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Abstract—A Large Scale Printer (LSP) is a Cyber
Physical System (CPS) printing thousands of sheets
per day with high quality. The print requests arrive
at run-time requiring online scheduling. We capture
the LSP scheduling problem as online scheduling of re-
entrant flowshops with sequence dependent setup times
and relative due dates with makespan minimization
as the scheduling criterion. Exhaustive approaches like
Mixed Integer Programming can be used, but they are
compute intensive and not suited for online use. We
present a novel heuristic for scheduling of LSPs that on
average requires 0.3 seconds per sheet to find schedules
for industrial test cases. We compare the schedules to
lower bounds, to schedules generated by the current
scheduler and schedules generated by a modified ver-
sion of the classical NEH (MNEH) heuristic [1], [2].
On average, the proposed heuristic generates schedules
that are 40% shorter than the current scheduler, have
an average difference of 25% compared to the estimated
lower bounds and generates schedules with less than
67% of the makespan of schedules generated by the
MNEH heuristic.

I. Introduction
Many Cyber Physical Systems (CPS) require schedul-

ing of events in the system. For example when a silicon
wafer is processed in a wafer fabrication, or when a Printed
Circuit Board (PCB) is printed in a manufacturing unit or
when a sheet is printed in a Large Scale Printer (LSP). A
LSP prints thousands of sheets per day at high quality for
books, commercial letters etc. The total time spent to print
the sheets determines the productivity of a LSP. Increasing
the productivity of a LSP is a commercial concern. This
paper describes the problem of scheduling sheets in the
paper path of a LSP and provides a heuristic to increase
the productivity of a LSP.
A paper path in a printer is the path that sheets follow

through different components. Figure 1 shows a paper path
of a duplex printer (i.e. a printer that prints on both sides
of a sheet). The arrows represent the flow of sheets and
a hexagon is a component that processes sheets. A sheet
enters from the Paper Input (PI) component, gets printed
on its first side in the Image Transfer (IT) component
(referred to as the first pass), gets turned upside down
by the Turn (T) component and returns back to get its
second side printed (the second pass). After the second
pass a sheet leaves through the Finish (F) component. At
the merge point the return path meets the input path and
at this point a scheduling decision is made whether to first
print a returning sheet or a new sheet. This decision is
referred to as determining the interleaving of sheets. The
second pass sheets re-enter the print section and are called
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Fig. 1. Flow of sheets through the paper path in a LSP.

re-entrant sheets. We assume for simplicity that all sheets
are duplex sheets. Under this assumption, simplex sheets
can still be printed by allowing the simplex sheets to re-
enter but not print them for the second time.
The arrangement of components in a paper path is

similar to arrangement of machines in shop scheduling [3].
The components are shared between the sheets. The IT
component may need to perform additional steps, called
setups, before printing the next sheet. For example, print-
ing on a coated paper may require to heat up the ink. If
the ink was already at the required temperature (because
the previous sheet required the same temperature) then no
setup is required. Thus it depends on interleaving decisions
whether a setup is required or not. This conditional setup
is known as sequence dependent setup [3]. In practice, the
setup times are significantly larger (10-15 times) than the
print times. The heuristic consecutively interleaves sheets
with similar setup requirements to minimize the number
of setups and to increase the productivity of a LSP.
The re-entrant sheets flow back to the merge point

over the return path. There are bounds on the speed
it can travel on the return path. A relative due date is
the resulting upper bound between the first and second
passes of a sheet. The combination of re-entrance, sequence
dependent setup times and relative due dates define the
specific scheduling problem. It is compute intensive to
solve the scheduling problem to optimality. The re-entrant
flowshop with setup times and relative due dates has not
been studied before.
The following section defines the re-entrant flowshop

scheduling problem. In Section III constraint graphs are
introduced that are used by the heuristic approach de-
scribed in Section IV to determine schedules. Section V
describes the experiments performed to evaluate the pro-
posed heuristic. Section VI describes the related work.
Section VII concludes the paper.

II. Problem definition
A LSP consists of components that perform operations

on sheets. The operations we consider are: input a sheet,
print a sheet and finish a sheet. A LSP is a special case
of re-entrant flowshop [2], [3]. The re-entrant flowshop
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Fig. 2. The jobs (a) and the re-entrant machines (b) in a LSP.

studied in this paper is defined in Definition 1 and Figure 2
shows an example.
Definition 1. A re-entrant flowshop with sequence de-
pendent setup times and relative due dates is a tuple
(J, r,O, P, S,D,M, φ) defined as follows. J = {j1, . . . , jn}
is the set of jobs. In Figure 2(a) a job is a sheet in the
LSP. r is a positive integer that denotes the number of
operations performed on each job. For the LSP in this
paper r = 4 i.e., every job has 4 operations. O is the set of
operations performed on jobs. The circles in Figure 2(a) in
a job are operations. Let Oi = {oi,1, . . . , oi,r} be the set of
r operations performed on job ji, then O = O1 ∪ · · · ∪On.
The function P : O → ℕ determines the processing times
for operations in O. S : O×O → ℕ describes the setup time
between operations. S(ox, oy) is the time that a machine
needs after the execution of ox ends to prepare for the start
of execution of oy. D : O×O → ℕ describes the due dates
between operations. Let start(o) be the time an operation
o starts. A due date between operations ox and oy denotes
that oy must start no later than D(ox, oy) time units
after ox has started. i.e. start(oy) ≤ start(ox)+D(ox, oy).
M = {μ1, . . . , μm} is the set of machines. The LSP has
3 machines (components). In Figure 2(b) arrows show the
flow of jobs and machine μ2 is a re-entrant machine. φ is
a vector of machine numbers that defines the re-entrance
pattern of jobs through machines. φ =< γ1, . . . , γr >,
γi ∈ {1, . . . ,m}. The re-entrance vector for the LSP is
< 1, 2, 2, 3 >.

We assume that a re-entrant flowshop has the following
properties. Machines are ordered as μ1, μ2, . . . , μm. The
first operation is performed by μ1. Depending on the re-
entrance vector a job either re-enters the same machine or
moves to the next machine. All jobs follow the same order
of machines and the jobs share the machines. Operations
are non-preemptive and machines can process at most one
operation at a time. A machine is available immediately
after completion of an operation. The job order is fixed
and is j1, . . . , jn. Following is an example of a re-entrant
flowshop with a single machine and 3 jobs.
Example 1. Let a re-entrant flowshop consist of a ma-
chine M = {μ1}, three jobs J = {j1, j2, j3} and r = 2
operations performed on a job. The operations in a job ji
are Oi = {oi,1, oi,2}. The processing times for all opera-
tions are equal to 1. The due dates are D(o2,1, o2,2) = 7
and∞ (indicating no due date) for any other combination
of operations. The re-entrance vector is φ =< 1, 1 >. The
setup times between operations are in the matrix S′ .

S
′

=

o1,1 o1,2 o2,1 o2,2 o3,1 o3,1⎡
⎢⎢⎣

⎤
⎥⎥⎦

0 5 1 0 0 0 o1,1
0 0 0 2 0 0 o1,2
0 1 0 2 1 0 o2,1
0 0 0 0 3 2 o2,2
0 0 0 3 0 2 o3,1
0 0 0 0 0 0 o3,2

vs a b vd
00

α

−β

Fig. 3. An example of a constraint graph.

A solution to a reentrant flowshop problem is a sched-
ule, defined as follows.
Definition 2. A schedule Π : O → ℕ describes the start
time of every operation and respects: the job and operation
ordering, exclusive use of machines, setup times and due
dates. The makespan σΠ of a schedule Π is the total
duration of the schedule. σΠ is the completion time of the
last operation in the schedule i.e. σΠ = Π(on,r) +P (on,r).

Note that on,r is the last operation to finish in a
schedule due to the fixed job and operation order. The
scheduling criterion for a re-entrant flowshop is to find a
schedule Πs having a minimal makespan: arg min

Πs σΠs .
A valid schedule always exists for the LSP considered

in this paper. An intuitive argument is that a single job
always has a schedule and that a schedule for a set of jobs
can always be formed by considering each job separately
without interleaving. Although a non-interleaving schedule
always exists, it will not be as productive as a schedule
with interleaving because travelling back on the return
path takes more time than interleaved printing. Several
re-entrant flowshops without fixed job ordering have been
shown to be NP-Complete [3]. Proving the complexity of
the re-entrant flowshop problem with fixed job orderings
is left as a future work.
The start times of operations are constrained by setup

times, processing times and relative due dates. In Sec-
tion III a graph based model is introduced to uniformly
model the constraints in a re-entrant flowshop.

III. Constraint graph model
The constraint graph models the constraints between

operations in a re-entrant flowshop.
Definition 3. A constraint graph is a tuple cg(V,E =
EC ∪ EO, w,G, g, vs, vd). V is a set of vertices. Vertices
in a constraint graph denote events, for instance a and b
in Figure 3. E ⊆ V × V is a set of directed edges. An
edge (a, b) ∈ E with weight w(a, b) denotes the minimum
distance constraint between events a and b. Let ta and
tb be the start times of a and b respectively then the
distance constraint is tb ≥ ta+w(a, b), with w : E → ℤ. In
Figure 3 the weight w(a, b) = α and the edge (b, a) has a
constraint ta ≥ tb − β. The edge set E is partitioned into
two sets EC and EO. The set EC consists of compulsory
constraints that must never be violated. The constraint
graph with only its compulsory edges is called compulsory
constraint graph. Solid edges in Figure 3 are compulsory
constraints. The set EO contains optional constraints that
can be added to EC to enforce additional constraints if
needed to compute a schedule. Dotted edges in Figure 3
are optional constraints. G : V → {1, . . . , g} determines
the group number of a vertex in V . There are total g ∈ ℕ
groups. A group is used to model vertices of events that
share a resource. The source vertex vs ∈ V is a vertex
with no incoming edge. The destination vertex vd ∈ V is a
vertex with no outgoing edge. The compulsory constraint
graph is fully connected.
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The time instant at which an event occurs is called the
occurrence time of the event. It is defined as follows.
Definition 4. A occurrence time of vertex a ∈ V is ta ∈ ℕ
such that all compulsory constraints hold. Schedule T :
V → ℕ is a mapping of an event to an occurrence time.

A function T is a feasible schedule of a constraint
graph if and only if all compulsory constraints hold on
the schedule. A schedule T can be computed by finding
a shortest path of compulsory edges only between the
source vertex and the other vertices, for instance using
the Bellman-Ford algorithm. Events may require resources
at the time of occurrence. For example, printing a sheet
requires that the IT component is free. Therefore events
in the same group must be ordered and constraints ensure
that the resources are used exclusively. The vertices are
ordered by enforcing edges from EO. EO is assumed to
contain the constraints for all possible orderings.
Definition 5. A path p in a constraint graph is a non-
empty sequence of connected edges (a, b) → · · · → (c, d)
from the set E. The length lp of path p is the sum of the
weights of the edges in p i.e., lp = w(a, b) + · · · + w(c, d).
The path starts from vertex a and ends at vertex d. A cycle
is a path starting and ending at the same vertex.
Definition 6. A non-negative path p is a path consisting
of only edges with non-negative weights i.e., for any edge
(a, b) in p its weight w(a, b) ≥ 0.
In Figure 3 (vs, a) → (a, b) is a non-negative path

with length α (assuming α > 0). The path (a, b) → (b, a)
is a cycle with length α − β. Cycles in the compulsory
constraint graph with length greater than 0 cannot be
satisfied by schedules and are thus prohibited.
Definition 7. A vertex a precedes vertex b if there exists
a non-negative path of compulsory edges from EC starting
from a and ending at b. A vertex a immediately precedes
vertex b if there exists an edge (a, b) ∈ EC with non-
negative weight w(a, b) ≥ 0.
Choices in interleaving of jobs are different possibilities

to order a set of vertices. An ordering tuple represents one
such choice.
Definition 8. A tuple ot((a, b), (b, c)) of edges (a, b) and
(b, c) from E is called an ordering tuple for vertex b if a
immediately precedes c. An ordering tuple is feasible if
and only if adding the edges in the tuple to EC does not
introduce a cycle with positive length in the compulsory
constraint graph.

We assume that E contains all edges for an ordering
tuple for all possible interleavings. The set of ordering
tuples for vertices in the groups is defined as follows.
Definition 9. The set OT x

b = {((a, b), (b, c)) | a, c ∈ Vx}
is the set of all feasible ordering tuples for vertex b in
its group x. OT x =

⋃
b∈Vx OT

x
b is the set of all feasible

orderings of all vertices in Vx. OT =
⋃

x∈{1,...,g}OT
x is

the set of all feasible ordering tuples for all groups.

Determining an optimal ordering of vertices is the ver-
tex ordering problem with the following problem statement.
Definition 10. (Vertex Ordering Problem) Find a feasible
set of ordering tuples OT sol ⊆ OT such that vertices

vs v1,1

v1,2

v2,1

v2,2

v3,1

v3,2 vd

6 3 3

2

3

2

3

1

2

4
4

0

0
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Fig. 4. A constraint graph of the re-entrant flowshop in Example 1.

in all vertex groups are totally ordered i.e., For every x
in {1, . . . , g} : (	, Vx) is a total order and the time of
occurrence tvd of the destination vertex vd is minimal.

Figure 4 shows a constraint graph for the re-entrant
flowshop of Example 1. The graph has 6 vertices (3 jobs
having 2 operations each). There is one group, g = 1.
The solid edges represent the fixed job and operation
ordering constraints. The dotted edges represent optional
constraints. The weights of the edges are the sum of the
processing times and the setup times. The edge from v2,2
to v2,1 represents the due date constraint.

IV. Proposed heuristic approach
A schedule for a re-entrant flowshop is the occurrence

times of all totally ordered vertices in all groups. The
makespan of a schedule depends on the selection of order-
ing tuples. We present three metrics, namely, productivity,
flexibility and distance to assess the impact of an ordering
tuple on the constraints and on the makespan. Using these
metrics, the heuristic ranks and selects ordering tuples to
compute a schedule.
Productivity quantifies the impact of an ordering tuple

on the makespan of a schedule. To compute productivity,
Equation 1 first computes dx,b, which is the maximum
possible increase in time of vertex c that can result from
any ordering tuple ot((a, b), (b, c)) in the set OT x

b .
dx,b = max

ot∈OTx
b

max(tc,max(tb, ta + w(a, b)) + w(b, c)) (1)

Intuitively, productivity quantifies how restrictive the con-
straints in the ordering tuple are compared to all possible
ordering tuples for a vertex. The ordering tuples that
require setups have larger weights w(a, b) and w(b, c)
than the ordering tuples not requiring a setup. Hence,
Pot = 0 indicates a maximally productive ordering tuple.
The productivity of an ordering tuple ot((a, b), (b, c)) in a
set OT x

b for vertex b is computed in Equation 2.

Pot =
max(tc,max(tb, ta + w(a, b)) + w(b, c))

dx,b
(2)

An ordering tuple enforces new constraints consuming
the time between the due date and the start time of
a vertex. Flexibility of an ordering tuple ot((a, b), (b, c))
quantifies the effect of the edges over the due date con-
straints of the vertex b. Let Db contain all edges with
negative weight (due dates) originating from vertex b, then
Equation 3 computes the flexibility of the tuple ot.

Fot = min
(b,x)∈Db

tb − tx − w(a, b)
−w(b, x)− w(x, b) (3)

Equation 3 denotes the ratio between the excess amount of
time used by an ordering tuple and the total allowed time
by the due date constraint. tb and tx are the occurrence
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times of vertices x and b computed from the partial solu-
tion (by considering the edges in EC and the set OT sol).
The fewer the excess usage the more events are feasible if
later on the current event is rescheduled. Fot = 0 indicates
the most flexible ordering tuple.
Let distc be the least number of edges required on a

path from vs to vertex c. The distance for the ordering
tuple ot((a, b), (b, c)) denotes length of the interleaving and
is computed as follows.

DTot =
|V | − distc

|V | (4)

Using the three metrics a rank (lower is better) is
computed for ordering tuples in Equation 5.

Rot = κP × Pot + κF × Fot + κDT ×DTot (5)
The relative weights (κP ,κF ,κDT ) sum up to 1 and indicate
the relative importance of the metrics when determining
the ordering of events.

Algorithm 1: A heuristic to determine OT sol while
minimizing tvd .
1 OT sol = φ
2 compute vertex groups Vx for x ∈ {1, . . . , g} using G
3 T = φ
4 for each x ∈ {1, . . . , g} do
5 while ∃b, c ∈ Vx not ordered in Vx do
6 compute and update T with occurrence
7 times of v ∈ Vx
8 compute set of ordering tuples OT x

b
9 compute rank Rot for all ot ∈ OT x

b
10 select an ot with minimum Rot

11 add the edges (a, b) and (b, c) from ot to EC

12 add the tuple ot to OT sol

13 end
14 end
15 return OT sol

The proposed heuristic approach in Algorithm 1 ranks
and picks different ordering tuples to minimize the oc-
currence time of the destination vertex vd. The selected
ordering tuples are in the set OT sol and denote a feasible
schedule. The algorithm starts by computing the vertex
groups Vx using the grouping function G. The heuristic
iterates for each vertex group and finds a pair of vertices
a, b that are not ordered. To order the pair it computes
the feasible ordering tuples, ranks them and selects the
tuple with minimum rank. The edges in the selected tuple
are added to EC and the tuple is added to OT sol. The
algorithm terminates and returns OT sol which is a feasi-
ble schedule. The Bellman-Ford algorithm has complexity
O(|V |3) and is used by the heuristic to find whether a
schedule is feasible or not. Furthermore, per group, the
heuristic iterates with complexity O(|V |2). Hence, the
complexity of the proposed heuristic is O(g|V |5) where g
is the number of groups). The heuristic is evaluated on
realistic test cases in Section V.

V. Experimental results
The experiments aim to assess the quality of the heuris-

tic by comparing schedules generated by the scheduler
currently in use in our LSP (referred to as the Eager
scheduler), the Mixed Integer Programming (MIP) sched-
uler, the modified NEH heuristic from [2] (MNEH) with

s1 s1

time

s2 s2... sk ... sk

t1 T1=  t1+ 1
t2 = t1+ 1 Tk = tk+ K

1

1

Fig. 5. The operation of the Eager scheduler.

restricted iterations for online use and estimated lower
bounds on the optimal makespan. We present the exper-
imental setup followed by the details of schedulers, the
details of the test set and the experimental results.

A. Experimental setup
The experiments are performed on two platforms (be-

cause of restrictions of the software to different platforms
with node locked licenses). The lower bounds, our heuristic
scheduler and the MIP were solved using an Intel Core i7
CPU running at 2.67GHz with Ubuntu 10.10. The Eager
scheduler and the MNEH [2] were tested on a Intel Core
i7 CPU running 3.1GHz with Windows 7. The Eager
scheduler is proprietary software and is only available on
Windows. However, the differences of the platforms have
no effect on the makespans of the schedulers (the main
aim of the comparison). The MIP program was solved
using CPLEX 12.6, which also provided the lower bounds.
CPLEX was run for at most 300 seconds per instance.

B. Details of schedulers, heuristics and lower bounds
The Eager scheduler currently in use in a LSP is a First

Fit (greedy) scheduler. Figure 5 shows the computation of
a schedule for sheets s1, . . . , sk. Let t1 be the time when
sheet s1 is at the merge point for the first time. The eager
scheduler assigns T1 as the time instant when sheet s1 will
be at the merge point for the second time after travelling
on the return path for Ω1 time units. The first pass of the
next sheet, s2, can be printed Δ1 time units later than t1.
Δ1 is the sum of the processing time of s1 and the setup
time between s1 and s2. Similarly, the start times, ti and Ti
for 1 ≤ i ≤ k are computed. If the first or the second pass
of a sheet cannot be interleaved then the sheet is scheduled
at the end of the partial schedule. The simplicitly of the
Eager scheduling motivates its use in practice.
The MIPs are solved with CPLEX to compare the

heuristic to optimal solutions. However, in many cases,
CPLEX failed to find a feasible solution within the time
bound. The Lagrangian relaxation of the MIP program is
less compute intensive and provides a lower bound (LB) on
the makespan of the optimal schedule. Note that the lower
bounds do not necessarily have corresponding schedules
that achieve a makespan of the lower bound.
Our greedy heuristic is also compared to the state-of-

the-art greedy heuristic in literature, for which the MNEH
heuristic of [2] is used to generate schedules in only a
single iteration. The MNEH heuristic performs a backward
iteration over the given initial seed sequence (i.e. a schedule
without interleaving). The original MNEH continues to
iterate over the (partial) schedule found till no further
improvement is possible. On contrast, our heuristic only
performs single backward iteration. For fair comparison,
the MNEH heuristic was also run in a greedy fashion, i.e.,
restricted to single backward iteration. In the iteration,
the MNEH heuristic starts from the last sheet in the seed
sequence and selects the ordering tuple that results in
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TABLE I. Categories and patterns in the test set.

Category Pattern
RA (a(b)+)+
RB ((a | aa | aaa)(b)+)+
BA ((c10 | c20) | (d10 | d20) | · · · | (g10 | g20))5
BB ((h10 | h20) | (i10 | i20))
H j+ | k+ | · · · | s+

minimal makespan for the partial schedule. The heuristic
continues to find ordering tuples in backward direction.

C. Test set
The experiments test the heuristic on a set of 700

schedule requests varying in size between 18 and 800
sheets. Sheets in a schedule request can be one of 19
different types. Examples are sheets of different thickness,
length etc. The types of sheets with patterns are shown
in Table I. These patterns are representatives of typical
schedule requests for a LSP. Each pattern is a type of
schedule request with a specific pattern of sheets. The
patterns are shown as regular expressions with literals a−s
where each literal represents a different type of sheet.
The test set consists of 5 categories of patterns. The

first category Repeating A (RA) consists of cases with
repeating patterns of sheets in which an a type sheet is
followed by several b type sheets. In category Repeating B
(RB) a test case is one, two or three a type sheets followed
by several b type sheets. In category block A (BA) sheets
are grouped in 5 blocks with each block having 10 or 20
sheets of type c− g. In category block B a test case has 5
blocks of sheets. Each block consists of 10 or 20 sheets of
type h or i. In the Homogeneous (H) category a test case
consists of all sheets of the same type. The different type
of sheets when processed one after another require setups
and have different due dates.

D. Results
The number of setups encountered can be reduced by

interleaving (recall that setups take significantly more time
compared to print time). 4 out of 5 categories in the test
set have different types of sheets potentially leading to se-
tups. The heuristic uses the ranking function with weights
κP = 0.8, κF = 0.15, κDT = 0.05. The weights have
been determined by experimentation. Flexibility ensures
that the heuristic generates partial schedules that allow
rescheduling if required to minimize makespan. Overall,
the heuristic generates schedules that have an average
difference of 25% from the lower bound. The performance
of the heuristic is relatively best for category RB. Figure 6
shows the comparison of the makespans for 5 (randomly
selected) test cases from RB shown on the x-axis. The
makespan of schedules generated by the schedulers (Eager
= E, our heuristic = HS, lower bound = LB) in logarithmic
scale is shown on the y-axis. The Eager scheduler does not
interleave the sheets based on their types but based on a
fixed delay per sheet. The fixed delay does not necessarily
minimize the number of setups. Similarly, the MNEH
heuristic generates partial schedules that are not flexible
resulting in schedules with larger makespan. The heuristic,
when computing productivity, minimizes the number of
setups. In 56% of cases our heuristic generates schedules
with the same or better makespans as the MIP but in much
less time (MIP was running for at most 300 seconds).
Figure 7 compares the makespans for category H con-

sisting of 5 (randomly selected) test cases shown on the
x-axis and the makespan shown on the y-axis. Due to the

RB1 RB2 RB3 RB4 RB5

102

103
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n
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)

LB E HS MIP MNEH

Fig. 6. Comparison of different schedulers for the RB category.
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102
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m
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)

LB E HS MIP MNEH

Fig. 7. Comparison of different schedulers for the H category.

similarity of sheets in a job there are no setups required
and thus flexible (partial) schedules are not required.
Figure 8a compares the heuristic directly to the Eager
scheduler. The categories are shown on the x-axis and
the y-axis shows the ratio of heuristic makespans to the
Eager makespan. For each category, the rectangles show
the region where the ratio of makespans of 50% of the
test cases in the category fall. The bottom end of the
line is the minimum and the top end of the line is the
maximum of the ratios observed in the problem set. The
line splitting a rectangle is the median of the ratios. A
ratio less than 1 indicates that the heuristic performs
better. The heuristic out-performs the Eager scheduler
in 4 out of 5 categories (i.e. 92% of total test cases).
Similarly, Figure 8b compares the makespan ratios of our
heuristic with the MNEH heuristic. Our heuristic out-
performs the MNEH heuristic in all categories because
the MNEH heuristic greedily focuses on maximum pro-
ductivity and not flexibility. Figure 8c compares the ratios
of our heuristic makespans to the lower bounds. The
comparison indicates that the heuristic may have room
for improvement for the RA category. Recall, however,
that the lower bounds are estimates and might not be
tight. Our heuristic, to calculate schedules, requires on
average 0.3 seconds per sheet and in worst case (for largest
schedule request) 6.95 seconds per sheet. On average, over
all categories, the proposed heuristic generates schedules
that are 40% shorter than the Eager scheduler, have an
average difference of 25% compared to the estimated lower
bound and generates schedules with less than 67% of the
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Fig. 8. Comparison of different schedulers with our heuristic.

makespan of schedules generated by the MNEH heuristic.
The calculation time of the proposed heuristic, on average,
is 0.3 seconds per sheet where the MNEH heuristic requires
0.01 seconds per sheet to compute schedules trading off
runtime over increase in quality of schedules.

VI. Related work
Johnson provides in [4] a polynomial time algorithm

to schedule flowshops with two machines and showed that
scheduling more than two machines is NP-complete. The
CDS heuristic in [5] uses Johnson’s polynomial time algo-
rithm to find schedules for flowshops with more than two
machines. However, Johnson and the CDS heuristic do not
consider re-entrance, setup times and due dates. Branch
and bound based approaches presented in [6], [7] find
optimal schedules for the flowshop scheduling problem.
Similarly mixed integer programs are used by [8], [9] to
solve different variants of flowshop scheduling problem to
optimality but are not suitable for online scheduling.
Several heuristics to solve flowshop scheduling prob-

lems faster are proposed. For example, by using simulated
annealing [10] or genetic algorithms [11]. However, because
of due dates in our LSP problem, it is not guaranteed
that these algorithms will find a schedule. Other methods
to find the schedules faster use a ranking function (as
the heuristic presented in this paper). For example, slope
index based ranking in [12], rapid access algorithm in
[13] or the NEH heuristic in [1]. These methods rank
the jobs to find the near optimal job orderings and do
not focus on combination of re-entrance, setup times and
due dates. Less attention has been given to re-entrant
flowshops. A branch and bound algorithm is used in [14]
to schedule a re-entrant flowshop, but it is not suitable
for online scheduling. We compared our heuristic with the
MNEH heuristic particularly for LSP flow shop instances.
Our heuristic outperforms MNEH because our heuristic
considers partial schedules that favor rescheduling if better
for the later stages of iteration. Evaluation of our heuristic
for general re-entrant flowshop as considered in [2] is left
as future work.

VII. Conclusion
A re-entrant flowshop scheduling problem is presented

with a heuristic to generate online schedules. The heuristic
is a greedy strategy which ranks local scheduling decisions
and enforces the best ranking choice. The ranking is
performed using three metrics, productivity, flexibility and

distance. The performance of the heuristic is evaluated by
experiments on a test set consisting of schedule requests
of industrial relevance. The experiments show that the
heuristic outperforms a greedy version of the state-of-the-
art MNEH heuristic in all cases. Moreover, the heuristic
out-performs the currently used Eager scheduler (for 92%
of cases). The run-time of the proposed heuristic is suitable
for online scheduling of LSPs.
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