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Abstract In this article, six different mixed integer programming (MIP) formula-
tions are proposed and analyzed. These formulations are based on the knowledge of
four different paradigms for single machine scheduling problems (SMSP) with se-
quence dependent setup times and release dates. Each formulation reflects a specific
concept on how the variables and parameters are defined, requiring particular settings
and definitions. A thorough historical overview of a variety of formulations for this
family of problems is provided. All MIP formulations studied are implemented and
tested, considering, as objective functions, the weighted completion time and the total
weighted tardiness. For the Sousa and Wolsey based formulation, a set of constraints
to improve its lower bound value is adapted and evaluated. Extensive computational
experiments are performed considering a variety of instances to capture several as-
pects of practical situations. Based on the results, recommendations are made for the
best adaptation of the MIP formulation paradigm for the considered problems.
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1 Introduction

Scheduling research is concerned with the allocation of scarce resources to activities
over time with the goal of optimizing one or more objectives. This huge family of
problems is explicitly or implicitly present in countless applications, from produc-
tion planning to bioinformatics related problems. Its study goes back to early 1950’s
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were, from the point of view of Operations Research, the first problems on industrial
applications began to be identified and formulated. This article deals with one of its
simplest forms, a single machine environment. However when considering the pres-
ence of sequence-dependent setup times with release dates, the problem transforms
itself in a very difficult combinatorial optimization problem.

As it can be seen in the literature review, several authors worked on similar prob-
lems, see Tables 1 and 2. Based on those previous works, specific formulations are
proposed for two scheduling problems with sequence dependent setups and release
dates. Each formulation reflects a specific concept on how the variables and parame-
ters are defined, requiring particular changes and definitions.

As it is already well known, the setup consideration may cause a huge impact
on the problem complexity. The single machine scheduling problem considering se-
quence dependent setup times with the objective of minimizing the maximum com-
pletion time (makespan) may be treated as the classical traveling salesman prob-
lem (TSP). The Öncan et al. (2009) survey that compares some MIP (mixed inte-
ger programming) formulations for the TSP problem is highlighted. This study fo-
cuses scheduling problems diverging from TSP. It deals with two objective func-
tions: weighted completion time and total weighted tardiness, and with restrictions in
scheduling problems from classical TSP formulations.

The problems studied here are denoted as 1|r j,si j|∑ j w jC j and 1|r j,si j|∑ j w jTj in
accordance with Graham et al. (1979). The MIP formulation paradigms for schedul-
ing problems are classified according to its developers: (i) Manne (1959) formulation
(ii) Potts (1980) formulation (iii) Wagner (1959) formulation (iv) Sousa and Wolsey
(1992) formulation and (v) Pessoa et al. (2010) formulation.

Manne formulations are characterized by continuous variables that define the
completion time of each job; Potts formulations are defined by binary linear order-
ing variables that describe precedence relationships among all jobs. In the Wagner
formulations, the decision variables are defined based on the notion that each ma-
chine has a fixed number of positions into which jobs can be assigned. Sousa and
Wolsey formulations are characterized by assigning jobs to time periods belonging to
a discretized planning horizon (H). Finally, Pessoa et al. formulations are also charac-
terized by a discrete planning horizon (H), combining assigning jobs to time periods
while considering precedence relationships.

A summary of the literature review with these MIP formulations approaches for
scheduling problems is presented in Tables 1 and 2. Table 1 depicts research works in
alphabetical order, with the same objective functions adopted in this article (∑ j w jC j
and ∑ j w jTj) and Table 2 organizes other close related works.

Although a large number of machine scheduling articles and surveys have al-
ready appeared in literature, only a few of them compare several problems and MIP
formulations. Queyranne et al. (1994) provides a review, performance analysis and a
synthesis of polyhedral approaches to single and parallel machine scheduling prob-
lems without considering setup times. Their survey was based on Manne, Wagner,
Potts and Sousa and Wolsey formulations. Khowala et al. (2005) compares the com-
putational performance of the same MIP formulations that Queyranne et al. (1994)
for the single machine total weighted tardiness problems without considering setup
times.
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Table 1 Previous specific research works for scheduling problems

MIP Problem Performance Measures
Formulations Parameters ∑ j w jC j ∑ j w jTj
Manne no parameters Keha et al. (2009), Keha et al. (2009),

Queyranne and Wang (1991) Khowala et al. (2005)
r j and no si j Keha et al. (2009) Keha et al. (2009)

with si j Queyranne (1993) Queyranne (1993)
Potts no parameters Blazewicz et al. (1991), Blazewicz et al. (1991),

Chudak and Hochbaum (1999), Keha et al. (2009),
Keha et al. (2009) Khowala et al. (2005),

r j and no si j Dyer and Wolsey (1990), Keha et al. (2009)
Keha et al. (2009),

Queyranne et al. (1994),
Unlu and Mason (2010)

with si j Tanaka and Araki (2013)
Wagner no parameters Keha et al. (2009), Keha et al. (2009)

Khowala et al. (2005),
Lasserre and Queyranne (1992),

Queyranne et al. (1994)
r j and no si j Keha et al. (2009) Keha et al. (2009)

Sousa and Wolsey no parameters Keha et al. (2009), Bigras et al. (2008a),
Khowala et al. (2005) Keha et al. (2009),

Razaq et al. (1990),
Sadykov (2006),

Sadykov and Vanderbeck (2011),
Sourd (2009a),

Sousa and Wolsey (1992),
Tanaka et al. (2009)

r j and no si j Avella et al. (2005), Keha et al. (2009),
Keha et al. (2009), Queyranne et al. (1994)

Queyranne et al. (1994)
Pessoa et al. no parameters Pessoa et al. (2010)

Rocha et al. (2008) analyze the authors analyze parallel scheduling-problem for-
mulations with setup times for Manne and Wagner based formulations; their perfor-
mance is also compared against a Branch and Bound algorithm. Keha et al. (2009)
compares the computational performance of the same MIP formulations of Queyranne
et al. (1994) for some single machine scheduling problems without considering setup
times. Unlu and Mason (2010) defines and compares computational results for four
different MIP formulations based on Wagner, Potts, Sousa and Wolsey and Cakici and
Mason, which are presented for various parallel machine scheduling problems with-
out considering setup times. Blazewicz et al. (1991); Allahverdi et al. (1999, 2008)
and Pinedo (2008) are also referred.

The purpose of this study is to propose and test six specific MIP formulations
for the single machine scheduling problem with sequence dependent setup times and
release dates. Furthermore, a new set of inequalities is adapted in order to improve
Sousa and Wolsey (1992)’s lower bound in the presence of sequence dependent setup
times.

2 Mathematical Formulations

A set J of n jobs is considered, where each job must be exactly processed once in a
single machine that can handle one job at a time without preemption. For a given job
j, let p j be its processing time, d j its due date, w j its priority or weight, r j its release
date. si j is also defined as the setup time needed to process the job j immediately after
job i, C j its completion time, Cmax the maximum completion time (makespan) of a
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Table 2 Previous general research works for scheduling problems

MIP Problem Performance Measures
Formulations Parameters Other Objective Functions
Manne no parameters Keha et al. (2009), Manne (1959)

r j and no si j Balakrishnan et al. (1999), Dyer and Wolsey (1990),
Keha et al. (2009), Zhu and Heady (2000)

with si j Ascheuer et al. (2001), Balas (1985),
Balas et al. (2008), Ballicu et al. (2002),
Choi and Choi (2002), Eijl Van (1995),
Eren and Guner (2006), Larsen (1999),

Maffioli and Sciomachen (1997), Naderi et al. (2011),
Queyranne (1993), Queyranne et al. (1994),

Rı́os Mercado and Bard (2003), Rocha et al. (2008),
Zhu and Heady (2000)

Potts no parameters Keha et al. (2009)

r j and no si j Keha et al. (2009), Nemhauser and Savelsbergh (1992),
Sadykov (2006)

Wagner no parameters Keha et al. (2009), Wagner (1959)
r j and no si j Dauzère Pérès and Sevaux (2003), Keha et al. (2009),

Sorı́c (2000), Unlu and Mason (2010)
with si j Jr. and Tseng (2002), Lee and Asllani (2004),

Rocha et al. (2008), Shufeng and Yiren (2002)
Others Abdekhodaee and Wirth (2002), İşler et al. (2012),

Pan et al. (2001), S Sakuraba et al. (2009)
Sousa and Wolsey no parameters Anglani et al. (2005), Chen and Luh (2003),

Czerwinski and Luh (1994), Hoitomt et al. (1990),
Keha et al. (2009), Luh and Hoitomt (1993),

Pan and Shi (2007), Sourd (2009a),
Sousa and Wolsey (1992), Tanaka and Araki (2008),

Tanaka et al. (2009), Wang and Luh (1997)
r j and no si j Crauwels et al. (2006), Detienne et al. (2010),

Jin and Luh (1999), Keha et al. (2009),
Liu and Chang (2000), Queyranne et al. (1994),

Unlu and Mason (2010), van den Akker et al. (1999)
with si j Buil et al. (2012), Hoitomt et al. (1993),

Liu and Chang (2000), Luh and Hoitomt (1993),
Luh et al. (1998), Luh et al. (1999),

Luh et al. (2000), de Paula et al. (2010),
Sun et al. (1999)

Pessoa et al. With si j Abeledo et al. (2010), Abeledo et al. (2013),
Battarra et al. (2013), Bigras et al. (2008b)

given solution and Tj the tardiness of job j. In two MIP formulation paradigms, M is
used as a very large constant and its value is analyzed for each case. Other specific
notation will be discussed and introduced when needed.

As previously mentioned, the problems studied in this article are denoted as
1|r j,si j|∑ j w jC j and 1|r j,si j|∑ j w jTj and they are NP− hard (Lenstra et al., 1977;
Lawler et al., 1993; Pinedo, 2008). It is important to point out that, with the exception
of Wagner and Pessoa et al., all formulations require a setup time data that satisfy the
triangle inequality si j ≤ sil + pl + sl j, where i, j and l ∈ J and i 6= j 6= l.

These formulations are going to be directly tested with a commercial solver. The
selection of the value of M is essential for the performance of the mathematical mod-
els. To set the value of M in the problems, 1|r j,si j|∑ j w jC j and 1|r j,si j|∑ j w jTj, the
propositions 1, 2 and 3 are submitted.

Before presenting these propositions, two important scheduling concepts will be
defined: regular criterion and active scheduling. An objective function is said to be
regular when its value is a function that is nondecreasing in its completion times,
(Pinedo, 2008). This concept ensures the existence of optimal schedules and avoids
anomalies like infinite number of preemptions (Baptiste et al. (2009)). Both, ∑ j w jC j
and ∑ j w jTj, are regular criteria (see Leung (2004)). Following Baker (1974) and
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Pinedo (2008) a schedule S is active if by changing the order of jobs, it is not pos-
sible to construct a schedule with at least one job finishing earlier without delaying
another job. Therefore, these scheduling problems can be understood as the problem
of finding an active schedule, where no job can be shifted to the left to improve the
objective function, without making the schedule infeasible (Leung (2004)).

The proposition 1 determines that the optimal solution of the weighted objective
function (i.e., ∑ j w jC j and ∑ j w jTj) is not necessarily the smallest makespan. Finally,
propositions 2 and 3 define the value of the constant M for the Manne and Wagner
formulations.

Proposition 1 Considering the problems 1|r j,si j|∑ j w jC j and 1|r j,si j|∑ j w jTj, let
S∗ and S be, respectively, an optimal and a feasible solution for one of the problems.
Then, the makespan of S∗, (Cmax(S∗)) is not necessarily smaller than the makespan
of S, (Cmax(S)).

Proof Considering the problem 1|r j,si j|∑ j w jC j (this proof has the same logic for
1|r j,si j|∑ j w jTj). Let S∗ and S be, respectively, an optimal and a feasible solution;
where the only difference between them is the sequence of the two last adjacent jobs
i and j. Job i is scheduled immediately before j in S∗ and immediately after j in S.
Moreover, it is considered that there is a job k scheduled immediately before the last
two jobs. Considering si j > s ji and ski = sk j, it is possible that a wi > w j exists such
that wiC∗i +w jC∗j < wiCi +w jC j. Thus, f (S∗)< f (S) with Cmax(S∗)>Cmax(S).ut

By the proposition 1, the optimal solution can be any active schedule, not nec-
essarily the smallest. Thus, the constants defined as Mi j for the Manne formulation
(proposition 2) and M′k for the Wagner formulation (proposition 3) are makespan’s
upper bound values that should allow it. These M values are presented together with
their respective MIP formulations.

The MIP formulation paradigms considered in this work are Manne, Wagner,
Sousa and Wolsey and Pessoa et al. There is a fifth paradigm formulation, proposed
by Potts (1980), but when a single machine scenario is considered the formulation is
equivalent to the Manne’s one. For this reason, this approach is not investigated in
this article.

2.1 Manne Formulation

This formulation was originally proposed by Manne (1959) for the Jobshop schedul-
ing problem J||Cmax. The adapted formulation is based on previous works by Manne
(1959); Queyranne (1993); Queyranne et al. (1994); Ballicu et al. (2002); Khowala
et al. (2005); Eren and Guner (2006); Balas et al. (2008); Rocha et al. (2008); Keha
et al. (2009) and Unlu and Mason (2010). In this formulation, the binary variables
γi j, are equal to 1 if job i is processed before job j and equal to 0 otherwise. When
γi j = 1, job i is not necessarily positioned immediately before job j. The constraint
set of the MIP formulation is the following:

C j ≥Ci + si j + p j−Mi j(1− γi j) ∀i, j ∈ J, i 6= j, (1)
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γi j + γ ji = 1 ∀i, j ∈ J, i < j, (2)

C j ≥ r j + p j ∀ j ∈ J, (3)

C j ≥ 0 ∀ j ∈ J, (4)

Tj ≥C j−d j ∀ j ∈ J, (5)

Tj ≥ 0 ∀ j ∈ J, (6)

γi j ∈ {0,1} ∀i, j ∈ J, i 6= j. (7)

The constraint set (1) ensures that the completion time of job j happens only after
the completion time of job i plus the setup from job i to job j and the processing time
of job j. The constraint set (2) imposes that either job i is positioned before job j
or otherwise. The constraint set (3) ensures that completion time of job j is greater
than or equal to its release date plus its processing time. The constraint set (4) is the
non-negativity constraint. The constraint set (5) implies that the tardiness of job j is
greater than or equal to the difference between its completion time and its due date.
The constraint set (6) ensures that the tardinesses of job j is positive. The constraint
set (7) is the integrality constraint.

Proposition 2 For all job ordered pairs (i, j), such that i, j ∈ J, i 6= j and i is pro-
cessed before j, in the Manne formulation, if

Mi j = Mi− r j + si j, (8)

with
Mi = max{ri,rmax

l∈J,l 6=i + ∑
l∈J,l 6=i

smax
l + ∑

l∈J,l 6=i
pl}+ pi, (9)

where smax
l = maxi∈J,i 6=l{sli} and rmax

l∈J,l 6=i = maxl∈J,l 6=i{rl}, thus all active sched-
ules are feasible solutions of the mathematical problem.

Proof Let S = [ j1, . . . , jn−1, jn] be an active schedule n-jobs, which can be repre-
sented by ordered pairs (i, j), such that i is processed before j. For any pair (i, j) ∈ S,
the job’s j completion time (C j) is at least the maximum between Ci + p j + si j and
r j + p j. Thus, C jn can be defined for the ordered pair ( jn−1, jn) ∈ S as

C jn = max{r jn ,C jn−1 + s jn−1, jn}+ p jn . (10)

Considering smax
j = maxi∈S,i6= j{s ji} and rmax

j∈S, j 6= jn = max j∈S, j 6= jn{r j}, M jn can be
defined as an upper bound for the makespan, when jn is the last job to be processed,
as

M jn = max{r jn ,r
max
j∈S, j 6= jn + ∑

j∈S, j 6= jn

smax
j + ∑

j∈S, j 6= jn

p j}+ p jn , (11)
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and as

rmax
j, j 6= jn + ∑

j∈S, j 6= jn

smax
j + ∑

j∈S, j 6= jn

p j ≥C jn−1 + s jn−1, jn , (12)

therefore

M jn ≥C jn . (13)

In the Manne formulation, the constraint set (1) is not enough to define the M
value as M j. If γi j = 0, the constraint set (2) indicates that the job i is processed
after the job j, as γi j + γ ji = 1. Thus, it is possible that the job i is the last job in the
schedule, thereby Ci can be equal to Mi.

C j ≥Ci + si j + p j−M j(1− γi j), (14)

therefore, the constraint set (14) can be rewritten as

C j ≥Mi + si j + p j−M j, (15)

however, the constraint set (3) defines that C j ≥ r j + p j, but if,

Mi + si j−M j > r j, (16)

the constraint may discard feasible solutions. Therefore, it is necessary to define
a constant Mi j instead of M j. The value Mi j is defined as

Mi j = Mi− r j + si j, (17)

it is easy to see that Mi j will satisfy the condition imposed by the constraint set
(3).ut

For the Manne formulation, if the problem is 1|r j,si j|∑ j w jC j, the variables C j, γi j

and the constraint sets (1), (2), (3), (4) and (7) are required. Therefore, there are O(n2)
decision variables and constraints. The problem 1|r j,si j|∑ j w jTj needs the variables
C j, γi j, Tj and constraint sets (1), (2), (3), (4), (5), (6) and (7). Thus, there are O(n2)
decision variables and constraints.

Based on the works of Eijl Van (1995), Maffioli and Sciomachen (1997) and
Ascheuer et al. (2001), a different formulation is proposed to reduce the effects of
the constant M. These works are focused in the “Asymmetric Travelling Salesman
Problem with Time Windows”. This modification is based on the variables C j, that
are redefined as C ji with the property that γi j = 0 implies Ci j = 0. If γi j = 1 then
Ci j denotes the time when the processing of job i is completed and indicates that
the job j is processed after job i. This modified formulation uses a fictitious job “0”
indicating the starting and ending point of the sequence (all parameter values are null
for a fictitious job), then J′ is defined as J

⋃
0. The formulation will be denominated

“Manne Alternative” and its constraint set is the following:

∑
i∈J,i6= j

Ci j + ∑
i∈J′,i6= j

(p j + si j)γi j ≤ ∑
k∈J′,k 6= j

C jk ∀ j ∈ J, (18)
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∑
j∈J′,i6= j

γi j = 1 ∀i ∈ J′, (19)

∑
i∈J′,i6= j

γi j = 1 ∀ j ∈ J′, (20)

γi j(ri + pi)≤Ci j ≤ γi jMi ∀i, j ∈ J′, i 6= j, (21)

Tj ≥ ∑
i∈J, j 6=i

C ji−d j ∀ j ∈ J′, (22)

Tj ≥ 0 ∀ j ∈ J′, (23)

γi j ∈ {0,1} ∀i, j ∈ J′, i 6= j. (24)

The constraint set (18) has the same meaning as (1). The constraint sets (19) and
(20) establish that each job is succeeded and preceded by one job respectively. The
constraint set (21) defines the Ci j domain, which has Mi as fictitious job i deadline.
The constraint sets (22), (23) and (24) have the same meaning as (5), (6) and (7).

In Manne Alternative formulation, if the problem is 1|r j,si j|∑ j w jC j needs the
variables Ci j, γi j and constraint sets (18), (19), (20), (21) and (24). Therefore, there
are O(n2) decision variables and constraints. The problem 1|r j,si j|∑ j w jTj needs the
variables Ci j, γi j, Tj and constraint sets (18), (19), (20), (21), (22), (23) and (24).
Thus, there are O(n2) decision variables and constraints.

2.2 Wagner Formulation

This formulation was initially proposed by Wagner (1959) for the Jobshop schedul-
ing problem J||Cmax. The formulation is adapted from the knowledge acquired from
Wagner (1959); Queyranne et al. (1994); Dauzère Pérès and Sevaux (2003); Lee and
Asllani (2004); Khowala et al. (2005); Rocha et al. (2008); Keha et al. (2009) and
Unlu and Mason (2010). In this formulation a set K of n processing positions is de-
fined (K = {1, ...,n}) and the binary assignment variables (ν jk) are equal to 1 if job
j is assigned to position k and equal to 0 otherwise. The variables β k

i j define the as-
signment of job i to the position k and job j to the position k+1, and yk defines the
completion time of the job in the position k. The constraint sets of the MIP formula-
tion are the following:

∑
k∈K

ν jk = 1 ∀ j ∈ J, (25)

∑
j∈J

ν jk = 1 ∀k ∈ K, (26)

yk ≥∑
j∈J

(r j + p j)ν jk ∀k ∈ K, (27)
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β
k−1
i j ≥ 1− (2−νi(k−1)−ν j(k))

∀i, j ∈ J, i 6= j,k ∈ {2, . . . ,n} ⊂ K, (28)

yk ≥ yk−1 + ∑
j∈J

p jν jk +∑
i∈J

∑
j∈J,
j 6=i

β
k−1
i j si j ∀k ∈ {2, . . . ,n} ⊂ K, (29)

C j ≥ yk−M′k(1−ν jk) ∀k ∈ K, j ∈ J, (30)

C j ≥ 0 ∀ j ∈ J, (31)

Tj ≥ yk−d j−M′k(1−ν jk) ∀k ∈ K, j ∈ J, (32)

Tj ≥ 0 ∀ j ∈ J, (33)

yk ≥ 0 ∀k ∈ K, (34)

β
k
i j ∈ {0,1} ∀k ∈ K, i, j ∈ J, i 6= j, (35)

ν jk ∈ {0,1} ∀ j ∈ J, k ∈ K. (36)

The constraint sets (25) and (26) establish that a job is exactly assigned to one
position and each position is assigned to one job. The constraint set (27) ensures that
the completion time of a job at the position k is greater than or equal to its release date
plus its processing time. The constraint set (28) establishes the use of a setup time
from job i to job j between the positions k− 1 and k if job i is at the position k− 1
and job j is at the position k. The constraint set (29) computes the completion time
for the jobs at the positions 2, . . . ,n. The constraint set (30) ensures the association
of the completion time of the job j with its assigned position, and the constraint set
(31) ensures that the completion time of job j is non-negative. The constraint set (32)
establishes that if the job j is in the position k, the tardiness of the job j is greater
than or equal to the difference between its completion time in the position k and its
due date. The constraints (33) and (34) are non-negativity constraints. The constraint
sets (35) and (36) are integrality constraints.

Proposition 3 In the Wagner formulation, for each position k ∈ K, if

M′k =
1

max
j∈J
{p j + r j}+

k−1
max

j∈J
{p j + smax

j }, (37)

where maxl
j∈J is the sum of the l larger values of {p j + r j}, for j ∈ J, max0

j∈J = 0
and smax

j = maxi∈J,i6= j{s ji}, then all active schedules are feasible solutions of the
mathematical problem.
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Proof For each position k ∈ K, and considering the constraint sets (30 and 32), an
upper bound M′k for the completion time at position k can be defined. At the first
position, k = 1, no jobs will be completed after

M′1 =
1

max
j∈J
{p j + r j}. (38)

In the second position the limit is

M′2 =
1

max
j∈J
{p j + r j}+

1
max

j∈J
{p j + smax

j }, (39)

where smax
j = maxi∈J,i6= j{s ji}. In the third position the limit is

M′3 =
1

max
j∈J
{p j + r j}+

2
max

j∈J
{p j + smax

j }. (40)

Thereby, generalizing for all k ∈ K positions,

M′k =
1

max
j∈J
{p j + r j}+

k−1
max

j∈J
{p j + smax

j }, (41)

which define the job completion time upper bound at position k, yk, for all k ∈ K
positions.ut

Rocha et al. (2008) defines that β k
i j ∈ {0,1}, however the proposition 4 ensures

that the integrality constraints can be relaxed without compromising the integrality
of the problem.

Proposition 4 In the Wagner formulation, the integrality constraints of variables
β k

i j ∈ {0,1}, can be relaxed without interfering with the solution integrality.

Proof When the integrality conditions of the binary variables β k
i j are relaxed 0 ≤

β k
i j ≤ 1; By the constraint set (28) it is obtained,

β
k
i j ≥


1, if νi(k−1) = 1 and ν j(k) = 1
0, if νi(k−1) = 1 or ν j(k) = 1
0, if νi(k−1) = 0 and ν j(k) = 0

 . (42)

When β k
i j > 0, the constraint set (29) increases the value of yk and consequently

the objective function. Thus, β k
i j will be 0 or 1. Therefore, β k

i j is defined as:

β
k
i j =


1, if νi(k−1) = 1 and ν j(k) = 1
0, if νi(k−1) = 1 or ν j(k) = 1
0, if νi(k−1) = 0 and ν j(k) = 0

 , (43)

thereby, even if 0≤ β k
i j ≤ 1 the integrality of this variable is guaranteed. ut

If the problem is 1|r j,si j|∑ j w jC j, the variables ν jk, yk, C j, β k
i j and the constraint

sets (25), (26), (27), (28), (29), (30), (31), (34), (35) and (36) are required. There-
fore, there are O(n3) decision variables and constraints. The problem 1|r j,si j|∑ j w jTj

needs the variables ν jk, yk, Tj, β k
i j and constraint sets (25), (26), (27), (28), (29), (32),

(33), (34), (35) and (36). Thus, there are O(n3) decision variables and constraints.
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2.3 Sousa and Wolsey Formulation

This approach has been first proposed by Sousa and Wolsey (1992) for single ma-
chine problems 1|r j|∑ j w jC j and 1|r j|∑ j w jTj. The formulation is based on studies
of Sousa and Wolsey (1992); Queyranne et al. (1994); van den Akker et al. (1999);
Avella et al. (2005); Khowala et al. (2005); Pan and Shi (2007); Keha et al. (2009);
de Paula et al. (2010) and Unlu and Mason (2010). In the Sousa and Wolsey formula-
tion, the planning horizon is discretized for each job i into the periods 0,. . .,hi and the
hi constant has the same value as Mi (view proposition 2). The set of the periods is
defined as H = {0, . . . ,maxi∈J{hi}}. The binary time index variables, x jt , are defined.
x jt is equal to 1 if job j starts at time t and equal to 0 otherwise. The constraint sets
of the MIP formulation are defined as follows:

h j−p j+1

∑
t=r j

x jt = 1 ∀ ∈ J, (44)

x jt +
min{t+p j+s ji−1,hi−pi+1}

∑
s=max{ri,t−pi−si j+1}

xis ≤ 1

∀i, j ∈ J, i 6= j, t ∈ {r j, . . . ,h j− p j +1} ⊂ H, (45)

C j ≥
h j−p j+1

∑
t=r j

(t + p j)x jt ∀ j ∈ J, (46)

C j ≥ 0 ∀ j ∈ J, (47)

Tj ≥
h j−p j+1

∑
t=r j

(t + p j)x jt −d j ∀ j ∈ J, (48)

Tj ≥ 0 ∀ j ∈ J, (49)

x jt ∈ {0,1} ∀ j ∈ J, t ∈ {r j, . . . ,h j− p j +1} ⊂ H. (50)
The constraint set (44) ensures that the processing of each job starts at only one

time period in the machine. The constraint set (45) ensures that if the job j is sched-
uled in the time period t, no other job i (i 6= j) can be scheduled between t− pi−si j+1
and t + p j + s ji−1 periods. The constraint set (46) ensures a completion time greater
than or equal to its starting time plus its processing time. The constraint set (47)
ensures the non-negativity of variables C j. The constraint set (48) ensures that the
tardiness of job j is greater than or equal to the difference between its completion
time and its due date. The constraint set (49) ensures non-negativity constraints. The
constraint set (50) ensures the integrality domain of x jt .

If the problem is 1|r j,si j|∑ j w jC j, the variables x jt , C j and the constraint sets
(44), (45), (46), (47) and (50) are required. Therefore, there are O(nh) decision vari-
ables and O(n2h) constraints (h >>> n). The problem 1|r j,si j|∑ j w jTj needs the
variables x jt , Tj and constraint sets (44), (45), (48), (49) and (50). Thus, there are
O(nh) decision variables and O(n2h) constraints.
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2.3.1 Improved Formulation

Khowala et al. (2005); Keha et al. (2009) and Unlu and Mason (2010) showed that
the lower bounds obtained from the formulations using the Sousa and Wolsey for-
mulation were tight, but the LP (linear programming) relaxations were harder to re-
solve. However, the computational results from de Paula et al. (2010) suggested that
when sequence dependent setup times are introduced, the LP relaxation of Sousa
and Wolsey (1992) formulation bounds are not as tight. To improve this formulation,
one family of valid inequalities was introduced to help improving the lower bounds
obtained when considering sequence dependent setup times.

The Sousa and Wolsey formulation presents some negative points: (i) the formu-
lation size depends on the length of the planning horizon (h), due to the number of
variables and constraints (memory requirements), and (ii) the integrality relaxation of
constraint set (45) allows that several jobs can be sequenced simultaneously. The later
implies in a poor lower bound. This situation is observed in Sun et al. (1999), which
discusses a lagrangian relaxation approach for the single machine scheduling problem
with sequence dependent setup to minimize total weighted squared tardiness. Simi-
larly, a constraint set is adapted to improve the model’s lower bound performance.

The new constraint set (51) ensures that when the integrality of variables xit is
relaxed, the number of assigned jobs i ∈ J between max{t− pi− SMini + 1,ri} and
min{t,hi− pi + 1} is at most 1, where SMini is the minimum setup time from i ∈ J
for any j ∈ J, j 6= i. If the variables xit are not relaxed the proposed constraints are
redundant.

Proposition 5 For all t in H, the inequality

∑
i∈J

min{t,hi−pi+1}

∑
s=max{t−pi−SMini+1,ri}

xis ≤ 1 ∀t ∈ H (51)

is valid.

Proof As SMini = min j∈J{si j} for any pair of jobs i, j ∈ J, i.e., does not depend on
the job sequence, then p

′
i = pi + SMini can be defined. Therefore, the constraint set

(51) can be rewritten as

∑
i∈J

min{t,h−pi+1}

∑
s=max{t−p′i+1,ri}

xis ≤ 1 ∀t ∈ H. (52)

Sousa and Wolsey (1992) define the constraint set for single machine scheduling
problem without setup times as

∑
i∈J

min{t,hi−pi+1}

∑
s=max{t−pi+1,ri}

xis ≤ 1 ∀t ∈ H, (53)

which is identical to (52) that is a particular case of (45) when all setup times are
null or do not depend on the job sequence. ut



Analysis of MIP formulations for SMSP with setup times and release dates 13

This formulation will be hereinafter referred to as “Sousa and Wolsey Improve-
ment” formulation. The constraint set (51) is included in this formulation. The size of
its variable and constraint set for single machine scheduling problems 1|r j,si j|∑ j w jC j

(O(n2) decision variables and O(n2) constraints) and 1|r j,si j|∑ j w jTj (O(n2) deci-
sion variables and O(n2) constraints) are the same as of the Sousa and Wolsey for-
mulation.

2.4 Pessoa et al. Formulation

This formulation is based on Tanaka and Araki (2008), Sourd (2009a) and Pessoa
et al. (2010). It is important to mention the works of Fox (1973) and Fox et al.
(1980) on the time-dependent traveling salesman problem (TDTSP) and its adap-
tation for single machine scheduling problems by Bigras et al. (2008b). As in the
Sousa and Wolsey formulation, the planning horizon is discretized into the periods
{0, . . . ,maxi∈J{hi}}. It defines a binary arc time indexed variables, xt

i j with i 6= j,
which indicate that the job j starts at the time t and job i is positioned immediately
before j. This formulation uses a fictitious job “0” which is the starting and ending
point of the sequence in an adapted formulation (all parameters are null for a ficti-
tious job). The variables xt

j j indicate that the machine was idle from t − 1 to t and
the last processed job was j. Therefore, another change is necessary to define a new
parameter s

′
i j, which is pi + si j if i 6= j or 1 if i = j (idle from t−1 to t). Finally, set

J′ is defined as J
⋃

0. The constraint sets of the MIP formulation are the following:

∑
i∈J′,
i6= j

h j−p j

∑
t=max{ri+s′i j ,r j}

xt
i j = 1 ∀ j ∈ J′, (54)

∑
j∈J′,

t≥r j+s
′
ji

xt
ji− ∑

j∈J′,
r j≤t+s

′
i j≤h j−p j

x
t+s
′
i j

i j = 0

∀i ∈ J, t ∈ {ri, . . . ,hi− pi} ⊂ H, (55)

C j ≥ ∑
i∈J′,
i 6= j

h j−p j

∑
t=max{ri+s′i j ,r j}

(t + p j)xt
i j ∀ j ∈ J, (56)

C j ≥ 0 ∀ j ∈ J, (57)

Tj ≥ ∑
i∈J′,
i6= j

h j−p j

∑
t=max{ri+s′i j ,r j}

(t + p j)xt
i j−d j ∀ j ∈ J, (58)

Tj ≥ 0 ∀ j ∈ J, (59)
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xt
i j ∈ {0,1} ∀i, j ∈ J′ with i 6= 0 or j 6= 0,

t ∈ {max{ri + s
′
i j,r j}, . . . ,h j− p j} ⊂ H.

(60)

The constraint set (54) establishes that every job must be processed; the constraint
set (55) ensures that if job i is scheduled in the time period t, the next job in the
sequence j (i 6= j) or i (idle machine) must be scheduled in the time period t + s

′
i j or

t + s
′
ii respectively. The constraint set (56) ensures that the completion time is greater

than or equal to its starting time plus its processing time. The constraint set (57)
indicates the non-negativity domain. The constraint set (58) ensures that the tardiness
of job j is greater than or equal to the difference between its completion time and
its due date. The constraint sets (59) and (60) are the non-negativity and integrality
constraints.

If the problem is 1|r j,si j|∑ j w jC j the variables xt
i j, C j and the constraint sets (54),

(55), (56), (57) and (60) are required. Therefore, there are O(n2h) decision variables
and O(nh) constraints. The problem 1|r j,si j|∑ j w jTj needs the variables xt

i j, Tj and
constraint sets (54), (55), (58), (59) and (60). Thus, there are O(n2h) decision vari-
ables and O(nh) constraints.

3 Computational Results

An extensive computational experiment is performed to capture the strength and
weaknesses of each paradigm. A specific benchmark including different features and
characteristics was created for this purpose.

3.1 Benchmark

Six different classes of instances are artificially created. All parameters of the in-
stances are randomly generated from an uniform distribution and their minimal and
maximal values are based on specific scale parameters. A similar methodology can be
found in Hariri and Potts (1983); Potts and Wassenhove (1983); Razaq et al. (1990);
Ho and Chang (1995); Pereira Lopes and de Carvalho (2007); Rocha et al. (2008)
and Unlu and Mason (2010). The instance classes and its scale parameters are listed
in Table 3.

Table 3 Distribution values of the instances

Input data Distribution value
Processing Time (p j) U(1,α150)

Setup time (si j) U(1,α210)
Priority (w j) U(1,n)

Release date (r j) U(0, α3h′
10 )

Due date (d j) U(max j(p j), 2h′
α4

)
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The h′ was defined as the sum of processing times plus the sum of maximum
setup times (∑ j p j +∑i max j(si j)). The scale parameters α1, α2, α3 and α4 define the
distribution scenario of “Processing Time”, “Setup time”, “Release date ” and “Due
date” respectively. The parameter α1 ∈ {1,4} modifies the process time extent, α2 ∈
{1,5} defines the setup time impact, α3 ∈ {1,4} the availability level and α4 ∈ {1,4}
the congestion level.

In each class (1 to 6) there is a change in one scale parameter. The created classes
are namely:

Class 1: all scale parameters have minimum values;
Class 2: α1 has the maximum value (4) and other scale parameters have minimum

values;
Class 3: α2 has the maximum value (5) and other scale parameters have minimum

values;
Class 4: α3 has the maximum value (5) and other scale parameters have minimum

values;
Class 5: α4 has the maximum value (4) and other scale parameters have minimum

values;
Class 6: all scale parameters have maximum values.

Each class presents special characteristics. The “Class 1” is our base scheduling
system. The “Class 2” considers a long planning horizon and the system is slightly
affected by setup times. This class is closer to single machine scheduling problems
without setup times (p j >>> si j). The “Class 3” considers a moderate planning hori-
zon with setup times having a great impact in the scheduling system. This class is
closest to the traveling salesman problem. The “Class 4” presents a moderate plan-
ning horizon with longer release dates. The “Class 5” defines a scheduling system
with high congestion level, reducing its due date values. The “Class 6” determines a
scheduling system with emphasized conditions. The later defines a complex schedul-
ing system, presenting long planning horizons, a moderate impact of setup times, an
impact on the job’s release dates and a considerable congestion level.

For each class, ten independent instances are considered with size n∈ {5,7,9,11,
13,15,20,30,50,75,100} . Thus, 660 instances are randomly and independently gen-
erated. All instances are slightly modified to satisfy the triangle inequality of the setup
times (si j ≤ sik + pk + sk, j, where i, j and k ∈ J and i 6= j 6= k).

3.2 Results

The mathematical formulations were modeled and solved using AMPL and CPLEX
12.1 with default settings. The experiments were run on a Linux Maya with a single
2.4 GHz processor and 4GB memory. The runs were concluded after one hour of
CPU time.

To analyze the differences between the formulations, it was made a comparison of
the optimality gap within 3600 seconds, the linear programming relaxation gap, CPU
times and its size. The linear programming relaxation gap is defined as the relative
difference between the best integer solution found for each instance and the LP (linear
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programming) relaxation value. The average results of the experiments are presented
in Tables 4 and 5.

The Table 4 depicts the average GAP results for the two problems considering
both problems for each instance class, while Table 5 shows the average results for
each size. It must be highlighted that in several occasions the time-indexed formula-
tions (“Sousa and Wolsey”, “Sousa and Wolsey Improvement” and “Pessoa et al.”)
were unable to load the whole problem into the solver. In those cases the GAP was
defined as 100% and its computational time was defined as 3600 seconds. Individ-
ual results for each class and each instance size are presented in the supplementary
material.

In the analysis of the LP relaxation, Tables 4 and 5, it is possible to observe
that the “Pessoa et al.” formulation presents generally better GAP results with higher
CPU time values every time when the problem can be loaded into the solver, due to its
size (see Table 5). The “Sousa and Wolsey Improvement” formulation also provide
tighter lower bounds in general, but with the same disadvantages that “Pessoa et al.”.

The “Sousa and Wolsey Improvement” formulation presents slightly tighter lower
bounds than “Sousa and Wolsey” with similar computational time. This difference in-
creases for the problem F1. In the analysis of the instance size (Table 5), the “Sousa
and Wolsey” presents a larger number of instances with feasible solutions than the
“Sousa and Wolsey Improvement”. For the problem F1, the time-indexed formula-
tions (“Sousa and Wolsey”, “Sousa and Wolsey Improvement” and “Pessoa et al.”)
present better GAP results for instance classes 1 and 4 (shortest and moderate plan-
ning horizon length) and poorer results for classes 2 and 6 (long planning horizon),
while these formulations present the worst results for problem F2 instance classes 5
and 6 (high congestion level and emphasized conditions).

The “Manne”, “Manne Alternative” and “Wagner” formulations have lower com-
putational time values, but generally produce poorer solutions. However, for the prob-
lem F2, the “Manne” and “Manne Alternative” formulations produce tighter lower
bounds for instance classes 1 to 4. The “Manne Alternative” formulation presents bet-
ter GAP results in F1 and longer computational time than “Manne”. As the number of
jobs increase the GAP difference decrease. There is no noticeable difference between
the results for problem F2, however the “Manne ” formulation presents lower compu-
tational times. The “Wagner” formulation presents poorer GAP results in all classes
and all problems than the others. For the problem F1, the “Manne” and “Manne Alter-
native” formulations present better GAP results for instance classes 4 and 6 (moderate
and long planning horizon length) and slightly worse results for instances of class 5
(high congestion level). When considering the problem F2, they perform worse for
problem instance classes 5 and 6 (high congestion level and emphasized conditions),
specially the class 5 (high congestion level).

Time-indexed formulations are known to yield better bounds, but cannot be di-
rectly applied to many instances due to their large number of variables and con-
straints. These formulations are always interesting for column-generation algorithms
(van den Akker et al., 1999; Van den Akker et al., 2000; Bigras et al., 2008a; Pessoa
et al., 2010) and Lagrangean relaxations algorithms (Sun et al., 1999; Avella et al.,
2005; de Paula et al., 2010). However, such as mentioned by Pessoa et al. (2010), the
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time-indexed bound may still leave a significant duality gap and all exact algorithms
based on it sometimes need to explore large enumeration trees.

The analysis of the average results for the MIP formulations, Tables 4 and 5,
show that all formulations have difficulty as the number of jobs increases. It is pos-
sible to notice that the “Sousa and Wolsey”, “Sousa and Wolsey Improvement ” and
“Pessoa et al.” formulations managed to optimality solve some instances (small GAP
value), but as the number of variables and constraints increase, the problems become
rapidly unmanageable by the commercial solver (see 5). In the supplementary mate-
rial, a detailed description of the results are presented for each instance size in each
class. As it can be seen in Tables S1 to S6, the time-indexed formulations (“Sousa
and Wolsey”, “Sousa and Wolsey Improvement ” and “Pessoa et al.”) are able to
solve instances of up to 20 jobs, depending on the class. These formulations present
better GAP results for problem F1 for instance classes 1 and 4 (shortest and moderate
planning horizon length), and the worst performance for classes 2 and 6 (long plan-
ning horizon). When considering the problem F2, they perform worse for problem
instance classes 5 and 6 (high congestion level and emphasized conditions), specially
the class 6 (emphasized conditions).

Even presenting poor lower bound values, “Manne”, “Manne Alternative” and
“Wagner” formulations managed to optimally solve several instances, specially the
“Manne” formulation for F2. These formulations present generally better GAP re-
sults than the time-indexed formulation for the problems F1 and F2 in all instance
classes (1 to 6), highlighting the “Manne” formulation GAP results. For the problem
F1, the “Manne” and “Manne Alternative” formulations present better GAP results
for instance classes 4 and 6 (moderate and long planning horizon length) and slightly
worse results for instances of class 5 (high congestion level). When considering the
problem F2, they perform worse for problem instance classes 5 and 6 (high conges-
tion level and emphasized conditions), specially the class 5 (high congestion level).



18 Thiago Henrique Nogueira et al.
Ta

bl
e

4
A

ve
ra

ge
G

A
P

R
es

ul
ts

fo
rS

in
gl

e
M

ac
hi

ne
Sc

he
du

lin
g

Pr
ob

le
m

s
fo

rS
ix

M
IP

Fo
rm

ul
at

io
ns

fo
rA

ll
C

la
ss

es
in

A
ll

Si
ze

s.
Fo

rt
he

L
P

(l
in

ea
rp

ro
gr

am
m

in
g)

re
la

xa
tio

n
pr

ob
le

m
,t

he
G

A
P

in
di

ca
te

s
th

e
av

er
ag

e
va

lu
e

of
th

e
av

er
ag

e
lin

ea
r

re
la

xa
tio

n
ga

p
fo

r
al

lc
la

ss
es

in
al

ls
iz

es
,c

om
pu

te
d

as
th

e
re

la
tiv

e
di

ff
er

en
ce

be
tw

ee
n

th
e

be
st

in
te

ge
r

so
lu

tio
n

an
d

th
e

L
P

re
la

xa
tio

n
va

lu
e.

Fo
r

th
e

M
IP

(m
ix

ed
in

te
ge

r
pr

og
ra

m
m

in
g)

pr
ob

le
m

,t
he

G
A

P
is

th
e

av
er

ag
e

va
lu

e
of

th
e

av
er

ag
e

op
tim

al
ity

ga
p

fo
r

al
lc

la
ss

es
in

al
l

si
ze

s.
T
(s
)

in
di

ca
te

s
th

e
av

er
ag

e
va

lu
e

of
th

e
av

er
ag

e
C

PU
tim

e
fo

r
al

lc
la

ss
es

in
al

ls
iz

es
,a

nd
SD

is
th

e
st

an
da

rd
de

vi
at

io
n

fo
r

ea
ch

m
et

ri
c.

F
1

an
d

F
2

de
no

te
th

e
ob

je
ct

iv
e

fu
nc

tio
ns

∑
jw

jC
j

an
d

∑
jw

jT
j,

re
sp

ec
tiv

el
y.

In
st

an
ce

O
bj

ec
tiv

e
M

ix
ed

In
te

ge
r

Pr
og

ra
m

Fo
rm

ul
at

io
ns

C
la

ss
es

Fu
nc

tio
n

M
an

ne
M

an
ne

A
lte

rn
at

iv
e

W
ag

ne
r

So
us

a
an

d
W

ol
se

y
So

us
a

an
d

W
ol

se
y

Im
pr

ov
em

en
t

Pe
ss

oa
et

al
.

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

ov
er

li
ne

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

LPRELAXATIONPROBLEM

C
la

ss
1

F1
68

.5
%

10
.4

%
0.

1
0.

2
58

.5
%

17
.7

%
6.

9
15

.3
10

0.
0%

0.
0%

62
.9

14
9.

5
72

.5
%

24
.3

%
15

87
.8

17
13

.5
40

.1
%

47
.5

%
19

56
.6

15
65

.3
36

.4
%

50
.4

%
13

47
.1

17
87

.7
C

la
ss

2
F1

67
.5

%
10

.5
%

3.
7

8.
1

57
.2

%
18

.1
%

10
.7

15
.2

10
0.

0%
0.

0%
83

.1
19

3.
2

80
.8

%
24

.6
%

26
42

.2
14

71
.0

81
.9

%
39

.7
%

31
32

.1
10

38
.5

43
.7

%
50

.4
%

16
46

.9
17

61
.6

C
la

ss
3

F1
63

.8
%

5.
7%

3.
7

6.
7

55
.5

%
12

.4
%

3.
8

8.
0

10
0.

0%
0.

0%
13

3.
1

32
6.

2
69

.0
%

23
.8

%
18

69
.0

14
14

.3
57

.3
%

42
.6

%
22

25
.3

15
03

.1
38

.7
%

49
.1

%
14

65
.4

17
45

.8
C

la
ss

4
F1

26
.6

%
4.

6%
0.

6
0.

9
23

.5
%

4.
8%

14
.4

30
.0

10
0.

0%
0.

0%
12

9.
8

35
3.

2
50

.4
%

39
.3

%
15

79
.5

16
58

.8
39

.0
%

48
.4

%
19

24
.2

15
80

.5
36

.4
%

50
.4

%
13

18
.5

17
59

.9
C

la
ss

5
F1

67
.8

%
9.

7%
6.

3
9.

4
58

.1
%

17
.0

%
31

.4
65

.1
10

0.
0%

0.
0%

69
.9

16
3.

1
72

.2
%

24
.6

%
15

70
.6

17
28

.9
42

.4
%

46
.3

%
18

86
.9

16
18

.6
38

.2
%

49
.4

%
13

42
.5

17
54

.3
C

la
ss

6
F1

24
.8

%
3.

1%
0.

8
1.

9
21

.9
%

3.
4%

60
.6

87
.0

10
0.

0%
0.

0%
11

3.
3

27
9.

9
67

.0
%

38
.3

%
26

15
.1

13
49

.1
78

.5
%

37
.7

%
31

82
.4

96
2.

6
45

.5
%

52
.1

%
16

88
.4

17
74

.9
F1

Av
er

ag
e

53
.2

%
7.

4%
2.

5
4.

5
45

.8
%

12
.2

%
21

.3
36

.8
10

0.
0%

0.
0%

98
.7

24
4.

2
68

.7
%

29
.1

%
19

77
.4

15
55

.9
56

.6
%

43
.7

%
23

84
.6

13
78

.1
39

.8
%

50
.3

%
14

68
.1

17
64

.0
St

an
da

rd
D

ev
ia

tio
n

21
.3

%
3.

3%
2.

4
4.

0
17

.9
%

6.
6%

21
.5

32
.0

0.
0%

0.
0%

30
.7

87
.2

10
.1

%
7.

5%
51

6.
9

16
4.

5
19

.5
%

4.
4%

61
0.

5
29

5.
8

3.
9%

1.
1%

16
3.

3
15

.0
C

la
ss

1
F2

6.
1%

8.
6%

0.
0

0.
1

6.
1%

8.
6%

12
.2

28
.1

29
.1

%
32

.7
%

54
.8

13
5.

5
27

.6
%

33
.5

%
22

03
.7

16
02

.5
27

.5
%

33
.6

%
23

52
.4

15
81

.0
23

.9
%

34
.3

%
16

13
.3

17
87

.2
C

la
ss

2
F2

8.
3%

12
.2

%
0.

1
0.

1
8.

3%
12

.2
%

16
.3

36
.7

32
.7

%
39

.3
%

41
.1

10
3.

4
30

.9
%

38
.3

%
26

43
.1

13
33

.3
30

.9
%

38
.3

%
29

04
.3

12
97

.0
30

.7
%

40
.2

%
19

75
.4

16
66

.3
C

la
ss

3
F2

4.
1%

7.
9%

0.
0

0.
1

4.
1%

7.
9%

9.
8

27
.1

43
.6

%
35

.6
%

48
.1

13
3.

1
40

.0
%

38
.0

%
25

89
.9

14
72

.5
43

.6
%

35
.6

%
27

29
.2

13
72

.7
32

.1
%

42
.4

%
15

83
.0

16
73

.8
C

la
ss

4
F2

4.
6%

4.
4%

0.
1

0.
1

4.
6%

4.
4%

17
.0

33
.1

76
.4

%
32

.0
%

67
.3

13
9.

7
57

.8
%

45
.4

%
22

49
.7

15
34

.9
55

.1
%

46
.7

%
23

31
.6

15
12

.5
37

.2
%

49
.8

%
15

66
.3

17
05

.9
C

la
ss

5
F2

98
.3

%
1.

2%
4.

4
12

.6
98

.6
%

1.
3%

58
.7

17
8.

3
10

0.
0%

0.
0%

85
.2

21
2.

1
99

.4
%

1.
4%

21
42

.9
16

80
.4

86
.8

%
15

.6
%

24
36

.9
15

30
.7

66
.3

%
29

.5
%

16
72

.0
17

35
.0

C
la

ss
6

F2
51

.3
%

12
.9

%
5.

5
13

.5
51

.2
%

12
.6

%
24

.9
65

.7
10

0.
0%

0.
0%

89
.0

20
6.

4
92

.5
%

12
.5

%
29

12
.9

12
39

.0
90

.4
%

21
.6

%
31

58
.0

99
7.

4
52

.1
%

40
.3

%
20

63
.3

16
47

.4
F2

Av
er

ag
e

28
.8

%
7.

8%
1.

7
4.

4
28

.8
%

7.
8%

23
.2

61
.5

63
.6

%
23

.3
%

64
.3

15
5.

1
58

.0
%

28
.2

%
24

57
.0

14
77

.1
55

.7
%

31
.9

%
26

52
.1

13
81

.9
40

.4
%

39
.4

%
17

45
.5

17
02

.6
St

an
da

rd
D

ev
ia

tio
n

38
.7

%
4.

5%
2.

5
6.

7
38

.7
%

4.
4%

18
.2

59
.0

32
.7

%
18

.2
%

19
.7

43
.9

31
.2

%
17

.3
%

30
5.

2
16

6.
0

27
.3

%
11

.4
%

33
6.

0
21

6.
3

15
.8

%
7.

0%
21

6.
9

51
.8

LP
R

el
ax

at
io

n
Av

er
ag

e
41

.0
%

7.
6%

2.
1

4.
5

37
.3

%
10

.0
%

22
.2

49
.1

81
.8

%
11

.6
%

81
.5

19
9.

6
63

.3
%

28
.7

%
22

17
.2

15
16

.5
56

.1
%

37
.8

%
25

18
.3

13
80

.0
40

.1
%

44
.9

%
16

06
.8

17
33

.3
St

an
da

rd
D

ev
ia

tio
n

32
.4

%
3.

7%
2.

4
5.

3
30

.1
%

5.
8%

19
.0

47
.0

29
.1

%
17

.3
%

30
.5

80
.6

22
.8

%
12

.7
%

47
6.

0
16

2.
9

22
.6

%
10

.3
%

49
0.

1
24

7.
1

11
.0

%
7.

4%
23

3.
4

48
.5

MIPPROBLEM

C
la

ss
1

F1
33

.3
%

35
.6

%
20

70
.6

17
87

.3
40

.6
%

34
.2

%
25

32
.0

16
39

.6
50

.0
%

44
.2

%
23

57
.4

17
34

.8
42

.1
%

47
.9

%
22

81
.0

16
51

.1
38

.6
%

48
.9

%
24

70
.9

16
25

.7
36

.4
%

50
.5

%
14

74
.6

17
14

.6
C

la
ss

2
F1

32
.0

%
35

.0
%

20
49

.5
18

00
.0

40
.1

%
34

.4
%

25
88

.5
16

57
.6

49
.4

%
46

.6
%

23
37

.5
17

36
.1

73
.5

%
37

.4
%

33
96

.8
67

3.
8

50
.2

%
48

.6
%

27
74

.9
12

66
.0

45
.5

%
52

.2
%

18
81

.9
16

93
.4

C
la

ss
3

F1
28

.0
%

32
.4

%
18

88
.7

18
00

.4
35

.1
%

30
.9

%
25

24
.3

16
44

.7
48

.9
%

43
.1

%
24

14
.6

16
82

.4
53

.7
%

42
.5

%
28

96
.0

13
17

.6
48

.4
%

44
.2

%
28

99
.1

13
31

.7
38

.3
%

49
.3

%
16

64
.7

17
45

.9
C

la
ss

4
F1

8.
8%

12
.4

%
15

83
.1

18
13

.2
12

.2
%

13
.9

%
20

83
.0

17
64

.9
41

.4
%

45
.5

%
22

18
.6

17
47

.0
38

.6
%

49
.0

%
20

39
.4

16
53

.7
36

.9
%

50
.1

%
20

87
.0

16
52

.0
36

.4
%

50
.5

%
14

35
.2

17
48

.1
C

la
ss

5
F1

32
.0

%
35

.6
%

19
78

.3
17

96
.8

38
.8

%
34

.6
%

24
97

.0
16

41
.0

50
.1

%
45

.1
%

23
50

.3
17

41
.9

46
.3

%
48

.2
%

22
72

.7
15

74
.4

39
.0

%
48

.7
%

23
76

.4
15

79
.1

38
.2

%
49

.4
%

14
28

.7
17

45
.0

C
la

ss
6

F1
8.

00
%

10
.8

0%
16

00
.7

18
08

.3
11

.1
6%

12
.3

5%
20

98
.9

17
70

.3
42

.9
6%

46
.8

2%
21

94
.0

17
23

.9
62

.7
8%

44
.0

6%
33

74
.7

58
5.

0
70

.2
1%

43
.6

1%
32

61
.1

96
0.

9
45

.5
6%

52
.1

2%
19

51
.5

16
62

.5
F1

Av
er

ag
e

23
.7

%
27

.0
%

18
61

.8
18

01
.0

29
.7

%
26

.7
%

23
87

.3
16

86
.4

47
.1

%
45

.2
%

23
12

.1
17

27
.7

52
.8

%
44

.9
%

27
10

.1
12

42
.6

47
.2

%
47

.3
%

26
44

.9
14

02
.6

40
.0

%
50

.7
%

16
39

.4
17

18
.2

St
an

da
rd

D
ev

ia
tio

n
12

.0
%

12
.0

%
21

8.
6

9.
0

14
.1

%
10

.6
%

23
1.

5
63

.3
3.

9%
1.

4%
86

.4
23

.5
13

.4
%

4.
5%

59
5.

5
49

1.
4

12
.6

%
2.

7%
41

8.
3

26
9.

0
4.

3%
1.

3%
23

2.
4

35
.0

C
la

ss
1

F2
0.

4%
1.

3%
18

8.
3

35
0.

9
24

.7
%

39
.0

%
11

05
.7

15
47

.4
29

.2
%

45
.9

%
12

08
.5

16
12

.8
43

.6
%

50
.5

%
17

13
.6

17
09

.3
49

.1
%

50
.1

%
18

68
.5

17
55

.3
49

.1
%

50
.1

%
19

35
.1

17
61

.7
C

la
ss

2
F2

3.
1%

7.
3%

64
8.

1
12

80
.0

22
.3

%
38

.4
%

10
77

.9
15

27
.5

28
.8

%
42

.8
%

11
60

.7
15

48
.8

58
.2

%
47

.7
%

24
34

.2
14

13
.9

65
.5

%
45

.7
%

25
41

.3
15

14
.1

60
.0

%
49

.0
%

25
13

.5
15

06
.4

C
la

ss
3

F2
0.

0%
0.

0%
52

.9
11

7.
8

14
.9

%
31

.3
%

90
4.

1
13

99
.1

25
.5

%
43

.7
%

11
07

.0
15

92
.1

47
.3

%
47

.6
%

18
74

.5
16

44
.5

51
.6

%
48

.0
%

20
42

.7
16

57
.2

54
.5

%
47

.4
%

22
72

.2
16

45
.0

C
la

ss
4

F2
0.

0%
0.

0%
17

2.
1

37
8.

5
16

.0
%

26
.7

%
18

04
.4

17
01

.7
34

.4
%

47
.6

%
14

61
.8

17
56

.1
42

.1
%

49
.5

%
16

77
.7

17
48

.5
40

.0
%

49
.0

%
17

40
.6

17
08

.7
49

.1
%

50
.1

%
18

96
.6

17
35

.7
C

la
ss

5
F2

42
.1

%
46

.5
%

18
38

.5
17

58
.3

49
.8

%
45

.8
%

22
75

.7
17

23
.7

50
.7

%
49

.6
%

21
77

.0
17

45
.3

62
.9

%
45

.5
%

27
91

.9
14

10
.9

65
.5

%
43

.3
%

29
48

.0
12

53
.6

55
.4

%
44

.1
%

27
80

.3
13

00
.9

C
la

ss
6

F2
13

.5
3%

17
.7

5%
15

46
.2

17
95

.6
26

.0
9%

28
.7

8%
20

42
.6

17
09

.5
43

.8
9%

47
.8

0%
20

52
.6

17
35

.8
84

.3
5%

26
.5

6%
34

82
.8

38
8.

7
82

.7
3%

32
.1

3%
33

71
.8

57
2.

2
59

.0
5%

45
.0

0%
27

97
.6

12
92

.5
F2

Av
er

ag
e

9.
9%

12
.1

%
74

1.
0

94
6.

8
25

.6
%

35
.0

%
15

35
.1

16
01

.5
35

.4
%

46
.2

%
15

27
.9

16
65

.2
56

.4
%

44
.5

%
23

29
.1

13
86

.0
59

.1
%

44
.7

%
24

18
.8

14
10

.2
54

.5
%

47
.6

%
23

65
.9

15
40

.4
St

an
da

rd
D

ev
ia

tio
n

16
.6

%
18

.1
%

76
9.

9
75

5.
7

12
.7

%
7.

3%
57

8.
0

13
1.

2
9.

9%
2.

6%
47

2.
2

90
.9

16
.0

%
9.

0%
71

6.
4

50
9.

7
15

.2
%

6.
6%

64
9.

2
44

8.
7

4.
7%

2.
6%

39
8.

6
20

8.
8

M
IP

Av
er

ag
e

16
.8

%
19

.6
%

13
01

.4
13

73
.9

27
.6

%
30

.9
%

19
61

.2
16

43
.9

41
.3

%
45

.7
%

19
20

.0
16

96
.4

54
.6

%
44

.7
%

25
19

.6
13

14
.3

53
.1

%
46

.0
%

25
31

.9
14

06
.4

47
.3

%
49

.1
%

20
02

.7
16

29
.3

St
an

da
rd

D
ev

ia
tio

n
15

.6
%

16
.6

%
79

6.
1

67
7.

2
12

.9
%

9.
7%

61
1.

8
10

7.
7

9.
4%

2.
1%

52
2.

0
71

.2
14

.2
%

6.
8%

65
8.

8
48

3.
2

14
.7

%
5.

0%
53

3.
9

35
2.

8
8.

7%
2.

5%
49

0.
6

17
0.

3



Analysis of MIP formulations for SMSP with setup times and release dates 19
Ta

bl
e

5
A

ve
ra

ge
G

A
P

R
es

ul
ts

fo
rS

in
gl

e
M

ac
hi

ne
Sc

he
du

lin
g

Pr
ob

le
m

s
fo

rS
ix

M
IP

Fo
rm

ul
at

io
ns

fo
rA

ll
Si

ze
s

in
A

ll
C

la
ss

es
.F

or
th

e
L

P
(l

in
ea

rp
ro

gr
am

m
in

g)
re

la
xa

tio
n

pr
ob

le
m

,t
he

G
A

P
in

di
ca

te
s

th
e

av
er

ag
e

va
lu

e
of

th
e

av
er

ag
e

lin
ea

r
re

la
xa

tio
n

ga
p

fo
r

al
ls

iz
es

in
al

lc
la

ss
es

,c
om

pu
te

d
as

th
e

re
la

tiv
e

di
ff

er
en

ce
be

tw
ee

n
th

e
be

st
in

te
ge

r
so

lu
tio

n
an

d
th

e
L

P
re

la
xa

tio
n

va
lu

e.
Fo

r
th

e
M

IP
(m

ix
ed

in
te

ge
r

pr
og

ra
m

m
in

g)
pr

ob
le

m
,t

he
G

A
P

is
th

e
av

er
ag

e
va

lu
e

of
th

e
av

er
ag

e
op

tim
al

ity
ga

p
fo

r
al

l
si

ze
s

in
al

l
cl

as
se

s.
T
(s
)

in
di

ca
te

s
th

e
av

er
ag

e
va

lu
e

of
th

e
av

er
ag

e
C

PU
tim

e
fo

ra
ll

si
ze

s
in

al
lc

la
ss

es
,a

nd
SD

is
th

e
st

an
da

rd
de

vi
at

io
n

fo
re

ac
h

m
et

ri
c.

F
1

an
d

F
2

de
no

te
th

e
ob

je
ct

iv
e

fu
nc

tio
ns

∑
jw

jC
j

an
d

∑
jw

jT
j,

re
sp

ec
tiv

el
y.

In
st

an
ce

O
bj

ec
tiv

e
M

ix
ed

In
te

ge
r

Pr
og

ra
m

Fo
rm

ul
at

io
ns

Si
ze

s
Fu

nc
tio

n
M

an
ne

M
an

ne
A

lte
rn

at
iv

e
W

ag
ne

r
So

us
a

an
d

W
ol

se
y

So
us

a
an

d
W

ol
se

y
Im

pr
ov

em
en

t
Pe

ss
oa

et
al

.

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

ov
er

li
ne

G
A

P
SD

(G
A

P
)

T
(s
)

SD
(T

(s
))

LPRELAXATIONPROBLEM

5
F1

42
.1

%
13

.9
%

0.
6

1.
0

24
.7

%
6.

6%
0.

9
1.

1
10

0.
0%

0.
0%

0.
2

0.
3

33
.0

%
9.

7%
13

7.
5

30
2.

4
3.

5%
3.

1%
10

1.
7

16
8.

1
0.

0%
0.

1%
1.

6
3.

6
7

F1
49

.0
%

14
.2

%
1.

0
1.

9
34

.4
%

8.
6%

0.
0

0.
0

10
0.

0%
0.

0%
0.

0
0.

0
40

.5
%

13
.5

%
23

6.
2

35
0.

3
5.

9%
3.

9%
95

4.
8

14
10

.1
0.

0%
0.

0%
2.

3
2.

8
9

F1
49

.6
%

18
.1

%
0.

2
0.

5
37

.0
%

12
.6

%
0.

0
0.

0
10

0.
0%

0.
0%

0.
0

0.
0

43
.9

%
13

.7
%

87
3.

1
12

42
.7

31
.1

%
38

.8
%

12
80

.4
15

93
.1

0.
1%

0.
1%

13
.4

18
.1

11
F1

50
.2

%
18

.3
%

0.
0

0.
1

40
.5

%
13

.8
%

1.
3

1.
9

10
0.

0%
0.

0%
0.

5
0.

8
44

.1
%

17
.4

%
75

7.
9

10
95

.4
36

.9
%

46
.2

%
15

15
.2

13
59

.2
0.

1%
0.

1%
35

.4
32

.9
13

F1
51

.0
%

21
.0

%
1.

9
2.

1
42

.8
%

17
.2

%
2.

0
1.

7
10

0.
0%

0.
0%

4.
0

8.
9

52
.3

%
22

.2
%

11
49

.8
12

82
.6

40
.1

%
47

.0
%

21
35

.5
11

85
.8

0.
1%

0.
1%

96
.8

85
.6

15
F1

52
.9

%
21

.6
%

4.
9

10
.9

45
.7

%
17

.8
%

11
.4

13
.2

10
0.

0%
0.

0%
2.

1
2.

7
67

.2
%

29
.2

%
17

25
.9

15
39

.0
46

.0
%

45
.7

%
26

04
.2

78
9.

4
0.

2%
0.

3%
22

8.
5

22
2.

8
20

F1
52

.8
%

22
.8

%
5.

0
8.

9
47

.2
%

19
.8

%
20

.1
40

.7
10

0.
0%

0.
0%

1.
8

1.
8

75
.5

%
28

.6
%

25
75

.4
83

9.
5

58
.7

%
46

.0
%

32
38

.7
39

7.
1

37
.4

%
42

.4
%

14
49

.4
13

69
.9

30
F1

54
.7

%
25

.3
%

5.
1

11
.1

51
.4

%
23

.4
%

22
.1

49
.0

10
0.

0%
0.

0%
7.

2
5.

9
98

.7
%

3.
1%

34
95

.3
25

6.
5

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
35

22
.0

12
2.

4
50

F1
55

.9
%

28
.6

%
4.

6
8.

9
54

.5
%

27
.8

%
6.

5
4.

5
10

0.
0%

0.
0%

40
.6

16
.0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

75
F1

61
.7

%
26

.2
%

2.
2

2.
5

61
.0

%
25

.9
%

79
.4

91
.7

10
0.

0%
0.

0%
22

3.
9

43
.9

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0

F1
64

.7
%

26
.1

%
2.

1
1.

8
64

.3
%

25
.8

%
90

.8
78

.4
10

0.
0%

0.
0%

80
4.

9
29

7.
2

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

F1
Av

er
ag

e
53

.2
%

21
.5

%
2.

5
4.

5
45

.8
%

18
.1

%
21

.3
25

.7
10

0.
0%

0.
0%

98
.7

34
.3

68
.7

%
12

.5
%

19
77

.4
62

8.
0

56
.6

%
21

.0
%

23
84

.6
62

7.
5

39
.8

%
3.

9%
14

68
.1

16
8.

9
St

an
da

rd
D

ev
ia

tio
n

6.
2%

4.
9%

2.
0

4.
4

11
.7

%
7.

2%
32

.6
34

.0
0.

0%
0.

0%
24

3.
5

88
.1

27
.3

%
11

.1
%

14
29

.4
58

3.
4

37
.9

%
22

.9
%

12
64

.1
65

2.
5

49
.0

%
12

.8
%

17
24

.5
40

4.
5

5
F2

30
.1

%
46

.1
%

0.
0

0.
0

30
.1

%
46

.2
%

0.
4

0.
5

40
.0

%
49

.0
%

0.
2

0.
2

29
.3

%
44

.9
%

26
.4

55
.8

21
.3

%
32

.9
%

14
3.

9
32

0.
0

16
.2

%
30

.1
%

0.
9

1.
0

7
F2

29
.5

%
41

.1
%

0.
0

0.
0

29
.5

%
41

.1
%

0.
1

0.
1

36
.7

%
49

.7
%

0.
1

0.
0

30
.5

%
41

.9
%

29
7.

4
38

8.
0

21
.5

%
28

.1
%

44
4.

8
61

0.
9

16
.2

%
21

.8
%

14
.4

22
.4

9
F2

26
.9

%
42

.0
%

0.
0

0.
0

26
.9

%
42

.0
%

0.
3

0.
6

46
.7

%
46

.8
%

0.
2

0.
4

37
.3

%
49

.1
%

10
88

.0
13

26
.7

30
.5

%
41

.9
%

16
70

.9
13

43
.0

10
.5

%
17

.4
%

44
.8

45
.0

11
F2

28
.5

%
41

.2
%

0.
0

0.
0

28
.5

%
41

.2
%

0.
3

0.
7

56
.7

%
42

.7
%

0.
1

0.
1

40
.5

%
44

.7
%

18
59

.7
10

64
.7

36
.8

%
42

.3
%

24
26

.4
10

69
.9

12
.2

%
21

.4
%

17
3.

3
16

3.
3

13
F2

29
.6

%
40

.1
%

0.
0

0.
0

29
.6

%
40

.1
%

0.
2

0.
4

56
.7

%
42

.7
%

0.
3

0.
4

47
.3

%
39

.8
%

26
10

.9
67

9.
4

46
.2

%
36

.8
%

32
20

.2
47

0.
4

9.
6%

13
.0

%
73

8.
8

71
0.

7
15

F2
28

.6
%

39
.1

%
0.

0
0.

0
28

.6
%

39
.1

%
1.

0
1.

5
53

.3
%

45
.0

%
0.

8
1.

4
46

.8
%

46
.8

%
32

64
.2

42
9.

9
50

.0
%

43
.4

%
32

66
.5

36
7.

6
8.

2%
11

.8
%

10
32

.5
91

1.
6

20
F2

36
.3

%
34

.8
%

0.
3

0.
6

36
.5

%
35

.2
%

3.
5

7.
7

70
.0

%
35

.2
%

0.
8

0.
7

66
.7

%
37

.2
%

34
80

.9
29

1.
6

66
.7

%
37

.2
%

36
00

.0
0.

0
31

.1
%

26
.9

%
27

96
.2

78
8.

2
30

F2
26

.6
%

37
.3

%
0.

4
0.

6
26

.6
%

37
.3

%
0.

4
0.

2
70

.0
%

41
.5

%
2.

5
1.

4
70

.0
%

41
.5

%
36

00
.0

0.
0

70
.0

%
41

.5
%

36
00

.0
0.

0
70

.0
%

41
.5

%
36

00
.0

0.
0

50
F2

23
.9

%
37

.5
%

0.
3

0.
5

23
.9

%
37

.5
%

10
.7

11
.2

80
.0

%
25

.3
%

24
.8

13
.5

80
.0

%
25

.3
%

36
00

.0
0.

0
80

.0
%

25
.3

%
36

00
.0

0.
0

80
.0

%
25

.3
%

36
00

.0
0.

0
75

F2
28

.5
%

36
.5

%
14

.6
22

.4
28

.5
%

36
.5

%
35

.8
20

.5
10

0.
0%

0.
0%

18
0.

8
96

.2
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0
F2

28
.2

%
39

.0
%

2.
8

4.
8

28
.2

%
39

.0
%

20
2.

2
19

8.
8

90
.0

%
16

.7
%

49
6.

4
14

6.
4

90
.0

%
16

.7
%

36
00

.0
0.

0
90

.0
%

16
.7

%
36

00
.0

0.
0

90
.0

%
16

.7
%

36
00

.0
0.

0
F2

Av
er

ag
e

28
.8

%
39

.5
%

1.
7

2.
6

28
.8

%
39

.6
%

23
.2

22
.0

63
.6

%
35

.9
%

64
.3

23
.7

58
.0

%
35

.3
%

24
57

.0
38

5.
1

55
.7

%
31

.5
%

26
52

.1
38

0.
2

40
.4

%
20

.5
%

17
45

.5
24

0.
2

St
an

da
rd

D
ev

ia
tio

n
3.

0%
3.

1%
4.

4
6.

7
3.

1%
3.

1%
60

.3
59

.0
20

.4
%

15
.7

%
15

3.
1

49
.7

24
.6

%
15

.2
%

14
05

.4
46

3.
4

27
.4

%
13

.4
%

13
18

.0
46

8.
0

36
.6

%
10

.8
%

16
66

.9
36

7.
7

LP
R

el
ax

at
io

n
Av

er
ag

e
41

.0
%

30
.5

%
2.

1
3.

6
37

.3
%

28
.8

%
22

.2
23

.8
81

.8
%

17
.9

%
81

.5
29

.0
63

.3
%

23
.9

%
22

17
.2

50
6.

6
56

.1
%

26
.2

%
25

18
.3

50
3.

8
40

.1
%

12
.2

%
16

06
.8

20
4.

6
St

an
da

rd
D

ev
ia

tio
n

13
.3

%
10

.1
%

3.
3

5.
6

12
.1

%
12

.2
%

47
.3

47
.0

23
.3

%
21

.3
%

19
9.

2
70

.0
25

.9
%

17
.4

%
14

04
.9

52
9.

0
32

.3
%

19
.1

%
12

67
.6

56
8.

4
42

.2
%

14
.3

%
16

61
.2

37
9.

0

MIPPROBLEM

5
F1

0.
0%

0.
0%

0.
4

0.
6

0.
0%

0.
0%

0.
3

0.
5

0.
0%

0.
0%

0.
1

0.
1

0.
0%

0.
0%

54
6.

3
76

9.
5

0.
0%

0.
0%

81
.2

15
8.

7
0.

0%
0.

0%
4.

2
6.

9
7

F1
0.

0%
0.

0%
0.

5
1.

1
0.

0%
0.

0%
1.

1
0.

5
0.

0%
0.

0%
1.

0
0.

3
5.

2%
9.

3%
12

23
.0

16
38

.6
0.

3%
0.

8%
88

8.
1

11
93

.2
0.

0%
0.

0%
19

.4
29

.4
9

F1
0.

0%
0.

0%
1.

5
2.

5
0.

0%
0.

0%
37

.1
30

.2
0.

0%
0.

0%
24

.4
13

.8
11

.4
%

14
.0

%
17

41
.5

16
71

.7
3.

3%
6.

3%
14

16
.0

13
83

.1
0.

0%
0.

0%
61

.1
72

.9
11

F1
0.

0%
0.

0%
15

.1
12

.1
3.

1%
3.

3%
17

78
.9

13
69

.1
0.

0%
0.

0%
62

5.
0

39
4.

0
17

.0
%

26
.3

%
22

61
.4

14
72

.0
11

.2
%

21
.8

%
21

16
.0

13
29

.3
0.

0%
0.

0%
14

3.
7

15
2.

5
13

F1
0.

9%
1.

4%
45

8.
7

49
2.

5
19

.1
%

14
.7

%
28

57
.4

11
51

.0
20

.7
%

15
.5

%
31

82
.3

61
7.

3
27

.3
%

33
.9

%
26

23
.3

12
05

.6
25

.1
%

38
.1

%
31

24
.5

84
8.

6
0.

1%
0.

3%
38

9.
9

45
1.

3
15

F1
9.

0%
8.

2%
22

14
.9

16
51

.0
29

.8
%

18
.3

%
35

85
.4

35
.8

40
.3

%
18

.4
%

36
00

.0
0.

0
51

.8
%

41
.6

%
34

15
.5

39
3.

6
31

.2
%

37
.3

%
34

68
.2

32
2.

9
0.

1%
0.

2%
77

7.
4

70
5.

3
20

F1
31

.2
%

20
.2

%
33

88
.8

32
7.

9
40

.6
%

19
.2

%
36

00
.0

0.
0

73
.8

%
8.

7%
36

00
.0

0.
0

68
.5

%
31

.8
%

36
00

.0
0.

0
48

.4
%

43
.3

%
36

00
.0

0.
0

40
.2

%
47

.2
%

22
38

.1
12

75
.1

30
F1

44
.7

%
23

.8
%

36
00

.0
0.

0
50

.0
%

23
.3

%
36

00
.0

0.
0

88
.1

%
10

.0
%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
50

F1
51

.3
%

27
.9

%
36

00
.0

0.
0

56
.3

%
26

.8
%

36
00

.0
0.

0
95

.5
%

4.
6%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
75

F1
59

.9
%

25
.9

%
36

00
.0

0.
0

62
.2

%
25

.3
%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0
F1

63
.7

%
26

.0
%

36
00

.0
0.

0
65

.2
%

24
.9

%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

F1
Av

er
ag

e
23

.7
%

12
.1

%
18

61
.8

22
6.

2
29

.7
%

14
.2

%
23

87
.3

23
5.

2
47

.1
%

5.
2%

23
12

.1
93

.2
52

.8
%

14
.3

%
27

10
.1

65
0.

1
47

.2
%

13
.4

%
26

44
.9

47
6.

0
40

.0
%

4.
3%

16
39

.4
24

4.
9

St
an

da
rd

D
ev

ia
tio

n
26

.7
%

12
.4

%
17

41
.0

50
1.

4
26

.5
%

11
.2

%
16

21
.6

50
9.

2
44

.7
%

6.
9%

17
16

.9
21

0.
0

42
.3

%
16

.2
%

11
17

.9
72

1.
0

44
.2

%
18

.0
%

13
00

.7
58

8.
3

49
.0

%
14

.2
%

16
75

.3
41

1.
9

5
F2

0.
0%

0.
0%

0.
0

0.
0

0.
0%

0.
0%

0.
3

0.
5

0.
0%

0.
0%

0.
1

0.
1

3.
9%

9.
6%

39
6.

3
93

8.
0

3.
3%

8.
2%

31
3.

1
70

7.
2

0.
0%

0.
0%

3.
8

2.
6

7
F2

0.
0%

0.
0%

0.
0

0.
0

0.
0%

0.
0%

0.
9

1.
5

0.
0%

0.
0%

0.
6

0.
8

7.
9%

19
.3

%
74

4.
2

14
13

.0
3.

5%
8.

6%
67

9.
0

11
61

.8
1.

8%
3.

0%
34

3.
8

48
0.

2
9

F2
0.

0%
0.

0%
0.

2
0.

4
0.

0%
0.

0%
5.

3
6.

6
0.

0%
0.

0%
6.

2
9.

6
11

.5
%

28
.3

%
10

71
.6

13
81

.9
13

.8
%

27
.6

%
12

02
.5

15
25

.9
4.

3%
7.

6%
82

6.
0

89
0.

1
11

F2
0.

0%
0.

0%
1.

5
3.

2
0.

0%
0.

0%
17

5.
8

21
9.

9
0.

0%
0.

0%
78

.1
13

3.
2

22
.6

%
37

.2
%

15
21

.7
16

80
.5

31
.2

%
40

.0
%

16
36

.5
16

91
.1

7.
5%

14
.9

%
14

08
.9

13
12

.6
13

F2
0.

0%
0.

0%
76

.7
18

6.
1

4.
5%

9.
1%

80
5.

5
11

32
.2

0.
4%

1.
0%

53
1.

8
90

2.
0

37
.3

%
38

.9
%

19
07

.7
15

72
.9

44
.6

%
42

.0
%

22
25

.9
15

82
.0

26
.4

%
23

.7
%

23
04

.5
14

64
.9

15
F2

2.
6%

6.
4%

29
5.

6
71

6.
4

11
.2

%
20

.1
%

14
26

.9
15

62
.5

12
.8

%
23

.3
%

11
60

.9
17

60
.6

50
.0

%
48

.6
%

22
69

.5
13

44
.1

63
.3

%
42

.7
%

26
39

.0
11

09
.5

59
.7

%
26

.6
%

31
37

.8
60

1.
5

20
F2

12
.6

%
25

.8
%

10
31

.5
16

29
.3

28
.9

%
29

.7
%

21
66

.6
16

33
.9

33
.1

%
41

.1
%

18
41

.3
14

73
.1

87
.2

%
15

.4
%

33
09

.4
32

1.
0

90
.0

%
24

.5
%

35
10

.9
21

8.
4

10
0.

0%
0.

0%
36

00
.0

0.
0

30
F2

20
.1

%
37

.5
%

12
01

.4
18

57
.9

27
.4

%
37

.3
%

20
85

.8
15

33
.5

51
.0

%
46

.5
%

25
71

.8
11

67
.2

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

50
F2

20
.3

%
38

.1
%

14
33

.8
17

05
.1

41
.3

%
32

.7
%

30
18

.7
88

5.
2

92
.1

%
10

.0
%

34
16

.4
28

5.
6

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

10
0.

0%
0.

0%
36

00
.0

0.
0

75
F2

26
.4

%
37

.2
%

21
55

.5
15

60
.3

77
.4

%
21

.4
%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0
F2

26
.4

%
39

.8
%

19
54

.8
15

78
.8

91
.1

%
10

.0
%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
10

0.
0%

0.
0%

36
00

.0
0.

0
F2

Av
er

ag
e

9.
9%

16
.8

%
74

1.
0

83
9.

8
25

.6
%

14
.6

%
15

35
.1

63
4.

2
35

.4
%

11
.1

%
15

27
.9

52
1.

1
56

.4
%

17
.9

%
23

29
.1

78
6.

5
59

.1
%

17
.6

%
24

18
.8

72
6.

9
54

.5
%

6.
9%

23
65

.9
43

2.
0

St
an

da
rd

D
ev

ia
tio

n
11

.4
%

18
.5

%
84

1.
7

82
0.

5
32

.4
%

14
.3

%
14

44
.7

71
7.

8
43

.1
%

17
.7

%
15

34
.7

67
5.

1
41

.5
%

18
.0

%
12

68
.2

72
0.

4
41

.1
%

18
.1

%
12

81
.1

70
7.

6
46

.5
%

10
.2

%
14

55
.0

56
5.

7
M

IP
Av

er
ag

e
16

.8
%

14
.5

%
13

01
.4

53
3.

0
27

.6
%

14
.4

%
19

61
.2

43
4.

7
41

.3
%

8.
1%

19
20

.0
30

7.
2

54
.6

%
16

.1
%

25
19

.6
71

8.
3

53
.1

%
15

.5
%

25
31

.9
60

1.
4

47
.3

%
5.

6%
20

02
.7

33
8.

4
St

an
da

rd
D

ev
ia

tio
n

21
.3

%
15

.6
%

14
52

.5
73

4.
1

29
.0

%
12

.5
%

15
60

.9
64

0.
7

43
.2

%
13

.5
%

16
39

.0
53

4.
8

40
.9

%
16

.8
%

11
82

.8
70

6.
8

42
.1

%
17

.8
%

12
65

.1
64

7.
9

47
.2

%
12

.1
%

15
75

.7
49

2.
3



20 Thiago Henrique Nogueira et al.

All the MIP formulations developed in this article present a polynomial number
of constraints and variables. The Table 6 shows the number of constraints and bi-
nary variables associated with each paradigm. It is worth noting that as h >>> n,
h ∝ n, “Pessoa et al.”, “Sousa and Wolsey” and “Sousa and Wolsey Improvement”
formulations will increase its size faster than other formulations.

Table 6 Model Size for each Formulation Paradigm for Problems 1|r j,si j|∑ j w jC j and 1|r j,si j|∑ j w jTj .
For the formulations, “Variables” indicate the number of associated variables and “Constraints” the number
of constraints with each formulation paradigm.

MIP Formulations Model Order Size for Both Problems
Variables Constraints

Manne O(n2) O(n2)
Manne Alternative O(n2) O(n2)

Wagner O(n3) O(n3)
Sousa and Wolsey O(nh) O(n2h)

Sousa and Wolsey Improvement O(nh) O(n2h)
Pessoa et al. O(n2h) O(n2h)

4 Concluding remarks

In this article, the computational performance of six different specific MIP formula-
tions were proposed and compared for two single machine scheduling problems with
sequence dependent setup times and release dates. In addition, these MIP formula-
tions could be easily adapted to others objective functions and machine environments
(parallel machines, flowshop, jobshop and others). The performances of these MIP
formulations depend on the problem, the number of jobs, the characteristic of the
instances (class) and the length of the planning horizon. “Manne” and “Sousa and
Wolsey” formulations seem to be the most widely used formulations in the Schedul-
ing literature. Formulations based on “Manne” and “Wagner” formulations are the
oldest and “Pessoa et al.” formulation is the newest one.

The “Manne” formulation optimality solves a greater number of instances. Prob-
lem 1|r j,si j|∑ j w jC j (F1) is better solved by “Pessoa et al.” formulation for small in-
stance sizes (about 15 jobs) and “Manne” formulation for larger instances. The prob-
lem 1|r j,si j|∑ j w jTj (F2) is better solved for “Manne” formulation. Furthermore,
with small size of instances, the “Pessoa et al.” formulation presets good MIP and
LP results. However, LP relaxation for time-indexed formulations has better lower
bounds, but its problems are harder to solve.

In summary, the results suggest that time-indexed formulations have difficulty
to solve the instances with long planning horizon (classes 2 and 6) for the problem
1|r j,si j|∑ j w jC j, while other formulations have difficulty to solve the instances with
high congestion level (class 5). In the problem 1|r j,si j|∑ j w jTj, all formulations have
difficulty to solve the instance class with high congestion level and emphasized con-
ditions (classes 5 and 6), highlighting considerably poorer results for the instances
with high congestion level (class 5). Furthermore, the results indicate that “Pessoa
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et al.” formulation always perform better, independently of the class for instances
with less than 15 jobs. For larger instances, “Manne” formulation manages to solve a
greater number of instances. The alternative formulation for “Manne” does not see to
work well as there were no significant improvements. On the other hand, the improve-
ments proposed for the “Sousa and Wolsey” formulation improve the lower bounds
but increase its computational time.
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