beta service level,

6,600
6,800
7,000
7,200
7,400
7,600
7,800
8,000
8,200
8,400
8,600

64 65 66 67 68 69 70 71 72

To
ta

l B
us

y
Ti

m
e

Experiment

40.0%
45.0%
50.0%
55.0%
60.0%
65.0%
70.0%
75.0%
80.0%
85.0%
90.0%
95.0%
100.0%

64 65 66 67 68 69 70 71 72

B
et

a
Se

rv
ic

e
Le

ve
l

Experiment

5.0

10.0

15.0

20.0

25.0

30.0

64 65 66 67 68 69 70 71 72

Pa
ck

ag
in

g
C

yc
le

 T
im

e

Scenarios

67

packaging cycle time – the best-performing heuristic strategy was identified using the

Arena Process Analyzer with 95% confidence (Kelton et al., 2010).

Table 5.7: Analysis of best-performing heuristic strategies for all 12 production rate and

setup time scenario combinations

 KPIs
Heuristic strategies

Total
Makespan

Beta Service
Level

Packaging
Cycle Time

RL EDD 0 2 0
RL SPT 0 0 2
RL SST 0 5 0
SC EDD 0 7 0
SC SPT 0 2 5
SC SST 0 12 0

OQSC EDD 0 11 0
OQSC SPT 0 6 11
OQSC SST 12 12 4

Table 5.8 illustrates this process for the FCL-DS scenario combination. Comparing the

beta service level results for the nine heuristic strategies identifies SC/SST, OQSC/EDD

and OQSC/SST as the three strategies that perform significantly better than the other six.

Counting the scenarios for which a strategy is among the best-performing ones results in

Table 5.8.

Table 5.8: Best-performing heuristic strategies for the FCL-DS scenario combination

Best performing heuristic strategies

(95 % Confidence)

Line Loading
Heuristic

Sequencing
heuristic

Total
Makespan

Beta Service
Level

Packaging
Cycle Time

RL EDD
RL SPT
RL SST
SC EDD
SC SPT
SC SST X

OQSC EDD X
OQSC SPT X
OQSC SST X X

Based on the figures shown in Table 5.8, one can state that the OQSC/SST strategy is

clearly outperforming all other strategies when total busy time is the most important KPI to

be minimized. At the same time, this strategy is also always among the best regarding the

beta service level measure. Moreover, in four out of twelve scenario combinations, this

strategy also leads to the best results for the packaging cycle time measure. Therefore,

68

combining OQSC with SST achieves very good results for a broad range of scenario

combinations. Only if minimizing packaging cycle time is a more important goal than total

busy time and service level should OQSC be combined with SST in seven out of the

twelve scenario combinations.

5.6 Conclusion

This paper analyses different heuristic strategies for the scheduling of production orders on

two unrelated parallel machines with sequence-dependent setup times. In particular, the

study examines the combined effects of loading and sequencing heuristics on several

performance indicators such as total busy time (total setup and production time), customer

service level and packaging cycle time.

The results reveal that depending on the specific context – that is, shop floor

characteristics concerning setup times and processing rates – the heuristic strategies have a

significant impact on manufacturing performance despite their low conceptual and

computational complexity. Surprisingly, the results also hold for scenarios with very

similar machines and weakly sequence-dependent setup times (NDS-EW). Due to these

similarities it could have been expected that the generation of savings in terms of setup

times and production times by assigning and sequencing production orders would hardly

be possible; that is, that the shift of an order to another line or another slot in the

production sequence would cause only minor changes regarding the performance

indicators. However, this is not the case. The difference between the worst-performing

strategy (RL/NDD) and the best-performing one (OQSC/SST) is a respectable 531 hours’

total busy time (7.9%), 1.88 days’ packaging cycle time and 1.6 percentage points in

service level.

Therefore, it must be highlighted that the heuristic strategies show a rather strong

impact on manufacturing performance over all 12 scenario combinations. For instance, in

the scenario combination FCL-ES, the best combination of a loading rule (OQSC) and a

sequencing heuristic (SST) leads to a decrease of 1202 hours’ total busy time per year

when compared to the worst strategy (RL/EDD); that is, 17%. In particular, a combination

of an OQSC approach for the machine loading problem and an SST for the sequencing

problem yielded very good results for the majority of the simulated scenarios.

This paper’s results clearly indicate that already simple heuristic approaches have a

substantial impact on manufacturing performance and should be given greater

consideration. Note that the results can be generalized in principle, since the study is based

69

on multiple scenarios that reflect distinctive production environments as observed in

different industries. By evaluating the scenario that best fits the actual characteristics of

their production setting, practitioners can easily adopt the appropriate heuristic strategy

with the highest improvement potential for production scheduling.

For further research, we suggest investigation of the approaches analysed in this paper

for similar problems of production scheduling. This would enable practitioners to improve

production performance without the need to use highly sophisticated optimization

techniques.

70

6

CONCLUSION

This section provides a brief summary of the main contribution of this thesis.

The first two papers present advancements and applications of the ant colony

optimization metaheuristic. In chapter 3, a novel generic pheromone model for ant colony

optimization is proposed. The corresponding algorithm is named NormANTS, which

relates to the key characteristics of the algorithm: Based on the normalization of

pheromone and heuristic values between zero and one and the coupling of the iterative

pheromone delta with the total number of iterations, the search behaviour of artificial ants

is improved. A computational study has been carried out in order to examine the impact of

the novel pheromone model and to evaluate the overall performance of NormANTS. The

analysis of the development of resampling ratio, similarity ratio, and pheromone trails

throughout the iterative search shows that the novel pheromone model provides a high

level of control over the pheromone trail evolution independently from problem specifics.

Accordingly, the ant colony explores the solution space more effectively with a reduced

risk of premature convergence or stagnation situations. The comparison against other ant

algorithms for 33 frequently used MKP benchmark problems from the literature reveals

that, despite its problem-unspecific character, NormANTS outperforms alternative ACO

designs using traditional pheromone models.

In chapter 4, a novel multi-period variant of the mixed-model sequencing problem is

presented. The classical mixed-model assembly line sequencing problem, which addresses

situations where different orders have to be scheduled for production, is extended by a

multi-period view. Complementary to the traditional objective to minimize work overload,

the MPMMS considers the optimization of the workforce strength, i.e. the numbers of

workers along the assembly line. In practice, this objective is of relevance when different

orders demand a different number of workers in order to adhere to the given cycle time of

the assembly line. Based on the techniques introduced in chapter 3, a specifically adapted

ant algorithm is developed. The algorithm has been applied to 48 different randomly

generated problem instances of various sizes and compared against results obtained with

Gurobi as well as problem-specific probabilistic and deterministic greedy algorithms. The

comprehensive experimental study revealed the potential of the ant algorithm, which

considerably outperformed the other algorithms.

71

Chapter 5 differs from chapter 3 and 4 in terms of research perspective and

methodology. It does not aim at improving highly sophisticated heuristic algorithms but

lays the focus on the practicality of heuristic approaches. As in practice short-term

planning usually makes use of rolling planning horizons, detailed scheduling is typically

done in short-range time buckets only. As a consequence, merely a moderate number of

orders needs to be scheduled at a time for a short period of several days (instead of

hundreds or thousands orders per year). The question arises to what extent and under

which preconditions simple and consequently more practical scheduling heuristics improve

operational performance. A simulation study has been carried out in which 108 different

strategy-scenario combinations for a two-step scheduling problem (comprising the loading

and sequencing of orders on unrelated parallel machines) have been investigated. The

results show that some of the heuristic approaches considerably improve both, completion

time–based and flow time–based performance measures, while basically keeping due date–

based criteria (i.e. service levels) on a constant level. Especially a combination of the

heuristics OQSC and SST performed well, even in scenarios where the characteristics of

the operational environment as such provided hardly any improvement potential due to

similar machines and similar setup times with low sequence dependency.

Considered conjointly, the results of this work particularly support two aspects

regarding heuristic solution methods for combinatorial optimization problems. First, the

computational studies presented in chapter 3 and 4 indicate the potential of the ant colony

metaheuristic in general and NormANTS in particular. Both newly developed ant

algorithms obtained promising results and outperformed a set of different benchmark

algorithms. Second, however, the simulation study reported in chapter 5 shows that simple

heuristics (which are considerably less complex than ACO), can deliver satisfying results

in real-world settings, too. Although the potential of simpler techniques depends on

operational conditions and characteristics of the specific optimization problem at hand, it

seems worthwhile to keep them in mind as an alternative to the nowadays more popular

families of metaheuristics such as evolutionary algorithms, variable neighbourhood search,

simulated annealing, tabu search, scatter search, or ant colony optimization.

The results of chapter 5 exemplarily illustrate the managerial relevance and the potential

business impact of the application of heuristic methods for real-world combinatorial

optimization problems. Choosing an appropriate heuristic strategy for solving the

production scheduling problem on unrelated parallel machines has a rather strong impact

on manufacturing performance (note that this is valid for different scenario combinations

72

that reflect distinctive production environments as observed in different industries). For

instance, the difference between the best and worst heuristic strategy can be as large as

17% in terms of the major objective dimension, i.e. machine busy time in hours. In other

words, applying adequate optimization heuristics in this case results in capacity savings of

up to 17% per annum. The fact that the worst heuristic strategy of the simulation quite

accurately reflects the actual planning procedure of the case company the production data

has been taken from, suggests that the potential of heuristic optimization methods at least

partly remains unexploited by some practitioners.

While it needs to be kept in mind that the specific results of chapter 5 refer to one

particular optimization problem only and can hence not be generalized to other

combinatorial optimization problems, there is no doubt about the general relevance of

heuristic approaches for combinatorial optimization since managerial decisions typically

comprise combinatorial optimization problems whenever it comes to the optimization of

cost, time, risk, quality, efficiency, or profit (Talbi, 2009). Important examples besides the

scheduling problem from chapter 5 are portfolio selection, capital budgeting, design of

marketing campaigns, investment planning, facility layout and location, sizing of truck

fleets, transportation planning, bus and train scheduling, assignment of workers to jobs

such as drivers to buses and airline crew scheduling, and inventory control (Grötschel and

Lovász, 1995). All of these problems share the trait that with growing problem size, the

identification of good solutions becomes more and more difficult. Consequently, all of

these problems, which come from different areas of business management, require

heuristic solution approaches such as the ones presented in this study.

Future research should address the transfer of NormANTS to other combinatorial

optimization problems in order to further investigate its potential. As the proposed

pheromone model is not problem specific, there are no significant barriers regarding an

application to other problems. Moreover, the algorithm could be developed further from a

methodological perspective. For instance, it could be combined with additional local

search procedures to enhance performance. Considering the MPMMS model introduced in

chapter 4, related variants of this multi-period problem should be investigated. In particular,

an extension of the model considering the practice of floating workers could be of interest

and relevance for both practitioners and researchers. Furthermore, other proven heuristic

methods such as, e.g., genetic algorithms, simulated annealing, or tabu search could be

tested on the MPMMS. Regarding the simpler scheduling heuristics analysed in chapter 5,

alternative priority rules for the loading and sequencing of production orders on parallel

73

machines, for instance the longest processing time or the critical ratio dispatching rule (see,

e.g., Guinet et al., 1996; Kia et al., 2010), should be analysed and tested. Future research

should also deal with an application of the heuristics to similar problems of production

scheduling in order to enable practitioners to improve production performance without the

necessity to use highly sophisticated combinatorial optimization techniques.

74

BIBLIOGRAPHY

Akgündüz, O.S. and Tunalı, S. (2010), “An adaptive genetic algorithm approach for the

mixed-model assembly line sequencing problem”, International Journal of

Production Research, Vol. 48 No. 17, pp. 5157–5179.

Alaya, I., Solnon, C. and Ghédira, K. (2004), “Ant algorithm for the multi-dimensional

knapsack problem”, International Conference on Bioinspired Optimization

Methods and their Applications, BIOMA 2004, pp. 63–72.

Alaykỳran, K., Engin, O. and Döyen, A. (2007), “Using ant colony optimization to solve

hybrid flow shop scheduling problems”, The International Journal of Advanced

Manufacturing Technology, Vol. 35 No. 5-6, pp. 541–550.

Allahverdi, A. and Soroush, H.M. (2008), “The significance of reducing setup times/setup

costs”, European Journal of Operational Research, Vol. 187 No. 3, pp. 978–984.

De Araujo, S.A., Arenales, M.N. and Clark, A.R. (2007), “Joint rolling-horizon scheduling

of materials processing and lot-sizing with sequence-dependent setups”, Journal of

Heuristics, Vol. 13 No. 4, pp. 337–358.

Aron, S., Pasteels, J.M. and Deneubourg, J.L. (1989), “Trail-laying behaviour during

exploratory recruitment in the Argentine ant, Iridomyrmex humilis (Mayr)”,

Biology of Behaviour, Vol. 14 No. 3, pp. 207–217.

Bautista, J. and Cano, A. (2011), “Solving mixed model sequencing problem in assembly

lines with serial workstations with work overload minimisation and interruption

rules”, European Journal of Operational Research, Vol. 210 No. 3, pp. 495–513.

Beasley, J.E. (1990), “OR-Library: distributing test problems by electronic mail”, Journal

of the Operational Research Society, Vol. 41 No. 11, pp. 1069–1072.

Bell, J.E. and McMullen, P.R. (2004), “Ant colony optimization techniques for the vehicle

routing problem”, Advanced Engineering Informatics, Vol. 18 No. 1, pp. 41–48.

Bergamaschi, D., Cigolini, R., Perona, M. and Portioli, A. (1997), “Order review and

release strategies in a job shop environment: A review and a classification”,

International Journal of Production Research, Vol. 35 No. 2, pp. 399–420.

Blum, C. and Roli, A. (2003), “Metaheuristics in combinatorial optimization: Overview

and conceptual comparison”, ACM Computing Surveys (CSUR), Vol. 35 No. 3,

pp. 268–308.

75

Boryczka, U. (2007), “Ants and Multiple Knapsack Problem”, 6th International

Conference on Computer Information Systems and Industrial Management

Applications, CISIM’07, IEEE Computer Society, Elk, Polen, pp. 149–154.

Boysen, N. (2005), “Ameisenalgorithmen. Optimierung nach dem Vorbild der Natur”,

Wirtschaftswissenschaftliches Studium, Vol. 34 No. 11, pp. 607–612.

Boysen, N., Fliedner, M. and Scholl, A. (2009), “Sequencing mixed-model assembly lines:

Survey, classification and model critique”, European Journal of Operational

Research, Vol. 192 No. 2, pp. 349–373.

Boysen, N., Kiel, M. and Scholl, A. (2011), “Sequencing mixed-model assembly lines to

minimise the number of work overload situations”, International Journal of

Production Research, Vol. 49 No. 16, pp. 4735–4760.

Bozorgirad, M.A. and Logendran, R. (2012), “Sequence-dependent group scheduling

problem on unrelated-parallel machines”, Expert Systems with Applications,

Vol. 39 No. 10, pp. 9021–9030.

Bullnheimer, B., Hartl, R.F. and Strauß, C. (1997), A new rank based version of the Ant

System, Wien, Österreich: Institute of Management Science, University of Vienna.

Cano-Belmán, J., Ríos-Mercado, R.Z. and Bautista, J. (2010), “A scatter search based

hyper-heuristic for sequencing a mixed-model assembly line”, Journal of

Heuristics, Vol. 16 No. 6, pp. 749–770.

Chang, Y.-L., Sueyoshi, T. and Sullivan, R.S. (1996), “Ranking dispatching rules by data

envelopment analysis in a job shop environment”, IIE Transactions, Vol. 28 No. 8,

pp. 631–642.

Cheng, T.C.E. and Sin, C.C.S. (1990), “A state-of-the-art review of parallel-machine

scheduling research”, European Journal of Operational Research, Vol. 47 No. 3,

pp. 271–292.

Chuang, M.-C., Liao, C.-J. and Chao, C.-W. (2010), “Parallel machine scheduling with

preference of machines”, International Journal of Production Research, Vol. 48

No. 14, pp. 4139–4152.

Chu, P.C. and Beasley, J.E. (1998), “A genetic algorithm for the multidimensional

knapsack problem”, Journal of Heuristics, Vol. 4 No. 1, pp. 63–86.

Cochran, J.K. (1987), “Techniques for ascertaining the validity of large-scale production

simulation models”, International Journal of Production Research, Vol. 25 No. 2,

pp. 233–244.

76

Cordón, O., de Viana, I.F., Herrera, F. and Moreno, L. (2000), “A new ACO model

integrating evolutionary computation concepts: the best-worst ant system”, in

Dorigo, M., Middendorf, M. and Stützle, T. (Eds.), Abstract Proceedings of ANTS

2000 - From Ant Colonies to Artificial Ants: Second International Workshop on Ant

Algorithms, IRIDIA, Universite Libre de Bruxelles, Brüssel, pp. 22–29.

Cortés, B.M., García, J.C.E. and Hernández, F.R. (2012), “Multi-objective flow-shop

scheduling with parallel machines”, International Journal of Production Research,

Vol. 50 No. 10, pp. 2796–2808.

Deneubourg, J.L., Aron, S., Goss, S. and Pasteels, J.M. (1990), “The self-organizing

exploratory pattern of the argentine ant”, Journal of Insect Behavior, Vol. 3 No. 2,

pp. 159–168.

Dobson, G. (1982), “Worst-case analysis of greedy heuristics for integer programming

with nonnegative data”, Mathematics of Operations Research, Vol. 7 No. 4,

pp. 515–531.

Dorigo, M., Birattari, M. and Stützle, T. (2006), “Ant colony optimization: artificial ants as

a computational intelligence technique”, IEEE Computational Intelligence

Magazine, Vol. 1 No. 4, pp. 28–39.

Dorigo, M., Bonabeau, E. and Theraulaz, G. (2000), “Ant algorithms and stigmergy”,

Future Generation Computer Systems, Vol. 16 No. 8, pp. 851–871.

Dorigo, M. and Gambardella, L.M. (1997), “Ant colony system: a cooperative learning

approach to the traveling salesman problem”, IEEE Transactions on Evolutionary

Computation, Vol. 1 No. 1, pp. 53–66.

Dorigo, M., Maniezzo, V. and Colorni, A. (1991a), The ant system: An autocatalytic

optimizing process, Mailand: Dipartimento di Elettronica, Politecnico di Milano.

Dorigo, M., Maniezzo, V. and Colorni, A. (1991b), Positive feedback as a search strategy,

Mailand: Dipartimento di Elettronica, Politecnico di Milano.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996), “Ant system: optimization by a colony

of cooperating agents”, IEEE Transactions on Systems, Man, and Cybernetics,

Part B, Vol. 26 No. 1, pp. 1–13.

Dorigo, M. and Socha, K. (2007), “Ant Colony Optimization”, in Gonzalez, T.F. (Ed.),

Approximation Algorithms and Metaheuristics, CRC Press, pp. 26.1–26.11.

Dorigo, M. and Stützle, T. (2003), “The ant colony optimization metaheuristic: Algorithms,

applications, and advances”, Handbook of Metaheuristics, Springer, pp. 250–285.

77

Dorigo, M. and Stützle, T. (2004), Ant Colony Optimization, The MIT Press, Cambridge,

Massachusetts.

Dorigo, M. and Stützle, T. (2010), “Ant colony optimization: overview and recent

advances”, Handbook of Metaheuristics, Springer, pp. 227–263.

Drexl, A. and Kimms, A. (1997), “Lot sizing and scheduling—survey and extensions”,

European Journal of Operational Research, Vol. 99 No. 2, pp. 221–235.

Emde, S., Boysen, N. and Scholl, A. (2010), “Balancing mixed-model assembly lines: a

computational evaluation of objectives to smoothen workload”, International

Journal of Production Research, Vol. 48 No. 11, pp. 3173–3191.

Ervolina, T.R., Ettl, M., Lee, Y.M. and Peters, D.J. (2009), “Managing product availability

in an assemble-to-order supply chain with multiple customer segments”, Supply

Chain Planning, Springer, pp. 1–24.

Fanjul-Peyro, L. and Ruiz, R. (2011), “Size-reduction heuristics for the unrelated parallel

machines scheduling problem”, Computers & Operations Research, Vol. 38 No. 1,

pp. 301–309.

Fidanova, S. (2002), “ACO Algorithm for MKP Using Various Heuristic Information”,

Revised Papers from the 5th International Conference on Numerical Methods and

Applications, Springer-Verlag, pp. 438–444.

Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T. and Zaks,

S. (2009), “Minimizing total busy time in parallel scheduling with application to

optical networks”, IEEE International Symposium on Parallel & Distributed

Processing, IPDPS 2009, pp. 1–12.

Fuellerer, G., Doerner, K.F., Hartl, R.F. and Iori, M. (2009), “Ant colony optimization for

the two-dimensional loading vehicle routing problem”, Computers & Operations

Research, Vol. 36 No. 3, pp. 655–673.

Gagné, C., Gravel, M. and Price, W.L. (2006), “Solving real car sequencing problems with

ant colony optimization”, European Journal of Operational Research, Vol. 174

No. 3, pp. 1427–1448.

Gambardella, L.M. and Dorigo, M. (1996), “Solving symmetric and asymmetric TSPs by

ant colonies”, IEEE Conference on Evolutionary Computation (ICEC’96), IEEE

Press, Nagoya, Japan, pp. 622–627.

Gambardella, L.M., Taillard, E.D. and Dorigo, M. (1999), “Ant colonies for the QAP”,

Journal of the Operational Research Society, Vol. 50 No. 2, pp. 167–176.

78

Garey, M.R. and Johnson, D.S. (1979), Computers and Intractability: A Guide to the

Theory of NP-completeness, W. H. Freeman & Co, New York, NY, USA.

Garnier, S., Gautrais, J. and Theraulaz, G. (2007), “The Biological Principles of Swarm

Intelligence”, Swarm Intelligence, Vol. 1 No. 1, pp. 3–31.

Gendreau, M. and Potvin, J.-Y. (2005), “Metaheuristics in combinatorial optimization”,

Annals of Operations Research, Vol. 140 No. 1, pp. 189–213.

Glover, F. (1986), “Future paths for integer programming and links to artificial

intelligence”, Computers & Operations Research, Vol. 13 No. 5, pp. 533–549.

Glover, F. and Kochenberger, G.A. (2003), Handbook of Metaheuristics, Springer Science

& Business Media, available at:

https://books.google.de/books?hl=de&lr=&id=O_10T_KeqOgC&oi=fnd&pg=PR9

&dq=metaheuristics&ots=MD89_KVCPh&sig=ZzLugM1On_S3Omm9VokOMcr

6Aso (accessed 26 February 2015).

Golle, U., Rothlauf, F. and Boysen, N. (2014), “Car sequencing versus mixed-model

sequencing: A computational study”, European Journal of Operational Research,

Vol. 237 No. 1, pp. 50–61.

Goss, S., Aron, S., Deneubourg, J.L. and Pasteels, J.M. (1989), “Self-organized shortcuts

in the Argentine ant”, Naturwissenschaften, Vol. 76 No. 12, pp. 579–581.

Gottlieb, J., Puchta, M. and Solnon, C. (2003), “A study of greedy, local search, and ant

colony optimization approaches for car sequencing problems”, Applications of

Evolutionary Computing, Springer, pp. 246–257.

Graham, R.L., Lawler, E.L., Lenstra, J.K. and Kan, A.H.G. (1979), “Optimization and

approximation in deterministic sequencing and scheduling: a survey”, Annals of

Discrete Mathematics, Vol. 5, pp. 287–326.

Grassé, P. P. (1959), “La Reconstruction Du Nid Et Les Coordinations Interindividuelles

Chez Bellicositermes Natalensis Et Cubitermes Sp. La Théorie De La Stigmergie:

Essai D'interprétation Du Comportement Des Termites Constructeurs”, Insectes

Sociaux, Vol. 6 No. 1, pp. 41–80.

Grötschel, M. and Lovász, L. (1995), “Combinatorial optimization”, Handbook of

Combinatorics, Vol. 2, pp. 1541–1597.

Guinet, A., Solomon, M.M., Kedia, P.K. and Dussauchoy, A. (1996), “A computational

study of heuristics for two-stage flexible flowshops”, International Journal of

Production Research, Vol. 34 No. 5, pp. 1399–1415.

79

Helal, M., Rabadi, G. and Al-Salem, A. (2006), “A tabu search algorithm to minimize the

makespan for the unrelated parallel machines scheduling problem with setup times”,

International Journal of Operations Research, Vol. 3 No. 3, pp. 182–192.

Van Hemert, J.I. and Bäck, T. (2002), “Measuring the searched space to guide efficiency:

The principle and evidence on constraint satisfaction”, Parallel Problem Solving

from Nature—PPSN VII, Springer, pp. 23–32.

Hendizadeh, S.H., Faramarzi, H., Mansouri, S.A., Gupta, J.N. and ElMekkawy, T.Y.

(2008), “Meta-heuristics for scheduling a flowline manufacturing cell with

sequence dependent family setup times”, International Journal of Production

Economics, Vol. 111 No. 2, pp. 593–605.

Hendry, L.C. and Wong, S.K. (1994), “Alternative order release mechanisms: a

comparison by simulation”, International Journal of Production Research,

Vol. 32 No. 12, pp. 2827–2842.

Holweg, M. and Greenwood, A. (2001), “Product Variety, Life Cycles, and Rate of

Innovation–Trends in the UK Automotive Industry”, Lean Enterprise Research

Centre, Cardiff Business School, Wales, UK, available at:

http://www.3daycar.com/mainframe/publications/library/ProductVariety.pdf

(accessed 23 July 2014).

Holweg, M. and Pil, F.K. (2001), “Start with the customer”, MIT Sloan Management

Review, Vol. 43 No. 1, pp. 74–83.

Ke, L., Feng, Z., Ren, Z. and Wei, X. (2010), “An ant colony optimization approach for the

multidimensional knapsack problem”, Journal of Heuristics, Vol. 16 No. 1,

pp. 65–83.

Kelton, W.D., Sadowski, R.P. and Swets, N.B. (2010), Simulation with Arena, McGraw-

Hill, 5thed.

Kia, H.R., Davoudpour, H. and Zandieh, M. (2010), “Scheduling a dynamic flexible flow

line with sequence-dependent setup times: a simulation analysis”, International

Journal of Production Research, Vol. 48 No. 14, pp. 4019–4042.

Kim, D.-W., Kim, K.-H., Jang, W. and Frank Chen, F. (2002), “Unrelated parallel machine

scheduling with setup times using simulated annealing”, Robotics and Computer-

Integrated Manufacturing, Vol. 18 No. 3, pp. 223–231.

Kong, M., Tian, P. and Kao, Y. (2008), “A new ant colony optimization algorithm for the

multidimensional Knapsack problem”, Computers & Operations Research, Vol. 35

No. 8, pp. 2672–2683.

80

Krantz, S.G. and Parks, H.R. (2014), “The P/NP Problem”, A Mathematical Odyssey,

Springer, pp. 217–254.

Law, A.M. (2007), Simulation Modeling and Analysis, McGraw-Hill, 4thed.

Lawler, E.L. (1976), Combinatorial optimization: networks and matroids, Courier

Corporation, available at:

https://books.google.de/books?hl=de&lr=&id=m4MvtFenVjEC&oi=fnd&pg=PA1

&dq=combinatorial+optimization:+networks+and+matroids&ots=xOdTuJSMGz&s

ig=BYuEXlT0cWlnkwlGQYHaAWPUpL8 (accessed 16 February 2015).

Leguizamón, G. and Michalewicz, Z. (1999), “A new version of ant system for subset

problems”, Congress on Evolutionary Computation, CEC 99, Washington, DC,

USA, Vol. 2.

Lenstra, J.K., Rinnooy Kan, A.H.G. and Brucker, P. (1977), “Complexity of machine

scheduling problems”, Annals of Discrete Mathematics, Vol. 1, pp. 343–362.

Levine, J. and Ducatelle, F. (2004), “Ant colony optimization and local search for bin

packing and cutting stock problems”, Journal of the Operational Research Society,

Vol. 55 No. 7, pp. 705–716.

Logendran, R., McDonell, B. and Smucker, B. (2007), “Scheduling unrelated parallel

machines with sequence-dependent setups”, Computers & Operations Research,

Vol. 34 No. 11, pp. 3420–3438.

López-Ibáñez, M., Blum, C., Ohlmann, J.W. and Thomas, B.W. (2013), “The travelling

salesman problem with time windows: Adapting algorithms from travel-time to

makespan optimization”, Applied Soft Computing, Vol. 13 No. 9, pp. 3806–3815.

Lu, H.L., Huang, G.Q. and Yang, H.D. (2011), “Integrating order review/release and

dispatching rules for assembly job shop scheduling using a simulation approach”,

International Journal of Production Research, Vol. 49 No. 3, pp. 647–669.

McMullen, P.R. (2001), “An ant colony optimization approach to addressing a JIT

sequencing problem with multiple objectives”, Artificial Intelligence in

Engineering, Vol. 15 No. 3, pp. 309–317.

McNaughton, R. (1959), “Scheduling with deadlines and loss functions”, Management

Science, Vol. 6 No. 1, pp. 1–12.

Mokotoff, E. (2001), “Parallel machine scheduling problems: a survey”, Asia Pacific

Journal of Operational Research, Vol. 18 No. 2, pp. 193–242.

81

Mokotoff, E. and Jimeno, J.L. (2002), “Heuristics based on partial enumeration for the

unrelated parallel processor scheduling problem”, Annals of Operations Research,

Vol. 117 No. 1-4, pp. 133–150.

Montgomery, J. and Randall, M. (2002), “Anti-Pheromone as a Tool for Better Exploration

of Search Space”, in Dorigo, M., Di Caro, G., Sampels, M., Hartmanis, J. and Van

Leeuwen, J. (Eds.), Proceedings of ANTS 2002 - From Ant Colonies to Artificial

Ants: Third International Workshop on Ant Algorithms, Lecture Notes in Computer

Science, Springer, Berlin, pp. 100–110.

Moradi, H. and Zandieh, M. (2013), “An imperialist competitive algorithm for a mixed-

model assembly line sequencing problem”, Journal of Manufacturing Systems,

Vol. 32 No. 1, pp. 46–54.

Moradi, H., Zandieh, M. and Mahdavi, I. (2011), “Non-dominated ranked genetic

algorithm for a multi-objective mixed-model assembly line sequencing problem”,

International Journal of Production Research, Vol. 49 No. 12, pp. 3479–3499.

Morin, S., Gagné, C. and Gravel, M. (2009), “Ant colony optimization with a specialized

pheromone trail for the car-sequencing problem”, European Journal of Operational

Research, Vol. 197 No. 3, pp. 1185–1191.

Morrison, R.W. and De Jong, K.A. (2002), “Measurement of population diversity”,

Artificial Evolution, Springer, pp. 31–41.

Naylor, T.H. and Finger, J.M. (1967), “Verification of computer simulation models”,

Management Science, Vol. 14 No. 2, p. B–92.

Osman, I.H. and Kelly, J.P. (1996), “Meta-heuristics: an overview”, Meta-Heuristics,

Springer, pp. 1–21.

Papadimitriou, C.H. (1994), Computational complexity, Addison-Wesley Reading,

Massachusetts.

Pickardt, C.W. and Branke, J. (2012), “Setup-oriented dispatching rules–a survey”,

International Journal of Production Research, Vol. 50 No. 20, pp. 5823–5842.

Pil, F.K. and Holweg, M. (2004), “Linking product variety to order-fulfillment strategies”,

Interfaces, Vol. 34 No. 5, pp. 394–403.

Pintea, C.-M. (2014), “Combinatorial Optimization”, Advances in Bio-inspired Computing

for Combinatorial Optimization Problems, Intelligent Systems Reference Library,

Springer Berlin Heidelberg, pp. 21–28.

82

Rabadi, G., Moraga, R.J. and Al-Salem, A. (2006), “Heuristics for the unrelated parallel

machine scheduling problem with setup times”, Journal of Intelligent

Manufacturing, Vol. 17 No. 1, pp. 85–97.

Raja, K., Arumugam, C. and Selladurai, V. (2008), “Non-identical parallel-machine

scheduling using genetic algorithm and fuzzy logic approach”, International

Journal of Services and Operations Management, Vol. 4 No. 1, pp. 72–101.

Ravetti, M.G., Mateus, G.R., Rocha, P.L. and Pardalos, P.M. (2007), “A scheduling

problem with unrelated parallel machines and sequence dependent setups”,

International Journal of Operational Research, Vol. 2 No. 4, pp. 380–399.

Röder, A. and Tibken, B. (2006), “A methodology for modeling inter-company supply

chains and for evaluating a method of integrated product and process

documentation”, European Journal of Operational Research, Vol. 169 No. 3,

pp. 1010–1029.

Sabuncuoglu, I. and Karapınar, H.Y. (1999), “Analysis of order review/release problems in

production systems”, International Journal of Production Economics, Vol. 62

No. 3, pp. 259–279.

Al-Salem, A. (2004), “Scheduling to minimize makespan on unrelated parallel machines

with sequence dependent setup times”, Engineering Journal of the University of

Qatar, Vol. 17 No. 1, pp. 177–187.

Schmidt, G. (2000), “Scheduling with limited machine availability”, European Journal of

Operational Research, Vol. 121 No. 1, pp. 1–15.

Scholl, A. and Klein, R. (1999), “Balancing assembly lines effectively–a computational

comparison”, European Journal of Operational Research, Vol. 114 No. 1,

pp. 50–58.

Seçkiner, S.U., Eroğlu, Y., Emrullah, M. and Dereli, T. (2013), “Ant colony optimization

for continuous functions by using novel pheromone updating”, Applied

Mathematics and Computation, Vol. 219 No. 9, pp. 4163–4175.

Senthilkumar, K.M., Selladurai, V., Raja, K. and Thirunavukkarasu, V. (2011), “A hybrid

algorithm based on pso and aco approach for solving combinatorial fuzzy unrelated

parallel machine scheduling problem”, European Journal of Scientific Research,

Vol. 64 No. 2, pp. 293–313.

Shanker, K. and Tzen, Y.-J.J. (1985), “A loading and dispatching problem in a random

flexible manufacturing system”, International Journal of Production Research,

Vol. 23 No. 3, pp. 579–595.

83

Shih, W. (1979), “A branch and bound method for the multiconstraint zero-one knapsack

problem”, Journal of the Operational Research Society, Vol. 30 No. 4, pp. 369–378.

Sidaner, A., Bailleux, O. and Chabrier, J.-J. (2002), “Measuring the spatial dispersion of

evolutionary search processes: Application to walksat”, Artificial Evolution,

Springer, pp. 77–87.

Sivrikaya-Şerifoǧlu, F. and Ulusoy, G. (1999), “Parallel machine scheduling with earliness

and tardiness penalties”, Computers & Operations Research, Vol. 26 No. 8,

pp. 773–787.

Solnon, C. (2008), “Combining two pheromone structures for solving the car sequencing

problem with Ant Colony Optimization”, European Journal of Operational

Research, Vol. 191 No. 3, pp. 1043–1055.

Solnon, C. and Fenet, S. (2006), “A study of ACO capabilities for solving the maximum

clique problem”, Journal of Heuristics, Vol. 12 No. 3, pp. 155–180.

Stevenson, M., Hendry, L.C. and Kingsman†, B.G. (2005), “A review of production

planning and control: the applicability of key concepts to the make-to-order

industry”, International Journal of Production Research, Vol. 43 No. 5,

pp. 869–898.

Strohhecker, J., Sibbel, R. and Dick, M. (2014), “Integrating Kanban principles in a

pharmaceutical campaign production system”, Production Planning & Control,

Vol. 25 No. 15, pp. 1247–1263.

Stützle, T. and Hoos, H.H. (2000), “MAX-MIN Ant System”, Future Generation

Computer Systems, Vol. 16 No. 9, pp. 889–914.

Talbi, E.-G. (2009), Metaheuristics: from design to implementation, John Wiley & Sons,

Vol. 74, available at:

https://books.google.de/books?hl=de&lr=&id=SIsa6zi5XV8C&oi=fnd&pg=PR7&

dq=metaheuristics&ots=-9RKpOewFw&sig=_IxF2l3Dliab5EIbtKa_h409NJE

(accessed 26 February 2015).

Tay, J.C. and Ho, N.B. (2008), “Evolving dispatching rules using genetic programming for

solving multi-objective flexible job-shop problems”, Computers & Industrial

Engineering, Vol. 54 No. 3, pp. 453–473.

Vinod, V. and Sridharan, R. (2009), “Simulation-based metamodels for scheduling a

dynamic job shop with sequence-dependent setup times”, International Journal of

Production Research, Vol. 47 No. 6, pp. 1425–1447.

84

Vinod, V. and Sridharan, R. (2011), “Simulation modeling and analysis of due-date

assignment methods and scheduling decision rules in a dynamic job shop

production system”, International Journal of Production Economics, Vol. 129

No. 1, pp. 127–146.

Weingartner, H.M. and Ness, D.N. (1967), “Methods for the solution of the

multidimensional 0/1 knapsack problem”, Operations Research, Vol. 15 No. 1,

pp. 83–103.

Wemmerlöw, U. and Vakharia, A.J. (1991), “Job and family scheduling of a flow-line

manufacturing cell: a simulation study”, IIE Transactions, Vol. 23 No. 4,

pp. 383–393.

Wester, L. and Kilbridge, M. (1963), “The assembly line model-mix sequencing problem”,

Proceedings of the third international conference on Operations Research, Oslo,

pp. 247–260.

Wolsey, L.A. and Nemhauser, G.L. (2014), Integer and combinatorial optimization, John

Wiley & Sons, available at:

https://books.google.de/books?hl=de&lr=&id=MvBjBAAAQBAJ&oi=fnd&pg=PR

1&dq=complexity+theory+combinatorial+optimization&ots=1czxAEM3rD&sig=c

dleiK7lxr_wAh3WBpP6QRrKZ10 (accessed 27 January 2015).

Yang, S., Jiang, Y. and Nguyen, T.T. (2013), “Metaheuristics for dynamic combinatorial

optimization problems”, IMA Journal of Management Mathematics, Vol. 24 No. 4,

pp. 451–480.

Ying, K.-C. and Lin, S.-W. (2012), “Unrelated parallel machines scheduling with

sequence-and machine-dependent setup times and due date constraints”,

International Journal of Innovative Computing, Information and Control, Vol. 8

No. 5, pp. 3279–3297.

Zhu, Q. and Zhang, J. (2011), “Ant colony optimisation with elitist ant for sequencing

problem in a mixed model assembly line”, International Journal of Production

Research, Vol. 49 No. 15, pp. 4605–4626.

85

APPENDIX

Table 5.9: Production order characteristics

Bottle Sizes # Products Carton & Leaflet Size # Products
200ml 70x37mm 14 145 x 70 x 100 - 148 x 300 1
240ml 80mm 11 47 x 47 x 80 - -- 1
300ml 70x19mm 10 47 x 47 x 80 - 148 x 300 142
400ml 70x19mm 8 55 x 55 x 102 - -- 2
400ml 80mm 9 55 x 55 x 102 - 148 x 210 5
600ml 102mm 6 55 x 55 x 102 - 148 x 300 97
80ml 64mm 142 55 x 55 x 86 - 148 x 300 1
100ml 70x37mm 17 55 x 55 x 90 - 148 x 210 4
150ml 70x37mm 18 55 x 55 x 90 - 148 x 300 1
150ml 80mm 53 67 x 67 x 132 - -- 2
 67 x 67 x 132 - 148 x 300 27
 70 x 70 x 145 - 148 x 300 5
Total 288 Total 288

Table 5.10: Experiment design with 108 strategy-scenario combinations

Variations in Production System's Characteristics
FCL NDS FDS

DS DW ES EW DS DW ES EW DS DW ES EW

Loading Sequencing
FCL-
DS

FCL-
DW

FCL-
ES

FCL-
EW

NDS-
DS

NDS-
DW

NDS-
ES

NDS-
EW

FDS-
DS

FDS-
DW

FDS-
ES

FDS-
EW

RL EDD 1 10 19 28 37 46 55 64 73 82 91 100
 SPT 2 11 20 29 38 47 56 65 74 83 92 101
 SST 3 12 21 30 39 48 57 66 75 84 93 102
SC EDD 4 13 22 31 40 49 58 67 76 85 94 103
 SPT 5 14 23 32 41 50 59 68 77 86 95 104
 SST 6 15 24 33 42 51 60 69 78 87 96 105
OQSC EDD 7 16 25 34 43 52 61 70 79 88 97 106
 SPT 8 17 26 35 44 53 62 71 80 89 98 107
 SST 9 18 27 36 45 54 63 72 81 90 99 108

Legend:
RL Random loading
SC Scheduled capacity based assignment
OQSC Order quantity and scheduled capacity assignment
EDD Earliest due date
SPT Shortest processing time
SST Shortest setup time
FCL One line faster for all products, nearly constant relations, on average large differences
NDS Varying differences in line speed, differing relations, small differences
FDS One line faster for all products, different relations, on average small differences
DS Different setup times between lines A and B, strong sequence dependence
DW Different setup times between lines A and B, weak sequence dependence
ES Equal setup times between lines A and B, strong sequence dependence
EW Equal setup times between lines A and B, weak sequence dependence

86

Table 5.11: Experiment results for the 90 strategy-scenario combinations not reported in

the text

Exp.
No.

Line
Loading
Heuristic

Sequencing
heuristic

Total Busy
Time

Total Setup
Time

Total
Production

Time

Beta Service
Level

Packaging
Cycle Time

Utilization
of Lines
A and B

10 RL EDD 7,467 h 3,558 h 3,909 h 94.3% 13.07 d 78.3%
11 RL SPT 7,390 h 3,481 h 3,909 h 92.9% 11.58 d 77.5%
12 RL SST 7,222 h 3,313 h 3,909 h 95.0% 12.91 d 75.7%
13 SC EDD 7,463 h 3,560 h 3,903 h 95.2% 12.81 d 78.3%
14 SC SPT 7,374 h 3,481 h 3,893 h 94.1% 11.43 d 77.4%
15 SC SST 7,175 h 3,305 h 3,870 h 95.5% 12.74 d 75.3%
16 OQSC EDD 6,946 h 3,465 h 3,480 h 95.8% 11.50 d 72.9%
17 OQSC SPT 6,881 h 3,400 h 3,482 h 95.5% 10.45 d 72.2%
18 OQSC SST 6,712 h 3,227 h 3,485 h 95.7% 11.51 d 70.4%
19 RL EDD 8,253 h 4,270 h 3,983 h 88.9% 15.72 d 86.1%
20 RL SPT 8,075 h 4,092 h 3,983 h 88.0% 13.55 d 84.4%
21 RL SST 7,675 h 3,692 h 3,983 h 93.2% 13.80 d 80.4%
22 SC EDD 8,192 h 4,271 h 3,921 h 92.2% 15.28 d 85.8%
23 SC SPT 7,974 h 4,080 h 3,894 h 90.5% 13.14 d 83.6%
24 SC SST 7,498 h 3,651 h 3,847 h 95.4% 13.28 d 78.6%
25 OQSC EDD 7,658 h 4,215 h 3,443 h 94.8% 13.24 d 80.3%
26 OQSC SPT 7,487 h 4,049 h 3,438 h 94.0% 11.77 d 78.5%
27 OQSC SST 7,051 h 3,609 h 3,442 h 95.7% 12.09 d 73.9%
28 RL EDD 7,501 h 3,518 h 3,983 h 93.9% 12.91 d 78.6%
29 RL SPT 7,428 h 3,445 h 3,983 h 92.6% 11.46 d 77.9%
30 RL SST 7,265 h 3,283 h 3,983 h 94.2% 12.92 d 76.2%
31 SC EDD 7,368 h 3,519 h 3,849 h 95.5% 12.48 d 77.3%
32 SC SPT 7,277 h 3,442 h 3,836 h 94.6% 11.13 d 76.3%
33 SC SST 7,093 h 3,268 h 3,825 h 95.6% 12.50 d 74.4%
34 OQSC EDD 6,943 h 3,496 h 3,448 h 95.8% 11.50 d 72.8%
35 OQSC SPT 6,876 h 3,430 h 3,446 h 95.5% 10.46 d 72.1%
36 OQSC SST 6,704 h 3,254 h 3,450 h 95.7% 11.55 d 70.3%
37 RL EDD 7,811 h 4,269 h 3,542 h 93.3% 13.80 d 81.8%
38 RL SPT 7,636 h 4,094 h 3,542 h 92.3% 12.00 d 80.0%
39 RL SST 7,248 h 3,707 h 3,542 h 95.2% 12.62 d 76.0%
40 SC EDD 7,813 h 4,271 h 3,541 h 94.6% 13.61 d 81.9%
41 SC SPT 7,625 h 4,082 h 3,543 h 93.5% 11.76 d 80.0%
42 SC SST 7,218 h 3,676 h 3,542 h 95.6% 12.48 d 75.7%
43 OQSC EDD 7,729 h 4,195 h 3,535 h 94.7% 13.18 d 81.1%
44 OQSC SPT 7,572 h 4,038 h 3,534 h 94.2% 11.94 d 79.4%
45 OQSC SST 7,100 h 3,566 h 3,534 h 95.5% 11.98 d 74.5%
46 RL EDD 7,060 h 3,518 h 3,542 h 95.4% 11.81 d 74.0%
47 RL SPT 6,987 h 3,446 h 3,542 h 94.8% 10.50 d 73.3%
48 RL SST 6,830 h 3,289 h 3,542 h 95.5% 11.96 d 71.6%
49 SC EDD 7,060 h 3,518 h 3,541 h 95.7% 11.61 d 74.1%
50 SC SPT 6,984 h 3,443 h 3,541 h 95.3% 10.33 d 73.3%
51 SC SST 6,824 h 3,280 h 3,544 h 95.7% 11.81 d 71.6%
52 OQSC EDD 7,020 h 3,485 h 3,534 h 95.7% 11.53 d 73.6%
53 OQSC SPT 6,958 h 3,423 h 3,534 h 95.4% 10.67 d 73.0%
54 OQSC SST 6,768 h 3,233 h 3,535 h 95.6% 11.50 d 71.0%
55 RL EDD 8,033 h 4,270 h 3,764 h 91.4% 14.73 d 84.1%
56 RL SPT 7,860 h 4,096 h 3,764 h 90.4% 12.73 d 82.4%
57 RL SST 7,465 h 3,701 h 3,764 h 94.7% 13.19 d 78.3%
58 SC EDD 8,016 h 4,269 h 3,747 h 93.6% 14.40 d 84.0%
59 SC SPT 7,819 h 4,084 h 3,736 h 92.4% 12.40 d 82.0%
60 SC SST 7,390 h 3,667 h 3,723 h 95.5% 12.90 d 77.5%

87

61 OQSC EDD 7,693 h 4,206 h 3,486 h 94.9% 13.25 d 80.7%
62 OQSC SPT 7,530 h 4,043 h 3,487 h 94.3% 11.81 d 79.0%
63 OQSC SST 7,093 h 3,595 h 3,498 h 95.6% 12.10 d 74.4%
73 RL EDD 7,723 h 4,182 h 3,542 h 91.2% 14.18 d 80.8%
74 RL SPT 7,561 h 4,019 h 3,542 h 90.6% 12.33 d 79.2%
75 RL SST 7,193 h 3,651 h 3,542 h 94.7% 12.80 d 75.4%
76 SC EDD 7,704 h 4,162 h 3,542 h 95.0% 13.28 d 80.8%
77 SC SPT 7,530 h 3,989 h 3,541 h 93.8% 11.53 d 79.0%
78 SC SST 7,150 h 3,608 h 3,542 h 95.7% 12.36 d 75.0%
79 OQSC EDD 7,544 h 4,009 h 3,534 h 95.2% 12.59 d 79.1%
80 OQSC SPT 7,397 h 3,862 h 3,535 h 94.7% 11.46 d 77.6%
81 OQSC SST 6,956 h 3,421 h 3,534 h 95.6% 11.66 d 73.0%
82 RL EDD 7,042 h 3,501 h 3,542 h 94.8% 12.03 d 73.9%
83 RL SPT 6,969 h 3,427 h 3,542 h 94.1% 10.69 d 73.1%
84 RL SST 6,811 h 3,269 h 3,542 h 95.3% 12.11 d 71.4%
85 SC EDD 7,027 h 3,484 h 3,543 h 95.8% 11.57 d 73.7%
86 SC SPT 6,951 h 3,409 h 3,543 h 95.4% 10.28 d 72.9%
87 SC SST 6,788 h 3,245 h 3,542 h 95.7% 11.77 d 71.2%
88 OQSC EDD 6,911 h 3,376 h 3,534 h 95.7% 11.27 d 72.5%
89 OQSC SPT 6,850 h 3,315 h 3,535 h 95.4% 10.44 d 71.9%
90 OQSC SST 6,665 h 3,130 h 3,534 h 95.6% 11.28 d 69.9%
91 RL EDD 7,945 h 4,221 h 3,724 h 89.2% 15.39 d 82.9%
92 RL SPT 7,780 h 4,056 h 3,724 h 88.7% 13.19 d 81.4%
93 RL SST 7,397 h 3,673 h 3,724 h 94.5% 13.30 d 77.6%
94 SC EDD 7,988 h 4,207 h 3,781 h 93.5% 14.34 d 83.8%
95 SC SPT 7,800 h 4,033 h 3,767 h 92.3% 12.34 d 81.8%
96 SC SST 7,386 h 3,638 h 3,749 h 95.4% 12.99 d 77.5%
97 OQSC EDD 7,578 h 4,067 h 3,511 h 95.1% 12.83 d 79.5%
98 OQSC SPT 7,425 h 3,915 h 3,511 h 94.5% 11.50 d 77.9%
99 OQSC SST 7,018 h 3,497 h 3,521 h 95.7% 11.88 d 73.6%

100 RL EDD 7,258 h 3,533 h 3,724 h 94.5% 12.57 d 76.1%
101 RL SPT 7,183 h 3,459 h 3,724 h 93.5% 11.13 d 75.3%
102 RL SST 7,019 h 3,295 h 3,724 h 95.2% 12.52 d 73.6%
103 SC EDD 7,277 h 3,526 h 3,751 h 95.6% 12.16 d 76.3%
104 SC SPT 7,204 h 3,451 h 3,753 h 94.9% 10.81 d 75.6%
105 SC SST 7,023 h 3,281 h 3,742 h 95.7% 12.29 d 73.7%
106 OQSC EDD 6,946 h 3,426 h 3,520 h 95.8% 11.40 d 72.9%
107 OQSC SPT 6,884 h 3,363 h 3,521 h 95.4% 10.41 d 72.2%
108 OQSC SST 6,712 h 3,186 h 3,526 h 95.7% 11.44 d 70.4%

Best values are highlighted in bold; mean values calculated from 100 replications.

88

STATEMENT OF CERTIFICATION

I hereby confirm that this dissertation constitutes my own work, produced without aid and

support from persons and/or materials other than the ones listed. All used sources are

indicated as direct or indirect quotations. Quotation marks indicate direct language from

another author. Appropriate credit is given where I have used ideas, expressions or text

from another public or non-public source. The thesis in this form or in any other form has

not been submitted to an examination body.

Michael Hamann

Frankfurt am Main, 18th of March 2015

