
This article was downloaded by: [148.234.29.139]
On: 19 December 2014, At: 09:03
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

Optimization Methods and Software
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/goms20

Validation of nominations in gas
network optimization: models,
methods, and solutions
Marc E. Pfetscha, Armin Fügenschuhb, Björn Geißlerd, Nina
Geißlere, Ralf Gollmerf, Benjamin Hillerc, Jesco Humpolac,
Thorsten Kochc, Thomas Lehmannc, Alexander Martind, Antonio
Morsid, Jessica Rövekampe, Lars Schewed, Martin Schmidtg,
Rüdiger Schultzf, Robert Schwarzc, Jonas Schweigerc, Claudia
Stanglf, Marc C. Steinbachg, Stefan Vigerskec & Bernhard M.
Willertg

a Department of Mathematics, Technische Universität Darmstadt,
Darmstadt, Germany
b Department of Mechanical Engineering, Helmut-Schmidt-
Universität, Hamburg, Germany
c Zuse Institute Berlin, Berlin, Germany
d Department of Mathematics, Friedrich-Alexander Universität
Erlangen-Nürnberg, Erlangen, Germany
e Open Grid Europe GmbH, Essen, Germany
f Department of Mathematics, Universität Duisburg-Essen,
Duisburg, Germany
g Institute of Applied Mathematics, Leibniz Universität Hannover,
Hannover, Germany
Accepted author version posted online: 06 Feb 2014.Published
online: 17 Mar 2014.

To cite this article: Marc E. Pfetsch, Armin Fügenschuh, Björn Geißler, Nina Geißler, Ralf Gollmer,
Benjamin Hiller, Jesco Humpola, Thorsten Koch, Thomas Lehmann, Alexander Martin, Antonio
Morsi, Jessica Rövekamp, Lars Schewe, Martin Schmidt, Rüdiger Schultz, Robert Schwarz,
Jonas Schweiger, Claudia Stangl, Marc C. Steinbach, Stefan Vigerske & Bernhard M. Willert
(2015) Validation of nominations in gas network optimization: models, methods, and solutions,
Optimization Methods and Software, 30:1, 15-53, DOI: 10.1080/10556788.2014.888426

To link to this article: http://dx.doi.org/10.1080/10556788.2014.888426

http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2014.888426&domain=pdf&date_stamp=2014-02-06
http://www.tandfonline.com/loi/goms20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2014.888426
http://dx.doi.org/10.1080/10556788.2014.888426

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Optimization Methods & Software, 2015
Vol. 30, No. 1, 15–53, http://dx.doi.org/10.1080/10556788.2014.888426

Validation of nominations in gas network optimization: models,
methods, and solutions

Marc E. Pfetscha∗, Armin Fügenschuhb, Björn Geißlerd, Nina Geißlere, Ralf Gollmerf,
Benjamin Hillerc, Jesco Humpolac, Thorsten Kochc, Thomas Lehmannc, Alexander Martind,

Antonio Morsid, Jessica Rövekampe, Lars Schewed, Martin Schmidtg, Rüdiger Schultzf, Robert
Schwarzc, Jonas Schweigerc, Claudia Stanglf, Marc C. Steinbachg, Stefan Vigerskec and

Bernhard M. Willertg

aDepartment of Mathematics, Technische Universität Darmstadt, Darmstadt, Germany; bDepartment of
Mechanical Engineering, Helmut-Schmidt-Universität, Hamburg, Germany; cZuse Institute Berlin, Berlin,
Germany; d Department of Mathematics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,

Germany; eOpen Grid Europe GmbH, Essen, Germany; f Department of Mathematics, Universität
Duisburg-Essen, Duisburg, Germany; gInstitute of Applied Mathematics, Leibniz Universität Hannover,

Hannover, Germany

(Received 16 November 2012; accepted 9 January 2014)

In this article, we investigate methods to solve a fundamental task in gas transportation, namely the val-
idation of nomination problem: given a gas transmission network consisting of passive pipelines and
active, controllable elements and given an amount of gas at every entry and exit point of the network,
find operational settings for all active elements such that there exists a network state meeting all physical,
technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and
numerically difficult non-convex mixed-integer nonlinear feasibility problem. The first phase consists of
four distinct algorithms applying mixed-integer linear, mixed-integer nonlinear, nonlinear, and methods
for complementarity constraints to compute possible settings for the discrete decisions. The second phase
employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are
able to compute high-quality solutions to real-world industrial instances that are significantly larger than
networks that have appeared in the mathematical programming literature before.

Keywords: gas network optimization; nomination; mixed-integer nonlinear programming; gas transport
optimization

1. Introduction

Natural gas is an energy resource of paramount importance for human society. In Europe it
accounts for about 25% of the primary energy consumption and is distributed through a pipeline
network with a total length of more than 100,000 km. The reliable and efficient operation of
these pipeline networks is a permanent challenge asking for computer-based automated decision
support.

The European legislative framework for gas transportation has undergone significant changes
in the recent past. By European Union regulation [24], gas trading and transportation now have to

∗Corresponding author. Email: pfetsch@opt.tu-darmstadt.de

c© 2014 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

mailto:pfetsch@opt.tu-darmstadt.de

16 M.E. Pfetsch et al.

be unbundled, i.e. performed by independent companies. Formerly, an integrated gas company,
possibly owning the pipelines, storages, and consuming power stations, could conclude long-
term supplier contracts and then operate its network in a dedicated point-to-point fashion. Today,
gas trading takes place at virtual, liberalized, and non-discriminatory markets, with consumers,
suppliers, storage, and transportation handled by different independent players. The network
itself is owned and operated by so-called gas transmission system operators (TSO), who, on
behalf of gas trading companies, have to ensure the delivery of the traded gas from suppliers to
consumers.

The market participants can obtain rights (contracts) from a TSO to supply to or consume gas
from the network at given entries or exits. The TSO decides on the total capacity of the rights sold
for any particular entry or exit. Note that the rights for entries and exits are sold independently
from each other.

For any group of entries and exits the owners of these rights can nominate any balanced
(in fact, unbalanced nominations are allowed, but they have to be turned into balanced ones by
using regulating energy, which incurs additional cost) amount of gas up to the contractual limit
to be transported. When selling the rights to nominate at single points, the TSO already war-
ranted that they are capable of fulfilling any such combined transportation request. The amount
of nominated gas of all entry and exit points of the network constitutes a nomination, i.e. the total
amount of gas that has to be transported at a given time. It further includes requirements on the
gas composition and pressure bounds. For more details of the German legislation, see [11].

In the present article, we investigate a fundamental problem in gas transportation, namely
the validation of nomination problem (NoVa): given a gas transmission network consisting of
passive pipelines and active, controllable elements such as valves and compressors, and given
a nomination (an amount of gas) at every entry and exit point, the task is to find an operational
setting of the active elements of this network such that there exists a network state meeting all
physical, technical, and legal constraints.

In practice, gas networks are operated/dispatched in a transient manner, i.e. over a continuous
time horizon. A transient model of a gas network, thus, would require as input both initial states
and future nomination profiles in continuous time. Since we consider mid- to long-term planning,
both are unknown. Thus, in the present paper, we exclusively deal with stationary (steady-state)
gas transportation.

Of course, a gas transportation operator must avoid granting rights of nominations that are
legally correct but technically infeasible. This is closely related to NoVa. Since it is clearly desir-
able to grant as many nomination rights as possible, it is important to detect nominations that
cannot be handled by the network.

Altogether, NoVa leads to a complex non-convex mixed-integer nonlinear feasibility problem,
for which new solution approaches are proposed in the present paper.

The state of the art in practice is the verification of a given nomination by using simulation
tools, i.e. an experienced planner tries to find suitable settings of the active elements by hand
and uses a gas network simulator to test the outcome. With the models described in the present
paper, we aim at automatizing this procedure. Furthermore, if the planner fails to find a suitable
setting, it does not prove its non-existence. This is different for some of the models presented
here, which can be solved to global optimality, thus proving infeasibility in case the solver is not
able to find any feasible solution.

1.1 Outline of the paper

Since NoVa involves discrete decisions as well as nonlinearities, it is typically very hard to
solve larger (real-world) instances. We propose a sequential approach, which is based on the

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 17

physical model presented in Section 2. In Section 3, we present four methods that aim at finding
good discrete decisions, while approximating the nonlinearities. Then, we use these decisions
(and corresponding network states) as input for a nonlinear optimization model that includes a
detailed physical model (see Section 3.5). In this way, we can obtain high-quality solutions.

In Sections 4 and 5, we present an extensive computational study. In Section 4, we first eval-
uate each of the four approaches via computations on real-world instances and discuss their
different features. It turns out that each approach has its strengths in different areas. In Section 5,
we discuss the combination of these four approaches yielding a fairly successful solver for
the NoVa problem. To the best of our knowledge, the successful solution of gas transportation
problems of this size and complexity has never been reported in the literature, so far.

1.2 Related literature and our contributions

In this section, we will briefly highlight some of the related literature. For a recent survey on gas
network optimization in general, we refer to [67].

Variants of NoVa, mostly for minimizing operating costs, have been studied by many
researchers. Early approaches were often based on dynamic programming (DP). In [87], DP
was applied to steady-state gas network optimization in cases where the underlying gas network
consists of a single straight line; later, branched network structures were considered in [91].
A similar approach was described in [47], before Borráz-Sánchez and Ríos-Mercado [10] and
Gilmour et al. [36] studied networks containing branches and loops of arbitrary size. A detailed
overview on DP approaches to gas network optimization can be found in [16].

Since the NoVa problem contains nonlinearities, nonlinear programming (NLP) techniques
were applied, too. In [43,46,82], subgradient methods were used to tackle the problem. Sequen-
tial linear programming techniques were used in [86]. Sequential quadratic programming
techniques were applied in [23,30]. The problem was also studied with respect to primal–
dual interior point methods [76]. In [77], locally linearized mixed-integer nonlinear programs
(MINLPs) in combination with a receding horizon technique are used. Interval analysis tech-
niques were used in [9] to minimize operation costs for instances without discrete decisions on
the basis of the Belgian network. Moreover, mathematical program with equilibrium constraints
(MPEC) techniques have been used by Baumrucker and Biegler [6].

Several papers deal with the extension or dimensioning of existing gas transportation net-
works using NLP/MINLP techniques. They implicitly handle NoVa problems via (simplified)
gas transportation models, see, e.g., [2,3,39,85,90].

Mixed-integer linear programming (MILP) methods have already been successfully applied
to steady-state optimization of gas networks in [55,57] and more recently also to the transient
case [27,32,33,52,58]. A combination of both, MILP and NLP techniques, was suggested in [21].

Other techniques to tackle transient gas network optimization problems include simulated
annealing [51,88], genetic algorithms [48], ant colony optimization [19], and hierarchical
system theory [63]. The operating cost minimization problem can also be formulated as a
non-cooperative game, where compressors and entries are the players, and communication
is established through the network connectivity constraints. The solution is then given as a
Nash-equilibrium found by an iterative algorithm, see [65,66].

The idea of variable elimination in models for flows adhering to Kirchhoff’s first and second
laws, which we elaborate in Section 3.3, can be traced back at least to [38] and was picked up
repeatedly later on (see [53,68] and the monograph [62]). In our approach, this variable elimi-
nation is just a building block in a concerted feasibility testing in large meshed gas distribution
networks with compressors, resistors, and control valves, i.e. elements whose control involves
combinatorial decisions.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

18 M.E. Pfetsch et al.

Unlike the existing literature, our approach focuses on discrete decisions and provides a higher
level of (practical) detail. The MILP approach, which we present in Section 3.1, builds on our
own developments and extends it toward solutions that can successfully be validated with a
sophisticated gas network simulation. The spatial branching (SB) approach of Section 3.2 applies
outer approximation techniques and adapts them to gas networks; the approach is based on a new
approximation of compressors (compressor groups). The reduced NLP (RedNLP) approach of
Section 3.3 provides a novel transshipment heuristic to find good discrete decisions. The MPEC
approach applies a new two-stage solution technique. Finally, the combination of these four
approaches with a validation by a detailed NLP provides to the best of our knowledge the best
solution technique to date.

2. Detailed physical model

In this section, we describe a detailed physical and technical model of the gas transportation
network and its components.

We model a gas network as a directed graph G = (V , A) with nodes representing junctions
of network elements. The arcs represent pipes, compressor groups, valves, control valves, and
resistors, denoted by Api, Acg, Ava, Acv, Ars, respectively. The set of arcs can be divided into active
(Acg, Ava, Acv) and passive (Api, Ars) ones. Active elements can be controlled directly and have
several states of operation. This is not the case for passive arcs. We will treat each type in the
presentation below.

For each node u, we introduce a gas pressure variable pu ≥ 0. Moreover, qa ∈ R denotes the
variable of the mass flow along arc a and describes the mass of gas passing through a given
area per unit of time. We use the convention that qa > 0 refers to gas flow in the direction
of the arc and qa < 0 indicates that the gas flows in the opposite direction. For each network
element a = (u, v), there is a relation between the mass flow qa and the pressures pu and pv,
depending on the type of a (see below for details). Due to technical limitations or contractual
requirements, we may have pressure bounds pu ≤ pu ≤ p̄u for each node u and mass flow bounds
qa ≤ qa ≤ qa for each arc a; note that qa and qa are allowed to be negative due to the direction
of the flow.

We need the following two additional flow quantities: the volumetric flow Q = q/ρ describes
the volume of gas passing through a given area per time and depends on the gas density ρ. The
normal volumetric flow Q0 = q/ρ0 is the volumetric flow under normal density ρ0, based on
normal pressure p0 = 101,325 Pa and normal temperature T0 = 273.15 K.

Pressure, temperature, and density of the gas are coupled by so-called equations of
state [50,59]. Several models exist—a common choice is the thermodynamical standard
equation:

ρ = m

R

p

T z(p, T)
, (1)

where R is the universal gas constant. The compressibility factor z = z(p, T) is an approximation
for the deviation of real gas from ideal gas. There exists no exact model, but several approx-
imations. We use the formula of the American Gas Association (AGA), see, e.g., [49] in this
paper:

z(p, T) = 1 + 0.257
p

pc
− 0.533

p/pc

T/Tc
. (2)

See Papay [64] for another approximation.
At some nodes gas is supplied into the network, while it is discharged at other nodes. The

mass flow d = (du)u∈V arising from a nomination specifies the amount of gas entering (du ≥ 0)

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 19

or leaving (du ≤ 0) the network at each node u. At each junction, the gas flow is subject to the
mass flow conservation condition∑

a∈δ+(u)

qa −
∑

a∈δ−(u)

qa = du ∀ u ∈ V , (3)

where δ+(u) and δ−(u) are the arcs leaving and entering node u, respectively. In this paper, we
assume a homogeneous gas composition, i.e. we approximate the molar mass m, pseudocritical
pressure pc, pseudocritical temperature Tc, normal density ρ0, and compressibility factor under
normal conditions z0 = z(p0, T0) by constants. In this case, (3) can equivalently be expressed
in Q0 instead of q.

2.1 Modeling of pipes

Most network elements are pipes, and they are the only elements with a significant length.
A pipe a ∈ Api is a passive network element, i.e. the gas flow cannot be controlled directly.
Instead, it results from the laws of physics, which are described by a system of partial differential
equations: the continuity, momentum, and energy equation, see, e.g., [25,50].

As already mentioned, we deal with the stationary case in this paper, which allows to reduce
these equations to a set of ordinary differential equations. As a consequence, the continuity
equation reduces to the fact that the gas mass flow along a pipe is constant, which we already
ensured by introducing a single mass flow variable for each pipe. Moreover, we assume a con-
stant gas temperature T throughout. Hence, the energy equation can be neglected. This leaves us
with the momentum equation:

∂pa

∂x
+ q2

a

A2
a

∂

∂x

1

ρ
+ gρ

(hv − hu)

La
+ λa(qa)

|qa| qa

2A2
aDa ρ

= 0, (4)

where x denotes the one-dimensional position along pipe a. The parameters La, Da, and Aa spec-
ify the length, diameter, and cross-sectional area of a, respectively. Further, hu and hv are the
normal heights of the nodes u and v, and g is the gravitational acceleration constant. Finally,
λa(qa) is the friction factor that strongly depends on the vorticity of the flow. For laminar
flow (i.e. small mass flow rates), we employ the model of Hagen–Poiseuille for the friction
factor [26]:

λHP
a (qa) = 64

Re(qa)
. (5)

With Re(qa) we denote the Reynolds number, which is a measure of the ratio of inertial forces to
viscous forces and is also used to characterize the different flow regimes, i.e. laminar or turbulent
flow. The Reynolds number Re(qa) is linear in |qa|. For turbulent flow (i.e. large mass flow rates)
no exact model is known. A highly accurate empirical model is the one of Prandtl–Colebrook
[20,69,Chap. 9]:

1√
λPC

a (qa)
= −2 log10

(
2.51

Re(qa)
√

λPC
a (qa)

+ ka

3.71Da

)
, (6)

where ka denotes the (integral) roughness of the pipe.
Due to its complexity, this model cannot be solved directly for large-scale instances. Thus,

some aspects of this detailed model are approximated in order to yield more accessible models,
as used by the approaches presented in Section 3.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

20 M.E. Pfetsch et al.

By assuming a constant compressibility factor, a constant mean temperature of gas, and by
neglecting the ram pressure term q2

a/A2
a ∂/∂x(1/ρ), it is possible to derive the following algebraic

solution of the momentum equation (4) as an approximation of the behavior of each pipe a =
(u, v) ∈ Api [5,50]:

p2
v =

(
p2

u − �a(qa) |qa| qa
eSa − 1

Sa

)
e−Sa , (7)

with

Sa = 2g(hv − hu)m

RzmT
, (8)

�a(qa) =
(

4

π

)2 La

D5
a

R

m
zmTλa(qa), (9)

zm = z(pm, T), (10)

pm = 2

3

(
pu + pv − pupv

pu + pv

)
. (11)

The influence of the slope of a pipe is summarized in Sa according to (8).

2.2 Modeling of (control) valves

Valves are active elements used to control the gas flow. A closed valve prevents gas from flowing
through this arc, decoupling the pressures at both sides of the valve. If the valve is open, however,
no restriction on the flow through the valve applies. Since the physical length of a valve is
negligible, we assume the pressures at both ends to be equal in this case. For a valve a = (u, v) ∈
Ava, we introduce a binary variable sa to obtain

sa = 0 =⇒ qa = 0, pu, pv arbitrary,

sa = 1 =⇒ qa arbitrary, pu = pv.
(12)

Control valves extend the model of valves by allowing to reduce the pressure within certain
technical limits. They are usually found at the interconnection points of subnetworks with differ-
ent pressure ranges. For a control valve a = (u, v) ∈ Acv, we assume that the pressure reduction
�a = pu − pv ≥ 0 lies within [�a, �a]. The model of a valve is extended by an additional binary
variable sact

a , which determines whether the control valve is actively working or not. We obtain
the following model:

sact
a = 1 =⇒ 0 ≤ �a ≤ �a ≤ �a, qa ≥ 0, sa = 1. (13)

This allows to model the following three control valve states: ‘closed’ (sa = 0, sact
a = 0), ‘active’

(sa = 1, sact
a = 1), and ‘bypass’ (sa = 1, sact

a = 0).

2.3 Modeling of compressor groups

While the gas pressure decreases along a pipe, groups of compressors allow to increase the
pressure to facilitate long-distance gas transmission. Similar to control valves, a compressor
group a = (u, v) ∈ Acg can take three states ‘closed’, ‘active’, and ‘bypass’. Thus, we add a
binary variable sa together with (12) and a binary variable sact

a that controls whether a compressor
group is active, i.e. compressing.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 21

Each compressor group consists of at least one compressor, which increases the pressure
of the gas, and additional technical devices, e.g. coolers. The set of configurations of a com-
pressor group defines the valid combinations of the included compressors. For instance, if high
throughput and moderate pressure increase is required, the compressor units may work in paral-
lel, while in situations with moderate pressure increase some compressors may be deactivated.
The configurations introduce an additional discrete aspect to the model of compressor groups. It
is straightforward to model this by using further discrete variables.

The modeling of compressors is addressed, for instance, in [15,17,89]. The feasible range of
the pressure increase of a single compressor depends on technical parameters and the volumetric
flow. For a compressor, we call the set of all tuples (pu, pv, Qa), such that the compressor can
increase the pressure from pu to pv for volumetric flow Qa, its operation range. This is a nonlin-
early bounded non-convex set, which is described using the so-called characteristic diagram of
the compressor; see Figure 3 for an example. The four boundaries are usually approximated by
quadratic polynomials that can be used as constraints in mathematical optimization models.

The energy needed to compress a unit of gas from pu to pv by a single compressor is described
by the specific change in adiabatic enthalpy

Had,a(pu, pv) = z(pu, T)T
R

m

κ

κ − 1

((
pv

pu

)(κ−1)/κ

− 1

)
, (14)

with isentropic exponent κ , see, e.g., [18]. The power consumption of an active compressor is

Pa = Had,a

ηad,a
qa, (15)

where ηad,a denotes the adiabatic efficiency of a compressor.

2.4 Modeling of operation modes of subnetworks

Often, larger subnetworks of compressor groups, control valves, and valves are located at the
intersection of several pipelines. The topology of such a subnetwork can be used to realize many
operation modes by appropriately setting the active elements of this subnetwork. In these cases,
usually very few of the possible switching combinations correspond to realistic operation modes.
Thus, for such subnetworks our model includes additional linear constraints with discrete vari-
ables, enforcing so-called Subnetwork Operation Modes (SOM), ensuring that only one of the
permitted switching combinations is used: each SOM is encoded by a 0/1-vector ω ∈ RA that
indicates the settings of the corresponding active elements. Let � be the set of all such vectors.
We enforce

∑
ω∈� sω = 1 to pick only one mode and add

∑
ω∈�

ωasω ≥ sa and
∑
ω∈�

(1 − ωa)sω ≥ 1 − sa (16)

for all arcs a in the respective subnetworks to our models, which guarantee that the individual
settings sa have the right values, depending on the chosen mode.

2.5 Modeling of additional pressure losses

Besides the pressure loss resulting from friction of the flow through the pipes, there are some
properties and components of the network inducing an additional pressure loss. Such a pressure
loss is caused by, e.g. flow diversion and turbulences in shaped pieces, measurement devices,

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

22 M.E. Pfetsch et al.

curved parts within compressor groups, filter systems, reduced radii, and partially closed valves.
Neither exact data nor exact models are available for most of these pressure loss effects. We
represent them by inserting a virtual resistor element at affected locations of the network. Two
different types of resistor models are used: either a constant pressure loss in flow direction

pu − pv = �a sgn(qa), (17)

or a pressure loss according to an equation of Darcy–Weisbach type using the parameters drag
factor ζa and a fictitious diameter Da:

pu − pv = 8ζa

π2D4
a

|qa| qa

ρu
. (18)

At this point, we have proposed models for each network component, enabling us to formulate
the nomination validation problem NoVa as a feasibility problem: given a gas network G =
(V , A) as defined above, can one realize a given nomination d?

3. Our solution approach

It turns out that even the simplified models as described in Section 2 cannot be solved for real-
world instances with state-of-the-art black-box solvers, as we will demonstrate in Section 4.1. In
this section, we therefore present an approach to solve NoVa that works in two steps: in the first
step, we apply four approaches to handle the discrete decisions necessary to solve NoVa. These
models use an approximation for each network component. The solutions provided by each of
these approaches are validated in a second step to find accurate solutions for NoVa by fixing the
discrete decisions and using the solutions as a starting point for solving a more accurate reference
NLP model.

Of course, both the choice of a model and the choice of an approach imply certain tradeoffs
regarding physical accuracy and computational tractability. Nevertheless, it is clear that a model
that is sufficiently accurate for practical application will feature both discrete decisions and non-
convex relationships between pressure and flow, i.e. one has to solve an MINLP problem.

3.1 The MILP approach

In this section, we develop a relaxation of the underlying nonlinear model. These relaxations
are modeled in terms of mixed-integer linear constraints. The resulting mathematical programs
can then be solved with the aid of a general purpose MILP solver. The core idea behind this
approach is to first construct piecewise linear approximations of the nonlinearities together with
the respective approximation errors. Then, we construct MILP relaxations via an extension of
the so-called incremental model for piecewise linear functions. Thus, we exploit the strength of
MILP solvers for NoVa via linearization of the nonlinearities.

We start with the model parts and formulas given in Section 2. Here, we have the basic vari-
ables p, Q0, P and s (recall that using Q0 is equivalent to using q under our assumptions).
Compared to constraints involving nonlinearities, combinatorial aspects arising from valves,
control valves, compressors, or from SOM are fairly straightforward to integrate within an MILP
model. In the following, we thus focus on the handling of the nonlinearities arising from pipes
and compressors. Resistors are modeled with the same techniques.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 23

To model a pipe a = (u, v) ∈ Api, we consider Re → ∞ in (6) and obtain the constant friction
factor

λa =
(

2 log10

(
Da

ka

)
+ 1.138

)−2

(19)

see, e.g., [40,56,60,61]. Moreover, instead of (10) and (11), we assume the following constant
(mean) compressibility factor

zm = z

(
min

{
pu, pv

}+ max{p̄u, p̄v}
2

, T

)
. (20)

Under the assumption of a constant compressibility factor, Equation (7) is separable and can
hence be expressed by the sum of three nonlinear univariate functions. The power consumption
of a compressor (see (14) and (15)) is modeled by a recursive decomposition into three nonlinear
univariate functions and one bivariate product. We remark here that from a theoretical point
of view this decomposition is not necessary for our approach, but it is very valuable for the
application to large-scale instances.

Our approach to integrate the nonlinearities in an MILP model is based on piecewise polyhe-
dral relaxations of the nonlinearities, i.e. the non-convexities arising from nonlinear equality
constraints in the MINLP model are transformed into non-convexities expressed by linear
constraints and integrality conditions using a set of additional variables.

Since all basic variables (mainly p and Q0) are bounded, we can assume that any occurring
nonlinear function f : D → R is defined on a compact set D ⊂ Rd , typically a box. We trian-
gulate D into simplices S1, . . . , Sn and approximate f by a piecewise linear interpolation gi(x)
for x ∈ Si, gi affine, i = 1, . . . , n, over the vertices of the simplices S1, . . . , Sn. Additionally, we
compute upper bounds εi, i = 1, . . . , n, for the approximation error on each simplex and replace
each occurrence of f in the constraint set by its piecewise polyhedral outer approximation. The
interpolations together with the bounds for the approximation errors are computed by an adaptive
refinement algorithm, which makes use of convex underestimators in order to provide reliable
error bounds. For a detailed description of the procedure, we refer to [31,33].

Finally, such a piecewise polyhedral outer approximation is modeled in terms of mixed-
integer linear constraints by means of a modified version of the so-called incremental method
of Markowitz and Manne [54]. The necessary modifications of the method have also been intro-
duced in [31,33]. A crucial assumption for the application of the incremental approach is to order
the simplices according to a Hamiltonian path in the dual graph of the triangulation. Simultane-
ously, an appropriate ordering of the vertices of each simplex must be constructed such that the
first vertex of a simplex is equal to the last vertex of the predecessor simplex in the Hamiltonian
path. While this is trivial in dimension 1, we refer to [31,33] for more details on how to obtain
such an ordering in higher dimension.

The modified version of the incremental model is as follows:

x = x̂1
0 +

n∑
i=1

d∑
j=1

(x̂i
j − x̂i

0)δ
i
j , (21)

y − e = ŷ1
0 +

n∑
i=1

d∑
j=1

(ŷi
j − ŷi

0)δ
i
j , (22)

−ε1 −
n−1∑
i=1

ωi(εi+1 − εi) ≤ e ≤ ε1 +
n−1∑
i=1

ωi(εi+1 − εi), (23)

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

24 M.E. Pfetsch et al.

d∑
j=1

δi
j ≤ 1, 1 ≤ i ≤ n, (24)

δi
j ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ d, (25)

d∑
j=1

δi+1
j ≤ ωi ≤ δi

d , 1 ≤ i ≤ n − 1, (26)

ωi ∈ {0, 1}, 1 ≤ i ≤ n − 1. (27)

Here, y denotes an approximation to f (x) within the piecewise polyhedral outer approximation
of the graph of f . The jth vertex of the ith simplex Si of the triangulation is denoted by x̂i

j and
ŷi

j := f (x̂i
j). Constraints (23) ensure the error tolerance e over each simplex. The binary variables

ωi, i = 1, . . . , n − 1, are used within Constraints (26) and (27) to express that if for the ith sim-
plex some variable δi

j > 0, j ∈ {1, . . . , d}, then δk
d = 1 for all previous simplices k = 1, . . . , i − 1

in the Hamiltonian path. The model (21)–(27) is applied to the formulas (7), (14), and (15)—with
simplifications as outlined in the beginning of this section to obtain one-dimensional and two-
dimensional approximations, respectively. As an example, a piecewise polyhedral relaxation of
the function f (Q0,a) = αa

∣∣Q0,a

∣∣Q0,a with D = [−4, 4], one of the univariate nonlinearities aris-
ing from the simplification of (7), is given in Figure 1. Here the simplices are the intervals
specified by the breakpoints. The set of feasible solutions to (21)–(27) is depicted as the union
of the parallelograms drawn with dotted lines in Figure 1.

Besides the function f (Q0,a) = αa

∣∣Q0,a

∣∣Q0,a, the remaining univariate subexpressions arising
from Equation (7) are p2

u and p2
v . We introduce additional variables for these squared pressures. In

many cases, however, we can then remove the original pressure variables as they are not needed,
e.g. in the trivial case when the only elements incident to a node are pipes. We decide a priori
whether it is necessary to introduce an approximation of p2

u for a node u in an optimal way using
an auxiliary integer linear program (ILP). The variables of the ILP express whether a pressure
variable, a squared pressure variable, or both variables are needed. The constraints then enforce
these requirements. For example, for both endpoints of a pipe, squared pressure variables are
needed, and similarly pressure variables are required at both endpoints of a compressor group.

Figure 1. MILP relaxation of f (Q0,a) = αa
∣∣Q0,a

∣∣Q0,a with αa = 0.25 on [−4, 4] with breakpoints −4, −2, 0, 2, 4.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 25

For a MILP formulation of a valve, however, homogeneous variables at both endpoints are suf-
ficient. The objective of the auxiliary ILP is then to minimize the sum of variables that express
that both types are required and hence to minimize the number of nonlinearities for the coupling
of pressure to squared pressure variables.

Characteristic diagrams of compressors are not modeled explicitly. We enforce any active
compressor to operate at least within a convex relaxation of its operation range. This is achieved
by dynamically cutting off solutions via the separation of tangential hyperplanes to this convex
relaxation of the characteristic diagrams [45].

Moreover, in order to improve the chance that the corresponding MILP solution yields a fea-
sible solution for more accurate NLP models (see Section 3.5), we compute a centroid point
(Q∗

0,a, ε∗
a) of the characteristic diagram, where ε∗

a is a ratio between inlet and outlet pressure.
We then try to obtain a feasible solution by minimizing the maximum norm distance to the
centroids of the characteristic diagrams of all active compressors. To this end, we introduce
slack variables σ+

a , σ−
a and add relations Q0,a − Q∗

0,a ≤ M (1 − sa) + σ+
a and Q0,a − Q∗

0,a ≥
M (1 − sa) − σ−

a , where M is a suitably large constant; thus, these constraints are active iff the
compressor is active, i.e. sa = 1. Similar constraints are added for the ratios of the pressures.
The objective is then to minimize the maximum of the σ ’s. We remark that although operation
ranges of compressors are typically not convex, the centroids of all the encountered character-
istic diagrams are clearly feasible points. To choose among the different configurations of each
compressor group, we incorporate special ordered set type-1 constraints on the respective binary
decision variables.

3.2 The SB approach

The second approach solves an approximated version of NoVa with an outer approximation
method. We use a tailored version of the branch-and-cut constraint integer programming frame-
work SCIP [1,74,81], which implements a combination of convex (linear) outer approximation
and SB to prove global optimality. This method is also used by state-of-the-art solvers for generic
MINLP problems, see, e.g., [7,75,78–80].

Let us give a brief review about the concept of outer approximation and SB. Let S ⊆ Rn be the
(non-convex) feasible set of the problem. A linear approximation of the feasible set is computed
such that

S ⊆ {x | Dx ≤ d}
for suitable D ∈ Qm×n and d ∈ Qm. This relaxation is used during the branch-and-bound
algorithm and is successively refined by additional cutting planes. Branching on integer vari-
ables deals with the integrality requirements. When all integer variables take integral values, the
relaxation is strengthened by recursive spatial branching, i.e. branching on continuous variables
appearing in nonlinear terms. SB on variable i of the solution x∗ to the linear relaxation refers to
subdividing the previous linear relaxation into two parts

S ⊆ {
x
∣∣Dx ≤ d , xi ≤ x∗

i

} ∪ {x ∣∣Dx ≤ d, xi ≥ x∗
i

}
.

For each part of the relaxation, a subproblem is created, and a tighter relaxation can be com-
puted due to tighter variable bounds, see Figure 2 for an example. SB thus improves the convex
relaxation, in particular, at places where the describing functions are non-convex. Branching
is pursued until all integral variables take integral values and the convex relaxation is ‘close
enough’ to the feasible region. This way, global bounds on the objective function can be
computed and the problem can be solved to global optimality.

To apply this approach to NoVa, let us first consider the modeling of pipes. We use (7) and (8)
formulated in norm volumetric flow Q0 and apply the modifications (19) and (20). We introduce

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

26 M.E. Pfetsch et al.

Figure 2. Successive improvement of the approximation of x �→ α |x| x by SB.

squared pressure variables πu := p2
u for all nodes u ∈ V . Recall from Section 2 that all pres-

sure values are non-negative (the pressure in the system is never smaller than the atmospheric
pressure). Formulating (7) using the pressure square variables yields

πu − βaπv = αa

∣∣Q0,a

∣∣Q0,a, (28)

for suitable constants αa and βa > 0, which depend on the characteristics of the pipe, see (8),
(19), and (20). To separate the nonlinear part, we introduce an additional variable ya and obtain

πu − βaπv = ya (29)

ya = αa

∣∣Q0,a

∣∣Q0,a. (30)

While (29) is linear, (30) is a nonlinear equation and thus a non-convex constraint. The nonlinear
function is handled by linear outer approximation through a special SCIP plugin for this type
of function performing separation of the convex hull and SB [28,81]. Figure 2 visualizes the
treatment of the nonlinear function x �→ α |x| x by this approach.

Besides the nonlinear pressure loss equations for the pipelines, compressors are another source
of nonlinear behavior. As mentioned in Section 2.3, the capability of a compressor is described by
its characteristic diagram, which is represented by the set of feasible combinations of volumetric
flow Qa and adiabatic head Had,a (Figure 3, left). These points are obtained by physical mea-
surements on the compressor with different pressures and flow rates. However, these quantities
cannot easily be computed in our model. But for a compressor a = (u, v), they can approxi-
mately be mapped to the space (pu, pv, Q0,a) of inlet and outlet pressure and normal flow through
the compressor, respectively, via

⎛
⎝ pu

pv

Q0,a

⎞
⎠ = pu

⎛
⎜⎜⎜⎜⎝

1(
Had,a

c2
+ 1

)κ/(κ−1)

Qa

c1

⎞
⎟⎟⎟⎟⎠ , (31)

where c1 and c2 are constants (see (14) and (1), (2), (20)). Each point specifying the characteristic
diagram can thus be translated into a ray of feasible combinations

{
(pu, pv, Q0,a)

∣∣ pu ≥ 0
}

for the
compressor. The convex hull of all these rays, which is a cone, approximates the operation range
of the compressor. We further intersect the cone with{

(pu, pv, Q0,a)
∣∣ pu ≤ pu ≤ pv ≤ p̄v, Q0,a ≤ Q0,a ≤ Q̄0,a

}
,

corresponding to the technical limitations of the compressor. This gives a bounded convex
polyhedron. Figure 3 visualizes the different steps in this approximation procedure.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 27

Figure 3. From the characteristic diagram of a compressor (left) over the (unbounded) cone (middle) to the operation
range polytope (right).

Figure 4. Resulting operation ranges for different combinations of two machines, M1 and M3: serial compression (first
M3 then M1) (left); parallel compression (middle), and convex hull of all feasible points (right).

For compressor groups that consist of a single compressor machine, the approach outlined
above already yields our approximation. The configurations of larger compressor groups are han-
dled as follows. We do not model internal valves of a compressor group explicitly, but compute
the operation ranges of the valid parallel and serial configurations (see Section 2.3). In Figure 4,
we give an example for two machines. Then as a global approximation we use the convex hull of
the union of all these resulting operation ranges, which can be thought of as a huge virtual com-
pressor machine (see the right image in Figure 4). In our model, we embed its linear description
as constraints. Technically, this leads to the computation of a projection of higher dimensional
polytopes into the three-dimensional space, which is done by Fourier–Motzkin elimination, and
numerically carried out by the Parma Polyhedra Library [4] during the setup phase of the model.

Note that the operation range polytope uses pressure variables, not squared pressure variables.
Hence, explicit coupling constraints πu = p2

u and πv = p2
v are needed upstream and downstream

of each compressor group. Algorithmically, we treat these constraints in the same way as (30).
Valves, control valves, and resistors are modeled as described in Section 2. SOMs are handled

as sketched in Section 2.4. Moreover, our approach does not involve an objective function. We
therefore stop the solution process as soon as a feasible solution is found and proceed with the
detailed validation (see Section 3.5).

3.3 The RedNLP approach

The approach presented in this section relies on transforming nonlinearities into a more accessi-
ble form, reducing the problem dimension of the underlying NLP. This transformation approach
is embedded into a heuristic procedure for finding promising switching decisions. The system of

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

28 M.E. Pfetsch et al.

(linear) flow conservation (3) and (nonlinear) pipe equation (7) is transformed into an equiva-
lent nonlinear system, where most flow and pressure variables get eliminated, because they are
explicit functions of a relatively small group of variables, consisting of one flow variable per
fundamental network cycle and two pressure variables per active arc. Apart from the explicit
formulae for flow and pressure variables, the transformed system contains implicit equations
whose number equals the number of fundamental cycles of the network and whose unknowns
are just the variables from the mentioned group. The approach aims at checking feasibility for
a set of switching states of active elements, either predefined or resulting from a transshipment
heuristic.

3.3.1 Transformation of nonlinearities

For a given setting of all the active elements (switching state) of the network, the directed graph
Ḡ = (V , Ā) ⊂ G models the relevant network, where Ā denotes the set of all arcs not being in
closed state.

Let A+ denote the node–arc incidence matrix and A be the submatrix of full row rank arising
from the deletion of one row, corresponding to a preselected, pipe-incident root node ū ∈ V with
pressure variable pū.

Let π and |Q0| Q0 denote the vectors with components πu, u ∈ V \ ū, and
∣∣Q0,a

∣∣Q0,a, a ∈ Ā.
For a = (u, v) ∈ Acg ∪ Acv, i.e. for compressor groups and control valves, πu and πv denote
squared outgoing and ingoing pressures and �a := πv − πu. For a /∈ Acg ∪ Acv, we define �a =
0. The diagonal matrix α = diag(�a) has entries which either are the pipe specific values �a,
a ∈ Api, as defined in (9), or 0, otherwise. The vector of all ones is denoted by 1.

The equations for flow conservation at the nodes and pressure drop on the arcs can after some
calculations be written as

AQ0 = d, (32)

� − ATπ − α |Q0| Q0 = −πūAT1, (33)

where (33) is built from the pressure loss equation (7) for pipes by neglecting geodetic heights
and adding the vector � for pressure changes in compressor groups or control valves. The com-
pressibility factor z is approximated by (2). Splitting A = (AB,AN) into basis and non-basis
parts according to a spanning tree, (32) and (33) are equivalent to

Q0,B = AB
−1d − AB

−1AN Q0,N , (34)

π = πū 1 − (AB
T)

−1
(αB

∣∣Q0,B
∣∣Q0,B − �B), (35)

αN

∣∣Q0,N
∣∣Q0,N − �N = AN

T(AB
T)

−1
(αB

∣∣Q0,B
∣∣Q0,B − �B). (36)

Indeed, inserting (34) into (33) yields

�B − AB
Tπ − αB

∣∣Q0,B
∣∣Q0,B = −πūAB

T1, (37)

�N − AN
Tπ − αN |Q0,N |Q0,N = −πūAN

T1. (38)

Multiplying (37) with −(AB
T)

−1
implies (35), and inserting (35) into (38) yields (36).

Let us add some remarks on how these formulae relate to network issues:

• The arcs corresponding to the columns of AB form a spanning tree TB ∈ Ḡ.
• Each arc a belonging to a column of AN stands for a fundamental cycle with respect to TB, i.e.

the unique cycle in TB ∪ a.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 29

• The columns of AB
−1 mark the directed paths in the spanning tree from the root node to all

other nodes, with entry +1 (−1) if the arc is directed in the same (opposite) way as the path
from the root, and with 0 if the arc does not belong to the path.

• The columns of AN
T(AB

T)
−1

mark the tree arcs in fundamental cycles. The column corre-
sponding to arc a is the difference of the columns of the paths from the root to the head of a
and that to its tail.

• The representation of π in (35) states that the (squared) pressure at an arbitrary node u �= ū is
determined by the pressure at the root minus the pressure drop along the unique path from ū
to u and plus/minus the pressure changes by the active arcs along the path.

• The identity (36) states that the pressure change along the tree arcs of each fundamental cycle
must equal the change along the arc that created the cycle.

Compared to (32) and (33), one ends up with a much smaller implicit part in the transformed
system, namely (36). It has just as many equations as there are components of Q0,N or as there
are fundamental cycles in Ḡ. For strongly meshed gas distribution networks, such as those met in
many parts of Europe, this number still can be substantial. For weakly meshed gas transportation
networks, however, values of 1 or 2 already become practically relevant. If the cycles of Ḡ are
arc disjoint, then (36) is separable with respect to the components of Q0,N .

Altogether, the feasibility system we use comprises (36), pressure bounds applied to the
right-hand sides of (35), and the following specific conditions for resistors, control valves, and
compressor groups.

Control valves allow for a pressure reduction, when traversed in the nominal direction. Com-
pressor groups are modeled at an aggregated level, without resolution to individual machines.
We add the following restrictions for a = (u, v) ∈ Acg:

pu ≥ pv, (pu − pv) · (−Q0,a) ≤ 0, (39)

(pu − pv) · (Q0,a − Q0,a) ≤ 0, (pu − pv) · (Q0,a − Q̄0,a) ≤ 0, (40)

(pu − pv) ·
(

εa − pv

pu

)
≤ 0, (pu − pv) ·

(
pv

pu
− ε̄a

)
≤ 0, (41)

(pu − pv) · (�pa − pv + pu) ≤ 0, (pu − pv) · (pv + pu − �pa) ≤ 0. (42)

Inequalities (39) specify that compressor groups allow for a pressure increase in their active mode
when traversed in the nominal direction. In order to approximate the characteristic diagram,
lower and upper bounds (Q0,a and Q̄0,a, respectively) are imposed on the flow for the active
mode (see (40)). We impose lower and upper bounds (εa and ε̄a, respectively) on the pressure
ratio (see (41)) and on the pressure increase (�pa and �pa, see (42)). Resistors are modeled
according to their type by the respective equation (17) or (18) in a non-smooth way due to the
occurrence of the sign of the flow rate.

3.3.2 Search for promising switching decisions

To enable the approach described above, we have to fix switching states for control valves,
valves, and compressor groups. We use two different techniques to fix these binary decisions.
First we use a transshipment heuristic, and then we try some sets of given switching states for all
active elements. These sets are constructed by using expert knowledge about the network and by
collecting sets of switching states from the transshipment heuristic in cases where they led to a
feasible solution for some nominations.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

30 M.E. Pfetsch et al.

3.3.3 The transshipment heuristic

We construct a directed transshipment graph D̃ = (Ṽ , Ã) with costs c̃ ∈ R|Ã| and flow require-
ments d̃ ∈ R|Ṽ |. In the first step, copy the original graph to an auxiliary graph D̂ = (V̂ , Â). Start
with Ṽ = Ã = ∅ and perform the following steps:

• For all entities being subject to SOM constraints, add one artificial node to D̃, representing
the entity. Moreover, we add all its boundary nodes to D̃. The boundary nodes are assigned
their original inflow or outflow requirements du. Assign the sum of the flow requirements of
the entity’s internal nodes to the new entity node. Add arcs to Ã between the entity node and
its boundary nodes in both directions. All these arcs are assigned the same small artificial cost
coefficient. Delete all internal nodes of the entity from V̂ and its arcs from Â.

• For all arcs a from Acg, Ava, Acv remaining in Â, add their endpoints with the original du to Ṽ .
Depending on the signs of Q0,a and Q̄0,a add one or two arcs to Ã between their endpoints.
Assign artificial cost coefficients—small ones for compressor groups and for control valves
in forward direction and big ones for backward direction arcs (requiring bypass mode) and
valves. Delete arc a from Â.

• For each connected component in D̂, add one artificial node and assign the flow balance of the
component’s internal nodes to this component node. The boundary nodes of a component are
boundary nodes of entities or end points of active arcs outside of entities, which were added
to Ṽ in the previous steps. Add arcs in both directions to Ã, connecting the component node
and the component’s boundary nodes, assign the sum of the friction coefficients αa within the
component as the cost coefficient to these arcs.

The resulting graph D̃ represents the flow situation and guides the usage of arcs in the transship-
ment by cost coefficients, such that flow through pressure increasing and pressure decoupling
network elements is favored. The resulting transshipment model is

min
∑
a∈Ã

c̃afa

∑
a∈δ+(u)

fa −
∑

a∈δ−(u)

fa = d̃u ∀ u ∈ Ṽ

fa ≥ 0 ∀ a ∈ Ã. (43)

The moderate size of the transshipment problem allows for a rapid solution by any state-of-the-art
linear programming solver. From an optimal solution, switching states for active arcs in the
original network are derived. Namely, if no flow passes through an element outside an entity, we
choose the off-state for it. Reflecting expert knowledge, for all the elements inside a specified
entity, a suitable decision from the corresponding SOM is chosen by a set of rules based on the
amount of flow and the flow direction through the entity.

3.4 The MPEC approach

As seen in Section 2, the problem of validation of nominations is a discrete-continuous nonlinear
and non-smooth feasibility problem. The approach described here aims at finding feasible solu-
tions by means of NLP techniques. Since these techniques require a continuous and sufficiently
smooth model (C2 in our case), we reformulate the discrete and non-smooth aspects in an appro-
priate way. For a more detailed explanation of the theory behind this approach, see [70,72]. For
a recently published approach that also uses MPEC techniques in gas transport optimization (but
for different aspects of the model), see [6].

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 31

3.4.1 Smoothing techniques

Many physical and technical aspects of NoVa are non-smooth, such as the pressure loss at pipes
or resistors. Most of them can be handled by standard smoothing techniques for min, max, sgn,
and absolute value functions (cf. [71]), but others require problem-tailored smoothing techniques.
As an example, we present the smoothing of our non-smooth model of the pressure loss in pipes,
which is based on the quadratic pressure loss model (7). For the compressibility factor we choose
the AGA formula (2), see, e.g., [71]. Obviously, the term |qa| qa in (7) has a second-order discon-
tinuity at zero, while the composite friction model λHPPC(qa) defined by (5) and (6) has a jump
discontinuity at the transition from laminar to turbulent flow (Figure 5, left). Both non-smooth
aspects are handled by a global smooth approximation developed in [12,13,71]:

φ(qa) ≈ λHPPC(qa) |qa| qa. (44)

Our choice of φ(qa) is asymptotically correct for |qa| → ∞ (Figure 5, right).

3.4.2 Complementarity constraints for combinatorial aspects

Active network elements like compressor groups introduce discrete decisions into the validation
problem. For a compressor group a = (u, v) ∈ Acg, these discrete decisions result in states like
active or closed that can be described in a simplified way by

a is active/in bypass =⇒ pv − pu − �a = 0, �a ≥ 0,

a is closed =⇒ qa = 0,
(45)

with �a denoting the pressure increase. Standard mixed-integer approaches for modeling (45)
use binary variables for the states (cf. Sections 3.1 and 3.2). Here we follow a different approach
and replace (45) by the complementarity constraint

p̃aqa = 0, �a ≥ 0, p̃a := pv − pu − �a. (46)

The model for the active state in (45) is not sufficiently detailed to be practically relevant. An
active group can actually be operated in several configurations k ∈ Ka (see Section 2.3). Our
heuristic approach attempts to determine the ‘most feasible’ configuration for a given flow–
pressure situation (pu, pv, qa). To this end, we model the feasible sets F k

a for all configurations
k ∈ Ka by a set of smooth nonlinear constraints (see [71] for details). We relax these constraints
by applying a set of slack variables Sk

a yielding the relaxed feasible sets F̃ k
a . Furthermore, we

Figure 5. Discontinuous friction model λHPPC and its smooth approximation φ for small flow rates (left) and large flow
rates (right).

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

32 M.E. Pfetsch et al.

make the fictitious assumption that the entire gas flow of the compressor group passes through
every configuration, i.e. qa = qk

a for all k ∈ Ka. The pressure increase �a = pv − pu is relaxed
to a convex combination of pressure increases of the individual configurations, �k

a = pk
v − pk

u. In
summary, the compressor group model (46) is extended by

�a =
∑
k∈Ka

σ k
a �k

a,
∑
k∈Ka

σ k
a = 1,

∀k ∈ Ka : σ k
a ≥ 0, qa = qk

a, (pk
u, pk

v , qk
a,Sk

a) ∈ F̃ k
a .

(47)

To obtain the ‘most feasible’ configuration with the refined model (47), we minimize a suit-
able norm of the slack variables. Finally, we heuristically choose the active configuration in
dependence of the values of the slack variables and the convex coefficients σ k

a .
Using techniques similar to (46) for the remaining active elements, almost all discrete aspects

can be represented by complementarity constraints. In combination with the smoothing tech-
niques, the NoVa problem is thus transformed into an MPEC. We apply standard MPEC
regularization schemes as in [29,41,73] to obtain a smooth and continuous NLP reformulation.

3.4.3 A two-stage solution approach

The NLP obtained from the MPEC approach combines highly nonlinear non-convex physical
and technical phenomena with numerically problematic smoothing and penalization techniques.
Numerical experiments show that solving all these aspects simultaneously on real-world net-
works is hardly possible with general purpose NLP codes like IPOPT [83] or SNOPT [35]. As
a substantially more robust and reliable solution procedure, we propose a two-stage approach,
where each stage solves an NLP with a different set of model aspects.

The first stage incorporates all previously described features except for the convexification
of compressor groups (47). Thus, it decides the principal states (open or closed) of all active
elements.

As mentioned above, various regularization schemes exist for the stage 1 MPEC. In our numer-
ical experiments, the penalization scheme of Fukushima and Pang [29] proved to be the most
appropriate choice for the specific class of problems. This scheme introduces an NLP sequence
NLP(τk), k = 1, 2, . . ., with decreasing penalization parameter τk . While providing convergence
theory, the approach suffers from significant practical drawbacks: the entire sequence needs to be
solved to optimality, and the computation time is a multiple of a single instance. In our approach,
τ is instead handled as an optimization variable that is driven to zero during the NLP solution
process by additional constraints or penalization schemes. This direct approach is very stable for
our practical purposes.

The solution of the first stage is analyzed and translated into discrete decisions. An ambiguous
situation arises when one or more complementarity constraints are satisfied bi-actively, with both
factors equal to zero. In this case, the most promising decision is chosen heuristically for stage 2,
based on empirical experience. After the first stage, all open/closed states are decided and the
overall flow situation in the network is determined; these will be fixed in the second stage.

In the second stage, the active configurations of the compressor groups are to be determined.
The decisions of stage 1 are fixed, and the convexification model (47) is added. Moreover, we
use the solution of stage 1 to initialize the NLP of stage 2.

Then, the solution of the second stage is analyzed to fix the remaining active configurations.
If more than one configuration with vanishing slacks exist, the one with the largest convex coef-
ficient is chosen. If no configuration with vanishing slack norm exists, the configuration with the
smallest constraint violation is used.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 33

3.5 Validation by NLP

Since the full NoVa problem becomes intractable if both a detailed physics model and discrete
decisions are incorporated, each of the four solution approaches employs its specific approxi-
mations of certain physical and technical details. This raises the need for a posteriori feasibility
checks with respect to some reference model that is trusted to provide a sufficiently accurate
description of reality, such as the models used in commercial gas network simulation software.

We use a model that includes the pressure loss equation (7), with a global smooth approxima-
tion [13,71] replacing the piecewise friction model (5) and (6); compressor groups are modeled
as accurately as possible, complete with drives, with operation ranges of individual units, and
with arbitrary distributions of flow among parallel units [71]; only the fuel gas is neglected in the
flow balances, and gas temperatures as well as gas quality parameters are considered constant in
the entire NLP model; details can be found in [71]. Valves and control valves are modeled as in
(12) and (13), and both resistor types of [71] arise.

The difficulty is that solution candidates with approximate physics from any approach will
generically be infeasible in a strict sense; we can only expect approximate feasibility. Assuming
that the discrete variables of a solution candidate are correct in the sense that suitable ‘small’
modifications of the continuous variables will yield exact feasibility, we proceed as follows to
obtain a high-accuracy feasible solution: we fix all discrete decisions and all discrete states based
on the given solution candidate. The discrete-continuous problem with a detailed physics model
then reduces to a purely continuous feasibility problem consisting of linear and nonlinear equal-
ities and inequalities with suitable smoothness properties (C2 in our case). We introduce slack
variables to relax all the nonlinear constraints. The minimization of some measures of the total
constraints violation, specifically a weighted �1-Norm of the slacks (with large weights on the
slacks of compressor units), then yields a standard NLP. An initial solution estimate for this NLP
is generated from the given solution candidate. If we are successful in computing a local NLP
minimizer whose slack objective is zero or sufficiently small, we have a complete solution of the
original problem, and we will regard the given candidate as a valid approximate solution. The
final NLP solution can ultimately be verified with a suitable simulation tool.

Note that a different outcome of our NLP validation procedure does not provide any decisive
information on the original problem. If a local minimizer with a nonzero slack objective is com-
puted, we know that one or more constraints of the original problem are violated. In case of a
‘small’ objective, further (typically manual) checks may be carried out to decide whether the
minimizer is practically acceptable or not. In case of a ‘large’ objective, we just know that the
given solution candidate did not lead to a solution with zero slack. If the instance is feasible,
one possibility is to improve the candidate by increasing the modeling accuracy in the first-stage
approach.

4. Computational studies

To show the practical relevance of our approaches as a solver for the NoVa problem in gas
networks, they are applied to two different types of nominations for country-size real-world gas
networks arising at our project partner Open Grid Europe (OGE) (see Figure 6 for an illustration).
The first set (SN4) contains 4227 automatically generated nominations based on contractual and
statistical data by a sampling approach [44]. All these nominations are based on the same network
with 592 nodes, 425 pipes, 35 valves, 23 control valves, and 6 compressor groups. The second
group (AB6) consists of 44 hand-made worst-case nominations by OGE, including four definitely
infeasible instances. The corresponding networks are variations of the above. They have about
660 nodes, 500 pipes and more than 30 valves, 25 control valves, and 7 compressor groups. In

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

34 M.E. Pfetsch et al.

Figure 6. Illustration of one network used for the computations.

the appendix, we give detailed results for this second test set, including feasibility status. These
nominations provide the mass flow demand d = (du)u∈V for (3) and possibly pressure bounds at
the entries and exits.

4.1 Solutions via black-box solvers

Since NoVa is a mixed-integer nonlinear problem, it is a fundamental question whether it is pos-
sible to solve our test instances with state-of-the-art MINLP solvers. To answer this question,
we performed a computational study. The answer clearly depends on the mathematical model
that is used to represent NoVa. We choose an MINLP model based on (7) with the simplifica-
tions (19), (20), (14), and (15). Moreover, we include the non-convex characteristic diagrams of
compressors; the remaining model parts are very close to those of the MILP approach.

We are interested in how state-of-the-art solvers perform on such MINLP instances. If a local
MINLP solver finds a feasible solution, NoVa is solved affirmatively. If a local solver is, how-
ever, not able to find a feasible solution, no conclusion for NoVa can be drawn. Thus, to prove
infeasibility of a nomination—a crucial point for our application—the usage of a global solver
is required. We apply state-of-the-art solvers of both classes: as global solvers for non-convex
MINLPs, we select BARON [78–80] and SCIP [1,81]. These solvers mainly implement (linear)
convexification techniques in combination with a spatial branch-and-bound technique.

As local MINLP solvers, we use BONMIN [8], ALPHAECP [84], and KNITRO [14]. All
three solvers are exact for convex MINLPs, but can be used as heuristics in the non-convex

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 35

case. BONMIN implements different algorithms for convex MINLP, from which we choose
two different variants, BB and Hyb, for our studies. Variant BB implements a nonlinear branch-
and-bound search based on solving continuous nonlinear relaxations at the nodes. The hybrid
algorithm Hyb is a combination of an outer approximation branch-and-cut algorithm and the BB
algorithm. ALPHAECP is developed for solving convex or pseudo-convex MINLPs by solving
a sequence of MILPs, occasionally solving NLP subproblems, and generating cutting planes.
From KNITRO we select the nonlinear branch-and-bound method.

All computations in this subsection were performed sequentially using a single thread on a
machine with two six-core AMD Opteron CPUs with 2.6 GHz and 64 GB of RAM. We use
GAMS 23.8.2 [34] to communicate over a common interface with all solvers. The respective
solver versions included in this GAMS release are BARON 10.1, SCIP 2.1.1, BONMIN 1.5,
ALPHAECP 2.09.01, and KNITRO 8.0. All solvers are set to use their default parameters (if not
stated otherwise above). Experiments with other parameters did not significantly improve the
results. In addition, we use the nonlinear bound propagation preprocessing (except for SCIP),
which is also used to tighten variable bounds for the MILP approach (see Section 4.3 for further
details). For SCIP, this preprocessing dramatically worsens the results and sometimes even leads
to false infeasibility detections. The other solvers did not behave in this way.

From the first test set (SN4), we pick a random subset of 50 instances to keep the computational
effort within reasonable bounds. We set a time limit of four hours for each solver and instance,
which is twice the time limit that is subsequently used for our specialized approaches. BARON
solved 3 out of 50 instances by finding a feasible solution after 65, 112, and 162 minutes within
the time limit. SCIP solved two instances in 3 and 10 minutes and ran into the time limit for all
others. BONMIN, ALPHAECP, and KNITRO are unable to find any feasible solution.

For the second test set (AB6), BARON solved 3 out of the 44 instances by finding a feasible
solution after 84, 112, and 219 minutes. SCIP solved two instances in 1 and 63 minutes. Again
all local solvers failed to find a feasible solution.

Interestingly, no global solver is able to prove infeasibility, although 12 out of the 50 instances
in the first test set (SN4) are infeasible and at least four instances in the second test set (AB6).

We conclude from these computational experiments that large-scale instances of the NoVa
problem cannot be solved with state-of-the-art black-box solvers. This motivates the approaches
discussed in this paper.

4.2 Computational setup

In the following, we discuss the computational results of the four approaches presented in
Section 3 and the corresponding validation step. The computations were performed on a Linux
cluster. Each node has two Xeon 3.2 GHz quad core processors and 48 GB of RAM. We imposed
a time limit of 2 h for the application of the approaches introduced in Section 3. We performed
single-threaded computations, except for the MILP approach, which used eight threads (see
Section 4.3 for a discussion of this fact). On each node, only one job is executed simultane-
ously. The run times for the four approaches to find good discrete decisions exclude the timings
for NLP validation. All timings are wall clock times in seconds and include the time for read-
ing the data and building the model, which for some instances consumes a major part of the
running time.

Gurobi 5.0 [37] was used to solve the constructed problems by means of the MILP approach.
The SB approach was implemented in a prerelease version of SCIP 3.0 [1,74,81]. The LP and
NLP subproblems therein were solved using CPLEX 12.4 [42] and IPOPT 3.10 [83], respec-
tively. IPOPT 3.10 was also used to solve the NLP problems in the RedNLP and MPEC
approaches. Since the validation NLP can be tackled by several NLP solvers, we sequentially

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

36 M.E. Pfetsch et al.

tried the solvers IPOPT 3.10, CONOPT 3.15C, CONOPT 4.00 [22], and KNITRO 8.0.0 [14]
until one of them converges to a feasible point. This last step could, of course, be parallelized.
The NLPs of the MPEC and RedNLP approach as well as the NLP validation are solved using
GAMS [34] version 23.8.2 as an interface.

Most of the results are illustrated by performance diagrams, where at each point on the x-axis
(corresponding to some given measure, e.g. running time, slack value, etc.) we display on the
y-axis the fraction of the total number of instances that were solved using at most the given
measure on the x-axis. All times are reported in seconds.

4.3 Solutions of the MILP approach

In this section, we discuss numerical results of the MILP approach described in Section 3.1. All
MILPs are solved with the branch-and-cut solver Gurobi with default parameter settings on eight
threads, except that dual reductions and precrush are disabled, since we generate cutting planes
on the fly.

Before the MILP model is constructed, a straightforward nonlinear bound propagation pre-
processing is performed to improve unnecessarily large variable bounds. Since the sizes of the
variable domains have a direct impact on the size of the linearization, this step is crucial. We
refer to [31] for a detailed description of this propagation algorithm. The preprocessing never
took more than 10 s and is therefore negligible compared to the overall running time of this
approach. Thus, we do not list presolving times explicitly. The piecewise linear relaxations are
constructed to be within a deviation of at most 1.5 bar from the underlying nonlinear function.
We remark that if this tolerance is relaxed, the resulting MILPs are solved faster, but the num-
ber of validated solutions decreases. Conversely, when the error tolerance is strengthened, the
amount of non-zero slack validations declines, while the running time increases. The error tol-
erance value of 1.5 bar is an appropriate compromise based on our experience with different
test sets.

An illustration of the results for the first test set (SN4), consisting of 4227 instances, is depicted
in Figure 7. The variation of the sizes of the resulting MILP instances is small. On average the
instances have about 18,302 constraints and 11,222 variables, about 3833 are binary variables.

For 3510 instances, a feasible solution to the MILP model is found, and 694 instances are
proved to be infeasible during the time limit of 2 h. This leaves 23 undecided instances. Gurobi’s
running time is presented in Figure 7(a). The average running time is about 20 minutes, and
the median is about 9 minutes. A subset of 3205 instances was solved to optimality, and 3444
instances are proved to be within 10% of the optimum. Of the 3510 feasible instances, the NLP

Figure 7. Numerical results on the first test set (SN4) for the MILP approach. (a) Running times (s), (b) number of
branch-and-bound nodes, and (c) NLP slack sums for 265 MILP feasible instances with positive slack.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 37

Figure 8. Numerical results on the second test set (AB6) for the MILP approach. (a) Running times (s), (b) number of
branch-and-bound nodes, and (c) NLP slack sums for 14 MILP feasible instances with positive slack.

validation confirmed 3245 of them, i.e. resulted in a zero slack value. Figure 7(c) shows the
distribution of the slack sum values for the NLP validation of the remaining 265 instances.

The average values are mainly influenced by the large time limit. Within a stricter time limit
of 20 minutes, for example, we still find feasible solutions for 3285 instances. A similar behavior
can be seen for the number of branch-and-bound nodes shown in Figure 7(b).

Almost all instances (389 out of 397) that were solved within less than 1000 branch-and-bound
nodes (or within less than approximately 30 s) are infeasible instances. In general, only 40 of the
694 infeasible instances needed more than 10, 000 nodes or more than approximately 1 minute.
We conclude that the MILP model is suitable for detecting infeasibility, one of the main purposes
why the model is constructed as a relaxation of the underlying nonlinear model.

We illustrate a typical solution process of the test set (SN4) on instance number 1872. The
solution of this instance requires about 20 minutes. The first feasible solution is found after 214 s
and 38851 branch-and-bound nodes, yielding an optimality gap of 98%. The dual bound is typ-
ically weak at the beginning, but this bound is significantly improved up to the point where the
initial solution is found. Subsequently, the optimality gap is constantly reduced to 0.24% (by
both improving the primal and dual bound) until the optimal solution is found after 615 s have
passed and 104, 874 nodes have been explored. The remaining search process, which is another
585 s and 379, 938 nodes, is spent to prove optimality.

The average solution time can in principle be reduced, if the solution process is stopped as
soon as the gap between the primal and dual bound is less than 1%; we have, however, not fully
investigated this yet. We recall in this context that NoVa is a feasibility problem. The objective
in the MILP approach has been added to overcome the gap between the underlying nonlinear
model of the MILP approach and the physically more detailed nonlinear validation model. An
optimality gap limit of 1% would also have a major impact on instances reaching the time limit.
Most of those instances (188 out of 305) in fact have a similar behavior: a first feasible solution
is found within the first 5 minutes and is improved to a gap of less than 1% within an overall
running time of about 10 minutes. The remaining time until the time limit is then just used for
trying to prove the last per cent of optimality.

As mentioned above, all results were obtained using eight threads, since this allowed to obtain
the best performance using our computational resources. If we use only one thread with the
same time limit, 3244 instances (instead of 3245) had a 0 slack value, 692 (instead of 694) were
determined to be infeasible, and for 27 (instead of 23) we could not find an MILP solution. We
conclude that using eight threads only slightly improves the results.

The results for the second test set (AB6) consisting of 44 expert nominations are shown in
Figure 8. The MILP instances have on average about 23,824 constraints and 14,871 variables,
5484 of which are binary.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

38 M.E. Pfetsch et al.

Figure 9. Numerical results on the first test set (SN4) for the SB approach. (a) Running times (s), (b) number of
branch-and-bound nodes, and (c) NLP slack sums for 1036 SB feasible instances with positive slack.

For 39 instances, a feasible solution to the MILP model is found, and 5 instances are proved
to be infeasible. The infeasibility of one instance is already detected by the nonlinear bound
propagation preprocessing, while the remaining four infeasibilities are determined by Gurobi.
Each instance is solved within a running time of no more than 30 minutes. The running times are
depicted in Figure 8(a). The average running time is about 5 min, and the median is about 3 min.
From the 39 feasible instances, 25 were confirmed with a zero slack by the NLP validation.

A more detailed view into the solution process of these instances shows that infeasibility is
again rapidly detected (less than a few seconds). In contrast to the first test set, the dual bound
is already improved in the root node or at least within the first 100 nodes of the search tree.
A first primal solution is typically found faster, too—on average after approximately 100 s and
exploring about 2000 nodes. Another observation is that the optimality proof in general does not
require as much effort as in the first test set. Typically, just a few more nodes are explored.

An explanation for the remarkable difference between the solution process of instances of the
test sets (SN4) and (AB6) might be their different origins. The nominations of (SN4) are based on
ordinary, everyday gas delivery situations, which are typically realizable in many different ways
and thus typically contain multiple feasible (nearly) symmetrical solutions. The nominations
from (AB6), however, are based on expert knowledge to describe exceptional extreme situations,
in which the number of admissible discrete decisions is much lower.

4.4 Solutions of the SB approach

In this section, numerical results for the SB approach (see Section 3.2) are presented. On the SN4
test set, 4213 instances are solved, leaving only 14 without solution or proof of infeasibility; 600
instances are proved to be infeasible within the model used by this approach. For 3613 instances,
a feasible solution is found within the time limit. Figure 9 shows the performance profiles for the
run time, branch-and-bound nodes, and NLP validation slack values of this solver on the SN4
test set. The profile shows that the approach solves 90% (3270) of the instances within less than
10 s. More than 97% of the instances are solved within 1 min.

Most solutions (2640 out of 3613) were found in the tree by the subnlp heuristic, which is
included in SCIP by default. Whenever a solution is found that is integer feasible for the linear
relaxation (either by solving the relaxation in a node or by applying a MILP heuristic), the subnlp
heuristic applies a local solver (IPOPT) to the NLP that is obtained from the MINLP by fixing
all integer variables. In our application, this proves to be extremely effective.

The picture looks similar for the 600 instances for which infeasibility could be proved. Here,
in 484 of the instances SCIP presolving already detected the infeasibility. Overall the running
time was less than 10 s for 92% of the 600 instances.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 39

Figure 10. Numerical results on the second test set (AB6) for the SB approach. (a) Running times (s), (b) number of
branch-and-bound nodes, and (c) NLP slack sums for 26 SB feasible instances with positive slack.

While the SB seems extremely fast on a large part of the test set, there are 14 instances for
which neither a solution could be found nor infeasibility could be proved within the time limit of
2 h. Two main reasons can be identified. For two instances, integer feasibility of the relaxation
is hard to reach. In one of these two instances, no integer feasible relaxation is found at all
during the solution process. This instance can be proved to be infeasible with slightly different
settings of the solver. The remaining unsolved instances spend more than half of the time trying
to find a feasible solution in the subnlp heuristic. On these instances, substantial effort is made
to strengthen the relaxation by SB; between 30% and 98% of the branchings are performed on
continuous variables. However, with customized settings, all unsolved instances can be solved
within 2 h resulting in 12 feasible and 2 infeasible instances.

On the vast majority of the instances, surprisingly small effort is made to strengthen the relax-
ation by SB. Only in 133 instances is SB applied at all. On the remaining test set, the relaxation is
strengthened by cutting planes, but branching is not needed. Since we first branch on integer vari-
ables that have fractional values in the relaxation, this can be expected for the instances that are
solved with only a few nodes. However, only 12 of the 100 instances that take most time to find
a feasible solution apply SB. The solution of the most time consuming feasible instance (4649
seconds), for example, does not perform any SB. In this instance, 719,290 nodes are explored
of which only three have an integer feasible solution of the linear relaxation. In the third integer
feasible node, the subnlp heuristic finds a solution.

The SB approach was able to solve all instances from the AB6 test set. Four instances were
recognized to be infeasible, while for the remaining 40 instances, feasible solutions could be
computed. Performance profiles for this test set are depicted in Figure 10.

For two instances, infeasibility was proved in presolving. Proving infeasibility for the other
two instances took 436 and 159 seconds, respectively. Interestingly, neither instance was solved
using SB. All feasible solutions were found in less than 100 s, but only 65% in less than 10 s.

The analysis of the validation of the solutions produced by this approach is as follows. On
the SN4 test set, 2577 out of 3613 (71%) solutions could be validated with slack zero, while
for 1036 a positive slack remains in the NLP validation. On the AB6 test set, only 14 out of
40 solutions (35%) validate with slack zero. Since only one (almost randomly chosen) solution
is passed as a candidate to the validation procedure, local improvement heuristics after a failed
validation could help to increase the number of validated solutions.

4.5 Solutions of the RedNLP approach

For each nomination, the RedNLP approach first uses the binary decisions from the transship-
ment problem (43). If this is not successful, the algorithm is continued by testing 33 given

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

40 M.E. Pfetsch et al.

Figure 11. Numerical results on the first test set (SN4) for the RedNLP approach. (a) Running times (s) and (b) NLP
slack sums for 1136 RedNLP feasible instances with positive slack.

Figure 12. Numerical results on the second test set (AB6) for the RedNLP approach. (a) Running times (s) and (b) NLP
slack sums for 12 RedNLP feasible instances with positive slack.

configurations, which successfully solved other nominations. The solution of the reduced NLP
model is given as a starting point to the detailed validation NLP. The solution is called confirmed
if a solution with zero slack could be found.

For the first test set (SN4) of 4227 nominations generated from statistical information, the
reduced NLP model can solve 4194 nominations, 3731 of which were found using the switching
decisions derived from the solution of the transshipment problem; 3058 of the solutions were
confirmed by the detailed NLP slack model. The total computing times for the reduced NLP
range from 6 to 208 s with an average of 11.78 s and a median of 10 s. Figure 11 shows the
results for this test set.

Out of the 44 nominations in the second test set (AB6), a solution was found for 39 nom-
inations, 27 of which were confirmed. Twenty-two of the solutions were found based on the
transshipment solution. The computing times range from 12 to 101 s with an average of 31.64 s
and a median of 18.5 s. Figure 12 presents the results.

The transshipment problem for this network has 198 variables and 108 equality constraints.
The size of the reduced NLP depends on the chosen switching decisions. The number of variables
varies between 1408 and 1441, the number of equality constraints between 1318 and 1346, and
that of inequality constraints between 60 and 85.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 41

Figure 13. Numerical results on the second test set (SN4) for the MPEC approach. (a) Running times (s) and (b) NLP
slack sums for 1178 MPEC feasible instances with positive slack.

Figure 14. Numerical results on the second test set (AB6) for the MPEC approach. (a) Running times (s) and (b) NLP
slack sums for four MPEC feasible instances with positive slack.

4.6 Solutions of the MPEC approach

The results of the MPEC approach are given in Figures 13 and 14. The 4227 instances of the first
test set (SN4) require an average computing time of about 17 s, with a maximum of 89 s; 2927
of these instances are solved successfully. The final NLP stage requires about 7 s on average
with a maximum of 42 s, and 1749 of the MPEC feasible instances are solved to optimality with
vanishing slacks. All computing times include a preprocessing of variable bounds, which only
takes a few seconds, (Section 4.3).

Constraints that couple discrete decisions of different active elements to select feasible SOMs
(see Section 2.4) can currently not be handled within the MPEC model. These constraints do not
fit the requirements necessary for the problem-tailored MPEC-based reformulation techniques
that are used for the other discrete aspects of the model. Only 30 of the 2927 instances solved
by the validation NLP satisfy these additional constraints. The success rate may be increased by
postprocessing algorithms which revisit ambiguous decisions. These algorithms are subject of
further research.

For the 44 nominations in the second test set (AB6), the MPEC model finds 10 MPEC fea-
sible solutions, 6 of them with zero slack in the validation NLP. No SOM is fulfilled. The four
infeasible instances are correctly identified as MPEC-infeasible, i.e. the MPEC did not converge
to a feasible point. The computing time is 29 s on average, with median 31, and maximum 37 s.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

42 M.E. Pfetsch et al.

Several typical reasons for unsuccessful runs can be observed. The penalization approach of
stage 1 attempts to drive the violations of complementarity constraints to zero. If some vio-
lations remain positive in a local minimum, we have an infeasible solution (which may even
involve technically impossible states such as ‘compressing’ control valves). In this case, stage 1
may be repeated with a different regularization scheme that treats complementarity as explicit
constraints. Another difficulty arises from numerical inaccuracy: non-zero constraint values that
are smaller than the thresholds of the decision heuristics of stage 1 may lead to wrong discrete
decisions. For example, very small but non-zero flows into a subnetwork behind a valve may
result in closing this valve. Finally, the simplified compressor group model may lead to an overly
optimistic decision for a compressor group in stage 1. Especially when compressors need to be
operated close to the boundary of their operation range, as in the worst-case nominations, this
may produce first-stage solutions outside the domain of convergence of stage 2.

5. Comparison and combination of the approaches

Sections 4.3–4.6 present an individual analysis of the performance of our four approaches to
obtain good discrete decisions and starting points for the NLP validation step. In this section,
we compare the different results w.r.t. NLP validation and discuss their combination to yield a
reliable solver for NoVa.

5.1 Comparison of the approaches and their results

As outlined in Section 3.5, we are validating the solutions of the different solvers using a detailed
NLP model. Before passing the solution to the NLP, we check whether all discrete decisions are
taken in accordance with the technical restrictions described by the SOM. The latter check is
often the reason that a solution of the MPEC approach is rejected. (For the other approaches this
test is satisfied by design—and only included to catch implementation errors.) For this reason,
we will not compare the MPEC heuristic together with the other approaches in the following.

In line with the description of Section 3.5, we call solutions that yield an NLP slack below
the precision of the validation NLP (which allows constraint violations of at most 10−5) valid
or confirmed. We repeat that this might exclude valid solutions, since the validation NLP might
only find a local optimum.

On the test set SN4, the overall results of the MILP, SB, and RedNLP approaches are shown
in Table 1 and Figure 15. Each solver can report at most one solution to be validated by the
detailed NLP. The times now include the time needed for the validation NLP. All instances that
are solved by the SB approach within 10 s are infeasible and therefore no validation with the
NLP model is carried out. This explains the notable ‘bump’ in the graph of the SB approach
in Figure 15. Moreover, when the MILP cannot prove optimality within the time limit, but has
found a feasible solution, the best solution found is validated at the very end of the computation.
This explains the ‘jump’ of the MILP success at the 7200 s line.

The computations on the test set AB6 are displayed in Table 2 and Figure 16.
When analyzing the results, we note that the SB and the RedNLP approach can both produce

solutions for many instances in a rather short time. The MILP approach is by far slower, but has
a significantly higher success rate. This is partly due to the parameter setting choice for the MILP
approach to yield high accuracy.

The differences between the SB and the RedNLP approach become visible when comparing
the numbers in Tables 1 and 2. The SB approach is able to detect infeasibility, whereas the
RedNLP approach just reports that no solution has been found.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 43

Figure 15. Profile of the run times (s) for test set SN4 including NLP validation; y-axis: percentage of confirmed or
infeasible instances (total: 4227).

Table 1. Results of the solvers on test set SN4 (4227 total instances): the columns give the number of
instances for which a solution with 0 slack could be found by NLP validation, the number of instances
detected to be infeasible (RedNLP cannot detect infeasibility), the number of instances for which a solution
with positive slack could be found, and the number of instances for which no solution could be found.

Slack 0 Infeasible Slack > 0 No solution

MILP 3245 694 265 23
SB 2577 600 1036 14
RedNLP 3058 0 1136 33

Figure 16. Profile of the run times (s) for test set AB6 including NLP validation; y-axis: percentage of confirmed or
infeasible instances (total: 44).

Table 2. Results of the solvers on test set AB6 (44
instances); information as in Table 1.

Slack 0 Infeasible Slack > 0 No solution

MILP 25 5 14 0
SB 14 4 26 0
RedNLP 27 0 12 5

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

44 M.E. Pfetsch et al.

The differences between the MILP and SB approach with respect to their validation suc-
cess might be explained as follows. One principal difference in the models is the compressor
model. The MILP decides which configurations of the compressor groups are used in the model,
while for the SB approach the capability of a compressor group is modeled by the convex
hull over all configurations, and a feasible or a ‘least’ infeasible configuration is selected in a
postprocessing step. This might include convexification errors and, thus, bad decisions in the
surroundings of compressor groups. Apparently, especially on the AB6 instances, it is crucial to
choose appropriate configurations for the compressor groups.

The results for the AB6 test set are similar to the ones for the SN4 test set, but the NLP
validation results are worse for all approaches. One reason is that the ratio of feasible to infeasible
instances is different in the two test sets. It seems to be easier for the SB and the MILP approach
to detect infeasibilities than to find primal solutions for challenging instances. This also explains
the comparatively better results of the RedNLP approach.

5.2 Combined solver

We have combined the MILP, SB, and RedNLP approaches presented in Section 3 to form a
solver that can be used to reliably solve the NoVa problem for real-world gas network instances
as described in the previous sections.

The analysis of the results is complicated by the fact that the models are not direct refinements
of each other. All models differ at one or the other point from the model of the validation NLP.
For instance, this holds for current implementation of the MILP model of Section 3.1: it could, in
principle, be extended to form a proper relaxation of the MINLP corresponding to the validation
NLP. This is, however, undesirable in practice: the non-differentiable functions like sgn and
absolute values appearing in the nonlinear models usually have to be smoothed. An MILP model,
on the other hand, can model these functions. The smoothing functions, however, may lead to
problems in the MILP setting and inexactness. This means that different models are preferred
for, say, the MILP model and the validation NLP.

Consequently, the approaches can contradict each other: one approach might find a feasible
solution, while another might report the instance as infeasible. Our approach is, nevertheless, to
run all solvers for all models in parallel. As above, each solver can report at most one solution
to be validated by the detailed NLP. Recall once again that this approach might exclude valid
solutions as we cannot be sure that the validation NLP is not stuck in a local optimum.

For the purpose of analysis, we call such a parallel run successful, if the solvers do not con-
tradict each other and either at least one solver finds a solution with zero slack or at least one
solver reports infeasibility. Otherwise such a run is unsuccessful. For the following computa-
tional experiments we used the same infrastructure as for the other tests. The parameters of the
MILP model of Section 3.1 are calibrated to reliably yield feasible solutions at the cost of a long
running time. We use the other solvers to generate feasible solutions quickly.

The results of the combined solver on the test set SN4 are given in Figure 17. Totally, 4157
(more than 98%) of the 4227 instances in the test set can be solved successfully, whereas we are
unsuccessful on 70 of the instances. Here, 38 of the instances yield a contradictory result, and the
remaining 32 failed to yield any definitive result. The times shown in Figure 17 are with respect
to the first solver that reports the final result (now including the time needed to validate feasible
solutions with the validation NLP).

The results of the combined approach on the test set AB6 are given in Figure 18 (using the
same structure as Figure 17). Of the 44 instances in the test set, 38 (more than 86%) can be solved
successfully, whereas we are unsuccessful on six of the instances. Here, none of the instances
yield a contradictory result, and the remaining six fail to yield any definitive result.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 45

Figure 17. Profile of the run times (s) for the combined approach on test set SN4 including NLP validation; y-axis:
percentage of confirmed or infeasible instances (total: 4227).

Figure 18. Profile of the run times (s) for the combined approach on test set AB6 including NLP validation; y-axis:
percentage of confirmed or infeasible instances (total: 44).

6. Summary

Faced with a complex and numerically difficult mixed-integer non-convex nonlinear feasibility
problem, we have shown how to utilize the full range of mathematical optimization technology
(NLP, MILP, MINLP) in this context.

Our two-stage approach is finally able to successfully solve nearly 98% of the instances with
high precision. The paper describes the two key reasons for this success:

• Splitting the problem into two phases: A first phase using approximate models for finding
settings for the discrete decisions and then using the results of the first phase to compute
highly precise solutions using an NLP.

• Combination of four quite distinct approaches to solve phase one: While all the approaches
in their way are quite successful, none of them for itself is able to come near the combined
performance.

Nevertheless, while the networks used in this paper are large in comparison to the state of art,
they are small compared to the real European pipeline network. We are currently trying to further
develop our approach to be able to solve networks which are at least five times bigger.

Another area that leaves room for improvement is the transition from the approximate models
to the detailed NLP model. Due to the corresponding model differences, it is not entirely clear
what the best objective for the approximate models of the first phase is. In principle, any feasible
solution to the approximate models could be tried in the detailed model. This is one of the reasons
why we included the MPEC approach. The model used here is the one which is most similar to
the detailed NLP model. Consequently, those instances that can be solved typically exhibit no or

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

46 M.E. Pfetsch et al.

only very small slacks in the validation. The validation performance of the MPEC approach is
currently not comparable to the other approaches, because of the missing subnetwork operation
modes constraints. Thus, the MPEC approach is promising, if there is a way to address these
issues.

Acknowledgements

We thank Klaus Spreckelsen from OGE GmbH for his support and Timo Berthold and Stefan Heinz from the Math-
eon B20 project for their support on adapting the SCIP solver. We thank the referees for their constructive comments
that helped to improve the presentation of the paper. The coauthor Armin Fügenschuh acknowledges a Konrad-Zuse
Fellowship.

Funding

This work has partially been supported by the Federal Ministry of Economics and Technology.

References

[1] T. Achterberg, SCIP: Solving constraint integer programs, Math. Program. Comput. 1(1) (2009), pp. 1–41.
[2] J. André, F. Bonnans, and L. Cornibert, Optimization of capacity expansion planning for gas transportation

networks, Eur. J. Oper. Res. 197(3) (2009), pp. 1019–1027.
[3] F. Babonneau, Y. Nesterov, and J.-P. Vial, Design and operations of gas transmission networks, Oper. Res. 60(1)

(2012), pp. 34–47.
[4] R. Bagnara, P. M. Hill, and E. Zaffanella, The Parma Polyhedra Library: Toward a complete set of numerical

abstractions for the analysis and verification of hardware and software systems, Sci. Comput. Program. 72(1–2)
(2008), pp. 3–21.

[5] P. Bales, Hierarchische Modellierung der Eulerschen Flussgleichungen in der Gasdynamik, Master’s thesis,
Technische Universität Darmstadt, 2005.

[6] B.T. Baumrucker and L.T. Biegler, MPEC strategies for cost optimization of pipeline operations, Comput. Chem.
Eng. 34(6) (2010), pp. 900–913.

[7] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, Branching and bounds tightening techniques for non-convex
MINLP, Optim. Methods Softw. 24(4–5) (2009), pp. 597–634.

[8] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee, A. Lodi, F. Margot,
N. Sawaya, and A. Wächter, An algorithmic framework for convex mixed integer nonlinear programs, Discrete
Optim. 5(2) (2008), pp. 186–204.

[9] J. Bonnans, G. Spiers, and J.-L. Vie, Global optimization of pipe networks by the interval analysis approach: The
Belgium network case, Rapport de Recherche RR 7796, INRIA, 2011.

[10] C. Borráz-Sánchez and R. Ríos-Mercado, A non-sequential dynamic programming approach for natural gas
network optimization, WSEAS Trans. Syst. 3 (2004), pp. 1384–1389.

[11] Bundesministerium der Justiz, Verordnung über den Zugang zu Gasversorgungsnetzen (Gasnetzzugangsverordnung–
GasNZV), July 2005.

[12] J. Burgschweiger, B. Gnädig, and M.C. Steinbach, Nonlinear programming techniques for operative planning in
large drinking water networks, Open Appl. Math. J. 3 (2009), pp. 14–28.

[13] J. Burgschweiger, B. Gnädig, and M.C. Steinbach, Optimization models for operative planning in drinking water
networks, Optim. Eng. 10(1) (2009), pp. 43–73.

[14] R. Byrd, J. Nocedal, and R. Waltz, Knitro: An integrated package for nonlinear optimization, in Large-Scale Nonlin-
ear Optimization, Volume 83 of Nonconvex Optimization and Its Applications, G. Pillo, M. Roma, and P. Pardalos,
eds., Springer Berlin Heidelberg, 2006, pp. 35–59.

[15] R. Carter, Compressor station optimization: Computational accuracy and speed, Tech. Rep. PSIG 9605, Pipeline
Simulation Interest Group, 1996.

[16] R.G. Carter, Pipeline optimization: Dynamic programming after 30 years, Proceedings of the 30th PSIG Annual
Meeting, Denver, CO, 1998.

[17] R. Carter, D. Schroeder, and T. Harbick, Some causes and effects of discontinuities in modeling and optimizing gas
transmission networks, Tech. Rep. PSIG 9308, Pipeline Simulation Interest Group, 1993.

[18] G. Cerbe, Grundlagen der Gastechnik: Gasbeschaffung – Gasverteilung – Gasverwendung, Hanser Verlag, Leipzig,
2008.

[19] A. Chebouba, F. Yalaoui, A. Smati, L. Amodeo, K. Younsi, and A. Tairi, Optimization of natural gas pipeline
transportation using ant colony optimization, Comput. Oper. Res. 36 (2009), pp. 1916–1923.

[20] C.F. Colebrook, Turbulent flow in pipes with particular reference to the transition region between smooth and rough
pipe laws, J. Inst. Civil Eng. 11 (1939), pp. 133–156.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 47

[21] P. Domschke, B. Geißler, O. Kolb, J. Lang, A. Martin, and A. Morsi, Combination of nonlinear and linear
optimization of transient gas networks, INFORMS J. Comput. 23 (2011), pp. 605–617.

[22] A.S. Drud, CONOPT—a large-scale GRG code, INFORMS J. Comput. 6(2) (1994), pp. 207–216.
[23] K. Ehrhardt and M.C. Steinbach, Nonlinear optimization in gas networks, in Modeling, Simulation and Optimization

of Complex Processes, H.G. Bock, E. Kostina, H.X. Phu, and R. Ranacher, eds., Springer Berlin Heidelberg, 2005,
pp. 139–148.

[24] European Parliament and Council, Regulation (ec) no. 715/2009: Conditions for access to the natural gas transmis-
sion networks, 13 July 2009; available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:211:
0036:0054:en:PDF, Visited 10/2012.

[25] M. Feistauer, Mathematical Methods in Fluid Dynamics, Volume 67 of Pitman Monographs and Surveys in Pure
and Applied Mathematics Series, Longman Scientific & Technical, Harlow, 1993.

[26] E.J. Finnemore and J.E. Franzini, Fluid Mechanics with Engineering Applications, 10th ed., McGraw-Hill,
New York, 2002.

[27] A. Fügenschuh, B. Geißler, A. Martin, and A. Morsi, The transport PDE and mixed-integer linear programming,
in Models and Algorithms for Optimization in Logistics, C. Barnhart, U. Clausen, U. Lauther, and R.H. Möhring,
eds., Number 09261 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2009.

[28] A. Fügenschuh, H. Homfeld, H. Schülldorf, and S. Vigerske, Mixed-integer nonlinear problems in transportation
applications, in Proceedings of the 2nd International Conference on Engineering Optimization (CD-ROM), H.
Rodrigues. J. Herskovits, C. Mota Soares, J. Miranda Guedes, J. Folgado, A. Araújo, F. Moleiro, J.P. Kuzhichalil,
J. Aguilar Madeira, and Z. Dimitrovová, eds., Instituto Superior Técnico, Lisboa, 2010.

[29] M. Fukushima and J.-S. Pang, Convergence of a smoothing continuation method for mathematical programming
with complementarity constraints, in Ill-Posed Variational Problems and Regularization Technique, Lecture Notes
in Economics and Mathematical Systems, Vol. 477, M. Théra and R. Tichatschke, eds., Springer Berlin Heidelberg,
1999, pp. 99–110.

[30] B. Furey, A sequential quadratic programming-based algorithm for optimization of gas networks, Automatica 29(6)
(1993), pp. 1439–1450.

[31] B. Geißler, Towards globally optimal solutions for MINLPs by discretization techniques with applications in gas
network optimization, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2011.

[32] B. Geißler, O. Kolb, J. Lang, G. Leugering, A. Martin, and A. Morsi, Mixed integer linear models for the
optimization of dynamical transport networks, Math. Methods Oper. Res. 73 (2011), pp. 339–362.

[33] B. Geißler, A. Martin, A. Morsi, and L. Schewe, Using piecewise linear functions for solving MINLPs, in Mixed
Integer Nonlinear Programming, Volume 154 of The IMA Volumes in Mathematics and Its Applications, J. Lee
and S. Leyffer, eds., Springer, New York, 2012, pp. 287–314.

[34] General Algebraic Modeling System (GAMS); software available at http://www.gams.com/.
[35] P.E. Gill, W. Murray, and M.S. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization,

SIAM J. Optim. 12(4) (2002), pp. 979–1006.
[36] B. Gilmour, C. Luongo, and D. Schroeder, Optimization in natural gas transmission networks: A tool to improve

operational efficiency, Tech. Rep., Stoner Associates Inc., 1989.
[37] Z. Gu, E. Rothberg, and R. Bixby, Gurobi Optimizer Reference Manual, Version 5.0, Gurobi Optimization Inc.,

Houston, TX, 2012.
[38] Y. Hamam and A. Brameller, Hybrid method for the solution of piping networks, Proc. IEE 118(11) (1971), pp.

1607–1612.
[39] C.T. Hansen, K. Madsen, and H.B. Nielsen, Optimization of pipe networks, Math. Program. 52(1–3) (1991), pp.

45–58.
[40] P. Hofer, Beurteilung von Fehlern in Rohrnetzberechnungen (error evaluation in calculation of pipelines), GWF

Gas/Erdgas 11 (1973), pp. 113–119.
[41] X.M. Hu and D. Ralph, Convergence of a penalty method for mathematical programming with complementarity

constraints, J. Optim. Theory Appl. 123 (2004), pp. 365–390.
[42] IBM Corporation, Armonk, USA, User’s Manual for CPLEX, 12.4 ed., 2011.
[43] Jerníček, Steady-state optimization of gas transport, Proceedings of the 2nd International Workshop SIMONE

on Innovative Approaches to Modeling and Optimal Control of Large Scale Pipeline Networks, Prague, Czech
Republic, 1993.

[44] T. Koch, H. Leövey, R. Mirkov, W. Römisch, and I. Wegner-Specht, Szenariogenerierung zur Modellierung der
stochastischen Ausspeiselasten in einem Gastransportnetz, VDI-Berichte: Optimierung in der Energiewirtschaft
2157 (2011), pp. 115–125.

[45] T. Koch, D. Bargmann, M. Ebbers, A. Fügenschuh, B. Geißler, N. Geißler, R. Gollmer, U. Gotzes, C. Hayn,
H. Heitsch, R. Henrion, B. Hiller, J. Humpola, I. Joormann, V. Kühl, T. Lehmann, R. Lenz, H. Leövey, A. Mar-
tin, R. Mirkov, A. Möller, A. Morsi, D. Oucherif, A. Pelzer, M.E. Pfetsch, L. Schewe, W. Römisch, J. Rövekamp,
M. Schmidt, R. Schultz, R. Schwarz, J. Schweiger, K. Spreckelsen, C. Stangl, M.C. Steinbach, A. Steinkamp,
I. Wegner-Specht, and B.M. Willert, From Simulation to Optimization: Evaluating Gas Network Capacities, Book
in preparation, 2012.

[46] J. Králik, Compressor Stations in SIMONE, Proceedings of the 2nd International Workshop SIMONE on Innovative
Approaches to Modeling and Optimal Control of Large Scale Pipeline Networks, Prague, Czech Republic, 1993.

[47] H. Lall and P. Percell, A dynamic programming based Gas Pipeline Optimizer, in Analysis and Optimization of
Systems, Volume 144 of Lecture Notes in Control and Information Sciences, A. Bensoussan and J. Lions, eds.,
Springer Berlin Heidelberg, 1990, pp. 123–132.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:211:0036:0054:en:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:211:0036:0054:en:PDF
http://www.gams.com/

48 M.E. Pfetsch et al.

[48] C. Li, W. Jia, Y. Yang, and X. Wu, Adaptive genetic algorithm for steady-state operation optimization in natural
gas networks, J. Softw. 6 (2011), pp. 452–459.

[49] LIWACOM Informations GmbH and SIMONE Research Group s.r.o, Gleichungen und Methoden, Benutzerhand-
buch, 2004.

[50] M.V. Lurie, Modeling of Oil Product and Gas Pipeline Transportation, Wiley-VCH, Weinheim, 2008.
[51] D. Mahlke, A. Martin, and S. Moritz, A simulated annealing algorithm for transient optimization in gas networks,

Math. Methods Oper. Res. 66(1) (2007), pp. 99–116.
[52] D. Mahlke, A. Martin, and S. Moritz, A mixed integer approach for time-dependent gas network optimization,

Optim. Methods Softw. 25(4) (2010), pp. 625–644.
[53] J. Mallinson, A. Fincham, S. Bull, J. Rollet, and M. Wong, Methods for optimizing gas transmission networks, Ann.

Oper. Res. 43 (1993), pp. 443–454.
[54] H. Markowitz and A. Manne, On the solution of discrete programming problems, Econometrica 25 (1957), pp.

84–110.
[55] A. Martin, M. Möller, and S. Moritz, Mixed integer models for the stationary case of gas network optimization,

Math. Program. 105(2) (2006), pp. 563–582.
[56] J. Mischner, Notices about hydraulic calculations of gas pipelines, GWF Gas/Erdgas 4 (2012), pp. 158–273.
[57] M. Möller, Mixed integer models for the optimisation of gas networks in the stationary case, PhD thesis, Technische

Universität Darmstadt, 2004.
[58] S. Moritz, A mixed integer approach for the transient case of gas network optimization, PhD thesis, Technische

Universität Darmstadt, 2007.
[59] J. Murdock, Fundamental Fluid Mechanics for the Practicing Engineer, Mechanical Engineering, Marcel Dekker,

New York, 1993.
[60] J. Nikuradse, Strömungsgesetze in rauhen Rohren, Forschungsheft auf dem Gebiete des Ingenieurwesens, VDI-

Verlag, Düsseldorf, 1933.
[61] J. Nikuradse, Laws of Flow in Rough Pipes, Volume Technical Memorandum 1292, National Advisory Committee

for Aeronautics, Washington, DC, 1950.
[62] A.J. Osiadacz, Simulation and Analysis of Gas Networks, Spon, London, 1987.
[63] A. Osiadacz and S. Swierczewski, Optimal control of gas transportation systems, Proceedings of IEEE Conference

on Control Applications, Warsaw, Poland, Vol. 2, 1994, pp. 795–796.
[64] I. Papay, OGIL Musz. Tud. Kozl., 1968.
[65] T.A. Perdicoúlis and L. Fletcher, Decentralised dynamic optimisation of gas, 31st Annual Meeting of Pipeline

Simulation Interest Group, St. Louis, MI, USA, 1999.
[66] N. Ramchandani, Optimisation of gas networks using Nash equilibria derived from dynamic non-cooperative game

theory, PhD thesis, Standford University, 1993.
[67] R.Z. Ríos-Mercado and C. Borraz-Sánchez, Optimization problems in natural gas transmission systems: A state-

of-the-art survey, Submitted, January 2012.
[68] R.Z. Ríos-Mercado, S. Wu, L.R. Scott, and E.A. Boyd, A reduction technique for natural gas transmission network

optimization problems, Ann. Oper. Res. 117(1) (2002), pp. 217–234.
[69] J. Saleh, ed., Fluid Flow Handbook, McGraw-Hill Handbooks, McGraw-Hill, New York, 2002.
[70] M. Schmidt, A generic interior-point framework for nonsmooth and complementarity constrained nonlinear

optimization, PhD thesis, Gottfried Wilhelm Leibniz Universität Hannover, 2013.
[71] M. Schmidt, M.C. Steinbach, and B.M. Willert, High detail stationary optimization models for gas networks—

Part 1: Model components, IfAM Preprint 94, Institute of Applied Mathematics, Leibniz Universität, Hannover,
2012, to appear in Optim. Eng.

[72] M. Schmidt, M. Steinbach, and B. Willert, A primal heuristic for nonsmooth mixed integer nonlinear optimization,
in Facets of Combinatorial Optimization, M. Jünger and G. Reinelt, eds., Springer Verlag, Berlin, 2013, pp. 295–
320.

[73] S. Scholtes, Convergence properties of a regularization scheme for mathematical programs with complementarity
constraints, SIAM J. Optim. 11(4) (2001), pp. 918–936.

[74] SCIP: Solving constraint integer programs, 2012; software available at http://scip.zib.de/.
[75] E. Smith and C. Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global

optimization of nonconvex MINLPs, Comput. Chem. Eng. 23 (1999), pp. 457–478.
[76] M.C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math. 203(2) (2007),

pp. 345–361.
[77] O. Strusberg and S. Engell, Optimal control of switched continuous systems using mixed-integer programming, 15th

IFAC World Congress of Automatic Control, Barcelona, Spain, 2002.
[78] M. Tawarmalani and N. Sahinidis, Convexification and Global Optimization in Continuous and Mixed-Integer

Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer Academic Publishers, Boston,
2002.

[79] M. Tawarmalani and N. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and
computational study, Math. Program. 99 (2004), pp. 563–591.

[80] M. Tawarmalani and N. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Math. Program.
103 (2005), pp. 225–249.

[81] S. Vigerske, Decomposition in multistage stochastic programming and a constraint integer programming approach
to mixed-integer nonlinear programming, PhD thesis, Humboldt-Universität zu Berlin, 2013.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

http://scip.zib.de/

Optimization Methods & Software 49

[82] Z. Vostrý, Transient optimization of gas transport and distribution, Proceedings of the 2nd International Workshop
SIMONE on Innovative Approaches to Modeling and Optimal Control of Large Scale Pipeline Networks, Prague,
Czech Republic, 1993.

[83] A. Wächter and L.T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for
large-scale nonlinear programming, Math. Program. 106(1) (2006), pp. 25–57.

[84] T. Westerlund and R. Pörn, Solving pseudo-convex mixed integer optimization problems by cutting plane techniques,
Optim. Eng. 3 (2002), pp. 253–280.

[85] D. de Wolf and Y. Smeers, Optimal dimensioning of pipe networks with application to gas transmission networks,
Oper. Res. 44(4) (1996), pp. 596–608.

[86] D. De Wolf and Y. Smeers, The gas transmission problem solved by an extension of the simplex algorithm, Manag.
Sci. 46(11) (2000), pp. 1454–1465.

[87] P.J. Wong and R.E. Larson, Optimization of natural-gas pipeline systems via dynamic programming, IEEE Trans.
Automat. Control 15(5) (1968), pp. 475–481.

[88] S. Wright, M. Somani, and C. Ditzel, Compressor station optimization, Tech. Rep., Pipeline Simulation Interest
Group, Denver, CO, 1998.

[89] S. Wu, R.Z. Ríos-Mercado, E.A. Boyd, and L.R. Scott, A reduction technique for natural gas transmission network
optimization problems, Math. Comput. Model. 31(2) (2000), pp. 197–220.

[90] J. Zhang and D. Zhu, A bilevel programming method for pipe network optimization, SIAM J. Optim. 6(3) (1996),
pp. 838–857.

[91] H. Zimmer, Calculating optimum pipeline operations, Tech. Rep. SAND2009-5066C, El Paso Natural Gas
Company, 1975.

Appendix

In this section, we collect detailed results on the 44 instances in the AB6 test set for the MILP, SB, RedNLP, and MPEC
approaches described in Section 3, see Tables A1, A2, A3, and A4, respectively. The tables contain data that are specific
to the respective approach. In all tables, ‘Name’ refers to the name of the instance, and ‘Time’ shows the time (in seconds)
needed for the specific approach, excluding the time for NLP validation. For each approach, ‘Status’ refers to the status of
the NLP validation: it displays the value of the NLP validation slack, if the approach produced a solution. If the approach
proved infeasibility or found no solution, it displays ‘inf’ or ‘nosol’, respectively. The last column (‘Validation time’)
displays the time need for NLP validation (in seconds).

Additionally, in Table A1 for the MILP approach, ‘Nodes’ refers to the number of branch-and-bound nodes, ‘Vari-
ables’ the total number of variables, ‘Binary’ the number of binary variables, and ‘Constraints’ the number of constraints.
Table A2 for the SB approach additionally gives the number of branching on integer variables in ‘Variable Branchings’
and in column ‘Spatial Branchings’ the number of SBs. Table A3 for the RedNLP displays in the column labeled ‘Trans-
shipment’ whether the binary decisions found by the transshipment heuristic lead to a feasible solution. The column
‘Tested Configs’ gives the number of tested preselected configurations. Table A4 for the MPEC approach additionally
shows the status after the stage X in ‘Status X’ and the running time of IPOPT in seconds in ‘Time X’.

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

50 M.E. Pfetsch et al.

Table A1. Detailed results of the MILP approach on test set AB6.

Name Time Status Nodes Variables Binary Constraints Validation time

01-1011 76 0.00 56 14,873 5482 23,835 9
02-1011 210 0.00 4835 15,187 5638 24,308 9
04-1011 26 84.01 304 14,851 5478 23,781 8
03-1011 52 6.80 1904 14,805 5455 23,712 8
05-1011 123 132.55 4970 14,501 5296 23,277 8
06-1011 96 8.05 3447 15,436 5768 24,676 8
07-1011 119 0.00 2331 14,843 5463 23,778 10
08-1011 437 0.00 42,335 14,577 5342 23,390 10
09-1011 73 0.00 2077 14,719 5412 23,583 9
09-1011-inf 9 inf – – – – –
10-1011 90 0.00 1324 14,659 5377 23,520 9
01-1112 110 0.00 7674 14,865 5477 23,820 8
02-1112 189 0.00 15,626 15,179 5634 24,296 9
04-1112 29 86.45 866 14,871 5488 23,811 8
03-1112 26 71.77 76 14,851 5478 23,781 8
05-1112 95 55.03 3204 14,551 5321 23,352 9
06-1112 185 22.88 26,767 15,432 5766 24,670 7
06-1112-inf 39 inf 0 15,432 5766 24,670 –
07-1112 147 10.13 14,837 14,835 5459 23,766 8
08-1112 1838 0.00 333,372 14,571 5339 23,381 10
09-1112 84 0.00 4411 14,865 5485 23,802 10
10-1112 168 0.00 17,231 14,629 5362 23,475 8
01-1213 115 0.00 2735 14,903 5496 23,877 9
02-1213 182 0.00 23,920 15,175 5632 24,290 10
04-1213 26 66.75 402 14,871 5488 23,811 8
04-1213-inf 22 inf 0 14,871 5488 23,811 –
04-1213-inf-m 47 inf 5 14,908 5505 23,887 –
03-1213 24 0.00 0 14,801 5453 23,706 10
05-1213 33 inf 0 14,575 5333 23,388 –
06-1213 155 27.86 18,846 15,334 5717 24,523 8
07-1213 115 0.00 6580 14,829 5456 23,757 9
08-1213 459 0.00 26,949 14,605 5356 23,432 10
09-1213 398 0.00 196,466 14,863 5484 23,799 9
10-1213 173 0.00 13,594 14,617 5356 23,457 9
01-1314 204 0.00 1943 14,867 5478 23,823 9
02-1314 153 0.00 7797 15,171 5630 24,284 9
04-1314 24 2.38 0 14,873 5489 23,814 6
03-1314 26 0.00 0 14,801 5453 23,706 8
05-1314 77 18.08 1618 14,549 5320 23,349 8
06-1314 112 28.27 15,513 15,378 5739 24,589 7
07-1314 117 0.00 3584 14,829 5456 23,757 8
08-1314 458 0.00 9135 14,603 5355 23,429 10
09-1314 84 0.00 12,742 14,863 5484 23,799 9
10-1314 172 0.00 2067 14,615 5355 23,454 10

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 51

Table A2. Detailed results of the SB approach on test set AB6.

Name Time Status Variable branchings SBs Nodes Validation time

01-1011 10 0.16 0 0 0 10
02-1011 13 34.54 96 1 136 9
04-1011 10 233.00 35 7 53 8
03-1011 10 12.26 38 0 63 9
05-1011 13 656.57 101 0 167 9
06-1011 13 53.45 251 0 439 8
07-1011 12 0.00 92 58 263 10
08-1011 10 526.43 24 0 22 8
09-1011 10 0.09 44 4 59 9
09-1011-inf 7 inf 3 0 1 –
10-1011 9 0.00 17 0 17 10
01-1112 29 0.00 1728 0 3366 10
02-1112 9 0.00 30 0 36 10
04-1112 9 370.67 14 0 16 8
03-1112 9 190.47 49 0 80 9
05-1112 100 0.00 4449 4181 17, 194 10
06-1112 10 0.16 122 0 219 8
06-1112-inf 438 inf 37, 548 0 74, 648 –
07-1112 14 0.00 202 0 341 9
08-1112 12 187.67 161 0 243 10
09-1112 8 10.04 22 0 22 8
10-1112 8 0.00 22 1 21 9
01-1213 10 34.58 15 0 17 10
02-1213 11 0.00 63 0 109 10
04-1213 9 2.21 46 0 71 9
04-1213-inf 7 inf 0 0 0 –
04-1213-inf-m 159 inf 11, 653 0 23, 042 –
03-1213 10 8.89 75 0 133 12
05-1213 48 419.13 2255 0 4325 9
06-1213 9 4.16 25 0 23 9
07-1213 9 36.65 18 0 18 14
08-1213 9 0.00 11 0 13 9
09-1213 7 13.17 14 0 14 8
10-1213 9 0.00 22 0 22 10
01-1314 9 36.74 12 0 13 9
02-1314 10 0.00 70 0 123 9
04-1314 9 9.32 49 0 78 8
03-1314 10 10.54 15 0 16 14
05-1314 58 533.70 3464 0 6790 9
06-1314 12 0.11 142 1 242 9
07-1314 12 0.00 87 0 134 10
08-1314 9 0.00 13 0 13 10
09-1314 10 0.02 24 9 37 9
10-1314 10 0.00 25 0 23 10

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

52 M.E. Pfetsch et al.

Table A3. Detailed results of the RedNLP approach on test set AB6.

Name Time Status Transshipment Tested configs Validation time

01-1011 17 0.00 Yes 0 9
02-1011 15 0.00 Yes 0 9
04-1011 27 0.00 No 4 7
03-1011 24 0.00 No 4 8
05-1011 29 166.59 No 2 9
06-1011 76 nosol – 33 –
07-1011 17 0.00 Yes 0 8
08-1011 12 436.10 Yes 0 44
09-1011 59 0.00 No 26 9
09-1011-inf 98 nosol – 33 –
10-1011 17 0.00 Yes 0 9
01-1112 16 0.00 Yes 0 8
02-1112 14 0.00 Yes 0 8
04-1112 41 0.00 No 18 9
03-1112 27 0.00 No 4 9
05-1112 21 27.07 Yes 0 7
06-1112 18 153.81 No 1 8
06-1112-inf 78 nosol – 33 –
07-1112 17 0.00 Yes 0 9
08-1112 13 560.38 Yes 0 7
09-1112 101 0.00 No 26 9
10-1112 16 0.00 Yes 0 8
01-1213 17 0.00 Yes 0 10
02-1213 14 0.00 Yes 0 8
04-1213 41 0.00 No 18 9
04-1213-inf 80 nosol – 33 –
04-1213-inf-m 82 nosol – 33 –
03-1213 26 0.00 No 4 9
05-1213 23 35.78 Yes 0 8
06-1213 18 0.11 No 1 8
07-1213 19 0.00 Yes 0 9
08-1213 13 279.50 Yes 0 8
09-1213 86 0.00 No 26 9
10-1213 14 0.00 Yes 0 9
01-1314 17 0.00 Yes 0 8
02-1314 15 0.00 Yes 0 9
04-1314 33 0.00 No 4 8
03-1314 26 0.00 No 4 9
05-1314 27 225.91 No 2 8
06-1314 17 123.70 No 1 8
07-1314 17 0.00 Yes 0 9
08-1314 12 292.22 Yes 0 9
09-1314 28 0.03 No 4 8
10-1314 14 0.00 Yes 0 8

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

Optimization Methods & Software 53

Table A4. Detailed results of the MPEC approach on test set AB6 (instances with violated SOMs
in italics).

Name Time Status Status 1 Time 1 Status 2 Time 2 Validation Time

01-1011 33 nosol optimal 3 infeasible 2 –
02-1011 35 0.00 optimal 4 optimal 1 9
04-1011 36 nosol optimal 4 infeasible 2 –
03-1011 29 nosol optimal 2 infeasible 2 –
05-1011 36 nosol optimal 5 infeasible 1 –
06-1011 37 nosol optimal 4 infeasible 7 –
07-1011 35 55.28 optimal 3 optimal 2 11
08-1011 35 nosol optimal 5 infeasible 1 –
09-1011 28 nosol optimal 2 optimal 2 –
09-1011-inf 21 nosol infeasible 3 – – –
10-1011 36 nosol optimal 4 infeasible 1 –
01-1112 32 nosol optimal 3 optimal 1 –
02-1112 34 nosol optimal 4 infeasible 3 –
04-1112 29 nosol optimal 3 optimal 1 –
03-1112 32 nosol optimal 3 optimal 1 –
05-1112 31 nosol optimal 2 infeasible 1 –
06-1112 36 nosol optimal 5 infeasible 3 –
06-1112-inf 32 nosol optimal 5 infeasible 1 –
07-1112 33 nosol optimal 2 optimal 2 –
08-1112 31 nosol optimal 4 infeasible 1 –
09-1112 32 nosol optimal 4 infeasible 2 –
10-1112 34 1.62 optimal 5 optimal 1 8
01-1213 32 nosol optimal 1 infeasible 2 –
02-1213 31 0.00 optimal 3 optimal 1 10
04-1213 32 nosol optimal 3 infeasible 2 –
04-1213-inf 29 nosol optimal 2 infeasible 2 –
04-1213-inf-m 30 nosol optimal 2 infeasible 1 –
03-1213 32 nosol optimal 4 optimal 1 –
05-1213 34 978.74 optimal 4 optimal 2 9
06-1213 32 nosol optimal 3 infeasible 2 –
07-1213 24 0.00 optimal 4 optimal 1 10
08-1213 22 1618.63 optimal 3 optimal 1 9
09-1213 20 nosol optimal 4 optimal 0 –
10-1213 22 nosol optimal 2 infeasible 1 –
01-1314 22 0.00 optimal 2 optimal 1 8
02-1314 22 nosol optimal 2 infeasible 1 –
04-1314 19 nosol optimal 3 optimal 1 –
03-1314 22 nosol optimal 4 optimal 1 –
05-1314 24 nosol optimal 3 infeasible 2 –
06-1314 26 nosol optimal 7 infeasible 2 –
07-1314 24 0.00 optimal 4 optimal 1 9
08-1314 25 nosol optimal 5 infeasible 2 –
09-1314 23 nosol optimal 6 infeasible 1 –
10-1314 25 0.00 optimal 5 optimal 1 8

D
ow

nl
oa

de
d

by
 [

14
8.

23
4.

29
.1

39
]

at
 0

9:
03

 1
9

D
ec

em
be

r
20

14

	1 Introduction
	1.1 Outline of the paper
	1.2 Related literature and our contributions

	2 Detailed physical model
	2.1 Modeling of pipes
	2.2 Modeling of (control) valves
	2.3 Modeling of compressor groups
	2.4 Modeling of operation modes of subnetworks
	2.5 Modeling of additional pressure losses

	3 Our solution approach
	3.1 The MILP approach
	3.2 The SB approach
	3.3 The RedNLP approach
	3.4 The MPEC approach
	3.5 Validation by NLP

	4 Computational studies
	4.1 Solutions via black-box solvers
	4.2 Computational setup
	4.3 Solutions of the MILP approach
	4.4 Solutions of the SB approach
	4.5 Solutions of the RedNLP approach
	4.6 Solutions of the MPEC approach

	5 Comparison and combination of the approaches
	5.1 Comparison of the approaches and their results
	5.2 Combined solver

	6 Summary
	Acknowledgements
	Funding

