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Abstract In this chapter, a recently developed bio-inspired meta-heuristic algorithm
namely firefly algorithm (FA) is addressed to solve the flow shop scheduling prob-
lems with sequence dependent setup times which have been proved to be strongly
NP-hard type of combinatorial optimization problems. Four different performance
measures namely minimization of makespan, mean flow time, mean tardiness and
number of tardy jobs are considered. Extensive computational experiments were
carried out to compare the performance of the proposed FA on different random
problem instances. The results indicate that the proposed FA is more effective than
many other algorithms reported earlier in the literature.
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1 Introduction

Scheduling is defined as a process of allocating resources over time to perform a
collection of tasks [3]. It is a decision-making process and plays a vital role for the
development industries. Scheduling problems are non-deterministic polynomial
time hard (NP-hard) type combinatorial optimization problems. Hence it is difficult
to solve the problems. Researchers addressed different type of scheduling problems
[44]. Among them flow shop scheduling problems have attracted the researchers for
the past several decades. Many industries such as metal, plastic, chemical and food
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industries resemble the flow shop environment. Most of the research papers
addressed the flow shop scheduling problems without considering the setup times.
However, setup time plays significant role in many industries such as ceramic tile
and paper cutting industries [53]. Hence, in this chapter we consider the flow shop
scheduling problems with sequence dependent setup times. Moreover, researchers
have proposed many bio-inspired metaheuristic algorithms recently. Firefly algo-
rithm is one of the algorithms. We present the firefly algorithm to solve the flow
shop scheduling problems to minimize the makespan, mean flow time, mean tar-
diness and number of tardy jobs. The remaining of the chapter is organised as
follows. A brief review of literature is presented in Sect. 2. The problem definition
is presented in Sect. 3. The proposed firefly algorithm is explained in detail in
Sect. 4. Section 5 illustrates the computational results. Finally, the conclusions and
future research opportunities are discussed in Sect. 6.

2 Literature Review

This section will briefly present the backgrounds necessary for the current study.
It includes the flow shop scheduling problems with different objective functions and
firefly algorithm.

2.1 Flow Shop Scheduling

The flow shop model was first proposed by Johnson [27] and many researchers
addressed different types of scheduling problems for the past few decades. How-
ever, it has been reported that most of the researchers considered makespan min-
imization as the objective function [23] and very few of them only considered the
setup times. Corwin and Esogbue [11] first proposed a two machine flow shop
scheduling problems with sequence dependent setup times. They developed a
dynamic programming to minimize the makespan. They compared the dynamic
programming approach with the branch-and-bound algorithm. Gupta and Darrow
[20] developed four efficient approximate algorithms to solve the two-machine flow
shop scheduling problems sequence dependent setup times to minimize the
makespan. Srikar and Ghosh [58] developed a mixed integer linear programming
model for the flow shop scheduling problems with sequence dependent setup times.
Osman and Potts [41] proposed a simulated annealing (SA) algorithm for solving
the permutation flow-shop scheduling problems to minimize the maximum com-
pletion time. Rios-Mercado and Bard [51] addressed two new heuristics for solving
the flow shop scheduling problems with sequence-dependent setup time to mini-
mize the makespan. T’kindt et al. [60] applied the ant colony optimization (ACO)
algorithm to solve a 2-machine bicriteria flow shop scheduling problem with the
objective of minimizing both the total completion time and the makespan criteria.

226 M.K. Marichelvam et al.



The proposed algorithm heuristic also used the features of SA and local search
algorithms. Computational experiments showed the effectiveness of the proposed
algorithm.

Rajendran and Ziegler [49] proposed two ACO algorithms for permutation flow
shop scheduling problems to minimize the makespan and total flow time. They
tested the performance of the proposed algorithms with the benchmark problems
addressed in the literature. França et al. [16] proposed two evolutionary algorithms
namely genetic algorithm (GA) and a memetic algorithm (MA) with local search for
solving flowshop scheduling problems with sequence dependent family setup times
to obtain optimal schedule. Ravindran et al. [50] proposed three different heuristics
to minimize the makespan and total flow time in a flow shop scheduling envi-
ronment. The effectiveness of the heuristics was tested with the benchmark prob-
lems addressed in the literature. Ruiz et al. [53] addressed the different variants of
GA to solve the permutation flowshop scheduling problems with sequence
dependent setup times to minimize the makespan. They calibrated the parameters
and operators of the GA by means of Design of Experiments. They tested the
proposed algorithms with the benchmark problems addressed in the literature and
proved that the proposed algorithms were superior. Liao et al. [32] addressed a
discrete particle swarm optimization (DPSO) algorithm for solving the flow shop
scheduling problems. A local search was also incorporated into the proposed
algorithm. Computational results showed that the proposed PSO algorithm was
very competitive. Marichelvam [34] addressed an improved hybrid cuckoo search
algorithm to minimise the makespan in FSSPs. Chowdhury et al. [9] proposed a
novel GA to solve the blocking flow shop problems to minimize the makespan.

Ignall and Schrage [25] applied the branch-and-bound algorithm to solve the
flow shop scheduling problems to minimize the flow time. Rajendran [46] devel-
oped a heuristic algorithm for solving flow shop scheduling problems to minimize
the total flowtime. Vempati et al. [67] developed an effective heuristic to solve the
flow shop scheduling problems to minimise the total flow time. Neppalli et al. [40]
developed two GA based approaches for solving the two-stage bicriteria flow shop
scheduling problems. The objective was minimization of total flow time and
makespan. Computational experiments showed that the proposed algorithms were
effective. Rajendran and Ziegler [47] developed a new heuristic to minimize the
sum of weighted flow time in a flow shop environment with sequence-dependent
setup times of jobs. Extensive computational experiments showed that the proposed
heuristic was faster and more effective than other heuristics. Gupta et al. [21]
proposed a tabu search algorithm to minimise the total flow time in a flow shop
environment. Gupta et al. [22] proposed several polynomial heuristic solution
algorithms to solve the two-machine flow shop scheduling problems to minimize
the total flow time and makespan. Tang and Liu [59] developed modified version of
GA to solve the flow shop scheduling problems to minimise the mean flow time.
Varadharajan and Rajendran [66] developed a multi-objective SA (MOSA) algo-
rithm for solving the flow shop scheduling problems to minimise the makespan and
total flow time. Nagano and Moccellin [38] proposed a constructive heuristics to
minimise the mean flow time in a flow shop environment. Tasgetiren et al. [61]
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applied the PSO algorithm to solve the flow shop scheduling problems for mini-
mizing the makespan and total flow time. Yagmahan and Yenisey [71] addressed an
ACO algorithm for solving the multi-objective flow shop scheduling problems.
They considered minimization of makespan, total flow time and total machine idle
time as the objective function. They compared the performance of the proposed
algorithm with other multi-objective heuristics. Computational results showed that
proposed algorithm was more effective and better than other methods compared.
Dong et al. [14] suggested an iterated local search algorithm to minimise the total
flow time in the flow shops. A distribution algorithm was proposed by Jarboui et al.
[26] for minimizing the total flow time.

Zhang et al. [72] presented a hybrid GA for solving the flow shop scheduling
problems with total flow time objective. Chakraborty and Turvey [7] addressed a
differential evolution (DE) algorithm and Czapiński [12] addressed a parallel SA
algorithm with genetic enhancement for solving the flow shop problems with flow
time objective. A mathematical programming model was developed by Salmasi
et al. [54] for minimizing total flow time of the flow shop with sequence dependent
group scheduling. They proposed a tabu search algorithm and a hybrid ACO
algorithm to solve the problem. Tseng and Lin [64] proposed a genetic local search
algorithm for minimizing the total flow time. A discrete harmony search algorithm
was developed for solving the flow shop scheduling problems to minimise the total
flow time by Gao et al. [18]. Tasgetiren et al. [62] addressed a discrete artificial bee
colony (ABC) algorithm to minimise the total flow time in permutation flow shops.
Two constructive heuristics were developed by Gao et al. [19] to solve the no-wait
flow shop scheduling problems to minimize the total flow time.

Simons [57] proposed several decomposition methods to solve the reentrant flow
shop scheduling problems with sequence dependent setup times to minimize
maximum lateness. Kim [31] also developed a branch-and-bound algorithm to
minimize the total tardiness in a permutation flow shop environment. Murata et al.
[37] developed a multi-objective GA (MOGA) to solve the flow shop scheduling
problems to minimize the makespan, total tardiness and total flow time. Partha-
sarathy and Rajendran [43] also proposed the SA algorithm to solve the flow shop
scheduling problems with sequence-dependent setup times to minimize mean
weighted tardiness. They considered a drill-bit manufacturing industry. Computa-
tional results revealed that the proposed heuristic was better than many other
algorithms. Armentano and Ronconi [1] proposed a tabu search based heuristic for
solving the flow shop scheduling problems to minimize total tardiness. Rajendran
and Ziegler [48] proposed heuristics to solve the flow shop scheduling problems
with sequence-dependent setup times to minimize the sum of weighted flowtime
and weighted tardiness of jobs.

Arroyo and Armentano [2] developed a genetic local search for solving the
multi-objective flow shop scheduling problems. The algorithm was applied to the
flowshop scheduling problem for the following two pairs of objectives: (i) make-
span and maximum tardiness; (ii) makespan and total tardiness. The performance of
the proposed algorithm was compared with two multi-objective genetic local search
algorithms proposed in the literature. Computational results showed that the
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proposed algorithm was better than other algorithms. Rahimi-Vahed and Mirg-
horbani [45] developed a multi-objective PSO (MOPSO) algorithm for solving the
flow shop scheduling problems to minimize the weighted mean completion time
and weighted mean tardiness. The computational results showed that the proposed
algorithm was better than the GA. Ruiz and Stützle [52] developed two new iterated
greedy heuristics to solve the flowshop scheduling problems with sequence
dependent setup times. Minimization of makespan and weighted tardiness were the
objectives considered by them. Tavakkoli-Moghaddam et al. [63] addressed a
hybrid multi-objective algorithm based on the features of a biological immune
system (IS) and bacterial optimization (BO) to find Pareto optimal solutions for
solving the multi-objective no-wait flow shop scheduling problems to minimize the
weighted mean completion time and weighted mean tardiness. They compared the
performance of the proposed algorithm against five different multi-objective evo-
lutionary algorithms addressed in the literature and proved that the proposed
algorithm was efficient. Naderi et al. [39] presented an electromagnetism-like
mechanism and SA algorithms for flow shop scheduling problems for minimizing
the total weighted tardiness and makespan. Pan et al. [42] presented a discrete ABC
algorithm to solve the lot-streaming flow shop scheduling problems with the cri-
terion of total weighted earliness and tardiness. They used the dispatching rules to
construct the initial population. A simple and effective local search approach was
also used by them. Khalili and Tavakkoli-Moghaddam [30] presented a new multi-
objective electromagnetism algorithm (MOEM) to solve the bi-objective flowshop
scheduling problems. The objective was to minimize the makespan and total
weighted tardiness. They considered the transportation times between machines.
They also applied the SA algorithm to solve the given problem. They conducted the
computational experiments and proved that the proposed MOEM provided better
results. Boxma and Forst [6] proposed heuristics to minimize the expected weighted
number of tardy jobs in a stochastic flow shops.

2.2 Firefly Algorithm

Firefly algorithm (FA) is one of the recently developed meta-heuristic algorithms by
Yang [70]. Sayadia et al. [55] presented a new discrete firefly algorithm (DFA) meta-
heuristic to minimize the makespan for the permutation flow shop scheduling
problems. Computational results indicated that the proposed DFA was better than
the ACO algorithm for the well known benchmark problems reported in the litera-
ture. Banati and Bajaj [4] presented a new feature selection approach by combining
the rough set theory with the FA. The FA was applied by Gandomi et al. [17] to solve
the mixed continuous/discrete structural optimisation problems. Kazemzadeh and
Kazemzadeh [28] proposed an improved FA to solve the structural optimisation
problems. Liu and Ye [33] solved the permutation flow shop scheduling problem by

Firefly Algorithm for Flow Shop Optimization 229



a FA to minimize the makespan. Computational experiments proved the efficiency of
the proposed FA.

The FA has been applied to solve the clustering problems by Senthilnath et al.
[56]. Chandrasekaran and Simon [8] proposed a binary real coded FA to solve the
unit commitment problem. Coelho and Mariani [10] proposed the FA to solve the
multivariable PID controller tuning problems. Dekhici et al. [13] applied the FA for
economic power dispatching problems with pollutants emission. The FA was
applied for vector quantization in image compression problems by Horng [24]. The
job shop scheduling problems have been solved using the FA by Khadwilard et al.
[29]. They also investigated the different parameters for the proposed algorithm and
compared the performance with different parameters. The FA was applied for
solving the economic load dispatching problems by Yang et al. [69].

An efficient FA was presented by Miguel et al. [36] to simultaneously optimize
the size, shape and topology of the truss structures. They proved the effectiveness of
the proposed FA by solving the benchmark problems reported in the literature.
Fister et al. [15] presented a comprehensive review of FAs. Yang [68] proposed a
multi-objective FA for continuous optimisation problems. Vahedi Nouri et al. [65]
proposed a hybrid algorithm based on firefly and SA algorithms for solving the flow
shop scheduling problems. The objective was to minimize the sum of tardiness
costs and maintenance costs. A mixed integer linear programming model was
proposed to formulate the problem. Marichelvam et al. [35] addressed a DFA for
solving the hybrid flow shop scheduling problems to minimise the makespan and
mean flow time.

3 Problem Definition

Flow shop scheduling environment consists of bank of m machines in series and n
jobs are to be scheduled. Each job should be processed on the machines in a
particular sequence. A job is first processed on machine 1, then on machine 2 and
finally completed on machine m. The processing time of the jobs are known in
advance, fixed and nonnegative. It is expected that the jobs are available at time
zero. Each machine can processes only one job at a time and each job can be
processed on only one machine at a time. The processing of each job cannot be
interrupted, that is, preemption is not allowed. It is also assumed that the machines
are available for the entire scheduling period (no machine breakdown). Minimi-
zation of makespan, mean flow time, mean tardiness and number of tardy jobs are
the objective functions considered. The flow shop scheduling environment is given
in Fig. 1 [34].
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3.1 Makespan (Cmax)

Makespan is the completion time of the last job to leave the system production
system. Minimizing makespan would lead to the maximization of the resource
utilisation and the throughput of a production system.

3.2 Mean Flow Time (f )

Mean flow time is defined as the average time spent by the jobs in the production
system. It is one of the most important performance measures. Mean flow time can
help to effective utilization of resources, rapid turn-around of jobs, and minimi-
zation of work-in-process inventory costs.

3.3 Mean Tardiness (T)

The tardiness is defined as the lateness of a job if it fails to meet its due date, or zero
otherwise. Tardiness is associated with the service quality and customer
satisfaction.

3.4 Number of Tardy Jobs (NT)

This performance measure represents how many jobs are delayed in satisfying the
due date. The detailed mathematical model for makespan, mean flow time, mean
tardiness and number of tardy jobs can be found in [3].

Fig. 1 Layout of a flow shop environment
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3.5 Objective Function

The objective of this chapter is to minimize the weighted sum of makespan, mean
flow time, mean tardiness and number of tardy jobs.

Z ¼ w1Cmax þ w2f þ w3T þ w4NT ð1Þ

where w1, w2, w3 and w4 are the weight values of the objective functions and
w1 � 0; w2 � 0; w3 � 0 andw4 � 0:

w1 þ w2 þ w3 þ w4 ¼ 1 ð2Þ

4 Firefly Algorithm

Firefly algorithm (FA) is a nature- inspired meta-heuristic algorithm. The FA is
inspired by the social behavior of fireflies. Fireflies may also be called as lighting
bugs. There are about two thousand firefly species in the world. Most of the firefly
species produce short and rhythmic flashes. The pattern of flashes is unique for a
particular species. A firefly’s flash is mainly act as a signal system to attract mating
partners and to attract potential prey. Flashes also serve as a protective warning
mechanism. The following three idealized rules are considered for describing the
FA [70].

1. All fireflies are unisex so that one firefly will be attracted to other fireflies
regardless of their sex

2. Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less bright one will move toward the brighter one. The attractive-
ness is proportional to the brightness and they both decrease as their distance
increases. If there is no brighter one than a particular firefly, it will move
randomly

3. The brightness of a firefly is affected or determined by the landscape of the
objective function. For a maximization problem, the brightness may be pro-
portional to the objective function value. For the minimization problem the
brightness may be the reciprocal of the objective function value.

The Pseudo code of the FA is given in Fig. 2.

4.1 Attractiveness of a Firefly

The attractiveness of a firefly is determined by its light intensity. The attractiveness
may be calculated by using the Eq. (3).
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bðqÞ ¼ b0e
�cr2 ð3Þ

where β is the attractiveness of a firefly and γ is the light absorption coefficient.

4.2 Distance Between Two Fireflies

The distance between any two fireflies k and l at Xk and Xl is the Cartesian distance
using the Eq. (4).

rkl ¼ Xk � Xlk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

k¼1

ðXk;o � Xl;oÞ2
v

u

u

t ð4Þ

4.3 Movement of a Firefly

The movement of a firefly k that is attracted to another more attractive firefly l is
determined by the Eq. (5).

Xk ¼ Xk þ b0e
�cr2klðXl � XkÞ þ a rand � 1

2

� �

ð5Þ

where α is the randomization parameter and rand is a number uniformly drawn from
the interval [0, 1].

− ]

Objective function f(x), x = (x1, ..., xd)
T

Generate initial population of fireflies xi (i = 1, 2,..., n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficient 
While (t <MaxGeneration)
for i = 1 : n all n fireflies
for j = 1 : i all n fireflies
if (Ij > Ii ), Move firefly i towards j in d-dimension; end if
Attractiveness varies with distance r via exp [ 2

Evaluate new solutions and update light intensity
end for j
end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

γ

γr

Fig. 2 Pseudo code of the
firefly algorithm
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4.4 Discrete Firefly Algorithm (DFA)

The FA has been originally developed for solving the continuous optimization
problems. The FA cannot be applied directly to solve the discrete optimization
problems. In this chapter, the smallest position value (SPV) rule described by Bean
[5] is used to enable the continuous FA to be applied to solve the discrete HFS
scheduling problems. For this, a discrete firefly algorithm (DFA) is proposed. More
detail about the DFA can be found in [35].

4.5 Implementation of the DFA for Flow Shop Scheduling
Problems

This section illustrates how the DFA is applied for solving the flow shop scheduling
problems.

4.5.1 Solution Representation

Solution representation is one of the most important issues in designing a DFA. The
solution search space consists of n dimensions as n number of jobs is considered in
this book chapter. Each dimension represents a job. The vector Xt

i ¼
ðXt

i1;X
t
i2; . . .;X

t
inÞ represents the continuous position values of fireflies in the search

space. The SPV rule is used to convert the continuous position values of the fireflies
to the discrete job permutation. The solution representation of a firefly with 6 jobs is
illustrated in Table 1

The smallest position value is xti4 ¼ 0:07and the dimension j = 4 is assigned to
be the first job in the permutation according to the SPV rule. The second smallest
position value is xti3 ¼ 0:22 and the dimension j = 3 is assigned to be the second job
in the permutation. Similarly, all the jobs are assigned in the permutation.

4.5.2 Population Initialization

In most of the meta-heuristics, the initial population is generated at random. In the
DFA the initial population is also generated at random. The continuous values of
positions are generated randomly using a uniform random number between 0 and 1.

Table 1 Solution representation of a FA

Dimension j

1 2 3 4 5 6 7

xij 0.83 0.94 0.22 0.07 0.74 0.61 0.96

jobs 5 6 2 1 4 3 7
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4.5.3 Solution Updation

By using the permutation, each firefly is evaluated to determine the objective
function value. The objective function value of each firefly is associated with the
light intensity of the corresponding firefly. A firefly with less brightness is attracted
and moved to a firefly with more brightness. The attractiveness of the firefly is
determined using the Eq. (3). The distance between each two fireflies is determined
by the Eq. (4). The SPV rule is applied to obtain the job permutation. The attrac-
tiveness is calculated for each firefly. Then, the movement of the firefly is deter-
mined by the Eq. (5) depending on the attractiveness of the firefly. The above steps
are repeated until the termination criterion is met.

5 Computational Results

The proposed algorithm was coded in C++ and run on a PC with an Intel Core Duo
2.4 GHz CPU, 2 GB RAM, running Windows XP. Simulation experiments are
performed with different parameter settings to evaluate the performance of the FA.
The factor levels for the design of experiments are given in Table 2.

Hence we conduct 3 × 3 × 1 × 1 × 1 × 3 × 3 × 3 = 243 experiments to evaluate
the performance of the proposed algorithm. Each problem is tested with 20 repli-
cations. We compare the performance of the proposed discrete firefly algorithm
with the genetic algorithm (GA), ant colony optimization (ACO) algorithm, cuckoo
search (CS), particle swarm optimization (PSO) and the simulated annealing (SA)

Table 2 Factor levels for the design of experiments

Sl. No. Factors Levels

1 Number of jobs 20, 50 and 100

2 Number of machines 2, 5 and 10

3 Processing time distribution Uniform (1–100)

4 Setup times Uniform (0–10)

5 Due date 0.5–1.2 times processing time

6 Attractiveness of a firefly β0 0.0 (low)

0.5 (medium)

1.0 (high)

7 Light absorption coefficient γ 0.5 (low)

0.75 (medium)

1.0 (high)

8 Randomization parameter α 0.0 (low)

0.5 (medium)

1.0 (high)
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algorithms addressed in the literature. Mean Relative Deviation Index (MRDI) is
used as a performance measure to compare the performance of different algorithms.
MRDI is calculated as given below:

MRDI ¼
X

R

l¼1

Z� � ZMETAj j
Z� � 100=R ð6Þ

Where,
Z* best objective function value
ZMETA objective function value obtained by different metaheuristic algorithms
R number of runs (20)

Lower value of MRDI value indicates the better performance of the algorithm.
The comparison results of some sample problems are presented in Table 3.
From the result table, it can be easily concluded that the proposed DFA is better

than many other algorithms addressed in the literature.

6 Conclusions

A discrete firefly algorithm is presented in this chapter to minimize the weighted
sum of makespan, mean flow time, mean tardiness and number of tardy jobs for
flow shop scheduling problems. The proposed DFA has been tested over a set of
random problem instances with different parameter settings and the results have
been compared with other metaheuristics addressed in the literature. It is concluded
that the DFA provides better results than many other metaheuristics. This work may
be extended in many directions. The algorithm can also be applied to solve real
industrial scheduling problems. The research may also be conducted for other types
of scheduling problems. It would be interesting to conduct the computational
experiments with several other parameters values to determine the optimal
parameters of the firefly algorithm.
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