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We  propose  a  deterministic  global  optimization  algorithm  for  mixed-integer  nonlinear  bilevel  problems
(MINBP)  by  generalizing  the  Branch-and-Sandwich  algorithm  (Kleniati  and  Adjiman,  2014a). Advances
include  the  removal  of regularity  assumptions  and  the  extension  of the algorithm  to  mixed-integer  prob-
lems.  The  proposed  algorithm  can  solve  very  general  MINBP  problems  to global  optimality,  including
problems  with  inner  equality  constraints  that depend  on  the  inner  and  outer  variables.  Inner  lower  and
inner  upper  bounding  problems  are  constructed  to bound  the  inner  optimal  value  function  and  provide
ilevel optimization
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ptimal value function

constant-bound  cuts  for the  outer  bounding  problems.  To remove  the  need  for  regularity,  we  intro-
duce  a  robust  counterpart  approach  for the  inner  upper  bounding  problem.  Branching  is allowed  on all
variables  without  distinction  by  keeping  track  of  refined  partitions  of  the  inner  space  for  every  refined
subdomain  of  the outer  space.  Finite  ε-convergence  to the  global  solution  is  proved.  The  algorithm  is
applied  successfully  to  10 mixed-integer  literature  problems.
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. Introduction

Many of the optimization problems relevant to chemical engi-
eering are bilevel problems in nature (Grossmann and Biegler,
004; Gümüş and Floudas, 2005; Floudas and Gounaris, 2009)
nd can thus be framed as two-person, hierarchical optimization
roblems having a second optimization problem as part of the
onstraints. Examples of such formulations include design under
ncertainty (Floudas et al., 2001; Ryu et al., 2004), the estimation
f parameters in thermodynamic models (Mitsos et al., 2009), the
ptimization of processes involving phase equilibrium (Kamath
t al., 2010) and/or chemical equilibrium (Clark and Westerberg,
990; Sahin et al., 1998), simultaneous process optimization and
eat integration (Kamath et al., 2012), and strategies for product
ricing and marketing in competitive markets (Lemonidis, 2008).
∗ Corresponding author. Tel.: +44 20 7594 6638; fax: +44 20 7594 6606.
E-mail address: c.adjiman@imperial.ac.uk (C.S. Adjiman).

1 Current address: Process Systems Enterprise, 26-28 Hammersmith Grove, Lon-
on W6  7HA, United Kingdom.

ttp://dx.doi.org/10.1016/j.compchemeng.2014.06.004
098-1354/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article u
(http://creativecommons.org/licenses/by/3.0/).

In this work, the following mixed-integer nonlinear bilevel problem
is considered:

min
xi ,xc ,yi ,yc

F(xi, xc, yi, yc)

s.t.  G(xi, xc, yi, yc) ≤ 0,

(yi, yc) ∈ arg min
yi∈YI ,yc∈YC

{f (xi, xc, yi, yc) s.t. g(xi, xc, yi, yc) ≤ 0},

xi ∈ XI ⊂ Z
n1 , xc ∈ XC ⊂ R

n−n1 ,

yi ∈ YI ⊂ Z
m1 , yc ∈ YC ⊂ R

m−m1 ,

(1)

where subscripts i and c stand for integer and continuous,  respec-
tively. Thus, the n-dimensional vector (xi, xc) denotes the outer
(leader) variables, where the first n1 components are inte-
ger and the rest are continuous. Similarly, the m-dimensional
vector (yi, yc) denotes the inner (follower) variables, where
the first m1 components are integer and the rest are contin-
uous. Functions F, f : Z

n1 × R
n−n1 × Z

m1 × R
m−m1 → R, G : Z

n1 ×
R

n−n1 × Z
m1 × R

m−m1 → R
p and g : Z

n1 × R
n−n1 × Z

m1 × R
m−m1 →

R
r denote the outer/inner objective and outer/inner constraint

functions. The functions are assumed to be twice continuously dif-
ferentiable when the integrality condition is relaxed. Finally, the
host sets for the continuous variables are closed and bounded:
XC = [xL

c , xU
c ] ⊂ R

n−n1 and YC = [yL
c, yU

c ] ⊂ R
m−m1 .
Remark 1. We  adopt the so-called optimistic formulation of the
bilevel problem that implies some cooperation between the leader
and the follower. In particular, for different globally optimal solu-
tions in the inner problem to which the follower is indifferent, we

nder the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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xi + 2yi ≤ 10,

2xi − yi ≤ 15,
(4)
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ptimize in favor of the leader’s (outer) objective and constraints;
ence, the outer minimization in (1) is with respect to the whole
et of variables. For more details on the optimistic formulation
nd its alternative pessimistic formulation, the interested reader is
eferred to Bard (1998), Dempe (2002), Loridan and Morgan (1996),
nd Wiesemann et al. (2013).

Problem (1) has been tackled for specific classes of the partic-
pating functions. For instance, for mixed discrete and continuous
ecision variables and linear functions, the problem has been
ddressed in Moore and Bard (1990), Bard (1998) and, using para-
etric programming, in Faísca et al. (2007). Furthermore, nonlinear

ut convex outer and inner objective functions were considered in
dmunds and Bard (1992) and the purely discrete linear bilevel
rogram was analyzed in Vicente et al. (1996). Advances in theory
nd algorithms for mixed-integer and purely discrete linear bilevel
roblems are also found in Dempe (2002), Dempe and Kalashnikov
2004), Dempe et al. (2005), Fanghänel and Dempe (2009), while
dvances for more general classes can be found in Gümüş and
loudas (2005) and Mitsos (2010). In particular, Gümüş and Floudas
2005) tackled first a class of mixed-integer nonlinear bilevel pro-
rams with polynomial terms in the inner discrete variables and
inear terms in the inner continuous variables (at the lower level).

ore recently, Mitsos (2010) addressed general mixed-integer
onlinear bilevel programs, limited only by the absence of inner
quality constraints that depend on the outer variables.

In the present article, we assume only twice differentiability of
he functions when the integrality condition is relaxed and com-
actness of the host sets. We  assume neither a special form nor
onvexity of the functions involved. Furthermore, we allow outer
nd inner equality constraints, but we subsume those within the set
f inequality constraints both in the outer and the inner problems
or the sake of a simpler presentation. The use of inner equality con-
traints that depend on the outer variables in the context of such

 general formulation has, to the best of our knowledge, not been
onsidered previously in the published literature. As in the general
onconvex case (Mitsos et al., 2008; Kleniati and Adjiman, 2014a),
roblem (1) can be written equivalently as follows (Mitsos, 2010;
empe and Zemkoho, 2011):

min
xi,xc,yi,yc

F(xi, xc, yi, yc)

s.t. G(xi, xc, yi, yc) ≤ 0,

g(xi, xc, yi, yc) ≤ 0,

f (xi, xc, yi, yc) ≤ w(xi, xc),

xi ∈ XI, xc ∈ XC,

yi ∈ YI, yc ∈ YC,

(2)

here w(xi, xc) is the optimal value function of the inner (mixed-
nteger nonlinear) problem:

(xi, xc) = min
yi∈YI ,yc∈YC

{f (xi, xc, yi, yc) s.t. g(xi, xc, yi, yc) ≤ 0}. (3)

emark 2. Observe that by reformulation (2) and particularly by
he third constraint, i.e.,

 (xi, xc, yi, yc) ≤ w(xi, xc),

 restriction of problem (3), i.e., an upper bound on w(xi, xc), yields
 relaxation of (2) and consequently, a relaxation of (1). Similarly, a
elaxation of (3) gives a restriction of (2) (Mitsos and Barton, 2006;
itsos et al., 2008).
Part of our proposed method, Branch-and-Sandwich, is based on
he property of Remark 2. For instance, in the original development
f the Branch-and-Sandwich algorithm (Kleniati and Adjiman,
014a,b), where only continuous variables were considered, we
emical Engineering 72 (2015) 373–386

computed a constant upper bound on w(xc) for all the xc values over
the domain under consideration. Then, using this upper bound on
w(xc) in formulation (2), we  derived a relaxation of the overall prob-
lem. This relaxation played the role of our proposed lower bounding
problem. In order to compute a valid upper bound on w(xc) for
all the xc values, we employed a semi-infinite formulation for the
proposed inner upper bounding problem which we tackled via its
tractable KKT relaxation. To achieve this, in the original develop-
ment of the algorithm, a regularity condition was imposed for all
the xc values. Then, it was possible to employ the inner KKT condi-
tions where necessary, e.g., in the inner upper bounding problem
and in the overall lower bounding problem.

In the present article, we  present a generalization of the Branch-
and-Sandwich algorithm to the mixed-integer nonlinear case that
removes the need to employ the inner KKT conditions; hence, the
regularity assumption of the original algorithm is lifted. This is
achieved with the introduction of a robust counterpart approach
for the inner upper bounding problem. Nevertheless, when there
are continuous variables in the inner problem and when regularity
holds for this problem, the inner KKT conditions with respect to
the continuous variables can be derived (Mitsos, 2010) and added
to the outer problem in order to obtain tighter relaxations (Kleniati
and Adjiman, 2014a).

The paper is organized as follows. In Section 2, the reader
is introduced to the challenges one faces when tackling gen-
eral (mixed-integer) nonlinear bilevel problems. The proposed
branching scheme is presented in Section 3.1, and the bounding
scheme in Section 3.2, together with rules to prune non-promising
nodes (fathoming). The Branch-and-Sandwich algorithm is for-
mally stated in Section 4. This exposition is followed by its detailed
application to an illustrative example in Section 4.2. In Section 4.3,
a proof of finite convergence to an ε-optimal solution is reported.
Preliminary numerical results are presented in Section 5 and our
conclusions in Section 6.

2. Challenges

Bilevel problems are very hard problems to solve: from the com-
plexity point of view they are NP-hard even in the linear case (Deng,
1998). To make matters worse, in the discrete case, additional diffi-
culties may arise due to the integrality conditions which make the
inner problem nonconvex, regardless of the form of the functions.
Observe that, in such a case, the (nonconvex) inner problem is an
NP-hard problem embedded within an NP-hard problem.

Let us visualize some of the challenges encountered due to the
integrality conditions and the resulting nonconvexity of the inner
problem by using the well-known discrete linear bilevel example
below, which provides a useful illustration (Gümüş and Floudas,
2005).

Example 1 (Example 1 in Moore and Bard (1990)).

min
xi

−xi − 10yi

s.t. min
yi

yi,

s.t. −25xi + 20yi ≤ 30,
−2xi − 10yi ≤ −15,

xi ∈ [0,  8] ∩ Z,

yi ∈ [0,  4] ∩ Z.
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Fig. 1. Challenges illustrated using Example 1. Crosses denote feasible points of the original inner problem. Thick solid lines and boxed crosses denote bilevel feasible points
for  the problems considered in each figure. The number next to each symbol is the corresponding outer objective value. Diamond shaped symbols in (d) denote inner global
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ptima over a subdomain of Y; those points are bilevel infeasible.

We  use F * to denote the outer objective value at the global solu-
ion, F and F to denote lower and upper bounds on F *. Example 1 has

 unique optimal solution at (x∗
i
, y∗

i
) = (2,  2) with optimal objective

alue F * = −22 as one can verify in Fig. 1(a). This example has been
sed extensively in the literature to illustrate that relaxing the inte-
rality requirement of the inner problem does not lead to a valid
ower bound on the overall objective value (Dempe, 2002). This
henomenon is demonstrated in Fig. 1(b), where the reaction set
f the relaxed inner problem is highlighted and the overall optimal
bjective value is −18, which is an upper bound on F *, rather than

 lower bound. This result can in fact be explained by the obser-
ation of Remark 2, i.e., a relaxation of the inner problem yields a
estriction of reformulation (2).
The next challenge arises from the difficulty to construct a
onvergent lower bounding problem (Mitsos and Barton, 2006).
n Fig. 1(c), the feasible region of the well-known relaxed (over-
ll) problem, which is obtained by dropping the constraint that
variable yi is the optimal solution of the inner problem, is plotted.
The resulting problem is:

min
xi

−xi − 10yi

s.t. −25xi + 20yi ≤ 30,

xi + 2yi ≤ 10,

2xi − yi ≤ 15,

−2xi − 10yi ≤ −15,

xi ∈ [0,  8] ∩ Z,

yi ∈ [0,  4] ∩ Z.

(5)
The optimal value of (5), equal to −42, is a valid lower bound
very far from F * that cannot be improved unless more constraints
are added. In particular, relaxation (5) is non convergent (Mitsos
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nd Barton, 2006). We  see in Section 3.2 how Branch-and-Sandwich
dds one simple constraint/cut in order to construct a convergent
elaxation. The final challenge, demonstrated in Fig. 1(d), concerns
he effect of partitioning the inner space. If branching on yi were
llowed, the hierarchical nature of the bilevel problem would be
iolated because then, for certain xi values, not all values in Y would
ave been considered. Notice in Fig. 1(a), for xi = {3, . . .,  6}, the
nique optimal solution of the inner problem is yi = 1. However,

f branching on yi were allowed, as depicted in Fig. 1(d), then over
he Y subdomain where y ≥ 2, the unique optimal solution of the
nner problem would be yi = 2. Accepting points (xi, 2) for xi = {3,

 . .,  6} as bilevel feasible, based on these points being global opti-
al  solutions of the inner problem over a subdomain, would lead

o the selection of bilevel infeasible points, i.e., infeasible in (4).
onsequently, the corresponding objective values are invalid upper
ounds on the outer objective value, namely { − 23, . . .,  −26} are
ot valid upper bounds on F *. One strategy that has been proposed
o overcome this challenge is to ensure that the (nonconvex) inner
rogram is always solved over the whole Y domain (Mitsos et al.,
008; Tsoukalas, 2009). However, in Branch-and-Sandwich this
hallenge is addressed in a different way. Namely, the successively
efined inner subdomains, where overall inner global optima may
ie, corresponding to successively refined outer subdomains, are
ept under consideration. Thus, although branching with respect
o the inner and the outer variables is allowed without distinction,
n inner suboptimal point is never computed. The details are pro-
ided in Section 3.1 and a thorough analysis can be found in Kleniati
nd Adjiman (2014a).

. Branching and bounding schemes

The original Branch-and-Sandwich algorithm is a determi-
istic global optimization algorithm that tackles general bilevel
rograms with continuous decision variables, twice continuously
ifferentiable functions and a nonconvex inner problem satisfy-

ng regularity (Kleniati and Adjiman, 2011, 2014a, 2014b). The
ranch-and-Sandwich algorithm was proved to be ε-convergent in
heorem 6 of Kleniati and Adjiman (2014b) based on exhaustive-
ess and the general convergence theory (Horst and Tuy, 1996).
his means that the algorithm is guaranteed to converge in finite
ime to a point (x*, y*) which is feasible with respect to the inner
nd outer problem constraints and which is such that f (x∗, y∗) ≤
(x∗) + εf and F(x*, y*) ≤ F * + εF, where εf and εF are arbitrary pos-

tive constants, w(x∗) is the optimal objective value of the inner
roblem at x* and F * is the value of the outer objective at the
lobal solution, as per Definition 2 of Kleniati and Adjiman (2014a).
he algorithm was tested successfully on 34 benchmark examples
Kleniati and Adjiman, 2014b). Its main components are:

i. partition of both the inner and the outer spaces without distinc-
tion,

ii. consideration of all inner (successively refined) subdomains,
where (inner) global optima may  lie for (successively refined)
outer subdomains,

ii. solution of convex relaxations of the inner problem over refined
inner subdomains,

iv. generation of guaranteed upper and lower bounds on the inner
optimal value function and on the outer objective value for a

given subdomain,2 and

v. a novel tree management with auxiliary lists of nodes as well
as inner and outer fathoming rules such that the exploration

2 Two of the proposed bounding problems are nonconvex. The proposed bounding
roblems do not grow in size from node to node and are always obtained from the
orresponding problems at the parent node.
emical Engineering 72 (2015) 373–386

of two decision spaces using a single branch-and-bound tree is
achieved.

For the mixed-integer case in the present paper, the con-
struction of two sets of upper and lower bounding problems,
approximating the inner and the outer problems, is again combined
with the new tree management with auxiliary lists of nodes and
(inner/outer) fathoming rules such that the two  decision spaces,
inner and outer, are explored simultaneously. Before describing
the branching and bounding schemes, let us first define below the
meaning of a node.

Definition 1 (Node).  A node k represents (sub)domain

(X(k) × Y (k)) ⊆ (X × Y) .

The root node is the node with k = 1 and corresponds to the
whole domain X × Y. Note also that each node k has an attribute
l(k) that denotes its level (depth) in the branch-and-bound tree. The
root node has level zero, i.e., l(1) = 0.

3.1. Branching scheme

The design of our branching scheme is such that it allows
branching on the outer and inner variables without distinction
but at the same time considering all inner (successively refined)
subdomains, where (inner) global optima lie for (successively
refined) outer subdomains. This approach and its theoretical
implications are fully developed in our earlier work, where the orig-
inal Branch-and-Sandwich was introduced (Kleniati and Adjiman,
2014a, 2014b) and are summarized here for completeness. Notice
that it is not affected by the presence of integrality conditions,
so we  simplify our notation for the outer (inner) host set from
XI × XC (YI × YC) to X (Y). Furthermore, in the examples below, let a
one-dimensional host set X (Y) be represented by an interval, inde-
pendent of whether or not it is continuous. For instance, if Y = {1,
2, 3}, then in our presentation we  have Y = [1, 3], where Y ⊂ Z is
implied.

The first idea of the proposed branching scheme entails the use
of more than one list to represent the list of active nodes.  By active
nodes we  refer to the nodes that require further branching. In the
context of our solution method, we  have two  types of active nodes,
open and inner-open (or outer-fathomed) nodes. By open nodes we
refer to nodes that can be explored further with respect to the
overall problem that we  intend to solve, i.e., the bilevel problem
including the outer and the inner problems. These nodes belong to
list L,  which corresponds to the classical list of active nodes in the
context of a classical branch-and-bound method. By inner-open (or
outer-fathomed) nodes we  denote the nodes that are known (based
on fathoming rules, cf., Section 3.2.1) not to contain the global solu-
tion of the bilevel problem. These nodes may  not be ready to be
discarded fully from the branch-and-bound tree, because they may
still contain a globally optimal solution for the inner problem for a
subdomain of X which has not yet been fathomed. These nodes are
stored in list LIn, which is the list of inner-open nodes, i.e., nodes
that should be explored further with respect to the inner prob-
lem only. We  also refer to LIn as the list of outer-fathomed nodes,
implying that the nodes it contains are not included in L.  When
fathoming is applied (cf., Section 3.2.1), there are also instances in
which some active nodes need not be explored further with respect

to either space (outer or inner) and can be deleted from any list to
which they belong; this is referred to as full fathoming of a node
and corresponds to the classical fathoming in a branch-and-bound
method.
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Table  1
Independent lists appearing in each partitioning example shown in Fig. 2.

L1 L2 L3

Fig. 2(a) {L1
1} – –

Fig. 2(b) {L1
1, L1

2} – –
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Fig. 2. Example of partitions for the host sets in Example 1,  i.e., X = [0, 8] ⊂ Z

and Y = [0,  4] ⊂ Z. Numbers inside the rectangles denote the node numbers. The
numbers at the bottom and to the left of each subfigure denote y and x values,
respectively. All (sub)lists are shown in Tables 1 and 2. Briefly, (a) X = X1: one inde-

Lp2 := {Lp
j
}, j ∈ J ⊂ S, (14)

where p1 : = p and p2 : = |P| + 1. We refer to condition (IC) as the inde-
pendence condition because it implies that sets {Lp

i
: i ∈ I} and {Lp

j
:

Table 2
Sublists appearing in each partitioning example shown in Fig. 2. The X subdomain
Fig. 2(c) {L1
1} {L2

1} –

Fig. 2(d) {L1
1} {L2

1} {L3
1}

emark 3. Lists L and LIn are disjoint, i.e.,: L ∩ LIn = ∅. Their union
ontains all the nodes of the branch-and-bound tree that have not
et been fully fathomed, i.e., all active nodes.

The second idea of the proposed branching scheme is the use of a
umber of auxiliary lists that link the active nodes in L ∪ LIn appro-
riately such that the hierarchical structure of the bilevel problem

s maintained during branching. In what follows, let P be a finite
ndex set and {Xp ⊆ X : p ∈ P} be a partition of X:

 =
⋃|P|

p=1
Xp and Xp ∩ Xq = ∂Xp ∩ ∂Xq for allp, q ∈ P, p /= q,

(6)

here ∂Xp denotes the (relative) boundary of Xp (Horst and Tuy,
996, Def. IV.1). In the Branch-and-Sandwich framework, in addi-
ion to lists L and LIn, we  assign one auxiliary list Lp to each member
p of the X partition.3 Each list Lp consists of a collection of sublists:

p = {Lp
1, . . .,  Lp

|Sp|}, (7)

here Sp, p ∈ P, are finite sets of indices. The lists Lp, p ∈ P, are pair-
ise disjoint and, for this reason, are referred to as independent:

q ∩ Lp = ∅ for all p, q ∈ P, p /= q. (8)

In order to generate list Lp, corresponding to set Xp, p ∈ P, we
rst generate sublist(s)
p
s := {k ∈ L ∪ LIn : ri(X(k)) ∩ ri(Xp) /= ∅},  s ∈ Sp, (9)

uch that

i(X(i)) ∩ ri(X(j)) /= ∅ for all i, j ∈ Lp
s , i /= j, s ∈ Sp, (10)

i(Y (i)) ∩ ri(Y (j)) = ∅ for all i, j ∈ Lp
s , i /= j, s ∈ Sp, (11)

here ri(·)  denotes the (relative) interior of a set (Boyd and
andenberghe, 2004). In fact, observe that each sublist Lp

s , s ∈ Sp,
orresponds to a Y partition.

emark 4. To recapitulate, each independent list Lp, p ∈ P, covers
ll x values in the member set Xp of the X partition, and the “whole”

 as a collection of |Sp| Y partitions:4

p =
⋃

s∈Sp

⋃
k∈Lp

s

Y (k). (12)

In other words, in the Branch-and-Sandwich framework, the
et {Xp : p ∈ P} cannot be any X partition, but has to satisfy the
equirement that for all x ∈ Xp the “whole” Y is maintained. This
equirement is met  via the management of the independent lists
7) and their sublists (9).

Example 1 continued Consider the four partitioning examples

f a purely integer two-dimensional space X × Y in Fig. 2. The cor-
esponding independent lists and their sublists are identified in
ables 1 and 2, respectively. Notice that for a member set Xp, p ∈ P,

3 Overall, we have lists L, LIn and {L1, . . .,  L|P|}.
4 We use quotes to refer to the “whole” inner space because some Y subdomains

re  eliminated at some point due to fathoming (cf., Section 3.2.1). As a result, we
ay  have Yp ⊂ Y , rather than Yp = Y , for some p ∈ P.
pendent list with one sublist; (b) X = X1: one independent list with two sublists;
(c)  X = X1 ∪ X2: two independent lists with one sublist each; (d) X = X1 ∪ X2 ∪ X3:
three independent lists with one sublist each.

more than one sublist may  satisfy (9)–(11), i.e., |Sp| ≥ 1, and a given
node can appear in more than one sublist. For instance, in Fig. 2(b),
X1 has two  sublists, L1

1 and L1
2, and node 2 belongs to both sublists.

This is necessary to ensure that each sublist represents a Y partition.
Finally, let us consider list Lp, p ∈ P, and branch on some of its

nodes. If, after the partitioning of nodes, there exist index sets I and
J such that:

I ∩ J = ∅, I ∪ J = Sp,

{Lp
i

: i ∈ I} ∩ {Lp
j

: j ∈ J} = ∅,
(IC)

list Lp can be replaced by two (new) independent lists Lp1 and
Lp2 corresponding to refined subdomains Xp1 and Xp2 , respectively,
that form a partition of Xp. The new independent lists are:

Lp1 := {Lp
i
}, i ∈ I ⊂ S, (13)
covered by each set Xp , p ∈ {1, 2, 3}, varies with each example. The relevant subdo-
main is marked next to each diagram.

X1 X2 X3

Fig. 2(a) L1
1 = {2, 3} – –

Fig. 2(b) L1
1 = {2, 4}, L1

2 = {2, 5} – –

Fig. 2(c) L1
1 = {4, 6} L2

1 = {5, 7} –

Fig. 2(d) L1
1 = {8, 10} L2

1 = {5, 7} L3
1 = {9, 11}
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 ∈ J} cover no overlapping X subdomains, i.e., they have become
ndependent. The dimension of P is increased:

P| := |P| + 1. (15)

For example, list L1 in Fig. 2(b) is replaced by lists L1 and L2 in
ig. 2(c), following branching on node 2, Fig. 2(b), in the x dimen-
ion.

emark 5. A node k not yet fully fathomed must belong to an
ndependent list Lp for some p ∈ P, i.e., there must exist at least one
ublist Lp

s ∈ Lp such that k ∈ Lp
s . For simplicity, we use the short-

and notation k ∈ Lp. Combining this with Remark 3, we  have

p ∈ P : k ∈ (L ∪ LIn) ∩ Lp

or any node k in the branch-and-bound tree that has not yet been
ully fathomed.

To end the overview of our tree management approach, note
hat every independent list Lp, p ∈ P, is assigned an attribute that
e call best inner upper bound.  Its definition is presented in the
ext section (cf., Definition 2), where we introduce our bounding
cheme at any node k in the branch-and-bound tree.

.2. Bounding scheme

We  present the formulation of the subproblems used in obtain-
ng bounds on the inner and outer problems by considering a node

 ∈ Lp in the branch-and-bound tree.
Inner bounding scheme.  The inner bounding scheme is based on

nding valid lower and upper bounds on the inner optimal value
unction w(xi, xc) for all values of the outer variable vector (xi, xc).
n view of this, the inner lower bounding problem is stated as:

f L,(k) = min
xi,xc,yi,yc

f (xi, xc, yi, yc)

s.t. g(xi, xc, yi, yc) ≤ 0,

xi ∈ X(k)
I , xc ∈ X(k)

C , yi ∈ Y (k)
I , yc ∈ Y (k)

C .

(ILB)

Problem (ILB) is a classical (nonconvex) mixed-integer non-
inear program (MINLP) with the minimization taking place over
he combined outer and inner variable vector (xi, xc, yi, yc); thus,
ILB) can be solved with available global optimization techniques
or general MINLPs, e.g., Adjiman et al. (2000), Tawarmalani and
ahinidis (2004), and Belotti (2009). One may  also wish to obtain

 valid, but looser, lower bound f (k) ≤ f L,(k) by solving the simpler
onvex MINLP relaxation:

f (k) = min
xi,xc,yi,yc

f̆ (k)(xi, xc, yi, yc)

s.t. ğ(k)(xi, xc, yi, yc) ≤ 0,

xi ∈ X(k)
I , xc ∈ X(k)

C ,

yi ∈ Y (k)
I , yc ∈ Y (k)

C .

(RILB)

here f̆ (k)(xi, xc, yi, yc) and ğ(k)(xi, xc, yi, yc) represent convex
nderestimators of functions f(xi, xc, yi, yc) and g(xi, xc, yi, yc),
espectively, over the current domain at node k, with the integrality
ondition relaxed if necessary. The underestimators can be con-
tructed using standard techniques appropriate to the functional
orms in the formulation, e.g., Adjiman et al. (2000), Floudas (2000),
nd Tawarmalani and Sahinidis (2002).

Next, if k is an active node, i.e., k ∈ (L ∪ LIn) ∩ Lp, we  solve the

nner upper bounding problem over the current domain to compute

 valid upper bound on node k. To do so, one has to account for
ll values of the outer variables and take the worst-case scenario
ith respect to those. Thus, the inner upper bounding problem is
emical Engineering 72 (2015) 373–386

given via the so-called robust counterpart of problem (3), which is
parametric in (xi, xc):

f U,(k) = min
yi,yc,t

t

s.t. f (xi, xc, yi, yc) ≤ t ∀(xi, xc) ∈ X(k)
I × X(k)

C ,

g(xi, xc, yi, yc) ≤ 0 ∀(xi, xc) ∈ X(k)
I × X(k)

C ,

yi ∈ Y (k)
I , yc ∈ Y (k)

C .

(IUB)

Problem (IUB) is a standard mixed-integer semi-infinite prob-
lem that can be tackled by overestimating the functions in the
semi-infinite constraints. This can be done by using interval arith-
metic extended to mixed-integer problems (Apt and Zoeteweij,
2007; Berger and Granvilliers, 2009) in the framework of the upper
bounding procedure of Bhattacharjee et al. (2005), namely:

f
(k) = min

yi,yc,t
t

s.t. f (X(k)
I , X(k)

C , yi, yc) ≤ t,

g(X(k)
I , X(k)

C , yi, yc) ≤ 0,

yi ∈ Y (k)
I , yc ∈ Y (k)

C ,

(RIUB)

where

f (X(k)
I , X(k)

C , yi, yc) ≥ f (xi, xc, yi, yc) ∀(xi, xc) ∈ X(k)
I × X(k)

C ;
g(X(k)

I , X(k)
C , yi, yc) ≥ g(xi, xc, yi, yc) ∀(xi, xc) ∈ X(k)

I × X(k)
C .

Remark 6. Observe that in the original Branch-and-Sandwich
algorithm (Kleniati and Adjiman, 2014a), a max–min formulation
was adopted to formulate the auxiliary inner upper bounding prob-
lem. In the present article, such a formulation is not desirable
because it would lead to a challenging generalized semi-infinite
program in which the (infinite) index set would be dependent on
the mixed-integer outer variable vector (xi, xc). Furthermore, to the
best of our knowledge, there is no algorithm to solve such prob-
lems. On the other hand, the worst-case scenario formulation (IUB)
employed here for the mixed-integer case can also be applied to
the continuous case, thereby lifting the assumption of regularity.

Remark 7. Note that the inner lower bound is used for the selec-
tion of a candidate node (cf., Section 3.2.2) and the inner upper
bound is used to construct the outer lower bounding problem as
in problem (LB) introduced later in this Section. Both bounds are
used for fathoming when their values indicate that the current
node does not contain the global solution of the inner problem (cf.,
Section 3.2.1).

Having computed the inner upper bounds for specific nodes, we
update the best inner upper bound of list Lp, f UB,p, if necessary,
based on the definition below.

Definition 2 (Best inner upper bound).  The best inner upper bound
is identified in a manner consistent with (IUB), i.e., it is the lowest
value over the y variables but the largest value over the x variables.
In particular, recalling (7), each list Lp, p ∈ P, has:
f UB,p = max{min
j∈Lp

1

{f (j)}, . . .,  min
j∈Lp

|S|
{f (j)}}. (16)



and Chemical Engineering 72 (2015) 373–386 379

t

w
t
M
i

(
L
L
k

w

w

R
o
o
X

b
K

w
t

p

F

3

s
a

D

1

2

t

D
a

P.-M. Kleniati, C.S. Adjiman / Computers 

Outer bounding scheme. If k is a node in list L, i.e., if k ∈ L ∩ Lp,
he outer lower bounding problem is employed:

F (k) = min
xi,xc,yi,yc

F(xi, xc, yi, yc)

s.t. G(xi, xc, yi, yc) ≤ 0,

g(xi, xc, yi, yc) ≤ 0,

f (xi, xc, yi, yc) ≤ f UB,p,

xi ∈ X(k)
I , xc ∈ X(k)

C ,

yi ∈ Y (k)
I , yc ∈ Y (k)

C .

(LB)

To tighten problem (LB), we can add the inner KKT conditions
ith respect to the continuous inner variables when regularity of

he inner problem is satisfied for all the xc and xi values (e.g., see
itsos, 2010; Kleniati and Adjiman, 2014a). Any feasible solution

n (1) is feasible in the proposed relaxation (LB).
Let the solution of the outer lower bounding problem (LB) be

xi, xc). Then, for the outer upper bounding procedure and for k ∈
 ∩ Lp, we first fix (xi, xc) to (xi, xc) and look for a node k′ ∈ (L ∪
In) ∩ Lp such that:

′ := arg min
j∈(L∪LIn)∩Lp

w(j)(xi, xc), (MinISP)

here

(j)(xi, xc) := min
yi,yc

{f (xi, xc, yi, yc) s.t. g(xi, xc, yi, yc) ≤ 0,

yi ∈ Y (j)
I , yc ∈ Y (j)

C }. (ISP)

emark 8. The outer lower bounding problem (LB) contains only
ne cut based on the tightest constant upper bound for the inner
bjective value. This bound is valid over the whole Y for the domain
(k)
I × X(k)

C considered.

Finally, for (xi, xc) = (xi, xc), we solve the following outer upper
ounding problem over node k′ (Mitsos et al., 2008; Mitsos, 2010;
leniati and Adjiman, 2014a):

F
(k′) = min

yi,yc
F(xi, xc, yi, yc)

s.t. G(xi, xc, yi, yc) ≤ 0,

g(xi, xc, yi, yc) ≤ 0,

f (xi, xc, yi, yc) ≤ w(k′)(xi, xc) + εf ,

yi ∈ Y (k′)
I , yc ∈ Y (k′)

C .

(UB)

here εf is a given inner objective tolerance. Any feasible solution in
he upper bounding problem (UB) is feasible in the original bilevel

roblem (1). Finally, we use F
(k′)

to update the best upper bound
UB whenever F

(k′)
< FUB, yielding a new incumbent objective value.

.2.1. Node fathoming rules
The fathoming rules, stated below for completeness, are the

ame as those introduced in the original Branch-and-Sandwich
lgorithm (Kleniati and Adjiman, 2014a,b).

efinition 3 (Inner fathoming rules). Consider a node k ∈ Lp. If

. f (k) = ∞ or

. f (k) > f UB,p
hen fully fathom k, i.e., delete it from L (or LIn) and Lp.

efinition 4 (Outer fathoming rules). Given outer objective toler-
nce εF, consider a node k ∈ L ∩ Lp. If
Fig. 3. Example of a branch-and-bound tree in the Branch-and-Sandwich algorithm.
The  clear nodes are open nodes in list L,  the light gray nodes are outer-fathomed
nodes in list LIn and the dark gray node is fully fathomed.

1. F (k) = ∞ or
2. F (k) ≥ FUB − εF

then outer fathom k, i.e., move it from L to LIn. Hence, after outer
fathoming, k ∈ LIn ∩ Lp.

Moreover, if a sublist contains outer-fathomed nodes only, i.e.,
it no longer contains any nodes in L which are open from the per-
spective of the overall problem, then it can be deleted. This may
lead to full fathoming of the corresponding nodes as long as they
do not appear in other sublists of the same independent list. The
rules are summarized below.

Definition 5 (List-deletion fathoming rules). Consider a sublist Lp
i

∈
Lp, i ∈ Sp.

1. If Lp
i

∩ L = ∅ and Lp
i

∩ Lp
j

= ∅ for all j /= i ∈ Sp, then fully fathom

all nodes k ∈ Lp
i
, i.e., delete them from LIn and Lp. Delete also

sublist Lp
i

and decrease |Sp|.
2. If Lp

i
∩ L = ∅ and Lp

i
∩ Lp

j
/= ∅ for some j /= i ∈ Sp, then delete sub-

list Lp
i

and decrease |Sp|.
3. If |Sp| = 0, delete list Lp and decrease |P|.

As a result of our fathoming rules, the branch-and-bound tree in
the Branch-and-Sandwich algorithm contains three types of nodes:

1. Open nodes: those in L ∩ Lp for some p ∈ P. We  continue explo-
ration of these nodes with respect to both the inner and outer
problems. Open nodes are shown as clear nodes in the tree of
Fig. 3.

2. Outer-fathomed nodes: those in LIn ∩ Lp for some p ∈ P. We  con-
tinue exploration of these nodes with respect to the inner
problem only. Outer-fathomed (or inner-open) nodes are those
with a dashed line and light-gray color in Fig. 3.

3. Fathomed nodes: deleted from all the lists. No further exploration
of these nodes is required. The dark-gray nodes of Fig. 3 are (fully)
fathomed nodes.

Remark 9. Recall that nodes in (L ∪ LIn) are all active nodes, i.e.,
nodes at which we continue branching (see also Section 3.1). How-
ever, at nodes in LIn we  no longer need to apply our outer bounding
scheme, i.e., we only compute inner bounds.
Remark 10. Any active node, either in L or in LIn, can be fully
fathomed when one of the inner fathoming rules applies. Any active
node in L may  first be outer-fathomed (i.e., moved to LIn) and then
be fully fathomed at a later iteration.
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.2.2. Selection operation
The selection operation is that introduced in the original Branch-

nd-Sandwich algorithm (Kleniati and Adjiman, 2014a,b) and it is
tated here for completeness. The selection operation of the algo-
ithm includes three steps: (i) a classical selection rule, e.g., lowest
outer) lower bound, is first applied to the open nodes in list L;
ii) then, the list Lp corresponding to this node is identified; (iii)
nally, the node in that list, i.e., k ∈ L ∩ Lp, with the lowest level is
hosen; if several nodes are at the same level in the tree, the node
orresponding to the lowest inner lower bound is chosen:

 := arg min
i

{f (i) | i := arg min
j∈Lp

{l(j)}}. (ISR)

Furthermore, we branch on outer-fathomed nodes too, i.e.,
odes that belong to list LIn. In particular, for the list Lp already

dentified, we check whether LIn ∩ Lp /= ∅, in which case a node
In ∈ LIn ∩ Lp is selected using (ISR). This node is explored further
ith respect to the inner problem only, since nodes in LIn are kept

o provide information about the inner global optimal solutions.
ranching on an outer-fathomed node can take place based on outer
r inner variables. To recapitulate, the selection operation of the
roposed algorithm is stated below.

efinition 6 (Selection operation of the Branch-and-Sandwich algo-
ithm). The selection rule is:

(i) find a node in L with lowest overall lower bound: kLB =
arg min

j∈L
{F (j)};

(ii) find the corresponding Xp subdomain, p ∈ P, such that kLB ∈ Lp;
iii) select a node k ∈ L ∩ Lp and a node kIn ∈ LIn ∩ Lp, if non empty,

using (ISR).

. Algorithm statement and convergence properties

A statement of the algorithm is given in this section. This is fol-
owed by an illustration of the algorithm on Example 1 and by a
roof of convergence.

.1. Algorithm statement

Given outer and inner objective tolerances εF, εf, respectively,
nd a feasibility tolerance ε, the Branch-and-Sandwich algorithm
or mixed-integer nonlinear bilevel problems is stated here, and
ummarized in Fig. 4.

lgorithm 1. Branch-and-Sandwich

tep 0: Initialization Initialize lists: L := LIn := ∅. Set the incum-
bent (xUB, yUB) : =∅ and F UB : = ∞,  the iteration counter:
Iter : =0, and the node counter: nnode : =1 corresponding to
the whole domain X × Y.

tep 1: Inner and outer bounds for root node
Step 1.1: Solve the relaxed inner problem (RILB) to com-

pute f (1). If infeasible go to Step 2.
Step 1.2: Solve the restricted inner problem (RIUB).
Step 1.3: Solve the lower bounding problem (LB) globally

to obtain F (1). If infeasible, go to Step 2. Otherwise,
if a feasible solution (x(1), y(1)) is computed, add
node to the universal list L := {1} with properties

(f (1), f
(1)

, F (1), x(1), l(1)), where l(1) : =0. Initialize
the partition of X, i.e., p : =1 and X1 := X , and gen-

1
erate the first independent list L := {1}. Set the

best inner upper bound for X1: f UB,1 := f
(1)

.
Step 1.4: Set x := x(1) and compute w(x) using (3). Then,

solve (UB) locally to obtain F
(1)

. If a feasible
Fig. 4. An outline flowchart for the Branch-and-Sandwich algorithm.

solution (xf, yf) is obtained, update the incumbent

(xUB, yUB) = (xf , yf ) and FUB = F
(1)

.
Step 2: Node(s) selection If L = ∅, terminate and report the incum-

bent solution and value. Otherwise increase the iteration
counter, Iter = Iter + 1, and:
Step 2.1: Select a best candidate list Lp and a best candidate

node k ∈ Lp ∩ L;  remove k from L.
Step 2.2: If Lp ∩ LIn /= ∅, select a best candidate node kIn ∈

Lp ∩ LIn; remove kIn from LIn.
Step 3: Branching

Step 3.1: Branch on x or y variables at node k to create
two  new nodes, i.e., nnode + 1 and nnode + 2. Set
nnew : =2 and initialize node properties.

Step 3.2: If a node kIn is selected, branch at kIn to create two
new (outer-fathomed) nodes, i.e., nnode + 3 and
nnode + 4. Set nnew : =4 and initialize node prop-
erties.

Step 3.3: List management:  For i = nnode + 1, . . .,
nnode + nnew, find the corresponding subdo-
main Xpi

such that i ∈ Lpi and set/update f UB,pi .
Apply the inner-value-dominance fathoming
rule (cf., Definition 3).

Step 4: Inner lower bound If there is no i ∈ {nnode + 1, . . .,
nnode + nnew}, such that i ∈ L ∪ LIn, apply the list deletion
rules (cf., Definition 5) and go to Step 2. Otherwise, for
i ∈ {nnode + 1, . . .,  nnode + nnew} ∩ (L ∪ LIn), solve the auxil-
iary relaxed inner problem (RILB) to compute f (i). If feasible

and f (i) ≤ f UB,pi , then:

• if i ∈ {nnode + 1, nnode + 2}, add node i to the list L with

properties (f (i), f
(i)

, F (i), x(i), l(i));
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• else if nnew = 4 and i ∈ {nnode + 3, nnode + 4}, add node i to

the list LIn with properties (f (i), f
(i)

, l(i)).
Otherwise, remove i from Lpi . Apply the list deletion rules
(cf., Definition 5).

tep 5: Inner upper bound If there is no i ∈ {nnode + 1, . . .,
nnode + nnew}, such that i ∈ L ∪ LIn, go to Step 2. Other-
wise, for i ∈ {nnode + 1, . . .,  nnode + nnew} ∩ (L ∪ LIn), solve
the auxiliary restricted inner problem (RIUB) to compute

f
(i)

. Update f
(i)

in L or in LIn and then update f UB,pi using
(16) (cf., Definition 2). Apply the inner-value-dominance
fathoming rule (cf., Definition 3) and, if necessary, the list
deletion fathoming rules (cf., Definition 5).

tep 6: Outer lower bound If there is no i ∈ {nnode + 1, nnode + 2},
such that i ∈ L,  go to Step 2. Otherwise, for i ∈ {nnode +
1, nnode + 2} ∩ L,  solve the lower bounding problem (LB)
globally to obtain F (i). If a feasible solution (x(i), y(i)) is
obtained with F (i) ≤ FUB + εF , update F (i) and x(i) in L.  If
F (i) ≥ FUB − �F , move i from L to the list LIn with properties

(f (i), f
(i)

, l(i)) and apply the list deletion rules (cf., Definition
5).

tep 7: Outer upper bound If there is no i ∈ {nnode + 1, nnode + 2},
such that i ∈ L,  go to Step 2. Otherwise, for i ∈ {nnode +
1, nnode + 2} ∩ L,  do:
Step 7.1: Set x := x(i) and, using (ISP), compute w(j)(x) for

all j ∈ Lpi , such that x ∈ X(j). Set i′ based on (Min-
ISP).

Step 7.2: Solve (UB) (locally) to obtain F
(i′)

. If a feasible

solution (x(i′)
f

, y(i′)
f

) is obtained with F
(i′)

< FUB

update the incumbent:

(xUB, yUB) = (x(i′)
f

, y(i′)
f

) and FUB = F
(i′)

.

Move from the list L to the list LIn all nodes j
such that F (j) ≥ FUB − εF and apply the list dele-
tion fathoming rules (cf., Definition 5). Increase
the node counter, i.e., nnode = nnode + nnew, and go
to Step 2.

emark 11. In Step 3.1, the node properties are initialized as
ollows:

f (nnode+1) := f (nnode+2) := f (k);

f
(nnode+1)

:= f
(nnode+2)

:= f
(k)

;

F (nnode+1) := F (nnode+2) := F (k);

x(nnode+1) := x(nnode+2) := x(k);

l(nnode+1) := l(nnode+2) := l(k) + 1.

here x(k) is inherited only if it is in the domain of the child node.
Similarly, in Step 3.2, the node properties are initialized as:

f (nnode+3) := f (nnode+4) := f (kIn);

f
(nnode+3)

:= f
(nnode+4)

:= f
(kIn)

;

l(nnode+3) := l(nnode+4) := l(kIn) + 1.

emark 12. In Steps 4–5, we start by testing whether the new
odes for inner and outer exploration, created in Step 3, still exist
ollowing the application of node fathoming in Step 3.3 and in Step
. As further node fathoming may  take place in Step 5 (resp. Step
), we start Step 6 (resp. Step 7) by testing whether there still exist
ny new nodes for outer exploration.
emical Engineering 72 (2015) 373–386 381

Remark 13. In Step 7 it is not always necessary to compute w(j)(x)
for each node j. If w(j)(x) has previously been calculated for x = x
over the same Y subdomain, this information can be re-used.

4.2. Illustrative example revisited

Returning to Example 1, we present the branch-and-bound tree
for its solution in Fig. 5 and provide in this section a step-by-step
illustration of the progress of the algorithm in solving this prob-
lem. The inner upper bounding formulations (IUB) and (RIUB) are
presented in Appendix A.

Step 0: Iter = 0. Set L = LIn = ∅, (xUB, yUB) =∅, F UB =∞,  nnode = 1.
Step 1: Step 1.1: Compute the inner lower bound for node 1, f (1) =

1.
Step 1.2: Compute the inner upper bound for node 1, f

(1) =
4.

Step 1.3: The outer lower bounding problem yields F (1) =
−42, with solution (x(1), y(1)) = (2, 4). Since the
outer lower bounding problem is feasible, add
node 1 to the list L with all the computed infor-
mation:
L = {1 : 1 4 −42 2 0},
where the last field is the level of node 1: l(1) = 0.
Also, set p = 1 and

X1 = [0, 8] ∩ Z,  L1 = {1}, f UB,1 = f
(1) = 4.

Step 1.4: Set x := x(1) = 2 and compute w(x) = 2. Then,

obtain F
(1) = −22, with solution (2, 2). Update the

incumbent:
(xUB, yUB) = (2,  2) and FUB = −22.

Step 2: Iter = 1 (since L /= ∅). Select node 1 ∈ L ∩ L1 and remove it
from L.  As a result, at this point L = ∅ and L1 = {1}.

Step 3: Step 3.1: Branch on y = 1 and create nodes:
2 := {(x, y) ∈ Z

2 | 0 ≤ x ≤ 8, 0 ≤ y ≤ 1},
3 := {(x, y) ∈ Z

2 | 0 ≤ x ≤ 8, 2 ≤ y ≤ 4}.
Set nnew = 2.

Step 3.2: LIn = ∅ so this step does not apply.
Step 3.3: Set up a single independent list, L1 = {2, 3} corre-

sponding to X1 = [0,  8] ∩ Z.  There is one sublist;
set f UB,1 = 4.

Step 4: Compute f (2) = 1 and f (3) = 2 and add both nodes to L:

L = { 2 : 1 4 −42 2 1
3 : 2 4 −42 2 1 }.

The first and last properties, i.e., f (i) and l(i), i = 1, 2, where
l(2) = l(3) = 1, are set based on the new nodes 2 and 3; the
other values are inherited from node 1.

Step 5: Compute f
(2) = 4 and f

(3) = 4. No updates of L or f UB,1 are
needed.

Step 6: Compute F (2) = −18, with solution (8,1) and F (3) = −42
with solution (2,2). F (2) > FUB − εF , so move node 2 from
L to LIn (node 2 is outer-fathomed). F (3) ≤ FUB − εF and
information for node 3 in L is unchanged.

Step 7: For i = 3, we set x = x(3) = 2 and compute w(2)(x) = ∞ and
w(3)(x) = 2. The latter value is the lowest, so we  compute

F
(3) = −22 at (2, 2), but no update of the incumbent is

required. Set nnode = 3 and go to Step 2. At this point, the
two lists of active nodes are as follows:
L = { 3 : 2 4 −42 2 1 };
LIn = { 2 : 1 4 1 }.
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tep 2: Iter = 2. Apply the selection rule of Definition 6 and choose
node 3 ∈ L,  which then points to the domain X1 via list
L1, since 3 ∈ L ∩ L1. As the only node in L ∩ L1, node 3 is
selected and then removed from L.  As a result, at this point,
L = ∅ and L1 = {2, 3}. Furthermore, since node 2 ∈ LIn, node
2 is selected from the list of outer-fathomed nodes, result-
ing in LIn = ∅.

tep 3: Step 3.1: At node 3, branch on x = 3, creating nodes 4 and
5:
4 := {(x, y) ∈ Z

2 | 0 ≤ x ≤ 3, 2 ≤ y ≤ 4},
5 := {(x, y) ∈ Z

2 | 4 ≤ x ≤ 8, 2 ≤ y ≤ 4}.
Set nnew = 2.

Step 3.2: At node 2, branch on x = 3, creating nodes 6 and
7:
6 := {(x, y) ∈ Z

2 | 0 ≤ x ≤ 3, 0 ≤ y ≤ 1},
7 := {(x, y) ∈ Z

2 | 4 ≤ x ≤ 8, 0 ≤ y ≤ 1}.
Set nnew = 4.

Step 3.3: Set up two independent lists: L1 = {4, 6}, cor-
responding to X1 = [0,  3] ∩ Z,  and L2 = {5, 7},
corresponding to X2 = [4,  8] ∩ Z.  There are
two sublists (one per independent list). Set
f UB,1 = f UB,2 = 4.

tep 4: Compute f (4) = 2, f (5) = 2, f (6) = 1, f (7) = 1. Nodes 4 and 5
are added to L:

L = { 4 : 2 4 −42 2 2
5 : 2 4 −42 − 2 }.

Nodes 6 and 7 are added to LIn:

LIn = { 6 : 1 4 2
7 : 1 4 2 }.

tep 5: Compute f
(4) = 4, f

(5) =3, f
(6) = 4 and f

(7) = 1. Update

f UB,1 = min{f (4)
, f

(6)} = 4 and f UB,2 = min{f (5)
, f

(7)} = 1.
Apply the inner-value-dominance fathoming rule and find
that f (5) > f UB,2. Node 5 can be fully fathomed: it is
removed from list L and list L2. Since L2 = {7} and 7 ∈ LIn,
node 7 can be fully fathomed. It is removed from LIn and list

L2 is deleted. At this point, L = {4}, LIn = {6} and L1 = {4, 6}.

tep 6: Compute F (4) = −42.
tep 7: For node 4, we set x = x(4) = 2 and compute w(4)(x) = 2 and

w(6)(x) = ∞.  The former value is the lowest, so we  compute
tion tree for Example 1.

F
(4) = −22 and no update of the incumbent is needed. Set

nnode = 7.
Step 2: Iter = 3. Node 4 is selected and removed from L.  Further,

node 6 is selected and removed from LIn. Both lists L and
LIn are now empty.

Step 3: Step 3.1: At node 4, branch on x = 1, creating nodes 8 and
9:
8 := {(x, y) ∈ Z

2 | 0 ≤ x ≤ 1, 2 ≤ y ≤ 4},
9 := {(x, y) ∈ Z

2 | 2 ≤ x ≤ 3, 2 ≤ y ≤ 4}.
Set nnew = 2.

Step 3.2: At node 6, branch on x = 1, creating nodes 10 and
11:
10 := {(x, y) ∈ Z

2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
11 := {(x, y) ∈ Z

2 | 2 ≤ x ≤ 3, 0 ≤ y ≤ 1}.
Set nnew = 4.

Step 3.3: Set up two  independent lists L1 = {8, 10}, cor-
responding to X1 = [0,  1] ∩ Z, and L2 = {9, 11},
corresponding to X2 = [2,  3] ∩ Z.  There are two
sublists (one per independent list). Set f UB,1 = 4
and f UB,2 = 4.

Step 4: Compute f (8) = 2, f (9) = 2, f (10) = ∞,  and f (11) = 1. Node 10
is fully fathomed and removed from list L1. Nodes 8 and 9
are added to L:

L = { 8 : 2 4 −42 − 3
9 : 2 4 −42 2 3 }.

Node 11 is added to LIn:

LIn = { 11 : 1 4 3 }.

Step 5: Compute f
(8) = 4, f

(9) = 2 and f
(11) = 4. Then, f UB,1 = f

(8) =
4 and f UB,2 = min{f (9)

, f
(11)} = 2. No fathoming is possible.

Step 6: Compute F (8) = −21 and F (9) = −22. Nodes 8 and 9 are
outer fathomed (F (8), F (9) ≥ FUB − εF ). At this point both
independent lists L1 and L2 contain only outer-fathomed
nodes and are discarded. This implies that the nodes they
contain (node 8 from L1 and nodes 9 and 11 from L2) are

fully fathomed. As a result, L = ∅ and LIn = ∅.

Step 7: Return to Step 2 since there is no node i created at this
iteration that belongs to L anymore.

Step 2: L = ∅; terminate with F UB = −22 at (2, 2).
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Table  3
Test problems considered and their statistics. # xi (resp. # xc) denotes the number of integer (resp. continuous) outer variables, # yi (resp. # yc) the number of integer (resp.
continuous) inner variables, # G the number of outer constraints and # g the number of inner constraints.

No. Example (source) Outer var. Inner var. Outer con. Inner con.

# xi # xc # yi # yc # G # g

1 Example 1 (Moore and Bard, 1990) 1 0 1 0 0 4
2  Example 2 (Moore and Bard, 1990) 1 0 1 0 0 3
3  Eq. 3 (Edmunds and Bard, 1992) 0 1 1 0 0 3
4  Example 4 (Sahin et al., 1998) 0 2 2 0 0 1
5  Eq. 8.11 (Dempe, 2002) 0 2 2 0 2 3
6  am 1 0 0 1 01 (Mitsos, 2010) 0 1 1 0 1 5
7  am 1 1 1 0 01 (Mitsos, 2010) 1 1 0 1 1 1

 

 

 

t
n
s
p
t
c
d
f
Y
s
o

4

B
A
o
o
p
a
P
t
a
a
T
(
(
a
n
t
a
(
t
w
t
s
w
o
h
p
1
n
n
T

o

8  am 1 1 1 1 01 (Mitsos, 2010) 1 1
9  am 1 1 1 1 02 (Mitsos, 2010) 1 1

10  am 3 3 3 3 01 (Mitsos, 2010) 3 3

In this example, inner fathoming, which arises from the use of
he inner variable y in branching, allows two nodes to be fathomed,
amely nodes 5 and 10, corresponding to just over 40% of the
olution space. Furthermore, inner-variable branching makes it
ossible to show at level 1 of the branch-and-bound tree that
he global solution must be such that y ≥ 2. As a result, node 7,
orresponding to points such that (x, y) ∈ [4, 8] × [0, 1], can be
iscarded from the tree as soon as node 5 is fathomed. This results
rom the fact that between them, nodes 5 and 7 cover the whole

 for x ∈ [4, 8]. This leads the elimination of a further 20% of the
olution space. The extent to which this behavior is observed in
ther problems is discussed in Section 5.

.3. Proof of convergence

We  adapt the proof of finite ε-convergence of the standard
ranch-and-Sandwich algorithm presented in Kleniati and
djiman (2014b) to the generalized algorithm. The proof is based
n the general convergence theory of branch-and-bound methods
riginally found in Horst (1988), and Horst and Tuy (1996). In
articular, the subdivision process of the Branch-and-Sandwich
lgorithm was proved to be exhaustive (cf., Horst and Tuy (1996,
rop. IV.2.)) in Kleniati and Adjiman (2014b, Theorem 7) and
he bounding scheme and the selection operation of the Branch-
nd-Sandwich algorithm were proved to be consistent (cf., Horst
nd Tuy (1996, Def. IV.4.)) and bound improving (cf., Horst and
uy (1996, Definition IV.4)), respectively, in Kleniati and Adjiman
2014b, Theorems 4 and 5). Theorem 7 in Kleniati and Adjiman
2014b) is not affected by the addition of n1 outer integer variables
nd m1 inner integer variables as these may  at worst add a finite
umber (2n1+m1 ) of nodes to the branch-and-bound tree, based on
he assumption, without loss of generality, that all integer variables
re binary. As far as Theorems 4 and 5 in Kleniati and Adjiman
2014b) are concerned, they are derived based on Theorem 1 in
he same paper and on Lemma  1 in Kleniati and Adjiman (2014a),
hich show that the best inner upper bound f UB,p, p ∈ P, is, respec-

ively, non-increasing and convergent to w(x) as Xp converges to a
ingleton x in X. The reader is reminded that in the present paper,
e propose a different inner upper bounding problem from the

ne presented in Kleniati and Adjiman (2014a). In particular, we
ave replaced the max−min  formulation proposed in the original
aper by the robust counterpart of the inner problem. Lemma

UB,p

 in Kleniati and Adjiman (2014a), showing that f , p ∈ P, is
on-increasing, applies to both formulations; hence, its proof need
ot be repeated.5 On the other hand, it remains to be shown that
heorem 1 in Kleniati and Adjiman (2014b) is also valid for the

5 Branching on x and branching on y have the same impact on the objective value
f  the inner upper bounding problem as in the proof of Lemma 1 in Kleniati and
1 1 1 1
1 1 1 1
3 3 4 3

inner upper bounding problem proposed in the present paper, i.e.,
that f UB,p, p ∈ P, computed using problem (RIUB) is convergent.
This is done in Theorem 1 below. Some required preliminary
theoretical results are first stated.

Lemma  1 (Lemma 2 in Kleniati and Adjiman (2014a)). Use Yp ⊆ Y
given in (12) to represent the Y (sub)domain maintained inside the
independent list Lp, p ∈ P. Then, for any x ∈ Xp, the following holds:

w(x) = min
y

{f (x, y) s.t. g(x, y) ≤ 0, y ∈ Yp}. (17)

Definition 7 (Horst (1988, Def. 2.4.)). Let {kq}, q = 0, 1, . . .,  be an
infinite decreasing nested sequence of nodes such that any kq+1 is
a child of kq via a certain subdivision process. If the subdivision
process is exhaustive, then

lim
q→∞

ı(kq) = 0, (18)

or

lim
q→∞

kq =
⋂

q
kq = {(x, y)}, (x, y) ∈ X × Y. (19)

Remark 14. In view of Definition 7 and Kleniati and Adjiman
(2014b, Theorem 7), any infinite decreasing sequence of succes-
sively refined nodes {kq} in the Branch-and-Sandwich method
converges to a singleton as in (19). For the sequence of associated
lists Lpq such that kq ∈ Lpq , we also have that Xpq ⊂ X converges
to a singleton in X in view of the exhaustive X subdivision process
(bisection) alone, i.e.,:

lim
q→∞

Xpq = {x}, x ∈ X. (20)

Theorem 1. Let {kq} be an infinite decreasing nested sequence of
refined nodes. For the sequence of associated lists Lpq such that kq ∈
Lpq , we have that Xpq ⊂ X converges to a singleton in X as in (20).
Then, for the associated sequence of best inner upper bounds (16) (cf.,
Definition 2) we have:

lim
q→∞

f UB,pq = w(x).

Proof. In the limit, i.e., as q goes to infinity, the independent list
Lpq covers a single x value, as opposed to an X subdomain. This
implies that no matter how much of the Y subdomain it may  still
cover, it can include one sublist only, i.e., the sublist corresponding
to that x value. Thus, Lpq = {Lpq

1 }. Then, based on Eq. (16), the best
inner upper bound of Lpq is:
lim
q→∞

f UB,pq = min
j∈Lpq

1

{f (j)}, (21)

Adjiman (2014a), independent of which inner upper bounding problem we choose
to  employ.
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Table 4
Numerical results with εf = 10−5 and εF = 10−3. Nopt is the number of the outer upper bounding problems solved until the optimal solution was computed for the first time.
#UBD  (#LBD) is the number of outer upper (lower) bounding problems solved and #Nodes the number of nodes required for convergence. Est. CPU is the approximate CPU
time  in s.

No. Optimal value (F *) Branch-and-Sandwich optimal value (F UB) Nopt #UBD #LBD #Nodes Est. CPU

1 −22 −22 1 3 5 11 0.055
2  5 5 5 5 7 13 0.065
3 4

9 0.444 1 1 1 1 0.090
4  −400 −400 1 1 1 1 0.160
5  −10.4 −10.4 1 1 2 3 0.150
6  −1 −1 1 1 1 1 0.060
7  0.5 0.5 2 3 11 11 1.670
8  −1 −1 4 7 12 13 1.320
9  0.209 0.209 1 1 1 1 0.290

w

f

a

f

w

f

q

q

w

T
n
c
a
t
p

P
t
v
c
fi
t
B
(

5

p
p
1
b
o
i
u
t

10  −2.5 −2.5 

here each f
(j)

is obtained by solving problem (RIUB), given as:

(j) = min
y,t

{t s.t. f (X(j), y) ≤ t, g(X(j), y) ≤ 0, y ∈ Y (j)}. (22)

By assumption, all X(j), j ∈ Lpq
1 , have converged to x; hence, the

ctual problem solved is

(j) = min
y,t

{t s.t.f (x, y) ≤ t, g(x, y) ≤ 0, y ∈ Y (j)}, (23)

hich is equivalent to

(j) = min
y∈Y (j)

max
x∈x

{f (x, y) s.t.g(x, y) ≤ 0}. (24)

Combining (21) with (24), we have that:

lim
→∞

f UB,pq = min
j∈Lpq

1

{f (j)} = min
j∈Lpq

1

min
y∈Y (j)

{f (x, y) s.t. g(x, y) ≤ 0}.

Finally, by using Ypq = ⋃
j∈Lpq

1
Y (j), we can conclude that:

lim
→∞

f UB,pq = min
y∈Ypq

{f (x, y) s.t. g(x, y) ≤ 0} = w(x),

here the last equality holds by Lemma  1. �

heorem 2. Given the standard assumptions made, i.e., conti-
uity of all the functions involved, twice differentiability of their
ontinuous relaxations and compactness of the host sets, the Branch-
nd-Sandwich algorithm for mixed-integer nonlinear bilevel problems
erminates in a finite number of steps at an ε-optimal solution of
roblem (1).

roof. The finiteness of the integer host sets XI and YI implies that
he branch-and-bound tree relevant to branching on the integer
ariables is finite. Thus, without loss of generality, if we  start by
onsidering the integer variables only, the algorithm must visit a
nite number of nodes. After this point onwards, convergence of
he algorithm follows from the finite ε-convergence of the standard
ranch-and-Sandwich algorithm proved in Kleniati and Adjiman
2014b). �

. Computational experience

Branch-and-Sandwich for mixed-integer nonlinear bilevel
roblems was successfully applied to 10 test cases previously pro-
osed in other works (Moore and Bard, 1990; Edmunds and Bard,
992; Sahin et al., 1998; Dempe, 2002; Mitsos, 2010). They include
etween 2 and 12 variables and between 1 and 7 constraints. An

verview of the problem statistics for each example is provided
n Table 3. Convergence tolerances of εf = 10−5 and εF = 10−3 were
sed for the inner and outer problems, respectively. The global solu-
ions of the inner lower bounding problem (RILB), the inner upper
1 1 1 1 0.130

bounding problem (RIUB), the outer lower bounding problem (LB),
the inner subproblem (ISP) and the outer upper bounding problem
(UB) were found by employing the BARON solver (Tawarmalani and
Sahinidis, 2005; Sahinidis, 2013).

The performance of the Branch-and-Sandwich algorithm for
each test case is summarized in Table 4. The values of the objective
function at the global solution, as reported in the original source,
and as calculated by Branch-and-Sandwich are listed and it can be
seen that the proposed algorithm identifies the solution in all cases.
The numbers of outer upper bounding problems (#UBD) and outer
lower bounding problems (#LBD) solved and the number of nodes
generated to achieve convergence are also reported. In all cases,
the number of nodes in the Branch-and-Sandwich tree is modest,
with a maximum of 13 nodes reached for problems 2 and 8. In five
instances, the problem is solved at the root node. We  note that in
problem 2, branching on xi at the root node yields a 40% elimination
of the solution space due to inner fathoming. Although the inner
lower bound is not used to derive bounds on the outer problem, its
computation is thus useful to accelerate convergence. In problem
8, branching on yi at the root node results in a 50% elimination of
the solution space again due to inner fathoming. Here, the ability to
improve the inner lower bound by branching on yi proves useful.
However, further experience will be needed to determine whether
this behavior is observed in larger problems.

For each example, an estimated CPU time is reported. This is
based on the total time spent solving the various optimization
subproblems, but does not include any overhead for formulating
the subproblems or managing the branch-and-bound tree or the
required lists, due to the fact that an implementation of the algo-
rithm is under development. The CPU times are small. For these
small problems, performance depends mostly on the number of
nodes explored rather than the size of the problem. This is due to
the fact that in small problems, the time required for the solution
of the subproblems is fairly constant, so that the ability to fathom
nodes early, and hence to solve fewer subproblems, is paramount.

6. Conclusions

In this work, the recently proposed Branch-and-Sandwich algo-
rithm (Kleniati and Adjiman, 2014a, 2014b) has been extended
to broader classes of bilevel problems by lifting the assumption
of regularity of the inner problem, allowing the presence, in the
inner problem, of equality constraints that depend on the outer
variables and explicitly handling integer as well as continuous
variables. This deterministic global optimization algorithm can
thus be applied to a very broad class of mixed-integer nonlinear

bilevel problems. The algorithm is uniquely characterized by the
three following features: (i) it encompasses implicitly two branch-
and-bound trees; (ii) it introduces simple bounding problems,
always obtained from the bounding problems of the parent node;
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iii) it allows branch-and-bound with respect to outer (x) and inner
y) variables, but at the same time it keeps track of the partitioning
f Y for successively refined subdomains of X. To complement
he exposition of the algorithm, a proof of �-convergence has
een put forward in this work, extending results derived for the
riginal version of the algorithm (Kleniati and Adjiman, 2014b).
he algorithm has been applied successfully to 10 mixed-integer
ilevel problems taken from the literature, with encouraging
esults both in terms of the number of branch-and-bound nodes
xplored and in terms of the estimated computational time.
his promising performance is linked to the tightness of the inner
pper bounds f UB,p, which derives from the use of branching on the

nner variables. Based on these promising results, more extensive
omputational experience is under investigation to explore the
ull potential of the Branch-and-Sandwich algorithm.
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ppendix A. Inner upper bound formulation for the
llustrative example

In this section, we present in detail the inner upper bounding
ormulations (IUB) and (RIUB) that can be derived for Example 1.
lthough the formulations can be simplified due to the small size of

he example, we present the general problem formulation for com-
leteness. We  first write the worst-case formulation of the inner
roblem.

f U,(k) = min
Yi∈y(k)

max
xi∈X(k)

{yi s.t. − 25xi + 20yi ≤ 30,

xi + 2yi ≤ 10,  2xi − yi ≤ 15,  −2xi − 10yi ≤ −15},
hich is reformulated equivalently as follows:

f U,(k) = min
yi

yi

s.t. −25xi + 20yi ≤ 30 ∀xi ∈ X(k),

xi + 2yi ≤ 10 ∀xi ∈ [xL,(k), xU,(k)] ∩ Z,

2xi − yi ≤ 15 ∀xi ∈ [xL,(k), xU,(k)] ∩ Z,

−2xi − 10yi ≤ −15 ∀xi ∈ [xL,(k), xU,(k)] ∩ Z,

yi ∈ y(k).

(IUB-Ex.1)

Observe that there is no need to introduce a variable t, as is
equired in the general inner upper bounding formulation (IUB),
ecause the inner objective of Example 1 is x-independent.

To solve (IUB-Ex. 1) in this particular small-size integer case,
ne can reformulate it equivalently as a tractable problem with
(xU,(k) − xL,(k) + 1) constraints. Nevertheless, following the more
eneral case, the proposed formulation (RIUB) is:

f
(k) = min

yi∈[yL,(k),yU,(k)]∩Z
{yi s.t. 20yi ≤ 30 + 25xL,(k),

2yi ≤ 10 − xU,(k), − yi ≤ 15 − 2xU,(k),

−10yi ≤ −15 + 2xL,(k)}. (RIUB-Ex.1)
After solving (RIUB-Ex.1), the values that are obtained are f
(7) =

 and f
(9) = 2 and f

(k) = ∞ for k = 1, 2, 3, 4, 5, 6, 8, 11. In reality, the
orst (largest) value that the inner upper bound of this example can
emical Engineering 72 (2015) 373–386 385

take is 4 and this latter value is reported in Section 5 for k = 1, 2, 3, 4,
5, 6, 8, 11. Note that this choice does not change the outcome of the

algorithm. For example, F (1) = −42 for both f
(1) = ∞ and f

(1) = 4.
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