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Abstract: A new stochastic programming model is proposed for integrated design and operation
of natural gas production networks under uncertainty. The model not only addresses the un-
certainties explicitly, but also considers the gas compositions and pressure-flow relationships for
the whole production network. Due to the many nonconvex constraints, the new model leads to
a very difficult large-scale nonconvex mixed-integer nonlinear programming (MINLP) problem.
A modified nonconvex generalized Benders decomposition (NGBD) method is developed to
efficiently solve this problem. This method integrates in NGBD several bound contraction
strategies, which render tighter convex relaxations for constructing tighter lower bounding
problems and accelerating the solution of nonconvex subproblems. Case study of an industrial
natural gas production system shows the benefits of the proposed stochastic model and the
bound contraction integrated NGBD method.
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1. INTRODUCTION

As natural gas is becoming a more important source of
energy, the application of mathematical programming to
optimal design and operation of natural gas production
networks (NGPN) has attracted more attention from both
industry and academia. In the literature, the mathemat-
ical models developed for gas networks include at least
one of the following three physical features. One is the
relationship between pressures and gas flow rates at the
wells, compressors and pipelines (e.g., Ŕıos-Mercado et al.
(2006); Goel and Grossmann (2004)), the second is the
compositions of gas flows in different parts of the network,
such as the mole percentages of CO2, H2S (e.g., Selot et al.
(2008); Li et al. (2011a)), and the third is the uncertainties
in the systems (e.g., Levary and Dean (1980); Goel and
Grossmann (2004)).

In order to address uncertainties in the integrated design
and operation problem explicitly, the following scenario-
based two-stage stochastic programming can be formu-
lated (Birge and Louveaux (2011)):

min
x0,x1,...,xs

s∑
w=1

pw(cTwx0 + fw(xw))

s.t. Bwx0 + gw(xw) ≤ 0 , w = 1, ..., s,
xw ∈ Xw, w = 1, ..., s,
x0 ∈ X0,

( P )

? The authors are grateful to the financial support from National
Science and Engineering Research Council of Canada (RGPIN
418411-13).

which includes a finite number of uncertainty realizations
(called scenarios) to characterize the uncertainties. pw
represents the probability for specific scenario w, X0 =
{x0 ∈ {0, 1}n1 : Ax0 ≤ b} is nonempty and compact,
Xw ⊂ Rn2 is nonempty and compact for w = 1, ..., s. For
NGPN, x0 are first-stage binary variables which decide
if specific facilities are to be developed or not, xw are
second-stage binary or/and continuous variables which
determine the operating conditions for scenario w. When
gas pressure and flow relationship or compositions of gas
flows are addressed in the model, Problem ( P ) becomes
a large-scale nonconvex mixed-integer nonlinear program-
ming (MINLP) problem, which is usually very difficult
to solve. However, this problem has a special structure;
when the first-stage variables are fixed, it can be decom-
posed into s subproblems. This special structure can be
exploited for efficient global optimization via an extension
of Benders decomposition (Benders (1962)) called noncon-
vex generalized Benders decomposition (NGBD, Li et al.
(2011b)), which was developed based on convex relax-
ations and strong duality held by convex subproblems.

Recently, the authors have developed a stochastic pro-
gramming model for integrated design and operation of
NGPNs, which include all the three aforementioned phys-
ical features of the system (Li and Li (2015)). However,
this model leads to a very difficult nonconvex MINLP
that cannot be solved by the standard NGBD method
efficiently. This is because the problem is highly nonconvex
and the convex relaxations constructed in the standard
NGBD are not tight enough. Therefore, we propose in
this paper to construct tighter convex relaxations through
bound contraction, which has been proven to be effective
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in branch-and-bound based global optimization (Zamora
and Grossmann (1999)). The remaining part of the paper
is organized as follows. In section 2, the new stochastic
programming model for integrated design and operation of
NGPN is introduced. In section 3, the NGBD framework
is briefly described and the bound contraction problems
to be solved within this framework are explained. Section
4 demonstrates the advantage of the new model as well
as the updated NGBD method. The paper ends with
conclusions in section 5.

2. THE STOCHASTIC NGPN MODEL

Here we briefly introduce a new stochastic NGPN model
for an industrial NGPN called Sarawak Gas Production
System (SGPS) (Selot et al. (2008)). This model is devel-
oped based on our recent work (Li and Li (2015)). The gas
production network is formulated as a directed graph, in
which vertices represent wells, pipeline connections, termi-
nals and edges represent gas pipelines. The model consists
of three major parts. The first part is a stochastic pooling
model (Li et al. (2011a)) that captures the topological
structure of the network and the material balances on
different gas components in the system. The second part is
a pressure-flow relationship model that describes how the
gas flows are dependent on the pressures in pipelines. The
third part is a compressor model that relates the energy
consumption to the pressure rise provided by compression.
With related symbols described in Table 1, the three parts
are explained below.

The stochastic pooling model
Due to the space limit, the equations for the stochastic
pooling model are not listed here. Readers are referred to
the previous paper (Li et al. (2011a)) for the equations.

The stochastic pipeline pressure-flow model

yi,j((P
out
i,w )2 − (P inj,w)2) ≥ κi,jQ2

i,j,w,

∀(i, j) ∈ EL, ∀w ∈ Φ
(1)

yi,j(P
in
j,w − P outi,w ) ≤ 0,

∀(i, j) ∈ E, ∀w ∈ Φ
(2)

P ini,w ≥ P outi,w ,

∀i ∈ V \ V C , ∀w ∈ Φ
(3)

ϑi,wQ
2
i,j,w ≤ yj,j(π2

i,w − λi,w(P outi,w )2),

∀(i, j) ∈ EW , ∀w ∈ Φ
(4)

P outi,w ≤ πi,w, ∀i ∈ VW , ∀w ∈ Φ (5)

yvi Γout,LBi,w ≤ P outi,w ≤ yvi Γout,UBi,w ,
∀i ∈ V, ∀w ∈ Φ

(6)

yvi Γin,LBi,w ≤ P ini,w ≤ yvi Γin,UBi,w ,
∀i ∈ V, ∀w ∈ Φ

(7)

Eq. (1) describes how the gas flow rates in regular long
pipelines are dependent on the pressures at both ends of
the pipelines. Eq. (2) means that, if the pipeline repre-
sented by edge (i,j) is to be developed, the pressure at

Table 1. Descriptions of Symbols

Symbol Type Descriptions

V set vertices in the directed flow graph
E set edges in the directed flow graph
Ω set index set for components in flow
Φ set index set for scenarios
VW subset of V vertices representing wells
V T subset of V vertices representing terminals
V C subset of V vertices with compressors onsite
EL subset of E edges representing long pipelines
EW subset of E edges connecting wells to sources

in superscript indicator of the inlet pressures
out superscript indicator of the outlet pressures
NPV superscript indicator of the net present value
CC superscript indicator of the capital cost
OP superscript indicator of the operation cost

q subscript index of components
w subscript index of scenarios

y binary var. decisions on development of edges
yv binary var. decisions on development of ver-

tices
f variable molar flow rates, Mmol/day
Q variable volumetric flow rates, hm3/day
P variable pressure, bar
C variable costs of infrastructures or opera-

tions, Million $
W variable compressor power, MW
δ binary var. compressor on or off

U parameter component ratio at wells, (%)
σ parameter compressors capability ratio
κ parameter coefficients for long pipelines,

bar2day2/hm6

ϑ parameter well performance coefficients,
bar2day2/hm6

λ parameter well performance coefficients
π parameter reservoir pressure, bar
Γ parameter pressure bounds for vertices, bar
φ parameter unit conversion constant,

hm3/Mmol
p parameter probability of scenarios
α parameter annual discount rate
Ψ parameter power bounds for compressors,

MW

the entrance of the pipeline (i.e., P outi,w , which is also the
pressure at the exit of vertex i) has to be greater than
or equal to the pressure at the exit of the pipeline (i.e.,
P inj,w, which is also the pressure at the entrance of vertex
j). Eq. (3) represents the relationship of inlet and outlet
pressures at a vertex which does not involve a compressor.
Eq. (4-5) provide the pressure-flow relationship in gas
wells. Eq. (6-7) enforce bounds for all pressures. Note that
Eq.(1),(2) and (4) involve multiplications of binary vari-
ables and continuous variables, and these bilinear terms
can be linearized exactly using big-M method (Bemporad
and Morari (1990)). Due to the space limit, we do not
provide details on the reformulation here.

The stochastic compression model

Wj,w − ωj
∑

i∈{i|(i,j)∈E}

fi,j,w[(
P outj,w

P inj,w
)ν − 1]

 = 0,

∀j ∈ V C , ∀w ∈ Φ

(8)
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δi,wΨLB
i ≤Wi,w ≤ δi,wΨUB

i ,
∀i ∈ V C , ∀w ∈ Φ

(9)

yvi ≥ δi,w, ∀i ∈ V C , ∀w ∈ Φ (10)

P ini,w ≤ P outi,w , ∀i ∈ V C , ∀w ∈ Φ (11)

Eq. (8) relates the power consumption (Wj,w) to the gas
flow rate and the acquired pressure rise for all compressors,
where ωj is a constant obtained with ideal gas assumption.
Eq. (9) enforces bounds on the power of the compressor if
the compressor is to be used to increase the pressure, where
δi,w is a binary variable determining whether compressor
i is to be operated for scenario w. Eq. (10) means that
compressor at vertex i can be used to raise the pressure
only when that vertex i is developed. Eq. (11), together
with Eq. (8) ensure that a pressure rise is obtained when
the compressor is under operation while it is zero when
the compressor is not under operation.

Some other constraints are also needed for the stochastic
programming model. The following Eq. (12-13) link the
molar flow rates and the volumetric flow rates with ideal
gas assumption:

fi,j,q,w = φUi,q,wQi,j,w, ∀(i, j) ∈ EW , ∀w ∈ Φ (12)∑
q∈Ω

fi,j,q,w = φQi,j,w, ∀(i, j) ∈ E, ∀w ∈ Φ (13)

In order to maximize the expected net present value
(NPV) for the integrated design and operation, the fol-
lowing equations are included:

C(NPV ) = −C(CC) −
L∑
t=1

∑
w

pwC
(OP )
w

(1 + α)t
(14)

C(CC) =
∑
i∈V

yvi C
(CC)
i +

∑
(i,j)∈E

yi,jC
(CC)
i,j (15)

C(OP )
w = −

∑
k∈V T

(∑
q∈Ω

∑
j∈{j|(j,k)∈E}

fj,k,q,w

)
C

(OP )

k,w

+
∑

i∈V W

(∑
q∈Ω

∑
j∈{j|(i,j)∈E}

fi,j,q,w

)
C

(OP )
i,w

+
∑

j∈V C

γwWj,w

(16)

The overall stochastic programming model can be ex-
pressed as:

max C(NPV )

s.t. The stochastic pooling model (Li et al. (2011a)),

Eq.(1− 16).
(SNGPN)

Apparently, this problem can be written in form of ( P ).

3. THE GLOBAL OPTIMIZATION METHOD

This section introduces the bound contraction integrated
NGBD framework for solving problems in form of ( P ).
First, the standard NGBD method is briefly introduced.
Then the bound contraction problems to be solved within
NGBD are proposed. Finally, the integration of bound
contraction in NGBD is discussed.

Fig. 1. The algorithmic framework of NGBD with bound
contraction. The steps added for bound contraction
operations are highlighted in gray.

3.1 NGBD

In NGBD, a sequence of upper and lower bounding sub-
problems are constructed by using the concepts of projec-
tion, dualization, restriction and relaxation. These prob-
lems are solved iteratively until the upper and lower
bounds converge to a global optimal solution with a given
tolerance. The algorithmic framework of NGBD can be
found in Figure 1 (where the gray boxes are not included in
the standard NGBD algorithm). The framework includes
two algorithmic loops. The inner loop represents the so-
lution procedure for solving a lower bounding problem,
which is obtained by replacing the nonconvex functions
in Problem ( P ) with convex relaxations of them and
the second-stage integer variables with their continuous
relaxations. The lower bounding problem is solved using
an approach similar to generalized Benders decomposition
(GBD, Geoffrion (1972)), in which a sequence of primal
bounding subproblems (PBPkw) or feasibility versions of
them (FPkw) and a sequence of relaxed master problems
(RMPk) are solved. Each of these subproblems are easy to
solve. The inner loop provides a sequence of lower bounds
(LB) for Problem ( P ). On the other hand, the outer loop
of NGBD solves a sequences of primal subproblems (PPw)
that are obtained by fixing the first-stage integer decision
variables to constants, which leads to a sequence of up-
per bounds (UB) for Problem ( P ). Subproblems (PPw)
are nonconvex optimization problems, but they are much
easier to solve compared to the original problem, as their
sizes are independent of the number of scenarios addressed
and they involve fewer numbers of integer variables. More
details about NGBD can be found in the literature (Li
et al. (2011b)).

It’s not difficult to find that the performance of NGBD
relies on the quality of the convex relaxations used to con-
struct the lower bounding problem. When the convex re-
laxations are not tight enough, NGBD may have very slow
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convergence. Therefore, it is not surprising that NGBD has
been shown to be very efficient for the stochastic pooling
model (Li et al. (2011a)) but it is still very inefficient
for solving Problem (SNGPN), which includes more non-
convex constraints (due to the inclusion of pressure-flow
relationships).

3.2 Bound Contraction Problems

One way to improve the performance of NGBD is to obtain
tighter convex relations via estimating tighter bounds for
variables in Problem ( P ). Here we are to use the notion of
bound contraction, which has been developed to improve
branch-and-bound based global optimization algorithms
(Zamora and Grossmann (1999)). Bound contraction was
motivated by the fact that the bounds explicitly imposed
on the variables in an optimization problem are usually
much wider than the true range the variable can vary
within. By solving extra bound contraction problems,
better estimates of the true ranges of the variables can
be obtained. Therefore, we can progressively improve the
bounds used for convex relaxations by solving a sequence
of bound contraction problems in the NGBD procedure.

Specifically, we solve two types of bound contraction prob-
lems in the NGBD procedure. Assume that the bounds of
variable xi,w are to be estimated, then the first type of
bound contraction problems can be written as

max /min
x0,x1,...,xs

xi,w

s.t. Bhx0 + ĝh(xh) ≤ 0 , h = 1, ..., s,

xh ∈ X̂h, h = 1, ..., s,
x0 ∈ X0,
s∑

h=1

ph(cThx0 + f̂h(xh)) ≤ UB,

( BCi,w )

where f̂w, ĝw denote convex relaxations of functions fw
and gw, respectively, and X̂w denotes a convex relaxation
of set Xw. It can be seen that the feasible set of Prob-
lem ( BCi,w ) is a convex relaxation of that of Problem
( P ), so the optimal value of the problem represents an
underestimate of the lower bound of xi,w (when it is a
minimization problem) or an overestimate of the upper
bound of of xi,w (when it is a maximization problem).
When UB = +∞ (which means that no feasible solution
of Problem (P) has been found), the last constraint is not
included in the problem.

Note that the size of Problem ( BCi,w ) grows linearly
with the number of scenarios. When nonlinear convex
relaxations are used and the number of scenarios is large,
Problem ( BCi,w ) is a large-scale convex MINLP, which
can cost a lot of solution time. In order to reduce the time
for bound contraction, we can modify Problem ( BCi,w )
in two ways. One is to outer linearize the nonlinear convex
relaxations in the problem, then Problem ( BCi,w ) will
become a MILP that can be much easier to solve. In
this paper, we outer linearize nonlinear convex relaxations
using the approach explained in Li et al. (2012). The
other is to relax Problem ( BCi,w ). Note that in Problem
( BCi,w ), variables in scenarios other than scenario w
affect the optimal value only through the last constraint.
So if we can relax the last constraint into one that only
involve variables for scenario w, we can remove other

variables from the problem. For the relaxation, we first
rewrite the last constraint into the following form:

pw(cTwx0 + f̂w(xw)) ≤ UB −

∑
h6=w

ph(cThx0 + f̂h(xh))

 .

(17)

When f̂h is a linear relaxation of fh, it can be written as
CTf,hxh, then the constraint can be transformed into:

pw(cTwx0 + f̂w(xw)) ≤ UB −

∑
h6=w

ph(cThx0 + CTf,hxh)


≤ UB −

∑
h6=w

ph(cThx
b
0 + f̂h(xbh))

 ,

= UBRw,
(18)

where xb0 or xbh denotes the current upper or lower bounds
of x0 or xb. If the relevant coefficient in CTh or cTf,h is
positive, then the lower bound is used; otherwise, the
upper bound is used. Apparently, constraint (18) is a
relaxation of constraint (17). So the following bound
contraction problem is a relaxation of Problem ( BCi,w )

max /min
x0,xw

xi,w

s.t. Bwx0 + ĝw(xw) ≤ 0

xw ∈ X̂w,
x0 ∈ X0,

pw(cTwx0 + f̂w(xw)) ≤ UBRw.

( BCRi,w )

Problem ( BCRi,w ) is a relaxation of Problem ( BCi,w ),
so the bounds estimated from ( BCRi,w ) are usually
not so good as those from ( BCi,w ). However, Problem
( BCRi,w ) contains much fewer variables and constraints
and is a lot easier to solve. When all the nonlinear convex
relaxations are outer linearized, Problem ( BCRi,w ) is a
mixed-integer linear programming (MILP) problem whose
size is independent of the number of scenarios. In addition,
Problem ( BCRi,w ) becomes tighter as the algorithm
proceeds, because the bounds used to calculate UBRw
become tighter.

The second type is to reduce variable bounds for the upper
bounding subproblem (PPw(x∗0)), in which x0 is fixed at
a constant x∗0:

max /min
x1,...,xs

xi,w

s.t. Bwx
∗
0 + ĝw(xw) ≤ 0

xw ∈ X̂w

pw(cTwx
∗
0 + f̂w(xw)) ≤ UBDw

( BCPP
i,w(x∗0) )

where UBDw denotes the upper bound on Problem
(PPw(x∗0)), which can be obtained from UB and previ-
ously solved NGBD subproblems. Readers are referred to
Li et al. (2011b) for how to calculate UBDw.

Since the tightness of convex relaxations is only influenced
by variables that are involved in nonconvex functions in fw
and gw, we only need to solve bound contraction problems
for these variables. For convenience of discussion, we call
these variables nonconvex variables in the paper.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 340



3.3 The NGBD integrated with bound contraction

Figure 1 illustrates the bound contraction integrated
NGBD framework. Problem ( BCi,w ) or ( BCRi,w ) is
solved at the beginning of the algorithm and every time
when the solution of an upper bounding problem improves
the current upper bound UB. Before the solution of each
nonconvex subproblem (PPw(x∗0)), Problem (BCi,w(x∗0))
is solved to render reduced bounds for speeding up the
solution of (PPw(x∗0)). However, the reduced bounds are
only valid for x0 = x∗0, so we have to recover the previous
bounds after solving Problem (PPw(x∗0)).

A bound contraction problem can be solved for a group
of variables multiple times, as the updated bounds for a
variable can be used to tighten the feasible set of bound
contraction problems for other variables. In the case study
in this paper, we solve a bound contraction problem for a
variable multiple times until the estimated bounds do not
improve or the problem has been solved for 3 times.

The integration of bound contraction strategies does not
hurt the finite convergence of NGBD, as these strategies do
not alter the facts that are needed to ensure the finite con-
vergence (Li et al. (2011b)). First, these strategies tighten
the lower bounds but they do not exclude global optima.
Second, they do not allow to generate the same first-stage
integer realizations twice before the convergence.

4. CASE STUDY

In this section, a case study based on the SGPS system
is conducted to demonstrate the benefits of the proposed
stochastic programming model and the bound-contraction
based NGBD method. This an integrated design and
operation problem initially formulated by Li et al. (2011a).
In this problem, the SGPS system is to be expanded to
provide more gas products, and the superstructure of the
part of the network to be expanded is known (shown in
Figure 2). The goal of the optimization is to find the best
subnetwork for the expansion to achieve the best expected
NPV over the next 25 years.

In this case study, the uncertainties in the system are
assumed to come from percentage of CO2 in the gas from
gas field M1, and the maximum demand at a off-shore
liquefied natural gas (LNG) plant LNG2. The two uncer-
tain parameters are assumed to be independent and fol-
low normal distributions N(3.34, 0.62) and N(1355, 1012),
respectively. 9 scenarios are sampled for scenario-based
stochastic programming, following a simple rule used in
Li et al. (2011a).

The case study was conducted on a Linux platform with
one 3.40GHz CPU and 8GB RAM. GAMS 24.2 was
used to model the optimization problems. CPLEX 12.6
was used to solve MILP subproblems, CONOPT 3.15 to
solve convex NLP subproblems and BARON 12.7 solve
nonconvex MINLP subproblems in NGBD. The absolute
and relative tolerances used for NGBD are 10−2.

Figure 2 gives the SGPS network designed using the
stochastic pooling model (that does not address the in-
fluence of pressures on gas flow rates) and the one de-
signed using the new stochastic programming model. As
the stochastic pooling model does not consider that the

Table 2. Case study results (Unit for time: sec)

Pooling Model Proposed Model

NGBD1 NGBD1 NGBD2 NGBD3

Total var. 569 8597 8597 8597
Binary var. 38 83 83 83
Total Time <2 78299 14670 2257
Time for BC N/A N/A 13870 852
PPw solved 63 108 72 72

pressures in the pipelines can limit the rate of gas produced
from the gas fields, it fails to choose enough gas fields to
achieve the best possible expected NPV. The new model
considers the pressure-flow relationships and it chooses to
develop the gas field (JN) instead of (M1) such that the
whole production system can produce gas as much as can
be sold for different scenarios. As a result, the expected
NPV can be achieved by the design obtained via the new
model is larger than the one obtained via the stochastic
pooling model, by about 5%.

Table 2 summarizes the computational results. Three
NGBD methods are compared for solving the proposed
stochastic programming model. NGBD1 denotes the stan-
dard NGBD method, NGBD2 denotes the NGBD method
integrating bound contraction problems ( BCi,w ) and
( BCPP

i,w(x∗0) ), and NGBD3 denotes the NGBD method

integrating ( BCRi,w ) and ( BCPP
i,w(x∗0) ). In addition,

computational results of NGBD1 for the stochastic pooling
problem are also shown. It can be seen that the stochastic
pooling model is much easier to solve compared to the pro-
posed model (although it leads to a worse expected NPV),
because it involves much fewer variables and nonconvex
constraints. For solving the proposed stochastic model,
NGBD2 is much better than NGBD1. This is because by
solving the bound contraction problems in NGBD2, the
lower bounding problem becomes tighter and therefore
fewer number of iterations (reflected by the number of
PPw solved) are needed before the convergence. In ad-
dition, due to the narrowed bounds, the solution time
for each difficult nonconvex PPw is significantly reduced.
NGBD3 further improves the computational efficiency (by
almost an order of magnitude in comparison to NGBD2).
This is because the relaxed bound contraction problem
( BCRi,w ) is a lot easier to solve compared to ( BCi,w )
and the total bound contraction time is reduced by more
than an order of magnitude; at the same time, the es-
timated bounds are still tight enough to accelerate the
NGBD convergence and the solution of PPw.

Figure 3 provides more details about to what extent the
variables bounds are reduced in NGBD3. The figure shows
the scaled bounds of 180 nonconvex variables for the 5th
scenario at the 3rd NGBD outer loop iteration. The initial
lower and upper bounds of these variables are all scaled to
0 and 1, respectively, which are shown as the center and the
perimeter of the circle. The reduced ranges of the variables
are indicated by the gray radial lines that form the gray
areas in the circle. The smaller the total gray area is, the
more the bounds are reduced. Note that ranges of some
variables are reduced to points, forcing these variables to
be constants in the problem. This greatly simplifies the
subproblems to be solved and reduces the solution time.
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Fig. 2. The superstructure of and the design results for the SGPS
(a) Design with stochastic pooling model. (b) Design with the proposed stochastic model.

Fig. 3. Contracted bounds obtained after solving the
bound contraction problem for a primal subproblem.

5. CONCLUSIONS

With the consideration of pressure-flow relationships, the
proposed stochastic programming model leads to a better
design for the SGPS problem than the stochastic pooling
model does. By integrating bound contraction strategies in
the NGBD framework, the solution time for the new model
is reduced by more than an order of magnitude, indicating
a promising direction to improve the NGBD method in the
future.

REFERENCES

Bemporad, A. and Morari, M. (1990). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35(3), 407–427.

Benders, J.F. (1962). Partitioning procedures for solving
mixed-variables programming problems. Numerische
mathematik, 4(1), 238–252.

Birge, J.R. and Louveaux, F. (2011). Introduction to
stochastic programming. Springer.

Geoffrion, A.M. (1972). Generalized Benders decomposi-
tion. Journal of optimization theory and applications,
10(4), 237–260.

Goel, V. and Grossmann, I.E. (2004). A stochastic pro-
gramming approach to planning of offshore gas field
developments under uncertainty in reserves. Computers
& chemical engineering, 28(8), 1409–1429.

Levary, R.R. and Dean, B.V. (1980). A natural gas
flow model under uncertainty in demand. Operations
Research, 28(6), 1360–1374.

Li, D. and Li, X. (2015). Optimization of natural gas
production networks: A new stochastic programming
model and global optimization with rigorous bi-level
decomposition. To be submitted.

Li, X., Armagan, E., Tomasgard, A., and Barton, P.I.
(2011a). Stochastic pooling problem for natural gas
production network design and operation under uncer-
tainty. AIChE Journal, 57(8), 2120–2135.

Li, X., Chen, Y., and Barton, P.I. (2012). Nonconvex
generalized benders decomposition with piecewise con-
vex relaxations for global optimization of integrated
process design and operation problems. Industrial and
Engineering Chemistry Research, 51, 7287–7299.

Li, X., Tomasgard, A., and Barton, P.I. (2011b). Non-
convex generalized benders decomposition for stochastic
separable mixed-integer nonlinear programs. Journal of
optimization theory and applications, 151(3), 425–454.
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