
A Large Neighborhood Search heuristic for Supply

Chain Network

Majid Eskandarpour, Pierre Dejax, Olivier Péton

To cite this version:

Majid Eskandarpour, Pierre Dejax, Olivier Péton. A Large Neighborhood Search heuristic for
Supply Chain Network. 2014. <hal-01068286v1>

HAL Id: hal-01068286

https://hal.archives-ouvertes.fr/hal-01068286v1

Submitted on 25 Sep 2014 (v1), last revised 15 Jan 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01068286v1

A Large Neighborhood Search heuristic for Supply Chain

Network

Rapport Interne 14/3/AUTO
September 2014

Majid Eskandarpour Pierre Dejax Olivier Péton

Ecole des Mines de Nantes
IRCCyN UMR CNRS 6597

Institut de Recherche en Communications et Cybernétique de Nantes
Nantes, France

Abstract

Many exact or approximate solution techniques have been used to solve facility location problems
and more generally supply chain network design problems. Yet, the Large Neighborhood Search
technique (LNS) has almost never been proposed for solving such problems, although it has proven
its efficiency and flexibility in solving other complex combinatorial optimization problems. In this
paper we propose an LNS framework for solving a four-layer single period multi-product supply
chain network design problem involving multimodal transport. Location decisions for intermediate
facilities (e.g. plants and distribution centers) are made using the LNS while transportation modes
and product flow decisions are determined by a greedy heuristic. As a post-optimization step, we also
use linear programming to determine the optimal product flows once the logistics network is fixed.
Extensive experiments based on generated instances of different sizes and characteristics show the
effectiveness of the method compared with a state-of-the-art solver.

Keywords: Supply chain network design, facility location, Large Neighborhood Search

1 Introduction

The goal of this paper is to describe and evaluate a Large Neighborhood Search approach to solve a
facility location problem. The field of facility location has been very active since the description of the
p-median problem by Hakimi [13] fifty years ago. In the field of supply chain management and logistics
applications, seminal facility location models have been progressively incorporated into larger models,
which now constitute the family of Supply Chain Network Design (SCND) problems.

In addition to facility location decisions, multiple variants of SCND models include sizing decisions,
allocation of products to facilities, supplier selection, choice of transportation modes, etc. The recent
mathematical models generally include features such as multiple layers and types of facilities, multiple
products and multiple periods. More advanced models integrate the bill of material for multi-component
problems, multiple transportation modes, uncertainty, risk management, disruption, reverse logistics or
sustainable development factors.

Most SCND models aim to determine the best network configuration regarding a single objective
function representing an economic goal. The great majority of such problems are classified as NP-
hard [12]. A large variety of exact or approximate solution techniques have been proposed for solving
such problems. General solvers are often able to solve small- or medium-sized instances to optimality.

1

However, rich models or large enough instances of classic models cannot be solved to optimality even by
state-of-the-art solvers. Using heuristic or metaheuristic approaches is thus inevitable to tackle such hard
problems.

Many heuristic methods have been used to solve SCND problems. Surprisingly enough, the Large
Neighborhood Search (LNS) heuristic has almost never been used. The LNS was introduced by Shaw
in a constraint programming framework [29]. The underlying principle is to destroy and repair the
current solution iteratively in order to improve it progressively. Destroying the current solution consists
of removing a subset of decision variables from the solution. Repairing the solution consists of restoring
feasibility. This principle is similar to that of the ruin and recreate introduced by Schrimpf et al. [28].
The efficiency of the method relies on the choice and appropriate use of application-oriented removal and
repair operators. Pisinger and Ropke present an extensive survey of the method [22]. This technique
has proven its efficiency in several combinatorial optimization applications such as vehicle routing and
scheduling problems.

To our knowledge, the use of the LNS for solving SCND problems is still very scarce. Copado-Méndez
et al. model two case studies in chemical engineering and solve them with an LNS approach [4]. They
randomly choose a set of variables to remove and invoke a solver to repair the solution by changing the
value of the variables removed. The authors identify a benefit of the LNS: removal and repair operators,
which are largely dependent on the models to be solved, provide high flexibility. The LNS can be presented
as a general framework in which a collection of potential operators can be used or not depending on the
attributes of the model to be solved.

In this paper, we propose an LNS heuristic for solving an SCND model with four layers, multiple
products and transportation modes. The model includes location decisions in the two intermediate
levels. The main goal is to assess the efficiency of the LNS approach and to draw lessons for further
research.

In particular, several challenges are emerging. Firstly, SCND models include both binary and con-
tinuous variables, which must be treated separately by the LNS algorithm. We adopt a hierarchical
approach consisting, in each iteration, of identifying the locations with the LNS operators and then de-
termining continuous variables by solving a linear programming sub-problem. Thus, the characteristics
of the optimal solution are not known a priori. In vehicle routing or scheduling problems, the number of
customers to visit or the number of tasks to schedule is known beforehand. The number of open facilities
in a p-median problem is known by definition. This is not the case anymore in most SCND problems.
The removal and repair operators must be able to lead to several network configurations. Lastly, our
model includes two types of binary variables: location variables and the choice of transportation modes.
In our heuristic, location decisions are fixed using the LNS while transportation modes are determined a
posteriori by a greedy heuristic.

The remainder of the paper is organized as follows. In section 2, we present the position of our work
in the SCND literature. Section 3 describes the problem and the model formulation. The proposed
solution method is presented in section 4. Section 5 provides the computational results on generated test
instances. The conclusion and suggested future research appear in section 6.

2 Position in the SCND literature

The large amount of work in the area of facility location and SCND problems has been classified and
synthesized in a number of review papers. See, for example, the reviews [6, 15, 16, 24, 27, 17] published
in the last ten years.

Many metaheuristic and evolutionary methods have been recently developed. We can cite simulated
annealing [e.g. 35, 30], tabu search [e.g. 7, 18], VNS [e.g. 9, 10], genetic algorithm [e.g. 1, 32], memetic
algorithm [e.g. 20, 14], and scatter search [e.g. 8]. However, there is still a need to develop efficient

2

heuristic and metaheuristic methods to cover advanced models or large instances that cannot be solved
by exact methods or MILP solvers.

One of the advanced features of the model proposed in this paper is the possibility of choosing among
multiple transportation modes between vertices. As pointed out in [17], SCND models including the
choice of transportation modes have not received much attention.

Carlsson and Rönnqvist [3] describe a case study in the distribution of pulp from Sweden to several
European countries. The international customers are supplied by three possible modes of transportation:
vessel, train and lorry. The paper by Eskigun et al. [11] describes the outbound supply chain network
of an automotive company. It is assumed that all vehicle types from the same plant are delivered to a
destination using the same transportation mode to take advantage of economies of scale and to simplify
the delivery process (e.g., loading, unloading, tracking, etc.) of the vehicles. The model is solved with
a Lagrangean heuristic. The model in Wilhelm et al. [33] concerns the strategic design of an assembly
system in the international business environment created by NAFTA. It therefore includes facility location
and many associated decisions, such as the choice of technologies, capacities, suppliers and transportation
modes. Cordeau et al. [5] develop a comprehensive multi-stage network design model: at the strategic
level, they investigate facility location and capacity expansion decisions. At the tactical level, they also
integrate the selection of transportation modes regarding fixed and variable costs and the capacity usage.
Their model is solved by two methods: a simplex-based branch-and-bound and a Benders decomposition
approach.

Other recent works proposing models closely related to ours and including transportation mode de-
termination are the following. Tiwari et al. [31] develop a 5-layer supply chain concerning strategic and
tactical decisions. The solution space is explored through a hybrid Taguchi-Immune System metaheuris-
tic approach, in which a chromosome is composed of location and transportation mode decisions. Wu
et al. [34] study a spare parts logistics network encompassing three types of decision: facility location,
item vendor selection and transportation mode. They compare two approaches consisting of determining
all decisions simultaneously or determining the location decisions first. Sadjady and Davoudpour [26]
propose a single-period two-echelon multi-commodity model regarding strategic and tactical decisions
as well as the selection of transportation modes. The problem is solved with a Lagrangean relaxation
heuristic. In the paper by Rahmaniani and Ghaderi [23], each arc between two facilities is associated with
fixed and variable cost as well as a capacity. Olivares-Benitez et al. [19] propose a three-stage supply
chain including plants, distribution centers and customers to minimize cost and temporal considerations.
In order to reduce the shipping time from plants to customers, several transportation modes between
two nodes are considered in terms of their own cost and travel time. Cardona-Valdés et al. [2] propose
a two-echelon distribution network regarding economical and service level objectives. They incorporate
demand uncertainty and transportation mode allocation decisions.

Taking transportation modes into account complicates the problem since it introduces many additional
binary variables. Thus, most solution methods decompose the original problem into several sub-problems,
or sequentially fix each type of decision variable. We adopt the latter approach, considering the location
decisions in the first step and the transportation modes in the second step.

3 Problem definition and modeling

3.1 Problem settings

We consider a multi-product supply chain network consisting of four layers: suppliers, production plants,
distribution centers (DCs) and customers (retail stores or final customers), as depicted in Figure 1.

The location of suppliers and customers are known, whereas those of plants and DCs have to be
determined from a list of candidate locations. At the first layer, suppliers provide the raw materials or
components to the plants. These products are then converted to finished goods through value-added

3

Suppliers s1 s2 s3 s4

Plants p1 p2 p3

Distribution Centers d1 d2 d3 d4

Customers c1 c2 c3 c4 c5 c6 c7 c8 c9

Transportation Modes

Figure 1: The supply chain considered

operations performed in plants. As mentioned above, finished goods are shipped from plants to DCs and
from DCs to customers. Customer demand is assumed deterministic. We do not consider single sourcing
constraints, i.e. a facility can be delivered by several facilities from the preceding layer.

The model treats facilities as black boxes: the detail of all internal activities such as storage, production
operations and internal logistics, is not considered. Thus, the capacity of a facility can be expressed as
a single value limiting the output flow for each product at this facility. Without loss of generality, the
mathematical model assumes that each product can be processed by every facility. If a facility cannot
process one given product, this can be modeled by setting the corresponding capacity at 0.

The facility location decisions at plants and DCs are guided by two types of costs. Fixed costs for
opening facilities are paid only if the corresponding facility is selected. Processing costs are variable costs
assumed proportional to the level of activity (i.e. the outgoing flow) of the corresponding facility.

Several transportation modes are available, such as road, rail, inland navigation or air transport, to
ship products between the nodes of the network. However we assume that a restricted list of suitable
transportation modes has been identified a priori for each pair of nodes, with respect to criteria such
as availability and safety, shipping costs, CO2 emissions, shipment capacities, speed and frequency. At
the strategic level, the cost of most transportation modes is assumed linear with respect to the quantity
carried. However, some transportation modes incur a fixed charge. For example, a company with an
internal fleet of trucks will pay a fixed cost (amortization, maintenance, insurance, etc.) even if the
vehicles are not used. All transportation modes have a known maximal load. Some modes also require
a minimal quantity of goods to be shipped. We assume that only one transportation mode is selected
between any pair of nodes and that all products are compatible enough to be loaded onto the same
transportation mode.

With respect to the above-mentioned description, the main decisions are to select a subset of plants
and DCs, to choose a transportation mode between suppliers, selected facilities and customers, and to
determine the product flows in the logistics network. The objective function of this problem is to minimize
the overall cost over one single period, including the fixed cost of opening facilities, processing costs and

4

transportation costs.

3.2 Data, sets, parameters and variables

We consider a set I of suppliers, a set J of plants, a set K of DCs, a set L of customers, a set P of products
and a set M of potential transportation modes. The subsets of open plants and DCs are denoted as Jo

and Ko. The SCND problem is defined on a directed graph ψ = (V,A) with V = I ∪ J ∪K ∪ L and the
set A of arcs defines all possible links between facilities. This potentially includes all links between two
successive layers represented in Figure 1. In practice, there may not be an arc between two vertices when
the capacity is set at 0, or a transportation mode is unavailable or has an arbitrarily large value.

We introduce the following notations:

• dpl : demand of customer l ∈ L for product p ∈ P ;

• capi: capacity of facility i ∈ I ∪ J ∪K;

• vmp
ij : variable transportation cost of a unit of product p ∈ P on arc (i, j) ∈ A by mode m ∈M ;

• api : unit processing cost of product p ∈ P at i ∈ I ∪ J ∪K;

• gmij : fixed cost of transportation mode m ∈M along arc (i, j) ∈ A.

• V m
ij : minimum threshold volume for using transportation mode m ∈M along arc (i, j) ∈ A.

• V̄ m
ij : capacity of transportation mode m ∈M along arc (i, j) ∈ A.

• cj : fixed cost of opening facility j ∈ J ∪K.

Binary variable yj is set at 1 if a facility j ∈ J ∪K is open and 0 otherwise. In order to select the
transportation modes throughout the network, we consider binary variables tmij set at 1 if the transporta-
tion mode m ∈M is selected for arc (i, j) ∈ A and 0 otherwise. Continuous variables xmp

ij represent the
flow of product p ∈ P on arc (i, j) ∈ A using transportation mode m ∈M .

3.3 Mathematical formulation

In order to represent and solve the above described problem, we propose the following Mixed Integer
Linear Programming (MILP) model minimizing the economic objective (1):

min z =
∑

j∈J∪K
cjyj +

∑
(i,j)∈A

∑
m∈M

∑
p∈P

api x
mp
ij +

∑
(i,j)∈A

∑
m∈M

gmij t
m
ij +

∑
(i,j)∈A

∑
m∈M

∑
p∈P

vmp
ij xmp

ij (1)

This objective function contains four terms, representing the sum of opening fixed costs, processing
costs, and fixed and variable parts of transportation costs respectively.

Constraints (2) are the flow conservation constraints throughout the network.∑
i∈V

∑
m∈M

xmp
ij =

∑
k∈V

∑
m∈M

xmp
jk ∀j ∈ J ∪K, p ∈ P (2)

Constraints (3) ensure the satisfaction of customer demands.∑
k∈K

∑
m∈M

xmp
kl ≥ d

p
l ∀l ∈ L, p ∈ P (3)

5

Constraints (4)–(6) force the model to respect capacity constraint at suppliers, plants and DCs,
respectively. In addition, (5) and (6) state that the products can be shipped only to open facilities.∑

j∈J

∑
m∈M

∑
p∈P

xmp
ij ≤ capi ∀i ∈ I (4)

∑
k∈K

∑
m∈M

∑
p∈P

xmp
jk ≤ capj yj ∀j ∈ J (5)

∑
l∈L

∑
m∈M

∑
p∈P

xmp
kl ≤ capk yk ∀k ∈ K. (6)

Constraints (7) ensure that one transportation mode at most is selected between two nodes. Con-
straints (8) – (9) guarantee that the volume limitation of each given mode is respected.

∑
m∈M

tmij ≤ 1 ∀(i, j) ∈ A (7)∑
p∈P

xmp
ij ≤ V̄

m
ij tmij ∀(i, j) ∈ A,m ∈M (8)

∑
p∈P

xmp
ij ≥ V

m
ij tmij ∀(i, j) ∈ A,m ∈M (9)

We also consider restrictions on the number of open facilities. Constraints (10)–(11) bound the number
of open plants and DCs, respectively. These constraints can be discarded by setting minimal values at 0
and maximal values at +∞.

Jmin ≤
∑
j∈J

yj ≤ Jmax (10)

Kmin ≤
∑
j∈K

yj ≤ Kmax (11)

Constraints (12) – (14) state non-negativity and binary restrictions on decision variables.

yj ∈ {0, 1} ∀j ∈ J ∪K (12)

tmij = {0, 1} ∀(i, j) ∈ A,m ∈M (13)

xmp
ij ≥ 0 ∀(i, j) ∈ A, p ∈ P,m ∈M (14)

4 A Large Neighborhood Search heuristic

We propose an LNS heuristic able to deal with the three main types of decision variables: facility
location, selection of transportation mode and calculation of optimal product flows. The location and
transportation modes are modeled by binary variables while the product flows are modeled by continuous
variables.

A key issue is to determine the number and location of plants and DCs. We call the network configura-

tion the number of plants and DCs open in the current solution, represented by the pair

(∑
j∈J

yj ,
∑
k∈K

yk

)
.

This network configuration has great influence on the whole solution. One of the main issues is that
there are (Jmax − Jmin) × (Kmax − Kmin) possible network configurations. Good heuristic methods

6

should explore all promising network configurations. The main challenges of the LNS algorithm are thus
to handle both binary and continuous variables, to determine the strategy to visit and evaluate promising
network configurations and lastly to select transportation modes.

The rest of this section is organized as follows. Section 4.1 gives an overview of the LNS approach.
Sections 4.2, 4.3, and 4.4 describe the proposed removal and repair operators, and combinations of both.
The management of network configurations is detailed in section 4.5. The proposed greedy heuristics to
determine transportation modes and product flows are presented in section 4.6.

4.1 The proposed LNS heuristic

The LNS heuristic, depicted in Algorithm 1, is initialized with a simple greedy heuristic that iteratively
opens facilities with the least fixed cost. Each network configuration is given an initial score.

Algorithm 1 LNS heuristic

Require: Initial solution S0 and score for each network configuration.
1: BestSolution← S0
2: CurrentSolution← S0
3: while the termination criterion is not satisfied do
4: randomly select one layer to modify between J and K
5: choose a network configuration using roulette wheel selection based on the scores
6: Selection of Removal and Repair operators to be applied
7: S ← Removal(CurrentSolution)
8: S ← Repair(S)
9: Apply a greedy heuristic to obtain transportation modes and product flows variables

10: if S < BestSolution then
11: BestSolution← S
12: CurrentSolution← S
13: else
14: if AcceptanceCriterion(S) then
15: CurrentSolution← S
16: end if
17: end if
18: Update the score of each network configuration
19: end while
20: Post optimization: determine the optimal product flows with the simplex algorithm.
21: return BestSolution

A keypoint of the heuristic is that only one layer is modified in the current iteration. In line 4, this
layer is randomly chosen between plants or DCs. A target network configuration for the next instance
(line 5) is chosen a priori, before removal and repair operators are applied. This helps the operators decide
how many facilities can be removed and rebuilt, which drastically simplifies the definition of removal and
repair operators.

A pair of removal and repair operators is randomly selected from a pool of operators (line 6)
The transportation modes and product flows are determined only when all facilities have been settled

(line 9). Determining the optimal flow is a linear program, which can be optimally solved in polynomial
time. Nevertheless, this step has to be performed in each iteration and can represent a large computation
effort, especially for large-size instances. Thus, we resort to a greedy fast heuristic consisting of assigning
product flows to the closest facility via the cheapest transportation mode.

7

When the new solution improves the current solution, it is automatically accepted and saved (lines
11 and 12). Otherwise, an acceptance criterion similar to that of simulated annealing, is used to deter-
mine whether the new solution should replace the current solution (line 14). See [21] for the complete
description of the acceptance criterion.

In line 17, the score of the current network configuration is updated based on the value of the objective
function. At the last iteration, we slightly improve the solutions provided by the LNS method with a
post-optimization step (line 20): instead of the greedy heuristic, we optimize the product flows with the
simplex algorithm. The computation time is about 10 seconds for the largest instances.

4.2 Removal operators

The aim of the destruction operators is to remove some open facilities from one layer of the current
solution. For the sake of simplicity, we describe the remove and repair operators and give mathematical
notations only for the layer corresponding to plants. All formulas can be easily transposed to the case of
DCs.

Let us assume that a number nd of plants must be removed from the current solution. All removal
(resp. repair) operators except the random one work as follows. For each candidate plant, we calculate a
score representing the benefit of closing (resp. opening) this plant. This score can be based on distance,
cost, demand or other logistic criteria. All candidate plants are ranked in order of scores. The nd plants
are selected with a biased roulette wheel giving much higher probability to the plants with the best scores
(see [25] for more details).

Obviously, other decision variables related to the selected facilities have to be modified accordingly. If
a facility is removed from the current solution, all associated variables (e.g. ingoing and outgoing flows)
are set at 0.

1. Random removal: this operator randomly chooses nd open facilities to be closed. Its aim is to
diversify the search in the solution space.

2. Total cost-based removal: this operator closes facilities with the highest estimated cost. To this
end, we sum two normalized indicators for each facility, representing fixed and variable costs.

The normalized fixed cost FCj of facility j ∈ J is defined as the ratio FCj =
cj

max
j′∈Jo

cj′
between its

fixed cost cj and the maximal one among open plants j′ ∈ Jo.

The normalized variable cost of plant j ∈ J is a similar ratio in which each term includes the
processing costs as well as the ingoing and outgoing transportation costs related to j. It is expressed
by the following formula:

V Cj =

∑
p∈P

(apj +
∑
i∈I

∑
m∈M

vmp
ij +

∑
k∈Ko

∑
m∈M

vmp
jk)

max
j′∈Jo

(
∑
p∈P

(apj′ +
∑
i∈I

∑
m∈M

vmp
ij′ +

∑
k∈Ko

∑
m∈M

vmp
j′k))

.

Note that, in the above formula, only one m index in each sum has a non-zero value. The normalized
cost indicator for plant j is FCj + V Cj . Our numerical experiments show that this value balances
fixed and variable costs. We recall that we describe the operators only for the plant layer. The
reasoning is the same for the DC layer.

3. Capacity utilization: this operator removes facilities with the least capacity utilization. The
capacity utilization ratio RC of facility j ∈ J ∪K is computed as follows:

RCj =

capj −
∑
i∈V

∑
m∈M

∑
p∈P

xmp
ji

capj
,

8

which indicates the percentage of remaining capacity in facility j.

4. Unit cost removal: this operator closes facilities with the least performance in terms of fixed
costs and utilization of capacity. The performance of one facility j ∈ J ∪ K is measured by the

ratio Sj =
RCj

FCj
.

5. Horizontal cluster removal: removes a number of facilities of the same layer located in the
same region. To this end, for each cluster to be removed, a first location is randomly selected and
considered as a seed. Then, the nearest open facilities are closed. To avoid removing too many
clusters from the same region, the choice of the next cluster to be removed is based on a distance
criterion from previously removed clusters.

6. Vertical cluster removal: the goal is to close a number of plants and DCs related to each other,
i.e. clusters of plants and DCs. A first possibility is to close one plant randomly as a seed and then
the nearest open DCs. A second possibility is to close one DC randomly as a seed and then the
nearest open plants. We choose randomly between these two possibilities.

4.3 Repair operators

The goal of repair operators is to restore the feasibility of a partial solution after a removal operator
has been used. This consists of rebuilding a number of missing facilities. The number of facilities to be
opened at each layer depends on the network configuration selected in line 5 of Algorithm 1. Thereafter,
we denote by nr the number of facilities to be opened.

1. Random repair : nr closed facilities are randomly selected. This operator acts as a diversification
tool.

2. Total cost repair: this operator follows the same approach as the greedy repair heuristic (or
best insertion) in vehicle routing problems. The principle is to select iteratively the facility whose
insertion minimizes the cost of the future solution. Following [19], the candidate locations j ∈ J
are ranked in ascending order of the values

Sj =
cj
capj

+

∑
i∈I∪Ko

(µij

∑
p∈P

apj) +
∑
i∈I

(µij

∑
p∈P

max
m∈M

vmp
ij) +

∑
k∈Ko

(µjk

∑
p∈P

max
m∈M

vmp
jk)∑

i∈I∪Ko

µij

where µij = min(capi, capj) is the maximal admissible product flow between the candidate location
and the adjacent layers. In the above formula, the first term represents the unit fixed cost. The
second term takes into account the processing and variable transportation costs of all types of
product between each candidate facility and open facilities in adjacent layers.

3. Best substitution: the idea of this operator is to substitute the facilities that have just been
closed by the best set of substituting facilities. It can be applied only if nd = nr.

The set J\Jo of closed plants can be partitioned into two subsets: the set Jc of plants that have just
been closed by the removal operator at the current iteration and the set J\(Jo∪Jc) of plants which
were already closed at the beginning of the current iteration. The best set of substituting facilities
can be determined by solving an assignment problem, in which each element of Jc is assigned by an
alternative plant in J\(Jo ∪Jc). The criterion to be minimized is the sum of a normalized distance
between plants and a normalized fixed cost.

9

4. Unit cost ratio: this operator favors facilities with high available capacity and lower fixed costs.

For each closed facility, it is based on the capacity/cost ratio
capj
cj

.

5. Horizontal cluster: this operator is symmetric to the horizontal cluster removal operator.

6. Vertical cluster: this operator is symmetric to the vertical cluster removal operator.

7. Cluster Customers-DC: the idea of this operator is to open DCs near clusters of customers.
First, one cluster of customers is selected. Then a closed DC in the neighborhood of the cluster of
customers is randomly selected and opened. The procedure repeats nr times. This operator relies
on the definition of clusters. More details will be given in section 5.2.1.

8. Top-down flow assignment: in a partially destroyed solution, part of the demand may not be
satisfied. This operator repairs the destroyed solution by adding material flow corresponding to the
unsatisfied demand.

We first add product flow from I to J and then from J to K, thus we call this operator top-down
flow assignment. For each supplier, there is some unsatisfied demand for outgoing products. The
corresponding quantities are sorted in descending order and placed in a priority list. We assign
each element of this list to the nearest plant and update its capacity. If the nearest plant is among
the non-operating plants, we open it.

This reparation procedure continues until the target network configuration has not been reached. If
the solution is still not feasible, the objective function is penalized by a quantity proportional to the
amount of unsatisfied demand. If a feasible solution is found before the final network configuration
is reached, we save the value of the objective function and the best solution found during the process
is conserved. Hence, this operator may generate a solution with fewer open facilities than in the
target network configuration.

9. Bottom-up flow assignment: this operator is symmetric to the top-down assignment described
above. It assigns unsatisfied flows from customers to suppliers.

4.4 Removal and repair

These operators combine one removal and one rebuild operator sequentially.

1. Swap operator: if nd = nr, then we can use a swap operator, which sequentially removes and adds
one facility. We first randomly choose one open facility and remove it from the current solution.
Then, all closed facilities are ranked in increasing distance to the one that was just removed. One
of them is selected according to the biased roulette wheel principle.

2. History swap operator: the goal of this operator is to diversify the search by strongly favoring
facilities that were not frequently opened in previous iterations. A historical record of open and
closed facilities in all iterations is collected. The history swap operator is one in which the facility
to be closed (resp. opened) is selected with a biased roulette wheel based on the maximal (resp.
minimal) use in past iterations.

4.5 Network configuration

In the network considered, the location decision variables are regrouped into two layers. The number of
active plants in the solution varies from Jmin to Jmax and the number of active DCs varies from Kmin

to Kmax. Thus the number of possible network configurations is (Jmax − Jmin)× (Kmax −Kmin).

10

The LNS algorithm must have a good coverage of all network configurations, but their systematic
exploration would be time consuming. We adopt an adaptive approach that gives a score to each network
configuration. In each iteration, the next network configuration is randomly selected according to this
score. This enables more computational effort to be dedicated to the most promising network configura-
tions. The following subsections detail how we give a score to each network configuration, choose one at
each iteration, and update its score during the LNS heuristic.

4.5.1 Initializing the score of all network configurations

To give an initial score to each network configuration, the problem is solved with each configuration for
a predetermined number of iterations. Let us denote as N the set of all possible configurations, zn the
value of the objective function obtained with configuration n ∈ N , and zn∗ = min

n∈N
zn the overall best

solution. The score wn of configuration n ∈ N is calculated as follows:

wn =
zn − z∗n∑

n∈N
(zn − z∗n)

, n = 1, .., N (15)

4.5.2 Choosing a network configuration

At each iteration, the LNS heuristic explores the solution space of location variables yj according to the
current network configuration. Having only one active configuration enables the search space, and thus
the computation time to be reduced.

We recall that, in each iteration, only one layer among plants and DCs is modified. Without loss of
generality, let us assume that the selected layer corresponds to the plants (a similar reasoning is used if it
corresponds to the DCs). The number of open plants must be within the interval [Jmin, Jmax]. Assume
that the number of open facilities in the current solution is j̄. In order to avoid too large variations from
one iteration to another, only slight variations in network configuration are authorized.

Then, the number of open facilities at the next iteration is chosen from the next three possibilities:
max(Jmin, j̄ − 0.2× Jmax), j̄ and min(Jmax, j̄ + 0.2× Jmax).

Following the idea of the adaptive large neighborhood search [21], the probability of choosing each
possibility depends on the network configuration score, which is calculated from the network configura-
tion’s performance in past iterations. The score is updated after each segment of 100 iterations, with an
exponential smoothing formula (see [21]). Hence, in the final iterations the LNS heuristic tends to focus
on network configurations with the highest scores.

4.6 Determining transportation modes and product flows

In line 9 of Algorithm 1, we apply a greedy heuristic to select the product flows and the transportation
modes between facilities. We first determine the transportation modes and the product flows between all
DCs and customers, which is described in Algorithm 2. Then, we adopt the same principle to determine
transportation modes and product flows between plants and DCs and between suppliers and DCs.

Algorithm 2 is based on a priority order defined by the largest demands. All demands dpl are ranked
in descending order (line 2) and we keep assigning products in descending order of this priority order
(line 3) with a greedy criterion based on the transportation cost (line 5). Sometimes it is impossible to
assign the whole customer demand dpl due to the capacity limitation capk (line 6). Then, the cheapest
transportation mode is selected for arc (k, l) ∈ A (line 9). Other available modes for this arc are discarded
by increasing their cost to an arbitrary large value (line 10).

11

Algorithm 2 Assignment of transportation modes and product flows

Require: dpl : demand of customer l ∈ L for product p ∈ P , capk : capacity of DC k ∈ K, vmp
kl : variable

transportation cost for product p on arc (k, l) with mode m ∈M .
1: Initialization of transportation modes: tmij = 0,∀(i, j) ∈ A,m ∈M .
2: Build a list ListD of demands with all demands dpl in decreasing order.
3: for all demands dpl ∈ ListD do
4: while dpl > 0 do

5: select the DC k∗ and the transportation mode m∗ with minimum cost vm
∗p

k∗l

6: calculate the value of a maximal feasible shipment xm
∗p

k∗l = min(capk, d
p
l)

7: update remaining capacity at DC: capk ← capk − xm
∗p

k∗l

8: update customer demand: dpl ← dpl − x
m∗p
k∗l

9: update transportation mode list: tm∗kl = 1
10: update ListD and values vmp

k∗l for m 6= m∗

11: end while
12: end for
13: return values of xmp

kl and tmij

5 Computational experiments

In this section, we detail the computational experiments we performed in order to validate the proposed
LNS heuristic. For this purpose, we generated a set of instances of different sizes and characteristics.
Since these experiments rely on generated instances, we first explain the main principles of the data
generation. Then, we explain how the parameters of the LNS were set. Lastly, we detail the numerical
results by analyzing the efficiency of each removal and repair operator and comparing the results of the
LNS with those of a state-of-the-art MILP solver. All algorithms were coded in C++ and performed on
a computer with four Intel 3.0 GHz CPUs and 8 GB of RAM.

5.1 Test instances

We generated a total of 60 instances, with 15 distinct sizes and 4 types of supply chain network con-
figurations. The size of these instances is determined by the number |I| of suppliers, the number |J |
of candidate plants, the number |K| of candidate DCs, the number |L| of customers, and upper limits
|Jmax| and |Kmax| on the number of plants and DCs that can be opened. Similarly to [5], we set the
number of potential suppliers and plants to |I| = |J | = 0.1× |L|. The number of potential DCs was set
to |K| = 0.2× |L|. The values Jmax and Kmax were set to 0.5× |J | and 0.5× |K|, respectively. Table 1
displays the value of all parameters for each size of instance. The goal of generating small test instances is
to compare LNS solutions with known optimal solutions obtained with an MILP solver. The aim of large
instances is to study how the LNS behaves when the solver is unable to solve the instances to optimality.

5.2 Data generation

5.2.1 Generation of four types of logistics network

All locations were generated on a 200 × 200 grid. Since the physical layout of suppliers, facilities and
customers may influence the network configuration, we generated four types of pattern corresponding to
different realistic situations:

12

Table 1: Characteristics of test instances

Problem |I| |J | |K| |L| |Jmax| |Kmax|size

s1 6 6 12 60 3 6
s2 7 7 14 70 4 7
s3 8 8 16 80 4 8
s4 9 9 18 90 5 9
s5 10 10 20 100 5 10

s6 12 12 24 120 6 12
s7 14 14 28 140 7 14
s8 16 16 32 160 8 16
s9 18 18 36 180 9 18
s10 20 20 40 200 10 20

s11 22 22 44 220 11 22
s12 24 24 48 240 12 24
s13 26 26 52 260 13 26
s14 28 28 56 280 14 28
s15 30 30 60 300 15 30

• Pattern 1: the coordinates of all vertices were randomly generated with a uniform distribution in
the interval [0, 200] along each axis.

• Pattern 2: we assumed that around 60% of all facilities are located in a few clusters representing
large cities or areas with a large density. The remaining 40% are scattered randomly throughout
the grid. To define the coordinates of each cluster, the 200×200 grid was divided into 25 sub-grids.
We generated one cluster at most in each sub-grid and the facilities of each cluster were randomly
generated within the corresponding sub-grid.

• Pattern 3: we modeled industrial regions with clusters of suppliers and clusters of plants. The
coordinates of a seed cluster of suppliers were first selected randomly with a uniform distribution in
the 200× 200 grid. Then, the coordinates of a cluster of plants were chosen randomly in the same
sub-grid. The remaining vertices were randomly generated.

• Pattern 4: we modeled areas with a high density of customers. 60% of all DCs and customers
were regrouped into 4 to 5 clusters. A seed location was first selected randomly with a uniform
distribution in the 200×200 grid. Then, a cluster of customers and a cluster of DCs were generated
in the same sub-grid as the seed. The procedure was repeated until 60% of the customers and DCs
had been generated. All remaining vertices were randomly generated.

5.2.2 Generation of transportation modes

We assumed three transportation modes in the network. Table 2 shows the main characteristics of these
modes. Column 2 states whether the corresponding transportation mode is subject to fixed costs. Column
3 displays the relative variable cost of each mode compared with the others. Columns 4 and 5 detail the
minimal load limitations and other restrictions on each transportation mode.

For example, mode 1 can be an internal fleet of trucks. Mode 2 can concern an outsourced fleet of
trucks for the delivery of goods to the customers. Mode 3 can correspond to a vessel or a train, with a
minimal amount of load on each shipment and that only for long-distance trips.

The fixed cost of mode 1 was assumed to be 10000. The variable cost of mode 2 was defined as 20%
more expensive than the variable cost of mode 1. We also assumed that the fixed cost of mode 3 was
zero and its variable was 80% of that of mode 1.

13

Table 2: Characteristics of transportation modes

Transportation Fixed Variable Min Restrictions
mode cost cost limitation

mode 1 � Intermediate 5 5
mode 2 5 Highest 5 DCs to customers
mode 3 5 Lowest � Long distance only (suppliers to plants, plants

to DCs)

However, mode 1 can be used without any restriction whereas mode 2 is limited to the distribution
to customers and mode 3 has a minimum product flow restriction and can be used only for a subset of
long-haul trips. Admissible trips with mode 3 were generated by dividing the 200 × 200 grid into 25
sub-grids. Only a subset of sub-grids allows mode 3. Moreover, the two ends of the trip must be as far
apart as distinct sub-grids that both allow mode 3.

5.2.3 Fixed cost of facility location

The fixed cost of opening facilities varies with the price of the real estate market in each region. Investment
costs are significantly larger in sub-grids with a higher density of customers. We divided the 200 × 200
grid into 20×20 sub-grids of equal size and generated distinct fixed costs in each sub-grid, with a relative
difference of about 60% between the cheapest and the most expensive sub-grids.

We assumed economies of scale when building large facilities. Thus the fixed costs are also roughly
proportional to the square root of the facilities capacity.

5.2.4 Variable costs

The variable transportation cost between two nodes depends on the arc length, the transportation modes
and local factors. A variable transportation cost tc1pij on arc (i, j) ∈ A with mode 1 for product p was
determined randomly in the interval [0.8, 1.2]× tij × τ , where tij is the distance between nodes i and j,
and τ is a parameter representing the cost in each layer of the supply chain. Due to the added value
of products along the supply chain and the transportation of smaller lot sizes in the downstream part
of the supply chain, we assumed slightly increasing transportation costs layer by layer. Thus, τ was
randomly chosen in the interval [1, 1.3] for the transportation between a supplier and a plant, in the
interval [1.2, 1.4] between plants and DCs and in the interval [1.3, 1.5] for the distribution to customers.
As explained before, the variable transportation costs for modes are proportional to that of mode 1.

The unit processing cost for a product p ∈ P was generated as the sum of the purchase cost (in the
interval [130, 150]), production cost (in the interval [130, 150]) and warehousing and logistics costs (in
the interval [100, 120]). Then, for every node n ∈ I, J,K and every product p ∈ P , we generated the
corresponding costs, which were noised by multiplying them by a factor randomly chosen in the interval
[0.9, 1.2].

Since the variable costs (fixed transportation cost, variable transportation cost, and processing cost)
influence the network configuration, we considered two levels of variable costs. Following [5] and [26],
half of the instances were generated in such a way that variable costs represented 40%− 50% of the total
network cost. In the other instances this cost represented 20%− 30% of the total cost. In the latter case,
the fixed cost values were multiplied by 2.

5.2.5 Capacity of facilities

Assume that u is the sum of all customer demands. Then, the capacity of each DC was chosen randomly

with a uniform distribution in the interval [
u

|Kmax|
, 1.1 × u

|Kmax|
] × 1.5. The same formula was also

14

applied to plants, with 2 instead of 1.5. Accordingly, the capacity of suppliers was chosen randomly with

a uniform distribution in the interval [
u

|I|
, 1.1× u

|I|
]× 3.

5.2.6 Demand

As proposed in [36], the customer demands were randomly generated according to a uniform distribution
in the interval [100, 300].

5.3 Parameter setting

Preliminary experiments concluded that running the LNS algorithm during 10000 iterations for test
instances 1 to 10 and 15000 iterations for test instances 11 to 15 ensured a good trade-off between the
computational time and the quality of the solution. The initial score of each network configuration was
calculated by running each configuration at least 75 times. The parameters of the simulated annealing
acceptance criterion such as cooling rate and initial temperature were tuned following [21].

5.4 Evaluation of the LNS operators

In order to evaluate the pertinence of the LNS operators, we selected a representative subset of 15
instances.

The first protocol compares the results obtained with and without each operator. First, we ran the
LNS with all operators and obtained an objective value z1. Then, we excluded each of the operators one
by one while keeping the others. We obtained an objective value z2. The individual contribution of each
operator is measured by the quantity

z2 − z1
z1

× 100.

The second protocol compares the results obtained with the random operator only and with the
random operator + the assessed operator. More precisely, if we assess a removal operator, z1 represents
the value of the objective obtained with the random destruction + the assessed operator followed by
all repair operators. z2 represents the objective obtained with the random destruction operator only,
followed by all repair operators. If we assess a repair operator, z2 represents the objective obtained with
all removal operators followed by random repair + the repair assessed operator. Value z1 represents the
objective obtained with all removal operators followed by the random repair operator only. The individual
contribution of each operator is measured by the quantity

z1 − z2
z2

× 100.

Table 3 shows the contribution of each operator measured by both protocols. We performed five runs
on the 15 representative instances. Since the results were quite stable, we only report the average results.

The second column shows only positive numbers, which means that all operators contribute to the
efficiency of the LNS. The third column shows that almost all operators, except history swap, give positive
numbers, which means that they contribute to the efficiency of the LNS. The negative value for history
swap is quite normal since this operator is a pure diversification factor, which is likely to work only when
combined with other operators.

Table 4 analyzes the utility of each operator over five runs on a representative subset of 15 instances.
For each operator, column 2 presents the average percentage of fruitful iterations, i.e. the iterations which
result in a new best solution, an improvement of the current solution or a deterioration of the current
solution, which is accepted by the acceptance criterion. Columns 3–5 show how this percentage is split
into the three categories.

15

Table 3: Average contribution of each removal and repair operator

Operator
Contribution with Contribution with

protocol 1 protocol 2

Random removal 0.43 −
Total cost-based removal 0.22 0.81
Capacity utilization 0.25 0.98
Unit cost removal 0.31 0.95
Horizontal cluster removal 0.25 0.57
Vertical cluster removal 0.28 0.45

Random repair 0.17 −
Total cost repair 0.22 0.85
Best substitution 0.14 0.34
Unit cost ratio 0.36 1.04
Horizontal cluster 0.20 0.24
Vertical cluster 0.25 0.14
Cluster Customers-DC 0.42 0.05
Top-down assignment 0.37 0.22
Bottom-up assignment 0.24 0.09

Swap 0.24 0.67
History swap 0.47 −0.06

Table 4: Operator utility

Operator
% of best improving accepted

useful
iterations (% of the results in column 2)

Random removal 3.5 1.1 52.8 46.1
Total cost-based removal 3.9 1.1 56.5 42.4
Capacity utilization 4.0 1.3 57.7 40.9
Unit cost removal 4.1 2.0 58.0 40.0
Horizontal cluster removal 3.1 0.9 52.4 46.7
Vertical cluster removal 3.1 0.8 52.1 47.1

Random repair 2.9 1.0 53.4 45.6
Total cost-based 4.6 1.2 59.1 39.7
Best substitution 11.5 1.3 55.0 43.7
Unit cost ratio 4.6 2.0 60.5 37.5
Horizontal cluster 1.5 0.3 39.3 60.4
Vertical cluster 2.9 0.5 53.1 46.4
Cluster customers-DC 1.4 0.5 39.7 59.8
Top-down assignment 6.3 2.5 59.6 37.9
Bottom-up assignment 4.5 0.4 51.5 48.1

Swap 7.9 2.3 48.7 49.0
History swap 0.6 1.1 93.1 5.7

Average 4.1 1.2 55 43

16

These results show that no operator outperforms another. Some operators seem to have a negligible
effect, but removing them may worsen the quality of the solution. For example, vertical cluster removal
and random repair do not look very useful for yielding new best known solutions, but they may help
in escaping from local optima. The main key performance factor is probably the simultaneous use of
several operators, which enables the search procedure to be intensified or diversified. Identifying which
interactions between operators favor good results is still an open question.

5.5 Computational results

The results of the proposed LNS heuristic were compared against the optimal solutions or lower bounds
provided by Cplex 12.5 with a maximal computational time of 3 hours. The heuristic was run 10 times
on each of the 60 instances. The computational results are presented in Tables 5–7. Columns 3 and 4
present the computational time (in seconds) for Cplex and the LNS heuristic, respectively. Columns 5
and 6 present the minimal and average gap (in %) between the results found by the LNS and Cplex.
Columns 7 and 8 in Tables 6–7 present the minimal and average gap (in %) between the LNS and the
lower bounds found by Cplex. These columns are filled only when Cplex cannot find any optimal solution
after 3 hours of computation (in this case, column 3 contains an ∗).

Table 5: Comparison between Cplex and the LNS (sets s1 to s5)

Set CPU (seconds) UB GAP (%)
Cplex LNS Min Avg.

s1

37 16 0.86 1.52
109 18 0.82 1.65
82 18 0.59 0.78
38 18 1.01 1.06

s2

651 26 1.51 2.25
411 29 1.18 1.86
502 29 1.75 2.45
480 29 1.22 1.49

s3

326 36 2.38 2.74
503 40 0.99 2.00
662 40 0.68 0.99
224 40 0.55 1.54

s4

1150 47 0.76 1.07
1072 63 1.21 1.38
668 52 1.45 1.79
146 51 0.88 1.32

s5

686 57 0.59 1.09
788 63 0.66 1.41
597 62 0.57 0.71
682 63 0.78 1.00

Average 1.02 1.50

In 23 out of the 60 instances, Cplex finds no optimal solution after 3 hours of computation. For these
23 instances, the average gap is 0.55% and 1.20% from the upper bound and 2.75% and 3.41% from the
lower bound. If we ignore these 23 instances, the average value of the optimality gaps in columns 4 and

17

Table 6: Comparison between Cplex and the LNS (sets s6 to s10)

Set CPU (seconds) UB GAP (%) LB GAP (%)
Cplex LNS Min Avg. Min Avg.

s6

909 69 1.13 1.84
1097 77 0.45 0.86
430 80 1.45 2.41
2826 78 1.91 2.52

s7

4942 89 1.57 1.93
3534 101 0.64 1.27
7395 101 0.83 1.37
3115 97 0.90 1.30

s8

1443 119 0.39 1.38
∗ 136 1.10 1.88 1.43 2.22

7659 140 1.10 1.46
3905 135 0.48 1.24

s9

4786 142 0.83 1.58
6265 169 0.79 1.10
∗ 161 1.07 1.79 1.15 1.88

6180 165 1.41 1.93

s10

∗ 194 0.60 1.62 1.73 2.76
5029 213 0.65 1.00
∗ 252 1.06 1.47 1.67 2.09

4464 212 0.51 0.90
Average 0.94 1.54 1.50 2.23

18

Table 7: Comparison between Cplex and the LNS (sets s11 to s15)

Set CPU (seconds) UB GAP (%) LB GAP (%)
Cplex LNS Min Avg. Min Avg.

s11

∗ 348 1.14 1.44 4.51 4.83
∗ 406 0.97 1.80 1.85 2.69
∗ 410 1.43 1.92 1.60 2.09

5481 381 0.49 1.14

s12

∗ 606 0.73 1.80 3.23 4.33
∗ 473 0.87 1.03 2.77 2.93
∗ 500 1.28 1.61 1.47 1.80
∗ 498 1.08 2.01 1.55 2.49

s13

∗ 569 -0.42 0.65 5.03 6.16
∗ 638 0.28 0.88 4.01 4.64
∗ 608 -0.21 0.91 3.48 4.64
∗ 627 0.60 0.88 4.70 4.99

s14

∗ 765 1.13 1.62 4.02 4.52
∗ 757 1.05 1.38 1.68 2.00
∗ 705 0.81 1.26 2.92 3.38
∗ 751 0.68 1.21 0.70 1.23

s15

∗ 907 0.05 1.11 4.15 5.26
∗ 861 0.17 0.66 4.08 4.58
∗ 908 -0.86 0.27 3.41 4.59
∗ 923 -1.91 -1.63 2.13 2.42

Average 0.47 1.10 3.02 3.66

19

5 is 0.97% and 1.50%, respectively.
As an illustration, Figure 2 represents how the gap is reduced during the search process for test

instance s15, pattern 4. The initial solution has a 6.78% gap from the lower bound. After 2000 iterations,
the LNS outperforms the upper bound provided by Cplex. After 10500 iterations, the LB gap is 2.2%.

Gap %

Iteration / 100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

1

2

3

4

5

6

7

8

9

10

Cplex UB

Figure 2: Example of LNS iterations (Test set s15, pattern 4)

It can be observed from Tables 6–7 that the LB gap of the LNS ranges from 0.97% to 4.98% with an
average value of 2.83%. For instance, in test set s13, pattern 1, the LB gap is 4.98%, due to the difficulty
of finding good lower bounds with Cplex. The UB gap ranges from −2.00% to 2.13% with an average
value of 0.84%, which shows the efficiency of the proposed solution method. It is worth mentioning that
the best and average results (columns 5–6, columns 7–8) and the non-significant difference between the
results for each pattern are good indicators of the stability of our heuristic.

The maximum running time of the LNS is 923 seconds with an average of 269 seconds, which shows
the ability of the heuristic to find good results within an acceptable time. Moreover, it can be observed
that the CPU time of the LNS is not influenced by the pattern of data. For instance, Cplex could solve
some test problems such as s8 and s9 to optimality, while it could not do so for other instances of the
same size.

As stated before, few models in the literature incorporate transportation modes in designing a supply
chain network. However, in real-life problems, using suitable transportation modes influences the logistics
network efficiency. We ran the algorithm over a subset of instances with two options. Firstly, there is
only one mode available between each pair of nodes. Secondly, it is possible to choose a suitable mode.
The LNS heuristic was run 10 times for each test instance. The results presented in Table 8 show that
considering different transportation modes has a strong influence on the network configuration. Columns
2 and 3 represent the percentage of different facilities between each scenario. The results show that the
locations of 19% of plants and 24% of DCs have been changed.

6 Conclusion

In this paper, we studied a 4-layer multi-product supply chain network design model including production
plant and distribution center location as well as selection of the transportation modes. The goal was to
design the supply chain to satisfy the demand while minimizing the total fixed and variable costs over a
single period of time.

20

Table 8: Influence of transportation modes on network configuration

Test Network configuration
Problems % of plants changed % of DCs changed

1 - -
2 - 20
3 - 40
4 33 17
5 - 43

6 50 -
7 - 22
8 25 30
9 20 17
10 20 38

11 50 36
12 33 27
13 29 24
14 0 22
15 29 32

Average 19 24

An LNS approach was been designed to solve the proposed model. The LNS framework was mainly
used to fix the location decisions whereas a greedy heuristic was called upon to select the appropri-
ate transportation modes and determine the product flows. Once the network configuration had been
determined, a post-optimization step using the simplex algorithm determined the optimal product flows.

The performance of the proposed method was tested on a variety of randomly-generated instances
with various sizes and practical characteristics. We provide extensive comparisons with optimal solutions
or bounds obtained with Cplex. The numerical results show the stability of the LNS algorithm and its
efficiency, in terms of both quality of solution and computation time.

This study shows that the principles of the LNS can be used successfully for supply chain network
design problems. Further research will include the adaptation of our algorithm to more complex models,
for example with multiple periods or multiple objectives.

Acknowledgements: This research was supported partially by the Région Pays de la Loire through
the research project OLASI, which has been labeled by the competitiveness clusters EMC2 and Nov@log.
This support is gratefully acknowledged.

References

References

[1] F. Altiparmak, M. Gen, L. Lin, and I. Karaoglan. A steady-state genetic algorithm for multi-product
supply chain network design. Computers & Industrial Engineering, 56(2):521 – 537, 2009.

[2] Y. Cardona-Valdés, A. Álvarez, and J. Pacheco. Metaheuristic procedure for a bi-objective supply
chain design problem with uncertainty. Transportation Research Part B: Methodological, 60(0):66 –
84, 2014.

[3] Dick Carlsson and Mikael Rönnqvist. Supply chain management in forestry––case studies at Södra
Cell {AB}. European Journal of Operational Research, 163(3):589 – 616, 2005. Supply Chain
Management and Advanced Planning.

21

[4] P. J. Copado-Méndez, C. Blum, G. Guillén-Gosálbez, and L. Jiménez. Large neighbourhood search
applied to the efficient solution of spatially explicit strategic supply chain management problems.
Computers & Chemical Engineering, 49(11):114–126, 2013.

[5] J.-F. Cordeau, F. Pasin, and M.M. Solomon. An integrated model for logistics network design.
Annals of Operations Research, 144:59–82, 2006.

[6] Mark S. Daskin, Lawrence V. Snyder, and Rosemary Berger. Facility location in supply chain
design. In André Langevin and Diane Riopel, editors, Logistics systems: design and optimization,
pages 39–65. Springer US, 2005.

[7] L. Der-Horng and D Meng. A heuristic approach to logistics network design for end-of-lease computer
products recovery. Transportation Research Part E, 44(3):455 – 474, 2008.

[8] F. Du and Gerald W. Evans. A bi-objective reverse logistics network analysis for post-sale service.
Computers & Operations Research, 35(8):2617 – 2634, 2008.

[9] M. Eskandarpour, E. Nikbakhsh, and S.H. Zegordi. Variable neighborhood search for the bi-objective
post-sales network design problem: A fitness landscape analysis approach. Computers & Operations
Research, In Press.

[10] M. Eskandarpour, S.H. Zegordi, and E. Nikbakhsh. A parallel variable neighborhood search for the
multi-objective sustainable post-sales network design problem. International Journal of Production
Economics, 145(1):117 – 131, 2013.

[11] Erdem Eskigun, Reha Uzsoy, Paul V. Preckel, George Beaujon, Subramanian Krishnan, and Jef-
frey D. Tew. Outbound supply chain network design with mode selection, lead times and capacitated
vehicle distribution centers. European Journal of Operational Research, 165(1):182 – 206, 2005.

[12] A. Gupta and J. Könemann. Approximation algorithms for network design: A survey. Surveys in
Operations Research and Management Science, 16(1):3 – 20, 2011.

[13] S. L. Hakimi. Optimum locations of switching centers and the absolute centers and medians of a
graph. Operations Research, 12(3):450–459, 1964.

[14] R. Jamshidi, S.M.T. Fatemi Ghomi, and B. Karimi. Multi-objective green supply chain optimization
with a new hybrid memetic algorithm using the Taguchi method. Scientia Iranica, 19(6):1876 – 1886,
2012.

[15] A. Klose and A. Drexl. Facility location models for distribution system design. European Journal of
Operational Research, 162(1):4–29, 2005.

[16] Mary J. Meixell and Vidyaranya B. Gargeya. Global supply chain design: A literature review and
critique. Transportation Research Part E: Logistics and Transportation Review, 41(6):531–550, 2005.

[17] M. T. Melo, S. Nickel, and F. Saldanha-da Gama. Facility location and supply chain management -
A review. European Journal of Operational Research, 196(2):401–412, 2009.

[18] M.T. Melo, S. Nickel, and F. Saldanha-da Gama. A tabu search heuristic for redesigning a multi-
echelon supply chain network over a planning horizon. International Journal of Production Eco-
nomics, 136(1):218 – 230, 2012.

[19] E. Olivares-Benitez, R.Z. Ŕıos-Mercado, and J.L. González-Velarde. A metaheuristic algorithm
to solve the selection of transportation channels in supply chain design. International Journal of
Production Economics, 145(1):161–172, 2013.

22

[20] M.S. Pishvaee, R. Zanjirani Farahani, and W. Dullaert. A memetic algorithm for bi-objective inte-
grated forward/reverse logistics network design. Computers & Operations Research, 37(6):1100–1112,
2010.

[21] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Operations
Research, 34(8):2403 – 2435, 2007.

[22] D. Pisinger and S. Ropke. Large neighborhood search. In Michel Gendreau and Jean-Yves Potvin,
editors, Handbook of Metaheuristics, volume 146 of International Series in Operations Research &
Management Science, pages 399–419. Springer, 2010.

[23] R. Rahmaniani and A. Ghaderi. A combined facility location and network design problem with
multi-type of capacitated links. Applied Mathematical Modelling, 37(9):6400–6414, 2013.

[24] C.S. ReVelle and H.A. Eiselt. Location analysis: A synthesis and survey. European Journal of
Operational Research, 165(1):1–19, 2005.

[25] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.

[26] H. Sadjady and H. Davoudpour. Two-echelon, multi-commodity supply chain network design with
mode selection, lead-times and inventory costs. Computers & Operations Research, 39(7):1345 –
1354, 2012.

[27] Güvenç Sahin and Haldun Süral. A review of hierarchical facility location models. Computers &
Operations Research, 34(8):2310–2331, 2007.

[28] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking optimization
results using the ruin and recreate principle. Journal of Computational Physics, 159:139–171, 2000.

[29] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In Michael Maher and Jean-Francois Puget, editors, Principles and Practice of Constraint
Programming – CP98, volume 1520 of Lecture Notes in Computer Science, pages 417–431. Springer
Berlin Heidelberg, 1998.

[30] P. Subramanian, N. Ramkumar, T.T. Narendran, and K. Ganesh. PRISM: PRIority based SiMulated
annealing for a closed loop supply chain network design problem. Applied Soft Computing, 13(2):1121
– 1135, 2013.

[31] M.K. Tiwari, N. Raghavendra, S. Agrawal, and S.K. Goyal. A hybrid Taguchi-immune approach to
optimize an integrated supply chain design problem with multiple shipping. European Journal of
Operational Research, 203(1):95–106, 2010.

[32] H. Wang and H. Hsu. A closed-loop logistic model with a spanning-tree based genetic algorithm.
Computers & Operations Research, 37(2):376–389, 2010.

[33] Wilbert Wilhelm, Dong Liang, Brijesh Rao, Deepak Warrier, Xiaoyan Zhu, and Sharath Bulusu.
Design of international assembly systems and their supply chains under {NAFTA}. Transportation
Research Part E: Logistics and Transportation Review, 41(6):467 – 493, 2005.

[34] M. Wu, Y. Hsu, and L. Huang. An integrated approach to the design and operation for spare parts
logistic systems. Expert Systems with Applications, 38(4):2990–2997, 2011.

[35] M. Yaghini, M. Momeni, and M. Sarmadi. A simplex-based simulated annealing algorithm for node-
arc capacitated multicommodity network design. Applied Soft Computing, 12(9):2997 – 3003, 2012.

23

[36] W. Yeh. An efficient memetic algorithm for the multi-stage supply chain network problem. Inter-
national Journal of Advanced Manufacturing Technology, 29(7-8):803–813, 2006.

24

