
Chapter 23
Districting Problems

Jörg Kalcsics

Abstract Districting is the problem of grouping small geographic areas, called
basic units, into larger geographic clusters, called districts, such that the latter are
balanced, contiguous, and compact. Balance describes the desire for districts of
equitable size, for example with respect to workload, sales potential, or number of
eligible voters. A district is said to be geographically compact if it is somewhat
round-shaped and undistorted. Typical examples for basic units are customers,
streets, or zip code areas. Districting problems are motivated by quite different
applications ranging from political districting over the design of districts for schools,
social facilities, waste collection, or winter services, to sales and service territory
design. Despite the considerable number of publications on districting problems,
there is no consensus on which criteria are eligible and important and, moreover, on
how to measure them appropriately. Thus, one aim of this chapter is to give a broad
overview of typical criteria and restrictions that can be found in various districting
applications as well as ways and means to quantify and model these criteria. In
addition, an overview of the different areas of application for districting problems
is given and the various solution approaches for districting problems that have been
used are reviewed.

Keywords Districting criteria • Political districting • Sales territory design •
Service districting

23.1 Introduction

Most problems discussed in this book focus on the location of facilities: where to
locate, how many to locate, when to locate, which type to locate, etc. However,
although the driving force is the location of facilities, equally important is the second
aspect of location problems that is usually not mentioned explicitly: the allocation of
customers to facilities. Even if this task is trivial in many classical location problems
like the p-median or the p-center problem (see Chaps. 2 and 4), only after deciding
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about allocations can we evaluate a given facility configuration and, thus, try to find
the optimal one. Hence, the allocations have a fundamental impact on the location
of facilities and different rules of allocation will result in different evaluations of the
same facility configuration. The aim of districting problems is now the other way
around: we first find allocations—or, more generally, determine which customers
should be served together—and then, if necessary, we find locations for the facilities
serving the customers.

In general, districting is the problem of grouping small geographic areas, called
basic units, into larger geographic clusters, called districts, in a way that the latter
are acceptable according to relevant planning criteria. Typical examples for basic
units are customers, streets, or zip code areas. Depending on the practical context,
districting is also called territory design, territory alignment, zone design, or sector
design. Three important criteria are balance, contiguity, and compactness. Balance
describes the desire for districts of equitable size with respect to some performance
measure for the districts. Depending on the context, this criterion can either be
economically motivated, for example, equal sales potentials, workload, or number
of customers, or have a demographic background, for example, the same number of
inhabitants or eligible voters. A district is called contiguous if it is possible to travel
between the basic units of the district without having to leave the district. Finally,
a district is said to be geographically compact if it is somewhat round-shaped,
undistorted, and without holes. Contiguous and compact districts usually reduce the
travel time of the person responsible for servicing the district. Unfortunately, a rigid
and concise mathematical definition of contiguity and compactness is often difficult
and strongly depends on the available data. In addition, for each district often the
location of a “facility” is either given or should be sought. This facility can be a
branch office, a depot, or the home address of a sales person. Figure 23.1 shows an
example of a districting plan for streets and for zip code areas.

Districting problems are motivated by quite different applications ranging from
political districting over the design of districts for schools, social facilities, waste
collection, or winter services, to sales and service territory design. Looking at
the literature, it is striking that only few authors consider the districting problem
independently from a practical background. Therefore, the aim of this chapter is to

Fig. 23.1 An example of a districting plan for streets and for zip-code areas
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give a broad overview of typical criteria and restrictions that can be found in the
various districting applications as well as ways and means to quantify and model
these criteria. As most districting applications have a strong spatial component, it is
natural to integrate the algorithms into a Geographic Information System (GIS).
In a modern GIS, users can access and utilize the rich variety of maps, spatial
databases, and geographical objects available to appropriately mark out the problem
and display the solutions, see also Chap. 19.

The rest of the chapter is organized as follows. The next section reviews the
broad range of districting applications and identifies and motivates the different
planning restrictions. In Sect. 23.3, basic notations are introduced. The next section
discusses the most common criteria found in districting applications and discusses
possible approaches to quantify these criteria and to incorporate them into districting
models. Finally, Sect. 23.5 presents an overview of the different solution techniques
for solving districting problems.

23.2 Applications

There are four major areas of application for districting problems: political district-
ing, sales territory design, service districting, and distribution districting, and this
section provides a comprehensive but non-exhaustive overview. But before we start,
we mention a first “application” in the context of facility location that derives from
the problem of aggregating demand points for location problems with the aim of
reducing the complexity of the problem. Simchi-Levi et al. (2003) formulate the
following guidelines (among others): aggregate demand points for 150–200 zones,
make sure each zone has an approximately equal amount of total demand, and place
aggregated points at the center of the zone. These guidelines read as a classical
districting problem.

23.2.1 Political Districting

Political districting is the problem of dividing a governmental area, such as a city or
a state, into constituencies from which political candidates are elected. Basic units
typically correspond to census tracts, which are given as polygons, and the districts
to the electoral constituencies. In general, the process of redistricting has to be
periodically undertaken to account for population shifts. The length of these periods
varies from country to country, e.g., in New Zealand every 5 years, in Canada and
the U.S. every decade (after each census). In the past, political districting has often
been flawed by manipulation aiming to favor some particular party or to discriminate
against social or ethnic minorities. Since the responsibility for approving state and
local districting plans usually falls to elected representatives, plans are likely to be
shaped implicitly, if not overly, by political considerations, e.g., to keep them in
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power. A famous case arose in Massachusetts in the early nineteenth century when
the state legislature proposed a salamander-shaped electoral district in order to gain
electoral advantage. The governor of the state at that time was Elbridge Gerry, and
this practice became known as gerrymandering. See Lewyn (1993) for an interesting
description of gerrymandering cases.

To avoid political interference, many states have set up a neutral commission
to determine political boundaries satisfying a number of legislative and common
sense criteria. Depending on the country or jurisdiction involved, these criteria
may be enforced by legislative directive, judicial mandate, or historical precedent.
However, there is no consensus in political science, law, or geography on which
criteria are legitimate for the districting process, i.e., satisfy the neutrality condition.
Moreover, it is often unclear how they should be measured (Williams 1995). One
important issue at stake is population equality. To respect the principle of “one
man-one vote”, i.e., every vote has the same power, all districts should contain
approximately the same number of voters, i.e., be balanced. In the U.S., population
equality has been deemed by the courts to be very important, and as a result,
the total deviation of congressional districts from perfect balance was less than
1 % after the last census in 2000 (Webster 2013). In other countries, the allowed
deviations are usually higher (Handley and Grofmann 2008). Two other important
criteria always being mentioned are contiguity and compactness which both aim
at preventing gerrymandering. While contiguity is generally undisputed and easy
to verify, this is not the case for compactness. There is a broad discussion on how
to quantify this criterion adequately (Horn et al. 1993), and whether it is relevant
in the first place because an algorithm will never gerrymander on purpose as long
as it is does not use political data (Garfinkel and Nemhauser 1970). Moreover, if an
adequate minority representation is sought for, this may sometimes only be achieved
through non-compact districts (Dixon 1968). Other—often disputed—criteria are
the conformity to administrative boundaries, e.g., cities or counties, the preservation
of communities of interest, socio-economic homogeneity or a fair representation
of minority voters across the districts, the similarity with the previous electoral
districts, or the consideration of topological obstacles, like mountain ranges, lakes,
or rivers (cf. George et al. 1997; Parker 1990; Bozkaya et al. 2011). An excellent
review on typical criteria for political districting and their eligibility is given in
Webster (2013).

When discussing automated procedures in the literature, it is always noted that
they are non-partisan and neutral as long as they do not use political data and, hence,
prevent gerrymandering. However, even if the computer does not gerrymander on
purpose, it may still do it accidentally, precisely because no political data is taken
into account. Therefore, Puppe and Tasnádi (2008) recently introduced the notion
of an (ex post) unbiased districting plan. In such a plan the number of districts won
by each party respects the relative strength of the party in the population as close
as possible. They focus on game theoretical aspects of the problem; see also Nagel
(1965). However, one has to do a careful weighing up to avoid forthright politically
biased criteria that lead, in spirit, to gerrymandering.
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23.2.2 Sales Territory Design

The important but expensive task of designing sales territories is common to
all companies that operate a sales force and need to subdivide the market area
into regions of responsibility that are each attended to by one or more sales
representatives. According to Zoltners and Sinha (2005), approximately every tenth
full-time employee in the U.S. is working as a field and retail sales person and
the expenditure for them is more than three trillion dollars every year. Territories
with low sales potential, intense competition, or too many small accounts lead to
low morale, poor performance, a high turnover rate, and an inability to assess the
productivity of individual territories. Therefore, well-planned decisions enable an
efficient market penetration and lead to decreased costs and improved customer
service and sales. Zoltners and Sinha (2005) “guestimate” that a good territory
alignment can increase sales by 2–7 % compared to an average alignment. In the
related literature, districts are predominantly called territories and districting is
termed territory alignment or territory design.

In the classical problem, the task is to assign a given set of (prospective) customer
accounts, each with a fixed market potential, to the individual members of the sales
force such that each customer has a unique representative and each sales person
faces equitable workload and travel time and has an equal income opportunity in
terms of incentive pay (Zoltners and Sinha 2005). Thus, basic units correspond to
accounts and are usually given as points. Concerning the travel time, if a sales person
visits each customer every day, then the travel time is proportional to the length of
a TSP tour. However, the workload of districts is usually balanced over 2–4 weeks
and some customers may have to be visited only once during this time whereas
others require weekly service. Moreover, customers may have time windows, tours
may include overnight stays, and so on, which makes the actual computation of the
travel times almost impossible. Hence, in most cases one has to rely on estimates.
Typically, a sales person is exclusively responsible for all customers within a specific
geographic region. However, in large companies sometimes a sales person is only
responsible for a certain product segment or accounts of a particular size within his
region. In such cases, sales territories may overlap. For practical examples of sales
territory design see Fleischmann and Paraschis (1988), Zoltners and Sinha (2005),
López-Pérez and Ríos-Mercado (2013).

Three classical sales districting criteria are again balance, contiguity, and com-
pactness. In contrast to political districting, typically more than one performance
measure has to be balanced, for example workload and sales potential. A district
with comparatively many small accounts or customers with low sales potential will
yield lower sales and, hence, lower incentives for the responsible sales person than a
district with an equitable workload but only high potential accounts. This disparity
will lead to discontent among the sales persons and, in the long run, lower sales for
the company. Having said that, only few authors consider more than one balancing
criterion: Deckro (1977), Zoltners and Sinha (1983), Ríos-Mercado and Fernández
(2009). Contiguous districts are desired to obtain clearly defined geographic areas
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of responsibility and, together with compactness, to reduce the unproductive travel
time of the sales force. Unfortunately, as basic units are typically points, it is not
clear how to assess contiguity. Moreover, it is important to point out that the desire
for compact districts is born out of necessity because the actual travel times are
usually impossible to determine efficiently. The hope is that geographically compact
and contiguous districts result in smaller travel times on a day-to-day basis than non-
compact and/or non-contiguous districts.

As the main goal of most companies is to maximize profit, several authors
relax the assumption that the sales potential of customers is fixed. Instead, they
propose an integration of time-effort allocation and territory design methods to
increase profit while maintaining the equitable workload criterion (cf. Lodish 1975;
Glaze and Weinberg 1979; Zoltners and Sinha 1983). These models not only assign
customers to sales people but also determine how much time should be invested
in the customer. Some authors even object that equity is not the primary goal for
most companies. Instead, the aim should be to maximize profits, regardless of
any balancing aspect (Skiera and Albers 1994; Drexl and Haase 1999). However,
in practice sales persons are typically reluctant to implement such detailed call
plans resulting from pure profit maximizing approaches (Zoltners and Sinha 2005).
Moreover, designing territories is a mid- or even long-term decision whereas time-
effort allocation is an operational problem that is influenced by weather (espc. in
the beverage industry), sales promotions, etc. Thus, these two problems should be
addressed separately.

Often, the number of districts to be designed is predetermined by the designated
sales force size (Fleischmann and Paraschis 1988). If the size is not self-evident,
methods based on the total workload involved in covering the entire market
compared to the available time per sales person can be used. Another possibility
is to follow the “decreasing returns” principle and add sales persons to the sales
force as long as the expected increase in profit exceeds the expected increase in
costs (Howick and Pidd 1990; Zoltners and Sinha 2005).

As sales persons have to visit their territories regularly, their home-base, e.g.,
office or residence, is an important factor to be considered in the alignment process.
However, there is no consensus as to whether predetermined locations should be
kept or be subject to the planning process. On the one hand, most sales persons have
strong preferences for home-base cities. Hence, such locations should be respected
or determined prior to the alignment to socialize them with the sales management
(Zoltners and Sinha 2005). On the other hand, addresses and sales personnel
frequently change and the management often does not want sales persons residences
to overly influence the definition of territories (Fleischmann and Paraschis 1988).

23.2.3 Service Districting

The problem of designing service districts appears in various contexts. One area of
applications focuses on social facilities, like hospitals or public utilities. Sometimes
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districts are needed to define for each inhabitant which facility he should visit to
obtain service, for example for preventive medical examinations, or to determine
areas of responsibility of home-care visits by healthcare personnel, like nurses or
physiotherapists. The goal is to determine contiguous districts that have a good
accessability with respect to public transportation and have an equitable workload
based on service and travel time or account for a high capacity utilization of the
social facility (cf. Minciardi et al. 1981; Blais et al. 2003; Benzarti et al. 2013).

A second field of applications deals with providing service to streets. A classical
problem concerns the design of districts for postal or leaflet delivery. Instead of
considering each household separately, districts are composed of whole streets.
Thus, basic units correspond to streets and each basic unit typically has two
attributes: the times required to traverse the street with and without providing
service. The task is to partition the streets into a given number of districts such
that the required delivery time is approximately the same for all districts and
does not exceed the working time restriction of the deliverer. The delivery time is
proportional to the length of a Chinese postman tour through the district, which can
be computed efficiently. Moreover, the delivery districts should be contiguous, incur
little deadheading, and should not overlap, i.e., be geographically compact (Bodin
and Levy 1991; Butsch et al. 2014). A common characteristic of these applications is
that the deliverer either walks through his district on foot or goes by bike so that one-
way streets are no hindrance. If a street is too wide or has too much traffic to serve it
in a zig-zag pattern, then each side of the street is modeled as a separate basic unit. A
similar problem arises in the context of meter reading in power distribution networks
(Silva de Assis et al. 2014). Closely related are districting problems for solid waste
disposal, salt spreading, and winter gritting (Hanafi et al. 1999; Muyldermans et al.
2002; Lin and Kao 2008). The criteria are almost identical to postal delivery. The
only differences are that vehicles typically have to respect one-way streets and have
difficulties making U-turns, and that their tours have to include a depot, e.g., to drop
off waste or refill salt. All these aspects make the computation of the travel times
more difficult. Other applications deal with the design of patrol districts for police
cars and primary response areas for ambulances, where the districts additionally
should have an average response time and/or incident arrival rate below a given
threshold (Baker et al. 1989; D’Amico et al. 2002; Xu and Yum 2010).

Other applications deal with the problem of assigning residential areas to schools
(Ferland and Guénette 1990; Schoepfle and Church 1991). Criteria to be taken
into account are capacity limitations and an equal utilization of the schools,
maximal or average travel distances for students, good accessability, and ethnic
balance. Another aspect is to decide which students should walk to school and
which should take the school bus. Districting problems also occur in electric
power networks. According to Bergey et al. (2003), the World Bank regularly
faces the challenge of helping developing countries to move from state owned,
monopolistic electric utilities to a more competitive environment with multiple
electricity service providers. At that, they face the task of partitioning the physical
power grid into economically viable districts (distribution companies). The main
aim is to determine non-overlapping and contiguous districts with approximately
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equal revenue potential (to foster competition) which are compact over a geographic
region (to be easier to manage and more economical to maintain).

23.2.4 Distribution Districting

Another important field of applications is the design of pickup and delivery districts
in logistics. Typically, such problems are modeled and solved as vehicle routing
problems. However, if there exists considerable uncertainty in the demand of
customers, several authors propose a two-phase approach that first builds the pickup
and delivery districts and then does the routing on a day-to-day basis. This conforms
with the well-known “cluster first–route second” paradigm for vehicle routing
problems. Hence, basic units correspond to potential customers, given as points,
and the task is to partition the set of customers into districts, one for each driver,
such that the districts satisfy certain planning criteria. A first advantage of these
fixed customer assignments is that the driver becomes familiar with his district.
This, in turn, increases the driver’s performance since he becomes quicker at finding
customer addresses, localizing offices within buildings as well as organizing his
routes (Zhong et al. 2007). A second advantage is that customers become familiar
with their drivers, which increases customer satisfaction (Jarrah and Bard 2012).
These advantages however have to be carefully weighed against flexible customer
assignments on a daily basis which enable the planner to maximize the driver
utilization and minimize the routing costs (Zhong et al. 2007).

Concerning the criteria for the districting process, districts should be contiguous
and compact, and the workload should either be balanced or at least not exceed a
given upper bound, e.g., the driver working time. The workload includes the service
time at the customers and typically also an estimate of the average travel time within
the district and to a centralized depot (Galvão et al. 2006; Haugland et al. 2007;
Zhong et al. 2007; Jarrah and Bard 2012; Lei et al. 2012).

A final application concerns the establishment of a distribution center which
involves a considerable level of risk due to its enormous start-up investment and
volatile customer demand patterns. One way of reducing this risk is to avoid both
overcrowding and, especially, underutilization of centers by balancing the allocation
of customers to them (Zhou et al. 2002).

23.3 Notations

This section introduces notations for the main components of districting problems.
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23.3.1 Basic Units

A districting problem comprises a set J D f1; : : : ; ng of basic units, sometimes
called sales coverage units, basic areas, or geographical units. Each basic unit
represents a geometric object in the plane: a point, e.g., a geo-coded address, a
line segment, e.g., a street, or a polygonal area, e.g., a zip code area, county, or
predefined company trading area. The distance between two basic units i; j 2 J is
denoted as dij D d.i; j /. Typical examples for dij are Euclidean (cf. Fleischmann
and Paraschis 1988) or road distances (cf. Ríos-Mercado and Salazar-Acosta 2011).
The latter have the advantage that they can properly reflect obstacles like rivers
or mountain ranges. For non-point objects, distances are either computed between
representative points, e.g., the midpoint of a street or the centroid of a polygon, or
as the surface-to-surface distance.

Moreover, one or more quantifiable attributes, called activity measures, are
associated with each basic unit. Typical examples are service times, estimated sales
potential, or number of voters. Sometimes, they also include an estimate of the travel
time for visiting the basic unit (Jarrah and Bard 2012). The activity measures are all
assumed to be deterministic. Let wq

j denote the q-th activity measure of basic unit
j 2 J , 1 � q � Q, where Q is the number of different attributes to be considered.
If Q D 1, the superscript is usually omitted.

If explicit neighborhood information is given for the basic units, then G D
.V; E/ denotes the neighborhood or contiguity graph where vj 2 V corresponds
to j 2 J and fvi ; vj g 2 E iff basic units i and j are neighboring. The length of
edge fvi ; vj g is dij. Finally, N.j / � V denotes the set of basic units adjacent to
vj 2 V .

23.3.2 Districts

A district Dk , 1 � k � p, is a subset of basic units, where p is the total number
of districts. The number of districts can either be fixed in advance, e.g., the number
of political districts to create or the number of available nurses for elderly care, or
be subject to planning, e.g., the minimal number of salespersons required to service
all customers or the minimal number of patrol cars to ensure a certain response
time. The q-th activity measure of a district is the sum of the activity measures of
its basic units, i.e., wq.Dk/ D P

j 2Dk
wq

j . For Q D 1, w1.Dk/ is simply called
the size of the district. Note that sometimes the size also includes an estimate of
the (expected) travel time. However, as travel times are represented through the
compactness criterion, we refrain from including them and just mention when this
may change things.

In some applications the location ck of a facility is associated with each district
Dk . This may be some predefined site, e.g., a hospital providing preventive medical
care, or be an outcome of the districting process, e.g., the optimal location of a sales
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office. In districting, this location is called the center of the district. One has to
be aware of the ambiguity with the notion of a center in location theory, which is
something different, see Chap. 4. Typically, the center coincides with a basic unit,
i.e., ck 2 J . A predetermined set of centers is denoted by Jc .

Finally, a districting plan D is defined as a set of p districts D D fD1; : : : ; Dpg.

23.3.3 Problem Formulation

The districting problem can now informally be described as follows: Partition all
basic units J into a number of p districts that satisfy the planning criteria of balance,
compactness, and contiguity and, if required, locate a center within each district.
Unfortunately, in contrast to many other optimization problems, there does not
exist the mathematical model for districting problems. This is mainly due to the
considerable ambiguity on how to quantify the different planning criteria and in the
motivation and relevance of some of them.

23.4 Districting Criteria

This section presents an overview over typical criteria employed in districting
problems and various ways and means to quantify them. In the following, a measure
for a criterion applied to a single district (the whole districting plan) is termed a local
(global) measure. Moreover, if not explicitly stated otherwise, let Q D 1.

23.4.1 Complete and Exclusive Assignment

In most cases, each basic unit is assigned to exactly one district, i.e., the districts
define a partition of the set J of basic units:

D1 [ � � � [ Dp D J and Dl \ Dk D ;; 1 � l; k � p; l ¤ k :

The requirement of exclusive assignment is sometimes also termed integrity. For
political districting, these criteria are obvious. In sales territory design, unique allo-
cations result in transparent responsibilities for the sales force avoiding contentions
and allowing the establishment of long-term customer relations.
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23.4.2 Balance

This criterion is one of the trademarks of districting problems. It expresses the desire
for districts of equitable size with respect to the activity measure(s). In political
districting, this criterion is employed to ensure the “one man–one vote” principle,
and in sales territory design to avoid districting plans with large discrepancies in
terms of workload, sales potential, or travel time.

Due to the discrete structure of the problem and the integrity assumption,
perfectly balanced districts can generally not be accomplished. There exist different
approaches in the literature to quantify imbalance and to incorporate the criterion
into the districting process. The most common local measure is based on the relative
deviation of the district size w.Dk/ from the mean district size � D w.J /=p:

bal.Dk/ D
ˇ
ˇ
ˇ
ˇ
w.Dk/ � �

�

ˇ
ˇ
ˇ
ˇ ; 1 � k � p

(cf. Forman and Yue 2003; Ríos-Mercado and Fernández 2009; Silva de Assis et al.
2014). The larger this deviation is, the worse is the balance. A district Dk is perfectly
balanced, if bal.Dk/ D 0. If the district sizes also contain a solution dependent
performance measure, like travel times, then this affects � and the balance of
one and the same district may be different in different districting plans. Another
approach concedes a priori a certain relative deviation ˛ > 0 from perfect balance
and only measures the imbalance exceeding this threshold (Bodin and Levy 1991;
Bozkaya et al. 2011)

bal.Dk/ D 1

�
maxfw.Dk/ � .1 C ˛/�; .1 � ˛/� � w.Dk/; 0g ;

i.e., the district is balanced if its size is between this lower and upper bound. Instead
of determining the bounds based on the mean district size, they are sometimes
directly motivated by the application, e.g., the working time restrictions of the
mailman or the sales potential required to ensure a decent living for the sales person.

Using these local measures, the global balance of a districting plan is then
typically computed as the maximal balance of a district

balmax.D/ D max
kD1;:::;p

bal.Dk/ :

Less common are the sum over all districts (Bozkaya et al. 2003; Bodin and Levy
1991) or a convex combination of both (Butsch et al. 2014):

balsum.D/ D
pX

kD1

bal.Dk/ and balcv.D/ D � balsum.D/ C .1 � �/ balmax.D/ ;
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with � 2 .0; 1/. The convex combination alleviates some of the weaknesses of
balsum and balmax. The latter does not take into account the balance of all districts
and sometimes yields rather poor solutions on average whereas the former allows a
few highly unbalanced districts to be compensated by some well-balanced districts.
A different global approach computes the range of district sizes (Tavares-Pereira
et al. 2007)

balrng.D/ D max
kD1;:::;p

w.Dk/ � min
kD1;:::;p

w.Dk/ :

23.4.2.1 Mathematical Modelling

In districting models, there is no clear trend on whether to treat balance as a hard
constraint (Hess et al. 1965; Fleischmann and Paraschis 1988; Zoltners and Sinha
2005) or to include it in the objective function (Blais et al. 2003; Ricca and Simeone
2008; Silva de Assis et al. 2014). In the former case, the size of each district is
required to lie between a given lower and upper bound. Some authors even do both
(Bergey et al. 2003; Salazar-Aguilar et al. 2013b). All of the above measures easily
give rise to linear expressions.

23.4.3 Contiguity

Almost all districting approaches require districts to be contiguous. In political
districting, this criterion should prevent gerrymandering. For the other types of
applications, contiguous districts reduce the day-to-day travel distances for sales
persons, delivery vans, snow ploughs, mailmen, etc. Unfortunately, a rigid and con-
cise mathematical formulation of contiguity is difficult for basic units representing
points.

23.4.3.1 Graph-Based Measures

If basic units are lines or polygons, it is easy to derive explicit neighborhood
information. For example, two zip-code areas are neighboring if they share a
common border, or two streets if they meet in a crossroad. In the former case,
sometimes an additional requirement is the existence of a direct road connection
between the two basic units. In general, two basic units are called neighboring, if
their geometric representations have a nonempty intersection. This information is
stored in the neighborhood graph G D .V; E/, and a district is contiguous if the
basic units of the district induce a connected subgraph in G.

If basic units are represented by points, e.g., customer addresses, it is not
clear how to assess contiguity. Over the years, different surrogate definitions for
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contiguity have been proposed. One approach is based on proximity graphs to
estimate the adjacency of points. One such graph is the Gabriel graph, in which
two nodes vi and vj are connected by an edge if and only if the disc with antipodal
points vi and vj does not contain any other node in its interior (Gross and Yellen
2003). A second approach to construct a contiguity graph is based on the Voronoi
diagram (Lei et al. 2012). Two basic units are defined to be adjacent, iff their Voronoi
cells have a common link within the smallest axis-parallel rectangle enclosing all
basic units (for a definition of Voronoi diagrams and cells see Aurenhammar et al.
2013). A third construction of the proximity graph is to start with a complete graph
and then sequentially go over all edges and delete for two intersecting edges in the
planar representation of the graph the longer or more costly one (Haugland et al.
2007). All three graphs are planar. Moreover, by definition the Gabriel graph is a
subset of the Voronoi-based graph.

Example 23.1 An example for these three proximity graphs for a point set with
26 basic units is depicted in Fig. 23.2. The Gabriel graph defines the most strict
neighborhood relation. The graphs obtained by Lei et al. (2012) and Haugland et al.
(2007) are fairly similar. The main difference is that the latter typically establishes
more adjacencies along the boundary of the convex hull of the point set. Just by
looking at the graphs it is difficult to decide which one is more suitable.

a b

c d

Fig. 23.2 Three different approximate contiguity graphs. (a) Point set of basic units. (b) Gabriel
graph. (c) Voronoi-based graph. (d) Non-crossing edges graph
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Finally, if the underlying road network is given, yet another possibility is to define
two basic units as being adjacent, if the shortest path between the two does not
contain another basic unit.

23.4.3.2 Geometric Measures

If no neighborhood information for basic units is given or can reasonably be derived,
an alternative is to determine the overlap between the districts. For example, by
computing the convex hull ch.Dk/ around each district Dk and defining a district to
be contiguous if no basic unit of another district lies in its convex hull, i.e., ch.Dk/\
ch.Dl / D ;, 8 l ¤ k (Kalcsics et al. 2005; Jarrah and Bard 2012). One advantage
of this approach is that convex districts usually prevent the crossing of routes of
different districts, a characteristic that typically implies inefficient routes.

23.4.3.3 Mathematical Modelling

In districting models, contiguity is always treated as a hard constraint (except in
Hanafi et al. 1999). One possibility to include it in a mathematical programming
formulation is the following: Let ck 2 Jc be the predetermined center of district k

and S � J n fN.ck/ [ fckgg be a subset of basic units that are not adjacent to ck . If
all elements of S are assigned to k, i.e., S � Dk , then at least one basic unit not in
S that is adjacent to an element of S must also be assigned to k:

X

j 2Si2S N.i/nS

xkj �
X

j 2S

xkj � 1 � jS j 8 S � J n fN.ck/ [ fckgg ;

where xkj is 1 if j 2 J is assigned to district k and 0 otherwise (Drexl and Haase
1999). The drawback of this formulation is, that it requires an exponential number
of constraints (although it gives naturally rise to a cut generation approach, Ríos-
Mercado and López-Pérez 2013). A second possibility that only needs a linear
number of constraints is based on network flow constraints. Each basic unit has
one unit of supply, and the district centers act as sinks. District k is contiguous iff
there exists a flow from its basic units to ck that only passes basic units in Dk :

X

i2N.j /

fji �
X

i2N.j /

fij D xkj 8 j 2 J n fckg

X

i2N.j /

fij � .n � 2/ xkj 8 j 2 J n fckg

X

i2N.ck/

fi;ck
� n � 1;
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where fij is the flow from basic unit i to j and fck;j D 0, 8 j 2 N.ck/ (Shirabe
2009).

A simpler approach is to require that each district is a subtree of a shortest
path tree T .ck/ rooted at the district center ck , where the edge lengths typically
correspond to road distances or are all assumed to be 1. Then, for each basic unit
j of district k, at least one of the adjacent basic units i 2 N.j / that immediately
precedes j on some shortest path to the center ck also has to be included in the
district:

xkj �
X

i2Sj

xki 8j 2 J n fckg ;

where Sj D fi 2 N.j / j i immediately precedes j on some shortest path from
j to ckg (Zoltners and Sinha 1983; Mehrotra et al. 1998). Although this excludes
some contiguous districts, these are unlikely to be compact, as they typically have
large protrusions or indentations, or contain enclaves.

It is straight forward to extend all of the above constraints to the case where
the choice of district centers is part of the optimization. For geometric contiguity
measures obviously only informal mathematical formulations can be derived.

Remark 23.1 Only few authors try to derive approximate neighborhood graphs
for point-like basic units. The majority simply does not consider contiguity at all
and tries to obtain districts with little overlap through an appropriate compactness
measure, see also Example 23.3.

23.4.4 Compactness

A district is said to be geographically compact if it is somewhat round-shaped and
undistorted. The motivation for compact districts is almost identical to ensuring
contiguity: to prevent gerrymandering or to reduce the day-to-day travel distances
within the districts. Although being a very intuitive concept, a rigorous definition
of compactness does not exist and, moreover, strongly depends on the geometric
representation of basic units. In the context of political districting, typically mea-
sures based on the shape of districts are employed whereas in sales and distribution
districting, distance-based measures are predominant. In the following, the most
common ones for both approaches are presented.

23.4.4.1 Geometric Measures

If basic units are given as polygons, geometric approaches based on the area or
perimeter of a district can be used to quantify compactness. Two common local
measures are the Reock and Schwartzberg tests. The former calculates the ratio
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of the district area to the area of the smallest enclosing circle, while the latter
determines the ratio of the districts perimeter length to the circumference of a circle
with equal area

cmp.Dk/ D A.Dk/

�r2
enc

and cmp.Dk/ D P.Dk/

2
p

� A.Dk/
;

where A.�/ and P.�/ denote the area and the length of the perimeter, respectively,
of a district and renc the radius of the smallest enclosing circle (Young 1988). For
the Reock (Schwartzberg) test, larger (smaller) ratios indicate greater compactness.
Other measures relate the activity of a district with the total activity of all basic
units within the smallest enclosing circle (Ricca and Simeone 2008) or determine
the ratio of the squared diameter of a district and its area (Garfinkel and Nemhauser
1970). A common global measure for the compactness of a districting plan is based
on the length of the boundary between districts, i.e., the total length of the perimeter
of the districts in the interior (Bozkaya et al. 2003; Lei et al. 2012)

cmp.D/ D
pX

kD1

P.Dk/ � P.J / :

Short inter-district boundaries typically result in compact districts. Numerous other
measures have been discussed in the literature. Unfortunately, none of them is
comprehensive; some fail to detect districts that are obviously noncompact, others
assign a low rating to visibly compact districts (Niemi et al. 1990; Horn et al. 1993;
Williams 1995).

To use geometric measures for basic units representing points or lines, one can try
to give “shape” to the districts, for example through the smallest enclosing rectangle
or circle, or through the convex hull. Instead of the convex hull, one can also use �-
shapes, which are polygons enclosing the point set that can provide a better fit to the
points than the convex hull (Duckham et al. 2008). However, much more common
are the following, distance-based measures:

23.4.4.2 Distance-Based Measures

Distance-based measures are used predominantly in applications where people
have to travel within the districts, e.g., sales- or mailmen. This confers with the
motivation of compact districts in these applications: to reduce the day-to-day travel
times. Moreover, in these applications basic units typically represent points or lines,
making geometric measures unapplicable in the first place. The most common group
of local measures is based on the sum of distances between the center of a district
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a b

Fig. 23.3 Districting plans for two center-based compactness measures without contiguity.
(a) Districts for cmpud.�/. (b) Districts for cmpwd2 .�/

and its basic units. Variations exist in whether the distances are weighted with
activity measures or not (w/u) and whether distances are squared or not (d2/d)

cmpud.Dk/ D
X

j 2Dk

dck;j cmpud2 .Dk/ D
X

j 2Dk

d 2
ck ;j

cmpwd.Dk/ D
X

j 2Dk

wj dck ;j cmpwd2 .Dk/ D
X

j 2Dk

wj d 2
ck;j

(Bard and Jarrah 2009; Bergey et al. 2003; Hess and Samuels 1971; Zoltners and
Sinha 2005). The second and forth measure are also known as the (weighted)
moment of inertia (Hess et al. 1965). Although the four local compactness measures
follow the same idea, the resulting districts may look considerably different as the
following example shows.

Example 23.2 Consider a point set of n D 75 basic units that has to be partitioned
into p D 5 districts, each having a predetermined center. The allowed relative
deviation in terms of balance from the mean district size � is 5 %, and contiguity
is not explicitly imposed. Figure 23.3 shows the resulting districting plans that
minimize the sum of the two center-based compactness measures cmpud.�/ and
cmpwd2 .�/ over all districts. The enlarged icons represent the district centers.

Having in mind that compactness acts as a proxy for travel times, the most natural
measure is cmpud.�/. However, we observe that there is a considerable overlap in
the districts for this measure, especially between the districts represented by the
diamond and pentagon shaped basic units. A much better visual separation is instead
obtained for the weighted squared distance, cmpwd2 .�/, even if some district centers
now lie outside their actual district (again, diamonds and pentagons). A large overlap
between districts typically yields less efficient routes for sales persons. To underline
this observation, we determine for each district the TSP tour through all basic units,
including the center. The total lengths of the TSP tours for the two districting plans
are: 92.78 and 73.56. The travel distances for the weighted squared distance are
20 % smaller than for cmpud.�/. The results for cmpwd.�/ and cmpud2 .�/ in terms of
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a b

Fig. 23.4 Districting plans for two center-based compactness measures with contiguity.
(a) Districts for cmpud.�/. (b) Districts for cmpwd2 .�/

overlap and travel distances are between the other two measures, with the former
being slightly better.

The situation is different if we try to enforce contiguity. Assume that an approxi-
mate neighborhood graph has been computed using the approach in Haugland et al.
(2007). Using the contiguity constraints of Shirabe (2009), the resulting districting
plans for cmpud.�/ and cmpwd2 .�/ are shown in Fig. 23.4. The separation between
the districts for cmpud.�/ is clearer than before. However, even if the total length of
the TSP tours reduces considerably (from 92.78 to 81.15), the districts consisting
of the diamond, pentagon, and square shaped basic units are still distorted and will
receive little approval from planners. (The square shaped district is connected since
there exists an edge along the top of the point set.) For cmpwd2 .�/ the overlap is not
much different from the previous plan, and the total travel distance even slightly
decreased to 72.97. The main difference is that the centers are now all included in
their districts, if only at the boundary.

This example illustrates the considerable differences between districting plans
for different compactness measures and the influence of contiguity constraints.
However, this is just a single example, and the observations cannot be generalized
without further testing. Also, the length of a TSP tour is just an indicator for travel
distances, as a sales person may not visit all customers on a single day.

The fact that squared distances produce compact but non-contiguous districts
for fixed centers has been observed several times in the past (Hojati 1996;
Schröder 2001). An important factor influencing the shape of districts is the spatial
distribution of the district centers. If they are spread evenly, the differences between
the measures in terms of district overlap will decrease, see Example 23.3. However,
this uneven distribution is not unusual as sales force residences often concentrate
in certain areas, e.g., larger cities, and sometimes even have the same address. Also
the threshold for the allowed balance deviation has an impact on the compactness of
solutions. The smaller the threshold value is, the larger the overlap between districts
will get.

Instead of taking the sum, one could also take the maximum for each of
the center-based measures (cf. Elizondo-Amaya et al. 2014; Ríos-Mercado and



23 Districting Problems 613

Fernández 2009; Muyldermans et al. 2003). However, this leaves considerable
freedom for assignments below the maximal distance and typically increases the
overlap. A slightly different approach is based on the maximal pairwise distance
and the weighted sum of pairwise distances

cmpmpw.Dk/ D max
i;j 2Dk; i¤j

dij cmpspw.Dk/ D
X

i;j 2Dk; i¤j

wi wj dij

(Ríos-Mercado and Salazar-Acosta 2011 and Blais et al. 2003, respectively).
In case of measures based on the sum (maximum) of distances, the global

compactness of a districting plan is then usually also computed as the sum
(maximum) over all districts. But sometimes also a sum-max combination is used
or a convex combination of sum and max (Muyldermans et al. 2003; Silva de Assis
et al. 2014; Butsch et al. 2014).

23.4.4.3 Mathematical Modelling

The majority of districting models has compactness as an objective function to
be optimized. In addition, sometimes the maximal distance between a basic unit
and its district center or between two basic unit of the same district is restricted
(Benzarti et al. 2013). The appeal of distance-based measures is that they easily
give rise to linear or, in case of pairwise distances, quadratic expressions. Therefore,
these measures are sometimes also used for polygonal basic units, even if geometric
measures could have been applied (Ríos-Mercado and Fernández 2009).

23.4.5 District Center

Strictly speaking, determining district centers is in most cases not an optimization
criterion in itself. However, several measures for contiguity and compactness rely on
district centers. Thus, if no centers are predefined for the districts, seeking district
centers is part of the optimization process. Typically, a district center is the basic
unit of the district that minimizes the respective compactness measure. But also the
(weighted) center of gravity can be used to determine a district center. Note however
that this center usually does not coincide with a basic unit, which is problematic if
distance computations are based on road networks.

23.4.6 Other Criteria

There are a few other criteria for districting problems that are included from time to
time in districting models. For example, for re-districting problems the changes in
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allocation from the old to the new districting plan should be kept small (Silva de
Assis et al. 2014). Especially in sales territory design, customers often have a
preferred sales representative by whom they want to be serviced or vice-versa,
i.e., customers have banned salesmen (cf. Ríos-Mercado and López-Pérez 2013).
Another criterion concerns the number of districts. Typically, p is predetermined
such that, for example, the expected workload in a district neither exceeds the
working time restriction of a deliverer nor renders him underutilized. If however
travel times within a district account for a large portion of the total working time,
then it is not always possible to fix p a priori since travel times strongly depend on
the shape of districts, i.e., their compactness. Therefore, sometimes p is a design
criterion (cf. Muyldermans et al. 2003).

23.5 Solution Approaches

As with most optimization problems also for districting many different solution
approaches have been proposed in the literature over the years. These approaches
can roughly be divided in those that utilize a mathematical programming model and
those that depend merely upon heuristics. Among the former, location-allocation
and set partitioning methods have been discussed. The latter mainly focus on
geometric algorithms, simple construction methods, and classical meta heuristics,
like Tabu Search, GRASP, and Simulated Annealing. This section will present only
a rough overview and description of the most common approaches. Detailed reviews
can be found in Kalcsics et al. (2005) and Ricca et al. (2013).

23.5.1 Location-Allocation Methods

The first mathematical programming approach was proposed by Hess et al. (1965)
for political districting. They had the idea to model the problem as a capacitated
p-median facility location problem (see also Chap. 3). Basic units correspond to
customers and their activity measure to their demand. The facilities to be located
are the district centers, and the capacity of the facilities is chosen in such a way that
the districts obtained by solving the problem are well balanced. Candidate locations
for the facilities are all basic units. For an allowed relative deviation ˛ > 0 of the
district size from the mean district size �, the formulation of Hess et al. (1965) is

minimize
X

i;j 2J

wj d 2
ij xij (23.1)

subject to
X

i2J

xij D 1 8 j 2 J (23.2)
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X

j 2J

wj xij � .1 � ˛/ � yi 8 i 2 J (23.3)

X

j 2J

wj xij � .1 C ˛/ � yi 8 i 2 J (23.4)

X

i2J

yi D p (23.5)

yi ; xij 2 f0; 1g 8 i; j 2 J; (23.6)

where xij D 1 if basic unit j is assigned to basic unit i , 0 otherwise, and
yi D 1 if basic unit i is selected as district center, 0 otherwise. The objective
function (23.1) maximizes the compactness of the districts using the center-
based measure cmpwd2 .�/. Constraints (23.2), together with the integrality con-
straints on the xij-variables, model the unique and exclusive assignment criterion.
Constraints (23.3) and (23.4) restrict the balance of the districts. Finally, Con-
straints (23.5) ensure that exactly p basic units are selected as district centers. As a
result, all basic units allocated to the same basic unit i constitute a district with the
basic unit as its center, i.e., there is a one-to-one correspondence between centers
and districts. Note that the centers are just required to evaluate district compactness
and have no meaning in itself.

Unfortunately, due to its NP-hardness, the practical use of this formulation is
limited to instances with a few hundred basic units, which is rather small for
typical sales districting problems. To this end, Hess et al. (1965) propose to use
Cooper’s location-allocation heuristic to solve the problem. In this heuristic, the
simultaneous location and allocation decisions of the underlying facility location
problem are decomposed into two independent phases, a location and an allocation
phase, which are alternatingly performed until a satisfactory result is obtained. In
the location phase, a set Jc of district centers is determined. A fairly simple and
commonly used method is to solve in each district resulting from the last allocation
phase a single facility location problem with the respective compactness measure
as objective function (cf. Fleischmann and Paraschis 1988; George et al. 1997).
To obtain an initial set of centers, one can determine new centers based on the
solution of a Lagrangean subproblem (Hojati 1996). Alternatively, one can use any
of the heuristics for the (uncapacitated) p-median problem or one of the heuristics
mentioned below.

Once the centers have been fixed, the allocation phase determines a balanced
assignment of basic units to district centers. This can be done by fixing yi D 1 for all
i 2 Jc in the above formulation. With present-day computers and MIP solvers, the
resulting problem can be solved optimally even for large instances with 10,000 basic
units or more within a short time. Even in the presence of contiguity constraints,
several thousand basic units can be assigned in reasonable time (Ríos-Mercado
and López-Pérez 2013). Alternatively, the allocation problem can be modeled as
a minimum cost network flow problem allowing more flexibility for measuring and
optimizing the balance and compactness of districts (George et al. 1997).
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a b

Fig. 23.5 Illustration of one iteration of the location-allocation procedure. (a) Location phase:
new districts centers. (b) Allocation phase: new districts

Example 23.3 Consider again the example depicted in Fig. 23.3, but assume now
that the district centers are flexible and the current ones are just a starting point.
Based on the districting plan for the measure cmpwd2 .�/, the new centers that
minimize cmpwd2 .�/ over each district are shown on the left-hand side in Fig. 23.5.
The subsequent allocation phase yields the new districts shown on the right-hand
side. The districts are visually much more compact and there is no overlap between
the convex hulls of the districts.

In former times, when the exact solution of the allocation problem was unattain-
able for larger instances, the assignment problem was solved heuristically. Setting
the tolerance ˛ to zero and relaxing the integrality constraints on the assignment
variables, i.e., xij 2 Œ0; 1�, the resulting linear program is a classical transportation
problem that can be solved efficiently using specialized network algorithms.
However, solving the relaxed problem yields districts that are perfectly balanced
but usually assign portions of basic units to more than one district, i.e., 9 i; i 0 2 Jc ,
i ¤ i 0, j 2 J , such that xij; xi 0j > 0. Such basic units are called splits. For an
optimal basic feasible solution of the transportation problem, it is easy to prove that
there are at most p � 1 splits (Hojati 1996). To restore the integrity of basic units,
it is necessary to round for every split its fractional variables to one (one variable)
or zero (the other variables). This yields disjoint districts but destroys their perfect
balance. A simple split resolution rule is to assign a split to the district (center) that
“owns” the largest share of the split (Hess and Samuels 1971). However, if there
are just few basic units per district, this rule may produce very unbalanced districts.
An optimal split allocation with a minimal maximal percentage deviation can be
obtained in polynomial time by using tree partitioning methods; unfortunately, the
problem of finding a split resolution with a minimal total deviation is NP-hard; see
Schröder (2001) for details.
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23.5.2 Set-Partitioning Models

As districting is essentially a partitioning problem, classical set partitioning
approaches can be used to solve the problem. In a first step, balanced, contiguous,
and compact candidate districts are generated in a heuristic fashion. In a second step,
districts are selected from the set of candidates to optimize the overall balance of the
district plan (Garfinkel and Nemhauser 1970; Mehrotra et al. 1998). Unfortunately,
only small instances can be solved optimally with this approach. An advantage
compared to location-allocation methods is however that almost any criterion can
be applied on the generation of candidate districts.

23.5.3 Computational Geometry Methods

A very simple but efficient solution approach for basic units representing points
is the successive dichotomies strategy (Kalcsics et al. 2005). The main idea is to
recursively subdivide the problem geometrically using lines into smaller and smaller
subproblems until an elementary level is reached, where the problem can be solved
efficiently. Hence, the basic operation is to partition a subset J 0 of basic units into
two subsets J 0

l and J 0
r by drawing a line within this set of points. Given a number

of line directions, for each direction the position of the line is determined in such
a way that the two resulting subproblems are best balanced. For every direction,
the line is evaluated by a convex combination of its balance and its compactness
(evaluated through the length of inter-district boundaries), and the best line is then
used to divide the problem into two subproblems. This procedure is repeated until
every subset corresponds to a single district. The strategy quickly determines a well-
balanced districting plan with no overlap between districts. However, as it does
not explicitly account for (road) distances, the resulting districts sometimes lack
compactness. Moreover, it is difficult to include neighborhood information. Instead
of using lines, other geometric concepts can be used. Alternatively, the process of
subdividing a point set J 0 can be modeled and solved as a 2-facility location problem
(Salazar-Aguilar et al. 2013a).

Example 23.4 Consider again the example in Fig. 23.3 and assume that the district
centers are flexible. Figure 23.6 shows the districting plan obtained with the
successive dichotomies algorithm using horizontal, vertical, and diagonal lines.

Another approach is based on weighted Voronoi diagrams on networks (for a
definition of weighted Voronoi diagrams see Aurenhammar et al. 2013). Assume
that the neighborhood graph G is given. For center-based measures the most
compact solution is obtained by assigning each basic unit to the closest center. If
the distances fdck;j j ck 2 Jcg are unique for each j 2 J , then each district
will also be connected. However, the resulting districts are often far from being
balanced. To overcome this drawback, the idea is to modify the distances dck;j
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Fig. 23.6 Districting plan
with the successive
dichotomies algorithm

between basic units and centers in such a way that assignments to overly large
districts are “penalized” and allocations to too small districts are “stipulated”. There
are basically two options to modify distances. The first adds a real-valued weight
rk 2 R to each distance dck;j (Zoltners and Sinha 1983) and the second multiplies
dck;j by a positive weight rk 2 R

C (Ricca et al. 2008). Hence, basic unit j 2 J

is closer to center ck than to center cl 2 Jc if dck;j C wk < dcl ;j C wl or
wk dck ;j < wl dcl ;j , respectively. Increasing (decreasing) the weight for a specific
center ck while keeping the other weights unchanged, will reduce (increase) the
number of basic units assigned to ck under the closest assignment rule and thus
reduce (increase) the size of the district. To obtain balanced districts, the weights
have to be updated iteratively until a satisfactory result is obtained. During the
update, care has to be taken because some districts may turn out empty under
additive weights or become disconnected for multiplicative weights if the weights
are too uneven. For details on the update procedures see Zoltners and Sinha (1983)
and Ricca et al. (2008). The partitions of the graph induced by these weights are
the so-called additively and multiplicatively weighted Voronoi diagrams. Note that
the approach using additive weights is in fact a Lagrangean relaxation where the
balancing constraints have been relaxed.

Most districting problems are solved using discrete models. However, these
problems (and a number of other logistics problems as well) can be converted into
problems with continuous demand functions. Continuous demand approximations
models are based on the spatial density and distribution of demand rather than on
precise information on every demand point. Given continuous approximations, one
can for example use Voronoi diagrams to compute or to smooth existing districts
(Galvão et al. 2006), or determine perfectly balanced districts (Carlsson and Delage
2013).

23.5.4 Construction Methods

There exist several easy approaches for constructing a districting plan from scratch.
One of the most popular ones is based on the multi-kernel growth methodology first
introduced in Vickrey (1961). The general idea of this methodology is to select
a certain number of basic units as “seed centers” and then assign to each seed
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neighboring basic units in order of decreasing distance until the desired district size
is reached. Variations exist with respect to the selection of seeds, whether districts
grow simultaneously or sequentially around the seeds, and how to deal with enclaves
of unassigned basic units which typically occur at the end of this greedy process
(Bodin and Levy 1991; Williams 1995; Mehrotra et al. 1998; Bozkaya et al. 2003).
The resulting districting plans are not always connected or balanced and typically
serve as a starting point for a meta heuristic.

A different approach treats each basic unit initially as a single district and then
merges iteratively pairs of districts until the prescribed number of districts is reached
(Deckro 1977).

23.5.5 Meta Heuristics

There exists a wide range of meta heuristics that have been applied to districting
problems: Simulated Annealing (D’Amico et al. 2002), Tabu Search (Ricca and
Simeone 2008; Bozkaya et al. 2003), GRASP (Ríos-Mercado and Fernández 2009;
Salazar-Aguilar et al. 2013b), and Genetic algorithms (Forman and Yue 2003;
Bergey et al. 2003; Bação et al. 2005), just to name a few. A major advantage
of these methods is their flexibility to include almost any practical criterion and
measure for the design of districts.

23.6 Conclusions

Despite the large number of publications, it is striking that only few authors consider
the districting problem independently from a practical background. Moreover, there
is no consensus on which criteria are eligible and important and, on how to
measure them appropriately. Thus, instead of devising yet another (variant of a)
meta heuristic for a districting model with yet another measure for compactness
or additional constraint, research should foremost concentrate on a common and
generic framework for districting problems. And it should try to categorize the
suitability of criteria and measures based on the availability of data, the geometric
representation of the basic units, and the different types of applications.
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