
Dynamic design of sales territories

Hongtao Lei a,n, Gilbert Laporte b, Yajie Liu a, Tao Zhang c

a College of Information Systems and Management, National University of Defense Technology, Changsha, Hunan, 410073, PR China
b Canada Research Chair in Distribution Management and CIRRELT, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montreal, Canada H3T 2A7
c College of Information Systems and Management and State Key Laboratory of High Performance Computing, National University of Defense Technology,
Changsha, Hunan, 410073, P.R. China

a r t i c l e i n f o

Available online 26 November 2014

Keywords:
Districting
Traveling salesman
Adaptive large neighbourhood search

a b s t r a c t

We introduce the Multiple Traveling Salesmen and Districting Problem with Multi-periods and Multi-
depots. In this problem, the compactness of the subdistricts, the dissimilarity measure of districts and an
equity measure of salesmen profit are considered as part of the objective function, and the salesman
travel cost on each subdistrict is approximated by the Beardwood–Halton–Hammersley formula. An
adaptive large neighbourhood search metaheuristic is developed for the problem. It was tested on
modified Solomon and Gehring & Homberger instances. Computational results confirm the effectiveness
of the proposed metaheuristic.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem considered in this paper is the Multiple Traveling
Salesman and Districting Problem with Multi-Periods and Multi-
Depots, where the customers of a sales territory dynamically evolve
over the periods of a planning horizon. The problem consists of
designing districts and subdistricts for a multiple traveling salesman
problemwith dynamic customers over several periods. Each salesman
services all customers of his district over the planning horizon but
performs a single route in a subdistrict in each period. The customers
on the territory vary dynamically over the planning horizon. A pro-
portion η of the customers of the previous period leave the territory,
and a proportionψ of new customers enter it. Typically the number of
customers of a territory will tend to increase over time. However, all
information on customers, which includes their number and loca-
tions, is available at the beginning of each period. There also exist
several depots on the territory at reasonable locations. The number of
depots and their locations are static over time. Fig. 1 depicts a territory
partitioned into districts and subdistricts, with depots, periods and
salesmen's routes.

The problem is defined on an undirected graph G¼ ðV ; E; PÞ,
where P ¼ f1;…; Tg is the set of periods, V ¼D [ V1 [ … [ VT is
the vertex set, D is the depot set at which the salesmen are located, Vt

is the set of customers at period t, and E¼ fðvi; vjÞ : vi; vjAV ; io jg is
the edge set. A symmetric matrix of Euclidean travel times, equal to
travel costs, is defined on E. The problem consists of designing several

contiguous districts served in each period and subdistricts served in
each working day such that (1) all customers within the same district
are served by the same salesman, (2) each customer is visited once by
one salesman, (3) a service time s is incurred when visiting a cus-
tomer, (4) each salesman route has a normal duration limit h, but
overtime is paid at rate θ if its duration exceeds h, and (5) an objective
function combining salesman cost (number of districts), a subdistrict
compactness measure, a district partition dissimilarity measure and a
salesmen profit equity measure is minimised.

Several companies, such as Coca-Cola, DHL and FedEx, face this
problem. They need to segment or partition their customers into
clusters or territories in order to efficiently handle marketing and
distribution decisions over different periods, and the customer base is
not static. In such contexts, it is desirable to consistently assign almost
the same customers to each salesman, to create relatively stable
districts, and to design equitable subdistricts in terms of workload.

There exists a rich literature on districting. Most of it deals with
deterministic problems. The relevant papers include the drawing of
political districts [28,5,6,21] the design of school districts [14], the
construction of police districts [10], districting for home-care services
[4], the alignment of commercial territories [37,12,20,31,26], and the
solution of location-districting problems [29,7]. Research on stochastic
districting problems has mostly been conducted in the context of
vehicle routing. Haugland et al. [18] have considered the problem of
designing districts for vehicle routing problems with stochastic dem-
ands. The demands are assumed to be uncertain at the time when the
districts are designed, and these are revealed only after the districting
decisions are determined. A tabu search heuristic was provided for the
problem. Lei et al. [24] proposed a vehicle routing and districting
problem with stochastic customers. The problem was modeled and
solved as a two-stage stochastic program in which the districting
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decisions are made in the first stage and the Beardwood–Halton–
Hammersley formula was used to approximate the expected routing
cost of each district in the second stage. A large neighbourhood search
metaheuristic was also developed for the problem. Carlsson and
Delage [9] introduced a robust framework for distributing the load
of a vehicle routing problem over a fleet of vehicles when the location
of demand points and their distribution are not knownwith certainty.
Carlsson [8] has studied an uncapacitated stochastic vehicle routing
problem in which vehicle depot locations are fixed and customer
locations in a service region are unknown, but are assumed to be
independent and identically distributed from a given probability
density function.

To the best of our knowledge, this paper is the first to consider
dynamic customers in the context of a joint multiple traveling sale-
smen and districting problem with multi-periods and multi-depots.
We have considered the salesman cost, the subdistrict compactness
measure, a district partition dissimilarity measure and a salesman
profit equity measure in the objective function. Instead of explicitly
determining the salesman routes, we approximate their cost by
means of the Beardwood–Halton–Hammersley theorem [3]. We int-
egrate this approximationwithin a large neighbourhood search meta-
heuristic for the districting phase.

The remainder of the paper is organised as follows. The mathe-
matical model is presented in Section 2. An adaptive large neigh-
bourhood search metaheuristic for the problem is described in
Section 3, followed by computational experiments in Section 4,
and by conclusions in Section 5.

2. Mathematical model

We introduce the following additional notation: Vt ¼ f1;…;ntg is
the set of the customers on the territory at period t, where nt is the
associated number of the customers; D¼ fD1;…;DZg is the set of
the depots, and Dt

k is the depot assigned to district k at period t; mt

is the number of districts at period t; Vt
k is the customer set which

are located in the district k at period t, Vt
k;i is the customer set which

are located in the subdistrict i of district k at period t, and ntk is the
number of the customers in district k at period t; a is the unit
revenue generated by serving a customer; h is the duration limit of
a route; dtk;i is the distance between Dt

k and the customer of Vt
k;i

closest to Dt
k.

We assume that a period lasts several weeks with a maximum
number of working days each week (e.g., from Monday to Friday).
The problem is modeled as follows. For period t, the solution is a
decomposition of Vt into mt districts, and partition of district Vt

k

into stk subdistricts, each of which corresponding to a salesman
tour on a working day. A feasible district and subdistrict plan
x¼ Vt

1fVt
1;1;…;Vt

1;st1
g;…;Vt

mt fVt
mt ;1;…;Vt

mt ;st
mt
g

n o
must satisfy fol-

lowing constraints: (1) 8Dt
k;D

t
kAD; (2) fVt

1;…;Vt
mt g is a partition

of Vt; (3) fVt
k;1;…;Vt

k;st
k
g is a partition of district Vt

k.
After the design of districts and subdistricts, the closest depot

Dt
kðDt

kADÞ to the district Vt
k is assigned to the district, and the cost

of the salesman tour on fDt
kg [ Vt

k;i is computed for each subdistrict
Vt
k;i. The workload of a subdistrict Vt

k;i is approximated as the
length of an optimal traveling salesman problem tour over Vt

k;i,
plus twice the distance dtk;i between Dt

k and the customer of Vt
k;i

closest to Dt
k. The number mt of designed districts at period t is a

decision variable.
The objective of the model is

min
x

FðxÞ ¼ ∑
T

t ¼ 1
αmmtþαcompF

t
compðxÞþαdissimF

t
dissimðxÞþαequF

t
equðxÞ

� �
;

ð1Þ

where x denotes a feasible solution. The objective function mini-
mises the sum over mt of districts, of the compactness measure
FtcompðxÞ of the subdistricts, the dissimilarity measure FtdissimðxÞ of
the district partition, and of the equity measure FtequðxÞ of the
salesmen over all periods, weighted by the positive user-defined
parameter αm, αcomp, αdissim and αequ. The computation of FtcompðxÞ,
FtdissimðxÞ and FtequðxÞ is detailed in Sections 2.1, 2.2 and 2.3
respectively.

2.1. Compactness measure of the subdistricts

As in Bozkaya et al. [6], we use the following formula to mea-
sure the compactness of a subdistrict:

FtcompðxÞ ¼ ∑
mt

k ¼ 1
∑
stk

i ¼ 1
Bt
k;iðxÞ�Bt

 !
2Bt ∑

mt

k ¼ 1
stk

 !
;

,
ð2Þ

where Bt
k;iðxÞ and Bt are respectively the perimeters of subdis-

trict Vt
k;i and of the entire territory at period t in solution x, stk

Fig. 1. An example of a territory partitioned into districts and subdistricts, with two depots and salesmen's routes over two periods.
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is the number of subdistricts of district Vt
k and mt is the number of

districts.

2.2. Dissimilarity measure of a district partition

As is sometimes the case in some vehicle routing settings (e.g.,
[17]), the salesmen may prefer to visit more or less the same set of
customers over time. We have therefore developed a measure to
compare the dissimilarity of the districts of one period with that of
next period, based on Bozkaya et al. [5]:

FtdissimðxÞ ¼ 1� ∑
mt

k ¼ 1
Ot
kðxÞ=At ; ð3Þ

where Ot
kðxÞ is the largest overlap area of district Vt

k at period t in
solution x compared to the districts at period t�1, mt is the
number of districts, and At is the area of the entire territory at
period t. When t¼1, FtdissimðxÞ ¼ 0.

2.3. Equity measure of the salesmen's profit

The equity FtequðxÞ of the salesmen's profit can be measured by
the profit Pt

kðxÞ generated by visiting the customers of their
district. Its objective to minimise the variance on the average
profit Pt of the salesmen. This measure can be computed as

FtequðxÞ ¼ ∑
mt

k ¼ 1
jPt

kðxÞ�Pt j=ðmtPtÞ; ð4Þ

where Pt ¼∑mt

k ¼ 1P
t
kðxÞ=mt and Pt

kðxÞ ¼ ant
k�∑stk

i ¼ 1F
t
rout k;iðxÞ. In for-

mula (4), the profit Pt
kðxÞ of the salesman assigned to district k at

period t is equal to the revenue derived from serving customers in
the district, minus the sum of the travel costs in the subdistricts
over stk working days. Ftrout k;iðxÞ is the routing cost of a salesman in
subdistrict i of district k at period t, and its detailed computation is
described in Section 2.4.

2.4. Approximation of the routing cost in a subdistrict

Computing the salesman travel cost of a given subdistrict
requires the solution of a Traveling Salesman Problem (TSP) over
all customers of subdistrict. We use the Beardwood–Halton–
Hammersley theorem [3] to approximate the tour cost of a given
subdistrict.

Theorem 1. Let fX1;…;Xng;nZ1, be a set of random variables in
Rdim, independently and identically distributed with compact support.
Then the length Ln of a shortest traveling salesman tour through the
points Xi satisfies

Ln=nðdim�1Þ=dim-βdim

Z
Rdim

f ðxÞðdim�1Þ=dim dx; with probability 1; as n-1;

ð5Þ
where f(x) is the absolutely continuous part of the distribution of the
Xi and βdim is a constant which depends on dim but not on the
distribution.

Since our problem is defined in two dimensions, the optimal
tour cost Ltnk;i for subdistrict V

t
k;i reduces to

Ltnk;i � β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nt
k;iA

t
k;i

q
; ð6Þ

where At
k;i is the area of subdistrict Vt

k;i, nt
k;i is its number of

customers, and β2 is a constant. The value of β2 is truly asymptotic.
Applegate et al. [1], who have conducted extensive experiments,
conclude that β2 is empirically related to nt

k;i for values varying
between 100 and 2000, as shown in Table 1.

Considering that the salesman usually will not visit more than
100 customers per day in his subdistrict, we have also conducted

extensive experiments to estimate the value of β2 for values of
nt
k;iðnt

k;i ¼ 20;…;90Þ. Since we are solving smaller instances than
Applegate et al. [1] we have conducted our own experiments. We
have randomly generated 100 instances on the 100�100 square
for each size ðnt

k;i ¼ 20;…;90Þ and each instance was optimally
solved by the software Concorde Applegate et al. [1] which is
publicly available. The average values of β2 and standard devia-
tions σ2 on these instances are reported in Table 2.

Table 1
Empirical value of β2 as a function of nt

k;i Applegate

et al. [1].

nk β2

100 0.7764689
200 0.7563542
300 0.7477629
400 0.7428444
500 0.7394544
600 0.7369409
700 0.7349902
800 0.7335751
900 0.7321114

1000 0.7312235
2000 0.7256264

Table 2
Experimental estimated value of β2 and σ2 as a function of nt

k;i .

nk β2 σ2 σ2=β2 ð%Þ

20 0.8584265 0.0688363 8.02
30 0.8269698 0.0508781 6.15
40 0.8129900 0.0431063 5.30
50 0.7994125 0.0363534 4.55
60 0.7908632 0.0276979 3.50
70 0.7817751 0.0303670 3.88
80 0.7775367 0.0252234 3.24
90 0.7773827 0.0254466 3.27

Table 3
Modified Solomon and Gehring & Homberger instances.

Instance Type jV j jDj jTj τ

mS-C1-100 C1 100 2 2 10
mS-C2-100 C2 100 2 2 10
mS-R-100 R 100 2 3 10
mS-RC-100 RC 100 2 3 10
mGH-C1-150 C1 150 2 3 10
mGH-C2-150 C2 150 2 3 10
mGH-R1-150 R1 150 2 3 10
mGH-R2-150 R2 150 2 3 10
mGH-RC-150 RC 150 2 3 10
mGH-C1-200 C1 200 3 2 10
mGH-C2-200 C2 200 3 2 10
mGH-R1-200 R1 200 3 2 10
mGH-R2-200 R2 200 3 2 10
mGH-RC-200 RC 200 3 2 10
mGH-C1-300 C1 300 3 2 10
mGH-C2-300 C2 300 3 2 10
mGH-R1-300 R1 300 3 2 10
mGH-R2-300 R2 300 3 2 10
mGH-RC-300 RC 300 3 2 10
mGH-C1-400 C1 400 4 2 10
mGH-C2-400 C2 400 4 2 10
mGH-R1-400 R1 400 4 2 10
mGH-R2-400 R2 400 4 2 10
mGH-RC-400 RC 400 4 2 10
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The workload of subdistrict Vt
k;i can be calculated as

Wt
k;i ¼ 2dtk;iþβ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nt
k;iA

t
k;i

q
þτnt

k;i; ð7Þ

where dtk;i is the driving time between the assigned depot of
district Vt

k and the customer of subdistrict Vt
k;i closest to the

assigned depot, nt
k;i is the number of subdistrict Vt

k;i and τ is the
service time of a customer. With respect to the working time limit,
the routing cost Ftrout k;iðxÞ in subdistrict Vt

k;i can be calculated as

Ftrout k;iðxÞ ¼
Wt

k;i if Wt
k;irh;

hþθðWt
k;i�hÞ otherwise;

8<
: ð8Þ

where θ is the overtime rate.

3. Adaptive large neighbourhood search metaheuristic

Since our problem includes the design of the district and sub-
district on the territory and should be solved for multi-periods and
multi-depots, to efficiently solve the problem, we have devised an
Adaptive Large Neighbourhood Search (ALNS) metaheuristic which
dynamically modifies the solution. For simplicity, a district is ass-
igned to the depot whose location is the closest to the location of its
centre. Ties are broken arbitrarily.

The ALNS metaheuristic framework was proposed by Ropke
and Pisinger [32] and is rooted in the work of Shaw [35,36]. It has
already been successfully applied to several problems (e.g. Ropke
and Pisinger [32], Pisinger and Ropke [30], Goel and Gruhn [16],
Laporte et al. [22], Lei et al. [23], Hong [19], Ribeiro and Laporte
[33], Lei et al. [25], Demir et al. [11], Masson et al. [27], Salazar-
Aguilar et al. [34] and Azi et al. [2]). This metaheuristic must be
fine tuned to each application. In this section we describe its
application to the proposed problem.

We obtain a contiguous initial solution by means of a construc-
tion heuristic. At each iteration, q boundary units are removed from
their districts by using one of the three removal operators, and are
reinserted by using one of the three insertion operators, where q is
randomly selected in the interval ½⌈0:1nbou⌉; ⌈0:2nbou⌉� as in Laporte
et al. [22], and nbou is the total number of the boundary basic units
of current solution at the first period. A probabilistic mechanism is
applied to select the removal and insertion operators and these
remove-insert operators are combined to efficiently explore the
solution space. Contiguity is always maintained.

3.1. Definition of the basic units

As noted by Haugland et al. [18], the notion of contiguity is difficult
to define in discontinuous settings. In order to operationalise this
concept for the design of district and subdistrict, it is necessary to

Table 4
Computational results on the modified Solomon and Gehring & Homberger instances.

Instance Construction heuristic ALNS metaheuristic Seconds Imp (%) Dev (%)

m Fcomp F dissim F equ F m F comp F dissim F equ F

mS-C1-100 2 0.2159 0 0.2173 4.8663 2 0.2384 0 0.0074 4.4916 39.05 7.70 1.32
mS-C2-100 2 0.2381 0.0388 0.2612 5.0762 2 0.2546 0 0.0227 4.5547 41.81 10.27 13.17
mS-R-100 2 0.2918 0.0087 0.4344 8.2046 2 0.2812 0.0133 0.0129 6.9220 57.98 15.63 19.94
mS-RC-100 2 0.2561 0 0.3492 7.8161 2 0.2665 0.0017 0.0158 6.8519 55.08 12.34 1.36

100-average 2 0.2505 0.0119 0.3155 6.4908 2 0.2602 0.0038 0.0147 5.7050 48.48 11.49 8.95

mGH-C1-150 5 0.1563 0.0385 0.4455 16.9210 3 0.3445 0.0066 0.0525 10.2108 157.17 39.66 7.68
mGH-C2-150 5 0.1781 0.0210 0.4810 17.0404 3 0.2929 0.0144 0.0314 10.0160 150.52 41.22 13.12
mGH-R1-150 5 0.1897 0.0109 0.6753 17.6277 3 0.3007 0.0110 0.0275 10.0175 147.80 43.17 7.41
mGH-R2-150 4.67 0.1895 0.0153 0.9041 17.3267 3 0.2608 0.0013 0.0157 9.8337 146.31 43.25 20.95
mGH-RC-150 4 0.1668 0.0403 0.1124 12.9586 4 0.1811 0.0206 0.0738 12.8267 162.2969 1.01 19.97

150-average 4.73 0.1761 0.0252 0.5237 16.3749 3.20 0.2760 0.0108 0.0402 10.5809 152.82 33.66 13.83

mGH-C1-200 6 0.1441 0.0445 0.5125 13.4022 3 0.3890 0.0086 0.0184 6.8319 148.88 49.02 13.62
mGH-C2-200 4 0.1899 0.0265 0.1351 8.7028 4 0.2021 0.0193 0.0374 8.5176 99.25 2.13 0.36
mGH-R1-200 4 0.2001 0.0291 0.0940 8.6464 4 0.2304 0.0134 0.0344 8.5563 123.61 1.04 9.53
mGH-R2-200 5 0.1914 0.0330 0.4987 11.4462 4 0.2139 0.0087 0.0318 8.5088 117.84 25.66 14.60
mGH-RC-200 5 0.1516 0.0109 0.8417 12.0085 5 0.1603 0.0025 0.8000 11.9256 141.5313 00.69 2.19

200-average 4.80 0.1754 0.0288 0.4164 10.8412 4 0.2391 0.0105 0.1844 8.8680 126.22 15.71 8.06

mGH-C1-300 11 0.1102 0.0499 0.8170 23.9543 7 0.2599 0.0084 0.8571 16.2507 257.28 32.16 11.02
mGH-C2-300 11 0.1192 0.0148 0.6854 23.6388 6 0.4093 0.0101 0.6667 14.1722 348.66 40.05 10.69
mGH-R1-300 12.50 0.1072 0.0261 0.9145 27.0956 7 0.2980 0.0052 1.1429 16.8920 413.14 37.66 9.21
mGH-R2-300 10 0.1282 0.0311 0.5214 21.3613 6 0.4061 0.0202 0.0839 13.0204 472.27 39.05 9.78
mGH-RC-300 14 0.1010 0.0434 1.0599 30.4085 7.50 0.4515 0.0196 1.5686 19.0792 437.36 37.26 10.60

300-average 11.70 0.1132 0.0331 0.7996 25.2917 6.70 0.3649 0.0127 0.8638 15.8829 385.7406 37.23 10.26

mGH-C1-400 21.50 0.0890 0.0316 1.2768 45.7946 9 0.1739 0.0217 0.6667 19.7247 667.23 56.93 9.01
mGH-C2-400 12.50 0.1101 0.0579 0.9568 27.2497 5 0.4089 0.0215 0.4000 11.6607 590.86 57.21 17.70
mGH-R1-400 12.50 0.1202 0.0281 0.6301 26.5568 8 0.3242 0.0167 0.2500 17.1817 543.06 35.30 6.74
mGH-R2-400 12.50 0.1149 0.0224 0.6738 26.6220 7 0.2792 0.0128 0.0533 14.6907 554.98 44.82 13.24
mGH-RC-400 17.50 0.0975 0.0492 0.9949 37.2833 7 0.3229 0.0150 0.8571 16.3901 494.22 56.04 10.97

400-average 15.30 0.1063 0.0378 0.9065 32.7013 7.20 0.3018 0.0175 0.4454 15.9296 570.07 50.06 11.53

Average 7.94 0.1607 0.0280 0.6039 18.8337 4.73 0.2896 0.0114 0.3220 11.6303 265.34 30.39 10.59
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embed the customers in basic units which partition the territory under
study. Given a set of customer locations, we construct the basic units
as follows. Assume that the location of customer i in the instance
territory is described by the coordinates ðxi; yiÞ. The territory is defined
by xmin; xmax½ � and ymin; ymax

� �
, where xmin ¼miniAV fxig, xmax ¼

maxiAV fxig, ymin ¼miniAV fyig and ymax ¼maxiAV fyig. It is partitioned
into nu initial basic units, where nu ¼ ⌈ðxmax�xminÞ=d⌉� ⌈ðymax�
yminÞ=d⌉ and d¼min mini;jAV fjxi�xjjg;mini;jAV fjyi�yjjg

n o
. If d¼0,

d is set to the smallest measurement unit of the coordinate (e.g., 1).
Any unit with no customer is merged with the nearest unit having at
least one customer.

3.2. Initial solution

To generate a good feasible initial solution, we have devised the
following construction heuristic. The heuristic first randomly selects
a basic unit as the seed unit to initialise the first subdistrict of the
first district. The heuristic gradually extends this subdistrict by
adjoining adjacent units to it. The workload of the extended
subdistrict does not exceed the duration limit h. If adjoining an
adjacent unit would cause the workload to exceed h, this unit is not
included in the subdistrict but serves as a seed unit for a new
subdistrict. If the number of subdistricts of the extended district
exceeds the number of working days in a week, a new district is
then generated. Any subdistrict with only one basic unit is elimi-
nated and merged with the adjacent subdistrict so as to yield the
lowest increased workload.

3.3. Removal and insertion operators

We have designed three removal operators and three insertion
operators.

3.3.1. Removal operators
1. Great remove (GR): This operator focuses on the districts with

larger areas. The operator first sorts the districts in non-increasing
order of the values of their area. If the numberm1 of districts of the
current solution at the first period is larger than q, the operator
randomly removes a boundary basic unit from each of the first
q districts without disconnecting them, and stops. Otherwise, the
operator randomly removes a boundary basic unit from the first
district without disconnecting it and sorts the districts again after
the removal, until q boundary basic units have been removed.

2. Large remove (LR): This operator concentrates on those districts
with larger numbers of customers. The operator first sorts the
districts in non-increasing order of their number of customers. If
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Fig. 2. Solution of instance mS-RC-100. (a) First period, (b) second period, and (c) third period.

Table 5
Performance of the insertion and removal operators measured by the mean value
of the final weight.

Removal Insertion

GR LR RR LCI FI SI

6.5354 6.7798 6.3427 6.2715 7.2471 5.9819
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m14q, the operator randomly removes a boundary basic unit from
each of the first q districts without disconnecting them and stops.
Otherwise, a boundary basic unit is randomly removed from the first
district without disconnecting it, then the districts are sorted again. If
q boundary basic units have been removed, the operator stops.

3. Random remove (RR): The operator randomly selects q
boundary basic units and removes them from their subdistrict
without disconnecting it.

3.3.2. Insertion operators
1. Lowest cost insertion (LCI): This operator reinserts the removed

units into the adjacent subdistricts with the lowest increase in the
workload. The operator first selects one unit from the removed units,
and chooses an adjacent subdistrict with the lowest increase in the
workload value as the best subdistrict, respecting the duration limit h
and the tabu tenure described in Section 3.5. Then, the operator
reinserts the unit into the best subdistrict. The operator stops if q
removed units have been reinserted.

2. Smallest insertion (SI): This operator inserts the removed
units into the adjacent subdistricts with the smallest area. The
operator first sorts the adjacent subdistricts in increasing order of
the values of their area, and selects the subdistrict with smallest
area to reinsert the units. The operator reinserts the removed units
until the q units have been reinserted. The reinsertion respects the
duration limit and the tabu tenure.

3. Fewest insertion (FI): This operator reinserts the q removed
units into the adjacent subdistricts with the least customer
number. The operator sorts the adjacent subdistricts in increasing
order of the values of their customer number, and chooses the best
subdistrict with the least customer number. The operator reinserts
the removed units into the best subdistrict, respecting the dura-
tion limit and the tabu tenure.

3.4. Adaptive selection mechanism

The removal and insertion operators are each associated a weight
which dynamically changes throughout the algorithm. At each itera-
tion, the selection of a removal operator and of an insertion operator
is based on a roulette-wheel selection principle. Given l operators
with weights wi, operator j is chosen with probability wj=∑l

i ¼ 1wi.
The weight of each operator is updated every ϱðϱ¼ 50Þ iterations.
Initially, all operators have a weight of 1. The weight wij of operator i
at the jth sequence of ϱ iterations is computed as

wi;jþ1 ¼wijð1�rÞþr
σij

εij
; ð9Þ

where εij and σij are the number of times operator i has been used in
the jth sequence of ϱ iterations, and the score of operator i in the jth
sequence of ϱ iterations, respectively, and rA ½0;1� is an arbitrary
parameter equal to 0.1 in our implementation.

The score σij can be computed by the following rules: the score
is set to 0 at the start of the jth sequence of ϱ iterations; it is
increased by σ1

ij ¼ 30 if the removal-insertion operation results in a
new global best solution; it is increased by σ2

ij ¼ 10 if the removal-
insertion operation results in a new solution improved on the
current solution; it is increased by σ3

ij ¼ 6 if the removal-insertion
operation results in a new solution which does not improve upon
the current solution but is accepted.

3.5. Tabu tenure for avoiding remove-insert cycling

We use a tabu tenure to avoid cycling when reinserting the
removed units, as in Bozkaya et al. [5]. The moves that reinsert the
basic unit i back into its previous subdistrict is declared tabu for
ϕ iterations. As recommended by Haugland et al. [18], ϕ is set
equal to the number of districts at the first period in the initial

solution. As is common in tabu search, any tabu move may be still
implemented if it yields a new incumbent solution.

3.6. Territories design over different periods

As mentioned in Section 1, we are interested in designing districts
and subdistricts over several periods. However, not all customers
change over time. There is therefore no need to run the full ALNS
metaheuristic at each period. Instead, we can only adjust the
subdistricts with the changes of the customers comparing to the
previous period.

The heuristic first selects the basic units for which the customers
of the current period have changed compared to those of the
previous period. These units are considered for the reinsertion into
the adjacent subdistricts respecting the duration limit. For each
reinserted unit, the heuristic chooses the best adjacent subdistrict
with the largest drop in the workload. If there is no adjacent
subdistrict yielding a smaller workload, the unit then remains in its
subdistrict of the previous period.

Note that the number of districts is not fixed over different periods.
First, the number of districts may be reduced. Though not all customers
change over times, the customers of a district may change along time
periods and the number of subdistrict of a district is not fixed (noted in
Section 2). If the number of customers of a district reduces to 0, all the
basic units of the subdistricts of the district will be merged by its
adjacent district and the number of districts goes down. Second, the
number of districts can also be increased. Since the changed basic units
are considered for the reinsertion into the adjacent subdistricts
respecting the duration limit, if all the adjacent subdistricts and the
original subdistrict will violate the duration limit for the reinsertion of
the changed basic units (caused by the new entering customers) and
the number of subdistricts is the maximum value at the same time, a
new district will be generated and the number of districts will go up.

3.7. Acceptance and stopping criteria

We have used the record-to-record travel (RRT) algorithm intr-
oduced by Dueck [13] to define the acceptance criterion for a new
solution. Consider fn is the objective value of the best known
solution, called a record. Let x be a solution, x0 a neighbour of x,
and f x0 the objective value of solution x0. Solution x0 is accepted if
f x0 o f nþδ, and fn is updated if f x0 o f n, where δ is a small number
called deviation. In our implementation we set δ¼ 0:1f n.

The search stops if solution quality has not improved for a
given number of iterations or if a preset number of iterations have
been executed. We set these values as 2500 and 5000 respectively
in our implementation.

3.8. Summary of the ALNS metaheuristic

Our ALNS implementation can be summarised as follows.
Step 1: Initialise the parameters, and use the construction

heuristic to generate an initial solution. Set the objective value of
the initial solution as the record and the corresponding best cost,
compute the deviation. Set the initial solution as the record and
define it as the current solution.

Step 2: Choose a removal operator and an insertion operator
using roulette-wheel selection principle based on the weights of the
current iteration. Generate the first period part of a new solution
from the current solution using the chosen removal and insertion
operators without disconnecting the districts and subdistricts, and
while respecting the tabu tenure. Then, use the territories design
method over different periods.

Step 3: If the objective value of the new solution is smaller than
the best cost, set the new solution as the best solution and set its
objective value as the record. If the new solution is accepted using
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the RRT criterion, set it as the current solution. If the objective
value of the new solution is smaller than the best cost, update the
record, the best cost and the deviation.

Step 4: Update the score and the number of times used of the
chosen operators. Update the weights of all removal and insertion
operators and reset their score and number of times used for the
next iterations, if necessary (every 50 iterations).

Step 5: If the stopping criterion is met, go to Step 6; otherwise
go to Step 2.

Step 6: Output the record and the best cost.

4. Computational experiments

The algorithm described in Section 3 was coded using Matlab 7.0.4
and run on a PC with 3.1 GHz four processors and 2 GB RAM. We now
describe the results of our computational experiments. Since no previous
computational results are available for our problem, we have conducted
tests aimed at evaluating the efficiency of the ALNS improvement
heuristic comparedwith a construction heuristic, andwe have conducted
several sensitivity analyses.

4.1. Experimental design

We have generated test instances derived from those of Solomon
[38] and those of Gehring and Homberger [15]. The coordinates of

the customers at the first period are the same as in the Solomon
instances and the Gehring & Homberger instances, while the
demands and time windows are not used. The coordinates of the
customers at the other periods are generated by the rule described
in Section 1, where a proportion η (taken randomly in the interval
(0, 0.05)) of all customers of previous period exit from the territory,
and a proportion ψ (taken randomly in the interval (0, 0.10)) of new
customers add into the territory. We have also used the coordinate
of the depot in the original instances as the coordinate of the first
depot in the test instances, and the coordinates of the other depots
are randomly generated among xmin; xmax½ � and ymin; ymax

� �
.

In the Solomon instances, we consider six classes of instances:
R1, R2, C1, C2, RC1 and RC2. The coordinates of R1 and R2 are the
same, and so are those of RC1 and RC2. However, the coordinates
of C1 and C2 are not identical. Hence we consider four types of
instances: R, C1, C2, and RC. In the Gehring and Homberger
instances, the coordinates of RC1 and RC2 are the same, but those
of C1 and C2 are not identical and neither are those of R1 and R2.
We consider five types of instances: R1, R2, C1, C2, and RC.

We respectively consider the 100, 150, 200, 300 and 400
customers in the tests, where the customers of the instances with
150 customers are chosen from the first 150 customers of the
instances with 200 customers. The service times of customers are
equal to 10, and h is set to 250. The detailed information of the
modified Solomon and Gehring & Homberger instances tested is
shown in Table 3.

Table 6
Computational results on the modified Solomon and Gehring & Homberger instances with different value of αcomp.

Instance αcomp ¼ 1 αcomp ¼ 10 αcomp ¼ 100

m F comp F dissim F equ F m F comp F dissim F equ F m F comp F dissim F equ F

mS-C1-100 2 0.2384 0 0.0074 4.4916 2 0.2017 0 0.0433 8.1209 2 0.1539 0 0.0991 34.9738
mS-C2-100 2 0.2546 0 0.0227 4.5547 2 0.1500 0.0095 0.0278 7.0747 2 0.1827 0.0095 0.2353 41.0203
mS-R-100 2 0.2812 0.0133 0.0129 6.9220 2 0.2254 0.0035 0.0112 12.8067 2 0.1893 0.0124 0.0393 62.9382
mS-RC-100 2 0.2665 0.0017 0.0158 6.8519 2 0.2027 0 0.0323 12.1773 2 0.1864 0.0143 0.0984 62.2703

100-average 2 0.2602 0.0038 0.0147 5.7050 2 0.1950 0.0033 0.02866 10.0449 2 0.1781 0.0091 0.1180 50.3007

mGH-C1-150 3 0.3445 0.0066 0.0525 10.2108 3 0.2379 0.0111 0.0368 16.2794 5 0.1618 0.0276 0.7216 65.7776
mGH-C2-150 3 0.2929 0.0144 0.0314 10.0160 4 0.1785 0.0566 0.2203 18.1846 4 0.1607 0.0171 0.1590 60.7238
mGH-R1-150 3 0.3007 0.0110 0.0275 10.0175 3 0.2129 0.0045 0.0735 15.6214 3 0.1916 0.0050 0.0287 66.5910
mGH-R2-150 3 0.2608 0.0013 0.0157 9.8337 3 0.2191 0.0085 0.0683 15.8046 3 0.1939 0.0049 0.2837 68.0313
mGH-RC-150 4 0.1811 0.0206 0.0738 12.8267 4 0.1923 0.0257 0.0739 18.0676 4 0.1796 0.0487 0.5544 67.6962

150-average 3.20 0.2760 0.0108 0.0402 10.5809 3.40 0.2081 0.0213 0.0946 16.7915 3.80 0.1775 0.0206 0.3495 65.7640

mGH-C1-200 3 0.3890 0.0086 0.0184 6.8319 4 0.2311 0.0295 0.0621 12.8046 6 0.1450 0.0496 0.5167 42.1289
mGH-C2-200 4 0.2021 0.0193 0.0374 8.5176 4 0.1970 0.0204 0.0749 12.1313 4 0.1679 0.0010 0.5059 42.5852
mGH-R1-200 4 0.2304 0.0134 0.0344 8.5563 4 0.2414 0.0162 0.1093 13.0793 5 0.1682 0.0109 0.2335 44.1381
mGH-R2-200 4 0.2139 0.0087 0.0318 8.5088 4 0.1981 0.0089 0.0543 12.0885 6 0.1484 0.0164 0.5212 42.7589
mGH-RC-200 5 0.1603 0.0025 0.8000 11.9256 4 0.2174 0.0141 0.5000 13.3759 5 0.1604 0.0192 0.3866 42.8982

200-average 4 0.2391 0.0105 0.1844 8.8680 4 0.2170 0.0178 0.1601 12.6959 5.20 0.1580 0.0194 0.4328 42.9019

mGH-C1-300 7 0.2597 0.0084 0.8571 16.2507 9 0.1409 0.0321 0.3912 21.6640 9 0.1339 0.0158 1.5234 47.8521
mGH-C2-300 6 0.4093 0.0101 0.6667 14.1722 7 0.1756 0.0365 1.1567 19.8976 9 0.1408 0.0402 0.9414 48.1217
mGH-R1-300 7 0.2980 0.0052 1.1429 16.8920 8 0.1689 0.0147 1.2500 21.9073 12 0.1171 0.0239 0.6090 48.6897
mGH-R2-300 6 0.4061 0.0202 0.0839 13.0204 6 0.2665 0.0215 0.0848 17.5436 10 0.1324 0.0350 0.6041 47.7526
mGH-RC-300 7.50 0.4515 0.0196 1.5686 19.0792 6 0.3796 0.0047 1.5692 22.7399 12 0.1042 0.0187 0.8467 46.5617

300-average 6.70 0.3649 0.0127 0.8638 15.8829 7.20 0.2263 0.0219 0.8904 20.7505 10.40 0.1257 0.0267 0.9049 47.7956

mGH-C1-400 9 0.1739 0.0217 0.6667 19.7247 10 0.2211 0.0263 2.1651 28.8042 14 0.1086 0.0157 1.7181 53.1814
mGH-C2-400 5 0.4089 0.0215 0.4000 11.6607 6 0.3674 0.0511 0.3685 20.1882 11 0.1082 0.0417 0.5431 44.8121
mGH-R1-400 8 0.3242 0.0167 0.2500 17.1817 8 0.2602 0.0133 0.5188 22.2674 12 0.1120 0.0200 0.6954 47.8323
mGH-R2-400 7 0.2792 0.0128 0.0533 14.6907 5 0.3336 0.0110 0.4456 17.5857 11 0.1144 0.0117 0.5407 45.9835
mGH-RC-400 7 0.3229 0.0150 0.8571 16.3901 10 0.1737 0.0219 0.8020 25.1217 13 0.0953 0.0379 0.9444 47.0262

400-average 7.20 0.3018 0.0175 0.4454 15.9296 7.80 0.2712 0.0247 0.8600 22.7934 12.20 0.1077 0.0254 0.8883 47.7671

Average 4.73 0.2896 0.0114 0.3220 11.6303 5 0.2247 0.0184 0.4225 16.8890 6.92 0.1482 0.0207 0.5562 50.9310
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4.2. Computational results

Table 4 presents computational results for the modified Solomon
and Gehring & Homberger instances with αm ¼ 1, αcomp ¼ 1, αdissim ¼
1 and αequ ¼ 1. Each instance was solved five times and the best
results are presented in Table 4. The column “Construction heuristic”
summarises the results obtained from the construction heuristic of
Section 3.2. The column “ALNS metaheuristic” summarises the results
obtained by applying the heuristic of Section 3. The column “m” gives
the average number of districts of the solutions over periods. The
column “F comp” presents the average compactness measure cost of the
subdistricts of the solutions over periods, computed by Eq. (2). The
column “Fdissim” shows the average dissimilarity measure cost of
districts of the solutions over periods, computed by Eq. (3). The
column “F equ” provides the average equity measure cost of salesmen
profit of the solutions over periods, computed by Eq. (4). The column
“F” is the total cost of the solutions, computed by Eq. (1). We also
report the total CPU time in seconds in the “Seconds” column for
“ALNS metaheuristic”. The “Imp(%)”column shows the percentage
improvement in “Total cost” obtained by “ALNS metaheuristic”, com-
pared with “Construction heuristic”. The “Dev(%)”column describes
the stability of “ALNS metaheuristic” (five runs), which is computed by
the equations ∑5

i ¼ 1jFi�F j=5F and F ¼∑5
i ¼ 1F

i=5.
Table 4 clearly shows that the solutions of “ALNS metaheuristic”

are much better than those of “Construction heuristic”. The average

improvement percentage is 30.39%. The average number of districts
of the solutions of “ALNS metaheuristic” is less than that of
“Construction heuristic”, and so is the average compactness mea-
sure cost, the average dissimilarity measure cost, the average equity
measure cost of salesmen profit and the total cost. The average CPU
time for “ALNS metaheuristic” is 265.34 s. The average “Dev” value
of “ALNS metaheuristic” is 10.59%. Fig. 2 presents the solution of the
instance mS-RC-100. It indicates that the changes of customers do
not cause the territory design to change at the second period, but
yield a small change at the third period.

We have also evaluated the performance of each insertion and
removal operators described in Section 3.3. Table 5 reports the
weights associated with each operator. This weight is obtained as
the mean value of final weights used to generate the results of
Tables 4. The best removal operators are GR and LR, whereas the
best insertion operators are LCI and FI.

4.3. Computational experiments with different parameters

We have run computational tests with different parameters by
successively varying the multiplier αcomp of Ftcomp and the multiplier
αequ of Ftequ in the objective function. Table 6 provides the solution
values obtained with αcomp ¼ 1, αcomp ¼ 10 and αcomp ¼ 100, leaving
the other multipliers unchanged. As expected, when the value of
αcomp becomes larger, the average value of F comp becomes smaller. In

Table 7
Computational results on the modified Solomon and Gehring & Homberger instances with different value of αequ.

Instance αequ ¼ 1 αequ ¼ 10 αequ ¼ 100

m Fcomp F dissim F equ F m F comp F dissim F equ F m F comp F dissim F equ F

mS-C1-100 2 0.2384 0 0.0074 4.4916 2 0.3039 0 0.0008 4.6246 2 0.2832 0 0.0001 4.5919
mS-C2-100 2 0.2546 0 0.0227 4.5547 2 0.2438 0 0.0073 4.6331 2 0.3504 0.0139 0.0000 4.7349
mS-R-100 2 0.2812 0.0133 0.0129 6.9220 2 0.2990 0 0.0025 6.9729 2 0.3099 0 0.0009 7.1987
mS-RC-100 2 0.2665 0.0017 0.0158 6.8519 2 0.2812 0.0074 0.0060 7.0455 2 0.2673 0.0181 0.0004 6.9802

100-average 2 0.2602 0.0038 0.0147 5.7050 2 0.2820 0.0018 0.0042 5.8190 2 0.3027 0.0080 0.0004 5.8764

mGH-C1-150 3 0.3445 0.0066 0.0525 10.2108 4 0.2453 0.0241 0.0180 13.3493 4 0.2500 0.0218 0.0062 14.6634
mGH-C2-150 3 0.2929 0.0144 0.0314 10.0160 4 0.3291 0.0133 0.0122 13.3942 4 0.2218 0.0339 0.0100 15.7586
mGH-R1-150 3 0.3007 0.0110 0.0275 10.0175 3 0.2488 0.0154 0.0136 10.2012 4 0.2641 0.0102 0.0103 15.8982
mGH-R2-150 3 0.2608 0.0013 0.0157 9.8337 4 0.2385 0.0108 0.0223 13.4160 3 0.2791 0.0057 0.0037 10.9621
mGH-RC-150 4 0.1811 0.0206 0.0738 12.8267 4 0.3019 0.0165 0.0200 13.5560 4 0.2825 0.0200 0.0118 16.4358

150-average 3.20 0.2760 0.0108 0.0402 10.5809 3.80 0.2727 0.0160 0.0172 12.7834 3.80 0.2595 0.0183 0.0084 14.7436

mGH-C1-200 3 0.3890 0.0086 0.0184 6.8319 7 0.2501 0.0175 0.2857 20.2494 6 0.2671 0.0313 0.0171 16.0166
mGH-C2-200 4 0.2021 0.0193 0.0374 8.5176 4 0.2841 0.0072 0.0100 8.7837 4 0.2199 0.0101 0.0084 10.1337
mGH-R1-200 4 0.2304 0.0134 0.0344 8.5563 4 0.2811 0.0043 0.0129 8.8282 4 0.2429 0.0115 0.0068 9.8764
mGH-R2-200 4 0.2139 0.0087 0.0318 8.5088 4 0.2475 0.0039 0.0171 8.8444 4 0.2604 0.0087 0.0044 9.4105
mGH-RC-200 5 0.1603 0.0025 0.8000 11.9256 5 0.2728 0.0028 0.0193 10.9371 5 0.2080 0.0086 0.0100 12.4347

200-average 4 0.2391 0.0105 0.1844 8.8680 4.80 0.2671 0.0071 0.0690 11.5285 4.60 0.2397 0.0140 0.0093 11.5744

mGH-C1-300 7 0.2597 0.0084 0.8571 16.2507 10 0.3314 0.0310 0.2000 24.7249 10 0.2195 0.0063 0.0300 26.4401
mGH-C2-300 6 0.4093 0.0101 0.6667 14.1722 8 0.1621 0.0191 0.5000 26.3624 10 0.2702 0.0355 0.0316 26.9226
mGH-R1-300 7 0.2980 0.0052 1.1429 16.8920 13 0.3793 0.0179 0.1568 29.9313 12 0.2347 0.0169 0.0432 33.1427
mGH-R2-300 6 0.4061 0.0202 0.0839 13.0204 9 0.2976 0.0129 0.0373 19.3670 9 0.2303 0.01225 0.0370 25.8789
mGH-RC-300 7.50 0.4515 0.0196 1.5686 19.0792 10 0.2443 0.0228 0.2057 24.6491 12 0.1808 0.0180 0.0393 32.2523

300-average 6.70 0.3649 0.0127 0.8638 15.8829 10 0.2830 0.02076 0.2200 25.0069 10.60 0.2271 0.0178 0.0362 28.9273

mGH-C1-400 9 0.1739 0.0217 0.6667 19.7247 12 0.3754 0.0141 0.1673 28.1242 14 0.2234 0.0127 0.5714 142.7579
mGH-C2-400 5 0.4089 0.0215 0.4000 11.6607 9 0.2519 0.0217 0.4444 27.4360 10 0.1711 0.0247 0.0268 25.7437
mGH-R1-400 8 0.3242 0.0167 0.2500 17.1817 10 0.2871 0.0196 0.0339 21.2919 11 0.1884 0.0120 0.0311 28.6195
mGH-R2-400 7 0.2792 0.0128 0.0533 14.6907 9 0.2384 0.0131 0.0316 19.1354 10 0.2128 0.0088 0.0282 26.0860
mGH-RC-400 7 0.3229 0.0150 0.8571 16.3901 11 0.1931 0.02791 0.3636 29.7148 11 0.1879 0.0127 0.0366 29.7175

400-average 7.20 0.3018 0.0175 0.4454 15.9296 10.20 0.2692 0.0193 0.2082 25.1405 11.20 0.1968 0.0142 0.1388 50.5849

Average 4.73 0.2896 0.0114 0.3220 11.6303 6.33 0.2745 0.0135 0.1079 16.4822 6.63 0.2427 0.0147 0.0402 23.0274
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contrast, the average values of m, F dissim, F equ and F become larger.
Table 7 provides the comparison of the computational solutions
with αequ ¼ 1, αequ ¼ 10 and αequ ¼ 100, leaving the other multi-
pliers unchanged. Like in Table 6, increasing αequ means that the
average value of F equ becomes smaller, and the average values of m,
F dissim and F become larger.

5. Conclusions

We have introduced, modeled and solved a combined multiple
traveling salesman and districting problem, where the customers
of territory are dynamically changed with the multi-periods and
several possible depots. We have solved the problem with several
criteria, including subdistrict compactness, a dissimilarity measure
of the district partition and an equity measure of salesmen's
profits. Travel costs were approximated by the Beardwood–Hal-
ton–Hammersley formula. We have developed an adaptive large
neighbourhood search metaheuristic for the problem. Modified
Solomon and Gehring & Homberger instances were used to assess
the quality of the proposed algorithm. The computational results
confirm the effectiveness of our approach.
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